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ABSTRACT OF THE DISSERTATION

Coding Techniques for High Data Rates in Wireless Multiple-Input Multiple-Output

Communications

by

Adina Matache

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2004

Professor Richard D. Wesel, Chair

The ever-increasing demand for reliable high-data-rate communication over the wire-

less channel has lead to the development of efficient modulation and coding schemes.

Systems employing multiple antennas for both transmitting and receiving promise a

substantial increase in capacity over single antenna systems.

In this dissertation we propose several coding techniques for transmission over

multiple-input multiple-output (MIMO) channels. One contribution of this work is a

simple coding technique, which uses a single trellis code with finite-traceback Viterbi

decoding for Foschini’s diagonally layered space-time transmission system known as

D-BLAST. We examine the performance of universal trellis codes designed to have a

distance structure that is matched to the periodic signal-to-noise ratio variation of the

xvii



channel created by D-BLAST, under the assumption that the channel is static during

one burst but may change from burst to burst. We prove that D-BLAST under a min-

imum mean-square error (MMSE) interference suppression criterion is theoretically

optimal and achieves the MIMO channel capacity. Under a constrained input scenario

and a Gaussian approximation on the MMSE filter output, the parallel channels created

by D-BLAST have an aggregate capacity that is approximately equal to the constrained

MIMO capacity. For large antenna configurations, computing the constrained ergodic

capacity is numerically intensive; however, the D-BLAST technique can be used to

drastically reduce the complexity of such calculations from exponential to linear in the

number of antennas.

Another contribution of this work is the application of low-density parity-check

(LDPC) codes for multiple-antenna wireless channels. We introduce a scheme using

a single LDPC code spatially multiplexed on multiple antennas and an iterative detec-

tion and decoding receiver. We discuss several reduced-complexity soft demodulation

techniques suitable for systems that achieve very high spectral efficiencies. We com-

pare the different detection schemes in terms of their performance and complexity. We

also demonstrate that properly designed LDPC codes behave very much like universal

codes in the sense that their performance lies in close proximity to the Root and Vari-

aya compound channel capacity for the linear Gaussian vector channels for all but a

few channels.

xviii



Chapter 1

Introduction

The ever-increasing demand for reliable high-data-rate communication over the

wireless channel has lead to the development of efficient modulation and coding schemes.

The wireless channel suffers from time-varying impairments like multi-path fading, in-

terference, and noise. Diversity techniques (time, frequency, space, polarization) are

an effective method to combat the fading in wireless channels. Time and frequency di-

versity yield a loss in bandwidth efficiency. However, by employing multiple antennas

at the transmitter and/or receiver, spatial diversity is achieved without sacrificing the

precious bandwidth resource. Moreover, by employing multiple antennas for both the

transmitting and receiving, a substantial increase in capacity is possible over the single

antenna systems. The basic information theory results reported by Foschini and Gans

[13] and independently by Telatar [40] have indeed promised extremely high spec-

tral efficiencies through multiple element antenna arrays at both the transmitter and

1



receiver.

In this dissertation we propose several coding techniques for transmission over

multiple-input multiple-output (MIMO) channels and present analytical and simulation

results for the coded MIMO system under an idealized propagation scenario. One con-

tribution of this work is a simple coding technique which uses a single trellis code with

finite-traceback Viterbi decoding for Foschini’s diagonally layered space-time trans-

mission system (better known as D-BLAST). In his original work [12], Foschini pro-

posed D-BLAST as a receiver architecture designed for uncoded transmission over

MIMO systems. With zero-forcing (ZF) interference suppression, this architecture has

an “operational” capacity equal to a lower bound on the Shannon channel capacity.

However, D-BLAST is theoretically capacity-achieving if zero-forcing is replaced by

minimum mean-square error (MMSE) interference suppression. In essence, MMSE D-

BLAST converts a linear MIMO channel into a periodic scalar channel with the same

capacity.

In Chapter 2 we examine the performance of universal trellis codes for the periodic

fading channel in conjunction with full-overhead and reduced-overhead versions of the

diagonally layered space-time receiver architecture. A universal trellis code can (to the

extent its blocklength and complexity will permit) approach the performance predicted

by the compound channel information theory for linear Gaussian channels. Root and

Variaya [36] proved that for a given rate and input distribution there exists a code that

will reliably transmit that rate over every linear Gaussian channel for which the input

2



distribution induces a mutual information higher than the code rate. In other words,

such a code works on every channel that it possibly could, and on each channel it works

as if it were designed specifically for that channel. In [48] Wesel et al. constructed

universal trellis codes for periodic erasure channels, which we show to be universal for

more general periodic fading. We also show that these �)� -state universal trellis codes

have frame error rates within �"%,? - �&% � dB of the quasistatic Rayleigh fading outage

capacity of the periodic fading channel created by D-BLAST. An additional loss of #&%,�
- �)%,# dB is incurred due to the overhead penalty associated with the diagonal layering.

At the same time as our initial results in [33], Caire and Colavolpe [9] proposed a

similar space-time coding technique for the quasistatic multiple antenna channel, called

the “wrapped” space-time coding (WSTC) scheme. The main difference in this work

is that the decoding of a “wrapped” space-time code is via Viterbi’s algorithm through

the use of per-survivor processing (PSP) and that the component codes for the WSTC

scheme are off-the-shelf convolutional codes, not designed for the periodic channel

created by D-BLAST.

Recently, El Gamal and Hammons [17] proposed an iterative coding technique for

the layered space-time systems which uses � constituent encoders, one for each layer.

The main advantage of this scheme, which is referred to as the threaded space-time

(TST) architecture, is that it does not incur the overhead penalty inherent in the initial

pilots required by diagonal layering. One potential drawback of the TST architecture is

the complexity of its iterative receiver which combines a SISO multi-user detector mod-

3



ule and � separate SISO channel decoders for each of the component channel codes.

The TST results reported in [17] are within � - � dB of the outage capacity. For higher

number of transmit/receive antennas, the TST architecture of El Gamal and Hammons

has �)% � - �*%,# dB better average performance in quasistatic Rayleigh fading than our

scheme. The iterative MMSE receiver architecture of TST provides better detection

and has no overhead penalty.

Another factor that contributes to a better average performance in the TST archi-

tecture is the use of smaller QPSK constellations. However, our larger ��� -QAM con-

stellations permit the code to operate on at least some channels that are singular. Such

singular channels would force uncoded performance for QPSK systems such as that of

El Gamal and Hammons. Another recent work includes the multilayered space-time

architecture proposed by Tarokh, Naguib, Seshadri, and Calderbank [1]. The perfor-

mance obtained with this scheme is � dB or more from the outage capacity.

In Chapter 3 we prove that D-BLAST under an MMSE interference suppression cri-

terion is theoretically optimal and achieves the Shannon channel capacity. This is an al-

ternative, simpler proof than the one given by Ariyavisitakul in [7]. Under a constrained

input scenario and a Gaussian approximation on the MMSE filter output, the paral-

lel channels created by D-BLAST have an aggregate capacity that is approximately

equal to the constrained modulation MIMO capacity. For large antenna configurations,

computing the constrained capacity is numerically intensive; however, the D-BLAST

technique can be used to drastically reduce the complexity of such calculations from

4



exponential to linear in the number of antennas.

In Chapter 4, we introduce a scheme using a single low-density parity-check (LDPC)

code spatially multiplexed on multiple antennas and an iterative detection and decoding

receiver. Recent research has shown that combining iterative signal processing and de-

coding techniques can achieve near-capacity performance on multiple-input multiple-

output channels. This iterative detection and decoding method is based on the turbo

decoding principle and is often referred to as Turbo-BLAST [37], [38], [43]. Sev-

eral techniques for low-complexity, high-performance iterative detection and decoding

receivers are available in the literature. In [37] and [38] the authors introduce a sub-

optimal receiver based on a minimum mean-square error (MMSE) soft interference

cancellation detector. In [41] a “list” sphere decoder is used to iteratively detect and

decode either simple convolutional or more powerful turbo codes. In [5] the authors

present an iterative-greedy demodulation-decoding technique for turbo codes based on

a greedy detection method for multiuser communications. More recently in [28] the au-

thors present an LDPC coded MIMO OFDM system using either the optimal soft max-

imum a posteriori (MAP) demodulator or the low complexity minimum mean-square

error soft interference cancellation (MMSE-SIC) demodulator. The results reported

in [28] show that a system based on the MMSE-SIC detector suffers a performance

degradation in comparison to a system based on the MAP detector. In our work how-

ever, we have observed very little difference in the performance of these two detection

schemes for systems with a small number of transmit and receive antennas and QPSK

5



modulation.

In this research we focus on an LDPC coded MIMO scheme which uses a high-

performance irregular LDPC code designed in our previous work [21], [20]. We dis-

cuss several reduced-complexity soft demodulation techniques suitable for systems that

achieve very high spectral efficiencies. In particular, we consider the standard soft MAP

detector, the MMSE suppression and MMSE-SIC detectors, and we introduce a simple

maximal ratio combining (MRC) detector with either soft or hard interference cancel-

lation. We compare the different detection schemes in terms of their performance and

complexity. We also provide comparisons with the Shannon capacity limits for ergodic

multiple-antenna channels. Chapter 4 also provides results that show that properly de-

signed LDPC codes behave very much like universal space-time codes and that their

performance lies in close proximity to the Root and Variaya capacity for the linear

Gaussian vector channels for all but a few channels.
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Chapter 2

Trellis Coded D-BLAST Systems

2.1 System Model

The system under consideration is a MIMO system with � transmit and � receive

antennas. In a complex baseband representation, the basic vector equation describing

the channel operating on the signal in a quasistatic scenario is

� 9�� > 
�����9�� >��
	�9�� > !�� 
��"! % % % !+	
� (2.1)

where 	�� is the size of a frame, ��9�� > 
 � � 5 9�� > � 4 9�� > % % % ��� 9�� > � T is the complex vector of

modulation symbols transmitted in parallel by the � transmit antennas at symbol time

� , 	�9�� > 
 �
� 5 9�� > � 4 9�� > % % % �

� 9�� > � T is the vector of independent Gaussian noise samples

with zero mean and variance � 4 
�	 � � � per dimension, � 9�� > 
 ��� 5 9�� > � 4 9�� > % % % ��� 9�� > � T
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is the corresponding vector of received signal samples at the output of the receive an-

tennas, and � 
 ��� 5 � 4 % % % � � � is the channel matrix.

We assume that the power emitted from each transmit antenna is proportional to � � �

so that the total radiated power is constant and independent of the number of transmit

antennas. The average signal-to-noise ratio (SNR) at each receive antenna is denoted

by � and is also independent of � . The path gains in the channel matrix � are modeled

as samples of independent complex Gaussian random variables with zero mean and

variance #*%'( per dimension. This is equivalent to the assumption that each path between

a transmit and a receive antenna has frequency-flat independent Rayleigh fading. This

models a channel with enough physical separation within the transmitting and receiving

antennas to achieve independence in the entries of � .

We consider a communication scenario in which the channel characteristics are

essentially unchanged during a frame, but change randomly from one frame to another

(quasistatic fading). We further assume that the receiver knows � perfectly, while the

transmitter has no knowledge of � . In practice, the assumption of perfect channel state

information (CSI) at the receiver holds approximately when the channel varies slowly

with respect to the duration of a frame. This is a realistic assumption in several wireless

settings where mobility is limited or absent (e.g. indoor wireless local-area networks,

wireless local loops, etc.). Furthermore, the assumption of no CSI at the transmitter is a

reasonable assumption in situations where feedback or time-division duplexing cannot

be exploited. However, the transmitter may use knowledge of the channel statistics

8



(such as average SNR) to select a transmission rate even though it has no knowledge of

the particular realization of the channel matrix.

2.2 Overview of D-BLAST

The transmission process in Foschini’s layered structure with � transmit and � re-

ceive antennas can be summarized as follows. The data stream is demultiplexed into �

data streams of equal rate, and each substream is modulated using the same constella-

tion. The � substreams are transmitted simultaneously using � antenna elements. Then

at the receiver, the � receive antennas are used to decouple and detect the transmitted

signals.

First, the transmitted signal from antenna � is treated as the desired signal, while

the signals from the other transmit antennas are treated as interference. Linear pro-

cessing on the received vector is then used to suppress the interference from antennas

�"! % % % ! ��� � . This yields a diversity order of one. Once the signal transmitted from

antenna � is correctly detected, it is canceled from the received vector. Then the signal

from antenna ��� � is treated as the desired signal, while the signals from antennas

�"! % % % ! ��� � are treated as interference. Linear processing is used to suppress the in-

terference from the remaining ��� � signals, providing a diversity order of two. This

process is continued until all the transmitted signals are detected. With this scheme, the

diversity order varies across the transmitted signal components from a diversity gain

9



of one for the signal transmitted from antenna � to a diversity gain of � for the signal

transmitted from antenna one.

To summarize, the detection of transmitted signal components involves two major

steps:

1. interference canceling: interference from already detected symbols is subtracted

out.

2. interference suppression: interference from yet to be detected symbols is sup-

pressed by linear operations.

The interference canceling step subtracts out from the received vector the already de-

tected signal components, while the interference suppression step removes the inter-

ference stemming from the as yet undecoded components using linear operations opti-

mized under a ZF or an MMSE criterion.

The interference suppression alternatives (ZF and MMSE) are described in detail

next. In the remainder of the discussion, we drop the time index � for brevity. Assum-

ing that the receiver has correctly detected the last ���
�

signal components of � , we

can cancel the interference from these components by subtracting them out from the

received vector � . Then, the resulting vector � � is

� � 
 �
�

�
�
��� ��� 5

� � � � 

��

��� 5
� � � � �
	 % (2.2)
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2.2.1 ZF Interference Suppression

Assuming the last ���
�

signal components have been correctly detected and can-

celed out, the interference stemming from the simultaneous transmission of
� 5 ! % % %
! � � B 5

is nulled out by projecting � � onto the nullspace of the vectors
� 5 ! % % %
! � � B

5 . Let ��� 5�� � B 5��
denote the vector space spanned by the column vectors

� 5 ! % % % ! � � B
5 , and �� � the result

of the projection

�� � 
 � �
� � � 5�� � B 5���� �
	� 5�� � B 5�� � � 5�� � B 5���� B

5
�
	� 5�� � B 5�� � � ! (2.3)

where 	 is the complex conjugate operator. Note that the matrix � 	 � 5�� � B 5�� �
� 5�� � B 5�� is

invertible under the assumption that the vectors
� 5 ! % % % ! � � B

5 are linearly independent.

