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Abstract of the Dissertation

Generalized ACE Codes and Information

Theoretic Results in Network Coding

by

Aditya Ramamoorthy

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2005

Professor Richard D. Wesel, Chair

Finding fundamental limits on information transfer and the development of

systematic techniques for achieving them has been the goal of researchers since

the early days of information theory and coding theory. This dissertation has

concentrated on error-correcting code design for point-to-point channels and in-

formation theoretic results in the relatively new area of network coding.

The Generalized Approximate Cycle EMD (GACE) construction for irreg-

ular low-density parity-check (LDPC) codes is introduced and it is rigorously

shown that the codes constructed using this algorithm have good performance

over the binary erasure channel (BEC) (by a stopping spectrum analysis) and

the binary symmetric (BSC)/additive white Gaussian noise (AWGN) channels

(by an expansion analysis). An alternative approach called the Column-Sum-

Check algorithm that is based on summing columns of the parity-check matrix is

presented. A combination of the GACE approach on low-degree variable nodes

and the Column-Sum-Check algorithm on high-degree variable nodes is found to

give improved results at short blocklengths.

High-probability results about the maximum flow possible between a single-

xx



source and multiple terminals in a weighted random graph (modeling a wired

network) and a weighted random geometric graph (modeling an ad-hoc wireless

network) are found under the assumption that the nodes in the network can

perform network coding.

A particular instance of a communication network with a single source and

two terminals is considered where the terminals have arbitrary demands. A tight

capacity region for this problem is found.

Finally, the problem of distributed source coding of multiple sources over a

network with multiple receivers is considered. Previous work demonstrates that

random linear network coding can solve this problem at the potentially high cost

of jointly decoding the source and the network codes. Motivated by complexity

considerations the performance of separate source and network codes is investi-

gated. It is shown that any feasible problem with two sources and two receivers is

always separable. Counter-examples are presented for other cases. However, ex-

perimental results suggest that separation often holds in typical instances of the

problem.

xxi



CHAPTER 1

Introduction

There is no doubt that communications technology figures around the top of the

list when one considers the impact of technology on society. It has progressed to

a level today where conveniences such the telephone, cellular phone and even the

Internet have become an essential part of our lives. The setting up of a DSL or a

modem connection or a simple long-distance cellular phone call involve relatively

sophisticated technologies, some of which were thought to rather impractical

twenty years ago. A natural question worthy of investigation is the reasons behind

the communications revolution. While a full-fledged answer is beyond the scope

of this dissertation, most people would agree that it is driven largely by

• Low-cost, high-performance semiconductor processes

Moore’s law states that the density of transistors doubles every couple of

years. Despite skepticism on the part of a lot of people, it has continued to

hold true until today. This translates into the possibility of building chips

for more and more complicated algorithms as time progresses. As an exam-

ple the Viterbi algorithm [1] that was invented for the maximum-likelihood

decoding of convolutional codes way back in the 1960’s was considered to

be primarily of theoretical interest at that time. In contrast in the 90’s

one can buy a DSP chip for probably under a dollar that has dedicated

instructions for the implementation of a high-speed Viterbi decoder. There

1



are many such examples.

• Breakthroughs in the field of communication theory and signal

processing

While semiconductor technology has surely facilitated communications to

a great extent, none of the high-tech gadgets that we take for granted

today would have been a reality but for the groundbreaking research by

Claude E. Shannon at Bell Labs in the late 1940’s. In his 1948 paper

titled “A Mathematical Theory of Communication” [2] he gave the first

mathematical definition of information. He formulated a general model

of a communication system that was amenable to mathematical analysis

and gave fundamental limits on the performance of such a system. That

paper also gave birth to the field popularly known as information theory

today. Shannon’s pioneering research is considered by many to be one

of the greatest intellectual achievements of the twentieth century. The

theory propounded by Shannon and the subsequent research performed

by generations of researchers is the basis for much of the communications

technology that we use in our daily life.

This chapter seeks to provide an elementary introduction to coding theory

and network coding that is necessary for an understanding of the content of the

remaining chapters in this dissertation. For an in-depth discussion of the concepts

that follow we refer the reader to [3] and [1] and their references.

In essence, Shannon showed that every communication system has an associ-

ated capacity denoted by C that depends upon the characteristics of the channel.

He demonstrated the surprising result that if the rate of transmission R over the

channel was strictly less than C then it was possible to communicate virtually

error-free over the channel. Conversely he also proved that if R ≥ C then there

2



would be a non-trivial probability of error associated with the transmission. This

result was remarkable since it meant that a receiver could know the transmitted

message exactly even if the channel introduced errors in the transmission. The

above result was shown by the proof of the channel coding theorem that uses

channel codes.

A channel code is a mechanism by which redundancy is added to a transmitted

message that helps the receiver decode the transmitted message. In particular,

suppose that the transmitted message consisted of k bits. A channel code adds

another (n−k) bits of redundancy resulting in a total of n bits. These n bits are

now transmitted over the noisy channel. Shannon showed the existence of channel

codes and decoding algorithms that could ensure that the received message could

be decoded with very high probability as k → ∞. In fact, he showed that a

code chosen at random would be asymptotically close to optimal. Furthermore,

he showed that the rate of transmission defined here as R = k
n

could be made

arbitrarily close to the channel capacity C. It is to be noted that Shannon’s proof

ReceiverTransmitter m̂Channel
m c y

Figure 1.1: Block diagram of a communication system. The message to be trans-

mitted is denoted by m, the encoded message by c, the corrupted received message

by y and the decoded message by m̂.

is highly non-constructive. While it shows the existence of capacity-achieving

codes and decoding algorithms, these codes cannot be used in practice because

of the high decoding complexity associated with them.
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The search for channel codes that have rate close to the channel capacity, good

error-correction capability and manageable encoding and decoding complexity is

the main goal of the field of the coding theory. Probably the earliest major

contributor to coding theory was Richard Hamming who proposed the famous

Hamming code [1] in 1950. While the goal of coding theory is the design of

efficient (in the sense outlined above) channel codes, the methods used were

and to this date are significantly different from the methods used in information

theory. In particular coding theory is constructive. It gives concrete algorithms

for the implementation of the communication system.

In the following sub-section we shall give a basic overview of channel coding.

1.1 Introduction to Channel Coding

Our model of a communication system for this sub-section shall be the one il-

lustrated in Fig. 1.1. The objective is to send the message m across a channel

such that the estimate of the message m̂ generated by the receiver is such that

Pr(m �= m̂) → 0 as the size of m increases. In general, we can assume that the

message can be represented by a vector of symbols M = [M1 M2 M3 ... Mk] that

is mapped to a vector of symbols X = [X1 X2 X3 ... Xn] by the transmitter.

The receiver sees a corrupted version of X given by Y = [Y1 Y2 Y3 ... Yn]. It

then tries to infer the original message M. In this process it generates a vector

M̂ = [M̂1 M̂2 M̂3 ... M̂k]. If M̂ �= M a decoding error is said to have occurred.

The effect of the channel is modeled by means of a conditional pdf p(y|x). Thus,

each input vector X1 gets mapped to a Y1 by pY|X(Y1|X1).

There can be many different models for the channel. In this dissertation

we shall be primarily concerned with memoryless channels. For the rigorous
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definition of a memoryless channel we refer the reader to [3]. Intuitively it

means that the output of the channel depends only upon the current input i.e.

pY|X(Y1|X1) = Πn
i=1p(Y1i|X1i). In this dissertation we shall be concerned with

following channel models

1. The binary erasure channel (BEC)

This is probably the simplest channel model of all. A transmitted binary

symbol is received error free with probability (1 − p) or is erased with

probability p. Thus, when a 0 or a 1 is received at the output the receiver

can be sure that the transmission was correct. The presence of an erasure

indicates an error. The capacity of this channel is,

CBEC(p) = 1 − p (1.1)

2. The binary symmetric channel (BSC)

A transmitted binary symbol is flipped with probability p. Thus, if 0 is

transmitted, the channel converts it to a 1 with probability p and passes it

error free with probability (1− p). The capacity of this channel is given by,

CBSC(p) = 1 − H(p) (1.2)

where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.

3. The additive white Gaussian noise channel (AWGN)

This channel is different from the above in that it is not a discrete channel.

If the input to the channel is X, the output Y is given by.

Y = X + N (1.3)

where E(X2) ≤ P and the noise N is distributed N (0, σ2). The capacity

of this channel is given by,

CAWGN(P, σ2) =
1

2
log2

[
1 +

P

σ2

]
(1.4)
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In this work we shall be mostly concerned with the binary-input AWGN

channel (BIAWGNC). There is a certain loss associated with the constrain-

ing the input. The capacity in this case does not have a closed form solu-

tion and needs to be computed numerically. One arrives at a BIAWGNC

by mapping the bits to ±1 (say 0 → +1 and 1 → −1). This mapping is

usually referred to as binary-phase-shift-keying (BPSK) modulation [1].

Channel Codes

A channel code is a mapping of a set of messages W of size M to a set of codewords

C that are vectors of length n (the block length of the code). The elements of

the vector come from a finite alphabet A. The quantity log2 M is called the

dimension of the code. The rate of the code R is given by the ratio log2 M
n

and

denotes the amount of information in a block of n symbols. If the alphabet A is

of size q, the code is called a q-ary code. In particular, if A is binary, it is called a

binary code. The constraint of linearity is imposed for the purposes of tractable

decoding and analysis.

Most codes that are used in practice are linear. In this dissertation all the

codes that are designed and analyzed are binary linear codes.

Definition 1 A binary linear (n, k) code is a k-dimensional linear subspace of

F
n
2 .

With every binary linear code we can associate a generator and a parity-check

matrix.

Definition 2 A generator matrix for a binary linear (n, k) code C is a matrix

G of dimension k × n consisting of entries from F2 such that for a binary 1× k-

dimensional vector m, mG ∈ C, i.e. mG is a valid codeword.
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Figure 1.2: Parity Check Matrix and Tanner graph of a (5,2) code. Note the

correspondence between the parity-check matrix and the bipartite Tanner graph

e.g. Column v1 has 1’s in the rows corresponding to c1 and c2 and in the graph,

the variable node v1 is connected to c1 and c2.

For a binary linear code we need not specify the mapping for all possible 2k

messages. We only need to specify a valid generator matrix.

Definition 3 A parity-check matrix of a binary (n, k) linear code C is a (n −
k) × n matrix H such that c ∈ C if and only if HcT = 0.

The parity-check matrix of a code is of great importance in the decoding of Low-

Density Parity-Check Codes. Each binary parity-check matrix H can be put

in one-to-one correspondence with a bipartite graph called the Tanner graph in

honor of R. M. Tanner who proposed them in a paper in 1981 [4]. The Tanner

graph corresponding to a given H (an example is shown in Fig. 1.2) is formed by

associating variable nodes (nodes on the left) with the columns of H and check

nodes (nodes on the right) with the rows of H. If Hij = 1 then the jth variable

node and ith check node are connected by an edge.

The Hamming distance between two codewords is the number of places where

they differ. Similarly, the Hamming weight of a codeword is the number of non-

zero elements in it. As one may intuitively expect the Hamming distance between

different codewords is a measure of the error-correcting capability of a code.
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Definition 4 The minimum distance dmin of a code is minimum of all pairwise

Hamming distances between the codewords in the code. In particular for a linear

code, the minimum distance is also the minimum Hamming weight of a non-zero

codeword.

1.1.1 Low-Density Parity-Check Codes

As the preceding section has pointed out, reducing the decoding complexity as-

sociated with a code is very important. For most codes maximum-likelihood

decoding tends to be impractical. A notable exception are convolutional codes

where the Viterbi algorithm can be used for ML-decoding [1]. However practi-

cal convolutional codes with relatively small number of memory elements cannot

hope to operate at rates near capacity.

Low-density parity check codes were introduced in 1963 by Gallager [5] in his

Ph.D. thesis. As the name suggests, the density of 1’s in the parity-check matrix

of these codes is low. If each element of the parity-check matrix is chosen equally

likely to be 0 or 1, then the number of 1’s in the matrix is O(n2). In fact, such

a code is known to asymptotically achieve capacity under maximum-likelihood-

decoding. However an efficient technique for decoding such a code is unknown

and is in fact conjectured to be a hard problem (in a computational complexity

sense). The number of 1’s in the parity-check matrices of LDPC codes on the

other hand is O(n). This significantly reduces the complexity associated with

their decoding. LDPC codes were forgotten by the research community (but for

a few exceptions) until the mid-90’s when they were rediscovered by Mackay [6].

As described in the previous section it is possible to associate a bipartite

Tanner graph with every parity-check matrix. We can define a pair of degree

distribution polynomials [7] (λ(x), ρ(x)) with every Tanner graph where λ(x) =
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Vn
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Figure 1.3: The figure demonstrates the construction of LDPC codes by choosing

a random permutation Π between the edge stubs on the variable node side and

the edge stubs on the check node side.

∑
i λix

i−1, ρ(x) =
∑

i ρix
i−1 and

λi = Fraction of edges connected to variable nodes of degree i (1.5)

ρi = Fraction of edges connected to check nodes of degree i (1.6)

Gallager considered regular LDPC codes i.e. codes where all the variable nodes

have the same degree dv and all the check nodes have the same degree dc.

A possible technique for the construction of LDPC codes can be to choose

a particular degree distribution pair and then choose the permutation between

the variable node edge stubs and the check node edge stubs at random. This

is illustrated in Fig 1.3. In a series of seminal papers Luby et al. [7][8] and

Richardson et al. [9][10] it was established that the asymptotic performance (as

n → ∞) of LDPC codes only depended upon their degree distribution if the

codes were generated at random as described above. Furthermore, they showed

that carefully chosen degree distributions could result in substantially improved

performance as compared to the regular codes considered by Gallager. These

codes have since been referred to as irregular LDPC codes.
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Figure 1.4: The typical shape of the bit-error-rate curve for an iteratively decoded

irregular LDPC code. In the waterfall region the slope is usually very steep with

increasing SNR while in the error floor region the fall in BER is quite limited.

Irregular LDPC codes exhibit better threshold properties as against regular

codes for the same rate. By this we mean that asymptotically an irregular LDPC

code can tolerate higher noise levels than a regular code. However, constructions

of irregular LDPC codes of practical blocklength tend to suffer from the so-called

error floor problem. For most irregular codes, there exists a certain SNR beyond

which the decrease of the error-probability with increasing SNR is very small.

The region of the curve where this happens is called the error floor region of

the code. Conversely, the region where the fall-off in error probability is steep

is called the waterfall region. A qualitative illustration of this phenomenon is

given in Fig. 1.4. On the other hand, it has been observed that regular codes

of comparable rate and blocklength, especially codes that are based on algebraic

constructions [11] typically tend to exhibit lower error floors at the expense of

some SNR loss in the waterfall region.

One of the main challenges in the construction of irregular codes is to ensure

that they have low error floors in addition to good threshold properties. It can be

shown that the iterative decoding algorithm for LDPC codes provides an exact
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maximum-a-posteriori (MAP) estimate of a bit if the underlying Tanner graph

does not contain any cycles [12]. However, most practical high-performance codes

have a large number of cycles. An approach suggested by a number of authors [13]

[14] for alleviating the error-floor problem is to increase the minimum cycle length

(also called girth) of the underlying Tanner graph. However constructing graphs

with high girth is known to be a hard problem in graph theory. Conforming

to the degree distribution (for ensuring good threshold properties) and ensuring

high girth is an even harder problem.

The Approximate Cycle EMD (ACE) algorithm [15] is a construction algo-

rithm for irregular LDPC codes that selectively avoids cycles in the code construc-

tion process and is found to have good performance. However the original paper

did not contain an analysis of the properties of the code construction. In Chapter

2 of this dissertation we generalize the ACE construction algorithm of [15] and

rigorously analyze its performance over the BEC, BSC and AWGN channels. We

also propose an improved construction technique called the Column-Sum-Check

algorithm that improves code performance even more at short blocklengths.

1.2 Introduction to Network Coding

In the beginning information theory was mainly concerned with point-to-point

systems as illustrated in Fig. 1.1 i.e. there was only one sender and one receiver

in the system and it has been a big success on this front. For fairly general models

of communication we know the fundamental limits on communication and with

the advent of such advanced coding techniques such as LDPC and turbo codes

[16] the limits are finally being approached [17]. However, the real world e.g.

the Internet, consists of complex networks that carry data over a wide variety of

mediums such as copper, optical fiber and free space and at any given point in
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time there exist multiple senders and multiple receivers. This introduces many

more elements to be accounted for in the communication system model such

as cooperation, interference and feedback. The study of limits on information

transfer over networks is called network information theory (Chapter 14, [3]) and

is an active area of research.

Broadly speaking, tight capacity regions for general networks are still un-

known. However some important instances of networks for which the capacity

region is actually known are the discrete memoryless multiple access channel,

Gaussian multiple access channel and the degraded broadcast channel. Even a

very basic review of the results in network information theory would require con-

siderable detail. We refer the reader to [3] for the detailed results in network

information theory and concentrate here on the basics of network coding which

is the focus of Chapters 3, 4 and 5 of this dissertation.

We model a communication network as a directed graph G = (V,E,C). Here,

V represents the set of nodes, E represents the set of edges and C(e), e ∈ E is

a function that returns the capacity of each edge. An edge e in G is an ordered

pair (a, b) where a is called the head of e and b is called the tail of e. Thus, e

points from a to b. The capacity of an edge is the number of bits that can be

sent over it error-free per unit time.

Definition 5 A cut C1 in G is defined to be a partition of the set of nodes V

into two subsets C1 and C ′
1 such that C1 ∪ C ′

1 = V .

Definition 6 Consider a cut C1 in G. Let E1 denote the set of edges in E that

are such that for all edges e1 ∈ E1, we have that head(e1) ∈ C1 and tail(e1) ∈ C ′
1.

The value of the cut C1 is given by
∑

e1∈E1
C(e1).

The famous maximum-flow minimum-cut theorem [18] of combinatorial opti-
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mization states that the maximum flow (in bits per unit time) that can be sent

from a source node s ∈ V over G to a terminal node t ∈ V is given by the mini-

mum value of all cuts that separate s and t i.e. all cuts in which s and t are in

different subsets. We shall denote the max-flow between s and t by Cs,t. It was

also shown that the capacity Cs,t can be achieved by allowing each node in G to

simply forward the data from its input links to its output links. It is important

to note that there is exactly one terminal in this case.

A multicast connection is defined to be one where there is a single source node

s ∈ V and l terminal nodes t1, t2, ..., tl ∈ V such that all the terminal nodes are

interested in receiving the same data from s. The fact that the terminals request

the same data is very important here.

Based on the previous discussion about the max-flow min-cut theorem it

should be clear that if there is a single source node s and l terminals t1, t2, ..., tl

the maximum flow denoted by Cs,t1,t2,....,tl that can be sent to all terminals simul-

taneously is such that,

Cs,t1,t2,....,tl ≤ min
i∈{1,2,...,l}

Cs,ti (1.7)

In a seminal paper in 2000 titled “Network Information Flow”, Ahlswede, Cai,

Li and Yeung [19] showed a fundamental result about multicast networks. They

showed that the upper bound in (1.7) can actually be achieved with equality if

the nodes in G were given the power to compute functions of the data received on

the input links and forward the result. This result was remarkably novel because

of two reasons,

1. Until that time the networking community had only considered the possi-

bility that nodes in the network form copies of the data and forward it on
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Figure 1.5: Network with source s and terminals y and z. Note that sending

b1 ⊕ b2 on the w → x link is more efficient than simply forwarding b1 or b2.

different links. From the perspective of information theory imposing such

a restriction is not necessary. After all, routers do have the capability to

do data processing.

2. The multicast problem in directed networks is known to be equivalent to

the problem of Steiner tree packing that is known to be hard [20]. However

giving the nodes just a little bit more power causes the problem to be

transformed into a multicast network code construction problem that is

known to be polynomial time solvable [21].

Ahlswede, Cai, Li and Yeung also demonstrated that there existed networks

where network coding was strictly required to achieve the multicast capacity. The

famous butterfly example [19] is demonstrated in Fig. 1.5 where each link can

transmit a single-bit, error-free and delay-free. Observe that performing network

coding (as shown in Fig. 1.5) enables the transmission of both b1 and b2 to both

the terminals y and z in a single transmission whereas routing would require more

transmissions.

There has been a spurt in research activity in the network coding area in the
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last few years (see the network coding homepage at http://tesla.csl.uiuc.edu/ koet-

ter/NWC/). Li et al. [22] showed that linear network coding is sufficient for

achieving the capacity of the transmission of a single source to multiple ter-

minals. Subsequent work by Koetter and Médard [23] and Jaggi et al. [21]

presented constructions of linear multicast network codes. A randomized con-

struction of multicast codes was presented by Ho et al. [24] and Chou et al.

[25] demonstrated a practical scheme for performing randomized network cod-

ing. More recently, several authors have considered the use of network coding

for non-multicast problems [26] where there are multiple sources and multiple

receivers and the receivers have arbitrary sets of demands. These problems are

substantially harder and in fact it is necessary to utilize non-linear solutions in

some cases [27].

In Chapter 3 of this dissertation we investigate the multicast capacity of large

random networks. Under assumptions on the models of wired and wireless net-

works, we demonstrate high-probability results on the multicast capacity of these

networks. For the case of wired networks we demonstrate that the multicast ca-

pacity is essentially determined by the number of nearest neighbors of the source

and the terminals. In the wireless case, boundary effects cause the nodes near

the boundary to have fewer neighbors and the conclusions are slightly different.

As discussed before, capacity regions for non-multicast problems are not easy

to find. In Chapter 4 we investigate a particular instance of a non-multicast prob-

lem, the single-source, two-terminal case where each terminal has an arbitrary set

of demands. It turns out that in this case it is possible to provide a tight capacity

region if the nodes are given the ability to perform network coding. The results

in this chapter have appeared previously in [28] and [29] however the techniques

presented here are very different and may be of independent interest.
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One of the problems in finding feasible capacity regions for networks is the

failure of Shannon’s source-channel separation theorem [3]. For the point-to-

point channel model, Shannon demonstrated that asymptotically one could sep-

arate source and channel coding i.e. compressing the source to it’s entropy and

then using a capacity-achieving channel code for transmitting it over the chan-

nel would be as efficient as taking into account the source characteristics while

transmitting it over the channel. The latter approach is popularly known as joint

source-channel coding and has its own advantages. From a practical perspective,

the source-channel separation theorem enables us to decouple the design of the

channel code from the source code. From a theoretical perspective it makes the

computation of fundamental limits on information transfer substantially easier.

In recent years distributed data compression has seen a flurry of activity

motivated by applications in sensor networks and video coding [30][31]. The

Slepian-Wolf theorem [32] states that the lossless compression of two sources

that do not communicate with each other can be as efficient as the compression

of the two sources when they do communicate with each other. The classical

problem however does not consider the sources to be communicating with the

receiver over a network i.e. the links over which the communication with the

receiver takes place do not have capacity or cost constraints on them. However

in most practical situations where distributed source coding is expected to have

applications (such as sensor networks operating in a multi-hop fashion) one would

expect that the communication takes place over a network where such constraints

exist. It is therefore interesting to investigate the feasibility of performing Slepian-

Wolf type lossless compression over a network. This problem was considered by

Ho et al. [33]. They showed by using the approach pioneered by Csiszár [34] that

as long as the minimum cuts between all non-empty subsets of sources and a

particular receiver were larger than the corresponding conditional entropies (the
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details can be found in Chapter 5), random linear network coding followed by

appropriate decoding at the receivers would achieve the S-W bounds.

From a practical perspective one would like to leverage existing solutions to

the classical S-W problem and thus separate the problem of sending the appropri-

ate number of coded bits over a network from the source coding part. Thus, the

problem under consideration here is one of separating distributed source coding

from network coding. The solution proposed by [33] comes at the potentially

high cost of jointly decoding the source and the network code. In general, the

network code may destroy the structure in the source coder that allows tractable

decoding. Indeed, if random network coding is used then this may happen with

high probability.

In Chapter 5 the problem of separation between distributed source coding and

network coding is formally defined and the conditions under which separation

holds are outlined.

1.3 Thesis Outline

The remainder of this dissertation is divided into five chapters and an appendix.

Each chapter is in most part self-contained and can be read independently. Por-

tions of Chapters 2 – 5 have appeared as conference papers and have either been

accepted or are under submission for journal publication.

a) Chapter 2 introduces the construction of Generalized ACE codes. It con-

tains an analysis of their performance under the binary erasure channel

(BEC) and the binary symmetric (BSC) and AWGN channels. An im-

proved construction technique is presented that improves code performance

under short blocklengths. The content of this chapter has appeared in part
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in the conference publications [35], [36] and [37] and has been submitted

for journal publication [38].

b) Chapter 3 finds bounds that hold with high probability on the capacity of

multicast for random networks. We compute these bounds for both models

of wired and wireless networks. Part of this work has appeared in [39] and

a revised version has been accepted for journal publication [40].

c) Chapter 4 considers a particular instance of a network information transfer

problem with a single source and two terminals. It is shown that even if

the terminals have arbitrary demands from the source it is possible to find

a tight capacity region for this problem when network coding is permitted.

This work has appeared in [41].

d) Chapter 5 contains a formal statement of the problem of separating distrib-

uted source coding from network coding. It presents results for networks

that have multiple sources and receivers and that have capacities and costs

on links. It has appeared in part in [42] and is under journal submission

[43].

e) Finally Chapter 6 outlines our conclusions and presents ideas for future

work.
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CHAPTER 2

Generalized ACE Codes

2.1 Introduction

Low-Density Parity-Check (LDPC) codes have been the subject of intense re-

search lately because of their linear decoding complexity and capacity-achieving

performance. They were introduced by Gallager in his Ph.D. thesis [5] in 1963.

Gallager considered binary codes whose parity-check matrix contained the same

number of ones in all rows and the same number of ones in all columns. These

have since been referred to as “regular” LDPC codes. Gallager analyzed these

codes by considering random instances from particular ensembles and was able

to show a number of good properties that held with high probability. He also

gave a low-complexity decoding algorithm for decoding these codes. In spite of

this, LDPC codes were still too complex from a memory and processing power

point of view at that time.

In the late 90’s LDPC codes were rediscovered by Mackay [6]. Current hard-

ware speeds make them a very attractive option for wired and wireless systems.

Following the seminal work of Luby et al. [7] [8] and Richardson et al. [9], ir-

regular LDPC codes were shown to outperform regular LDPC codes and have

emerged as strong competitors to turbo-codes. Irregular LDPC codes, where the

parity-check matrix is chosen such that the number of ones in each column and

each row comes from a carefully-designed degree distribution perform better than
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regular LDPC codes in the limit of large block length.

As with regular codes, much of the literature dealing with the analysis of

irregular LDPC codes, (such as density evolution) [10] [7] has been concerned

with the performance of a random instance of a code from a degree-distribution

ensemble in the limit of large block length. In particular Richardson et al. [9]

proposed a density evolution algorithm that could determine the convergence

threshold of LDPC codes defined by a specific degree-distribution, in the limit of

large block length. They also proposed the method of differential evolution for

finding the optimal degree distributions for a given code rate.

As concentration theorems proved in [10] show, the performance of codes cho-

sen randomly from the ensemble will tend to cluster around the mean performance

as the block length tends to infinity. In addition for a fixed number of belief-

propagation iterations and for large enough block length, the local neighborhood

of a node in the Tanner graph is tree-like and hence the belief propagation is

exact. Thus, for the purposes of analyzing irregular LDPC codes in the limit of

large block length it is sufficient to consider a random sampling of the ensemble.

Chung et al. [44] used the Gaussian Approximation to convert the problem of

finding optimal degree distributions for the AWGN channel into a simple linear

programming problem.

While the above papers have been significant contributions towards the un-

derstanding of irregular LDPC codes they provide only partial solutions to the

question of finding a particular parity-check matrix that performs well at a given

degree distribution and block length. From a practical perspective it is desirable

to have a strategy that is able to efficiently find “good” codes from a degree

distribution at a particular block length.

