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Abstract of the Dissertation

Reliability-output Decoding and

Low-latency Variable-length Coding Schemes

for Communication with Feedback

by

Adam Royce Williamson

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor Richard D. Wesel, Chair

Feedback links are ubiquitous in modern communication systems. This dissertation is focused

on the short-blocklength performance of coded communication systems with feedback and is

organized in three main parts. The first section presents a novel reliability-output decoding

algorithm for tail-biting convolutional codes, based on Raghavan and Baum’s Reliability-

Output Viterbi Algorithm (ROVA) for terminated convolutional codes. Whereas terminated

convolutional codes suffer from a rate penalty at short blocklengths, tail-biting convolutional

codes do not suffer from rate loss, making them throughput-efficient and suitable for used

in reliability-based retransmission schemes with short blocklengths.

The second portion of the dissertation analyzes the performance of deterministic variable-

length feedback coding schemes, focusing on blocklengths less than 300 symbols. In both the

decision-feedback and information-feedback settings, we demonstrate that tail-biting convo-

lutional codes can deliver rates surpassing the random-coding lower bound at blocklengths

less than 100 symbols. The decision-feedback scheme uses the tail-biting ROVA to determine

when to stop transmission, which requires only a single bit of feedback (ACK/NACK) after

each decoding attempt. In contrast, the information-feedback scheme employs two-phase

ii



incremental redundancy and uses feedback of the received symbols to confirm or reject the

decoder’s tentative estimate. Finally, we discuss implications of these schemes when used in

practical systems, namely the performance when decoding is limited to packets instead of

individual symbols.

Finally, using the information-theoretic framework of the second section, the third part of

this dissertation investigates the energy efficiency of variable-length feedback codes compared

to that of fixed-length block codes without feedback. While the latency reduction obtained

with feedback can decrease transmitter power consumption, attempting decoding after every

received symbol significantly increases receiver power consumption. Care must be taken to

choose decoding intervals that balance the competing interests of transmitter and receiver

power.
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CHAPTER 1

Introduction

Feedback links are ubiquitous in modern communication systems and have been studied

in the information theory community for decades. Despite the fact that noiseless feedback

does not increase the asymptotic (Shannon) capacity of point-to-point, memoryless channels,

there are many other benefits of feedback. For example, feedback can simplify encoding and

decoding operations and can improve the error exponent, which governs the error probability

as a function of blocklength.

Recent developments in finite-blocklength information theory have renewed interest in

the benefits of feedback at short blocklengths. Compared to fixed-length block codes with-

out feedback, variable-length coding with feedback can dramatically improve the maximum

non-asymptotic rate. This dissertation builds on the recent information theory to demon-

strate deterministic coding schemes that perform well at average blocklengths less than 300

symbols. In particular, we show that convolutional codes, which are known to have excellent

error performance at short blocklengths, can deliver rates above the information-theoretic

random-coding lower bound. In contrast, fixed-length codes without feedback have typically

required thousands of bits to achieve rates approaching capacity. Low-latency communi-

cation is desirable for many emerging applications, so it is important to investigate cod-

ing schemes that provide rates close to capacity without requiring thousand-bit latencies.

Machine-to-machine communication, for example, may have packets lengths of only a few

bytes.
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1.1 Outline of Dissertation

The dissertation is organized in three main parts. The first part (Ch. 2), presents novel

reliability-output decoding algorithms for tail-biting convolutional codes, based on Ragha-

van and Baum’s Reliability-Output Viterbi Algorithm (ROVA) for terminated convolutional

codes. Terminated convolutional codes start and end in a known state (usually the all-zeros

state), which results in a rate penalty due to the fixed termination symbols that must be

transmitted in order to arrive at the termination state. This rate penalty can be severe at

short blocklengths (e.g., under 100 symbols).

In contrast, tail-biting convolutional codes can start in any state, but must end in the

same state. This starting/ending state is unknown at the receiver, which increases the

decoding complexity compared to terminated convolutional codes. Tail-biting convolutional

do not suffer the rate loss of terminated convolutional codes, making them throughput-

efficient and suitable for use in hybrid Automatic Repeat reQuest (hybrid ARQ) systems.

However, the ROVA for terminated codes does not accommodate tail-biting codes, which is

the motivation for this work.

The tail-biting ROVA developed in this dissertation computes the exact word-error prob-

ability of decoded tail-biting codewords by first calculating the posterior probability of the

codeword’s starting state. Due to the high computational complexity of the tail-biting

Viterbi algorithm, several reduced-complexity versions of the tail-biting ROVA are discussed.

One approach employs a state-estimation algorithm that selects the maximum a posteriori

state based on the posterior distribution of the starting states. Another approach is an

approximation to the exact tail-biting ROVA that estimates the word-error probability. A

comparison of the computational complexity of each approach is discussed in detail. These

reliability-output algorithms apply to both feedforward and feedback tail-biting convolu-

tional encoders.

The second portion of the dissertation (Ch. 3) compares the performance of two cat-
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egories of variable-length coding schemes, decision feedback and information feedback, in

the short-blocklength regime. In both the decision-feedback and information-feedback set-

tings, we demonstrate that tail-biting convolutional codes can deliver rates surpassing the

random-coding lower bound at blocklengths less than 100 symbols. The decision-feedback

scheme uses the tail-biting ROVA to determine when to stop transmission, which requires

only a single bit of feedback (ACK/NACK) after each decoding attempt. In contrast, the

information-feedback scheme employs two-phase incremental redundancy and uses feedback

of the received symbols to confirm or reject the decoder’s tentative estimate. Finally, we

discuss the implications of these schemes when used in practical systems. In particular, we

highlight the tension between decision feedback and information feedback, the latter of which

generally requires a higher-rate feedback link in practice.