The above expression can be further simplified to obtain

�� � 
 � � �� � ���	 ! (2.4)

where �� � and �	 are the projection of
� � and 	 respectively onto the nullspace of ��� 5�� � B 5�� .

Using standard maximum ratio combining, the decision on the
�
th component of � is

given by

�� � 
 �� �� � � 4 �� 	� �� � 
 � � � �� �� � � 4 �� 	� �	 % (2.5)

The mean-square error (MSE) between
� � and

�� � is given by
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MSE � 
 �� �� � � �
�� 	��� �� � ! (2.6)

where � 
 E � �	 �	 	�� is the covariance matrix of the noise vector �	 . Let

� 
�� � 5�� � B 5�� � � 	 � 5�� � B 5�� � � 5�� � B 5�� � B
5
� 	 � 5�� � B 5�� ! (2.7)

then it is easy to see that
� 
 � 	 , ��� 	 
 �

and �	D
 9�� � � � > 	 . It follows that

� 
A9	� � � � > E � 	 	 	 � 9	� � � � 	 >

A9	� � � � > 	 �
� � 9�� � � � 	 >

 	��F9�� � � � > %

(2.8)

This simplifies the MSE for the
�
th channel to

MSE � 
 	 �� �� � � �
�� 	� 9	� � � � > �� �


 	 �� �� � � �
�� 	� 9	� � � � >
9	� � � � > � �


 	 �� �� � � �
�� 	� 9	� � � � > � �


 	 �� �� � � �
�� 	� �� � 
 	��� �� � � 4

(2.9)

Then, the resulting signal-to-noise ratio for the
�
th channel is
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� ZF� 
 ���
	��
� �� � � 4 
 �

�

� �� � � 4 ! (2.10)

where ��� is the average constellation energy and
� �� � � 4 is a chi-square random variable

with � 9 � �
� �6� > degrees of freedom. Since the entries of the channel matrix � are zero-

mean, unit-variance complex Gaussians, the mean of the chi-square variate is � �
� ��� .

Under the assumption of correct decisions being canceled out, interference sup-

pression under the ZF criterion decomposes the MIMO channel of (2.1) into � paral-

lel channels with SNRs � ZF5 % % % � ZF� . This is equivalent to a single-input single-output

(SISO) periodically time-varying channel of period � whose gains are chi-square ran-

dom variables with � � ! % % % ! � degrees of freedom.

2.2.2 MMSE Interference Suppression

Again, assuming the last � �
�

signal components have been correctly detected and

canceled out, the interference from components
� 5 ! % % %
! � � B 5 is suppressed by minimiz-

ing the mean-square error between
� � and

�� � . The decision on the
�
th component of � is

given by
�� � 
�� 	� � � , where � � is an � -dimensional column vector chosen to minimize

the mean-square error. The MMSE solution for � � satisfies [31]

� � 

���� ��� ���	�
�
��� � � ���

! � 
A�� 	�
� ����� ����� ��� �����! 
�#"�
��� �����! 

$ ��� � �5 �
�
"
�
� 	�
� ��� � ���%� ��� �!���! 

� " �
��� �����! 

$ ��� � �
! � 
 �2! % % % ! �

(2.11)
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This yields a minimum mean-square error (MMSE) on the
�
th signal component

given by

MMSE � 
 � � � � � � 	� � � � (2.12)




���� ���
� �5 � �
�	�
�� ��� � �

! � 
 �� �5 �
�
"
�
� 	�
�
� � � ��� � ��� �!���! 

� " �
��� �����! 

$ ��� � �
! � 
 �*! % % %
! �

(2.13)

and a corresponding signal-to-noise and interference ratio given by

� MMSE� 

��� �� � �� 
 � � 5 � 4 ! � 
 �

� 	� � � 
� � � � � ��� 5�� � B 5�� � 	 � 5�� � B 5�� � B
5

� � ! � 
 �*! % % % ! �

(2.14)

Note that � MMSE5 has a chi-square distribution with � � degrees of freedom. However,

� MMSE� 9 � � � �
� > has a distribution which is different from chi-square.

It can be shown that � MMSE� is a random variable given by

� MMSE� 
 ���
	��
��� 5�� 4	� � � 4 ! (2.15)

where

� 5�� 4 
 Diag


�
��

� ��
 5 � �� 
 ! % % % ! ��
� ��
 � � �� 


��
(2.16)
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and
� � 
�� 	 � � is the projection of the complex Gaussian vector

� � onto the space

spanned by the columns of the unitary matrix � . This is a direct consequence of the

symmetric eigendecomposition of the Hermitian matrix

� � 5�� � B 5�� �
	� 5�� � B 5�� 
������ 	 ! (2.17)

where � is a diagonal matrix whose elements are the eigenvalues 
 5 ! % % % ! 
 � of the

Hermitian matrix in (2.17).

Observe that under the same assumptions as before, the MMSE interference sup-

pression scheme also creates an equivalent time-varying channel with a periodic SNR

variation given by � MMSE5 % % % � MMSE�
. These SNR factors do not have a closed-form dis-

tribution. Figure 2.1 shows the empirical distribution of the 4 channels created in a

� � � D-BLAST system with MMSE interference suppression. For comparison, on the

same plot we show the chi-square distributions with different means corresponding to

the 4 channels created in a D-BLAST system with ZF interference suppression.

2.3 Space-Time Layering for D-BLAST

2.3.1 Full-Overhead

In the following we describe a trellis coding technique for the layered space-time

architecture of D-BLAST. We assume a single trellis code producing codewords of
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Figure 2.1: Distribution of periodic SNRs � MMSE� and � ZF� for ����� MMSE and ZF D -

BLAST, ���
	���
���� dB, Rayleigh fading.
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length 	 , including � tail bits to drive the encoder back to state zero (where � is the

number of memory elements of the code). We further assume that 	 is a multiple of

the number of antennas � . Then, the symbols in a codeword vector � are placed moving

left-to-right in diagonal layers of width � , in order to form the � � 	 � codeword matrix

� 
�� 9�� > , with 	�� 
�	 � � � 9 � ��� > � . The mapping � sends the codeword vector � to

a � � 	�� complex-valued matrix
�

whose 9 � ! � > th entry is equal to
� � 9�� > , i.e.

�
is the

baseband version of the codeword � as transmitted across the channel. The mapping �

is defined by

� 9 � !��2> 

��� ��	� � if � ��
 � 	
# otherwise

(2.18)

where


 
 �
� � �E� �E9 � � � > � � � � ! (2.19)

for � � � �
� and � � � � 	�� .

Figure 2.2(a) illustrates the symbol layering for a codeword of length ��� in a � � �

system with diagonal layers of width � 
�� . Each square represents a symbol trans-

mitted from a single antenna at a single symbol time. The numbers in the squares

represent the processing order of the Viterbi decoder. The empty squares represent

overhead symbols where nothing is transmitted.
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Notice that this scheme has an inherent rate loss of approximately 9 � � ��> �2� 	 �
because of the lower and upper triangles of overhead (zero) symbols in the codeword

matrix. This ignores the small rate loss due to the tail bits used for trellis termination.

Assuming a trellis code of rate � and a modulation mapping each ��� -tuple of binary

symbols into a complex-valued constellation point, the spectral efficiency of the above

layering scheme is

� 
 � ����� � � 9 � � � > �
	
� �����+% (2.20)

In this formulation efficiency is taken to mean the number of information bits per vector

channel use.

In Fig. 2.2(a) we have used a codeword matrix that is conceptually appealing. The

order in which the columns of the codeword matrix are transmitted is, in fact, arbitrary

so that we could re-arrange them as in Fig. 2.2(c) to avoid any delay in processing. In

the sequel we will refer to this scheme as the full-overhead system in order to differen-

tiate it from a variation of the scheme that has only half of the overhead penalty. The

new reduced-overhead scheme is described next.

2.3.2 Reduced-Overhead

The reduced-overhead scheme is a variation of the full-overhead system that cuts

the overhead penalty in half. There are many possible symbol arrangements which
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yield a reduced-overhead system. The simplest one is shown in Fig. 2.2(b), where the

only difference from the full-overhead system is the placement of symbols ���*! � � above

��#&! � � . All four of these symbols are intended to be decoded using suppression. Thus,

in this particular arrangement we do not require empty squares of pilot symbols at the

end of the block. Then, the overhead penalty is cut in half and the spectral efficiency of

the reduced-overhead system is increased to

� 
 � ����� � � 9 � � � > �
�)	
� �����+% (2.21)

A slightly different approach is illustrated in Fig. 2.2(d), which preserves the di-

agonal structure of the block, but has half the diagonal width. Observe that in this

scheme we arrange the symbols moving from both ends of the frame toward the mid-

dle. While the first version is conceptually more transparent, this approach has the

appeal of a diagonal block structure. This is in fact the version implemented in all our

simulations. However, we believe that the difference in performance between the two

reduced-overhead schemes should be negligible.

2.4 Finite-Traceback Viterbi Decoding

In this section we present both an optimal “just-in-time” and a “not just-in-time”

Viterbi decoding method for the layered space-time systems discussed in the previous

section. Note that we make a Gaussian approximation on the MMSE filter output,
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(a) Full-overhead “just-in-time” system.
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(b) Reduced-overhead “just-in-time” system.
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(c) Reordered full-overhead “just-in-time”

system.
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(d) Reduced-overhead “just-in-time” system.

Figure 2.2: Symbol placement for full-overhead and reduced-overhead “just-in-time” sys-

tems, � ������ , blocklength ��� data symbols.

so that the Viterbi algorithm can be employed to decode the layered systems, provided

that the appropriate variance is used in the metric calculation. For ease of exposition we

consider � � � systems, however the decoding method extends to larger � � � systems

in a straight forward manner.

2.4.1 Optimal “Just-in-Time” Traceback

First, consider the full-overhead system in Fig. 2.2(a). The diagonal layering in this

example is well matched for finite-traceback Viterbi decoding [46] with traceback depth
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� �� 
 � . Linear processing as described in Section 2.2 is used to detect the received

vectors. Thus, each odd-numbered symbol is detected by canceling the even-numbered

symbol below it, while each even-numbered symbol is detected by suppressing the

symbol above it.

Observe that in this diagonal layering there are four pilot symbols at the beginning

of the block. With this arrangement, symbols �"!+�*! (*! � are detected by simply canceling

the known pilots below them, while symbols �*!$�&!+� are detected by suppressing the in-

terference from the symbols above them. Thus, the first seven symbols can be detected

without any Viterbi decoding. This is enough to permit the first traceback. Thereafter,

the bottom even-numbered symbols are decoded “just-in-time” to provide the cancel-

lation required for the next Viterbi traceback. For example, after symbol ? is detected

by suppression, Viterbi traceback is performed to decode symbol � . This symbol is

decoded “just-in-time” to be canceled out from the received vector so that symbol �

can be detected. This process continues until all the symbols in the block have been

decoded.

With this decoding method, the basic idea is to choose a traceback depth � �� (per-

haps chosen according to [6] or through empirical study) and a diagonal layering which

together permit the decoding of a symbol “just-in-time” to be subtracted out from the

received vectors. In general, in order to decode a symbol “just-in-time” the step-size of

the diagonal layering must be
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� 
 � �� � �
�

% (2.22)

Similar “just-in-time” decoding is supported by the reduced-overhead system in

Fig. 2.2(b). The only difference is in the detection of symbols ��#*! � �*! � � ! ��� , which

must be received by suppressing the interfering symbols above or below them (in the

full-overhead system these symbols might also be detected by suppression; however,

one can do better by canceling the known pilot symbols instead).

2.4.2 “Not Just-in-Time” Traceback

For a given traceback depth � � , one might consider lowering the overhead penalty

by selecting a layer width � smaller than what is required for “just-in-time” decoding.

For illustration, consider using the traceback depth of � with only two initial pilots (zero

symbols) as illustrated in Fig. 2.3. With only two initial pilots, the first four space-time

symbols are detected in the same manner as before. However, the odd-numbered space-

time symbols ( and � have the undecoded symbols � and � below them, therefore they

must be detected by suppressing the symbols � and � respectively. In general, the first

Viterbi traceback requires the last � � � � � � � symbols to be detected by suppression

only. After a traceback, the decoded even-numbered symbols must be canceled from

an earlier received vector, which implies that the last � � � � � � � stages of the trellis

must be updated for future tracebacks.
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Figure 2.3: Symbol placement for “not just-in-time” traceback, � �� � � , blocklength ���

data symbols.

While more general, this scheme suffers from the added complexity of updating the

last � � � � � � � stages of the trellis whenever a decoded symbol needs to be canceled

out. In Section 2.6 we take a closer look at this decoding method and show that the

added complexity is not justified by the gain in performance. In fact, our results show

that the “just-in-time” decoding method provides the best performance (measured as

the SNR gap to outage probability) for a fixed traceback depth � � .

2.5 Trellis Codes as Universal Space-Time Codes

2.5.1 Excess MI versus SNR Gap

Mutual information (MI) identifies the fundamental information-carrying potential

of a channel for a specific input distribution. Root and Variaya [36] proved the existence

of codes that can communicate reliably over any linear Gaussian channel for which the
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MI exceeds the information rate of the code. A code has universal property if it has

consistently good proximity to capacity (to the extent its blocklength and decoding

complexity permit) over a class of channels. Thus a universal code should provide

performance that is consistent in terms of required excess mutual information. The

excess MI is defined as the capacity margin between the operational channel MI and

the information transmission rate.

The common way to plot bit-error rate (BER) performance is versus channel signal-

to-noise ratio (SNR). Since capacity on the additive white Gaussian noise (AWGN)

channel is a monotonic (and almost linear) function of SNR in dB, � AWGN 
������ 4 9 � �
SNR > , this representation is essentially equivalent to plotting BER against MI. How-

ever, when assessing the performance of a code over a variety of linear Gaussian chan-

nels, considering SNR performance or SNR gap is problematic because the monotonic

relationship between SNR in dB and MI is different for different channel eigenvalue

skews.