Sampling at random is no longer a viable solution at block lengths on the
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order of a few thousand when one considers the simulation time required for

the evaluation (by BER/WER curve generation) of these codes. At short block

lengths, the local neighborhood of the nodes is inevitably non-tree-like and thus

there is considerable variation among codes from a given degree-distribution en-

semble. It is well-known that the messages under iterative decoding tend to be

correlated after some iterations because of the presence of cycles in the Tanner

graph. This causes the performance of iterative decoding to be sub-optimal.

Consequently previous work focusing on the construction of LDPC codes has

often aimed at constructing codes that have large girth [13] (length of the smallest

cycle in the underlying Tanner graph). The construction of graphs with high

degree and large girth is known to be a hard problem in graph theory. There

exist good algebraic techniques for the construction of high-girth graphs. However

in most cases the resultant graphs are regular. As shown by [7] [10] regular codes

will perform worse in general than irregular codes in a threshold sense. As far

as irregular Tanner graphs are concerned, approaches such as the Progressive-

Edge-Growth (PEG) technique of Hu et. al [14] grow the Tanner graph edge by

edge and maximize the girth at each step. In their approach compliance with the

degree distribution is not guaranteed.

Under maximum-likelihood decoding over the BSC/AWGN channels, the per-

formance of a given code essentially depends only on the distance spectrum of

the code. In fact one can compute bounds on the WER curve of a code based on

knowledge of the channel parameter and the distance spectrum (albeit numer-

ically). Traditionally therefore, designing codes with good distance has always

been the prime objective. Under iterative decoding it is hard to compute mean-

ingful bounds on the WER curve even if the channel parameter and distance

spectrum are known. The situation is complicated by the sub-optimal nature of
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the decoding.

However over the BEC it is possible to combinatorially characterize the set

of all error events. Di et al. [45] introduced “stopping sets”, sets of variable

nodes that cause the iterative decoder to fail if erased. Thus, in principle one

can compute bounds on code performance with the knowledge of the erasure

probability and stopping set spectrum (analogous to the distance spectrum).

Over the BSC/AWGN channels both Luby et al. [7] and Burshtein et al. [46] were

able to relate the performance of the LDPC codes to the expansion properties

of the Tanner graph. In essence they showed that codes with good expansion

properties would in turn have good error-correction capability under iterative

decoding. Thus a natural criterion for designing good error-correcting codes is

to improve their expansion properties. Similarly a good criterion for improving

the erasure-correcting properties of LDPC codes is to improve their stopping set

spectrum.

Motivated by the problem of constructing “good” irregular LDPC codes Tian

et al.[47] developed the ACE (Approximate Cycle Extrinsic Message Degree)

technique for constraining cycles consisting of low degree variable nodes in the

Tanner graph. Performance was found to be superior to the original codes of [9]

and other girth-conditioned codes [13] by an order of magnitude. In this chapter

we present a generalization of the ACE technique, and rigorously analyze it’s

performance through expected stopping set spectrum, expected distance spec-

trum and graph expansion points of view. We show that the generalized ACE

algorithm is significantly better in these respects as compared to a random con-

struction and present it as an efficient design rule for the construction of irregular

LDPC codes. In addition we propose an improved construction algorithm that

complements the performance of the generalized ACE algorithm.
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Section 2.2 contains an overview of the ACE algorithm. Sections 2.3 and

2.4 contain an analysis and simulation results of the performance of codes con-

structed using the generalized ACE algorithm over the BEC and BSC/AWGN

channels. Section 2.5 explains a new irregular code construction algorithm that

gives improved results when used in conjunction with the generalized ACE al-

gorithm. Section 2.6 concludes the chapter with a brief discussion about open

problems.

2.2 Overview of the Code Construction Algorithm

In this section we briefly explain the ACE construction technique presented by

Tian et al. [47]. In the sequel we shall use the terms “LDPC code” and the

Tanner graph representing the LDPC code interchangeably.

Definition 7 Extrinsic Message Degree (EMD): The EMD of a set of

variable nodes in the Tanner graph is the number of constraint nodes that are

singly connected to it. The EMD of a cycle is defined to be the EMD of the

variable nodes participating in the cycle.

Definition 8 Approximate Cycle Extrinsic Message Degree (ACE):

The ACE of a length-2d cycle in the Tanner graph of an LDPC code is given

by
∑d

i=1(di − 2) where di is the degree of the ith variable node participating in the

cycle.

As indicated by it’s name, ACE is an approximation of the true cycle EMD. The

approximation follows from the assumption that exactly two of the edges leaving

each variable node in the cycle connect to constraint nodes in the cycle. Thus

if di edges leave the ith variable node, (di − 2) of these will be “extrinsic”. The
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approximation is not exact in Fig. 2.1 because all the edges leaving variable node

v1 connect to constraint nodes in the cycle. For codes with a large number of

constraint nodes, the ACE approximation is very likely to be the true EMD.

v 1

v 2

v 3

c 1

c 2

c 3

Figure 2.1: The figure shows a cycle (v1 − c1 − v2 − c2 − v3 − c3 − v1) (edges in

boldface) of length 6 with EMD = 0. However the ACE of this cycle is 1.

Definition 9 (dACE, η) Compliant Code: An LDPC code is said to be (dACE, η)

compliant if all cycles in the Tanner graph of size ≤ 2dACE (i.e. containing dACE

variable nodes) have ACE at least η.

The ACE construction algorithm takes as input,

1. Block length - N

2. Rate - R

3. Degree distribution (λ(x), ρ(x)) and,

4. Value of the desired (dACE, η) pair

The algorithm proceeds in a greedy fashion by generating column vectors of

the parity-check matrix, compliant with the degree-distribution. Upon gener-

ation, the new column is subjected to a Viterbi-like trellis based algorithm to
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check whether it conforms to the required (dACE, η) level. If the column passes

the test then it is retained and the algorithm moves on to the generation of the

next column. If it fails the test, it is replaced by a newly-generated column, which

is then subjected to the test. At reasonable levels of the (dACE, η) parameters

the algorithm converges. In [47] the authors also enforce the constraint that the

degree-2 nodes do not form a cycle amongst themselves. In this chapter for the

sake of clarity we shall not make this constraint a part of the standard defini-

tion of ACE-compliance. We shall explicitly point out this constraint when it is

applied.

Using the ACE approximation of EMD facilitates a trellis-based check compo-

nent of the ACE algorithm that is a linear complexity search. Thus it is possible

to implement it efficiently as was done for [47].

2.2.1 Generalized Approximate Cycle Extrinsic Message Degree

In this chapter we examine a generalization of the ACE construction algorithm

that we call the Generalized ACE algorithm.

Definition 10 Generalized Approximate Cycle Extrinsic Message De-

gree (GACE): Let the minimum variable node degree in an LDPC code be lmin.

The GACE of a length 2d cycle in the Tanner graph of the code is given by∑d
i=1(di − lmin) where di is the degree of the ith variable node in the cycle.

The above definition also handles codes whose minimum variable node degree is

higher than 2. These category of codes was also considered by Luby et al. [7].

Henceforth we shall say that a code is (dACE, η) compliant if all cycles in the

code of length ≤ dACE have GACE at least η. In the rest of the chapter if the

minimum variable node degree is not specified, it is assumed to be 2. It should
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be clear that the Viterbi-like algorithm used by Tian et al. [47] with the new

metric can be used to construct codes that conform to the GACE criterion.

2.2.2 Notation

The following notation shall be used in the sequel.

• The block length shall be represented by N , number of check nodes by

M , number of edges by E and rate of a code by R. The minimum and the

maximum variable node degrees shall be denoted by lmin and dv respectively.

The maximum check node degree shall be denoted by dc.

• The sets of variable nodes and check nodes in a code shall be denoted by

V and C respectively.

• The degree distribution of a code ensemble from the edge perspective shall

be denoted by (λ(x), ρ(x)) (variable and check node degree distribution

respectively) and the corresponding degree distribution from the node per-

spective shall be denoted by (λ̃(x), ρ̃(x)).

• We shall use G (N, λ(x), ρ(x)) to represent the ensemble of LDPC codes with

block length N and degree distribution (λ(x), ρ(x)). Similarly GdACE ,η(N, λ(x), ρ(x))

shall be used to denote the ensemble of (dACE, η) compliant codes with the

specified parameters. We shall occasionally refer to this ensemble as the

GACE-constrained ensemble.

2.3 Analysis of Binary Erasure Channel Performance

The binary erasure channel (BEC) is the only channel where the set of error events

for iterative decoding has a precise combinatorial characterization as pointed out
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by Di et al.[45].

2.3.1 Stopping Sets and Cycles

Definition 11 Stopping Set:- A set of variable nodes S ⊆ V in an LDPC code

is said to form a stopping set if all the check node neighbors of S are connected

to S at least twice.

If all the variable nodes in a stopping set are erased then iterative decoding

will not be able to decode any of the bits corresponding to that variable node

set. Given the stopping set spectrum of a code and the erasure probability it is

possible to compute bounds on the BER/WER curve of the code. In this section

we compare the expected number of stopping sets in a “Random” construction

i.e. a code from the ensemble G (N, λ(x), ρ(x)) with the “GACE-constrained”

construction i.e. a code from the ensemble GdACE ,η(N, λ(x), ρ(x)) based on a

generating function approach. The following lemma shows that in an LDPC

code where at most one variable node is of degree one any stopping set contains

at least one cycle.

Lemma 1 Suppose at most one variable node in V is of degree 1. Given a

stopping set S ⊆ V of size ‘l’, and its check node neighbor set N (S), such that

|N (S)| = k, there exists at least one cycle of length ≤ min(2l, 2k) involving a

subset A ⊆ S in the induced subgraph formed by S and N (S).

Proof : Let us denote the elements of S as {v1, v2, ..., vl}. If S contains a degree-1

node then let v1 denote it. Consider the following traversal of S starting at v1

and with a path list P initialized to v1.

1. If the current node is of type = “VARIABLE”
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• Pick an “unused” edge and move to a check node and label the tra-

versed edge “used”. Add the check node to P .

2. If the current node is of type = “CHECK”

• Pick an “unused” edge and move to a variable node, label the traversed

edge “used”. Add the variable node to P .

3. If the current node already exists in the path list or there is no “unused”

edge then “EXIT”. Otherwise go to Step 1.

We show that if S is a stopping set then the above traversal always “EXIT”s

because a repeated node is found.

1. If the traversal exited because it could not find an unused edge it means

that there exists a singly-connected variable node other than v1 or a singly-

connected check node. This is not possible by assumption.

2. If the traversal exited because of a repeated node then it has already found

a cycle.

This shows that a cycle has to exist in S. Since |S| = l, |N (S)| = k, the cycle

length has to be ≤ min(2l, 2k). �

It is instructive to develop some intuition behind the working of the ACE

algorithm before presenting the analysis.

It is easy to note that if a cycle has EMD ≥ 1, then the set of variable nodes

participating in the cycle cannot form a stopping set (Definition 11). By Lemma

1 we know that stopping sets are comprised of cycles. If the EMD of small
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cycles is forced to be large then we expect that small stopping sets will also be

avoided. Due to complexity reasons, computation of the EMD of all cycles is not

feasible and therefore we have to resort to the computation of ACE. As explained

earlier (Fig. 2.1) it is possible to have cycles that have high ACE but low EMD.

Intuitively we expect such situations to occur with low probability. Thus the

ACE heuristic should perform well in practice. This intuition is made rigorous

in the discussion that follows.

2.3.2 Expected Number of stopping sets of size l

(k)Π

v
1

v
N

c
1

c
M

k

Figure 2.2: The figure depicts the construction of an irregular LDPC code using

a random permutation between the edge stubs on the variable nodes and the edge

stubs on the check nodes.

The following method (illustrated in Fig. 2.2) is used to construct irregular

LDPC codes with a specified degree distribution (λ(x), ρ(x)). There are N vari-

able nodes such that λ̃iN of them have degree i and M check nodes such that

ρ̃iM have degree i. The total number of edges E emanating from the variable

nodes is numbered from 1 to E. The edges emanating from the check nodes are
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also numbered. The ensemble of irregular Tanner graphs is obtained by choosing

a permutation Π uniformly at random from the set of all possible permutations.

Thus, the ith edge on the variable node side is connected to the Π(i)th edge on

the check node side.

The expected value of the stopping set spectrum for an irregular LDPC code

ensemble has been considered by [48][49]. Our approach is similar to theirs.

However they were primarily interested in the asymptotic normalized stopping

set spectrum of the ensemble, while the motivation here is to prove that the

GACE algorithm succeeds in reducing the number of small stopping sets. In

Lemma 1 we also considered the case when at most one variable node could have

degree one. The results stated below can be easily adapted to take this into

account.

Theorem 1 [48][49] For an irregular LDPC code ensemble G (N, λ(x), ρ(x)) the

expected number of stopping sets of size l is,

ER
ss[l] =

e=dvl∑
e=2l

[
coeff(Πdv

i=2(1 + yzi)λ̃iN , ylze) × coeff(Πdc
j=2((1 + x)j − jx)ρ̃jM , xe)(

E
e

)
]

(2.1)

Proof : From a counting argument we can see that the number of subsets of V that

are of size l and have e edges emanating from them are precisely coeff(Πdv
i=2(1 +

yzi)λ̃iN , ylze) in number. Given a particular check node c the number of ways of

choosing k of it’s edges is given by coeff((1 + x)deg(c), xk). So the total number of

ways of choosing the e connections is coeff(Πc∈C(1 + x)deg(c), xe) =
(

E
e

)
.

A set of variable nodes U forms a stopping set when each check node neighbor

is connected at least twice to U . Proceeding as above, the number of ways that

result in a stopping set is coeff(Πdc
j=2((1 + x)j − jx)ρ̃jM , xe). Therefore the proba-

bility that the e edges result in a stopping set is given by,
coeff(Πdc

j=2((1+x)j−jx)ρ̃jM ,xe)

(E
e)

.
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The result follows by summing over all possible values of e, which ranges from 2l

to dvl. �

For moderate-to-high rate LDPC codes whose degree-distributions are opti-

mized based on density evolution [44], typically there is a large fraction of low-

degree (2-4) variable nodes in the graph. Thus, the summation in Theorem 1 will

be dominated by the terms corresponding to the low values of e. For a stopping

set to be broken just one neighbor needs to be singly connected. It is clear that

low degree variable nodes are more likely to form a stopping set since the total

number of edges emanating from them is small. Variable node subsets that have

a larger number of edges, statistically (over the space of permutations) have a

higher chance of containing a singly connected neighbor.

2.3.3 Analysis for GACE-constrained ensembles

Recalling that all stopping sets contain cycles by Lemma 1, an effective method

to reduce the expected number of small stopping sets would be to ensure that the

number of edges emanating from all small cycles is > 2l (in general > lminl). This

is precisely what the GACE algorithm achieves. We now examine the expected

number of stopping sets of size l in the GdACE ,η(N, λ(x), ρ(x)) ensemble. We first

focus on the case when l ≤ dACE. For simplicity of exposition we choose to

work in the case when the minimum variable node degree is 2. It should be clear

that equivalent expressions can be derived in the exact same fashion by letting

lmin > 2.

Theorem 2 Consider the GACE-constrained irregular LDPC code ensemble

GdACE ,η(N, λ(x), ρ(x)). The expected number of stopping sets of size l where
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l ≤ dACE is upper-bounded by,

EGACE
ss [l] ≤

e=dvl∑
e=2l+η

[
coeff(Πdv

i=2(1+yzi)λ̃iN , ylze)×coeff(Πdc
j=2((1 + x)j − jx)ρ̃jM , xe)(

E
e

)
]

(2.2)

Proof : By Lemma 1 we know that any stopping set of size l has at least one

cycle of size ≤ 2l. Since l ≤ dACE and the ensemble is expurgated so that all

codes in the ensemble are GACE-compliant (Definition 9), the minimum number

of edges emanating from a stopping set of size l is ≥ 2l+η. As in Theorem 1, the

expected number of stopping sets of V that are of size l and have e edges is given

by coeff(Πdv
i=2(1 + yzi)λ̃iN , ylze) × coeff(Πdc

j=2((1+x)j−jx)ρ̃jM ,xe)

(E
e)

. Therefore the result

follows by computing the sum over all possible values of e which now ranges from

2l + η to dvl. �

As an example the expected number of stopping sets (computed numerically)
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Figure 2.3: The plot shows the expected number of stopping sets of size = 10 in

the “Random” and “GACE Constrained” ensembles for a fixed value of dACE = 10

v/s different η.

in the “Random” and “GACE-constrained” ensembles (with parameters dACE =
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10, η = 4) of size 10 for a (603,301) code with degree distribution,

λ(x) = 0.2186x + 0.1470x2 + 0.1692x4 + 0.0136x5 + 0.0517x6 + 0.3999x19(2.3)

ρ(x) = x8

are shown in Fig. 2.3. The y-axis is on a logarithmic scale. Note that the

“GACE-constrained Ensemble” curve falls off almost linearly with η suggesting

that the number of stopping sets of size 10 decrease exponentially with η.

Since the union of small stopping sets results in another stopping set, some

reduction is expected even for larger stopping sets and we now concentrate on

the case when l > dACE. For this theorem we assume that cycles consisting of

exclusively degree-2 nodes are disallowed.

Theorem 3 Let EGACE
SS [l] and ER

SS[l] represent the expected number of stopping

sets of size l > dACE in the ensembles GdACE ,η(N, λ(x), ρ(x)) and G (N, λ(x), ρ(x))

respectively. For the GACE-constrained ensemble we also disallow cycles consist-

ing of exclusively degree-2 nodes. Then,

ER
SS[l] − EGACE

SS [l] ≥
(

λ̃2N

l

)
coeff(Πdc

j=2((1 + x)j − jx)ρ̃jM , x2l)(
E
2l

)
+

2l+η−1∑
e=2l+1

coeff(Πdv
i=2(1 + yzi)λ̃iN , ylze)

×
∑

I⊂{1,..,M}
|I|=dACE

coeff(Πj∈I((1 + x)deg(cj) − 1 − deg(cj)x), xe)(
E
e

)
(2.4)

Proof : Consider a set of variable nodes U such that |U | = l. Define A1 to

be the event (over the space of permutations) that {minimum cycle length in

U ≤ 2dACE} and A2 to be the event that {2dACE < minimum cycle length in

U ≤ 2l}. Let U
(·)
SS represent the event that U is a stopping set in the Random

and GACE-constrained ensembles (depending on the value of ·). For the sake of
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clarity we argue in terms of probabilities.

A1 ∩ A2 = φ (By Definition) (2.5)

U
(·)
SS ⊆ A1 ∪ A2 (2.6)

The second equation above follows from Lemma 1, since every stopping set of

size l contains at least one cycle of length ≤ 2l. We have,

P (UR
SS) =

dvl∑
k=2l

P (UR
SS, e(U) = k,A1) +

dvl∑
k=2l

P (UR
SS, e(U) = k,A2)

P (UACE
SS ) ≤

dvl∑
k=2l+η

P (UR
SS, e(U) = k,A1) +

dvl∑
k=2l+1

P (UR
SS, e(U) = k,A2) (2.7)

Here, e(U) represents the number of edges emanating from U .

The first term in (2.7) follows from the fact that conditioned on the event

that a stopping set of size l in a code from GdACE ,η(N, λ(x), ρ(x)) has a cycle of

size ≤ 2dACE we know that at least 2l + η edges emanate from it. The second

term follows since degree-2 nodes do not form a cycle amongst themselves. From

the above equations we have,

∴ P (UR
SS)−P (UACE

SS ) ≥ P (UR
SS, e(U) = 2l) +

2l+η−1∑
k=2l+1

P (UR
SS, e(U) = k,A1) (2.8)

Let N (U) denote the set of neighbors of U . To get a lower bound on

P (UR
SS, e(U) = k,A1) we have the following simple but key observation,

UR
SS ∩ {|N (U)| ≤ dACE} ⊆ UR

SS ∩ A1 (2.9)

Equation (2.9) follows from the fact that if |N (U)| ≤ dACE and U is a stopping

set, then Lemma 1 tells us that it contains at least one cycle of length ≤ 2dACE

and so the minimum cycle length in U is ≤ 2dACE.

Thus, we can lower bound the difference in the expected number of stopping

sets by conditioning on the size of |N (U)|. The first term on the RHS of (2.8)
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corresponds to the expected number of stopping sets of size l occurring only

because of degree-2 nodes which is given by,
(

λ̃2N
l

) coeff(Πdc
j=2((1+x)j−jx)ρ̃jM ,x2l)

(E
2l)

(first

term in (2.4)). The probability of UR
SS∩{|N (U)| ≤ dACE} conditioned on {e(U) =

k} is given by,

P (UR
SS ∩ {|N (U)| ≤ dACE}|e(U) = k) ≥∑

I⊂{1,..,M}
|I|=dACE

coeff(Πj∈I((1 + x)deg(cj) − 1 − deg(cj)x), xk)(
E
k

) (2.10)

The sum in (2.10) is over all possible subsets of check nodes of size dACE that can

accommodate the k edges. Note that the above expression forces every node in

a particular neighborhood I to be connected at least once to U and hence serves

as a lower bound. The number of l-sized variable node subsets that have k edges

emanating from them is given by coeff(Πdv
i=2(1 + yzi)λ̃iN , ylzk). Multiplying this

and (2.10) and summing over the values k = 2l+1 to (2l+η−1) gives the result. �

Note that for a right-concentrated degree dc (as is often the case) the second

term in (2.4) is positive for all l such that (2l + 1) ≤ dc · dACE. This is significant

since it means that the GACE algorithm results in a lower expected number of

stopping sets for all sizes up to ≈ dc ·dACE/2. This is in addition to the reduction

obtained by constraining the graph so that the degree-2 nodes do not form a

cycle among themselves.

2.3.4 Simulation Results over the BEC

The highly-improved performance of a GACE-constrained code over the binary

erasure channel (BEC) is demonstrated by the plots in Fig. 2.4. The code is

a length-1028, rate-1/2 code with the degree distribution given by (2.3). We

simulated the performance of three randomly constructed codes and chose the
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Figure 2.4: The plot shows the performance of randomly constructed (length-2

cycles and cycles consisting of only degree-2 nodes were avoided) and GACE–

constrained R = 1/2, n = 1028 irregular LDPC codes over the BEC channel with

erasure probability α.

code with the best performance. In contrast we constructed just one code us-

ing the GACE construction technique with parameters (dACE = 10, η = 3)1

(cycles consisting of exclusively degree-2 nodes were avoided) and simulated it’s

performance. To better highlight the power of the GACE algorithm, cycles of

length-2 and cycles consisting of only degree-2 variable nodes were avoided in the

randomly chosen codes. It should be clear that their performance when these

conditions are not enforced would be even worse. The Word Error Rate (WER)

at an erasure probability of 0.3 for the GACE-constrained code is about 10−6

versus 4.7× 10−4 for the random code. A similar performance benefit is seen for

the BER results. This shows the absence of small stopping sets in the GACE-

constrained code. By generating more GACE-constrained codes and choosing the

best, even better performance gains are possible.

1These parameters were chosen for illustrative purposes and higher values are also possible.
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2.4 Analysis of BSC/AWGN performance

In this section we examine the performance of GACE-constrained codes over

the BSC and AWGN channels. In the previous section we were able to com-

pute the expected number of small stopping sets in the “Random” and “GACE-

constrained” ensembles. As mentioned before the stopping set spectrum of a

code completely characterizes it’s performance under the BEC. For the BSC and

AWGN channels such a precise characterization is not available. However com-

pelling evidence of the benefits of the GACE algorithm are still available.

In subsection 2.4.1 we compute the expected distance spectrum of GACE-

constrained ensembles and show it’s superiority over the random ensemble. Sub-

section 2.4.2 contains an analysis of the expected number of cycles in random

and GACE-constrained ensembles. It shows that the expected number of cycles

is not significantly lower in the GACE-constrained ensemble. Finally subsec-

tion 2.4.3 contains a comparison of the expansion properties of the random and

GACE-constrained ensemble that shows the improvement provided by the GACE

algorithm and subsection 2.4.4 presents the simulation results.

2.4.1 Distance Spectrum Analysis

Traditionally (under ML-decoding) codes have been examined from a distance

spectrum perspective. While the correlation between iterative decoding and ML-

decoding is not completely obvious at finite block lengths, we can show that

the GACE algorithm will in general reduce the number of near neighbors of a

particular codeword. We proceed by an expected distance spectrum computation.

The analysis below is similar to the one performed by [48]. For the sake of

brevity we only state the results for the GACE-constrained ensemble. Once
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again, we assume that lmin = 2. Recall that all codewords are also stopping sets.

Therefore Lemma 1 applies and we have the following theorem that upper-bounds

the number of codewords of Hamming weight ≤ dACE.

Theorem 4 Consider the GACE-constrained irregular LDPC code ensemble

GdACE ,η(N, λ(x), ρ(x)). The expected number of codewords of size l where l ≤
dACE is upper-bounded by,

EGACE
cw [l] ≤

e=dvl∑
e=2l+η

[
coeff(Πdv

i=2(1 + yzi)λ̃iN , ylze)

× coeff(Πdc
j=2(

1
2
[(1 + x)j + (1 − x)j])ρ̃jM , xe)(

E
e

)
] (2.11)

Proof: The proof is very similar in flavor to Theorem 2. The main point to be

noted is that the probability that the e edges connect to form a codeword is now

given by
coeff(Πdc

j=2(
1
2
[(1+x)j+(1−x)j ])ρ̃jM ,xe)

(E
e)

as each check node must receive an even

number of edges from the variable node set. Of course the number of variable

node subsets of size l and having e edges is given by coeff(Πdv
i=2(1+ yzi)λ̃iN , ylze).

The result follows. �

Similarly as in Theorem 3 we can show that the expected number of codewords

of Hamming weight larger than dACE is also lower.

Theorem 5 Let EGACE
cw [l] and ER

cw[l] represent the expected number of code-

words of size l > dACE in the ensembles GdACE ,η(N, λ(x), ρ(x)) and G (N, λ(x), ρ(x))
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respectively. Then,

ER
cw[l] − EGACE

cw [l] ≥
(

λ̃2N

l

)
coeff(Πdc

j=2(
1
2
[(1 + x)j + (1 − x)j])ρ̃jM , x2l)(

E
2l

)
+

2l+η−1∑
e=2l+1

coeff(Πdv
i=2(1 + yzi)λ̃iN , ylze)

×
∑

I⊂{1,..,M}
|I|=dACE

coeff(Πj∈I
1
2
[(1 + x)deg(cj) + (1 − x)deg(cj) − 2], xe)(

E
e

)
(2.12)

For a right-concentrated degree dc the second term in (2.12) is positive for all l

such that 2l + 2 ≤ dc · dACE. This means that the GACE algorithm results in

lower expected number of codewords for all sizes up to ≈ dc · dACE/2 − 1. This

is in addition to the reduction obtained by constraining the graph so that the

degree-2 nodes do not form a cycle among themselves.

2.4.2 Cycle Analysis

The presence of a large number of short cycles has commonly been conjectured

to degrade the code performance significantly. However we now show that the

GACE algorithm which produces codes that perform well, does not significantly

reduce the number of small cycles. We present results about the expected number

of cycles of a particular length for random and GACE-constrained ensembles.

Similar analysis for regular codes was performed by Pishro-Nik et al. [50].

Theorem 6 For an irregular LDPC code ensemble G (N, λ(x), ρ(x)) the expected

number of cycles of size 2l, for l ≥ 2 is given by,

Er
cyc[2l] =

(E − 2l)!

E!

l!(l − 1)!

2
× coeff

[ dv∏
i=2

(1 + i(i − 1)z)λ̃iN , zl
]

× coeff
[ dc∏

j=2

(1 + j(j − 1)y)ρ̃jM , yl
] (2.13)
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The theorem is proved in the Appendix.

For the GACE-constrained ensemble, cycles with GACE < η will be disal-

lowed, hence the expected number of cycles will be lower.