In addition to demonstrating explicit variable-length coding schemes, Ch. 3 provides

several lower bounds on the maximum rate at short blocklengths, including two improved

achievability results based on information feedback. Other theorems in Ch. 3 extend the

random-coding lower bound to accommodate variable-length codes formed by repeating

length-N block codes, and to accommodate decoding after packets instead of decoding after

every individual received symbol.

Using the information-theoretic framework of Ch. 3, the third part of this dissertation

(Ch. 4) investigates the energy efficiency of variable-length feedback codes compared to

fixed-length block codes without feedback. This chapter demonstrates that while the latency

reduction obtained with feedback can decrease transmitter power consumption, attempting

decoding after every received symbol significantly increases receiver power consumption.

Care must be taken to choose decoding intervals that balance the competing interests of

transmitter and receiver power. Finally, Ch. 5 concludes the dissertation.
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1.2 Summary of Contributions

The main contributions of this dissertation are as follows:

• This dissertation introduces the following reliability-output decoding algorithms for

tail-biting convolutional codes:

– The straightforward Tail-Biting ROVA (TB ROVA), which decodes the convolu-

tional code and computes the exact posterior probability of the decoded word.

– The Approximate Tail-Biting ROVA (Approx. TB ROVA), which decodes the

convolutional code and estimates (approximates) the posterior probability of the

decoded word.

– The Tail-Biting State-Estimation Algorithm (TB SEA), which determines the

maximum a posteriori (MAP) starting state and computes the exact posterior

probability of the MAP state. Following TB SEA, the terminated ROVA can be

used to decode the terminated code starting and ending in the MAP state.

– The Post-decoding Reliability Computation (PRC), which computes the exact

posterior probability of a decoded word that is supplied to the PRC.

• Using the variable-length feedback (VLF) coding framework, this dissertation presents

new achievability results for the finite-blocklength regime:

– Random-coding lower bounds for repeat-after-N codes and for m-transmission

repeat-after-Nm codes provide a theoretical benchmark for evaluating the perfor-

mance of VLF codes that have limitations on the decoding intervals. Both bounds

use random coding with decision feedback.

– Two-phase information-feedback lower bounds demonstrate how a communication-

phase random code followed by a confirmation phase can deliver rates surpassing

the random-coding lower bound, which is based on decision feedback. The first
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of the two-phase lower bounds uses a fixed-length block code in the confirmation

block. The second bound uses a variable-length repetition code in the confirma-

tion phase.

• Explicit constructions using convolutional codes demonstrate deterministic VLF codes

that exceed the random-coding lower bound:

– In the decision-feedback setting, reliability-based retransmission using the TB

ROVA provides high rates at short blocklengths. In contrast to retransmission

based on Cyclic Redundancy Checks (CRCs), the reliability-based retransmis-

sion approach avoids the rate penalty that would be incurred when transmitting

additional error-detection symbols.

– In the information-feedback setting, a two-phase incremental redundancy scheme

enables low error rates by confirming the receiver’s tentative decoding estimates.

– For both the two-phase scheme and an incremental redundancy scheme based on

the TB ROVA, a blocklength-selection algorithm identifies the set of transmission

lengths corresponding to the highest rates at short blocklengths.

• This dissertation proposes a new framework for comparing the energy efficiency of VLF

codes and fixed-length block codes with finite message sets:

– An energy model that includes contributions from both the transmitter and re-

ceiver facilitates evaluations of the energy associated with repeated decoding at-

tempts.

– Numerical examples demonstrate that decoding after every symbol is not optimal,

but that with carefully selected decoding intervals, VLF codes offer lower energy

consumption than fixed-length block codes.
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1.3 Background: Feedback in Modern Communication Systems

Despite the well-known information-theoretic benefits of feedback, some aspects of feedback

coding have not been fully utilized in current systems. In this section, we give a brief

background on some of the ways feedback is used in modern communication-systems and

identify opportunities to take advantage of feedback in future systems.

One of the simplest forms of feedback is ARQ, which has been used extensively in wire-

line systems for decades, originally with uncoded data packets. Eventually forward error

correction (FEC) was added, forming the basis for hybrid ARQ protocols, which divide the

responsibility of error control among the forward link (via FEC) and the feedback link (via

retransmission requests). The simplest form of hybrid ARQ, type I, refers to a single FEC

codeword that is retransmitted until the receiver sends an acknowledgment. In type-II hy-

brid ARQ, also called incremental redundancy, retransmissions do not repeat the original

codeword but instead consist of additional parity symbols that the receiver can use to de-

code. ARQ and hybrid ARQ are examples of decision-feedback schemes and only require

1 bit of feedback per forward packet. Typically the receiver’s decision is based on a Cyclic

Redundancy Check (CRC), which provides error detection but reduces the information rate.

Hybrid ARQ is especially beneficial for wireless channels and continues to receive atten-

tion, both in the information theory literature (e.g., [5–7]) and in industry standards such as

3GPP (e.g., [8, 9]). Despite the wide body of research indicating the throughput benefits of

incremental redundancy, many modern communication systems include type-I hybrid ARQ

protocols but do not incorporate incremental redundancy (i.e., attempting decoding with

progressively increasing blocklengths). The IEEE 802.11 wireless standard, for example,

does not allow for incremental redundancy at the physical layer.

One reason that system architects have avoided incremental redundancy in the past

is increased system complexity. As compared to fixed-length-coding schemes, incremental

redundancy schemes incur additional complexity both in their design and their operation.
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Additional signaling in packet overheads must be used to indicate which retransmission a

particular received block belongs to, and larger receive buffers are required to store previously

received blocks. These complexity concerns were noted in a 2001 comparison of non-adaptive

incremental redundancy and Chase combining, which suggested that although incremental

redundancy delivered superior throughput in most cases, the additional complexity was not

worthwhile [10]. However, more recent research exploring adaptive incremental redundancy

schemes in 3GPP [9,11,12] has claimed that the benefits of incremental redundancy outweigh

the complexity concerns for next-generation systems.