To better understand the previous statement, consider a � ��� linear Gaussian vector

channel � and its per antenna capacity [40]

� 9 � > 
 �
�
����� 4 det � � 4 � � � � 		�


 �
�
����� 4 9 � � � 
 5 > 9 � � � 
 4 >


 �
�
����� 4 9 � � � 
 5 > 9 � � �2� 
 5 > ! (2.23)
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where 
 5 and 
 4 are the eigenvalues of � � 	 , � 
 
 4 � 
 5 is the eigenvalue skew and

� is the SNR per transmit symbol. For a fixed transmission rate � , the SNR gap in

dB � SNRdB is defined as the difference between the �*� (in dB) required to achieve the

desired BER and the � (in dB) at which the channel capacity in (2.23) is equal to � bits

per transmit antenna.

Without loss of generality, let 
 5 
 � and find � at which the channel capacity is

equal to � bits per transmit antenna:

�
4�� 
�� �

4 ��9 ��� � > � � �"! (2.24)

which yields

� 
 � 9 ��� � > � � 9 � �E� > 4 �8� � � 5
�"� % (2.25)

Then, the SNR gap in dB is given by

� SNRdB 
A��# � � � 5 � � � �E� # ����� 5 � � ! (2.26)

from which the SNR � � can be expressed as

� � 
A� # ���
5��	�

SNRdB
� 5 ��

���

�

���� 
 � ��# ���

5��
SNRdB % (2.27)

25



The excess MI per transmit antenna � MI is given by the difference between the channel

capacity in (2.23) at the SNR �2� and the information rate � . It can be written in terms

of the SNR gap in dB as follows

� MI 
 �
�
����� 4 9 � � � � > 9 � � � � � > �8� (2.28)


 �
�
����� 4 � � � � ��# ���

5��
SNRdB � � � � � � ��# ���

5��
SNRdB � �8� ! (2.29)

where � is given in (2.25) above.

Figure 2.4 illustrates the excess MI per antenna as a function of the SNR gap in

dB for � 
 � bit/transmit antenna and different eigenvalue skews � . Note that the

excess MI curves are approximately linear functions of the SNR gap in dB, however

the slope depends on the eigenvalue spread (eigenskew) of the channel. In other words,

a constant level of excess MI is achieved by differing excess SNR levels (depending on

the eigenskew of the channel). The MI available in the channel is the absolute measure

for performance, while an excess SNR measure depends both on the MI level and the

specific channel realization (eigenskew).

2.5.2 Universal Code Design for Periodic Erasures

In Section 2.2 we saw that the layered architecture with linear processing at the

receiver creates a periodic fading channel, therefore we require a trellis code that is

effective on such periodic variations in SNR. A special case of the results of Root and
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Varaiya [36] indicates that a single code can guarantee a rate � over every periodic

Gaussian channel that has a mutual information greater than the rate � , where

MI 
 �
�

�
�
� � 5 � ��� 4

�
� ��� �� � � 4 � �	���� ! (2.30)

and �� � are the periodic scale factors. One implication of this result is that good er-

ror performance over one particular channel does not have to come at the expense of

significant performance degradation over others.

The design of trellis codes for channels that are characterized by additive white

Gaussian noise with a distinct periodic variation in signal-to-noise ratio is investigated

in [48], [47], [14], [23], and [32]. The case of periodic Rayleigh fading is treated

in [47], [23], [32]. In [48] Wesel et. al construct universal trellis codes for periodic

erasure channels. A family of trellis codes for periods � - ( are designed to provide

robust performance over all periodic erasure patterns for which the number of unerased

coded bits per period is at least equal to the number of information bits per period. A

brief review of the design approach for these trellis codes is presented next.

Let the � -element vector �� 
 � �� 5 ! % % % ! �� � � contain the periodic scale factors with

�� 4 
 � � �� 5 � 4 ! % % % !�� �� � � 4 � . Also let the normalized symbol-wise squared Euclidean dis-

tance between two constellation points be � 4� 9 ��� �� >�
�� �� � � � � � 4 �)� � , where
� � and

�� � are the correct and incorrect constellation points associated with the
�
th symbols of

a trellis error event
�	� ��

. The periodic erasure of symbols scales distances with the
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same index modulo � by the same binary scale factor �� � . Define the periodic squared

distance �� 4� 9 � � �� > for
� 7  �"! �*! % % % ! �=. as the sum of the square of the distances that

are scaled by the same factor �� � for a given error event: �� 4� 9 � � �� >�
 ���
� � � � 4��� � � %

The � values �� 4 5 ! % % % ! �� 4� form the periodic distance vector

�� 4 
 � �� 4 5 ! % % %
! �� 4� � % (2.31)

The minimum distance of valid error events under a periodic erasure pattern is re-

ferred to as the squared residual Euclidean distance (RED) for a specified periodic

attenuation vector ��

RED 9 �� > 
��	��
�
 � � �� 4 ! �� 4�� ! (2.32)

where the expression
� �� 4 ! �� 4 � represents an inner product. Trellis code design for all

possible erasure patterns is a multi-criterion problem since we have to minimize bit-

error rate (BER) (essentially maximize RED) at all erasure patterns simultaneously.

The primary approach described in [48] is to seek to maintain the same required

excess mutual information for all erasure patterns, which is motivated by the desire

of having similar error performance over all erasure patterns with the same MI. The

search for trellis codes that maintain a similar level of excess mutual information over

all erasure patterns produces a design criterion based on maximizing � MI,
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� MI 

�
�
9 � ��� � � � > � ��� 4 9 RED

4 9 �� � ><> ! (2.33)

where � � is the number of elements of the � th erasure pattern �� � equal to zero.

The codes in [48] were designed to be universal only for periodic erasures channels.

However, we show that code @6� designed in [48] using � MI as the objective function

is a universal trellis code for general periodic fading and hence D-BLAST. First, con-

sider the performance of the �)� -state, rate- � �)� , 8-PSK code @6� over periodic erasures.

For a BER of ��#2B2C , this code requires an excess mutual information of #&% �)� bits on

the channel where every other symbol is an erasure ( ���
 � #&! � � ), and an excess mutual

information of #&% ? � bits on the channel with no erasures ( �� 
 � �)! � � ). Figure 2.7 shows

an extension of the results presented in [48], by considering the excess mutual infor-

mation required for BER 
 ��# B2C on a periodic channel �� 
 � �� 5 ! �� 4 � when the ratio of

squared scale factors / 
 � �� 4 � 4 � � �� 5 � 4 varies from # to � . In this plot the curve labeled

Period-2 TFB is generated using a transfer function bound to obtain the SNR necessary

to achieve BER 
 ��# B2C for values of / between # and � . Observe that as / increases

from # to � the excess mutual information is monotonically increasing from #&% �)� to

#&% ? � , which correspond to the excess MI figures on the two erasure channels. For com-

parison, the best Euclidean distance �)� -state trellis code for transmission of one bit per

symbol (rate- ��� � maximum Hamming distance convolutional code used with Gray-

labeled QPSK) requires an SNR of � %,� dB to achieve BER 
 ��# B2C in additive white
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Gaussian noise. At this SNR, the capacity of the AWGN channel is �)%,?"? bits/symbol

and thus this code requires an excess MI of #&% ?"? bits. Therefore, our universal code

has less excess MI on every period-2 channel than the standard amount of excess MI

required by a �)� -state code at this rate for the AWGN channel.

Practical limitations on the number of memory elements and the constellation size

make the design of universal trellis codes for periodic fading channels with large pe-

riods a very challenging task. This is why the family of codes found in [48] are for

periods no larger than five. However, there exists a class of trellis codes for period-8

designed in [47]. These codes are not universal for all period-8 channels, but they are

still robust codes and reasonable candidates for larger ? ��? full-overhead systems or

� � � reduced-overhead systems.

2.5.3 Universal Performance of Trellis Coded D-BLAST Systems

Next consider the performance of an MMSE full-overhead D-BLAST system using

code @6� over a set of linear Gaussian channels obtained by sampling the continuum of

� ��� channels. For that it is sufficient to consider channels of the form

� 

� 
 5

��
� � #
# � �

���
�

��
� � �
	 9 0 > 	 ��
 9 0 >�� ��

��	 ��
 9 0 >�� B ��
 � ��	�9 0 >

���
� (2.34)

where 
 5 ! 
 4 are the eigenvalues of the Hermitian matrix � � 	 with 
 4 � 
 5 , � 


 4 � 
 5 is the eigenvalue skew, 0 7 � #&! �F; � , and � 7 � #&! � ; � . We sample the above
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matrix via the parameters 
 5 
A� , � 
  #&!+#&%3� �"(2!+#&% �"(*!+#&%,(*!+#*%'�"(2! �). , 0 
  #&!<; �)�&!<;=� �2. ,
and � 
 ;=��� . The periodic SNRs � MMSE5 and � MMSE4 turn out to be independent of � ,

therefore we can choose � arbitrarily. This is easily shown given the above formulation

for the channel matrix � . The periodic SNRs take the following form:

� MMSE5 
 � �
	 � 9 � �
	 4 0 � � 	 � 
 4 0 > (2.35)

� MMSE4 
 	 � 
 4 0 � � � �
	 4 0 � � �� 
 �
� 	 � 
 4 0 � � �
	 4 0 � � � �� 
 � B 5 % (2.36)

One immediate observation is that for � 
 � , the above equations yield � MMSE5 

� MMSE4 
 ���F�
	�� . Let / be the ratio of periodic SNRs induced by the MMSE processing

in D-BLAST:

/ 
 � MMSE4 �F� MMSE5 % (2.37)

Assuming � MMSE5 � � MMSE4 , it follows that for unitary channels, /D
A� regardless of the

angle 0 and hence the particular sampling of the channel. A plot of the ratio of periodic

SNRs / as a function of the angle 0 is shown in Fig. 2.5 for the different eigenvalue

skews considered and under fixed mutual information, MI 
��"%'( bits/antenna. Observe

that when the channel is singular ( � 
 # ) and 0 is a multiple of ;=� � , the SNR ratio

/ is zero (which corresponds to a periodic erasure channel); however, / is one when

0 is approximately a multiple of ;=�)� . The same results are shown in Fig. 2.6, where
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instead we plot the achievable � MMSE5 - � MMSE4 pairs. Since the mutual information is

constant, the different channel samplings yield the same achievable region, although

the individual pairs in the achievable region are different under the same value of the

angle 0 .

Performance on each channel in this sampling is measured by the mutual informa-

tion in excess of the transmission rate � required to achieve a BER of ��# B2C . Figure 2.7

plots this required excess mutual information per transmit antenna as individual points

against the corresponding ratio of periodic SNRs / . The points labeled with circles

correspond to a blocklength of ��#&��� symbols and an overall rate � 
��)% � (��"? , while the

points labeled with squares correspond to a blocklength of � �"� symbols and an overall

rate � 
��)%,�"? �*� . Observe that with the larger blocklength where the overhead penalty

is negligible, the excess MI points obtained on the individual channels in the sampling

set are very close to the excess MI curve for the periodic channel. In the case of the

smaller blocklength, the loss in excess MI is relatively constant for all channels in the

set and around #&%3� ( bits per antenna.

For both blocklengths, there is a single point that has noticeably poor performance.

Both points correspond to �D
 # and 0�
 ;=�)� . The poor performance is due to error

propagation, as shown by the solid points which simulate decoding on this channel

with the cancellation performed using the correct symbols. Note that simulations for

9 � 
 #&! 0 
 # > and 9 � 
 #&! 0 
 ; � �"> showed no performance degradation due to

error propagation. For the blocklength ��#&��� case the ratio of periodic SNRs / for
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9 � 
1#&! 0�
 ;=�)�"> changes when error propagation is removed because / depends on

the operating SNR.

It is not surprising that we observe error propagation effects in a decision directed

cancellation algorithm like D-BLAST. In fact, perhaps it is surprising that error prop-

agation is only observed under the particular channel condition where ��
 # and

0 is particularly unfavorable. Such a channel is essentially the scalar channel
� 


� ��	 9 0 > � 5 � 	 ��
 9 0 > � 4 � � . On such a channel, when � �
	�9 0 > 
�# or 	 ��
 9 0 > 
 # , we have

a periodic erasure channel which our trellis code handles quite well. However, this

scalar channel with � ��	 9 0 > and 	 ��
 9 0 > of similar magnitude presents the toughest chal-

lenge for the suppression algorithm, often leading to error propagation. From a prac-

tical point of view, the channels with this degenerate singular value structure ( ��
1# )
are line-of-sight channels and “keyhole” channels [4]. Under Rayleigh statistics, the

��� # channels occur frequently enough, thus error propagation can be a problem.

One possible remedy is to use a precoder similar to the Tomlinson-Harashima precoder

[42], [19], since the processing of BLAST can be viewed as a generalized decision

feedback equalizer (GDFE) [18]. However, the use of a precoder requires knowledge

of the channel statistics at the transmitter site.

The above results show that code @6� is a universal space-time code for D-BLAST,

with consistently performance over the set of � � � matrix channels, with the exception

of the channel 9 � 
 #&! 0 
 ;=�)� > . For large blocklengths and ignoring error propa-

gation, this code requires an excess MI of around #&%'� bits per antenna under the most
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favorable channel and around #&% � bits per antenna under the least favorable channel.

This is in agreement with the results in [24] which show that in a more general setting,

the performance of universal trellis codes obtained by an exhaustive minimax search

on a � � � compound channel falls within the same range of excess mutual information

requirement. One immediate implication of the universal property over the set of linear

Gaussian channels is a good proximity to capacity on any fading channel, regardless of

the channel fading statistics. Thus, this code may be deployed for any � ��� transmission

scenario, not just Rayleigh fading.

2.6 Performance Results in Rayleigh Fading

In this section we present performance results for the coded layered space-time

architecture of D-BLAST. As performance measure we consider both the frame-error

rate (FER) and the bit-error rate (BER) under the assumption of an ideal Rayleigh

channel with perfect CSI at the receiver and a burst-mode communication scenario.