Corollary 1 For the GACE-constrained ensemble GdACE ,η(N, λ(x), ρ(x)) with

lmin = 2 the expected number of cycles of size 2l, where 2 ≤ l ≤ dACE is

EACE
cyc [2l] =

(E − 2l)!

E!

l!(l − 1)!

2
×

dvl∑
α=2l+η

coeff
[∏

i

(1 + i(i − 1)yiz)λ̃iN , yαzl
]

× coeff
[∏

j

(1 + j(j − 1)x)ρ̃jM , xl
]

(2.14)

Proof : For the ensemble GdACE ,η(N, λ(x), ρ(x)) we have the additional condition

that number of edges emanating from the variable nodes participating in the cy-

cle are ≥ 2l + η. This along with the technique in Theorem 6 and a rewriting of

the resulting expression provides the required result. �

Note that in the above analysis we do not consider length-2 cycles. Of course

these are fairly easy to avoid in practice. On closer examination of the expression

in Theorem 6 we realize that it is dominated by the variable nodes of higher degree

(because of the factor i(i−1)), thus the expected number of cycles in the GACE-

constrained ensemble is not significantly lower than the expected number of cycles

in the random ensemble. By its very nature the GACE algorithm tends to ignore

the high degree variable nodes. In fact, once the degree of the variable node to be

added to the graph is ≥ (η + 2) the node is added without any checks since any

cycle containing the node trivially satisfies the GACE criterion. However in spite

of this we found that the GACE-constrained codes perform substantially better

than randomly constructed ones even on the AWGN channel. This suggests that
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AWGN performance is not dominated by the number of cycles after all.

2.4.3 Expansion Analysis

Luby et al. [7] showed that for a code with sufficiently good expansion properties,

the message-passing decoder followed by Sipser and Spielman’s [51] bit-flipping

algorithm would correct all errors with high probability provided that the channel

noise was low enough. Subsequently Burshtein and Miller [46] showed that expan-

sion arguments could be used for the message-passing decoder itself. Basically,

these papers show that if the underlying code over which the message-passing de-

coder operates is an expander with sufficiently high levels of expansion, with high

probability the decoding process corrects all errors. In the preceding subsection

we have shown that even though the expected number of cycles in the ensemble

of GACE-constrained codes is large, their performance over the AWGN channel

is much better than randomly constructed codes. To justify the performance

of GACE-constrained codes over the BSC and AWGN channels we conduct an

investigation into their expansion properties. Our definition of an expander is

essentially the same as that of Luby et al.[7].

Definition 12 (α, δ) Expander :- Let G be a bipartite graph with N left nodes

and M right nodes. Let X be a subset of the left nodes, let E(X) represent the

set of edges emanating from X and N (X) represent the set of right neighbors of

X. G is said to be a (α, δ) expander if for all X such that |X| ≤ αN , we have

|N (X)| > δ|E(X)|.
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2.4.3.1 Random Ensemble

The following theorem is a more general version of the proof given by Luby et al.

[7] and a variation of this (for a different notion of expansion) has appeared in

Burshtein et al. [46]. It shows that a Tanner graph constructed by choosing the

permutation between the variable and check nodes randomly is an expander with

high probability when the number of variable nodes is large. We also assume

that the ensemble is suitably expurgated so that multiple edges between a given

variable and check node do not exist.2

Theorem 7 Consider a Tanner graph G with N variable nodes and M = N(1−
R) check nodes with the minimum variable node degree lmin. Let δ = 1− 1+ε

lmin
, ε >

0. For M sufficiently large, there exists an α > 0 such that with probability

1 − O(1/M2ε), G is a (α, δ) expander.

Proof : Let EA
k,l = {Event that a subset A of l variable nodes and k edges has at

most kδ neighbors }. We have the following union bound,

P (EA
k,l) ≤

(
M

kδ

)[(kδdc

k

)(
E
k

) ]

≤
[
eM

kδ

]kδ
(kδdc)(kδdc − 1)...(kδdc − k + 1)

E(E − 1)...(E − k + 1)

≤
[
eM

kδ

]kδ[
kδdc

E

]k

=

[
eM

kδ

]kδ[
kδdc

dr
avgM

]k

where dr
avg is the average check node degree

≤ bkδ
1

[
kδ

M

]k(1−δ)

for some constant b1

(2.15)

2These are easy to avoid in practice.
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This follows from the fact that the number of ways of choosing kδ neighbors is

given by
(

M
kδ

)
and the probability that the k edges connect to the chosen set is at

most

[
(kδdc

k )
(E

k)

]
(recall that dc is the maximum check node degree). Let El = {Event

that some l-sized subset of the variable nodes, X has at most δ|E(X)| neighbors}.
Let the number of subsets with l variable nodes and k edges be denoted by Nk,l.

Then,

P (El) ≤
lmaxl∑

k=lminl

Nk,l bkδ
1

[
kδ

M

]k(1−δ)

≤ ( lmaxl∑
k=lminl

Nk,l

)
max

lminl≤k≤lmaxl
bkδ
1

[
kδ

M

]k(1−δ)

=

(
N

l

)
max

lminl≤k≤lmaxl
bkδ
1

[
kδ

M

]k(1−δ)

(2.16)

Using Lemma 9 in the Appendix, we have that for M > eδb
δ

1−δ

1 lmaxl

arg max
lminl≤k≤lmaxl

bkδ
1

[
kδ

M

]k(1−δ)

= lminl (2.17)

This gives,

P (El) ≤
(

N

l

)
blminlδ
1

[
lminlδ

M

]lminl(1−δ)

(2.18)

Now substitute δ = 1 − 1+ε
lmin

, where ε > 0. We have,

P (El) ≤ elblminlδ
1 (lminδ)

l(1+ε)

[
N

l

]l[
l

M

]l(1+ε)

≤ cl
2

[
l

M

]lε

for some c2 depending on ε, b1, lmin and R

(2.19)

Since P (E1) = 0, to show expansion for linear sized subsets of the variable

nodes we need to sum P (El) over 2 ≤ l ≤ αN . In particular if we set, τ =

max(δb
δ

1−δ

1 lmax, c
1
ε
2 ) and,

M > eταN

=⇒ α <
1 − R

eτ
(2.20)
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Then we can use the form of the bound in (2.19) for 2 ≤ l ≤ αN .

αN∑
l=2

P (El) ≤
αN∑
l=2

cl
2

[
l

M

]lε

≤
�h1/ε�∑

l=2

cl
2

[
l

M

]lε

+
αN∑

l=�h1/ε�+1

cl
2

[
l

M

]lε

≤ �h1/ε�c2
2

[
2

M

]2ε

+ αNc
�h1/ε�+1
2

[�h1/ε� + 1

M

]h1+ε

= �h1/ε�c2
2

[
2

M

]2ε

+
α

1 − R
c
�h1/ε�+1
2

[
�h1/ε� + 1

]h1+ε
1

Mh1+ε−1

≤ O(1/M2ε) for fixed ε if h1 > 1 + ε

(2.21)

In the above inequalities we assume that N (and consequently M) is large enough

i.e �h1

ε
� ≤ αN . The third inequality is true by our choice of α and Lemma 9.

This shows that the probability that a randomly chosen graph is not an (α, δ)

expander goes to zero as O(1/M2ε) with increasing M . �

2.4.3.2 GACE-constrained Ensemble

To demonstrate the efficiency of the Generalized ACE algorithm we first need a

key lemma that shows that small subsets of variable nodes with small number

of edges have good expansion. The following discussion provides insight into the

value of the GACE algorithm and hints at the tradeoff between the expansion

factor δ, dACE and η.

Lemma 2 For a (dACE, η) compliant code any subset of the variable nodes, X

with |X| ≤ dACE and number of edges, |E(X)| ≤ lmin|X| + η − 1 has expansion

(1 − 1/lmin).
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Proof : Assume the contrary, i.e. there exists a set of variable nodes X1 such that

|X1| ≤ dACE and |E(X1)| ≤ |X1|lmin + η − 1 and |N (X1)| ≤ (1 − 1/lmin)|E(X1)|.

The subgraph induced by X1 and N (X1) has |X1| + |N (X1)| vertices and

|E(X1)| edges. Since the code is (dACE, η) compliant, there cannot exist a cycle

among the nodes in X1. This means that,

|E(X1)| < |X1| + |N (X1)|
< |X1| + (1 − 1/lmin)|E(X1)| (by our assumption on |N (X1)|)

(2.22)

which on further simplification yields |E(X1)| < lmin|X1| which is a contradiction

since lmin is the minimum variable node degree. �

The above lemma shows that small variable node subsets (of size ≤ dACE) with

a small number of edges have good expansion. Intuitively speaking for a random

construction it is difficult to guarantee expansion for these sets . Using Lemma 2,

an analysis similar to the one performed in Section 2.4.3.1 can be performed for

GACE-constrained ensembles. The following lemma provides an upper bound on

the probability that all variable node subsets in the GACE-constrained ensemble

of size ≤ dACE are not expanding sets

Lemma 3 If a code is (dACE, η)-compliant, then for M sufficiently large and for

all variable node subsets X such that |X| = l ≤ dACE,

P ({∃X such that |N (X)| ≤ (1 − (1 + ε)/lmin)|E(X)|}) ≤ cl
1

[
l

M

] η
lmin

(1+ε)+lε

(2.23)

where ε > 0 and c1 is a positive constant depending on η, lmin, R and ε.

Proof : Let EA
k,l and El be as defined in the proof of Theorem 7. Since the code

is (dACE, η)-compliant, therefore by Lemma 2 if |E(X)| < lminl + η, then X has

to expand by at least (1− 1/lmin). This in turn means that P (EA
k,l) = 0,∀A such

45



that l ≤ dACE, lminl ≤ k ≤ lminl + η − 1. By Lemma 9 if M > eδb
δ

1−δ

1 lmaxl

arg max
lminl+η≤k≤lmaxl

bkδ
1

[
kδ

M

]k(1−δ)

= lminl + η (2.24)

Setting δ = 1 − (1 + ε)/lmin and γ = η/lmin (for convenience) we obtain,

P (El) ≤
lmaxl∑

k=lminl+η

Nk,lb
kδ
1

[
kδ

M

]k(1−δ)

≤
(

N

l

)
b
(lminl+η)δ
1

[
(lminl + η)δ

M

](lminl+η)(1−δ)

≤ elb
(lminl+η)δ
1 (lminδ)

(lminl+η)(1−δ)

[
N

l

]l[
l + γ

M

](l+γ)(1+ε)

≤ cl
1

[
l

M

]γ(1+ε)+lε

where c1 is a constant depending on η, b1, lmin, R and ε

(2.25)

Again to show the expansion properties of GACE-constrained codes we need

to sum P (El) over some 2 ≤ l ≤ αN (note that P (E1) = 0) which provides the

main result about the expansion properties of GACE-constrained codes.

Theorem 8 Consider a (dACE, η) compliant Tanner graph G with N variable

nodes and M = N(1 − R) check nodes with the minimum variable node degree

lmin. Let δ = 1− 1+ε
lmin

, where ε > 0. For M sufficiently large, there exists an α > 0

such that with probability 1 − O(f(M)), where

f(M) = max

[
1/M

η
lmin

(1+ε)+2ε
, 1/M (dACE+1)ε

]

G is a (α, δ) expander.

Proof : Let El = {Event that some l-sized subset of the variable nodes, X has at

most δ|E(X)| neighbors} as in the proof of Theorem 7. To accurately describe the

region where the GACE algorithm has an advantage over a completely random
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choice of the code, we need to carefully handle the sum
∑αN

l=2 P (El). In what

follows the constants c1 and c2 are constants from Lemma 3 and Theorem 7

respectively. In addition to make use of the appropriate upper bounds we shall

need α < 1−R
eτ

as in equation (2.20) in the proof of Theorem 7.

αN∑
l=2

P (El) =

dACE∑
l=2

P (El) +

�h1/ε�∑
l=dACE+1

P (El) +
αN∑

l=�h1/ε�+1

P (El)

≤ dACE c2
1

[
2

M

] η
lmin

(1+ε)+2ε

+ �h1/ε�cdACE+1
2

[
dACE + 1

M

](dACE+1)ε

+ αNc
�h1/ε�+1
2

[�h1/ε� + 1

M

]h1+ε

≤ O(1/M
η

lmin
(1+ε)+2ε

) + O(1/M (dACE+1)ε)

≤ O(f(M))

(2.26)

Again N is assumed to be large enough so that the breakup of the summation

makes sense. Here we need to choose h1 so that h1 − 1 + ε > max( η
lmin

(1 + ε) +

2ε, (dACE + 1)ε). Thus, the probability that the graph is not a (α, δ) expander

goes to zero as O(f(M)) with increasing M . �

Note that the upper bound on α is the same for both Theorems 7 and 8 but

the upper bound on the error probability goes to zero for the GACE-constrained

ensemble much faster than the upper bound for the random ensemble as long as

dACE > 1. It is also clear from the expressions that higher values of dACE and η

will always serve to reduce the error probability. Thus as a design rule one should

try to maximize the values of dACE and η while constructing the codes.

Another point to be noted is that the above analysis basically shows that

the (dACE, η) constraint increases the probability that small, yet linear sized

subsets of the variable nodes are expanding. Equivalently, this means that in

the high SNR regime the performance of GACE-constrained codes is likely to be
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good. This is significant since the evaluation of code performance by simulation

(especially at high SNR) is computationally intensive for these high-performance

codes. Ideally one would want to minimize the number of codes generated before

a suitable choice is made.

2.4.3.3 Trade-off between (dACE, η) and ε

From Theorem 8 we realize that if

ε >
1

lmin

η
(dACE − 1) − 1

(2.27)

then the leading order behavior of the bound is O(1/M
η

lmin
(1+ε)+2ε

). This means

that in this range of the expansion parameter δ, the GACE algorithm provides

a significant advantage. If on the other hand ε ≤ 1
lmin

η
(dACE−1)−1

then we are

operating in the zone where the expansion parameter is very close to (1− 1/lmin)

and here the behavior is of the order of O(1/M (dACE+1)ε).

In addition to making a code (dACE, η) compliant if we also disallow cycles

consisting of exclusively lmin degree nodes then we get better results. This of

course puts a restriction on the number variable nodes of degree lmin. In particular

if λ̃lmin
is the fraction of variable nodes of degree lmin then we need,

λ̃lmin
N ≤ M − 1

lmin − 1
(2.28)

In this case it is fairly straightforward to show using the techniques developed

in Theorem 8 that the probability that the resultant graph is an expander is

even higher. When lmin = 2 and for rates below 1/2, this condition can easily be

enforced by placing the degree-2 nodes in a bi-diagonal fashion as shown in Fig.

2.5. We remark that the extended Irregular Repeat Accumulate (eIRA) of Yang

and Ryan[52] for moderate to high rate codes enforce this condition by simply
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Figure 2.5: The figure shows the placement of degree-2 nodes in a Tanner graph

in a zigzag fashion so that they do not form a cycle among themselves.

reducing the number of degree-2 nodes to M −1 and placing them as in Fig. 2.5.

Weng et al. [53] found that setting the number of degree-2 nodes to M − 1 and

applying the GACE algorithm provides a significant advantage over the eIRA

approach. This is also explained by our results. Formally, the following is true.

Corollary 2 Consider a (dACE, η)-compliant Tanner graph G with N variable

nodes and M = N(1 − R) check nodes with the minimum variable node degree

lmin. Suppose that the degree - lmin variable nodes do not form a cycle amongst

themselves. Let δ = 1 − 1+ε
lmin

, where ε > 0. For M sufficiently large there exists

an α > 0 such that with probability 1 − O(f(M)), where

f(M) = max

[
1/M

η
lmin

(1+ε)+2ε
, 1/M

1
lmin

(1+ε)+(dACE+1)ε

]
(2.29)

G is a (α, δ) expander.

Proof: Note that since the degree lmin nodes do not form a cycle amongst them-

selves, all cycles in the code have ACE at least 1. This further means that

the argument in Lemma 3 gives an upper bound of cl
1

[
l

M

] 1
lmin

(1+ε)+lε
even when
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l > dACE. The rest of the proof follows the argument in Theorem 8. �

2.4.3.4 Remarks

The papers of Luby et al.[7] and Burshtein et al.[46] assume expansion levels

δ > 3/4 for proving bounds on the performance of the codes over the BSC/AWGN

channels. It is assumed that the minimum left degree ≥ 5 to achieve the levels of

expansion required. In this work as well, to achieve an expansion level of 3/4 we

need the minimum left degree to be at least 5. However the crucial point is that

using the GACE algorithm and trying to maximize the (dACE, η) parameters one

can achieve the expansion level in an easier fashion at lower block lengths. These

benefits are also observed when the minimum variable node degree is 2.

2.4.3.5 Achievable (dACE, η) Levels

An obvious question that comes to mind is the achievable (dACE, η) region at a

fixed block length and degree distribution. Surely if the girth of the subgraph

induced by the variable nodes of degree < η + lmin and all the check nodes is

larger than or equal to 2dACE, the code is (dACE, η) compliant.

It is obvious that the average degree of the subgraph induced by variable

nodes of degree < η + lmin and the check nodes is smaller than the average degree

of the whole Tanner graph. So, we can expect that the achievable values of dACE

will be higher than the achievable values of the girth of the entire Tanner graph.

Next, we note that the GACE constraint is actually weaker than the girth

constraint, so we can hope to obtain even higher (dACE, η) values compared to

the achievable values based on the above observation. The achievable (dACE, η)
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Figure 2.6: (a) Performance of (603, 301) Random* and (6, 3) GACE-constrained

codes (b) Performance of (1028, 514) Random* and (10, 3) GACE-constrained

codes.

region at a given block length and degree distribution seems to hard to find in

general.

In practice 6 ≤ dACE ≤ 11, 2 ≤ η ≤ 5 (depending upon the degree distribu-

tion) can be obtained. A rate-1/2 code of length 10000, with degree distribution

given by (2.3) can be generated in under one hour on a regular Pentium-IV desk-

top PC.

2.4.4 Simulation Results over the AWGN channels

In this section we discuss some simulation results that validate our claims. Figs.

2.6(a) and 2.6(b) show the AWGN performance of Random* and GACE-constrained

codes with (n = 603, k = 301), (dACE = 6, η = 3) and (n = 1028, k = 514), (dACE =

10, η = 3). These codes were generated using the degree distribution in (2.3).

Once again for the length-1028 codes we generated three randomly constructed

codes (length-2 cycles and cycles consisting of exclusively degree-2 nodes were

avoided) and chose the code with the best performance, whereas we generated
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just one GACE-constrained code. For the length-603 codes three randomly con-

structed codes and three GACE-constrained codes were generated and the best

performing code was chosen for each. These codes were decoded using a belief-

propagation decoder with a maximum of 32 iterations (decoding was stopped if

it converged early). It is quite evident that the GACE-constrained codes are su-

perior. At a BER of 10−6 and a WER of 10−4 the length 1028 GACE-constrained

code is about 1 dB better than the best randomly constructed code. The length

603 code also exhibits similar performance. In practice it is hard to find a GACE-

compliant code that performs very bad, i.e. the high probability results are ob-

served at even such short block lengths such as 603 and 1028. More results and

comparisons can be found in [47].

2.5 An Improved Construction Algorithm

One point to be noted about the GACE algorithm is that the placement of

variable nodes of degree ≥ (η + 2) is done completely at random (here lmin is

assumed to be 2). This is because any cycle in which these nodes participate is

guaranteed to have a GACE value of at least η. However at short block lengths we

can obtain performance gains by placing these nodes more carefully. We describe

below an algorithm which when used in conjunction with the GACE algorithm

provides improved results.

2.5.1 The Code Construction Technique

To explain our algorithm we work with the parity-check matrix of an example

(5,2) code shown in Fig. 2.7. For the purposes of our algorithm it is more

convenient to work with a different definition of a stopping set,
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Figure 2.7: Tanner graph and Parity Matrix of a (5,2) code

Definition 13 Stopping Set - parity-check Matrix Perspective

First we define a function that will be used in the sequel.

fsc(α) =
∑

i

I(α[i] = 1) (2.30)

Where α is a column vector and I(x) is the indicator function. Thus fsc counts the

number of 1’s in a column vector, sc in the subscript denotes “singly-connected”.

Consider a subset S of the columns of the parity-check matrix of size m × n.

Let ∆ =
∑

i∈S vi, where the sum is over the real field (not over GF(2)). The set

S forms a stopping set if fsc(∆) = 0. �

For example in Fig. 2.7 the set of variable nodes v1, v2 and v3 is such that

v1 + v2 + v3 = [2 3 2]T which does not have a 1 in any component. So, it

forms a stopping set. It is easily seen that these nodes also form a stopping set

according to Definition 11 which is from a graph-theoretic perspective. Let the

parity-check matrix of a code of rate R = K
N

be denoted by H of size M × N

where M = N − K. Our objective is two-fold. The code rate needs to be R

(requiring H to be full-rank) and the number of small stopping sets needs to be

low. Let H = [HM |HK ], where HM is of size M×M and HK is of size M×K. The

algorithm ensures that HM is a full rank matrix. Since low degree nodes are more
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likely to form small stopping sets the algorithm proceeds by generating columns

in increasing order of degree. The full description of the algorithm is given in

Fig. 2.8. The matrix is full-rank since we continue to generate new vectors at

random until we find a full basis that also passes the Column-Sum-Check. The

Column-Sum-Check(Type,v,H,d) function has four different inputs.

1. Type = (’E’)xhaustive or (’A’)pproximate is an input that decides whether

the algorithm is Exhaustive or Approximate in nature. (we explain in more

detail below)

2. v is the new variable node

3. H is the “current” parity-check matrix

4. d is the depth parameter (again, more details follow).

2.5.2 Column-Sum-Check - (E)xhaustive Mode

Suppose that Column-Sum-Check is used in the (E)xhaustive mode and the depth

parameter is set to be d1 (say). The algorithm is described by,

Column-Sum-Check(’E’,v,H,d1)

= 1 If [H|v] is free of stopping sets of size ≤ d1

= 0 otherwise

(2.31)

[H|v] denotes the new Tanner graph formed by adding v to H. The algorithm

outputs a Tanner graph that is free of all stopping sets of size ≤ d1 on termination.

This is because on the completion of (j − 1)th stage of the algorithm, the set

v0, v1, ..., vj−1 is free of all stopping sets of size ≤ d1. Therefore, any stopping

set that is created at stage j, will involve the new node vj. The nature of the
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search is exhaustive, thus vj will be kept only if it passes the test. The conclusion

follows inductively.

for (i = 0; i < N ; i + +)

begin

Step 1:

Generate vi at random according to deg(vi);

if i < M (i.e., vi is a parity bit)

if vi ∈ SPAN(HM)

goto Step 1;

else

if Column-Sum-Check(’A’,vi,H,d)

Add vi to HM (i.e., passed both tests)

else

goto Step 1

else

if Column-Sum-Check(’A’,vi,H,d)

Add vi to HK

else

goto Step 1

end

end

Figure 2.8: Code Generation Algorithm

Unfortunately we are unaware of any algorithm that can perform the above

task without resorting to a brute force check of the
∑d1−1

i=1

(
j−1

i

)
possible com-

binations of variable nodes that vj can form a stopping set with. Once j is

fairly large, the large complexity quickly renders the code generation process in-
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Figure 2.9: (a) Example where v2 is being tested (b) Flow of the algorithm on

the trellis (bold lines represent survivor paths).

tractable. Note that we are not claiming that such an algorithm does not exist.

However, we were unable to find one.

2.5.3 Column-Sum-Check - (A)pproximate Mode

Since it is difficult to eliminate all stopping sets of a certain size, we resort to

good heuristics that eliminate as many stopping sets as possible. A heuristic that

we tested and found to perform well in practice is presented here.

As in [47], our technique is basically a Viterbi-like search algorithm for each

new variable node that is added to H. The search extends for up to a specified

number of trellis stages, which depends on the degree of the new node. The trellis

stages are numbered 0 - (d − 1). Even/Odd stages correspond to variable/check

nodes respectively. A trellis branch corresponds to a connection between nodes

in the Tanner graph.

The algorithm is demonstrated in Fig. 2.9(b) for the example shown in Fig.

2.9(a). A new node (e.g. v2 in Fig. 2.9) is generated at random according to

it’s degree and in accordance with the overall degree distribution and a trellis-

based search is performed to detect the stopping sets in which it participates.
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Paths/Cycles with repeated nodes are disallowed. Let the variable node for which

we are performing the search be denoted vroot, the number of trellis stages d1(vroot)

and the current node be denoted vt or ct (depending on whether it is a variable

node or a check node). We need the following definitions,

• ∆p, the path metric, is an m-dimensional vector containing the sum of the

variable nodes (columns) that participate in the path p.

• βp is the number of singly-connected check nodes in ∆p. i.e. βp = fsc(∆p).

• βc is the current minimum of the number of singly-connected nodes in any

cycle containing vroot found so far. It is initialized to ∞.

• γp is the minimum-path-metric threshold to be satisfied in the trellis search

• γc is the minimum-cycle-metric threshold to be satisfied in the trellis search

1. Minimum Path Metric (βp) - The search algorithm maintains a list of

the current paths from the root node to the current trellis stage. The path

metric for a given path p is defined to be,

∆p =
∑
i∈Vp

vi,

where Vp is set of variable nodes participating in p

βp = fsc(∆p)

(2.32)

The minimum of βp’s over all paths i.e. min∀pβp is also computed and stored

in memory.

2. Minimum Cycle Metric (βc)- At any point in the search, a merge at

a particular node in the trellis indicates the existence of a cycle. Suppose

that the cycle is composed of two paths p1 and p2 that merge at either a
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check node ct or a variable node vt. The number of singly-connected check

nodes in the cycle needs to be counted. This update is handled differently

depending on whether the merge is at a variable node or a check node.

(a) Check Node - Merge Update

βc = min(fsc(∆p1 + ∆p2 − vroot), βc) (2.33)

The contribution of the root is subtracted so that it is considered only

once.

(b) Variable Node - Merge Update

βc = min(fsc(∆p1 + ∆p2 + vt − vroot), βc) (2.34)

For the variable node update the merge node vt also needs to be con-

sidered since it forms part of the cycle. Again, the contribution of the

root is subtracted.

The merge update equation computes the number of singly-connected check

nodes in the cycle. As discussed in Definition 13, if this number is greater

than or equal to 1, then the cycle is not a stopping set.

If at any trellis stage min∀pβp < γp or βc < γc a failure is declared and the variable

node is regenerated.

2.5.4 Explanation of the Approximate Search

To be able to perform a Viterbi-like search, the algorithm needs to decide which

particular path to choose as a survivor at a merge. There are two possibilities.

a. Minimum Cycle/Path Metric Violation
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In this situation, at least one set of variable nodes that violates either the

minimum cycle metric (γc) or the minimum path metric (γp) has been found.

So we declare a failure and regenerate the root node. We do not need to

make a decision about the survivor path.

b. Minimum Cycle/Path Metric Pass

Here a decision is required on which path is more likely to cause a cycle/path

metric violation deeper in the trellis, otherwise the total number of paths

will grow exponentially with depth.

If the objective is to find all stopping sets below a certain size, it is not

proper to choose one path over the other. It can happen that a particular

path that has a higher metric at the current stage causes a violation deeper

in the trellis whereas the path with lower metric does not. However for the

sake of reduced complexity the survivor path is chosen to be the one that

has the lower number of singly-connected nodes at the merge node (i.e. the

lower metric). This is intuitively the right choice since the path with the

lower number of singly-connected nodes is more likely to form a stopping

set later on in the search. Ties are broken by choosing the path highest in

the lexicographic ordering.

To see a working example consider Fig. 2.9 where v0 and v1 exist in the graph

and a new node v2 is tested. At the third trellis stage a cycle is formed that

violates the minimum cycle metric. The bold lines represent the survivor paths

of the Viterbi merge at stage 2. In fact this particular cycle is also a stopping

set.