Perhaps as a result of these insights, greater attention has been given to incremental

redundancy in the communication literature in the past decade (e.g., [13–15]). For example,

Visotsky et al. [13] analyze the throughput and latency of hybrid ARQ schemes in the same

manner that we have in Ch. 3, though [13] is not focused on short-blocklength performance.

Recognizing the rate penalty incurred by transmitting additional parity bits for CRCs, Fricke

et al. [15] demonstrated the throughput benefits of a reliability-based retransmission scheme.

Fricke et al. [15] investigated the performance of convolutional codes in the type-I hybrid

ARQ setting, but wasn’t focused on short blocklengths. The reliability-based retransmission

scenario in [15] provides the basis for the tail-biting ROVA in Ch. 2.
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CHAPTER 2

Reliability-output Decoding of Tail-biting Codes

2.1 Introduction

Raghavan and Baum’s reliability-output Viterbi algorithm (ROVA) [1] uses the sequence-

estimation property of the Viterbi algorithm to calculate the exact word-error probability of

a received convolutional code sequence. In general, the ROVA can be used to compute the

word-error probability for any finite-state Markov process observed via memoryless channels

(i.e., processes with a trellis structure). However, the ROVA is only valid for processes that

terminate in a known state (usually the all-zeros state). For codes with large constraint

lengths, a significant rate penalty is incurred due to the additional symbols that must be

transmitted in order to arrive at the termination state.

Tail-biting convolutional codes can start in any state, but must terminate in the same

state. The starting/terminating state is unknown at the receiver. These codes do not suffer

the rate loss of terminated codes, making them throughput-efficient (see, e.g., [16] and [17,

Ch. 12.7]). The tail-biting technique is commonly used for short-blocklength coding.

2.1.1 Overview and Contributions

In this chapter, we extend the ROVA to compute the word-error probability for tail-biting

codes. First, we present a straightforward approach, which we call the tail-biting ROVA

(TB ROVA). TB ROVA invokes the original ROVA for each of the possible starting states

s. The complexity of this straightforward approach is large, proportional to 22ν for standard
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binary convolutional codes (and q2ν for convolutional codes over Galois field GF (q)), where

ν is the number of memory elements in a minimal encoder.

We explore several approaches to reduce the complexity of TB ROVA. We first introduce

a post-decoding algorithm that computes the reliability of codewords that have already been

decoded by an existing tail-biting decoder, including possibly suboptimal decoders. We then

propose a new tail-biting decoder that uses the posterior distribution of the starting states

to identify the most probable starting state of the received sequence. Finally, we discuss

how to use Fricke and Hoeher’s simplified (approximate) ROVA [18] for each of the qν initial

states, which reduces the complexity of the word-error probability computation.

The reliability-output algorithms presented in this chapter apply to both feedforward

(non-recursive) and feedback (recursive) convolutional encoders. However, as pointed out

by St̊ahl et al. [19], it is not possible to have a one-to-one mapping from information words

to codewords and still fulfill the tail-biting restriction for feedback encoders at certain tail-

biting codeword lengths. St̊ahl et al. [19] provide conditions for when tail-biting will work

for recursive encoders and also describe how to determine the starting state corresponding to

an input sequence. In the cases where the tail-biting technique works for feedback encoders,

there is a one-to-one mapping between input sequences and codewords, and the reliability-

output algorithms in this chapter are valid.

The remainder of this chapter proceeds as follows: Sec. 2.1.2 reviews the related literature

and Sec. 2.1.3 introduces notation. Sec. 2.2 reviews Raghavan and Baum’s ROVA and

discusses how to extend it to tail-biting codes. The simplified ROVA for tail-biting codes is

discussed in Sec. 2.3. Sec. 2.4 presents the Post-decoding Reliability Computation (PRC)

for tail-biting codes and Sec. 2.5 introduces the Tail-Biting State-Estimation Algorithm (TB

SEA). Sec. 2.5.4 discusses an alternative to TB SEA using the tail-biting BCJR algorithm.

Sec. 2.6 evaluates the complexity of the proposed algorithms, and Sec. 2.7 shows numerical

examples of the computed word-error probability and the actual word-error probability.

Sec. 2.8 concludes the chapter.
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2.1.2 Related Literature

There are a number of reliability-based decoders for terminated convolutional codes, most

notably the Yamamoto-Itoh algorithm [20], which computes a reliability measure for the

decoded word, but not the exact word-error probability. In [15], Fricke and Hoeher use

Raghavan and Baum’s ROVA in a reliability-based type-I hybrid Automatic Repeat reQuest

(ARQ) scheme.

Hof et al. [21] modify the Viterbi algorithm to permit generalized decoding according to

Forney’s generalized decoding rule [22]. When the generalized decoding threshold is chosen

for maximum likelihood (ML) decoding with erasures and the erasure threshold is chosen

appropriately, this augmented Viterbi decoder is equivalent to the ROVA.

A type-II hybrid ARQ scheme for incremental redundancy using punctured terminated

convolutional codes is presented by Williamson et al. [23]. In [23], additional coded symbols

are requested when the word-error probability computed by the ROVA exceeds a target word-

error probability. This word-error requirement facilitates comparisons with recent work in

the information theory community [24, 25]. Polyanskiy et al. [25] investigate the maximum

rate achievable at short blocklengths with variable-length feedback codes. While [23] shows

that terminated convolutional codes can deliver throughput above the random-coding lower

bound of [25], the rate loss from termination is still significant at short blocklengths. To avoid

the termination overhead, it is imperative to have a reliability-output decoding algorithm

for tail-biting codes.