The results are obtained through Monte Carlo simulation. The FER is averaged over

enough channel realizations so that ��#)#"# erroneous frames are accumulated in each

simulation.

In order to compare the performance results to channel capacity, we also provide

the theoretical outage probability curves. In the quasistatic case, it is assumed that the

channel matrix � is chosen randomly at the beginning of a frame and held fixed for
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the entire duration of the frame. The Shannon capacity of the channel is zero. No

matter how small we make the rate � at which we try to communicate at, there is a

non-zero probability that the channel realization is incapable of supporting that rate

regardless of how long we make the code length. In this case a channel outage is said

to have occurred and the channel is considered to be in the OUT state. Thus, under

the quasistatic channel model and in the limit of large block lengths, the best possible

achievable FER of the MIMO channel is given by the outage probability defined by

�
out 
 P 9 � 9 � > � � > % (2.38)

In the following examples we provide simulation results for several layered space-

time coded systems under the optimal MMSE criterion, and whenever possible we

make comparisons with the best performance of previously reported space-time sys-

tems. In general, the ZF criterion yields a performance that is � - � dB worse than

MMSE. Figure 2.8 illustrates the FER performance of code @6� in [48] for period-

2 erasures in a full-overhead system under the ZF criterion together with the outage

probability curves at the overall rate which takes the overhead penalty into account and

at the rate which neglects the overhead penalty. On the same plot we show the FER

performance of code @6� over an equivalent periodic fading channel whose gains are

given by the chi-squared random variables in (2.10) and observe that it matches closely

the performance of the ZF full-overhead system.
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Example 1: Here we consider a � � � MMSE full-overhead layered space-time

coded system in conjunction with code @6� in [48]. This is a rate- � �)� , �)� -state, ? -PSK

trellis code with octal generators 9�� 5 !�� 4 !���� > 
 9 � ���&!+� �*! �"� ("> . The ? -PSK labeling

is the same as in [48], i.e. #&! �2!+�&! �"!+(*! �*!+�*!$� in octal going around the circle. The

underlying symbol layering is for a codeword (with trellis termination) of length �"(��
information bits ( � �"� information bits per transmit antenna). The traceback depth is

� �� 
�� � , which determines the “just-in-time” step-size of the diagonal layering to be

� 
 �*� . The spectral efficiency of this system is � 
��"% �"? �*� bits/s/Hz.

Figure 2.9 provides the FER and BER performance with the horizontal axis show-

ing the average SNR per receive antenna. For comparison we also provide the FER

performance of the ��� -state space-time trellis code with similar complexity and same

blocklength designed and simulated by Tarokh in [39]. The same or better performance

is achieved by the space-time parallel concatenated full-diversity turbo code in [26].

Even though our code was designed to be robust on all periodic erasure channels, and

not specifically matched to the Rayleigh statistics, our performance in Rayleigh fad-

ing is essentially the same as Tarokh’s. Furthermore, the Tarokh code performs poorly

on channels where an eigenvalue is close to zero, because for such a channel the code

effectively has no redundancy.

The previous paragraph ignores the overhead penalty required by D-BLAST to cre-

ate the periodic channel. For demonstrating the performance of the trellis code, it is

reasonable to neglect the overhead and look at how closely each code comes to the
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theoretical outage curve that applies to the code itself (the rate � 
 � outage curve

in Fig. 2.9 for both Tarokh’s code and the universal code on the periodic channel cre-

ated by D-BLAST). However, to analyze the overall system performance, the overhead

penalty must be considered. At ��#�� outage the performance of our universal code

is within �"%,? dB from the theoretical outage curve neglecting overhead and within �
dB from the theoretical outage curve which takes into account the overhead penalty re-

quired by D-BLAST. So the code loses �"% ? dB from ideal performance and the overhead

penalty incurs an additional �"% � dB of loss.

Figure 2.9 also provides the performance of the � � � system when perfect decisions

are used in the cancellation step. As seen from the plot, the error propagation due to

non-perfect decisions has no effect on the frame-error rate performance. This fact is

also observed in [10], where the authors conclude that the PSP-based decoder is not

affected by error propagation provided that � � ��� (which in our case coincides with

the traceback depth ���� ) is large enough in order to have a very high probability of path

merge at delay less than � � � � . However, as expected, the BER performance is affected

by error propagation and a loss of about � dB is observed due to non-perfect decisions.

Example 2: Here we consider again � transmit and � receive antennas, however a

reduced-overhead layered space-time coded system is used to cut in half the overhead

penalty. We use the same code as in the preceding example, with traceback depth

� ���
�� � and a corresponding “just-in-time” diagonal width of � 
 ��# . The spectral

efficiency of this system is � 
 �)%,?&� � � bits/s/Hz. Figure 2.10 provides the FER and
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BER performance versus the average SNR per receive antenna. For comparison we also

provide the outage probability curves for a � � � MIMO system at a transmitted rate of

� bits/s/Hz and �"% ?&� � � bits/s/Hz respectively. The absolute FER and BER performance

of this system is very close to the performance of the full-overhead system, however

because the overhead is cut in half, the gap to outage is decreased. For example, at ��#��
outage, the FER performance is around �2% � dB from the outage curve that takes into

account the overhead penalty.

Example 3: In this example we consider the � � � reduced-overhead layered space-

time system when the diagonal width is varied and the traceback depth is fixed to � � 

� � . Figure 2.11 shows the FER performance for � # different layerings corresponding

to diagonal widths � 
 �"! � % % %
� # . As expected, performance degrades with smaller

diagonal widths since the Viterbi decoder has to trace through many bad symbols -

symbols detected by suppression with a diversity gain of one, and only a few good

symbols - symbols detected by canceling and suppression with a diversity gain of two.

However, the rate loss incurred by overhead is directly proportional to the diagonal

width, therefore the better performance results come at the expense of a higher rate

penalty. In order to correctly assess the performance with various diagonal widths,

we consider the SNR gap to the outage curve associated with each layering and its

overall transmission rate. Figure 2.12 shows these SNR gaps at ��#�� outage versus the

corresponding diagonal width � . This plot illustrates the trade-off between performance

relative to outage (including the overhead penalty). It demonstrates that a layering for
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continuous Viterbi decoding with the “just-in-time” diagonal width discussed in Section

2.4.1 (which corresponds to the point for � 
 ��# in Fig. 2.12) is in fact the optimal

choice for a given traceback depth � � .

Example 4: Here we consider 4 transmit and 4 receive antennas and a reduced-

overhead layered space-time coded system. For this system we use code @ � in [47]

designed for period-8 Rayleigh fading. This is a rate-1/4, �)� -state, ��� -QAM trellis code

with octal generators 9�� 5 !�� 4 !���� !�� � > 
 9 �)�&! � �"(2! ��� (*! ��#"� > . The labeling used for the

��� -QAM constellation is the same as in [47], i.e. �&! �"! (*! �2! �*!+#&!<� !+�&! � !+?*! � ! �"!���! �&! � ! � in

hexadecimal in raster order. The symbol layering is for a codeword of �"�"? information

bits ( � �)� information bits per transmit antenna). The traceback depth is � �� 
 � �

and the corresponding “just-in-time” diagonal width is �D
 ( . The resulting spectral

efficiency of this system is � 
 �&%'( �"�)� bits/s/Hz. Figure 2.13 shows the FER and BER

performance of the � � � layered space-time system together with the two outage curves

at a rate of � % # bits/s/Hz and �&%,( �"�)� bits/s/Hz. At ��# � outage, the FER performance

of this system is around � dB from the theoretical outage curve neglecting overhead,

and �&% � dB from the outage curve at the overall rate of �&%,( �"��� bits/s/Hz, which takes

the overhead penalty into account. Figure 2.13 also provides the performance of the

� � � system when perfect decisions are used in the cancellation step. Again, the

FER performance is unaffected by error propagation, whereas the BER performance

degrades by #*%'( dB or more due to nonperfect decisions.

Including the loss due to the overhead penalty incurred by D-BLAST, the perfor-
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mance of this code is approximately �"% � dB worse than the performance obtained by

El Gamal and Hammons in [17] with the TST architecture. At � #�� outage the TST

scheme with rate-1/2 component codes, QPSK modulation, and � bits/s/Hz spectral ef-

ficiency, performs around �*%,( dB from the outage capacity. The performance gain of

the TST scheme can be attributed to two factors: the iterative MMSE receiver and a

smaller QPSK constellation. However, the TST scheme with rate-1/2 QPSK compo-

nent codes performs poorly when two of the channel eigenvalues are zero, since it has

no remaining redundancy in that case and the best it can achieve is an uncoded perfor-

mance. Our ��� -QAM trellis code can potentially work in this scenario since it still has

redundancy left.

Example 5: In this example we consider an ?�� ? full-overhead layered space-time

system coded with code @ � in [47]. The underlying symbol layering is for a codeword

of �"�"� information bits ( � �)� information bits per transmit antenna) with a traceback

depth � �� 
 � � . The “just-in-time” step-size of the diagonal layering is � 
 ( and

the resulting overall spectral efficiency is � 
 �*% �)� �)? bits/s/Hz. Figure 2.14 provides

the FER and BER performance of the ? � ? full-overhead layered space-time system

together with the theoretical outage curves. At ��#�� outage, this system has a FER

performance of �&%,� dB from the outage curve neglecting overhead (the � 
 � %,# curve).

An additional loss of �"%,� dB is incurred due to the inherent overhead penalty. How-

ever, from our experience we predict that a reduced-overhead system would yield very

similar performance to the full-overhead system. Moreover, with a reduced-overhead
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system the overall rate is increased to �*% �"? �)? bits/s/Hz and the loss due to the overhead

penalty is decreased to #&% � dB. This can also be seen in Fig. 2.14 which provides the

� 
��*% �"? �)? outage curve corresponding to a reduced-overhead system.

The TST architecture with rate-1/2 QPSK component codes and spectral efficiency

? bits/s/Hz is again around �*%'( dB from the outage capacity, having a performance gain

of � dB or more over a ��� -QAM trellis coded D-BLAST system including the loss due

the overhead penalty. As in the previous example, this gain in performance is attributed

to the superiority of the iterative MMSE receiver and the use of a smaller constellation.

2.7 Conclusion

In this chapter we have considered a simple trellis coding technique for the layered

space-time architecture of D-BLAST which employs a single trellis code and finite-

traceback Viterbi decoding with traceback depth � � . Several results using universal

trellis codes are presented for different antenna configurations. We show that a � � �

reduced-overhead trellis coded D-BLAST system performs within �*%,( dB of the outage

curve which takes the overhead penalty into account and is competitive with the best

available space-time trellis/turbo codes.

One advantage of the coded D-BLAST system is the fact that it uses a single trellis

code and an MMSE detector that permits decoding via Viterbi’s algorithm, without the

need for iterative decoding. Also, this system scales nicely with the number of trans-
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mit/receive antennas. The complexity of the MMSE detector is dominated by � times

the complexity of computing the suppression vectors � � in (2.11). This complexity is

polynomial in � , in comparison with multiuser detection methods with �

�
complexity

( � is the signal constellation size). One drawback of D-BLAST is the inherent over-

head penalty due to the diagonal layering. However, one way to eliminate the inherent

rate loss is by concatenating consecutive blocks such that the leading lower triangle of

overhead symbols in a block is filled by the tailing lower triangle of data symbols from

the previous block. Another solution is simply to use longer blocks. This solution does

not work well if low raw FER is the design objective because longer blocklengths lead

to higher raw FER. However, if low BER is the design objective or if outer coding can

correct a fixed percentage of bit errors as frame length is increased, then D-BLAST

becomes a competitive solution with both good performance and a simple decoder.
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Chapter 3

Gaussian Input and Constrained

Modulation Capacity of D-BLAST

Systems

3.1 Gaussian Input

The results of Ariyavisitakul [7] show that D-BLAST under the MMSE criterion is

optimal in the sense that it achieves the Gaussian input capacity for MIMO channels.

Below we give an alternative proof of this result. We have learned that this proof is also

contained in soon-to-be published [2].

Theorem 1 Space-time processing based on successive cancellations and MMSE in-
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terference suppressions converts a � � � MIMO channel into an equivalent period- �

scalar channel with the same channel capacity per � -symbol period as the original

��� � channel,

� 9 � > 
 ����� 4 det

�
� � � ���

	�� � � 	 � 

�

�
� � 5 � � � 4 �+� � �

MMSE� � % (3.1)

Proof. For simplicity assume that � �F��	�� 
 � . Using the determinant

identity det 9	� � ��� > 
 det 9	� � � � > , we can rewrite the capacity equation

as

� 9 ��> 
 � � � 4 det � � � �
� 	 � � % (3.2)

Let � 
 � � � 5�� � B 5�� � � � . Then, it follows that

� � � � 	 � 

� � � B 5 � � 	 � 5�� � B 5�� ��� 5�� � B 5�� � 	 � 5�� � B 5�� � �� 	� ��� 5�� � B 5�� � � � 	� � ��� % (3.3)

Using the fact that

det

� � �� ��� 
 det 9 � > det 9 � � � � B 5 � > (3.4)

when
�

is nonsingular, we obtain

� 9 � > 
 ����� 4�� det � � � B 5 �
� 	 � 5�� � B 5�� � � 5�� � B 5�� � � � � � 	�
	 � � ��� ! (3.5)
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where

	 
 � � � � � 5�� � B 5���� � � B 5 � �
	� 5�� � B 5�� � � 5�� � B 5���� B
5
�
	� 5�� � B 5�� % (3.6)

The Sherman-Morrison-Woodbury formula [15, p.50] provides a conve-

nient simplification for (3.6), namely

	 
 � � � �
�
� 5�� � B 5�� � 	 � 5�� � B 5�� � B
5
% (3.7)

This in turn reduces equation (3.5) to

� 9 � > 
 � ��� 4�� det � � � B 5 � � 	 � 5�� � B 5�� � � 5�� � B 5�� � ��
� � � 	� � � � � � � 5�� � B 5�� �
	� 5�� � B 5�� � B

5
� � ���


 � ��� 4�� det � � � B 5 � � 	 � 5�� � B 5�� ��� 5�� � B 5�� � �
� � �8� MMSE� � � !