Of course there are other types of stopping sets that cannot be detected by

this algorithm since they do not form a single cycle (for an example see Fig.2.10).
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Figure 2.10: (a) v0, v1 and v2 form a stopping set, but they are not connected by

“one” cycle (b) A tree-based descent considering combinations of v2 and variable

nodes (v1, v0) at Level 2 can detect this stopping set.

One way to get around this problem would be to perform a tree-based descent

from the root node and consider different sets of variable nodes at all the even

levels and check whether they form a stopping set. However, in the worst case,

this would involve considering all possible combinations of variable nodes.

The setting of the thresholds γp, γc and the number of trellis stages d(v) needs

to be discussed. Ideally in the “(E)xhaustive” mode, the setting (γp = 1, γc = 1)

would suffice to rule out all undesirably small stopping sets. However in the

“(A)pproximate” mode, different settings of the thresholds based on the degree

of the variable nodes need to be tried. Typically we can use large values of d(v) for

low-degree variable nodes, since in the initial phase of the code generation process

there are only a few nodes in the graph and finding cycles/paths that violate the

cycle/path metric threshold is hard. We mention that this is a weakness of the

method that is discussed in more detail in the next subsection. For the medium

and high-degree nodes the depth parameter d(v) needs to be reduced since at

this stage of the process there are many nodes in the graph and it becomes

progressively more difficult to satisfy the path/cycle metric criteria. The γp and

γc parameters are also tied to the degrees of the nodes. γp needs to be small for

low-degree nodes since they anyway have a low number of 1’s in their column
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representation. Medium and high degree nodes can satisfy a higher threshold.

Note that the complexity of running the Column-Sum-Check algorithm is

always upper-bounded by (maxv degree(v)−1)×(maxv d(v))×(n−1), because the

maximum degree of a variable node is maxv degree(v), the maximum number of

trellis stages is maxv d(v) and the maximum number of variable nodes in the graph

is n. However one might need to generate multiple column vectors before one

that satisfies the Column-Sum-Check is found. Overall the complexity remains

manageable for designing codes of desired block lengths.

2.5.5 Improving the Approximate Search

If the “Code Generation Algorithm” uses the Column-Sum-Check as discussed

above (in the approximate mode) there are certain problems associated with the

low-degree nodes. A wrong survivor path decision at a trellis merge (explained in

Section 2.5.4(b) ), is liable to cause more problems at the low degree nodes rather

than high-degree ones since any stopping sets that are left undetected will consist

only of low degree nodes. On the other hand, the above algorithm is much more

accurate at the medium-to-high degree nodes once the graph has been grown to

some extent. Notice that the GACE algorithm fails to pick up stopping sets such

as those formed in Fig. 2.9 (suppose that η = 1), since it ignores the actual

connections of a variable node. As an extreme case consider two variable nodes

of degree d > 2 that share “all” their check nodes. Then all cycles in which

they participate have an ACE value of 2(d − 2). However these two nodes form

a stopping set that would be picked up by the Column-Sum-Check algorithm.

These kinds of problems are more likely to occur at high degree nodes.

A joint approach where the GACE algorithm is used on low degree nodes and

the Column-Sum-Check on high degree nodes provides substantially improved
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results as explained in the next section.

2.5.6 Simulations and Discussion

We used our algorithm to construct (n = 1028, k = 514) and (n = 4098, k = 2045)

codes with (dACE = 10, η = 3) that have an irregular degree distribution given

by (2.3). We constructed three different classes of codes -

• CSC - These codes were designed using the Column-Sum-Check algorithm

described above. Two codes were generated and the performance of the

better code is presented.

• GACE-constrained - These codes were designed using the GACE tech-

nique. The codes had a (dACE, η) profile of (10, 3) (the length 1028 codes

are the ones used in Section 2.4.4 and one length-4098 code was generated).

• Joint - In designing these codes we applied the GACE algorithm on the

low degree nodes i.e. for variable nodes of degree ≤ η + 1 = 4 and the CSC

algorithm on the high degree nodes as discussed above. For an accurate

comparison the columns of the parity check matrix of these codes for degrees

up to 4 are identical to the only GACE-constrained codes. These codes

succeed in reducing the error floor even further.

From Fig. 2.11(a) we observe that :-

• The CSC code performs worse than the (10, 3) GACE-constrained code in

the high-SNR regime. As explained in previous subsection this is due to

wrong decisions taken while placing the low-degree nodes.

• The Joint method produces codes that have a lower error floor than codes
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Figure 2.11: (a) A comparison of the AWGN performance of length-1028, CSC

codes, (10, 3) GACE-constrained codes and codes designed using the Joint ap-

proach and (b) the AWGN performance of length-4098, (10, 3) GACE-constrained

codes and codes designed using the Joint approach

that are only GACE-constrained. The performance of the Joint code is

better than the GACE-constrained code even at lower SNR’s.

At higher block lengths (see Fig. 2.11(b)) however the difference is observed only

at very low bit error rates (< 10−7). Thus the Joint method provides a means of

improving the performance of irregular LDPC codes at short block lengths over

the GACE technique. More comparative simulations are underway.

2.6 Conclusion

We proposed a generalization of the ACE algorithm [47] (called GACE) for the

construction of irregular LDPC codes and performed an analysis of the expected

stopping set spectrum of GACE-compliant codes for a particular block length

and degree distribution. Our results show that the GACE algorithm significantly

reduces the number of small stopping sets in the code. For (dACE, η)-compliant
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codes numerical computation of the upper bounds suggests that the expected

number of stopping sets decreases exponentially with η. It is further shown that

the expected number of stopping sets is lower for all sizes up to dc × dACE/2 for

a concentrated right degree code.

A derivation of the expected number of cycles for the Random and the GACE-

constrained ensembles reveals that the GACE-constrained ensemble does not have

a significant advantage as far the number of cycles go. However we demonstrated

that the GACE-constrained ensemble has good expansion properties. The GACE-

constrained ensemble has a high probability of producing a code that has the

required expansion parameters and this probability is shown to increase signifi-

cantly as the values of dACE and η are increased. Since good expansion has been

shown to imply good performance over the BSC/AWGN channels, our analysis

provides rigorous justification for the performance of GACE-constrained codes

over these channels and also makes the case for using (dACE, η) parameters as a

design rule in the construction of irregular LDPC codes. In a nutshell we have

put forward the point of view that for the construction of irregular LDPC codes

it is sufficient to avoid cycles of low GACE rather than trying to optimize the

girth which is a much harder constraint. To the best of our knowledge the GACE

algorithm is one of the first provably good “non-algebraic” code construction

techniques for irregular LDPC codes. We also proposed a new algorithm (called

Column-Sum-Check) for the generation of irregular LDPC codes based on a sum-

ming columns of the parity-check matrix. A combined approach where the GACE

algorithm is used on the low-degree variable nodes and the Column-Sum-Check

algorithm is used on the high-degree variable nodes is found to give improved

results at short block lengths.

The question of finding an achievable (dACE, η) region for a particular degree
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distribution and block length remains open. An analysis based on the actual

trellis-based algorithm used for the code construction would be valuable. In

practice 6 ≤ dACE ≤ 11 and 2 ≤ η ≤ 4 have been obtained.
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CHAPTER 3

On the Capacity of Network Coding for

Random Networks

3.1 Introduction

Consider a communication network where one source node wants to transmit

information through a network to multiple terminal nodes. This chapter considers

the problem of finding the capacity of this scenario for random networks. The

capacity under consideration here is the graph-theoretic max-flow capacity, not

the capacity in the information-theoretic sense.

It is a known fact that routing achieves the max-flow capacity [54] of a network

when transmissions are from a single source to a single terminal (for a wired

network). However, in their seminal paper Ahlswede et al. [19] showed that for

the single-source multiple-terminal case, the information rate to each terminal is

the minimum of the individual max-flow bounds over all source-terminal pairs

under consideration and that in general we need to code over the links in the

network to achieve this capacity. Li et al. [22] showed that linear network coding

is sufficient for achieving the capacity of the transmission of a single source to

multiple terminals. Subsequent work by Koetter and Médard [23] and Jaggi et

al. [21] presented constructions of linear multicast network codes. A randomized

construction of multicast codes was presented by Ho et al. [24] and Chou et
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Figure 3.1: Network with source s and terminals y and z. Note that sending

b1 ⊕ b2 on the w → x link is more efficient than simply forwarding b1 or b2.

al. [25] demonstrated a practical scheme for performing randomized network

coding. More recently, several authors have considered the use of network coding

for non-multicast problems [26] where there are multiple sources and multiple

receivers and the receivers have arbitrary sets of demands. These problems are

substantially harder and in fact it is necessary to utilize non-linear solutions in

some cases [27]. Network coding has also been considered for the transmission of

correlated sources over a network in [33][42].

It is important to clearly differentiate between routing and network coding.

We say that a network employs routing when each node in the network performs

only a replicate and forward function. Thus, each node can create multiple copies

of a received packet and forward it on different lines. Network Coding, on the

other hand, refers to the situation when each node has the ability to perform

operations such as linear combinations on the received data and then send the

result on different lines. So, routing is a special case of network coding.

The usefulness of network coding can be understood by considering a simple

topology shown in Fig. 1, which we borrowed from [19]. In Fig. 3.1 each link can

transmit a single-bit, error-free and delay-free. Observe that performing network
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coding (as shown in Fig. 3.1) enables transmission of both b1 and b2 to both the

terminals y and z in a single transmission whereas routing would require more

transmissions. In the discussion in this chapter only the source and the terminal

nodes are communicating with each other and the rest of the nodes are acting as

relays.

Sections 3.2 and 3.3 prove high-probability results for the network coding

capacity of weighted random graphs as described in [55] (a model for wired net-

works) and weighted random geometric graphs as described in [56] (a model for

wireless networks) respectively. Section IV provides simulations that confirm

the results and Section V concludes the chapter.

3.2 Wired Networks - The Weighted Random Graph Model

Consider a single-source multiple-terminal transmission, where we denote the

source s and the terminals t1, ..., tl. Let there be n relay nodes in the network.

As shown in Fig. 3.2 the links between the relay nodes are bi-directional with

equal capacity in both directions (a model along the same lines was considered

in[57]). The source s has only outgoing links and the terminals ti, 1 ≤ i ≤ l only

have incoming links.

Definition 14 We assume the following model on the graph.

1. The source node s is connected to each relay node i by a link of capacity Csi

(it has only outgoing links).

2. Each relay node i is connected to another relay node j by a link of capacity

Cij. There exists a directed link from i to j of capacity Cij and a directed

link from j to i of capacity Cji such that Cji = Cij.
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Figure 3.2: The figure shows the connectivity of the different types of nodes

present in the network. The source node S has only outgoing edges whereas

the terminals Ti’s have only incoming edges. The inter-relay connections are all

bi-directional.

3. Each relay node i is connected to each terminal node tj by a link of capacity

Citj . Terminal nodes have only incoming links.

4. All the link capacities are distributed i.i.d. ∼ X,X ≥ 0, such that E[X] <

∞.

Henceforth we shall refer to this model as the G WRG (WRG stands for Weighted

Random Graph) model, and our results shall be for random instances of it. Sim-

ilar techniques were used in [58] in an algorithmic context.

3.2.1 Weighted Random Graph Model - The General Case

First consider the case l = 1 i.e. only one receiver terminal for simplicity. The

results will generalize for larger l.

Lemma 4 Let G be a random instance of the model G WRG with l = 1. Let ϕ(θ) =

E[e−θX ], for θ > 0 and E[X] = µ. Let Ck =
∑n

i=k+1 Csi +
∑k

j=1

∑n
i=k+1 Cji +
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∑k
i=1 Cit1 be the capacity of a cut in G as shown in Fig. 3.3. The cut is defined by

partitioning the vertex set V into a set Vk (|Vk| = k +1) such that s ∈ Vk and the

complementary set V̄k (|V̄k| = n−k+1) such that t1 ∈ V̄k (thus Ck is the capacity

of a particular instance of a cut in which |Vk| = k + 1 and |V̄k| = n − k + 1). If

0 < ε < 1, then

P (Ck ≤ (1 − ε)E[Ck]) ≤ e−(n+k(n−k))a(ε) (3.1)

where, a(ε) is a function such that ln ϕ(θ)+θ(1−ε)µ ≤ −a(ε) < 0 for some θ > 0.

R1

Rk

Rk+1

T1

Rn

S

k

__
VVk

Figure 3.3: There are
(

n
k

)
cuts for which |Vk| = k + 1 and |V̄k| = n− k + 1. The

figure shows one such cut. The broken lines depict the links between relay nodes.

The solid lines depict the links between the source/terminals and the relay nodes.

Proof : Since Ck =
∑n

i=k+1 Csi+
∑k

j=1

∑n
i=k+1 Cji+

∑k
i=1 Cit1 , where all the terms

are distributed i.i.d ∼ X, we obtain E[Ck] = (n + k(n − k))µ. Let θ > 0. Then,

P (Ck ≤ (1 − ε)E[Ck]) = P (e−θCk ≥ e−θ(1−ε)E[Ck])

≤ E[e−θCk ]

e−θ(1−ε)E[Ck]
(Using Markov’s Inequality)

= [ϕ(θ)]n+k(n−k) exp[θ(1 − ε)(n + k(n − k))µ]

= exp[(n + k(n − k))(ln ϕ(θ) + θ(1 − ε)µ)]

≤ exp[−(n + k(n − k))a(ε)]

(3.2)
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It is possible to prove the existence of a function a(ε), such that for some θ > 0,

(Appendix, Theorem 19).

ln ϕ(θ) + θ(1 − ε)µ ≤ −a(ε) < 0 for some θ > 0 (3.3)

This proves the bound. �

Based on the above lemma we can obtain a corollary that bounds the probability

that any cut in the graph falls below (1 − ε) times it’s mean value.

Corollary 3 Let G be a random instance of the model G WRG with l = 1. Let Ck

be as defined in Lemma 4. Define Ak to be the event {Ck < E[Ck](1− ε)}. Then,

P (∪kAk) ≤ 2 exp[−na(ε)](1 + exp[−na(ε)/2])n (3.4)

Proof : From Lemma 4 we know that,

P (Ak) ≤ exp[−(n + k(n − k))a(ε)] (3.5)
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There are a maximum of 2n cuts in the graph. A union bound on all Ak’s gives,

P (∪kAk) ≤
n∑

k=0

(
n

k

)
exp[−(n + k(n − k))a(ε)]

≤ exp[−na(ε)]
n∑

k=0

(
n

k

)
exp[−k(n − k)a(ε)]

= β
n∑

k=0

(
n

k

)
βn k

n
(1− k

n
) where β = exp[−na(ε)] < 1.

= β
[�n/2	∑

k=0

(
n

k

)
βn k

n
(1− k

n
) +

n∑
k=�n/2	+1

(
n

k

)
βn k

n
(1− k

n
)
]

≤ β
[�n/2	∑

k=0

(
n

k

)
βn k

2n +
n∑

k=�n/2	+1

(
n

k

)
βn 1

2
(1− k

n
)
]

since, when
k

n
∈ [0, 1/2],

k

n

(
1 − k

n

)
≥ k

2n

and when
k

n
∈ [1/2, 1],

k

n

(
1 − k

n

)
≥ n − k

2n

≤ 2β[1 +
√

β]n

= 2 exp[−na(ε)][1 + exp(−na(ε)/2)]n

(3.6)

�

Similarly we can upper bound the probability that a random instance of G WRG

with l = 1, has a minimum cut ≤ (1 − ε)E[C0]. Note that E[C0] is the expected

value of the total flow to the nearest neighbors (i.e. nodes that can be reached

in one hop) of the source. E[Cn] is the expected value of the total flow from the

nearest neighbors of the terminal to the terminal itself. By symmetry E[Cn] =

E[C0].

Corollary 4 Let Cmin(s → t1) denote the s → t1 minimum cut of a random
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instance of G WRG with l = 1. Then,

P

(
Cmin(s → t1) ≤ (1 − ε)E[C0]

)

≤ 2 exp(−na(ε))

(
1 + exp(−na(ε)/2)

)n (3.7)

Proof : Let us define Ãk to be the event {Ck < (1−ε)E[C0]} and Ak to be the event

that {Ck < (1 − ε)E[Ck]}. Recall that E[C0] = nµ and E[Ck] = (n + k(n − k))µ

so that, E[Ck] ≥ E[C0] for k ≥ 0. So,

P (Ãk) ≤ P (Ak) (3.8)

Thus,

P (Cmin(s → t1) ≤ (1 − ε)E[C0]) = P (∪kÃk)

≤
∑

k

P (Ãk)

≤
∑

k

P (Ak)

(3.9)

From Corollary 3 the result follows. �

The above corollary bounds the probability that the s → t1 minimum cut falls

below (1 − ε)E[C0]. In the general case we have l terminals. Therefore the

probability that at least one of the s → ti, 1 ≤ i ≤ l minimum cuts is less than

(1 − ε)E[C0] can again be bounded by a union bound.

Theorem 9 Consider the model specified in Definition 14. Let a(ε) be a function

of ε, such that ln ϕ(θ)+θ(1−ε)µ ≤ −a(ε) < 0, for some θ > 0. If ε < 1, then with

probability at least 1 − l · 2 exp[−na(ε)][1 + exp(−na(ε)/2)]n the network coding

capacity CNC
s,t1,...,tl

> (1 − ε)E[C0].
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Proof :

P (CNC
s,t1,...,tl

≤ (1 − ε)E[C0])

= P (∪l
i=1{Cmin(s → ti) ≤ (1 − ε)E[C0]})

≤
l∑

i=1

P (Cmin(s → ti) ≤ (1 − ε)E[C0])

≤ l · 2 exp(−na(ε))(1 + exp(−na(ε)/2))n

⇒ P (CNC
s,t1,...,tl

> (1 − ε)E[C0])

≥ 1 − l · 2 exp(−na(ε))(1 + exp(−na(ε)/2))n

(3.10)

�

Theorem 10 Consider the model specified in Definition 14 with the additional

condition that ζ(θ) = E[eθX ] < ∞ for θ ∈ [0, θ′]. Let b(ε) be a function of ε such

that ln ζ(θ) − θ(1 + ε)µ ≤ −b(ε) < 0 for some 0 < θ < θ′. If ε > 0, then with

probability at least 1 − e−nb(ε), the network coding capacity CNC
s,t1,...,tl

≤ (1 + ε)nµ.

Proof: To show the upper bound on P (CNC
s,t1,...,tl

≥ (1 + ε)nµ) it is sufficient to

consider the cut separating the source from all the other nodes. Let θ > 0,

P (CNC
s,t1,...,tl

≥ (1 + ε)nµ) ≤ P (
n∑

i=1

Csi ≥ (1 + ε)nµ)

≤ E[eθ
�n

i=1 Csi ]

eθ(1+ε)nµ

= exp[n(ln ζ(θ) − θ(1 + ε)µ)]

≤ exp[−nb(ε)]

(3.11)

It is possible to prove the existence of b(ε) so that for some θ, ln ζ(θ)−θ(1+ε)µ <

−b(ε) < 0, (Appendix,Theorem 20). �

Together Theorems 9 and 10 show a concentration of the network coding capacity
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around nµ. We can specialize the above result to obtain more concrete statements

about models where we fix the link capacity distribution. To illustrate the results

more clearly we consider a model similar to the random graph G(n, p) [55], where

the link capacities are Bernoulli random variables with parameter p and a model

where the link capacities are exponentially distributed with parameter λ.

3.2.2 Random Graph Model with Bernoulli Distributed Weights

Under this model we assume that the link capacities are distributed as Bernoulli

random variables with parameter p.

ϕ(θ) = 1 − p(1 − e−θ)

≤ exp(p(e−θ − 1))
(3.12)

Thus, we have,

ln ϕ(θ) + θ(1 − ε)µ ≤ p(e−θ − 1) + pθ(1 − ε) (3.13)

The RHS is minimized by θ = − ln(1 − ε) (by simple differentiation and some

algebra). So,

−a(ε) = −p(ε + (1 − ε) ln(1 − ε))

≤ −p
ε2

2

(3.14)

Now we are in a position to evaluate the bound in Corollary 4.

Theorem 11 Consider the model specified above with Bernoulli distributed link

capacities with parameter p with l terminals. Let ε =
√

4d ln n
np

, with d > 1. If

ε < 1, then with probability 1 − O(l/n2d) the network coding capacity CNC
s,t1,...,tl

>

(1 − ε)np and with probability 1 − O(1/n8pd), CNC
s,t1,...,tl

≤ (1 + ε)np.
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Proof: Based on the derivation above we can evaluate the RHS of the bound in

Corollary 4 with ε =
√

4d ln n
np

. Therefore,

P (Cmin(s → ti) ≤ (1 − ε)np) ≤ 2

n2d

[
1 +

1

nd

]n

=
2

n2d

[ n∑
k=0

(
n

k

)( 1

nd

)k]

≤ 2

n2d

∞∑
k=0

( n

nd

)k

≤ 2

n2d − n1+d
since d > 1

≈ O
( 1

n2d

)

(3.15)

So as in Theorem 9,

P (CNC
s,t1,...,tl

≤ (1 − ε)np)

= P (∪l
i=1{Cmin(s → ti) ≤ (1 − ε)np})

≤
l∑

i=1

P (Cmin(s → ti) ≤ (1 − ε)np)

≈ O
( l

n2d

)
(3.16)

The upper bound on P (CNC
s,t1,...,tl

) simply reduces to a Chernoff bound for Bernoulli

random variables [59].

P (CNC
s,t1,...,tl

≥ (1 + ε)np)

≤ P (
n∑

i=1

Csi ≥ (1 + ε)np)

≤ P (|
n∑

i=1

Csi − np | ≥ npε)

≤ 2e−2np2ε2 By a simple Chernoff Bound [59]

= O

(
1

n8pd

)
(3.17)

�
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3.2.3 Random Graph Model with Exponentially Distributed Weights

Here we assume that the capacity of each link is distributed as an exponential

random variable with mean λ. Thus, in this case,

ϕ(θ) =

∫ ∞

0

e−θxλe−λxdx

=
λ

θ + λ

(3.18)

Therefore, we can write

ln ϕ(θ) + θ(1 − ε)
1

λ
= − ln

(
θ + λ

λ

)
+

θ

λ
(1 − ε) (3.19)

The RHS is minimized by θ = λε
1−ε

and so we can obtain,

−a(ε) = ε + ln(1 − ε)

≤ −ε2

2

(3.20)

It is now straightforward to derive an upper bound on the probability that the

s → ti (for some i) minimum cut of a random instance of the graph falls below

(1 − ε)n
λ

using Corollary (4). Subsequently we can obtain the bound on the

probability that the network coding capacity falls below (1 − ε)n
λ
.

Theorem 12 Consider the model specified above with exponentially distributed

link capacities with parameter λ. Let ε =
√

4d ln n
n

, with d > 1. If ε < 1, then with

probability 1−O(l/n2d), the network coding capacity CNC
s,t1,...,tl

> (1− ε)n
λ

and with

probability 1 − O(1/n
4d
5 ), CNC

s,t1,...,tl
≤ (1 + ε)n/λ.

Proof: The first part of the claim is obvious by simply utilizing Corollary 4 with

ε =
√

4d ln n
n

.

For the second part of the claim, we need to produce a suitable b(ε) as in

Theorem 10. It can be easily verified that E[eθX ] = λ
λ−θ

, θ < λ. It can be
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also be shown that ( λ
λ−θ

)ne−nθ
(1+ε)

λ is minimized by setting θ = λ ε
1+ε

. After some

manipulation we can obtain,

P (CNC
s,t1,...,tl

≥ (1 + ε)
n

λ
) ≤ en(ln(1+ε)−ε) (3.21)

We further observe that,

ln(1 + ε) − ε = ln

(
1 + ε

eε

)

≤ ln

(
1 + ε

1 + ε + ε2/2

)

= ln

(
1 − ε2

2 + 2ε + ε2

)

≤ − ε2

2 + 2ε + ε2

≤ −ε2/5 since ε < 1

(3.22)

Finally we have,

P (CNC
s,t1,...,tl

≥ (1 + ε)
n

λ
) ≤ e−nε2/5 (3.23)

and the result follows by substituting the appropriate value of ε. �

In both the bounds above, for higher d, the probability that the network coding

capacity falls below (1 − ε)nµ is lower. At the same time, a higher d causes

ε to increase. There is tradeoff between these two parameters that decides the

tightness of the bound. We remark at this point that the above results are general

in the sense that they can be re-derived for link capacity distributions that are

not the same for source-relay, relay-relay and relay-terminal. Under moderate

conditions on the distributions the high-probability bound on the capacity would

continue to hold.

Thus, in a weighted random graph there is a strong case for using network

coding since the network coding capacity is with high probability the expected

total flow to the nearest neighbors of the source. On average we won’t lose
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much because of the random nature of the graph. Note that for a wired network

the capacity of the single-source multiple-terminal information transfer (i.e. the

network coding capacity) is actually achievable. There exists a network code that

can be found in polynomial time [21] that achieves this capacity. However the

result above is an “existence result”, we do not provide an algorithm for finding

the network code.

While the minimum of the max-flows from s to ti, 1 ≤ i ≤ l, is greater than

(1 − ε)nµ with high probability, the extent to which network coding is actually

required to achieve this capacity has not been investigated in this work. In

many cases investigated by other authors [60], routing has been found to perform

reasonably well.

3.3 Ad Hoc Wireless Networks - The Weighted Random

Geometric Graph Model

At first one might consider network coding inappropriate for a distributed wireless

network because transmissions from relatively simple distributed wireless nodes

(such as wireless sensor networks) are typically omni-directional, precluding the

transmission of different bits from the same node to different links at the same

instant of time and in the same frequency band. However communication has

been shown to dominate all other sources of energy consumption in a sensor net-

work. So, in order to save power, wireless sensor nodes typically will go into

a sleep mode from which they periodically awaken to listen for transmissions.

Furthermore, nodes negotiate time slots and frequency slots with which to com-

municate for both transmission and reception, also with a desire to minimize

power drain. Under these practical assumptions network coding solutions would

79



be possible to implement in a wireless network. Observe that many sensor net-

works would need a sensor node to periodically send data to a set of other nodes.

Network coding might provide a viable solution to the low-energy single-source

multiple terminal information transfer problem where distinct edges correspond

to different frequencies or time slots in a single transmission frame.

3.3.1 Weighted Random Geometric Graph Model

The weighted random graph model of Section 3.2 is not a realistic model for a

wireless ad-hoc network or sensor network because it places edges between nodes

independent of the distance between them. In fact distance is a critical factor in

determining the connectivity properties of a wireless network since propagation

losses cause the power of the signal to fall off as r−α where r is the distance

between the nodes and 2 ≤ α ≤ 4. Thus we have to use a different model for

wireless networks.

Definition 15 The following model is assumed for the wireless network.

1. The source, terminals and the relay nodes are scattered independently and

uniformly on the unit square [0, 1]2.

2. The source node s is connected to each relay node i by a link of capacity Csi

(it has only outgoing links).

3. Each relay node i is connected to another relay node j by a link of capacity

Cij. There exists a directed link from i to j of capacity Cij and a directed

link from j to i of capacity Cji such that Cji = Cij.

4. Each relay node i is connected to each terminal node tj by a link of capacity

Citj (it has only incoming links).

80



Rj

Rij

iR

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

i j

U

Figure 3.4: If a third node k is connected to j then it surely falls in the shaded

area Rj. If it falls in Rij = Ri ∩ Rj then it is also connected to i.

5. Interference effects are neglected.

6. Let the distance between nodes i and j be denoted d(i, j). The link capacity

between nodes i and j, Cij is assumed to have the following form,

Cij =

⎧⎪⎨
⎪⎩

1 if d(i, j) ≤ r,

0 otherwise

(3.24)

This model is similar to a class of graphs known in mathematical literature as

Random Geometric Graphs [56].