In contrast to the decoding algorithms for terminated codes, Anderson and Hladik [26]

present a tail-biting maximum a posteriori (MAP) decoding algorithm. This extension of

the BCJR algorithm [27] can be applied to tail-biting codes with a priori unequal source

data probabilities. As with the BCJR algorithm, [26] computes the posterior probabilities

of individual data symbols. In contrast, the ROVA [1] and the tail-biting reliability-based

decoders in this chapter compute the posterior probabilities of the codeword.
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More importantly, the tail-biting BCJR of [26] is only an approximate symbol-by-symbol

MAP decoder, as pointed out in [28] and [29]. Because the tail-biting restriction is not strictly

enforced, non-tail-biting “pseudocodewords” can cause bit errors, especially when the ratio

of the tail-biting length L to the memory order M is small (i.e., L/M ≈ 1-2). Further

comparisons with the tail-biting BCJR are given in Sec. 2.5.4. An exact symbol-by-symbol

MAP decoder for tail-biting codes is given in [30, Ch. 7].

Handlery et al. [31] introduce a suboptimal, two-phase decoding scheme for tail-biting

codes that computes the approximate posterior probabilities of each starting state and then

uses the standard BCJR algorithm to compute the posterior probabilities of the source

symbols. This approach is compared to the tail-biting BCJR of [26] and exact MAP decoding

in terms of bit-error-rate (BER) performance. Both the two-phase approach of [31] and the

tail-biting BCJR of [26] perform close to exact MAP decoding when L/M is large, but suffer

a BER performance loss when L/M is small.

Although it does not compute the word-error probability, Yu [32] introduces a method of

estimating the initial state of tail-biting codes, which consists of computing a pre-metric for

each state based on the last M observations of the received word. This pre-metric is then

used to initialize the path metrics of the main tail-biting decoder (e.g., the circular Viterbi

decoder [33]), instead of assuming that all states are equally likely at initialization. The

state-estimation method of [32], which is not maximum-likelihood, is limited to systematic

codes and a special configuration of nonsystematic codes that allows information symbols to

be recovered from noisy observations of coded symbols.

Because tail-biting codes can be viewed as circular processes [16,33], decoding can start

at any symbol. Wu et al. [34] describe a reliability-based decoding method that compares

the log likelihood-ratios of the received symbols in order to determine the most reliable

starting-location for tail-biting decoders. Selecting a reliability-based starting location re-

duces the error probability by minimizing the chance of choosing non-tail-biting paths early

in the decoding process. Wu et al. [34] apply this approach to existing suboptimal decoders,
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including the wrap-around Viterbi algorithm of [35]. As with [32], [34] does not compute the

word-error probability.

Pai et al. [36] generalizes the Yamamoto-Itoh algorithm to handle tail-biting codes and

uses the computed reliability measure as the retransmission criteria for hybrid ARQ. When

there is a strict constraint on the word-error probability, however, this type of reliability

measure is not sufficient to guarantee a particular undetected-error probability. Providing

such a guarantee motivates the word-error probability calculations in this chapter (instead

of bit-error probability as in [26,28–32]).

2.1.3 Notation

We use the following notation in this chapter: P(X = x) denotes the probability mass

function (p.m.f.) of discrete-valued random variable X at value x, which we also write as

P(x). The probability density function (p.d.f.) of a continuous-valued random variable Y

at value y is f(Y = y), sometimes written as f(y). In general, capital letters denote random

variables and lowercase letters denote their realizations. Letters with superscripts denote

vectors, as in y` = (y1, y2, . . . , y`), while subscripts denote a particular element of a vector:

yi is the ith element of y`. We use the hat symbol to denote the output of a decoder, e.g., x̂

is the codeword chosen by the Viterbi algorithm.

2.2 The Reliability-output Viterbi Algorithm

Raghavan and Baum’s reliability-output Viterbi algorithm [1] augments the canonical Viterbi

decoder with the computation of the word-error probability of the maximum-likelihood (ML)

codeword. In this section, we provide an overview of the ROVA.

For rate-k/n convolutional codes with L trellis segments and input alphabet q, we denote

the ML codeword as x̂L = x̂ and the noisy received sequence as yL = y. The probability

that the ML decision is correct given the received word is P(X = x̂|Y = y) = P(x̂|y), and

12



the word-error probability is P(X 6= x̂|Y = y) = 1− P(x̂|y). The probability of successfully

decoding can be expressed as follows:

P(x̂|y) =
f(y|x̂)P(x̂)

f(y)
=

f(y|x̂)P(x̂)∑
x′

f(y|x′)P(x′)
, (2.1)

where we have used f(y|x̂) to denote the conditional p.d.f. of the real-output channel (e.g.,

the binary-input AWGN channel). This may be replaced by the conditional p.m.f. P(y|x̂)

for discrete-output channels (e.g., the binary symmetric channel).

The probability of correctly decoding can be further simplified if each of the codewords

x′ is a priori equally likely, i.e., P(x′) = P(x̂) ∀ x′, which we assume for the remainder of the

chapter. This assumption yields

P(x̂|y) =
f(y|x̂)∑

x′
f(y|x′) . (2.2)

In general, the denominator in (2.2) may be computationally intractable when the message

set cardinality is large. However, the ROVA [1] takes advantage of the trellis structure of

convolutional codes to compute P(x̂|y) exactly with complexity that is linear in the block-

length and exponential in ν (i.e., it has complexity on the same order as that of the original

Viterbi algorithm). This probability can also be computed approximately by the simplified

(approximate) ROVA [18], which will be discussed further in Sec. 2.3.