(3.8)

where the expression for � MMSE�
is given in (2.14). Repeated application of

the above procedure to further factor det � � � B 5 � �
	� 5�� � B 5�� � � 5�� � B 5���� , yields

� 9 � > 
 ����� 4 � � � � � MMSE5 � % % % � � �8� MMSE� � � % (3.9)

Therefore,

� 9 � > 

�

�
� � 5 � ��� 4 � � �8�

MMSE� � ! (3.10)

and the proof of the theorem is complete.
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The above theorem proves the optimality of the layered space-time system under the

assumption of perfect cancellations, i.e. no decision errors affect the detection in sub-

sequent layers. This proof also provides some insight into how D-BLAST achieves the

MIMO channel capacity. In particular, observe that the scalar periodic SNRs produced

under MMSE suppression are in general not equal to the eigenvalues of the matrix

� � 	 .
Under the ZF criterion, the operational capacity of D-BLAST is a lower bound on

the true MIMO channel capacity, as shown in [13],

� 9 � > � � ZF-DBLAST 9 � > 

�

�
� � � � 4 �<� � � ZF� � % (3.11)

Figure 3.1 shows the MIMO capacity in (3.1) together with its lower bound in (3.11)

under Rayleigh fading for � � � , � � � , and ? � ? systems. These curves were evaluated

numerically using Monte Carlo methods (sampling of the channel matrix). Note that the

capacity lower bound (operational capacity of ZF D-BLAST) becomes looser for larger

antenna configurations. Also note that the MMSE and ZF solutions for D-BLAST are

equivalent in the limit of large SNR.

3.2 Constrained Modulation Input

Here we assume that the transmit vector � has entries chosen from some complex

constellation with ����� 9 ��� � � > possible signal points. We restrict our attention to PSK
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Figure 3.1: Ergodic capacity and its lower bound, Gaussian input, Rayleigh fading.
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or QAM constellations. To see the effect of a constellation on the maximum achievable

rate, we compute the mutual information between the output � and the input � assuming

the entries of � are chosen independently and equally likely from the constellation. The

mutual information is computed as

� 9���� � � � > 
�� 9 � ��� > ��� 9 � � � ! � > ! (3.12)

where � 9��'>�
 � E � ��� 4	� 9��'> is the entropy function. It is easy to show that

� 9 � � � ! � > 

� 9 	 > 
 � � ��� 4 9 �F; � � 4 > (3.13)

for our channel model with any constellation. The term � 9 � ����> in (3.12) is in general

more difficult to compute since the expectation in � 9 � � � >�
 � E � ��� 4 � 9 � ����> is over

two sources of randomness in the choices of � and 	 . The expectation over � can be

computed using a sum,

� 9 � ��� > 
 � E � ��� 4
�

�
�
�
� � 9 �F; � 4 >

� �
���������
�

�
� � 4

� �
� � � � 4 ��� ! (3.14)

where the sum over � runs for all �
�
� � possible combinations of the constellation val-

ues. The above expectation is now over the noise vector 	 . The expectation over 	 can

be evaluated via numerical integration methods. Note, however, that if an � � � grid is

used to quantize each complex received dimension (antenna) in � then � 4
�

points exist
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in the PMF approximation of � 9 � ����> and numerical evaluation becomes computation-

ally intensive.

Instead, we note that under the assumption of correct decisions being canceled out,

D-BLAST with MMSE interference suppression decomposes the MIMO channel into

� parallel complex constant fading channels with SNRs � MMSE5 !<� MMSE4 % % % � MMSE�
given

by (2.14), such that the aggregate capacity is the same as the original capacity. In a

constrained modulation setting, the residual interference plus noise at the output of the

MMSE filter is neither Gaussian nor i.i.d. Let
�� � be the detection statistic for the



th

antenna at the output of the MMSE suppression step,

�� � 
 � 	� � � (3.15)


 9�� 	� � � > � �� ��� �

desired term

�
� B
5

�
� � 5 9�� 	� � � > � �
� ��� �

co-antenna interference

� � 	� 	� ��� �

phase-rotated noise

% (3.16)

In the above expression, the first term represents the desired term, the second term is

the residual interference from the suppressed


�A� antennas, and the last term is a

phase-rotated noise term.

In the following, as done in [10], we make a Gaussian approximation for the MMSE

filter output:

�� � � � Gauss� 
 � � � � ��� � ! (3.17)

60



where

� ���
� 9:#&! � 4� > % (3.18)

In other words, the Gaussian noise vector � is assumed to have independent entries

with zero-mean and variance given by �
4� , where

� 4� 
 � � � � 9 � � � � > ! and (3.19)

� � 
 � 	� � � % (3.20)

With the above Gaussian approximation the resulting mutual information is an approx-

imation lower bound to the true mutual information:

� 9���� � � � > 
 � 9������� ��� > (3.21)


 � 9��� ��� > � � 9��� � � ! � > (3.22)

� � 9��� ��� > � � 9�� ����> (3.23)

� � 9�� Gauss � � > ��� 9�� ��� > (3.24)


 � 9���� � Gauss � � > % (3.25)

where (3.23) follows from the fact that Gaussian distribution maximizes the entropy

over all distributions with the same covariance and (3.24) follows from the Gaussian

approximation in (3.17).
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Then, the mutual information calculation is simplified since the expectation in

(3.14) now reduces to the following expectation

� 9 � � � > � � �
�
��� 5 E � ��� 4

�
�
� � �

�
�

�
; � 4�

����� �
�

�
� 4�
� � Gauss�

�

� � � � 4 ��� ! (3.26)

where the summation over
�

is for all � � � points in the constellation.

In essence, the D-BLAST approach with Gaussian approximation can be used to

linearize the constrained channel capacity calculation in (3.12), thus significantly re-

ducing the computational complexity for system configurations with more than � trans-

mit/receive antennas. The expectation over � can be evaluated numerically using

Monte-Carlo sampling of the channel matrix. From our experience, this technique

yields a tight approximation for low and medium SNRs (within thousands of a bit). Fig-

ures 3.2, 3.3, and 3.4 show the average information rate obtained with the D-BLAST

technique with Gaussian approximation for BPSK, QPSK, and 8-PSK constellation

constrained input respectively, under Rayleigh fading and � � � , ���E� , and � � �
antenna configurations.

62



−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

SNR (dB)

A
ve

ra
ge

 In
fo

rm
at

io
n 

R
at

e 
(b

/s
/H

z)

2x2 BPSK
3x3 BPSK
4x4 BPSK

Figure 3.2: Information rates for � � � , � � � , and � � � BPSK constellation constrained

input, Rayleigh fading.
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Figure 3.3: Information rates for � � � , � � � , and � ��� QPSK constellation constrained

input, Rayleigh fading.
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Figure 3.4: Information rates for � � � , � � � , and � ��� 8-PSK constellation constrained

input, Rayleigh fading.
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Chapter 4

Low-Density Parity-Check Coded

MIMO Systems

4.1 LDPC Basics

Low-density parity-check (LDPC) codes were proposed by Gallager in the early

1960s [16]. The structure of Gallager’s codes (uniform column and row weight) led

them to be called regular LDPC codes. Gallager provided simulation results for codes

with block lengths on the order of hundreds of bits. However, these codes were too short

for the sphere packing bound to approach Shannon capacity, and the computational

resources for longer random codes were decades away from being broadly accessible.

Following the groundbreaking demonstration by Berrou et al. [8] of the impressive
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capacity-approaching capability of long random linear (turbo) codes, MacKay [30] re-

established interest in LDPC codes during the mid to late 1990s. Luby et al. [29]

formally showed that properly constructed irregular LDPC codes can approach capac-

ity more closely than regular ones. Richardson, Shokrollahi and Urbanke [34] created

a systematic method called density evolution to analyze and synthesize the degree dis-

tribution in asymptotically large random bipartite graphs under a wide range of channel

realizations. The authors showed that it is possible to predict a noise threshold below

which a code realized from a given ensemble can be expected to converge to zero errors

with high probability.

In a nutshell, an LDPC code is a linear binary block code specified by a very sparse

parity-check matrix. The parity-check matrix � of a regular 9 � ! 
 !��"! � > LDPC code is a

9 � �

 > � � matrix, which has � ones in each column and � � � ones in each row where

����� � , and the ones are typically placed at random in the parity-check matrix. When

the number of ones in every column is not the same, the code is known as an irregular

LDPC code.

Associated with the code there is a simple bipartite graph representation which

consists of two types of nodes: variable or left nodes and check or right nodes. Each

code bit is a variable node while each parity check or each row of the parity-check

matrix represents a check node. An edge in the graph is placed between variable node

�
and check node � if � � � � 
 � . In other words, each check node is connected to code

bits whose sum modulo- � should be zero. As an example, consider the code of length
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� 
���# and

 
 ( , where

� 


�������������
�

� � � � # � � # # #
# # � � � � � � # #
# � # � # � # � � �
� # � # � # # � � �
� � # # � # � # � �

��������������
�
% (4.1)

The bipartite graph representing the code is shown in Fig. 4.1. Note that each check

node represents one linear constraint (one row of � ). In this example, every variable

node has degree three and each check node has degree six. Therefore, this code is called

a 9:�&!+� > regular low-density parity-check code.

As shown in [29] the performance of an LDPC code can be improved considerably

if we allow nodes of various degrees and if we choose the proportion of the various

degrees carefully. An irregular LDPC code is specified by a degree distribution pair.

In general, we call � 9 � > a degree distribution if � 9 � > is a real valued polynomial with

non-negative coefficients and � 9 � > 
 � . Let ��� and ��� denote the maximum variable

node and check node degrees, respectively. Also let


 9 � > 

����
� � 5 
 � � � B 5 ! and (4.2)

� 9 � > 

����
� � 5 � � � � B

5
(4.3)
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Figure 4.1: A
�����
��� regular LDPC code of length 10.
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be two degree distributions. The coefficients of 
=9 � >
9 � 9 � > > represent the fraction of

edges emanating from variable (check) nodes of degree
�
. Note that the fraction of

edges that emanate from a degree
�

node is the coefficient of
� � B 5 . Conversion between

edge and node perspective is useful for defining the rate of the code in terms of the

degree distribution pair 9 
 ! �2> . Let � be the total number of edges in the graph, then

� 
 � � � denotes the number of variable nodes with degree
�
. It is easy to check that the

design rate � 9 
 ! �2> is given by

� 9�
 ! �2> 
 � �
� �

��� �
��

 
�� �

� 5
� � 9 � > � �� 5
� 
 9 � > � � % (4.4)

4.2 System Model

The system model under consideration is an LDPC-coded MIMO system with ���
transmitter antennas and � � receiver antennas, signaling through frequency-nonselective

fading. The transmitter structure is illustrated in Fig. 4.2. The information data is first

encoded by a rate- � LDPC code, modulated by a complex constellation with � ��� pos-

sible signal points and average energy � � , and then distributed among the ��� antennas.

Let � be an ��� � � vector of transmitted symbols with components
� 5 ! � 4 ! % % %
! ����� and

� an � � � � vector of received signals with components
� 5 ! � 4 ! % % % ! � � � , related by

� 
�� � � 	�! (4.5)
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Figure 4.2: Transmitter structure of an LDPC coded MIMO system.

where � 
 � � 5 � 4 % % % � � � � is the � � � ��� complex channel matrix known perfectly by the

receiver, and 	 is a vector of independent zero-mean, complex Gaussian noise entries

with variance � 4 
�	�� � � per real component. We assume that the average signal-to-

noise ratio at each receiver antenna, denoted by � , is independent of the number of

transmitter antennas ��� . The system spectral efficiency is ��� � � � bits/channel use.

4.3 Iterative Detection and LDPC Decoding

With the system model described above, we can apply the turbo principle to de-

code the received signals. Iterative detection-and-decoding is used to approach the

maximum-likelihood (ML) performance of joint MIMO detection and LDPC decod-

ing. Figure 4.3 gives a flowchart of the iterative detector/decoder structure. In this

structure, the soft MIMO detector incorporates extrinsic information provided by the

LDPC decoder, and the LDPC decoder incorporates soft information provided by the
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Figure 4.3: Turbo iterative detection and decoding receiver for an LDPC coded MIMO

system.

MIMO detector. There are two kinds of iterations involved: one is the outer loop for

both the detector and decoder, the other is the inner loop for the decoder only. For each

outer-loop iteration, the soft detector accepts as its inputs the channel observation �

and the a priori information � �

� of the coded bits � and generates extrinsic information

� �

� . This extrinsic information becomes a priori input � � � for the LDPC decoder. The

LDPC decoder carries out the message-passing (also known as belief-propagation) de-

coding algorithm [35] and produces the extrinsic output � � � . Then, � � � becomes the

input � �

� for the next outer-loop iteration. Extrinsic information between the detector

and decoder is exchanged in this iterative fashion until an LDPC codeword is found or

a maximum number of iterations is performed. With LDPC codes, convergence to a

codeword is easy to detect since we need only verify that the parity checks are satisfied.

In the following, we describe in more detail how the soft extrinsic information is
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computed by each component. We focus on the soft MIMO detector and discuss several

reduced-complexity solutions along with the standard maximum a posteriori (MAP)

detector. We examine the complexity of each scheme and select specific parameters for

modulation cardinality and transmit-receive antenna multiplicity to facilitate a numeri-

cal comparison of complexity.