Henceforth, we shall refer to the above model as the G WRGG (WRGG stands

for Weighted Random Geometric Graph) model with parameter r. This model

is fundamentally different from the weighted random graph model because of

the inherent dependencies in the connectivity among different nodes. This is

discussed in more detail in the discussion that follows. Consider three vertices

i, j, k in a graph from the above model as illustrated in Fig. 3.4. The region Ri is
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the circle centered at i. Since node placements are i.i.d. uniform, it follows that

P [i → k] = P [i → j] (3.25)

Now consider the probability, P [i → k|i → j, k → j]. For simplicity of ex-

planation we neglect the effects arising from the placement of nodes near the

boundaries in the following argument. From Fig. 3.4,

P [i → k|i → j, k → j] =
Area(Rij)

Area(Rj)
(3.26)

To see this, observe that given that i → j and k → j, we know that i ∈ Rij and

k ∈ Rj respectively. Thus, the only way in which i can be connected to k is if

k ∈ Rij. Also note that in general,

Area(Rij)

Area(Rj)
�= Area(Ri)

Area(U)
(3.27)

which in turn means that

P [i → k|i → j, k → j] �= P [i → k] (3.28)

The analysis is further complicated by the fact that the connectivity of a node

in the case of the WRGG is position-dependent. If either the source or any of

the terminal nodes is located close to the boundary it is highly probable that

the max-flow is much lower compared to the situation when they are located

sufficiently in the interior. As a result unlike the case of the WRG the network

coding capacity does not concentrate about a particular value. However, even

in this case we can provide high probability statements about the behavior of

the network coding capacity. This analysis only provides an upper bound on

the amount of information flow possible, in part because max-flow bounds are

upper bounds in general for wireless systems [3] Chap. 14, and in part because

interference is ignored.
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3.3.2 A High Probability Result

We proceed by demonstrating that the WRGG can be treated in a manner very

similar to the WRG case under certain conditions. Consider Fig. 3.5. Node

V1 that lies in the interior has coverage area µ = πr2. On the other hand, node

V2 lying on an edge has coverage area πr2/2 and node V3 lying on a corner has

a coverage region µ′ = πr2/4. The event that either the source or one of the

terminals lies in a corner occurs with constant probability so in general any high

probability result about the capacity will be dominated by this event.

Now consider the hypothetical situation, in which all nodes adjust their trans-

mit power so that the area of their region of coverage = µ′ = πr2/4. This would

require the nodes lying strictly in the interior of the unit square to reduce their

power. Note that µ′ can be interpreted as a probability since the square is as-

sumed to be of unit area and hence 0 ≤ µ′ ≤ 1. If the nodes operate with a larger

power the max-flow can only improve. Let i, j1, j2, ..., jk be a set of nodes. Let

pos(k) be the random variable denoting the position of a node k. Then,

P [Cij1 = z1, Cij2 = z2, ..., Cijk
= zk]

=

∫
[0,1]2

fpos(i)(A)

× P [Cij1 = z1, Cij2 = z2, ..., Cijk
= zk|pos(i) = A] dA

=

∫
[0,1]2

Πk
α=1P [Cijα = zα|pos(i) = A]dA

by the conditional independence of Cijα ’s given i’s position

=

∫
[0,1]2

Πk
α=1(µ

′)zα(1 − µ′)1−zαdA

= Πk
α=1(µ

′)zα(1 − µ′)1−zα

= Πk
α=1P [Cijα = zα]

(3.29)

This demonstrates that the capacities of the outgoing links from any particular
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V3

V2

V1

Figure 3.5: The figure shows the different coverage area that nodes may have

depending on their position on the unit square. Node V1 has the maximum

coverage area as it lies sufficiently in the interior followed by V2 that lies on an

edge and V3 that lies on a corner.

node are independent. By a very similar argument it can be shown that the

capacities of the incoming links into a particular node are independent as well.

The assumption that the connectivity of node i is the same irrespective of it’s

location on the square is crucial to the above observation.

Lemma 5 Let G be a random instance of G WRGG with l = 1. Let µ′ be the prob-

ability that two nodes are connected under the hypothetical assumption that all

nodes reduce their power as explained above. Let Ck =
∑n

i=k+1 Csi+
∑k

j=1

∑n
i=k+1 Cji+∑k

i=1 Cit1 be the capacity of a cut in G as shown in Fig 3.3. The cut is defined

by partitioning the vertex set V into a set Vk(|Vk| = k + 1) such that s ∈ Vk and

the complementary set V̄k(|V̄k| = n − k + 1) such that t1 ∈ V̄k. Then,

P [Ck ≤ (1 − ε)(n + k(n − k))µ′] ≤ e−(n+k(n−k))µ′ ε2

2 (3.30)
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Proof : Consider

Ck =
n∑

i=k+1

Csi +
k∑

j=1

n∑
i=k+1

Cji +
k∑

i=1

Cit1 (3.31)

By the argument presented earlier, outgoing/incoming links from/to any partic-

ular node are independent. In addition two links that have no node in common

are anyway independent. Thus, all the terms in the above sum are independent.

Therefore bounding the probability that the cut falls below (1−ε)(n+k(n−k))µ′

reduces to the situation in Lemma 4. The theorem follows from Lemma 4 and

the discussion in Section 3.2.2. �

It is now straightforward to conclude the high-probability statement on the net-

work coding capacity for the wireless case, based on arguments similar to the

ones made in Theorem 11.

Theorem 13 Let G be a random instance of G WRGG, with parameter r. Let

µ′ = πr2/4 (since the square is of unit area we can treat µ′ as a probability) and

ε =
√

4d ln n
nµ′ with d > 1. If ε < 1, then with probability 1 − O(l/n2d), the network

coding capacity CNC
s,t1,...,tl

> (1 − ε)nµ′.

Proof : The proof follows by making the hypothetical assumption that all nodes

adjust their power so that their coverage area = µ′ = πr2/4. Then Lemma 5

holds and the stated result holds by a discussion identical to the one presented

in the proof of Theorem 11. In reality of course many nodes shall have coverage

that exceeds µ′. However this can only cause the minimum cut to improve. Thus,

the lower bound on the probability still holds. �

It is important to note that this is essentially the best that one can hope for

since with constant probability = 1 − (1 − 4β)l+1 either the source or one of the

terminals lies in a region of area β near the corners of the unit square. One

can impose restrictions on the positions of the sources and the terminals e.g.
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force their positions to be sufficiently within the interior of the unit square etc.

One can also consider scenarios where the nodes at the boundary use directional

antennas so that their connectivity is not reduced. However in this work we have

not considered those possibilities.

3.4 Simulations and Discussion

We performed simulations for the weighted random graph with Bernoulli (p =

0.05) distributed link capacities, and the weighted random geometric graph with

parameter r = 0.1262. The number of nodes was chosen to be n = 1000. The

value of r was chosen so that p ≈ πr2. Different nodes were declared to be the

source and terminal respectively and a histogram of the s− t minimum cuts was

generated. These results are presented in Fig.3.6. Note that the histogram of

Fig. 3.6(b) extends more to the left than the one in Fig.3.6(a). The results are in

agreement with the theoretically derived results. Note that the histogram of Fig.

3.6(b) extends to about 10 ≈ 45.99/4. This means that with high probability the

minimum cut is greater that 10 which is what we have predicted.

To make the inter-node distances more homogeneous, we defined a different

toroidal metric [61] for the distance between two nodes. With a toroidal distance

metric, nodes at one boundary of the square are considered to be close to the

nodes at the opposite boundary i.e. nodes at the left boundary of a square can

have links with nodes at the right boundary, and nodes near the top of the square

can have links with those at the bottom. The histogram of the s − t minimum

cuts is shown in Fig. 3.6(c). Note that now the histogram looks very similar to

Fig. 3.6(a). This suggests, that at least for this case, the statistics of the wired

network and wireless networks would be similar. As we have shown before the

capacity is basically dominated by the number of nearest neighbors of the source
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Figure 3.6: Histograms of s-t minimum cuts for (a)weighted random graphs

with Bernoulli links, (b) weighted random geometric graphs with parameter

r = 0.1262, and (c) weighted random geometric graphs with r = 0.1262 and

toroidal distance metrics.

and the terminals. Thus, in practice to avoid the boundary effects it should be

sufficient to choose the source and the terminals to be sufficiently towards the

center of the region.

3.5 Conclusion

We presented high probability results for the capacity of network coding for

two different classes of random networks, namely the weighted random graph

model (modeling wired networks) and the weighted random geometric graph

model (modeling wireless networks). For the case of wired networks with a dense

collection of relay nodes, the network coding capacity is dominated by the num-

ber of nearest neighbors of the source and terminal nodes. In the wireless case,
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boundary effects cause the nodes near the boundary to have fewer neighbors.

While we have shown high-probability results about the network coding ca-

pacity, the extent to which network coding is actually required to achieve it has

not been investigated in this work. If the whole topology of the network is known

in many cases routing may perform as well. However it is important to keep in

mind that network coding can be implemented in a distributed fashion [24] and

provides a robust solution to the multicast problem as against a routing solution

that is equivalent to the hard problem of Steiner tree-packing [20].
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CHAPTER 4

The Single Source Two Terminal Network with

Network Coding

4.1 Introduction

The seminal work of Ahlswede et al. [19] established that for the single-source

multiple-terminal multicast problem the achievable rate was the minimum of the

maximum flows to each terminal from the source. They showed that in general,

it is necessary to perform network coding to achieve this capacity. The basic

idea is to give the nodes in the network the flexibility of performing operations

on the data rather than simply replicating and/or forwarding it. Li et al. [22]

showed that linear network coding is sufficient for achieving the capacity of the

transmission of a single source to multiple terminals. Subsequent work by Koetter

and Médard [62] and Jaggi et al. [21] presented constructions of linear multicast

network codes. A randomized construction of multicast codes was demonstrated

by Ho et al. [24].

It is important to realize that the multicast capacity result of [19] assumes

that all the terminals are interested in the same data. The general network coding

problem with multiple sources and terminals and an arbitrary set of connections

is much harder and not much is known about it. In fact it has been shown in [27]

that non-linear network codes are necessary in certain non-multicast problems.
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Network coding has also been considered from a lossless compression point of

view in [63][33][42][43].

In this chapter we study a specific example of a non-multicast problem with

a single source and two sinks. We find a tight capacity region for this problem.

This problem was independently considered by Ngai and Yeung [28] and Erez

and Feder [29]. However our method of proof is very different and is based on

a simple graph-theoretic procedure that may be of independent interest. This

procedure was also utilized in [43].

4.2 Problem Formulation

Consider a communication network modeled as a directed graph G, with a spec-

ified source node S and two terminal nodes T1 and T2. We assume that the links

are noiseless and that each edge in G has unit capacity. This assumption can be

realized by picking a suitably large time unit, assuming sufficient error-correction

at the lower layers of the network and splitting edges of higher capacity into

parallel unit capacity edges.

Suppose that the source node S observes three independent processes X0, X1

and X2 such that terminal T1 is interested in (X0, X1) and terminal T2 is in-

terested in (X0, X2). Let the entropy rates of the processes be H0, H1 and H2

respectively. We show the necessary and sufficient conditions for the feasibility

of this connection. Furthermore it is shown that this problem can be solved by a

combination of pure routing and network coding, where the sources X1 and X2

can be simply routed to T1 and T2 whereas the source X0 may need network cod-

ing. The case of connections between terminal nodes is handled more naturally

in our framework as compared to [28].
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In the sequel the capacity assignment to an edge a → b is denoted by cap (a →
b) and the minimum cut between nodes V1 and V2 is denoted by min-cut(V1, V2).

By the max-flow min-cut theorem [18], the minimum cut is also the maximum

rate that can be transmitted from V1 to V2. By a solution to a given problem

we mean an assignment of appropriate coding vectors to each edge so that the

required network connection can be supported.

4.3 Results

The following theorem is the main result of this chapter.

Theorem 14 Consider a communication network modeled by a directed graph

G = (V,E) with one source node S and two terminal nodes T1 and T2. Three

independent processes X0, X1 and X2 are observed at S such that H(X0) =

H0, H(X1) = H1 and H(X2) = H2. T1 is interested in receiving (X0, X1) and

T2 is interested in receiving (X0, X2). If

min-cut(S, T1) ≥ H0 + H1, (4.1)

min-cut(S, T2) ≥ H0 + H2 and, (4.2)

min-cut(S, (T1, T2)) ≥ H0 + H1 + H2 (4.3)

there exists a solution where X1 can be routed to T1, X2 can be routed to T2 and

X0 can be sent to both T1 and T2 via network coding. Conversely if any of the

inequalities (4.1) - (4.3) are violated then the connection cannot be supported.

We defer the proof of this theorem until we have established a lemma that is

required. We start by defining an augmented graph G1 = (V1, E1) as depicted in

Fig. 4.1.
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Figure 4.1: The figure shows the augmented graph G1. The original graph G

comprises of S, T1, T2 and the network. The augmented graph G1 also contains

the virtual terminals T ′
1 and T ′

2 and the nodes Y1 and Y2. The virtual edges are

denoted by dashed lines and their capacities are labelled.

1. The new vertex set is V1 = V ∪{T ′
1, T

′
2, Y1, Y2} as shown in Fig. 4.1. T ′

1 and

T ′
2 can be regarded as virtual terminals, where the data is actually decoded.

Y1 and Y2 are virtual nodes introduced for the purposes of our proof.

2. The capacity assignments of the new edges are cap (T1 → T ′
1) = H0 +

H1, cap (T ′
1 → Y1) = H0 + H1, cap (T ′

1 → Y2) = H1, cap (T2 → T ′
2) =

H0 + H2, cap (T ′
2 → Y1) = H2 and cap (T ′

2 → Y2) = H0 + H2.
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Lemma 6 For the augmented graph G1 the following is true :-

min-cut(S, T ′
1) = H0 + H1 (4.4)

min-cut(S, T ′
2) = H0 + H2 (4.5)

min-cut(S, (T ′
1, T

′
2)) ≥ H0 + H1 + H2 (4.6)

min-cut(S, Y1) = H0 + H1 + H2 (4.7)

min-cut(S, Y2) = H0 + H1 + H2 (4.8)

Proof :- The first two equalities are obviously true. To see that min-cut(S, Y1) =

H0 +H1 +H2 note that all cuts between S and Y1 can be divided into four types:

a) The cut (C,Cc) such that S, T1, T2 ∈ C and Y1 ∈ Cc. By inspection such a

cut has capacity larger than or equal to H0 + H1 + H2.

b) S, T1 ∈ C and T2, Y1 ∈ Cc.

The min-cut(S, T2) ≥ H0 + H2 and min-cut(T1, Y1) = H0 + H1 and the

edges connecting T1 and Y1 are independent of the edges connecting S and

Y1. This means that such a cut has capacity at least 2H0 + H1 + H2.

c) S, T2 ∈ C and T1, Y1 ∈ Cc.

The min-cut(S, T1) ≥ H0 + H1 and min-cut(T2, Y1) = H2 and the edges

connecting S to T1 are independent of the edges connecting T2 to Y1. This

means that such a cut has capacity at least H0 + H1 + H2.

d) S ∈ C and T1, T2, Y1 ∈ Cc.

Since the min-cut(S, (T1, T2)) ≥ H0 + H1 + H2, therefore any such cut has

capacity at least H0 + H1 + H2.

Finally, the sum of the capacities on the incoming edges of Y1 is exactly H0 +

H1 +H2. This means that min-cut(S, Y1) = H0 +H1 +H2. The other statements
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in the lemma can be shown to be true in a similar manner. �

Using the augmented graph G1 we shall now demonstrate the existence of a

certain number of paths from S to T ′
1 and S to T ′

2 over which data can be routed.

Further, we shall show that it is possible to send the remaining data via network

coding such that the demands of each sink are satisfied. The arguments proceed

by utilizing the minimum cut conditions and performing a simple graph-theoretic

procedure on the chosen paths in G1. The details are given below.

Proof of Theorem 14 :-

First let us consider the paths from S to Y1 and S to T ′
2. Using Menger’s theorem

(see the book by van Lint & Wilson [18]) we can conclude that :

• There exists a set of (H0 + H1 + H2) edge-disjoint paths from S to Y1 from

(4.7). We call this set G.

• There exists a set of (H0 +H2) edge-disjoint paths from S to T ′
2 from (4.5).

We call this set R.

Now, we color the edges in paths ∈ G, green and the edges in paths ∈ R, red.

At the end of this procedure some edges on these paths may have just one color

while others may have two.

We claim that it is always possible to find H1 exclusively green paths (i.e.

paths that contain edges only having the color green) from S to T ′
1. The tech-

nique of proof is similar to the one used in [43][20]. To prove this we define an

algorithm A that shall be applied to a path P ∈ G.

Algorithm A (P) :-
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1. Traverse P starting at S and find the first edge e1 that has color (green,

red)

2. If no such e1 is found then STOP.

3. ELSE

Suppose e1 ∈ P ′ where P ′ ∈ R such that P ′ = P ′
1 − e1 − P ′

2 where P ′
1 is

the portion of P ′ from S to e1 and P ′
2 is the portion of P ′ from e1 to T ′

2.

Color all edges on P from S to e1, red in addition to their current color and

remove red from the edges in P ′
1. We now define a condition that each path

P ∈ G needs to satisfy.

Cond(P ) = {All edges in P are green}
or {First edge of P is (green, red)}

(4.9)

We continue applying A to each path of G until all paths in G satisfy Cond.

It is easy to see that A will eventually halt (for a proof see [43]).

At the end of this process we realize that there exist H1 paths belonging

to G that are exclusively green. This is true since if Algorithm A re-routes

a path ∈ R it removes the color red from one outgoing edge of S and

places it on another outgoing edge. Therefore the total number of outgoing

edges that are colored red remains constant at H0 + H2. It follows that

H0 +H1 +H2 − (H0 +H2) = H1 outgoing edges are colored green and since

the paths obey Cond all those paths are exclusively green.

Next we note that all the exclusively green paths need to pass through

T ′
1 since T ′

2 has exactly (H0 + H2) incoming edges all of which have to be

colored red. This proves the claim made above.

The critical point to be realized is that the re-routing of paths as above gives

us H1 paths from S to T ′
1 that are interference-free since these paths do not
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intersect with the paths from S to T ′
2. This means that data on these paths can

be simply routed. Applying exactly the same procedure on the set of paths from

S to Y2 and S to T ′
1 gives us H2 paths from S to T ′

2 that are interference-free.

Now suppose that these paths (H1 paths from S to T1 and H2 paths from S

to T2) are removed from G1 to obtain a new graph G2. Note that there still exist

H0 paths from S to T ′
1 and H0 paths from S to T ′

2 in G2. In other words, even

after the removal of the interference-free paths the maximum flow from S to T ′
1

and S to T ′
2 in G2 is H0. Using the multicast result of [19] we can surely transmit

the same H0 bits from S to T ′
1 and T ′

2 via network coding.

Thus, the entire solution can be realized by an appropriate choice of paths

such that,

1. H1 bits (process X1) can be routed from S to T ′
1 and H2 bits (process X2)

can be routed from S to T ′
2.

2. H0 bits (process X0) can be sent to both T ′
1 and T ′

2 by linear network coding

[22].

Finally we note that it is trivial to realize the virtual terminals T ′
1 and T ′

2 at the

terminals.

The proof of the converse is easy to see since even if one of the inequalities

(4.1) - (4.3) is violated then at least one terminal does not have enough capacity

to support its demand. This completes the proof of Theorem 14. �

It is possible to find networks where one needs to strictly perform network coding

for transmitting X0 (while routing X1 and X2) and hence our result is tight. A

simple example that demonstrates this is provided in Fig. 4.2. Here we have

H0 = 2 and H1 = H2 = 1. In Fig. 4.2 note that the min-cut(S, (T1, T2)) = 4.

Therefore among the outgoing links from S namely 1 → 6, 1 → 2, 1 → 3, 1 → 7,
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Figure 4.2: The sources observed at S are such that H0 = 2, H1 = H2 = 1. The

figure shows a network where it is necessary to send X0 via network coding. All

links have unit capacity.

one link needs to carry X1, one link needs to carry X2 and the remaining two

links can carry a combination of the bits from X0. By the rate requirements at

the terminal it is easy to see that the combination of the X0’s needs to be carried

on links 1 → 2 and 1 → 3. This means that the solution needs to be realized

by routing X1 on link 1 → 6, routing X2 on link 1 → 7 and using the remaining

part of the network to transmit X0. However the remaining part of the network

is precisely the celebrated butterfly example of [19] and we know that network

coding is essential for transmitting X0 over it.

4.4 Conclusion

We found the capacity region for a network information transfer problem with a

single source and two terminals when the use of network coding is permitted by

utilizing a simple graph-theoretic procedure that may be of independent interest.

It is interesting to note that the use of network coding permits us to obtain a
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tight characterization of the capacity region of this problem. However the region

for the general broadcast channel with two receivers is still unknown (this was

also noted by [29]).
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CHAPTER 5

Separating Distributed Source Coding from

Network Coding

5.1 Introduction

The Slepian-Wolf theorem [32] states that the lossless compression of two cor-

related sources that do not communicate with each other can be as efficient as

the compression of the two sources when they do communicate with each other.

Csiszár showed in [34] that linear codes were sufficient to achieve the Slepian-Wolf

bounds and computed error-exponents for various decoders. In that paper, he

also showed the existence of a universal decoder that successfully decodes without

requiring the knowledge of the joint statistics of the sources. In recent years there

has been a flurry of activity (see [30] [31] and their references) on code design for

this distributed compression problem (hereafter referred to as the S-W problem),

spurred mainly by applications in sensor networks and video coding problems.

The field of network coding investigates network flow problems when interme-

diate nodes in the network have the ability to forward functions of received pack-

ets rather than simply adopting a replicate and forward strategy. The seminal

work of Ahlswede et al. [19] showed that network coding achieves the capacity of

single-source, multiple-terminal multicast. Subsequent work [24][25] showed that

random linear network coding was an efficient distributed strategy to achieve
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this capacity. The multicast capacity of large random networks was considered

in [40]. Variants of this problem involving multiple sources and multiple receivers

are significantly harder and far less is known about them.

It is important to note that the classical S-W problem does not consider the

sources to be communicating over a network, i.e., there is a direct edge from each

source to the receiver. In addition the edges do not have capacities on them. The

S-W problem over a network has been considered by Razvan et al. [64] in the

context of one receiver but they impose costs on edges rather than considering

capacities on edges. In practical applications such as sensor networks, however,

one would expect that the sources communicate over a network with capacities on

the edges to multiple receivers. This makes the problem of deciding the feasibility

of a given distributed source coding problem with multiple sources and multiple

receivers an interesting and important one. This problem was considered by Ho

et al. [33]. They showed by using the approach pioneered by Csiszár that as long

as the minimum cuts between all non-empty subsets of sources and a particular

receiver were larger than the corresponding conditional entropies (more details

follow), random linear network coding followed by appropriate decoding at the

receivers would achieve the S-W bounds.

From a practical perspective one would like to leverage existing solutions to

the classical S-W problem and thus separate the problem of sending the appro-

priate number of coded bits over a network from the source coding part. The

solution proposed by [33] comes at the potentially high cost of jointly decoding

the source and the network code. In general, the network code may destroy the

structure in the source coder that allows tractable decoding. Indeed, if random

network coding is used then this may happen with high probability.

This chapter formally defines the problem of separation between distributed
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source coding and network coding and investigates the conditions under which

separation holds. We also define a parameter that quantifies the price of separa-

tion in terms of a multiplicative factor and provide bounds on it.

Section 5.2 starts with a brief overview of distributed source coding and net-

work coding. It formally introduces the notion of separation and defines the price

of separation. Sections 5.3 and 5.4 present results on separation for networks with

capacities and networks with costs on edges respectively. Section 5.5 outlines the

conclusions and suggests directions for future work.

5.2 Overview and Problem Formulation

Slepian and Wolf [32] in their landmark paper showed that independent source

coding of correlated sources (Fig. 5.1) could be as efficient as joint coding. For

the case of two sources (X1 and X2), they showed that if the source code rates

R1 (for X1) and R2 (for X2) satisfy

R1 > H(X1/X2), (5.1)

R2 > H(X2/X1), and (5.2)

R1 + R2 > H(X1, X2) (5.3)

then there exists a decoder that can recover X1 and X2 with high probability.

It was shown by Csiszár that the S-W bounds on the data compression could

be achieved by using linear codes. Effros et al. [63] present a simpler proof of

this fact. More specifically, the following was shown to be true. Let the source

alphabets of X1 and X2 be denoted by X1 and X2 respectively. X1 and X2 are

supposed to be Galois fields and X n
1 , X n

2 are considered as vector spaces over

these fields. For the sake of simplicity we state the result for the case when

X1,X2 are the binary field.
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Figure 5.1: The figure shows sources X1 and X2 being encoded independently at

source encoders S1 and S2 and being sent to a terminal T1.

Let A1,n be a �nR1�×n and A2,n be a �nR2�×n matrix with binary entries that

define the encoding functions at the sources. Let xn
1 (respectively xn

2 ) represent

the vector of symbols from source X1 (respectively X2) over n time instants.

The source encoders are defined to be α1,n(xn
1 ) = A1,nxn

1 and α2,n(xn
2 ) = A2,nxn

2

respectively. The decoding function βn : F
�nR1�
2 ×F

�nR2�
2 → F

n
2 ×F

n
2 takes as input

the encoded sources (α1,n(xn
1 ), α2,n(xn

2 )) and outputs an estimate of the original

sources (xn
1 , x

n
2 ). The decoding function βn is a typical-set based decoder. (Details

can be found in [63].) The error probability for the source code pair (A1,n, A2,n)

is given by Pe(A1,n, A2,n) = Pr(βn(α1,n(xn
1 ), α2,n(xn

2 )) �= (xn
1 , x

n
2 )).

Theorem 15 [63] Let (X1,1, X2,1), (X1,2, X2,2)... be drawn i.i.d. according to a

joint distribution p(X1, X2) on (F2)
2. Choose the sequence {(A1,n, A2,n)}∞n=1 of

rate-(R1, R2) source encoders by choosing each entry of each matrix to be 0 or

1 with probability 1/2. Then for an appropriately defined decoder and rates R1

and R2 that satisfy the S-W inequalities (5.1) – (5.3), E[Pe(A1,n, A2,n)] → 0 as

n → ∞.

Intuitively, the above result says that as long as the decoder receives a sufficient
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number of linearly combined bits from each source encoder it can decode error-

free with high probability.

To the best of our knowledge, Wyner was the first to propose a constructive

approach for the S-W problem in [65]. It was used by Pradhan and Ramchandran

[66] for practical S-W code design when the correlation between X and Y can

be modeled by a binary symmetric channel i.e., when Y can be considered to

be a noisy version of X and the noise can be modeled as a BSC. The approach

proceeds by encoding each source as a syndrome of an appropriately chosen binary

code. The decoder then decodes the sources based on the values of the received

syndromes.

X 1

S 1
’

X 2

S 2

S 1

S 2

T 1

T 2

’

Network

Figure 5.2: The figure shows a network with sources X1 and X2 being observed

at source nodes S1 and S2 and two terminals T1 and T2. S ′
i’s (i = 1, 2) can be

thought of as virtual source encoders feeding coded bits to each source node.

The network requires a transmission strategy that ensures that enough number

of coded bits reach the terminals of interest.

Now suppose that the two sources are communicating with the decoder over

a network. Figure 5.2 depicts this situation. Sources X1 and X2 are observed

at nodes S1 and S2 of the network. For now, suppose that only terminal node

T1 is interested in reconstructing X1 and X2. Without loss of generality one
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can assume that there exist virtual source encoders S ′
1 and S ′

2 that encode n

source symbols, which are then fed to S1 and S2. Suppose also that the source

encoders implement randomly chosen linear transformations as described above.

Let the number of input bits into S1 (respectively S2) be �nH(X1)� (respectively

�nH(X2)�). A natural strategy for the solution of this distributed source coding

problem (now over a network) is the following.