The ROVA can compute the probability of word error for any finite-state Markov pro-

cess observed via memoryless channels (e.g., in maximum-likelihood sequence estimation for

signal processing applications). In the remainder of this chapter, we use the example of

convolutional encoding and decoding, but the ROVA and our tail-biting trellis algorithms

apply to any finite-state Markov process.

2.2.1 Conditioning on the Initial State

Raghavan and Baum’s ROVA applies only to codes that begin and end at a known state.

Each of the probabilities f(y|x′) in (2.2) is implicitly conditioned on the event that the receiver
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knows the initial and final state of the convolutional encoder.

To be precise, ROVA beginning and ending at the same state s, which we shall denote

as ROVA(s), effectively computes the following:

P(x̂s|y, s)︸ ︷︷ ︸
computed by ROVA(s)

=
f(y|x̂s, s)P(x̂s|s)

f(y|s) =
f(y|x̂s, s)∑
x′s

f(y|x′s, s)
, (2.3)

where the limit x′s in the summation of the denominator denotes that the enumeration for

the summation is over all codewords x′s with starting state s, and f(y|x′s, s) is shorthand for

f(Y = y|X = x′s, S = s). In summary, ROVA(s) computes the ML codeword x̂s correspond-

ing to starting state s, the posterior probability of that codeword given s, P(x̂s|y, s), and

the probability of the received sequence given s, f(y|s). The inputs and outputs of ROVA(s)

are illustrated in the block diagram of Fig. 2.1.

ROVA(s) P(x̂Ls |yL, s)
yL

s x̂Ls

f(yL|s)

Figure 2.1: Block diagram of Raghavan and Baum’s ROVA(s) [1].

For tail-biting codes, we are interested in computing the quantity P(x̂|y) without condi-

tioning on the unknown starting and ending state s:

P(x̂|y) =
∑
s

P(x̂|y, s)P(s|y). (2.4)

The ML codeword x̂ has an associated initial state, ŝ. Note that P(x̂|y, s) = 0 unless s = ŝ,

since x̂ is not a possible codeword for any starting state other than ŝ. Thus, we have:

P(x̂|y) = P(x̂|y, ŝ)P(ŝ|y). (2.5)

Thus, the tail-biting ROVA (TB ROVA) must compute the probability P(x̂|y) of successful

decoding in (2.5) by weighting P(x̂|y, ŝ) with P(ŝ|y). (For the original ROVA with a known

starting state ŝ, P(ŝ|y) = 1 and P(s′|y) = 0 ∀ s′ 6= ŝ.)
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Using the fact that each of the initial states s is equally likely a priori (i.e., P(s) =

P(s′) ∀s 6= s′), we have:

P(ŝ|y) =
f(y|ŝ)∑

s′
f(y|s′) . (2.6)

This finally yields

P(x̂|y)︸ ︷︷ ︸
computed by TB ROVA

=

computed by ROVA(ŝ)︷ ︸︸ ︷
P(x̂|y, ŝ)f(y|ŝ)∑

s′
f(y|s′)︸ ︷︷ ︸

computed by ROVA(s′)

, (2.7)

where the summation in the denominator of (2.7) is over all qν possible initial states.

2.2.2 A Straighforward Tail-biting ROVA

A straightforward ML approach to decoding tail-biting codes is to perform the Viterbi algo-

rithm VA(s), for each possible starting state s = 0, 1, . . . , qν−1. The ML codeword x̂ is then

chosen by determining the starting state with the greatest path metric (i.e., the greatest

probability). As shown in Fig. 2.2, this approach will work for the ROVA as well: perform

ROVA(s) for each possible s and then pick x̂ and its starting state ŝ. The probability P(x̂|y)

is then computed as in (2.7), using P(x̂|y, ŝ) from the ROVA for the ML starting state and

the f(y|s) terms produced by the ROVAs for all the states. This approach is illustrated in

the block diagram of Fig. 2.2.

2.3 The Simplified ROVA for Tail-biting Codes

This section proposes replacing the exact word-error computations of Sec. 2.2.2’s straight-

forward TB ROVA with an estimated word-error probability, using Fricke and Hoeher’s sim-

plified (approximate) ROVA [18]. This approach requires a Viterbi decoder for each starting

state to select the ML codeword for that state. Fricke and Hoeher’s [18] simplified ROVA

for starting state s, which we call Approx ROVA(s), estimates the probability P(xs|y, s).
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ROVA
x̂0,P(x̂0|y, 0), f(y|0)

ROVAy

ROVA

...

TB ROVA

s=0

s=1

s=t

compute

Select x̂ŝ

and P(ŝ|y)

and ŝ,

P(x̂ŝ|y)

x̂1,P(x̂1|y, 1), f(y|1)

x̂t,P(x̂t|y, t), f(y|t)

Figure 2.2: Block diagram of the straightforward tail-biting ROVA (TB ROVA), which per-

forms the ROVA(s) for each possible starting state s. The largest possible state is t = qν−1.

Substituting this estimate P̃(xs|y, s) into (2.7), we have the following approximation:

P̃(x̂|y) =

computed by Approx ROVA(ŝ)︷ ︸︸ ︷
P̃(x̂|y, ŝ) f(y|ŝ)∑

s

f(y|s) . (2.8)

While f(y|s) is not computed directly by Approx ROVA(s), we can approximate it with

quantities available from Approx ROVA(s) as

f(y|s) ≈ f̃(y|s) =
f(y|xs, s)P(xs|s)

P̃(xs|y, s)
(2.9)

=
f(y|xs, s)

qkKP̃(xs|y, s)
, (2.10)

when all qkK codewords with starting state s are equally likely, where K is the number of

trellis segments before termination. Note f(y|xs, s) can be calculated by the Viterbi algorithm

for starting state s.