4.3.1 MAP Detector

In the soft MAP detector, the received vector � is demapped by a log-likelihood

ratio (LLR) calculation for each of the � � ��� coded bits included in the transmit vector

� . The extrinsic information provided by the MAP detector is the difference of the

soft-input and soft-output LLR values on the coded bits. For the
�
th code bit � � (

� 

�"! % % % ! � � ��� ) of the transmit vector � , the extrinsic LLR value of the estimated bit is

computed as

� �

� 9 � � > 
 �����
� 9 � � 
 � � � � ! � >
� 9 � � 
 ��� � � ! � > � � ���

� 9 � � 
 � � >
� 9 � � 
 � � >


 �����
�
�
����� ��

� 9 � � � ! � > � 9��=>
�
�
��� ����

� 9 � � � ! � > � 9�� > �8�
�

� 9 � � >
(4.6)

where the a priori information � �

� 9 � � > is equal to the extrinsic information of the bit

� � computed by the LDPC decoder in the previous turbo iteration ( � �

� 9 � � > 
 # at the

first iteration) and
� � 5� is the set of �

� �
� � B

5
vector hypotheses � having � � 
 � � , (

� B
5�

is similarly defined). Assuming the bits within � are statistically independent of one
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another, the a priori probability
� 9��=> can be written as

� 9��=> 

� �
� ��
� � 5

� 9 � � > 

� �
� ��
� � 5 � � � ��� � 9 � �����
� �

� 9 � � ><> � B
5
! (4.7)

where � ��� corresponds to the value ( � �"! � � ) of the � th bit in the vector � . In the above

LLR value calculation, the likelihood function
� 9 � � � ! � > is specified by a multivariate

Gaussian density function.

Since the cardinality of the vector sets
� � 5� and

� B
5� in (4.6) equals �

� �
� � B

5
, the

complexity of the soft MAP detector is exponential in the number of transmitter an-

tennas and the number of bits per constellation symbol. At each iteration, the MAP

detector has to compute the LLRs for � � ��� bits in each transmit symbol vector. With

an equal number of transmit and receive antennas ( � � 
 � � 
 � ), evaluating (4.6)

involves the following steps:

for
� 
�� to �

�
� �

1) Compute the a priori probability
� 9��=> in (4.7): � � � � flops

end

for
� 
�� to � ���

2) Compute the LLR value in (4.6): � � � � � � flops

end

We define a flop as a single addition, subtraction, multiplication or division between

two complex numbers. Table lookups to
�����

and ����� functions are not included in this
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complexity analysis because we make the simplification that single operand functions

have no cost. Instead, we use an operand counting approach where the total number of

“hashing” occurrences between different operands is counted. For instance, the cost of

evaluating (4.7) is found using this method by counting the cost of the form 9 � � � > B 5

as a single flop (trivial additions with constants are not included since they are not true

operands). This form is evaluated � � � times and � � � � � multiplications form the

final product. To simplify our counting approach, we round up the multiplication cost

to � ��� and the total cost is said to be � � � � flops.

The likelihood function
� 9 � � � ! � > is precomputed for all �

�
� � hypotheses at the

beginning of the iterative process and has a cost of � �
4 �6� � flops per vector hypothesis.

Then, the (approximate) cost of the MAP detector per turbo iteration is 9:� � � � > � � � � �
flops and the initial cost of precomputing the likelihood functions for all hypotheses is

9 � �
4 � � � > � � � � � flops.

4.3.2 MMSE-SIC Detector

The sub-optimal demodulator based on a minimum mean-square error soft inter-

ference cancellation (MMSE-SIC) criterion consists of a parallel interference canceler

followed by an MMSE filter. It is analogous to a multiuser detector proposed in [45].

It is also described in [38] and [27]. Below we provide our review and comments on

complexity.

The MMSE-SIC detector first forms soft estimates of the transmitted symbols by
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computing the symbol mean �
� � based on the available a priori information:

�
� � 
 �

� � �
� � 9 � � 
 � > ! (4.8)

where
�

is the complex constellation set. The a priori probabilities are calculated

assuming the bits within a symbol are statistically independent of one another:

� 9 � � 
 � > 
 � ��

� � 5
� � � � � � 9 � � � � � �

� 9 �
� � B
5 �
� �

� � > > � B
5
! (4.9)

where
�
�
�
indicates the value of the � th bit of symbol

�
. At the beginning of the iterative

process, all symbols are equally likely and their probability is � B ��� . It follows that for

a complex symmetric constellation like QPSK, the soft estimates are equal to zero and

in effect no cancellation is performed in the first iteration. In subsequent iterations, as

the bit reliabilities provided by the LDPC decoder improve, the soft estimates become

closer to their true value.

For the



th transmit antenna, the soft interference from the other � � � � antennas is

canceled to obtain

� � 
 �
�

���
�
� � 5�� ���� � �

� � � � (4.10)


 � � � � �
� �
�
� � 5�� ���� � 9

� �
���
� � > � � �
	 % (4.11)

A detection estimate
�� � of the transmitted symbol on the



th antenna is obtained by

applying a linear filter � � to � � :
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�� � 
 � 	� � � (4.12)


 9 � 	� � � > � � �
���
�
� � 5�� ���� � 9 � 	� � � > 9 � � � �

� � > � � 	� 	 % (4.13)

In the above equation, the first term represents the desired term, the second term is the

residual interference from the other transmitter antennas, and the last term is a phase

rotated noise term.

The filter � � is chosen to minimize the mean-square error between the transmit

symbol
� � and the filter output

�� � , and depends on the variance of the symbols used in

the cancellation step. It can be shown that the MMSE-SIC solution is given by

� � 

� 	 �
� � �

� � �
� � � � 	 � B
5

� � ! (4.14)

where the covariance matrix
���

is

� � 
 diag

�
� 4� �� � ! % % % !

� 4���
������ ! �"! �

4��� � �� � ! % % % ! �
4� � �
� � � ! (4.15)

and � 4� �
is the variance of the

�
th antenna symbol computed as:

� 4� �

 �
� � �
� � � �

� � � 4 � 9 � � 
 � > % (4.16)
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Note that the MMSE-SIC filter adjusts its weights according to the quality of the soft

canceled symbols through the covariance matrix
� � . In the two extreme cases, the

MMSE-SIC filter reduces to a simple suppression filter or a maximal ratio combining

(MRC) filter. The first case corresponds to the case in which the canceled symbols are

all zero (i.e. no cancellations) and the symbol variances � 4� �
are all equal to ��� . It

follows that the covariance matrix
� �

becomes an identity matrix and the filter reduces

to the well-known MMSE suppression filter:

� � 

� 	��
� � �

� � �
� � 	 � B
5

� � % (4.17)

The second case corresponds to the case in which the canceled symbols are the true

symbols (i.e. perfect cancellations) and the symbol variances � 4� �
are all zero. It can be

shown that the MMSE-SIC filter reduces to a filter of the form

� � 

� 	 �
� � �

� 	� � � � B
5

� � ! (4.18)

which in effect forms a maximal ratio combining with the corresponding column vector

of the channel matrix.

Therefore, in general, the MMSE-SIC detector performs a combination of suppres-

sions and cancellations. The amount of suppression done by the detector is determined

by the quality of the canceled symbols, which ultimately dictates the performance of

the MMSE-SIC detector.
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As we saw before, the output of the MMSE-SIC filter includes the desired symbol,

residual co-antenna interference, and noise. Note that under a Gaussian input, the out-

put of the filter is also Gaussian. However, under a constrained input scenario in which

the symbols belong to a complex constellation like QPSK, the filter output is neither

Gaussian nor i.i.d. Despite this fact, following [45], we approximate
�� � by the output

of an equivalent AWGN channel with
�� � 
 � � � � � � � , where

� � 
 � 	� � � ! (4.19)

and � � is a zero-mean complex Gaussian variable with variance �
4� given by

� 4� 
 ��� 9 � � � � 4� > % (4.20)

Then, the extrinsic log-likelihood ratio computed by the MMSE-SIC detector for

the � th bit ( � 
��"! % % % ! � � ) of the symbol
� � transmitted by the



th antenna is:

� �

� 9 �
� � B
5 �
� �

� �-> 
 � ���
� 9 � � � B

5 �
���

� � 
�� � � �� � >
� 9 � � � B

5 �
���

� � 
 ��� � �� � > � �����
� 9 � � � B

5 �
� �

� � 
 � ��>
� 9 � � � B

5 �
���

� � 
 ����>

 � ���

� � � � � ��
� 9 �� � � � > � 9 � >

� � � � ����
� 9 �� � � � > � 9 � > � �

�

� 9 �
� � B
5 �
� �

� � >
(4.21)

where
� � 5
� is the set of � � � B

5
hypotheses

�
for which the � th bit is � � (

� B
5

� is similarly

defined). In the above calculation of the extrinsic LLR value, the a priori probability

� 9 � > is given by (4.9) and the likelihood function
� 9 �� � � � > is approximated by
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� 9 �� � � � > � �
; � 4�

� � � �
�

�
� 4� � �� � � � � � � 4 � % (4.22)

Note that for the LLR value calculation, only the term in the exponent is relevant; the

constant factor outside the exponent can be dropped.

The MMSE-SIC detector has a lower complexity than the MAP detector. This can

be seen from (4.21) where the extrinsic LLR is computed from the scalar output
�� � of

the MMSE filter, in contrast with (4.6) where the extrinsic LLR is computed from the

received vector � . With � transmit and � receive antennas, evaluating (4.21) involves

the following steps:

for

 
�� to �

for
� 
A� to � � �

1) Compute the a priori probability
� 9 � > in (4.9): � � � flops

end

2) Evaluate the symbol mean �
� � and variance � 4� �

: ( � � � � flops

3) Cancel the soft estimates in (4.11): � �
4

flops.

4) Evaluate the matrix
� 
 � � 
� � � � � �
� � � � 	 � : � �

� � �
4 � � � flops

5) Solve
� � � 
 � � for � � : �

� ��� flops using Choleski factorization [15]

6) Compute the detection estimate
�� � : � � flops

7) Compute � � and �
4� : � � flops

for � 
�� to ��� �
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8) Evaluate the likelihood function
� 9 �� � � � > in (4.22): 4 flops

end

for � 
�� to � �

9) Compute the LLR value in (4.21): � � � � � flops

end

end

Then, the (approximate) computational complexity of the MMSE-SIC detector is � �
� ��� �

� �
� � � �

4 ��9 � � � � > � � � � ��9 � � > � � ��� flops per turbo iteration.

4.3.3 MRC-SIC Detector

A sub-optimum solution to the MMSE-SIC detector is to replace the filter in (4.14)

with the simple MRC filter in (4.18). This requires a scalar inversion only and elimi-

nates the need for matrix inversion. The soft interference cancellation is still performed

as above. The only difference is the use of the simple MRC filter at each iteration,

except at the first iteration where the MMSE suppression filter is used instead, since

no cancellations are being performed. Again, we make a Gaussian approximation for

the MRC filter output,
�� � �

� 9 � � � � ! � 4� > . The corresponding mean and variance are

re-computed to be
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� � 
 � 	� � � (4.23)

� 4� 

� �
�
� � 5�� � �� � �

4� �
� � 	� � � � 4 � 	�� � � � � 4 % (4.24)

The MRC-SIC detector offers an additional reduction through the simple MRC fil-

ter, which can be evaluated at the beginning of the iteration process. With � transmit

and � receive antennas, evaluating the LLR values involves the following steps:

for

 
�� to �

for
� 
A� to � � �

1) Compute the a priori probability
� 9 � > in (4.9): � � � flops

end

2) Evaluate the symbol mean �
� � and variance � 4� �

: ( � � � � flops

3) Cancel the soft estimates in (4.11): � �
4

flops

4) Compute the detection estimate
�� � : � � flops

5) Compute �
4� : � � flops

for � 
�� to � � �

6) Evaluate the likelihood function
� 9 �� � � � > in (4.22): 4 flops

end

for � 
�� to � �

7) Compute the LLR value in (4.21): � � � � � flops

end
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end

It follows that the complexity per turbo iteration is � �
� � � �

4 � 9 � � ��� > � � � � � 9 � � > �
� � � flops. Moreover, the initial cost of evaluating the MRC and MMSE suppression

filters is � �
� �)� � �

4 � � � flops and the cost of evaluating � � and the vector norms

appearing in the computation of �
4� is � �

� � � �
4

flops, yielding a total initial cost of

� �
� �)� � � �

� � � �
4 � � � flops.

4.3.4 MRC-HIC Detector

The MRC-HIC detector is similar in nature to the MRC-SIC detector, except that

hard decisions are used in the cancellation step. Hard decision estimates on the LDPC

code bits � � (
� 
��"! % % % ! ��� ��� ) can be obtained from

�
� � 
 sign

� � � � 9 � � > � � � � 9 � � > �"! (4.25)

and a hard decision estimate on the


th antenna symbol can be formed as

�� � 
�� � �� � � B 5 � ��� � 5 �� � � B 5 � � � � 4 % % % �� � � � � (4.26)

where � is a function that maps an input bit vector to a complex constellation point.

Assuming these hard decision symbol estimates are correct, their cancellation would

provide a better detection estimate for the antenna of interest. As in the case of the

MRC-SIC detector, the MMSE suppression detector is used in the first iteration and
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the simple MRC filter is applied whenever hard decisions are canceled to obtain the

detection estimate
�� � .

Observe that the assumption of correct hard decisions does not hold very well in

the early stages of the iterative process. In order to avoid error propagation due to

incorrect hard decisions, it is very important that cancellations be performed only when

the reliability of the canceled symbols is high according to some cancellation criterion.

We experimented with different criteria for interference cancellation and found that the

following two methods give the best results:

� Average of LLRs

With this criterion, first the following average is computed and then compared to

a predetermined threshold value:

�
� 
 �

��� ���

� �
� ��
� � 5 � � � � 9 � � > � ��� � % (4.27)

The threshold
�

� is found experimentally as the threshold that yields the best

bit-error rate performance. Note that a too low threshold value would introduce

undesirable error propagation due to incorrect cancellations, while a too high

threshold value would give the same performance as the MMSE suppression de-

tector since no cancellations are performed in this case.

� Probability of bit vector
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With this criterion, the probability of a bit vector is first computed and then com-

pared to a threshold value:

��� 
 � 9 � 5 � 4 % % % � � � � � > 

� �
� ��
� � 5

� � � � � � 9 � � � � � 9 � � > � > � B 5 � � � % (4.28)

As before, the threshold
� �

is found experimentally to optimize the BER perfor-

mance.

The computational complexity of the MRC-HIC detector is approximately the same

as the complexity of the MRC-SIC detector.

4.3.5 MMSE Suppression Detector

An even further reduction in complexity is obtained with a simple MMSE suppres-

sion detector. Since no interference cancellation is performed, the MMSE suppression

filter � � from (4.17) is evaluated only once, at the beginning of the turbo iterative pro-

cess, and applied to the received vector � to obtain a detection estimate
�� � for the



th

antenna.