1. Compute the minimum cuts between nodes S1 and T1, S2 and T1 and

{S1, S2} and T1. If R1 and R2 represent the rates that can be transmitted

from S1 to T1 and S2 to T1, the minimum cuts define a capacity region CT1 ,

R1 ≤ min-cut(S1, T1), (5.4)

R2 ≤ min-cut(S2, T1), and

R1 + R2 ≤ min-cut({S1, S2}, T1).

If CT1 has a non-empty intersection with the S-W region defined in inequal-

ities (5.1) – (5.3) the problem has a solution. We pick a rational rate vector

(RT1
S1

, RT1
S2

) that belongs to this intersection, and n sufficiently large, such

that nRT1
S1

and nRT1
S2

are integers.

2. Over n time units, route the coded bits from S ′
1 and S ′

2 so that T1 receives

nRT1
S1

of the bits from S ′
1 and nRT1

S2
of the bits from S ′

2.

The decoder only needs to know the particular subsets of the bits from S ′
1 and

S ′
2 that have been routed. It then just decodes as it would even if the sources

were not operating over a network. By the proof of [63][34] we can conclude

that error-free decoding is possible with high probability at T1. From a practical

perspective this means that solutions such as those proposed by [66] that are

based on linear codes would continue to work as long as a feasible rate vector

(RT1
S1

, RT1
S2

) exists and a suitable routing strategy is utilized.
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Now consider what happens when we introduce another terminal T2. That is,

now the sources need to be decoded at two different terminals. We assume that

the capacity region of T2 has a non-empty intersection with the S-W region of

the sources as otherwise error-free decoding at T2 is not possible. Let us suppose

that the terminals T1 and T2 can support feasible rate vectors (RT1
S1

, RT1
S2

) and

(RT2
S1

, RT2
S2

). There can be multiple strategies for the solution of this problem:

1. Transmit the coded bits via routing to both T1 and T2.

A routing strategy is required so that as above T1 receives a subset of

size nRT1
S1

bits from S ′
1 and a subset of size nRT1

S2
bits from S ′

2. A similar

statement applies to T2 with the rate vector (RT2
S1

, RT2
S2

). The advantage

of this solution would be that the decoders at T1 and T2 can be similar

and will be directly decoding bits from S ′
1 and S ′

2. In general however, a

routing strategy may not exist in some networks because of link sharing.

For example, for the butterfly example of network coding in [19] no routing

strategy can achieve a transmission rate of 2 bits per unit time.

2. Transmit the coded bits via random linear network coding to both T1 and

T2.

Ho et al. [33] show that if each node in the network performs random

linear network coding then there exist decoding strategies at each terminal

so that the sources can be decoded error-free with high probability. The

problem with this approach is that the equivalent source code that needs

to be decoded at a terminal is not under our control. In general, random

network coding will tend to combine bits from the different source nodes

and the original source-coded bits (from S ′
1 and S ′

2) may not be uniquely

recoverable at the terminals. The equivalent source code would lose any

structure that allows tractable decoding. For example if the original source
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codes were based on sparse parity-check matrix representations, e.g., LDPC

codes, then the resultant parity-check matrices may end up becoming dense,

ruling out the use of iterative decoding techniques. While this approach is

promising in an information-theoretic sense, it fails to provide a practical

solution to the problem. However, recent progress has been made in this

direction [67].

3. Transmit the coded bits via careful network coding such that T1 and T2 can

recover the original source-coded bits

The approach here is to design a network code in a careful fashion so that the

recovery of a sufficient number of coded bits is possible at each terminal.

The network code needs to support a connection such that terminal T1

recovers a subset of size nRT1
S1

of the bits from S ′
1 and a subset of size nRT1

S2

of the bits from S ′
2. A similar statement holds true for T2. If this can be

achieved, as in the routing case, the decoders at the both the terminals will

need only to decode sub-codes of the original source codes. In a practical

situation, the source code can be designed to allow tractable decoding as

well as good performance by utilizing advanced coding techniques such as

LDPC codes. Thus, it is interesting to know whether network codes exist

that are able to faithfully deliver the source coded bits as discussed above

for the general case of multiple sources and receivers. This is the focus of

this chapter.

5.2.1 Formal Definition

In the following discussion the notation that shall be used in the rest of the

chapter is outlined. We now formally define an instance of the distributed source

coding problem over a network. We are given the following.
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a) NS discrete memoryless sources denoted by Xi, i = 1, ..., NS, whose output

values are drawn i.i.d. from a joint distribution p(X1, ..., XNS
). Each source

alphabet is without loss of generality assumed to be a Galois field of a power

of 2.

b) A capacitated directed graph G = (V,E,C), where V is a set of nodes, E is

a set of directed edges, and C is a function that gives the capacity of each

edge, a set of source nodes S ⊂ V, |S| = NS and a set of receiver nodes

T ⊂ V, |T | = NR. All edge capacities are assumed to be rational.

With the above information, we can define the following items that help us in

setting up the problem.

a) The S-W region of the sources is denoted

RSW = {(R1, R2, . . . , RNS
) : ∀B ⊆ {1, 2, ..., NS},

∑
i∈B

Ri > H(XB/XBc)},

where XB represents the vector of random variables (Xi1 , Xi2 , ..., Xi|B|), for

ik ∈ B, k = 1, ..., |B| .

b) For each Ti ∈ T we can define a capacity region with respect to S. This

is the region that defines the maximum flow from each subset of S to the

terminal Ti:

CTi
= {(R1, R2, . . . , RNS

) : ∀B ⊆ S,
∑
i∈B

Ri ≤ min-cut(B, Ti)}.

An instance of a distributed source coding problem over a network is defined

by

P =< RSW , G, S, T >

c) The network coding model used here is explained in detail in [33]. We com-

municate n symbols in a block. This means that each source Xi is encoded
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into �nH(Xi)� bits by its source encoder. This also means that edges with

capacity C bits/symbol can communicate �nC� bits per block. Linear net-

work coding is done over vectors of bits in the binary field. Conceptually

each link can be regarded as multiple unit capacity edges, with each unit

capacity link capable of transmitting one bit per block. When communi-

cating over a block of length n, we consider the graph Gn = (V,E, �nC�),
or equivalently the graph (V,En, 1), where En is the set of edges from E

split into unit capacity edges.

d) We introduce a set S ′ consisting of NS virtual nodes denoted S ′
1, ..., S

′
NS

,

which can be regarded as source encoders respectively connected to S1, . . . , SNS
.

Each encoder S ′
i performs linear encoding over a block of length n defined by

a function fn
i : (Xi,1, Xi,2, ..., Xi,n) → (Ui,1Ui,2...Ui,�nH(Xi)�). We define an

augmented graph denoted by G
′n = (V

⋃
S ′, En

⋃
E ′

n, 1), where E ′
n repre-

sents the unit capacity edges from S ′ to S carrying the bits (Ui,1Ui,2...Ui,�nH(Xi)�),

i = 1, . . . , NS.

e) A solution to the problem P =< RSW , G, S, T > is defined by a set of local

encoding vectors on each link in G′n. If me represents the local encoding

vector on link e belonging to G′n, then the solution to P at block length n,

denoted by P n
sol is given by P n

sol = {m1,m2, ...,m|En|}.

Definition 16 Feasibility. Consider an instance of a distributed source coding

problem over a network defined by P =< RSW , G, S, T >. Let CTi
be the capacity

region of each receiver Ti ∈ T with respect to S. If

RSW ∩ CTi
�= ∅,∀i = 1, ..., NR (5.5)

then the feasibility condition is said to be satisfied and P is said to be feasible.
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Theorem 16 [33] Consider an instance of a distributed source coding problem

over a network defined by P =< RSW , G, S, T >. If the feasibility condition (De-

finition 16) is satisfied, then randomized linear network coding over G′n followed

by minimum-entropy [34] or maximum-likelihood decoding at each receiver can

recover the sources at each terminal in T with the probability of decoding error

going to 0 as n → ∞.

S

T

NT

2S
NS

1X 2X
NX

1S’ 2S’
NS’

1S

2U
1U

NU

R

S

S

S

Network

1

Figure 5.3: The figure shows a network with NS sources (Xi’s), source encoders

(S ′
i’s) and source nodes (Si’s). The source coded bits are represented by the Ui’s.

There are NR receivers (Ti’s)

5.2.2 Notion of Separation of Distributed Source Coding and Net-

work Coding

In the sequel we shall work in the problem formulation presented in Section

5.2.1. As mentioned before, the result of Theorem 16 assumes the existence of

a minimum-entropy/maximum-likelihood decoder that can be arbitrarily com-

plex when random linear network codes are used. In this chapter we study the

feasibility of performing these operations separately. For this we need a formal

definition of separation between distributed source coding and network coding,
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which is presented below.

Definition 17 Separability. Consider a distributed source coding problem over

a network, P =< RSW , G, S, T >. Assume that P is feasible. All edges are

assumed to be capable of linear network coding only. P is said to be separable if

for any N0 there exists a n ≥ N0 and a solution P n
sol such that for each Ti ∈ T ,

there exists a rate vector (RTi
S1

, ..., RTi
SNS

) ∈ RSW ∩ CTi
such that for each source

Sj ∈ S, there exists a subset ETi
Sj

of the �nH(Xj)� edges in E ′
n from S ′

j to Sj with

|ETi
Sj
| ≥ nRTi

Sj
such that the transfer function from the bits on E ′

n to the bits on

the input edges of Ti uniquely determines the bits on ETi
S1

∪ETi
S2

∪ · · · ∪ETi
SNS

. We

call the solution P n
sol a separable solution.

Note that the terminals will be required to perform non-linear operations

in general for recovering the sources. For a given P it follows from [34] that

if the source encoders fn
1 , . . . , fn

NS
are chosen to be random linear block codes

and a solution P n
sol is separable, reconstruction of the sources at each receiver is

possible with probability of error going to 0 as n → ∞. Using practical source

code designs (based on linear codes) instead of random linear block codes, this

means that a separable solution allows us to leverage existing solutions (outlined

in [30][31]) for the classical S-W problem.

5.2.3 Price of Separation

It should be clear that the set of solutions that joint decoding can achieve is larger

than the set of solutions that can be achieved by separability. By increasing the

capacity of the network sufficiently it is always possible to achieve a separable

solution. With this in mind a multiplicative factor ηcap is defined, which we call

the price of separation.
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Definition 18 Price of Separation. Consider a distributed source coding problem

over a network, P =< RSW , G, S, T >. Assume that P is feasible. Let α ≥ 1 be

a multiplicative factor by which the capacities of all the edges in the network need

to be increased so that a separable solution exists. We define Gα to be the graph

Gα = (V,E, αC), i.e., the graph G with capacities multiplied by α. The price of

separation is defined to be

ηcap = inf {α ≥ 1 :< RSW , Gα, S, T > is separable} . (5.6)

The factor ηcap characterizes the gap to separability as a single parameter.

5.3 Results for Networks with Capacity Constraints

In this section we present various results that characterize the separability of

different distributed source coding problems over networks that have capacities

on edges.

Lemma 7 Consider a problem P =< RSW , G, S, T >, such that |T | = 1 . If P

is feasible, then P is separable.

Proof. Since P is feasible, RSW ∩ CT1 �= ∅. Thus, for all sufficiently large n, in

G
′n there exist a sufficient number of edge-disjoint paths from each source node

to the terminal so that routing itself would suffice to ensure the delivery of infor-

mation to the terminal at a rate vector that lies in the S-W region of the sources.

Since in this case network coding is not needed the received bits at the terminal T1

trivially determine the bits in ET1
S1
∪ET1

S2
. . . ET1

SNS
uniquely. Thus P is separable. �

The case corresponding to NS = 1 is not a distributed source coding problem

since there is only one source. Nevertheless we can see that this problem is

111



R X 1

R X 2

2H(X   /X   )1

1H(X   /X   )2

1
C T

2
C T

1 2H(X   ,X   ) + ε

(a)

X 1

R X 2

P
1

P
2

1
C T

2
C T

2H(X   /X   )1

1H(X   /X   )2

1 2H(X   ,X   ) + ε

R

(b)

Figure 5.4: In both figures the two regions defined by dotted lines are the capacity

regions of T1 and T2 respectively and the region defined by solid lines is the S-W

region of the sources. a) The shaded region represents the region common to

CT1 , CT2 and RSW . b) There is no point that is common to all three regions

here. P2 and P1 are the closest operating points for each terminal on the S-W

boundary.

separable in the sense of Definition 17 by the multicast result of Ahlswede et al.

[19].

5.3.1 The 2-Sources, 2-Receivers Case

The following theorem shows that any feasible distributed source coding problem

with two sources and two terminals is always separable.

Theorem 17 Consider a problem P =< RSW , G, S, T >, with |S| = 2, |T | = 2 .

If P is feasible, then P is separable.
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Proof. Since the connection is feasible we have RSW∩CT1 �= ∅ and RSW∩CT2 �= ∅.
There can be two cases as shown in Figures 5.4(a) and 5.4(b).

a) Case 1: RSW ∩ CT1 ∩ CT2 �= ∅.

This is the case shown in Figure 5.4(a). Since RSW is an open set, there

exists an open region in the intersection in which, for every sufficiently large

n, there exists a single rate vector (RS1 , RS2) that can be supported at both

terminals T1 and T2 in G
′n. Thus, the same set of bits can be sent to both

T1 and T2 and the multicast result of [19] guarantees the existence of a P n
sol

such that P is separable.

b) Case 2: RSW ∩ CT1 ∩ CT2 = ∅.

The problem is more challenging when we consider the situation in Fig-

ure 5.4(b). Unlike the earlier case a single rate vector cannot be supported

at both the terminals. Consequently the result of [19] no longer applies in a

straightforward fashion. The proof that even this case is separable follows.

By the given conditions we can assume the existence of ε > 0 such that

H(X1, X2)+ε is rational and the line RX1 +RX2 = H(X1, X2)+ε has a non-

empty intersection with CT1 and CT2 . We force the terminals T1 and T2 to

operate on the rational points marked P1 = (RT1
S1

, RT1
S2

) and P2 = (RT2
S1

, RT2
S2

)

respectively on Figure 5.4(b). Then, the following properties hold true.

1.

RT1
S1

≥ RT2
S1

RT2
S2

≥ RT1
S2

RTi
S1

+ RTi
S2

= H(X1, X2) + ε, for i = 1, 2
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2. For P ′
1 ∈ CT1 ∩ RSW ∩ {(x1, x2) : x1 + x2 = H(X1, X2) + ε} and

P ′
2 ∈ CT2 ∩RSW ∩ {(x1, x2) : x1 + x2 = H(X1, X2) + ε},

dist(P1, P2) ≤ dist(P ′
1, P

′
2),

where dist represents the distance function.

We choose n sufficiently large such that nRTi
Sj

is integral for i, j = 1, 2. The

proof below is inspired by the technique used in [20].

For now let us only consider the paths from S1 to T1, from S1 to T2, and

from S2 to T2. For ease of explanation we let g = nRT1
S1

, r1 = nRT2
S1

and

r2 = nRT2
S2

. Menger’s theorem guarantees the existence of edge-disjoint

paths in G′n corresponding to these numbers. In particular, we denote by

G the set of g edge-disjoint paths from S1 to T1, we denote by R1 the set

of r1 edge-disjoint paths from S1 to T2, and we denote by R2 the set of

r2 edge-disjoint paths from S2 to T2. Note that paths in R1 ∪ R2 are also

disjoint, and that g ≥ r1.

Each edge e in each path belonging to G∪R1 ∪R2 is labelled (as explained

below) by either one or two colors, namely green and/or red. Specifically,

all edges in paths belonging to G are labelled green and all edges in paths

belonging to R1 or R2 are labelled red. Thus, edges in both G and (R1∪R2)

are labelled both green and red.

We claim that we can always find (g − r1) exclusively green paths from S1

to T1. To prove this, we define an algorithm A that takes as input a path

P1 ∈ G.

Algorithm A(P1)
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1. Traverse P1 starting at node S1 and find the first edge e1 that is colored

both green and red.

2. If no such e1 is found then STOP.

3. ELSE There are two possibilities:

a) e1 belongs to a path in R2.

We claim that this is impossible. To see this, suppose that e1

belonged to a path P ′ ∈ R2 such that P ′ = P ′
1 → e1 → P ′

2, where

P ′
1 represents the portion of P ′ from S2 to e1 and P ′

2 represents

the portion of P ′ from e1 to T2.

We can color all edges on P1 from S1 to e1 red (in addition to their

existing color, green), and remove red from the color of edges in

P ′
1. This effectively means that we can increase the rate from S1

to T2 by one bit per block and reduce the rate from S2 to T2 by one

bit per block. Note that the new rate vector (RT2
S1

+1/n,RT2
S2
−1/n)

still lies on the line RX1 +RX2 = H(X1, X2)+ ε. But, this implies

that P2 and P1 can be brought closer, which is a contradiction.

b) e1 belongs to a path in R1.

If e1 is the first edge of P1, then STOP

ELSE Again suppose that e1 belonged to a path P ′ ∈ R1, such

that P ′ = P ′
1 → e1 → P ′

2, where P ′
1 represents the portion of

P ′ from S1 to e1 and P ′
2 represents the portion of P ′ from e1 to

T2. Color all edges on P1 from S1 to e1 red (in addition to their

existing color, green), and remove red from the color of the edges

in P ′
1.
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Now we define a condition that each path P1 ∈ G has to satisfy.

Cond(P1) = {All edges in P1 are green}
or {the first edge of P1 is (green, red)}

(5.7)

We continue applying A to each path of G until all paths in G satisfy

Cond. We claim that this process will eventually halt. To see this we

define a function f(P1) that given P1 ∈ G counts the number of (green, red)

edges below the first set of contiguous (green, red) edges in P1. Consider

fpot =
∑

P∈G
f(P ). Note that an application of A to a path from G that

violates Cond causes fpot to strictly decrease. As a consequence eventually

all paths in G will satisfy Cond.

At the end of this process, we claim that there exist (g−r1) paths belonging

to G that are colored exclusively with green. This can easily be seen to be

true, because if Algorithm A above reroutes a path P ′ ∈ R1, then it removes

the color red from one outgoing edge of S1 and places it on another outgoing

edge. Thus, the number of outgoing edges that have the color red remains

constant at r1. Therefore, there have to be (g− r1) outgoing edges that are

purely green, which in turn means that there exist (g − r1) paths from S1

to T1 that are exclusively green. To summarize, the above argument shows

that by choosing n sufficiently large and carefully choosing paths, we can

a) Route n(RT1
S1

− RT2
S1

) bits from S1 to T1.

b) A similar argument shows that we can route n(RT2
S2

− RT1
S2

) bits from

S2 to T2.

c) Each terminal needs exactly n(RT2
S1

+ RT1
S2

) bits more to satisfy its

requirement. But, we can send this via network coding, by invoking

the multicast result of [19].
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Figure 5.5: The figure shows that every 2-source 2-terminal distributed source

coding problem over a network can be decomposed into one network coded flow

(solid arrow) and two routed flows (unfilled arrows).

Thus, the 2-sources, 2-receivers problem can always be decomposed as depicted

in Figure 5.5 which in turn implies separability. �

This result is somewhat surprising considering that we have source distribu-

tions and networks that serve as counter-examples for cases involving two sources

and three receivers and three source and two receivers that are presented below.

5.3.2 The 2-sources, 3-receivers case

Consider the network shown in Figure 5.6(b) denoted by G. Each link has ca-

pacity (1 + ε) bits. Figure 5.6(a) shows the S-W region of the two sources (X1

and X2) denoted by RSW = {(RX1 , RX2) : RX1 > 1} ∩ {(RX1 , RX2) : RX2 >

1} ∩ {(RX1 , RX2) : RX1 + RX2 > 3} and the capacity regions of the three termi-
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nals (T1, T2 and T3) given by

CT1 = {(RX1 , RX2) : RX1 ≤ 2 + 2ε} ∩ {(RX1 , RX2) : RX2 ≤ 1 + ε} (5.8)

CT2 = {(RX1 , RX2) : RX1 ≤ 1 + ε} ∩ {(RX1 , RX2) : RX2 ≤ 2 + 2ε} (5.9)

CT3 = {(RX1 , RX2) : RX1 ≤ 2 + 2ε} ∩ {(RX1 , RX2) : RX2 ≤ 2 + 2ε}
∩{(RX1 , RX2) : RX1 + RX2 ≤ 3 + 3ε} (5.10)

Here S = {1, 2} and T = {9, 10, 11}. We claim that P =< RSW , G, S, T > is

not separable. To prove this, we shall assume that P is separable and derive a

R X 1

R X 2

1
C T

2
C T

3
C T

(a)
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3T
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1 2
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4
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101

(b)

Figure 5.6: a) The figure shows the capacity regions of the terminals (depicted

by dotted lines) and the S-W region of the sources (depicted by solid lines)

(b) Counter example to separability for the case of 2 sources and 3 receivers.

H(X1) = H(X2) = 2. H(X1, X2) = 3. The capacity of all the links = 1 + ε.

contradiction.

Assume that P is separable. By definition, there exist a block length n and

a linear solution P n
sol such that for each terminal Ti, i = 1, 2, 3, there exist a rate

vector (RTi
S1

, RTi
S2

) ∈ RSW ∩ CTi
, a subset ETi

S1
of the n�H(X1)� = 2n edges from
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S ′
1 to S1, and a subset ETi

S2
of the n�H(X2)� = 2n edges from S ′

2 to S2 such that

|ETi
Sj
| ≥ nRTi

Sj
for j = 1, 2 and the bits carried on the edges in these two subsets

are uniquely determined by the bits on the edges entering Ti.

We proceed, in this section, under the simplifying assumption that RSW in-

cludes its boundary. Note that if we do not assume that the boundary of RSW is

included then we shall need to assume that the number of edges from S ′
1 to S1 is

2n(1+∆1) for some ∆1 > 0 and the number of edges from S ′
2 to S2 is 2n(1+∆2)

for some ∆2 > 0. This complicates the notation without changing the style of

the proof or the conclusions. To illustrate the main ideas in the proof and for

the sake of clarity we shall also assume that ε = 0. We make this assumption so

that the essence of the proof does not get buried in technicalities. The full proof

for ε > 0 can be found in the Appendix.

With this simplifying assumption, the capacity region CT1 reduces to the point

(RT1
S1

, RT1
S2

) = (2, 1), CT2 reduces to the point (RT2
S1

, RT2
S2

) = (1, 2), and CT3 reduces

to the line segment (RT3
S1

, RT3
S2

) = (1 + α, 1 + β), for some α ≥ 0 and β ≥ 0 with

α + β = 1. Thus |ET1
S1
| ≥ 2n, |ET1

S2
| ≥ n, |ET2

S1
| ≥ n, and |ET2

S2
| ≥ 2n. Since these

are all upper bounded by 2n, we must have |ET1
S1
| = |ET2

S2
| = 2n. Furthermore,

we must have |ET1
S2
| = n, since if it were greater than n, then a simple counting

argument shows that it would be impossible to uniquely determine the greater

than 3n bits carried on the edges in ET1
S1

∪ET1
S2

by the at most 3n bits carried on

the edges arriving into T1. Similarly, |ET2
S1
| = n.

We represent the bits on the edges in ET2
S1

(entering S1) with the n-dimensional

binary column vector U12 and likewise we represent the bits on the edges in ET1
S2

(entering S2) with the n-dimensional binary column vector U21. We represent the

remaining bits by the n-dimensional binary column vectors U11 (entering S1) and

U22 (entering S2). We denote their vertical concatenation by the 4n-dimensional
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binary column vector U = [UT
11, U

T
12, U

T
21, U

T
22]

T , where the superscript T denotes

transpose.

For each edge a → b in G, we represent the n bits transmitted from a to b in

G
′n by the n-dimensional binary column vector Xa→b.

Since the solution P n
sol is linear, Xa→b can be expressed in terms of U as

Xa→b =
[

M11
a→b M12

a→b M21
a→b M22

a→b

]
U = Ma→bU, (5.11)

for some n×4n global encoding matrix Ma→b comprising the four n×n submatrices

M jk
a→b, j = 1, 2, k = 1, 2. Thus, the bits on the edges entering T1, T2, and T3 can

respectively be expressed as⎡
⎢⎢⎢⎣

X6→9

X3→9

X7→9

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M11
6→9 M12

6→9 0 0

M11
3→9 M12

3→9 0 0

M11
7→9 M12

7→9 M21
7→9 M22

7→9

⎤
⎥⎥⎥⎦U = ZT1U, (5.12)

⎡
⎢⎢⎢⎣

X7→10

X5→10

X8→10

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M11
7→10 M12

7→10 M21
7→10 M22

7→10

0 0 M21
5→10 M22

5→10

0 0 M21
8→10 M22

8→10

⎤
⎥⎥⎥⎦U = ZT2U, and(5.13)

⎡
⎢⎢⎢⎣

X6→11

X7→11

X8→11

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M11
6→11 M12

6→11 0 0

M11
7→11 M12

7→11 M21
7→11 M22

7→11

0 0 M21
8→11 M22

8→11

⎤
⎥⎥⎥⎦U = ZT3U, (5.14)

for some 3n × 4n transformation matrices ZTi
, i = 1, 2, 3. Here, some of the

submatrices M jk
a→b are known to be zero a priori. For example, M21

6→9 must be

zero because there are no paths from the edges carrying U21 to the edges carrying

X6→9.

In order to uniquely determine the 3n bits on the edges in ETi
S1
∪ETi

S2
from the

3n bits on the edges entering Ti, it is easy to see that the transformation matrix

ZTi
must
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1. have rank 3n, and

2. have n columns identically zero.

We show that for ZT3 , this second condition is impossible, hence the contradiction.

To show that it is impossible for ZT3 to have n columns identically zero, we

show that the four submatrices M11
6→11, M12

7→11, M21
7→11, and M22

8→11 all have rank

n. Hence it is impossible for any of these matrices to have even one column

identically zero.

We start by showing that M11
6→11 has rank n. (That M22

8→11 has rank n will

follow a mirror argument.) First, note that the global encoding matrix M6→11 has

rank n, else ZT3 could not have rank 3n. Further, since M6→11 = H6→11M1→6 for

some n × n matrix H6→11, both H6→11 and M1→6 must have rank n, else M6→11

could not have rank n. Hence we have shown that M11
6→11 = H6→11M

11
1→6 has rank

n, provided that M11
1→6 has rank n.

To show that M11
1→6 has rank n, we will first show that M11

6→9 has rank n. To

show that M11
6→9 has rank n, consider the transformation matrix ZT1 . In order

to uniquely determine U11, U12, and U21 from X6→9, X3→9, and X7→9, the first

3n columns of ZT1 must have rank 3n, and the last n columns (corresponding to

U22) of ZT1 must be zero. (A similar argument can be made for ZT2 : the last

3n columns of ZT2 must have rank 3n, and the first n columns (corresponding to

U22) of ZT2 must be zero. We will need this fact later.) Hence the first n columns

of ZT1 must have rank n. We claim that both M11
3→9 and M11

7→9 are zero. If this

claim is true, then M11
6→9 must have rank n, else the first n columns of ZT1 could

not have rank n.

To prove the claim that both M11
3→9 and M11

7→9 are zero, we shall work back-

wards in the network towards showing that M11
1→3 is zero, from which the re-
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sult will follow. Towards this end, first note that M7→9 = H7→9M4→7 and

M7→10 = H7→10M4→7, for some n × n matrices H7→9 and H7→10, where all ma-

trices involved must have rank n, else ZT1 and ZT2 could not have rank 3n. Now,

M11
4→7 and M22

4→7 must both be zero, else we would have M22
7→9 = H7→9M

22
4→7 �= 0

or M11
7→10 = H7→10M

11
4→10 �= 0, whence both the last n columns of ZT1 or the first

n columns of ZT2 could not be zero. Thus we must have

M4→7 =
[

0 M12
4→7 M21

4→7 0
]
. (5.15)

Furthermore, the submatrices M12
4→7 and M21

4→7 must both have rank n, else the

submatrices M21
7→9 and M12

7→10 could not both have rank n, whence the third block

of n columns of ZT1 and the second block of n columns of ZT2 could not both

have rank n, whence ZT1 and ZT2 could not both have rank 3n.