Equations (2.8) and (2.10) lead to the following estimate of the word-correct probability:

P̃(x̂|y) ≈

computed by Approx ROVA(ŝ)︷ ︸︸ ︷
P̃(x̂|y, ŝ)̃f(y|ŝ)∑

s

f̃(y|s)︸ ︷︷ ︸
computed by Approx ROVA(s)

. (2.11)
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We refer to the overall computation of P̃(x̂|y) in (2.11) as Approx TB ROVA. Sec. 2.6

provides a discussion of its complexity and Sec. 2.7 presents simulation results.

Note that despite the approximations, the simplified ROVA chooses the ML codeword

for terminated codes. For the tail-biting version Approx TB ROVA, as long as the winning

path metric of each starting/ending state is used to determine the ML state ŝ, the decoded

codeword will also be ML (and the same as the codeword chosen by the exact tail-biting

ROVA in Sec. 2.2.2). However, if the approximate reliabilities P̃(xs|y, s) are used instead of

the path metrics to select the decoded word x̂ as x̂ = arg max
s

P̃(xs|y, s), it is possible that

the decoded word will not be ML (if the channel is noisy enough).

2.4 Post-decoding Reliability Computation

There are qν possible starting states that must be evaluated in the straightforward TB ROVA

of Sec. 2.2.2 and Fig. 2.2. Thus it may be beneficial to instead use an existing reduced-

complexity tail-biting decoder to find x̂, and then compute the reliability separately. Many

reduced-complexity tail-biting decoders take advantage of the circular decoding property of

tail-biting codes. Some of these approaches are not maximum likelihood, such as the wrap-

around Viterbi algorithm or Bidirectional Viterbi Algorithm (BVA), both discussed in [35].

The A* algorithm [37–39] is one ML alternative to the tail-biting decoding method described

in Sec. 2.2.2. Its complexity depends on the SNR.

Suppose that a decoder has already been used to determine x̂ and its starting state ŝ,

and that we would like to determine P(x̂|y). One operation of ROVA(ŝ) would compute the

probability P(x̂|y, ŝ), but the probability P(ŝ|y) required by (2.5) would still be undeter-

mined. Must we perform ROVA(s) for each s 6= ŝ in order to compute P(ŝ|y) as in (2.6)?

This section shows how to avoid this by combining the computations of the straightforward

approach into a novel Post-decoding Reliability Computation (PRC) for tail-biting codes.

Fig. 2.3 shows a block diagram of PRC. For a rate-k/n tail-biting convolutional code with
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PRC
P(x̂L|yL)

yL
ŝ

x̂L
P(ŝ|yL)

Figure 2.3: Block diagram of the Post-decoding Reliability Computation (PRC).

ν memory elements, PRC takes the following inputs: a received sequence yL with L trellis

segments, a candidate codeword x̂L corresponding to a candidate path in the trellis, and the

starting/ending state ŝ of the candidate codeword. The goal is to compute the posterior

probability of the candidate codeword, P(x̂L|yL). The candidate codeword selected by the

decoder may not be the ML codeword. PRC computes its true reliability regardless.

Raghavan and Baum’s ROVA [1] performs the traditional add-compare-select operations

of the Viterbi algorithm and then computes, for every state in each trellis segment, the

posterior probability that the survivor path is correct and the posterior probability that one

of the non-surviving paths at the state is correct. Upon reaching the end of the trellis (the

Lth segment), having selected survivor paths at each state, there will be one survivor path

corresponding to the ML codeword.

In contrast, with the candidate path already identified, PRC processes the trellis without

explicitly selecting survivors. PRC computes the reliability of the candidate path and the

overall reliability of all other paths.

2.4.1 PRC Overview

We define the following events at trellis stage ` (` ∈ {1, 2, . . . , L}):

• pŝ→j` = {the candidate path from its beginning at state ŝ to its arrival at state j in

segment ` is correct}

• p̄s→r` = {some path from its beginning at state s to its arrival at state r in segment `

is correct (including possibly the candidate path if ŝ = s) }
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• bi→j` = {the branch from state i to state j at time ` is correct}

For ν = 3 memory elements, Fig. 2.4 gives some examples of the paths corresponding

to each of these events. The black branches in Fig. 2.4 constitute all of the paths in the

event p̄s→r7 . The red branches in Fig. 2.4 show the candidate path corresponding to the event

pŝ→j7 . The posterior probability that the red candidate path starting at state ŝ is correct is

P(pŝ→j7 |y7). The posterior probability that any of the paths that started at state s and arrive

at state r in segment 7 are correct is P(p̄r→s7 |y7). Note that since some branch transitions

are invalid in the trellis, P(pŝ→j` ) and P(bi→j` ) may be zero for invalid states and branches in

segment `.

The path-correct probabilities P(pŝ→j` ) and P(p̄s→r` ) can be expressed recursively in terms

of the probabilities of the previous trellis segments’ paths being correct. Conditioned on the

noisy channel observations y` = (y1, y2, . . . , y`), the path-correct probability for the candidate

path (which passes through state i in segment `− 1) is

P(pŝ→j` |y`) = P(pŝ→i`−1 , b
i→j
` |y`) (2.12)

= P(bi→j` |y`, pŝ→i`−1 )P(pŝ→i`−1 |y`) (2.13)

=
f(y`|y`−1, pŝ→i`−1 , b

i→j
` )

f(y`|y`−1)
(2.14)

× P(bi→j` |y`−1, pŝ→i`−1 )P(pŝ→i`−1 |y`−1).

The decomposition in (2.14) uses Bayes’ rule and follows [1]. Fig. 2.4 identifies an example

of states i and j used to compute the probability of bi→j7 .