Assuming an equal number of transmit and receive antennas, evaluating the LLR

values involves the following steps:

for

 
�� to �

for
� 
A� to � � �
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1) Compute the a priori probability
� 9 � > in (4.9): � � � flops

end

for � 
�� to � �

2) Compute the LLR value in (4.21): � � � � � flops

end

end

Then, the complexity per turbo iteration is 9:� � � � > � � ��� flops. Moreover, the initial

cost of evaluating the MMSE suppression filters � � , the detection estimates
�� � , and

the likelihood functions
� 9 �� � � � > is � �

� �)� �A( �
4 ��9:� � > � � ��� flops. Note that the

MMSE suppression detector reduces the complexity per turbo iteration from
� 9 �

� > (for

the MMSE-SIC detector) to
� 9 � > . Of course, the overall complexity for the MMSE

suppression scheme remains
� 9 �

� > because of required initial processing. However, a

more flexible allocation of computational resources becomes possible given the need

to solve a system of equations to determine � � only once rather than on a per iteration

basis.

In Table 4.1 we give a complexity comparison example based on a flop count for

the MAP, MMSE-SIC, MRC-SIC, and MMSE suppression detectors for � � � antenna

configurations with � 
 �*!$�&!+? , using QPSK modulation. For each detector, we provide

the initial cost (which is the cost of computations that must be done only once for all of

the iterations), the cost per turbo iteration, and the total computational cost assuming
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� 
 � � 
 � � 
�?
MAP initial � ��� �"%-� � � ��# �

�&% �"������#��
MAP per iteration �)()� ?&%3� ������# � � %3� ������# �

MAP total (30 iterations) �*% �"#�����# � �*%,("� ����#�C �"% �"������# �

MMSE-SIC initial # # #
MMSE-SIC per iteration � �"( �"%3� � ����# � �"% �*� ����# �

MMSE-SIC total (30 iterations) �*%'�)����� # � �&%,( � ����# � �&% �"������#�C
MRC-SIC initial �*� �)? ( �"%,#)? � ��# �

MRC-SIC per iteration ���"# � � � �"%,� � ��# �

MRC-SIC total (30 iterations) (2%'()?���� # � �"% � � ����# � �&%3� � ����# �

MMSE suppression initial ? � ��� � �)%,# � ��# �

MMSE suppression per iteration ��� � ��? �"(��
MMSE suppression total (30 iterations) �*% #�� ��# � � %,()?�����# � �"%,�"� ����# �

Table 4.1: Cost (in flops) of computing the LLRs for different MIMO detectors.

�"# iterations.

4.3.6 Belief Propagation Decoding of LDPC Codes

The standard message-passing (also known as belief-propagation) decoding algo-

rithm [35] is used to decode the LDPC code. In the bipartite graph of the LDPC code,

the variable nodes are numbered from � to � , and the check nodes from � to � �


.
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Denote by
 � �� � 5 ! � �� � 4 ! % % %
! � �� � ��� . the set of edges connected to the

�
th variable node and

by
 � �� � 5 ! � �� � 4 ! % % % ! � �� � � � . the set of edges connected to the

�
th check node. The message-

passing algorithm of LDPC codes can be summarized as follows:

� Iterate between variable node update and check node update:

– Variable node update: For each of the variable nodes, for every edge con-

nected to the variable node, compute the extrinsic message passed from the

variable node to the check node along the edge

� � � 9 � �� � � > 
�� � � 9 � � > �
����

��� 5�� � �� � � � � 9 � �� � � > ! (4.29)

where � � �
is set to zero at the first iteration.

– Check node update: For each of the check nodes, for all edges connected to

the check node, compute the extrinsic message passed from the check node

to the variable node

� � � 9 � �� � � > 
 � ��� 
�� B 5 � �
��

��� 5�� � �� � ��� 
��
� � � � 9 � �� � � >

� � � % (4.30)

� Compute extrinsic messages passed back to the demodulator:

� � � 9 � � > 

�	��
��� 5 �

� � 9 � �� � � > % (4.31)
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4.4 LDPC Codes as Universal Space-Time Codes

4.4.1 Mutual Information Performance under MAP Detection on

�����
Channels

In this section the performance of two different rate-1/3 length-15,000 spatially-

multiplexed LDPC codes modulating QPSK on parameterized � � � MIMO channels

(for a net rate of 4/3 bits per transmission) using the MAP detector will be described.

Rather than computing average performance over randomly drawn channels, we

examine performance on a representative set of specific � � � channels. Each of the

��� � channels will be characterized by three parameters: two rotation parameters and

the ratio of the eigenvalues in the system (or eigenskew), specifically,

� 

� 
 5

��
� � #
# � �

���
�

��
� � �
	 9 0 > 	 ��
 9 0 >�� ��

��	 ��
 9 0 >���B ��
 � ��	�9 0 >

���
� (4.32)

where � 
 
 4 � 
 5 is the eigenvalue skew of the Hermitian matrix � � 	 (with 
 4 � 
 5 ),
0�7 � #&!<; � � � , and � 7 � #&! �F; � . We sample the above matrix via the parameters 
 5 
1� ,
�6
  #&!+#&%3� �"(*!$#&% �)(*!+#&%,(*!+#&%,�"(*! �). , 0 
  #&!<; ���&. and � 
  ;=���&!+��;=���*. .

The value of such a parameterized assessment is that it explicitly shows how excess

MI performance varies across the set of channels and in fact allows worst and best

channels for a given codeword to be identified. Furthermore, flatness of the excess

mutual information measure versus channel skew becomes a criteria for comparing the
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degree of robustness possessed by a given code. Again, in our terminology, a code

is universal if reliable communication (for instance BER = � # B2C ) occurs at the same

(small) excess mutual information level across all channels. The absolute SNR required

to achieve a given mutual information level will vary with the degree of fading imposed

by the channel matrix.

Performance on each channel in the sampling is measured by the mutual informa-

tion in excess of the transmission rate of � �)� bits/channel use required to achieve a BER

of ��# B2C . Note that the product of a diagonal eigenmatrix and a complex Givens rotation

(the rightmost matrix in (4.32)) does not parameterize every � � � matrix, but does pa-

rameterize every interesting � � � matrix because matrices not described by (4.32) can

be found through a symmetric reflection of the eigenmatrix. A simple example of this is

that a �6
 # channel erases all received symbols in even positions (all
� 4 observations).

The matrix could be reformulated to erase odd received symbols by swapping elements

on the diagonal in the eigenmatrix.

Our LDPC codes were actually designed for periodic fading SISO channels. Note

that a period- � SISO fading channel,
� � 
 � � ��� ��� 4 � � � � � � , with fading vector � 


� � 
 5 ! � 
 4 � is equivalent to a diagonal ( 0 
 # ) � � � matrix fading channel (but re-

quires two channel uses to relay the same information). Following the work in [22], we

are able to optimize LDPC degree distributions for period-� fading via an adaptation

of the Gaussian approximation to density evolution. Specifically, at iteration � , degree

�
variable nodes have their mean values updated in correspondence to the periodic ini-

90



tial means given by � �

� 

4 � ��� � (where � � are known fading gains) and the means of

messages arriving from check nodes ( ��� ):

�
� � �
�
� � 9 �2>�
 � �

� � 9 � �E� > �
� � B
5 �

� !�� 
  #*! % % % ! � �E�). % (4.33)

Then, randomly selected edges emanating from variable nodes adhere to the following

Gaussian mixture density,

�
� � �
� 


�

B
5

�
� � �

� ��
� � 4


 �� � � �
� � �
�
� � 9 �2> ! � �

� � �
�
� � 9 �*> � % (4.34)

Using this kernel, codes were optimized for ��
 � �"! � � and ��
 � �"!+#�� period-2 fading

channels. These codes were then tested across the parameterization of ��� � channels.

The resulting degree distributions are given in Table 4.2. In general, a code for periodic

fading does not have to be a good code for MIMO channels. However, LDPC codes

are random enough that our codes, designed for periodic fading, exhibit an exceptional

degree of universality on MIMO channels.

4.4.2 Gaussian, Constellation Constrained, and Parallel Indepen-

dent Decoding Mutual Information

We next describe the mutual information measures ( � 9��'> ) that can be considered

when analyzing the universal property of LDPC codes. Of course, the mutual infor-

mation between transmitter and receiver using a Gaussian codebook is independent of
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� 
 � [1,1] 
 � [1,0] � � [1,1] � � [1,0]

2 0.27603 0.354954 - -

3 0.11195 - - -

4 0.17229 0.249982 - -

5 0.01712 0.065503 - 0.5000

6 - - 1.0 0.5000

15 0.42261 0.329558 - -

Table 4.2: Degree distributions optimized using Guassian approximation to density evo-

lution adapted to periodic fading. Columns labeled with
�
�
�����

indicate the distribution

resulting from optimization for the period-2 channel where half of all received symbols are

erased. Columns labeled with
�
�
�
�
�

indicate a period-2 code optimized for AWGN.
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Givens rotation parameters, � and 0 , and is given by:

� Gauss 
 � ��� 4
�
� � ���

	�� 
 5 � � � � � �
	�� 
 4 � % (4.35)

However, two other capacity measures are relevant to a system that modulates an LDPC

code directly onto a channel and these measures do depend on the channel parameters

� and 0 . The first is the QPSK constellation constrained ( � QPSK) capacity:

� QPSK 
 � 9���� � ! � > 
 � �
����
� � 5

� 9���� � � � ! � � ��� � ! % % %
! ��� ����� > % (4.36)

If the dependencies between the bit levels are neglected for decoding, we obtain the par-

allel independent decoding constellation constrained ( � PID QPSK) capacity [44], which

has a lower mutual information:

� PID QPSK 

� �
� ��
� � 5

� 9���� � � � ! � > � � QPSK % (4.37)

For SISO channels it has been shown [11] that the parallel independent decoding con-

stellation constrained capacity suffers only a negligible loss compared to modulation

constrained capacity provided that a Gray labeling of signal points is possible.

Lampe et al. in [25] suggested that in fast fading channels, approaches that use

multi-level coding (MLC) with multi-stage decoding (MSD) can achieve the constella-

tion constrained capacity of a MIMO channel. In particular, they showed that systems
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which applied separate codes on each antenna could approach the modulation con-

strained ergodic capacity of the fast fading MIMO channel.

Without channel interleaving, MLC/MSD approaches will not perform well under

certain parameterizations of the static fading channel described above. For example, a

channel with parameterization � 
 # and 0 
 # has
� 5 
 � 5 � �

5 and
� 4 
 � 4 . In this

scenario, the codesymbols from code(s) on the second transmit antenna are completely

punctured at the receive array and the information associated with these codewords can-

not be recovered. This work focuses on spatially multiplexed systems in which a single

code is applied to the entire transmit array. Bit-interleaved coded modulation (BICM)

systems such as this have lower complexity as compared to MLC/MSD approaches.

The robustness results for the length 15,000, � 
 � �"!+#�� optimized code applied to a

� � � channel under spatial multiplexing are given in Fig. 4.4. The curves with circular

and square markers show excess mutual information on the 0 
 ; ��� (worst case)

channel when excess MI is measured from � QPSK capacity (circle) or � PID QPSK capacity

(square) (the raw underlying simulation data for these two curves are the same).

On the worst case channel ( 0 
1;=��� ) when ��
 # , the excess MI for the code to

operate at BER= ��#2B2C as measured from � QPSK is 0.67 bits, while the gap to � PID QPSK is

0.09 bits. The difference between these two capacity measures at this operating SNR

is therefore 0.58 bits. Figure 4.5 shows how these two measures differ at this operating

SNR not only at 0 
 ; ��� (where the difference is 0.58 bits), but across the entire range

of interest for this parameter. This figure also provides mutual information plots for the
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Figure 4.4: Excess mutual information performance of length 15,000, rate-1/3 � � � �
	����
optimized LDPC code at BER = � � ��� as measured from QPSK constellation constrained

capacity ( � QPSK), and parallel independent decoding constellation constrained capacity

( � PID QPSK) across eigenskew and two distinct values of
�

. Also plotted is the performance

of a rate-2/3, length 7,500 LDPC code (of same maximum left degree as the rate-1/3 code)

modulating QPSK into 2 � 2 Alamouti space-time block code.
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SNR associated with BER= ��# B2C operation on the 0 
 # , � 
 # channel (excess MI

results for which are provided in Fig. 4.4).

Note that channels with 0E
 ; ��� !+��; ��� maximize � QPSK and minimize � PID QPSK.

At these angles, we also observe that the constellation constrained capacity approaches

the Gaussian alphabet capacity closely (which is reasonable given the relatively low

rate loading of the QPSK constellations). Though not shown in Fig. 4.5, as � ap-

proaches unity, the constellation constrained and parallel independent decoding con-

stellation constrained mutual informations do not drift from each other, nor do they

vary absolutely across the parameterization of 0 because the �6
 � unitary channel is a

generalization of a diagonal channel where � QPSK and � PID QPSK are equivalent (within

the loss of � PID QPSK to Gray labeling, which is negligible).

The opposing diamond curves in Fig. 4.4 measure the performance of the code on

the 0 
�# channel across � (the raw underlying simulation data of these two curves are

also the same). The flatness of the gaps to � QPSK and � PID QPSK mutual information is

indicative of the robustness of the code on this subset of channels (diagonal channels

yield � PID QPSK that is approximately equal to � QPSK). We note the observation that in

all cases where � PID QPSK is flat across a given parameterization, so is the excess mutual

information performance of the code.

We conjecture that a binary coded system (without feedback) can achieve � QPSK

capacity measures only in cases where � PID QPSK approaches � QPSK. All other cases

must depend on feedback between detector and decoder to push the system performance
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decoding constellation constrained ( � PID QPSK) capacities are shown at the SNR levels that

yield BER= � ����� for � � � on
�

equal to � (the best) and � 	 � (the worst) channels. The

data on this plot can be used to understand the excess MI data presented for the � � �
channels in Fig. 4.4.
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closer to the constellation constrained capacity. Even so, all of the results presented in

Fig. 4.4 have applied feedback between detector and decoder and the remaining large

gaps to � QPSK capacity evidence the ineffectiveness of the simplest feedback approach.