Continuing, we will use (5.15) to show that M11
1→3 is zero. It is clear by

inspecting the graph G that X3→4 has no components of U2, and that X5→4 has

no components of U1. Hence

M3→4 =
[

M11
3→4 M12

3→4 0 0
]
, (5.16)

M5→4 =
[

0 0 M21
5→4 M22

5→4

]
, and (5.17)

M4→7 = H4→7M3→4 + H ′
4→7M5→4 (5.18)

=
[

H4→7M
11
3→4 H4→7M

12
3→4 H ′

4→7M
21
5→4 H ′

4→7M
22
5→4

]
(5.19)

for some n × n matrices H4→7 and H ′
4→7, which both have rank n (else M12

4→7

and M21
4→7 could not both have rank n). Hence (comparing (5.15) with (5.19))

M11
3→4 = 0 and M22

5→4 = 0. Given that M11
3→4 = 0, it is simple to show that

M11
1→3 = 0. And, given that M11

1→3 = 0, it is simple to show that M11
3→9 = 0.

Likewise, given that M11
4→7 = 0, it is simple to show that M11

7→9 = 0. The details

follow the above techniques (e.g., showing that the n × n matrices H3→4, H3→9,

and H7→9 all have rank n) and are omitted. From these results, as already
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discussed, it follows that M11
6→9 has rank n. Since M11

6→9 = H6→9M
11
1→6 for some

n× n matrix H6→9 it follows that M11
1→6 also has rank n and hence ultimately so

does M11
6→11.

A mirror argument shows that M22
8→11 has rank n. As for M12

7→11 and M21
7→11

both having rank n, we have already shown that M12
4→7 and M21

4→7 both have rank

n. Hence it is simple to show that M12
7→11 and M21

7→11 both have rank n. The

details follow the above techniques as usual and are omitted. This concludes the

proof. �

5.3.3 The 3-Sources, 2-Receivers Case

As in the previous section we can also find counter-examples to separability even

for the case of 3 sources and 2 terminals. Figure 5.7 shows a network, denoted
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Figure 5.7: The figure shows a counter example to separability for the case of 3

sources and 2 receivers. The capacity of link 3 → 6 is ε. All other edges have

capacity 1 + ε. The correlation model is explained in the text.
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by G along with three sources X1, X2 and X3 such that their respective entropies

are H(X1) = 1, H(X2) = 1 + ε1 and H(X3) = 1 + ε1. Their S-W region RSW is

given by

RX1 > H(X1/X2, X3) = 1, (5.20)

RX2 > H(X2/X3, X1) = ε1, (5.21)

RX3 > H(X3/X1, X2) = ε1, (5.22)

RX1 + RX2 > H(X1, X2/X3) = 1 + ε1, (5.23)

RX2 + RX3 > H(X2, X3/X1) = 1 + 2ε1, (5.24)

RX3 + RX1 > H(X3, X1/X2) = 1 + ε1, and (5.25)

RX1 + RX2 + RX3 > H(X1, X2, X3) = 2 + 2ε1. (5.26)

All edges in G have capacity 1 + ε except 3 → 6 that has capacity ε, where 2ε1 >

ε > ε1 > 0. Here S = {1, 2, 3}, T = {6, 7}. We claim that P =< RSW , G, S, T >

is not separable.

As in the previous section for the sake of clarity we assume that the boundary

points can be achieved. Let the input vector into the network be denoted �U =

[ UT
1 UT

2 UT
3 ]T , where dim(U1) = n × 1 and dim(U2) = dim(U3) = n(1 + ε1) × 1

. Without loss of generality, we can assume that X5→6 = X5→7 = X4→5. To

see this assume that there existed a solution such that X5→6 = H5→6X4→5 where

H5→6 is a n(1+ ε)×n(1+ ε) matrix such that H5→6 �= In(1+ε) (here Ik denotes the

identity matrix of size k × k) then one can find an equivalent solution in which

X5→6 = X4→5. We simply need to multiply the received vector at T1 by H5→6.

A similar argument shows that X5→7 = X4→5.
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Then

X1→6 =
[

An(1+ε)×n 0 0
]

�U, (5.27)

X3→6 =
[

0 0 Cnε×n(1+ε1)

]
�U, (5.28)

X4→5 =
[

(B1)n(1+ε)×n (B2)n(1+ε)×n(1+ε1) 0
]

�U, and (5.29)

X3→7 =
[

0 0 Dn(1+ε)×n(1+ε1)

]
�U, (5.30)

where the sub-matrices A,B1, B2, C and D specify the transformation and their

dimensions are specified by the appropriate subscripts. We shall let ZTi
specify

the net transformation from �U to the input edges of Ti.

Suppose that the above matrices specify a solution P n
sol that is separable. We

shall arrive at a contradiction for an appropriate range of ε. The matrix ZT1 can

be written as

ZT1 =

⎡
⎢⎢⎢⎣

A 0 0

B1 B2 0

0 0 C

⎤
⎥⎥⎥⎦ . (5.31)

By the constraints of RSW , we need

RT1
S2

+ RT1
S3

≥ 1 + 2ε1 (by inequality (5.24) and our assumption)

=⇒ RT1
S2

≥ 1 + 2ε1 − ε ≥ 1 (since RT1
S3

≤ ε).
(5.32)

By the definition of separability there needs to exist a subset ET1
S2

of the edges

connecting S ′
2 and S2 such that |ET1

S2
| ≥ nRT1

S2
≥ n and such that the received bits

at T1 uniquely determine the bits in ET1
S2

. This means that

rank(B2) ≥ n. (5.33)

The matrix ZT2 can be written as

ZT2 =

⎡
⎣ B1 B2 0

0 0 D

⎤
⎦ . (5.34)
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By the constraints of RSW we also require that RT2
S1

≥ 1. For separability to

hold we need the existence of a subset ET2
S1

of the bits from S ′
1 to S1 so that

|ET2
S1
| ≥ nRT2

S1
≥ n and such that the received bits at T2 uniquely determine the

bits in ET2
S1

. This means that rank(B1) = n and that T2 needs to receive all the

bits corresponding to the columns of B1. By Lemma 10 in the Appendix we know

that if

rank

⎡
⎣ B1

0

⎤
⎦ + rank

⎡
⎣ B2 0

0 D

⎤
⎦ > rank

⎡
⎣ B1 B2 0

0 0 D

⎤
⎦ (5.35)

then there exist input vectors ux =
[

uT
1x uT

2x uT
3x

]
and uy =

[
uT

1y uT
2y uT

3y

]
such that u1x �= u1y but ZT2ux = ZT2uy. Since the solution is assumed to be sep-

arable, this cannot be the case. It is easy to see that we need

rank
[

B1 B2 0
]

= rank(B1) + rank
[

B2 0
]

= rank(B1) + rank(B2)

≥ 2n.

(5.36)

However we also know that rank
[

B1 B2 0
]
≤ n(1 + ε) (rank of a matrix

cannot be more than the number of rows). Thus if ε < 1 then separability cannot

hold at terminal T2. �

5.3.4 Bounding the “Price of Separation”

Counter-examples for higher number of sources and receivers can be constructed

by simply choosing the counter-examples above as appropriate subgraphs in the

network. Upper bounds on ηcap based on the number of terminals in the system

can also be found.

Lemma 8 For any feasible P =< RSW , G, S, T > we have ηcap ≤ |T |.
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Proof. Consider a time-sharing strategy between terminals. In a particular time-

slot, all the sources transmit data to a particular terminal satisfying its data

requirement. As pointed out before separability trivially holds in the case of a

single receiver. Thus, if there are |T | time-slots then each terminal’s requirement

can be satisfied in its own slot. This in turn also means that if the capacity of

each link in the network is multiplied by |T |, then separability holds. �

5.3.5 Results on Typical Instances

The previous results demonstrate that there exist networks and source distribu-

tions where separation does not hold in general. To test whether separation holds

on typical instances of the problem we generated a large number of graphs and

corresponding S-W regions. Our simulation methodology is explained below.

a) A total of M nodes were scattered randomly on the unit square. To ensure

acyclicity1, an order was enforced whereby connections could only go from

left to right, e.g. nodes v1 and v2 would be connected only if their distance

was less than a parameter d and v1 was to the left of v2.

b) The first NS nodes were declared to be the source nodes and the last NR

nodes were declared receiver nodes. In the simulation we were able to

handle only small values of NS and NR (NS ≤ 3, NR ≤ 3).

c) Minimum cuts were computed between all subsets of the sources and each

of the terminals. Based on these values a S-W region was generated, such

that none of the constraints was trivial, and the problem was feasible.

1This constraint was enforced since network coding has been empirically found to be more
effective for acyclic networks.
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d) To enforce separability, a linear program was developed that took the graph

and S-W region as input. The total flow from the sources to the terminals

was broken up into (2NS − 1)(2NR − 1) flows. The capacity on each edge

was split into a portion for each flow, and within each flow, network coding

was allowed. In addition the S-W constraints were enforced by summing

the values of appropriate flows. The objective function to be minimized

was the price of separation, ηcap.

Since the number of flows is approximately exponential in NS + NR, it is hard to

solve the LP for large values of this sum. A feasible solution for the LP implies the

existence of a separable solution for the problem. This is because each flow can

transport its value (i.e., rate) to its respective terminals using network coding.

Since the capacity of each edge is split across the flows, we can assume that

each flow is operating independent of others over the network. The notion of

separability under which the LP operates is however slightly weaker than the

definition in Section 5.2.2. Here, a receiver Ti is allowed to recover RTi
Sj

linear

combination of the bits from Uj as long as the linear transformation specifying

the combination is full-rank. This is because the LP as we have implemented it,

does not return the assignment of each bit in Uj to a particular flow. We suspect

that these results hold for the stronger definition as well. In fact the approach

of [67] is based in part on treating the distributed source coding problem over a

network as a set of multicast connections.

In all the trials we ran (over 200 in number) we did not find a single instance

where ηcap > 1. Thus, separation does seem to hold in most typical instances of

the problem. It is important to point out that if the LP has a solution then we

are guaranteed the existence of a separable solution, however the existence of a

separable solution may not always imply the existence of feasible solution to the
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LP.

5.4 Results for Networks with Cost Constraints

The minimum cost version of the problem where each link in the network has

a constant cost per bit of usage but no capacity constraint (as in [64]) was also

investigated. Here the input graph is G = (V,E, cost) where cost is a non-

negative function that returns the cost on each link per bit. A problem instance

is defined as before, P =< RSW , G, S, T >.

Definition 19 Cost of a solution. Suppose in a given solution P n
sol, each link e

has re bits flowing over it. The total cost of the solution is given by

κ(P n
sol) =

1

n

∑
e∈Gn

re × cost(e). (5.37)

Definition 20 Consider a distributed source coding problem over a network de-

noted by P =< RSW , G, S, T >. Let P n
sol be a solution to P . Let ηn

cost be defined

as

ηn
cost =

min{P n
sol is separable} κ(P n

sol)

min κ(P n
sol)

. (5.38)

The problem P is said to be separable if for all n sufficiently large, ηn
cost is arbi-

trarily close to 1.

As before we can show that separability still holds in the case of two sources and

two receivers and does not hold in other cases.

Theorem 18 Consider a distributed source coding problem over a network, P =<

RSW , G, S, T > with costs but no capacity constraints and |S| = 2 and |T | = 2.

Then P is separable.
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Proof. The proof of this proceeds along the lines of Theorem 17. Suppose we are

given a solution to P with cost equal to γ1. We have two possibilities,

• Case 1: (RT1
S1

, RT1
S2

) = (RT2
S1

, RT2
S2

).

The solution can be converted into a separable solution by the multicast

result of Ahlswede et al. [19] by appropriate inversion at the terminals.

This does not increase the cost of the solution.

• Case 2: (RT1
S1

, RT1
S2

) �= (RT2
S1

, RT2
S2

).

We shall show that it is possible to create a separable solution that has cost

at most γ1.

– Step 1: Scale the rates received by terminals T1 and T2 so that RT1
S1

+

RT1
S2

= RT2
S1

+ RT2
S2

= H(X1, X2) + δ, where δ > 0, such that the total

rate is reduced and H(X1, X2) + δ is rational. Since the cost incurred

on each link is proportional to the number of bits flowing over it, this

operation does not increase the cost. Without loss of generality we

assume that

1. the values of RT1
S1

, RT1
S2

, RT2
S1

and RT2
S2

are rational, and

2. the rate vectors satisfy RT1
S1

≥ RT2
S1

and RT2
S2

≥ RT1
S2

.

We choose n sufficiently large such that nRTi
Sj

is integral for i, j = 1, 2.

– Step 2: Consider the paths from S1 to T1, S1 to T2 and S2 to T2.

For ease of explanation we let g = nRT1
S1

, r1 = nRT2
S1

and r2 = nRT2
S2

.

Menger’s theorem guarantees the existence of edge disjoint paths in

G′n corresponding to these numbers. In particular, we denote the

set of edge-disjoint paths from S1 to T1 by G, we denote the set of

edge-disjoint paths from S1 to T2 by R1 and we denote the set of edge-
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disjoint paths from S2 to T2 by R2. Note that paths in R1 ∪ R2 are

also disjoint and that g ≥ r1.

Each edge e in each path belonging to G ∪ R1 ∪ R2 is labelled (as ex-

plained below) by either one or two colors, namely green and/or red.

Specifically, all edges in paths belonging to G are labelled green and

all edges in paths belonging to R1 or R2 are labelled red. Thus, edges

in both G and (R1 ∪ R2) are labelled both green and red.

Algorithm A1(P1)

1. Traverse P1 starting at node S1 and find the first edge e1 that is

colored both green and red.

2. If no such e1 is found then STOP.

3. ELSE If e1 belongs to a path from R1 then STOP.

ELSE Suppose that e1 belonged to a path P ′ ∈ R2, such that

P ′ = P ′
1 → e1 → P ′

2, where P ′
1 represents the portion of P ′ from

S2 to e1 and P ′
2 represents the portion from e1 to T2.

We color all edges on P1 from S1 to e1 red (in addition to their

existing color, green) and remove red from the color of edges in

P ′
1. This effectively means that we have found a new path from

S1 to T2 that is edge-disjoint from all paths in R1. We add this

path to R1 and remove P ′ from R2.

We keep applying the above algorithm to all paths in G until either

a path has no edges with the color red or has the first edge labelled

with (red, green). It is easy to see that the algorithm will eventually

terminate (more details can be found in the proof of Theorem 17)

and it never increases the cost of an existing solution. An exactly
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analogous procedure can be applied on the paths from S2 to T2, S2 to

T1, and S1 to T1.

At the end of this procedure we can arrive at a new set of rates

(R′T1
S1

, R′T1
S2

) and (R′T2
S1

, R′T2
S2

) that are as close to each other as possible

on the line {(x1, x2) : x1 + x2 = H(X1, X2) + δ}.

From this point on, the proof in Theorem 17 can be used almost verbatim

by realizing that applying the algorithm A (defined in Theorem 17) can

never increase the total cost of a solution. The details are omitted.

Since the above procedure can be used for a solution, in particular we can ap-

ply it to a minimum cost solution to obtain a minimum cost separable solution. �

Counter-examples similar to ones in Section 5.3 can be found for the cost

version as well.

5.4.1 The 2-sources, 3-receivers case

Figure 5.8 shows the network topology that serves as a counter-example for the

2-sources, 3-receivers case. The S-W region of the sources is given by RSW =

{(RX1 , RX2) : RX1 > 1}∩{(RX1 , RX2) : RX2 > 1}∩{(RX1 , RX2) : RX1+RX2 > 3}.
The edges have cost associated with usage instead of capacity constraints. The

cost of using each link is labelled in the figure. Edges that are not labelled have

cost 0. The bracketed symbols on each link represent the number of bits flowing

on the link (normalized w. r. t. n). We note that from symmetry and convexity

considerations we can assume that the same rate flows on symmetrically placed

edges in Figure 5.8. Since RT2
S1

> 1, the number of bits flowing on link 4 → 7

needs to be at least 1 + α for α > 0. It is also obvious from the rate constraints
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Figure 5.8: Counter-example for 2-sources and 3-receivers. The bracketed symbol

represents the number of bits being transmitted over the link. The number on

each link is the cost of using that link per bit.

that b ≥ c ≥ 1.

A solution using random network coding (that may not be separable and

hence require joint decoding) achieves the S-W bounds. Therefore allocating

a = b = c = 1 + ε and α = ε for arbitrarily small ε > 0 is sufficient and has cost

2(a + b + c) + 10(1 + α) = 16(1 + ε).

Now we compute a lower bound on the cost of a separable solution. We define

the input vector into the network as �U = [ UT
1 UT

2 ]T such that U1 = [ UT
11 UT

12 ]T

and U2 = [ UT
21 UT

22 ]T and dim(Uij) = n × 1 for i, j = 1, 2.

We denote the net transformation from �U to the input edges of each terminal

Ti as ZTi
. The data vector flowing on a link shall be denoted Xi→j where i → j de-

notes the edge from i to j. Without loss of generality we can assume that X6→9 =

X6→11 = X1→6, X3→9 = X1→3, X7→9 = X7→11 = X7→10 = X4→7, X5→10 = X2→5

and X8→10 = X8→11 = X2→8 (refer to section 7.0.3 in the Appendix for details).
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We have

X1→6 =
[

A11 A12 0 0
]

�U (5.39)

X1→3 =
[

A21 A22 0 0
]

�U (5.40)

X2→8 =
[

0 0 B11 B12

]
�U (5.41)

X2→5 =
[

0 0 B21 B22

]
�U. (5.42)

Here dim(A11) = dim(A12) = na×n, dim(A21) = dim(A22) = nb×n, dim(B11) =

dim(B12) = na × n and dim(B21) = dim(B22) = nb × n. We can also write

X4→7 = H4→7

[
H3→4A21 H3→4A22 H5→4B21 H5→4B22

]
�U

= [ M11 M12 M21 M22 ]�U.

(5.43)

where the Ha→b matrices denote the transformation induced by edge a → b and

dim(Mij) = n(1 + α) × n for all i, j = 1, 2.

Suppose that the above matrices specify a solution P n
sol that is separable. We

shall now consider each terminal and argue for the conditions that the matrices

need to satisfy in order for separability to hold at them.

1. Separability at terminal T1

The matrix ZT1 can be written as

ZT1 =

⎡
⎢⎢⎢⎣

A11 A12 0 0

A21 A22 0 0

M11 M12 M21 M22

⎤
⎥⎥⎥⎦ . (5.44)

At T1 we have access to the vector ZT1
�U . We note that by row operations

the above matrix can be transformed into a new matrix such that

ZT1 ≡

⎡
⎢⎢⎢⎣

A11 A12 0 0

A21 A22 0 0

0 0 M21 M22

⎤
⎥⎥⎥⎦ , (5.45)
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where the symbol ≡ denotes equivalence up to elementary row operations

and pre-multiplication by a square non-singular matrix.

For separability to hold we need to show the existence of a subset ET1
S1

of

the 2n edges in E ′
n from S ′

1 to S1 such that |ET1
S1
| ≥ nRT1

S1
and the received

bits at T1 uniquely determine the bits in ET1
S1

.

Based on the connectivity of T1 we note that RT1
S1

= 2 and therefore |ET1
S1
| =

nRT1
S1

= 2n (in this case ET1
S1

is whole set of edges from S ′
1 to S1). The

sub-matrix of ZT1 that specifies the transformation from U1 to T1 is given

by ⎡
⎣ A11 A12

A21 A22

⎤
⎦ . (5.46)

This means that

rank

⎡
⎣ A11 A12

A21 A22

⎤
⎦ = 2n. (5.47)

Next, there needs to exist a subset ET1
S2

of the edges in E ′
n from S ′

2 to

S2 such that |ET1
S2
| ≥ nRT1

S2
≥ n bits from U2. Now consider the matrix[

M21 M22

]
.

We assume that the bits U2 have been suitably permuted so that T1 is

interested in at least the bits corresponding to the columns in M21. Note

that we are not actually fixing the particular bits of U2 but merely the

number. This means that

rank(M21) = n. (5.48)

Also by the definition of separability the received bits at T1 need to uniquely

determine the set of bits in ET1
S2

. Therefore using Lemma 10 in the Appendix

for the matrix
[

M21 M22

]
, we have

rank(M21) + rank(M22) = rank
[

M21 M22

]
. (5.49)
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Note that M21 = H4→7H5→4B21. Therefore

rank(M21) ≤ min(rank(H4→7H5→4), rank(B21)), (5.50)

which yields

rank(B21) = n. (5.51)

Together the above equations also give us

rank(M22) = rank
[

M21 M22

]
− n

≤ nα.

(5.52)

2. Separability at terminal T2

The matrix ZT2 can be written as

ZT2 =

⎡
⎢⎢⎢⎣

0 0 B11 B12

0 0 B21 B22

M11 M12 M21 M22

⎤
⎥⎥⎥⎦ . (5.53)

Using row operations as above we can get

ZT2 =

⎡
⎢⎢⎢⎣

0 0 B11 B12

0 0 B21 B22

M11 M12 0 0

⎤
⎥⎥⎥⎦ . (5.54)

Since the connectivity of terminal T1 and T2 is symmetric we argue as in

the previous sub-section. For separability to hold at T2 we need nRT2
S2

= 2n

bits from U2. Therefore we need

rank

⎡
⎣ B11 B12

B21 B22

⎤
⎦ = 2n. (5.55)

Next, there needs to exist a subset ET2
S1

of the edges in E ′
n from S ′

1 to S1

such that |ET2
S1
| ≥ nRT2

S1
≥ n. Now consider the matrix

[
M11 M12

]
.
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We assume that the bits U1 have been suitably permuted so that T2 is in-

terested in at least the bits corresponding to the columns in M12. Note that

we are not actually fixing the particular bits of U1 but merely the number.

This means that rank(M12) = n. Also by the definition of separability

the received bits at T2 need to uniquely determine the set of bits in ET2
S1

.

Therefore using Lemma 10 in the Appendix for the matrix
[

M11 M12

]
we obtain

rank(M11) + rank(M12) = rank
[

M11 M12

]
. (5.56)

Note that M12 = H4→7H3→4A22. Therefore

rank(M12) ≤ min(rank(H4→7H3→4), rank(A22)), (5.57)

which yields,

rank(A22) = n. (5.58)

Together the above equations also give us

rank(M11) = rank
[

M11 M12

]
− n

≤ nα.

(5.59)

3. Separability at terminal T3

Finally we argue for separability at T3. First we derive more conditions on

the ranks of the matrices involved based on our previous observations. We

know that

rank

⎡
⎣ B11 B12

B21 B22

⎤
⎦ = 2n (5.60)

rank(B21) = n. (5.61)
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Using these conditions and via elementary row operations we can make

⎡
⎣ B11 B12

B21 B22

⎤
⎦ ≡

⎡
⎢⎢⎢⎣

0 B′
12

B′
21 C ′

0 Cn(b−1)×n

⎤
⎥⎥⎥⎦ (for some B′

12, B
′
21, C and C ′.).

(5.62)

Since the above operations proceed via elementary row operations they

preserve the rank of the matrices involved, so that rank(B′
12) = rank(B12).

Also, rank(C) ≤ n(b − 1). This means that

rank(B12) ≥ n(2 − b). (5.63)

By similar arguments we can obtain rank(A11) ≥ (2−b)n. By the definition

of separability, there need to exist subsets ET3
S1

such that |ET3
S1
| ≥ nRT3

S1
and

ET3
S2

such that |ET3
S2
| ≥ nRT3

S2
such that the received bits at T3 uniquely

determine the bits belonging to them. We shall now determine an upper-

bound on |ET3
S1
| + |ET3

S2
|.

We can write

ZT3 =

⎡
⎢⎢⎢⎣

A11 A12 0 0

M11 M12 M21 M22

0 0 B11 B12

⎤
⎥⎥⎥⎦ . (5.64)

Notice that the rows corresponding to X7→11 have been moved to the middle

of the matrix for notational convenience. Suppose that the first 2n columns

of ZT3 are permuted so that the first |ET3
S1
| columns correspond to the bits

in the set ET3
S1

. We write the new matrix Z ′
T3

as

Z ′
T3

=
[

H1 H2 H3

]
. (5.65)

where dim(H1) = n(2a+1+α)×|ET3
S1
|, dim(H2) = n(2a+1+α)×(2n−|ET3

S1
|)

and dim(H3) = n(2a + 1 + α) × 2n. We make the following observations.
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Since T3 is interested in receiving all the bits in ET3
S1

, we need rank(H1) =

|ET3
S1
|. By the definition of separability the received bits at T3 need to

uniquely determine the bits in ET3
S1

. Therefore using Lemma 10, we can

conclude that

rank(H1) + rank
[

H2 H3

]
= rank(Z ′

T3
). (5.66)

Now,

H3 =

⎡
⎢⎢⎢⎣

0 0

M21 M22

B11 B12

⎤
⎥⎥⎥⎦ (5.67)

rank(B12) ≥ n(2 − b) (from (5.63)) (5.68)

rank(M21) = n (from (5.48)). (5.69)

The last two observations give us rank(H3) ≥ n(2− b)+n = n(3− b). Also

rank
[

H2 H3

]
≥ rank(H3) ≥ n(3 − b). Finally we have

rank(H1) = |ET3
S1
| = rank(Z ′

T3
) − rank

[
H2 H3

]
≤ n(2a + 1 + α) − n(3 − b)

= n(2a − 2 + α + b).

(5.70)

A similar argument shows that |ET3
S2
| ≤ n(2a− 2 + α + b) giving us |ET3

S1
|+

|ET3
S2
| ≤ n(4a−4+2α+2b). Therefore for the existence of a valid separable

solution at T3, we need

(4a − 4 + 2α + 2b) ≥ 3 (5.71)

2a + α + b ≥ 3.5. (5.72)
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The total cost of a separable solution is given by

2(a + b + c) + 10(1 + α) = 10 + (b + 2c) + 9α + (2a + α + b)

≥ 10 + 3 + 0 + 3.5

= 16.5.

(5.73)

Choosing ε sufficiently small we can ensure that the cost of a separable solution

is strictly larger than a solution that relies on joint decoding.

5.4.2 The 3-sources, 2-receivers case

Consider the network shown in Figure 5.9. The costs on all edges is 0 except

on edges 4 → 5 and 3 → 6 where it is 1. The S-W region of the sources is

1

1 T 2

X1 X2 X3

S 2S 1 3

S 1
| S 2

|

S 3

S 3
|

4

5

6 7

1
1

0

0 0

0 0

0

2

T

Figure 5.9: Counter example for 3 sources and 2 receivers. The numbers on each

edge represent the cost of usage per bit.

given in the set of inequalities (5.20) – (5.26) in section 5.3.3. Note that since

RT2
S1

> 1, RT1
S3

> ε1, the minimum cost of any solution is 1 + ε1.

A solution using random network coding (that may not be separable and

hence require joint decoding) achieves the S-W bounds. Thus letting RT2
S1

= 1+ ε
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and RT1
S3

= ε for ε > ε1 the associated cost is

κ(P n
joint) =

1

n
(n(1 + ε) + nε) = 1 + 2ε. (5.74)

Let �U = [ UT
1 UT

2 UT
3 ]T represent the input vector into the network where

dim(U1) = n× 1, dim(U2) = n(1 + ε1)× 1 and dim(U3) = n(1 + ε1)× 1. The net

transformation from �U to the input edges of T1 can be written as

ZT1 =

⎡
⎢⎢⎢⎣

A 0 0

B1 B2 0

0 0 C

⎤
⎥⎥⎥⎦ . (5.75)

Since RT1
S2

+ RT1
S3

> 1 + 2ε1 > 1 we need

rank

⎡
⎣ B2 0

0 C

⎤
⎦ = rank(B2) + rank(C) > n. (5.76)

Similarly the net transformation from �U to the input edges of T2 can be written

as

ZT2 =

⎡
⎣ B1 B2 0

0 0 D

⎤
⎦ . (5.77)

Since RT2
S1

≥ 1 we need |ET2
S1
| ≥ nRT2

S1
≥ n. This also means that rank(B1) = n.