By the Markov property, f(y`|y`−1, pŝ→i`−1 , b
i→j
` ) = f(y`|bi→j` ), which is the conditional p.d.f.,

related to the familiar Viterbi algorithm branch metric. Similarly, the second term is

P(bi→j` |y`−1, pŝ→i`−1 ) = P(bi→j` |pŝ→i`−1 ). With these simplifications, (2.14) becomes

P(pŝ→j` |y`) =
f(y`|bi→j` )P(bi→j` |pŝ→i`−1 )P(pŝ→i`−1 |y`−1)

f(y`|y`−1)
. (2.15)
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Figure 2.4: An example of a trellis for a rate-1/n code with ν = 3 memory elements is shown

for ` = 1, 2, . . . , 7. The red branches show the candidate path from its beginning at state ŝ

to its arrival at state j. The black branches show all of the paths originating at state s from

their beginning to their arrival at state r. Note that the figure does not show the final stage

of the tail-biting trellis where all paths must return to their starting states.

The denominator can be expressed as a sum over all branches in the trellis T` at time `,

where each branch from m to r is denoted by a pair (m, r) ∈ T`:

f(y`|y`−1) =
∑

(m,r)∈T`

f(y`|y`−1, bm→r` )P(bm→r` |y`−1) (2.16)

=
∑

(m,r)∈T`

f(y`|bm→r` )P(bm→r` |y`−1). (2.17)

The derivation thus far has followed [1], which focused on terminated convolutional codes.

For tail-biting codes, we can further expand the term P(bm→r` |y`−1) by summing over all

the possible starting states s′ as follows:

P(bm→r` |y`−1) =
∑
s′

P(bm→r` , p̄s
′→m
`−1 |y`−1) (2.18)

=
∑
s′

P(bm→r` |y`−1, p̄s
′→m
`−1 )P(p̄s

′→m
`−1 |y`−1)

=
∑
s′

P(bm→r` |p̄s′→m`−1 )P(p̄s
′→m
`−1 |y`−1), (2.19)
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where the last equality follows from the Markov property P(bm→r` |y`−1, p̄s
′→m
`−1 ) = P(bm→r` |p̄s′→m`−1 ).

Thus, (2.17) becomes

f(y`|y`−1) =
∑

(m,r)∈T`

f(y`|bm→r` ) (2.20)

×
∑
s′

P(bm→r` |p̄s′→m`−1 )P(p̄s
′→m
`−1 |y`−1).

The term P(bm→r` |p̄s′→m`−1 ) is the probability that the branch from state m to state r is

correct, given that one of the paths that started at state s′ and arrived at state m at time

` − 1 is correct. P(bm→r` |p̄s′→m`−1 ) = q−k for 1 ≤ ` ≤ K (i.e., all ` except for the last ν trellis

segments in a convolutional code with k = 1). This is because there are qk equiprobable

next states for these values of `.

Using the notation r ⇒ s′ to indicate there is a valid path from state r at time ` to state

s′ at time L, we define the following indicator function I(bm→r` , s′), which indicates that the

trellis branch from state m to state r at trellis stage ` is a branch in a possible trellis path

that terminates at s′:

I(bm→r` , s′) =



1, 1 ≤ ` ≤ K, (m, r) ∈ T`,
1, K + 1 ≤ ` ≤ L, (m, r) ∈ T`, r ⇒ s′

0, K + 1 ≤ ` ≤ L, (m, r) ∈ T`, r 6⇒ s′

0, (m, r) 6∈ T`,

(2.21)

The branch-correct probabilities can now be written as

P(bm→r` |p̄s′→m`−1 ) =


I(bm→r` , s′) q−k, 1 ≤ ` ≤ K

I(bm→r` , s′), K + 1 ≤ ` ≤ L

(2.22)

P(bm→r` |pŝ→m`−1 ) =


I(bm→r` , ŝ) q−k, 1 ≤ ` ≤ K

I(bm→r` , ŝ), K + 1 ≤ ` ≤ L .

(2.23)
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We now define the following normalization term for the `th trellis segment using the

above indicators:

∆` =
∑

(m,r)∈T`

f(y`|bm→r` )
∑
s′

I(bm→r` , s′)P(p̄s
′→m
`−1 |y`−1) (2.24)

=


f(y`|y`−1) qk, 1 ≤ ` ≤ K

f(y`|y`−1), K + 1 ≤ ` ≤ L .

(2.25)

The ∆` normalization term includes most of (2.20) but excludes the potential q−k in

P(bm→r` |p̄s′→m`−1 ) because it cancels with P(bi→j` |pŝ→i`−1 ) in the numerator of (2.15). (Either both

have q−k or both are 1, depending only on `.) Substituting (2.25) into (2.15), we have

P(pŝ→j` |y`) =
1

∆`

f(y`|bi→j` )P(pŝ→i`−1 |y`−1). (2.26)

Thus, for the `th trellis segment, (2.26) expresses the candidate path-correct probability in

terms of the candidate path-correct probability in the previous segment.

The corresponding expression for the overall path probabilities P(p̄s→r` |y`) involves more

terms. Instead of tracing a single candidate path through the trellis, we must add the

probabilities of all the valid tail-biting paths incident on state r in segment ` as follows:

P(p̄s→r` |y`) =
1

∆`

∑
m:(m,r)∈T`

f(y`|bm→r` ) (2.27)

×I(bm→r` , s)P(p̄s→m`−1 |y`−1).