The existence of feedback schedules and techniques that cause the operational capacity

to closely approach the net constellation constrained capacity of the system is an open

research problem. Other solutions may include design of multidimensional mappings

to flatten the parallel independent decoding constellation constrained capacity across

all channel parameterizations, or symbolwise message passing over GF( �
� �
� � ) so as to

avoid bit marginalization of the received vector before decoding.

One might suspect that a better approach to achieving space-time diversity with a

binary linear code is to concatenate a relatively high rate code with a space-time block

code such as the code devised by Alamouti in [3]. The channel sampling approach

provides a detailed basis for the comparison of direct bit-multiplexing and Alamouti

concatenation. The diamond and pentagon curves of Fig. 4.4 describe the excess mu-

tual information performance of a rate-2/3, length 7,500 LDPC code concatenated with

a � � � Alamouti space-time block code. Note that the rate and block length of this

code have been chosen so that each frame contains the same number of vector symbols

and information bits as in the rate-1/3, length 15,000 bit-multiplexed case. The mutual

information difference between these two Alamouti curves is entirely due to the differ-

ence in QPSK constellation constrained capacity at angle 0 
 # and angle 0 
�;=���
(the raw simulation data underlying both curves is the same).
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The Alamouti concatenation performs well on the �E
 # channels since the era-

sure of one transmit antenna at the receive array is perfectly absorbed by the Alamouti

scheme and a complete set of observations remains for each rate 2/3 codeword. The

penalty, however, for using an orthogonal space-time code is severe on unitary ( �6
A� )
channels. Specifically, the penalty for using Alamouti on a unitary channel is about 0.1

bits in excess of the penalty of using bit-multiplexing on a singular channel.

4.4.3 Mutual Information Performance under MMSE Detection on

�����
Channels

In this section we examine the MI performance of the spatially-multiplexed LDPC

code under MMSE detection by considering the set of ��� � parameterized matrix

channels previously defined.

The matrix parameterization makes the MMSE suppression detector easy to analyze

and offers some insight to what can be expected in terms of universal performance with

this simple detector. Let � 5 and � 4 be the SNRs at the output of the MMSE detector. It

is easy to show that we obtain the following formulation for the SNRs at the output of

the MMSE filter:

� 5 
 � 	 5 � 	 �� � � 4 � � 4 � 	4 � B
5

� 5 (4.38)


 � 	 ��
 4 9 0 > � � �
	 4 9 0 > � � ���F�
	��	�� �)� � � � � �
	 4 9 0 > � 	 � 
 4 9 0 > ! (4.39)
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� 4 
 � 	4 � 	 �� � � 4 � � 5 � 	 5 � B
5

� 4 (4.40)


 � � �
	 4 9 0 > � 	 ��
 4 9 0 > � � ���F�
	��
	�� �)� � � � 	 ��
 4 9 0 > � � ��	 4 9 0 > % (4.41)

Note that the angle � does not matter at all and that for unitary channels ( � 
 � ) the

SNRs reduce to � 5 
 � 4 
 � �F� 	 � . In the case of singular channels ( � 
 # ), the above

SNRs become

� 5 
 � �
	 4 9 0 >	�� �)� � � 	 ��
 4 9 0 > ! (4.42)

� 4 
 	 ��
 4 9 0 >
	�� �)� � � � �
	 4 9 0 > (4.43)

Observe that on such a channel, when � �
	�9 0 > 
�# or 	 ��
 9 0 > 
 # , we have in effect a

scalar period- � erasure channel. However, when 	 � 
 9 0 > 
 � �
	�9 0 > (i.e. 0 
�;=�F� or a

multiple of ;=��� ), we obtain � 5 
 � 4 
 � � � � 
4 � � � � � 
 and a periodic scalar channel of the

form
� 5 
�� 44 � 5 ��� 44 � 4 � � 5 , � 4 
 � 4 . This represents the most challenging channel

for our MMSE suppression detector.

In order to better understand the effect of the eigenvalue skew � and the rotation an-

gle 0 on the performance with MMSE suppression, we need to consider the operational

capacity of the MMSE detector, given by

� MMSE 
 � ��� 4 9 � �8� 5 >
9 � �8� 4 > % (4.44)
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Figure 4.6 shows the operational capacity of the MMSE suppression detector as a

function of the angle 0 for different eigenskews � . The curves are plotted at � Gauss 
��
bits, where � Gauss is the Gaussian input capacity defined in (4.35). This figure shows that

the operational capacity of the MMSE detector can be as low as half the actual Shannon

capacity for some particular unfavorable rotation in the channel matrix parametrization.

The worst case is � 
 # and 0 a multiple of ; ��� . This is exactly the same as the worst

channel identified earlier under MAP detection.

Figure 4.7 shows the excess MI results for the rate-1/3, �6
 � �)! � � optimized LDPC

code using the MAP, MMSE-SIC, and MMSE suppression detectors. For each eigen-

value skew, there are two points for each detector corresponding to the angles 0�

#&! 0 
 ;=�F� , which define the range between “best” and “worst” channels. Note that

this range is largest for � 
1# and MMSE suppression detector. For all detectors this

range diminishes with increasing skew values. The performance loss on the worst chan-

nels is attributed to the gap between the operational capacity with the different detectors

and the true Shannon capacity, rather than the performance of the LDPC code itself.

4.5 Simulation Results in Rayleigh Fading

In this section we examine the performance of LDPC coded MIMO systems in

Rayleigh fading using the soft detectors introduced earlier. In our study, we assume

that the number of receive antennas is the same as the number of transmit antennas.
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We assume a fast Rayleigh fading scenario, where the channel matrix is realized

independently from one transmission time to the next. We compare our bit-error re-

sults with the theoretical channel capacity limit. Under the fast fading assumption, the

theoretical capacity limit is the ergodic channel capacity given by [40]:

� 
 � � � ��� 4 det

�
� � � � � �

	 � � � 	 � � % (4.45)

Figures 4.8 and 4.9 show the BER performance of the rate-1/3, � 
 � �)!+#�� optimized

LDPC code versus average SNR per receiver antenna on ��� � , � � � , and ? �E?
fast fading Rayleigh channels. The first plot assumes a QPSK modulated system with

resulting spectral efficiencies of �"% �"�&! �*%,�)� and (2%,�"� bits/s/Hz respectively. The second

plot assumes 16-QAM modulation, resulting in spectral efficiencies of �*% �"�&! (2%,�"� and

��#&% �"� bits/s/Hz respectively. On these plots we also show the channel capacity at the

corresponding transmission bit rate for these systems. As expected, the MAP detector

yields the best performance, which is �"%,( dB from the theoretical capacity at BER 

��# B �

on the � � � system modulating QPSK and around �*% # dB on the � � � system

modulating 16-QAM. The MMSE-SIC detector has essentially the same performance

as the MAP detector on the � � � and � � � systems. For the � � � 16-QAM and ? ��?
QPSK and 16-QAM systems the computational complexity associated with the MAP

detector is prohibitive and these result were not simulated.

Our simulation results show that the very low complexity MMSE suppression de-

104



−2 −1 0 1 2
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

2 × 2 MAP
2 × 2 MMSE−SIC
2 × 2 MRC−SIC
2 × 2 MMSE
4 × 4 MAP
4 × 4 MMSE−SIC
4 × 4 MRC−SIC
4 × 4 MMSE
8 × 8 MMSE−SIC
8 × 8 MMSE
Capacity
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tector has a performance loss (with respect to the MMSE-SIC detector) of only #&%,( dB

or less under QPSK modulation, but loses around �"%'( dB under 16-QAM modulation

and ? � ? channel. The MRC-SIC detector closely follows the performance of the

MMSE-SIC detector, with a loss of at most #&%,( dB.

The next set of results are presented in Figs. 4.10, 4.11, and 4.12, where we show

the BER performance versus average SNR per receiver antenna on � � � , � ��� , and

? � ? channels when the � 
 � �"! � � optimized LDPC code is used under a QPSK map-

ping. Again, these simulation results show that the MMSE-SIC detector has essentially

the same performance as the MAP detector, and that the very low complexity MMSE

suppression detector has a performance loss of only #*%'( dB or less. This loss is approx-

imately cut in half if the MRC-HIC detector with an optimized cancellation threshold

is used instead. In fact, in the ����� system, the MRC-HIC detector performance is very

close to the MAP and MMSE-SIC detectors.

Though the majority of this section has focused on a comparison of the performance

of the different detectors in terms of SNR in Rayleigh fast fading, we again emphasize

the robustness of the codes as measured in terms of excess mutual information via

Fig. 4.13. In this figure we show the excess MI per antenna required by the � 
 � �"! � �
optimized code modulating QPSK to achieve BER 
�� # B �

with different detectors and

different antenna configurations.

The cases plotted in this figure are contrasted from the exhaustively parameterized

� � � case where we were able to determine best and worst case channels. Here, instead,
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Figure 4.10: Performance of length 15,000, rate-1/3, ��� � �
	 � � optimized LDPC code on

� � � system with MAP, MMSE-SIC, MRC-HIC and MMSE suppression detectors.
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Figure 4.11: Performance of length 15,000, rate-1/3, ��� � �
	 � � optimized LDPC code on

� � � system with MAP, MMSE-SIC, MRC-HIC and MMSE suppression detectors.
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Figure 4.12: Performance of length 15,000, rate-1/3, ��� � �
	 � � optimized LDPC code on

� � � system with MMSE-SIC, MRC-HIC and MMSE suppression detectors.
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all channel results are average together in conjunction with the Rayleigh distribution.

Note that under MAP and MMSE-SIC detection, the excess MI per antenna remains

essentially constant, at 0.25 bits, as the number of transmit/receive antennas increases

from 2 to 4.

4.6 Conclusion

In this chapter we have introduced several soft reduced-complexity detection schemes

suitable for systems that achieve high spectral efficiencies. The soft MAP detector is

optimal, however the MMSE-SIC detector exhibits similar performance and has a lower

overall computational complexity. The MMSE suppression, MRC-SIC, and MRC-HIC

detectors offer lower complexities for relatively small performance penalties. As an

example, for the � � � system, considering the MAP detector as the norm, the total

complexity (with �"# iterations) of the MMSE-SIC detector is � times lower, that of

the MRC-SIC detector is � � time lower, and that of the MMSE suppression detector

is ()� times lower. A performance loss of around #&%,( dB is observed with the MMSE

suppression detector and QPSK, and a larger loss ( �"%'( dB) with 16-QAM.

We have also shown that the excess mutual information required to achieve a bit-

error rate of ��# B2C on the � � � channel with MAP detection and our best LDPC code

(the rate-1/3, � 
 � �"!$#�� optimized code) varies by approximately 0.5 bits between the

best and worst case channel when excess MI is measured against net QPSK constella-
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tion constrained capacity. However, excess MI is essentially constant when measured

against parallel independent constellation constrained capacity. Moreover, the excess

MI measure with respect to the Gaussian input capacity of our � 
 � �"! � � optimized

LDPC code with the simple MMSE suppression detector varies more significantly on

channels where the eigenskew approaches zero due to the loss in operational mutual

information of the MMSE detector. In other words, we observe that code performance

closely tracks available operating mutual information. Therefore, LDPC codes them-

selves are robust to channel variation. The information loss incurred during the detec-

tion process is the root cause of excess mutual information variation with eigenskew.
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Chapter 5

Conclusions

In this dissertation we presented several coding techniques for transmission over

wireless multiple-input multiple-output channels.

In Chapter 2 we introduced a simple coding technique for D-BLAST that uses a sin-

gle trellis code with finite-traceback Viterbi decoding. We examined the performance

of universal trellis codes designed to have a distance structure that is matched to the pe-

riodic signal-to-noise ratio variation of the channel created by D-BLAST. We showed

that a universal �)� -state trellis code on a � � � D-BLAST system with long enough

blocklengths displays universal behavior working on almost every � � � channel with

at least the mutual information required by a standard �)� -state AWGN trellis code. The

only � � � channel where more mutual information is required is a certain rotation of

the zero eigenvalue channel.

We introduced full-overhead and reduced-overhead versions of the trellis coded D-
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BLAST system together with layering methods for both an optimal “just-in-time” and a

“not just-in-time” finite traceback Viterbi decoding. We presented performance results

for several trellis coded D-BLAST systems and showed that their frame-error rates are

within �"% ? - �&% � dB of the quasistatic Rayleigh fading outage capacity. An additional

loss of #&%,� - �"% # dB is incurred due to the overhead penalty associated with the diagonal

layering.

In Chapter 3 we proved that D-BLAST under the MMSE criterion is optimal in the

sense that it achieves the Shannon capacity for MIMO channels. We also showed that

under a constrained input scenario and a Gaussian approximation on the MMSE filter

output, the parallel channels created by D-BLAST have an aggregate capacity that is

approximately equal to the MIMO constellation constrained capacity. The D-BLAST

technique is useful in reducing the computational complexity for the constellation con-

strained capacity from exponential to linear in the number of antennas.

In Chapter 4 we introduced a scheme that uses a single LDPC code spatially mul-

tiplexed on multiple antennas and an iterative detection and decoding receiver. We

presented several variants of LDPC coded MIMO systems with reduced-complexity

detectors that perform roughly � - � dB from the theoretical capacity of the Rayleigh

MIMO channel. The MMSE-SIC detector exhibits similar performance as the optimal

MAP detector and has a lower overall computational complexity. The MMSE suppres-

sion, MRC-SIC, and MRC-HIC detectors offer yet lower complexities, for relatively

small performance penalties.
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We showed that the excess mutual information required for reliable communica-

tion varies more significantly with the matrix channel parameter 0 as the eigenskew

approaches zero. This variation is most severe for the MMSE suppression detector.

We attribute the loss in performance on the zero eigenskew channels with particular

unfavorable rotations to the gap between the operational capacity with the different de-

tectors and the true Shannon capacity, rather than the performance of the LDPC code

itself. We conclude that properly designed LDPC codes behave very much like univer-

sal codes in the sense that their performance lies in close proximity to the compound

channel capacity for the linear Gaussian vector channels for all but a few channels.
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