For separability to hold the received bits at T2 need to uniquely determine the

set of bits in ET2
S1

. From Lemma 10 and the discussion in section 5.3.3 this means

that

rank(B1) + rank(B2) = rank
[

B1 B2 0
]
. (5.78)

Note that the number of bits being transmitted equals the number of rows of

the matrix

⎡
⎣ B1 B2 0

0 0 C

⎤
⎦. Therefore, the cost of a separable solution is given
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by

κ(P n
sep) ≥

1

n
× rank

⎡
⎣ B1 B2 0

0 0 C

⎤
⎦

=
1

n
× (rank

[
B1 B2

]
+ rank(C))

=
1

n
× (rank(B1) + rank(B2) + rank(C))

> 2.

(5.79)

Choosing ε sufficiently small we can ensure that the cost of a separable solution

is strictly larger than the cost of a joint solution. �

5.5 Conclusion

The problem of distributed source coding of multiple sources over a network with

multiple receivers was considered. In particular, we focussed on investigating

whether the source coding could be separated from the problem of transmitting

an appropriate number of coded bits to each receiver. Both networks with ca-

pacities and networks with costs on edges were considered. While in general the

answer is negative, we showed the surprising result that in the specific case of two

sources and two receivers, a separable solution always exists. Our experiments

on randomly generated networks show that in fact separation often holds2. Thus,

converting the problem into a set of multicast sessions by splitting the capacity

of edges appropriately seems to be a good sub-optimal strategy.

2We do not rule out a different model of generation where this might not be true
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CHAPTER 6

Conclusions and Future Work

This dissertation has addressed issues in both point-to-point communication sys-

tems and communication networks. In the first part of this work we proposed a

generalization of the ACE algorithm [47] (called GACE) for the construction of

irregular LDPC codes and performed an analysis of the Generalized ACE code

ensemble. The algorithm takes input parameters dACE and η and generates an

irregular LDPC code that conforms to the degree distribution and ensures that

all cycles in the Tanner graph of size up to 2dACE have generalized ACE (see

Chapter 2) at least η. Our contributions are summarized below.

1. The expected stopping set spectrum of GACE-compliant codes of a partic-

ular blocklength and degree distribution was computed and it shows that

the GACE algorithm significantly reduces the number of small stopping

sets in the code. In fact numerical computation suggests that the expected

number of stopping sets of size ≤ dACE decreases exponentially with η. For

a concentrated right degree (at dc) code the expected number of stopping

sets is lower for all sizes up to dc × dACE/2 .

2. We demonstrated that the GACE-constrained ensemble has good expan-

sion properties i.e. it has high probability of producing a code that has

the required expansion parameters. The probability is shown to increase

significantly as the values of dACE and η are increased. Since good ex-
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pansion has been shown to imply good performance over the BSC/AWGN

channels, our analysis provides rigorous justification for the performance of

GACE-constrained codes over these channels.

3. An alternative construction technique called the Column-Sum-Check algo-

rithm was introduced that is based on summing columns of the parity-check

matrix. A combined approach where the GACE algorithm is used on the

low-degree variable nodes and the Column-Sum-Check algorithm is used on

the high-degree variable nodes is found to give improved results at short

blocklengths.

Overall, we made the case for using (dACE, η) parameters as an efficient design

rule for the construction of irregular LDPC codes and to the best of our knowledge

it is one of the first provably good non-algebraic techniques for the construction

of these codes.

Some questions that remain open are outlined below.

a) Is there an analytical technique to determine the achievable (dACE, η) re-

gion at a particular blocklength and degree distribution ? In practice

6 ≤ dACE ≤ 11 and 2 ≤ η ≤ 4 have been obtained.

b) Is there a way to predict the performance of a (dACE, η) constrained code

without resorting to simulation ? Density evolution [7][9] is a tool that is

valid in the limit of infinite blocklength. A possible approach to predict

the performance of GACE-constrained codes would be to find a way of

incorporating the GACE constraint within the density evolution equations.

The latter part of this dissertation contains capacity and separability results

in the area of network coding. The contributions here include,
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1. Computation of high probability results for the capacity of multicast for the

weighted random graph model (modeling wired networks) and the weighted

random geometric graph model (modeling wireless networks). For the case

of wired networks with a dense collection of relay nodes, we show that

the network coding capacity is concentrated around the number of nearest

neighbors of the source and terminal nodes. In the wireless case, boundary

effects cause the nodes near the boundary to have fewer neighbors. The

network coding capacity in this case is with high probability greater than

the number of nearest neighbors of the node with the least coverage area

i.e. a node that lies on a corner of the unit square.

2. A tight characterization of the capacity region of a network with a single

source and two terminals. The terminals are allowed to request an arbitrary

set of the messages that exist at the source. It is shown that this network

connection can be realized by performing network coding to transfer the set

of common messages and by routing the remaining messages. The argument

proceeds via a simple graph-theoretic procedure that has applications in

other problems [43] as well.

3. A formulation of the problem of separating distributed source coding from

network coding. The problem that we considered was: whether a scheme

where the compression was performed at the sources and the network was

used for simply transferring the compressed bits to the receivers would suffer

any loss as compared to a system where both (compression and delivery of

bits) were performed jointly as in [33]. Networks that had capacity and

cost constraints on edges were considered. While in general the answer is

negative, we showed the surprising result that in the specific case of two

sources and two receivers, a separable solution always exists.

145



However, the counter-examples are usually carefully constructed. Our ex-

periments on randomly generated networks show that separation often

holds. This implies that the simple albeit sub-optimal strategy of enforcing

separation by converting the problem of transferring the source-coded bits

into a set of multicast connections by splitting edge capacities appropriately

is a good strategy.

Some possible directions for future work are outlined below,

a) While we have shown high-probability results about the network coding

capacity, the extent to which network coding is actually required to achieve

it has not been investigated in this work and is definitely an interesting

question. If the whole topology of the network is known, in many cases

routing may perform as well. The existence of a routing solution depends

upon the possibility of packing enough number of Steiner trees in the graph.

b) In our work we have investigated the loss associated with separating dis-

tributed source coding from network coding. We have implicitly assumed

that the underlying network is error-free, by assuming that the lower layers

of the network take care of any errors e.g. by a Hybrid ARQ strategy. It

is of interest to see whether the separation of channel coding and network

coding holds in general network information transfer problems. Some work

along these lines can be found in [57] and [68].
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CHAPTER 7

Appendix

7.0.1 Chapter 1

Lemma 9 Let k be a positive integer such that 0 ≤ l ≤ k ≤ u. Let f(k) = ( ck
M

)kε,

where M is a positive integer, ε > 0 and c is an arbitrary positive constant. If

M > ecu, then the maximum of f(k) over the range of k is attained at k = l.

Proof : Note that f ′(k) = f(k)ε[ln(ck/M) + 1]. Therefore, if

M > eck (7.1)

the derivative of f(k) will be strictly negative at k. If M > ecu, then the function

is decreasing over the range l ≤ k ≤ u. The conclusion follows. �

Proof of Theorem 6:

Consider a set of l variable nodes {v1, v2, ..., vl} such that there are ri nodes of

degree i and a set of l check nodes {c1, c2, ..., cl} such that there are si nodes of

degree i. Let the edges be numbered 1, 2, ..., E. We can think of each variable

and check node as possessing a number of sockets equal to it’s degree [45]. There

exist 1
2
l!(l − 1)! cycles that can be formed using these nodes.

For a given cycle, each variable and check node can choose two sockets by

which to form the cycle. This can be done in Πdv
i=2[i(i− 1)/2]riΠdc

j=2[j(j − 1)/2]sj

ways. At this point, the cycle and the sockets to be used by each variable and

check node to form the cycle have been chosen. Let va
i and vb

i denote the sockets
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of the ith variable node and ca
i and cb

i denote the sockets of the ith check node.

Then a particular cycle can be expressed in the form.

Cyc(v1, ..., vl; c1, ..., cl) = vb
1 − ca

1 − cb
1 − ... − ca

l − cb
l − va

1 (7.2)

We claim that when l ≥ 2 there exist (2!)l × (2!)l = (2!)2l possible cycles that can

be formed once the choice of the order of variable and check nodes in the cycle

and the choice of the sockets is complete. These can be realized by permuting the

va
i , v

b
i and ca

i , c
b
i for each 1 ≤ i ≤ l respectively. Note that given an arrangement

the equivalent permutation can be recovered as (vb
1−ca

1), (v
a
2 −cb

1), (v
b
2−ca

2)...(v
b
l −

ca
l ), (v

a
1 − cb

l ).

Now we need to show that each of the (2!)2l arrangements corresponds to

a distinct permutation in the total of E! possible permutations. To see this,

suppose there existed two different arrangements Cyc1(v1, ..., vl; c1, ..., cl) and

Cyc2(v1, ..., vl; c1, ..., cl) that resulted in the same permutation.

First note that the position of vb
1 needs to be the same in both Cyc1 and

Cyc2. This is because the set (ca
1, c

b
1) is different from (ca

l , c
b
l ) as l ≥ 2. If the

position of vb
1 is different then Cyc1 and Cyc2 necessarily have to define different

permutations.

Fixing the position of vb
1 fixes the position of va

1 and since the permutations are

assumed to be the same, also the positions of ca
1 and cb

l . Continuing inductively we

can see the two arrangements need to be exactly the same which is a contradiction.

Finally, we note that there exist (E − 2l)! permutations in which the connec-

tions of these sockets is fixed. Putting the above arguments together we have
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that for l ≥ 2,

Er
cyc[2l] =

(E − 2l)!

E!

l!(l − 1)!

2∑
�dv

2 ri=l

ri≤λ̃iN

∑
�dc

2 sj=l
sj≤ρ̃jM

∏
i

(
λ̃iN

ri

)[
i(i − 1)

2

]ri

(2!)ri

∏
j

(
ρ̃jM

sj

)[
j(j − 1)

2

]sj

(2!)sj

=
(E − 2l)!

E!

l!(l − 1)!

2[ ∑
�dv

2 ri=l

ri≤λ̃iN

∏
i

(
λ̃iN

ri

)[i(i − 1)

2

]ri

(2!)ri

]
×

[ ∑
�dc

2 sj=l
sj≤ρ̃jM

∏
j

(
ρ̃jM

sj

)[j(j − 1)

2

]sj

(2!)sj

]

(7.3)

This can be further simplified by noting that the square-bracketed terms can be

written compactly in terms of coefficients of polynomials as,

coeff
[∏

i

(1 + i(i − 1)z)λ̃iN , zl
]
coeff

[∏
j

(1 + j(j − 1)y)ρ̃jM , yl
]

(7.4)

The result follows. �

7.0.2 Chapter 2

The proof of the following theorem is based on the argument in [69] pp.72-73.

Theorem 19 Let X ≥ 0 be a random variable, such that E[X] = µ < ∞. Let

ϕ(θ) = E[e−θX ]. Then, for ε > 0, there exists a θ > 0, such that,

ln ϕ(θ) + θ(1 − ε)µ < 0 (7.5)

Proof : Let κ(θ) = ln ϕ(θ). We have,

κ(0) = 0 (7.6)

κ(θ) + θ(1 − ε)µ =

∫ θ

0

κ′(x) + (1 − ε)µ dx (7.7)
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Thus it is enough to show that κ′(x) exists and κ′(θ) → −µ as θ → 0. For

h ≥ 0, x ≥ 0, |e−hx − 1| ≤ hx. Define,

Yh =
e−(θ+h)X − e−θX

h
(7.8)

Note that,

|Yh| ≤ |e−θX | |e
−hX − 1|

h

≤ |e−θX |X
≤ X

(7.9)

We know that E[X] < ∞. It is easy to see that,

lim
h→0

Yh = e−θX lim
h→0

e−hX − 1

h

= −Xe−θX

(7.10)

Therefore, using the dominated convergence theorem,

ϕ′(θ) = lim
h→0

E[e−(θ+h)X ] − E[e−θX ]

h

= −E[Xe−θX ]

(7.11)

This implies that κ′(θ) = ϕ′(θ)
ϕ(θ)

. Similarly we can see that

• Zθ = e−θX ≤ 1 and limθ→0 Zθ = 1 and thus E[e−θX ] → 1 as θ → 0

• Zθ = Xe−θX ≤ X and limθ→0 Zθ = X. We are given E[X] < ∞ and thus

E[Xe−θX ] → E[X] as θ → 0.

The above equations imply,

−E[Xe−θX ]

E[e−θX ]
→ −EX = −µ as θ → 0 (7.12)

This shows the existence of a θ, such that κ(θ) + θ(1 − ε)µ < 0. �

150



Theorem 20 Let X ≥ 0 be a random variable, such that E[X] = µ and ζ(θ′) =

E[eθ′X ] < ∞ for some θ′ > 0. Then, for ε > 0, there exists a θ > 0, such that,

ln ζ(θ) − θ(1 + ε)µ < 0 (7.13)

Proof: As the proof of the preceding theorem, let κ(θ) = ln ζ(θ).

κ(0) = 1 (7.14)

κ(θ) − θ(1 + ε)µ =

∫ θ

0

κ′(x) − (1 + ε)µdx (7.15)

It is enough to show that κ′(x) exists and κ′(θ) → µ as θ → 0. Let 0 < θ < θ′.

Since we have assumed the existence of E[eθ′X ], we know that ζ ′(θ) exists [69]

and

ζ ′(θ) = E[XeθX ] (7.16)

This implies that κ′(θ) = ζ′(θ)
ζ(θ)

. Now,

eθ′X ≥ eθX → 1 as θ → 0 (7.17)

Xe(θ+ε1)X ≥ XeθX → X as θ → 0. (7.18)

Here ε1 > 0 is chosen so that θ + 2ε1 < θ′. In addition E[eθ′X ] < ∞. For

upper-bounding E[Xe(θ+ε1)X ] we have the following argument. Let M be such

that M ≤ eε1M .

E[Xe(θ+ε1)X ]

= E[Xe(θ+ε1)X1{X≤M}] + E[Xe(θ+ε1)X1{X>M}]

≤ Me(θ+ε1)M + E[e(θ+2ε1)X ]

< ∞

(7.19)

Thus, by the Dominated Convergence Theorem, we obtain

E[eθX ] → 1 (7.20)

E[XeθX ] → X (7.21)
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The above equations imply,

E[XeθX ]

E[eθX ]
→ E[X] as θ → 0 (7.22)

This proves the existence of a θ such that

ln ζ(θ) − θ(1 + ε)µ < 0 (7.23)

7.0.3 Chapter 3

Lemma 10 Consider a matrix A = [ A1|A2 ] such that dim(A1) = m×n1, dim(A2) =

m × n2. Suppose that A defines the transformation from the input vector (of di-

mension (n1 + n2) × 1) to the input edges of a terminal T (of dimension m) in

a network. Suppose that T is interested in receiving the first n1 bits of the input

vector (corresponding to the columns of A1). If

rank(A1) = n1 (7.24)

rank(A1) + rank(A2) > rank(A), (7.25)

then there exist two vectors ux =

⎡
⎣ u1x

u2x

⎤
⎦ and uy =

⎡
⎣ u1y

u2y

⎤
⎦ where dim(u1x) =

dim(u1y) = n1 × 1 and dim(u2x) = dim(u2y) = n2 × 1 such that,

Aux = Auy (7.26)

u1x �= u1y (7.27)

Thus, based on the received vector at the terminal T , it is impossible to uniquely

determine the first n1 bits of the input vector.

Proof. We denote the rank(A2) by r2. Then we can find a set of r2 linearly

independent columns of A2 that we denote by [c1|c2| . . . |cr2 ]. Consider a matrix

B

B =
[

A1 c1 c2 . . . cr2

]
, (7.28)
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such that rank(B) ≤ rank(A) and the number of columns in B = n1 + r2. This

means that there exists a vector u∗ =

⎡
⎣ u∗

1

u∗
2

⎤
⎦ such that

B

⎡
⎣ u∗

1

u∗
2

⎤
⎦ = �0. (7.29)

Since the columns [c1|c2| . . . |cr2 ] are linearly independent, u∗
1 �= �0. Using u∗ we can

construct a new vector v =

⎡
⎣ v1x

v1y

⎤
⎦ where dim(v1x) = n1×1 and dim(v2x) = n2×1

such that Av = �0. To see this note that we can set v1x = u∗
1 and the values

of elements in v1y corresponding to the columns of [c1|c2| . . . |cr2 ] equal to the

corresponding values of the elements of u∗
2 and zero elsewhere.

Now any two vectors ux and uy such that ux − uy = v shall have

Av = �0 (7.30)

=⇒ Aux = Auy (7.31)

u1x �= u1y. (7.32)

Thus, at terminal T it is impossible to uniquely determine the first n1 bits of the

input vector. We know that rank(A1) + rank(A2) is always greater than or equal

to rank(A). Therefore

rank(A1) + rank(A2) = rank(A) (7.33)

is a necessary condition for the terminal T to uniquely determine the first n1 bits

of the input vector. �
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General Proof of the 2-sources, 3-receivers case

Consider the network shown in Figure 5.6(b) denoted by G. Each link has ca-

pacity (1 + ε) bits/unit time. Figure 5.6(a) shows the S-W region of the two

sources (X1 and X2) denoted by RSW = {(RX1 , RX2) : RX1 > 1} ∩ {(RX1 , RX2) :

RX2 > 1} ∩ {(RX1 , RX2) : RX1 + RX2 > 3} and the capacity regions of the three

terminals (T1, T2 and T3). Here S = {1, 2} and T = {9, 10, 11}. We claim that

P =< RSW , G, S, T > is not separable.

Based on the connectivity of T1 we note that the terminal rate vector (RT1
S1

, RT1
S2

)

is such that 2 < RT1
S1

≤ 2 + 2ε and 1 < RT1
S2

≤ 1 + ε. Similarly the terminal rate

vector (RT2
S1

, RT2
S2

) is such that 1 < RT2
S1

≤ 1 + ε and 2 < RT2
S2

≤ 2 + 2ε.

We define the input vector into the network as �U = [ UT
1 UT

2 ]T such that

U1 = [ UT
11 UT

12 ] and U2 = [ UT
21 UT

22 ] and dim(Uij) = n× 1 for i, j = 1, 2. Strictly

speaking the number of bits in Ui needs to be strictly greater than nH(Xi).

However for the sake of clarity and simplicity of notation we shall work under

the assumption that the boundary points on the rate region {(RX1 , RX2) : RX1 ≥
1, RX2 ≥ 1, RX1 + RX2 = 3} are achievable.

We denote the net transformation from �U to the input edges of each termi-

nal Ti as ZTi
. The data vector flowing on a link shall be denoted Xa→b where

a → b denotes the edge from a to b. Without loss of generality we can as-

sume that X6→9 = X6→11 = X1→6, X3→9 = X1→3, X7→9 = X7→11 = X7→10 =

X4→7, X5→10 = X2→5 and X8→10 = X8→11 = X2→8. To see this, note that at

terminal T1 we can write⎡
⎢⎢⎢⎣

X6→9

X3→9

X7→9

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

H6→9 0 0

0 H3→9 0

0 0 H7→9

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�α

⎡
⎢⎢⎢⎣

X1→6

X1→3

X4→7

⎤
⎥⎥⎥⎦ , (7.34)
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where Ha→b of dimension n(1+ε)×n(1+ε) denotes the transformation induced by

edge a → b. Suppose there existed a solution where X6→9 �= X1→6, X3→9 �= X1→3

and X7→9 �= X4→7. It is possible to come up with a new solution where X6→9 =

X1→6, X3→9 = X1→3 and X7→9 = X4→7 by simply multiplying the received vector

at T1 by α. The other assumptions can be justified in a similar manner. We have

X1→6 =
[

A11 A12 0 0
]

�U, (7.35)

X1→3 =
[

A21 A22 0 0
]

�U, (7.36)

X2→8 =
[

0 0 B11 B12

]
�U, and (7.37)

X2→5 =
[

0 0 B21 B22

]
�U, (7.38)

where the Aij’s and Bij’s are the matrices the specify the transformation such

that dim(Aij) = dim(Bij) = n(1 + ε) × n,∀i, j = 1, 2. We can also write

X4→7 = H4→7

[
H3→4A21 H3→4A22 H5→4B21 H5→4B22

]
�U

= [ M11 M12 M21 M22 ]�U,

(7.39)

where the dim(Mij) = n(1 + ε) × n for all i, j = 1, 2.

Suppose that the above matrices specify a solution P n
sol that is separable. We

shall now consider each terminal and argue for the conditions that the matrices

need to satisfy in order for separability to hold at them.

1. Separability at terminal T1

The matrix ZT1 can be written as

ZT1 =

⎡
⎢⎢⎢⎣

A11 A12 0 0

A21 A22 0 0

M11 M12 M21 M22

⎤
⎥⎥⎥⎦ . (7.40)

At T1 we have access to the vector ZT1
�U . We note that by row operations
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the above matrix can be transformed into a new matrix such that

ZT1 ≡

⎡
⎢⎢⎢⎣

A11 A12 0 0

A21 A22 0 0

0 0 M21 M22

⎤
⎥⎥⎥⎦ , (7.41)

where the symbol ≡ denotes equivalence up to elementary row operations

and pre-multiplication by a square non-singular matrix.

For separability to hold we need to show the existence of a subset ET1
S1

of

the 2n edges in E ′
n from S ′

1 to S1 such that |ET1
S1
| ≥ nRT1

S1
and the received

bits at T1 uniquely determine the bits in ET1
S1

.

Based on the connectivity of T1 we note that RT1
S1

= 2 and therefore |ET1
S1
| =

nRT1
S1

= 2n (in this case ET1
S1

is whole set of edges from S ′
1 to S1). The

sub-matrix of ZT1 that specifies the transformation from U1 to T1 is given

by ⎡
⎣ A11 A12

A21 A22

⎤
⎦ . (7.42)

This means that

rank

⎡
⎣ A11 A12

A21 A22

⎤
⎦ = 2n. (7.43)

Next, there needs to exist a subset ET1
S2

of the edges in E ′
n from S ′

2 to

S2 such that |ET1
S2
| ≥ nRT1

S2
≥ n bits from U2. Now consider the matrix[

M21 M22

]
.

We assume that the bits U2 have been suitably permuted so that T1 is

interested in at least the bits corresponding to the columns in M21. Note

that we are not actually fixing the particular bits of U2 but merely the

number. This means that

rank(M21) = n. (7.44)
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Also by the definition of separability the received bits at T1 need to uniquely

determine the set of bits in ET1
S2

. Therefore using Lemma 10 we have

rank(M21) + rank(M22) = rank
[

M21 M22

]
. (7.45)

Note that M21 = H4→7H5→4B21. Therefore

rank(M21) ≤ min(rank(H4→7H5→4), rank(B21)), (7.46)

which yields

rank(B21) = n. (7.47)

Together the above equations also give us

rank(M22) = rank
[

M21 M22

]
− n

≤ nε.

(7.48)

2. Separability at terminal T2

The matrix ZT2 can be written as

ZT2 =

⎡
⎢⎢⎢⎣

0 0 B11 B12

0 0 B21 B22

M11 M12 M21 M22

⎤
⎥⎥⎥⎦ . (7.49)

Using row operations as above we can get

ZT2 =

⎡
⎢⎢⎢⎣

0 0 B11 B12

0 0 B21 B22

M11 M12 0 0

⎤
⎥⎥⎥⎦ . (7.50)

Since the connectivity of terminal T1 and T2 is symmetric we argue as in

the previous sub-section. For separability to hold at T2 we need nRT2
S2

= 2n

bits from U2. Therefore we need

rank

⎡
⎣ B11 B12

B21 B22

⎤
⎦ = 2n. (7.51)
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Next, there needs to exist a subset ET2
S1

of the edges in E ′
n from S ′

1 to S1

such that |ET2
S1
| ≥ nRT2

S1
≥ n. Now consider the matrix

[
M11 M12

]
.

We assume that the bits U1 have been suitably permuted so that T2 is in-

terested in at least the bits corresponding to the columns in M12. Note that

we are not actually fixing the particular bits of U1 but merely the number.

This means that rank(M12) = n. Also by the definition of separability

the received bits at T2 need to uniquely determine the set of bits in ET2
S1

.

Therefore using Lemma 10 in the Appendix, we have

rank(M11) + rank(M12) = rank
[

M11 M12

]
. (7.52)

Note that M12 = H4→7H3→4A22. Therefore

rank(M12) ≤ min(rank(H4→7H3→4), rank(A22)), (7.53)

which yields

rank(A22) = n. (7.54)

Together the above equations also give us

rank(M11) = rank
[

M11 M12

]
− n

≤ nε.

(7.55)

3. Separability at terminal T3

Finally we argue for separability at T3. First we derive more conditions on

the ranks of the matrices involved based on our previous observations. We

know that

rank

⎡
⎣ B11 B12

B21 B22

⎤
⎦ = 2n and (7.56)

rank(B21) = n. (7.57)
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Using these conditions and via elementary row operations we can make

⎡
⎣ B11 B12

B21 B22

⎤
⎦ ≡

⎡
⎢⎢⎢⎣

0 B′
12

B′
21 C ′

0 Cnε×n

⎤
⎥⎥⎥⎦ (for some B′

12, B
′
21, C and C ′). (7.58)

Since the above operations proceed via elementary row operations they

preserve the rank of the matrices involved, so that rank(B′
12) = rank(B12).

Also, rank(C) ≤ nε. This means that

rank(B12) ≥ n(1 − ε). (7.59)

By similar arguments we can obtain rank(A11) ≥ n(1 − ε).

By the definition of separability, there need to exist subsets ET3
S1

such that

|ET3
S1
| ≥ nRT3

S1
and ET3

S2
such that |ET3

S2
| ≥ nRT3

S2
such that the received bits at

T3 uniquely determine the bits belonging to them. We shall now determine

an upper-bound on |ET3
S1
| + |ET3

S2
|.

We can write

ZT3 =

⎡
⎢⎢⎢⎣

A11 A12 0 0

M11 M12 M21 M22

0 0 B11 B12

⎤
⎥⎥⎥⎦ . (7.60)

Notice that the rows corresponding to X7→11 have been moved to the middle

of the matrix for notational convenience. Suppose that the first 2n columns

of ZT3 are permuted so that the first |ET3
S1
| columns correspond to the bits

in the set ET3
S1

. We write the new matrix Z ′
T3

as

Z ′
T3

=
[

H1 H2 H3

]
, (7.61)

where dim(H1) = 3n(1 + ε) × |ET3
S1
|, dim(H2) = 3n(1 + ε) × (2n − |ET3

S1
|)

and dim(H3) = 3n(1 + ε)× 2n. We make the following observations. Since
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T3 is interested in receiving all the bits in ET3
S1

, we need rank(H1) = |ET3
S1
|.

By the definition of separability the received bits at T3 need to uniquely

determine the bits in ET3
S1

. Therefore using Lemma 10, we can conclude

that

rank(H1) + rank
[

H2 H3

]
= rank(Z ′

T3
). (7.62)

Now

H3 =

⎡
⎢⎢⎢⎣

0 0

M21 M22

B11 B12

⎤
⎥⎥⎥⎦ , (7.63)

rank(B12) ≥ n(1 − ε) (from (7.59)), and (7.64)

rank(M21) = n (from (7.44)). (7.65)

The last two observations give us rank(H3) ≥ n(2−ε). Also rank
[

H2 H3

]
≥

rank(H3) ≥ n(2 − ε). Finally we have

rank(H1) = |ET3
S1
| = rank(Z ′

T3
) − rank

[
H2 H3

]
≤ 3n(1 + ε) − n(2 − ε)

= n(1 + 4ε).

(7.66)

A similar argument shows that |ET3
S2
| ≤ n(1 + 4ε) giving us |ET3

S1
|+ |ET3

S2
| ≤

n(2 + 8ε). If ε < 1/8 then the total number of bits that can be received

in a separable fashion at T3 is strictly less than 3n. This contradicts our

assumption about the existence of a separable solution.

�
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