The summation above is over the qk incoming branches to state r. In the special case of a

rate- 1
n

binary code (q=2), there are 2 incoming branches, which we will label as (m, r) and

(u, r), so (2.27) becomes

P(p̄s→r` |y`) =
1

∆`

[
f(y`|bm→r` )I(bm→r` , s)P(p̄s→m`−1 |y`−1)

+ f(y`|bu→r` )I(bu→r` , s)P(p̄s→u`−1 |y`−1)
]
. (2.28)

Fig. 2.4 illustrates how the paths from starting state s merge into state r at trellis segment

` = 7.
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2.4.2 PRC Algorithm Summary

The path probabilities are initialized as follows:

• P(pŝ→j0 |y0) = P(ŝ) = q−ν if ŝ = j, or 0 otherwise.

• P(p̄s→r0 |y0) = P(s) = q−ν if s = r, or 0 otherwise.

In each trellis-segment ` (1 ≤ ` ≤ L), do the following:

1. For each branch (m, r) ∈ T`, compute the conditional p.d.f. f(y`|bm→r` ).

2. For each branch (m, r) ∈ T` and each starting state s, compute the branch-valid indi-

cator I(bm→r` , s), as in (2.21).

3. Using the above values, compute the normalization constant ∆`, as in (2.24).

4. For the current state j of the candidate path, compute the candidate path-correct

probability P(pŝ→j` |y`), as in (2.26).

5. For each starting state s and each state r, compute the overall path-correct probabilities

P(p̄s→r` |y`), as in (2.27).

After processing all L stages of the trellis, the following meaningful quantities emerge:

• The posterior probability that the tail-biting candidate path from ŝ to ŝ is correct

is P(pŝ→ŝL |yL) = P(x̂L|yL), which is the probability that the decoded word is correct,

given the received sequence.

• The posterior word-error probability is then 1 − P(pŝ→ŝL |yL) = 1− P(x̂L|yL).

• The posterior probability that any of the tail-biting paths (any of the codewords) from

s to s is correct is P(p̄s→sL |yL) = P(s|yL), which is the state reliability desired for (2.5).

Numerical results of PRC are shown in Fig. 2.7 in Sec. 2.7.
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2.5 The Tail-biting State-estimation Algorithm

The Post-decoding Reliability Computation described above relies on a separate decoder to

identify the candidate path. If, on the other hand, we would like to compute the word-

error probability of a tail-biting code without first having determined a candidate path and

starting state, we may use the following Tail-Biting State-Estimation Algorithm (TB SEA).

TB SEA computes the MAP starting state ŝ = arg max
s′

P(s′|yL), along with its reliability

P(ŝ|yL). ROVA(ŝ) can then be used to determine the MAP codeword x̂ŝ corresponding to

starting state ŝ, as illustrated in Fig. 2.5.

TB SEA ŝyL
P(ŝ|yL)

ROVA(ŝ)
P(x̂Lŝ |yL)

x̂Lŝ

Figure 2.5: Block diagram of the Tail-Biting State-Estimation Algorithm (TB SEA), followed

by ROVA(ŝ) for the ML starting state ŝ.

PRC relied on tracing a single candidate path through the trellis and computing the can-

didate path-correct probability, as in (2.26). However, the overall path-correct probabilities

in (2.27) do not rely on the candidate path or its probability. The proposed TB SEA aggre-

gates all the previous-segment path-correct probabilities P(p̄s→m`−1 |y`−1) as in (2.27), without

regard to a candidate path. As a result, TB SEA replaces the traditional add-compare-select

operations of the Viterbi algorithm with the addition of all the path probabilities merging

into a state that emanate from a particular origin state. Once the entire trellis has been

processed, the state reliabilities are compared and the MAP starting state is selected.

2.5.1 TB SEA Algorithm Summary

The path probabilities are initialized as follows:

• P(p̄s→r0 |y0) = P(s) = q−ν if s = r, or 0 otherwise.
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In each trellis-segment ` (1 ≤ ` ≤ L), do the following:

1. For each branch (m, r) ∈ T`, compute the conditional p.d.f. f(y`|bm→r` ).

2. For each branch (m, r) ∈ T` and each starting state s, compute the branch-valid indi-

cator I(bm→r` , s), as in (2.21).

3. Using the above values, compute the normalization constant ∆`, as in (2.24).

4. For each starting state s and each state r, compute the overall path-correct probabilities

P(p̄s→r` |y`), as in (2.27).

After processing all L stages of the trellis, the following meaningful quantity emerges:

• The posterior probability that any of the tail-biting paths (any of the codewords) from

s to s is correct is P(p̄s→sL |yL) = P(s|yL).

TB SEA selects the starting state with the maximum value of P(s|yL) (the MAP choice of

starting state), yielding ŝ and its reliability P(ŝ|yL). Thus, TB SEA has selected the MAP

starting state without explicitly evaluating all possible codewords (i.e., paths through the

trellis). This result is not limited to error control coding; it can be applied in any context

to efficiently compute the MAP starting state of a tail-biting, finite-state Markov process.

2.5.2 TB SEA + ROVA(ŝ)

After finding the MAP starting state ŝ with TB SEA, ROVA(ŝ) may be used to compute

the MAP codeword x̂Lŝ and P(x̂Lŝ |yL, ŝ). We have used the subscript ŝ to indicate that x̂Lŝ is

the MAP codeword for the terminated code starting and ending in ŝ. The overall reliability

P(x̂Lŝ |yL) can then be computed as in (2.5), which we have replicated below to show how the

TB SEA and ROVA(ŝ) provide the needed factors:
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P(x̂|y) = P(x̂|y, ŝ)︸ ︷︷ ︸
computed by ROVA(ŝ)

× P(ŝ|y).︸ ︷︷ ︸
computed by TB SEA

(2.29)

2.5.3 MAP States vs. MAP Codewords

Is it possible that the maximum a posteriori codeword x̂ corresponds to a starting state other

than the MAP state ŝ? The following theorem proves that the answer is no, given a suitable

probability of error.

Theorem 1. The MAP codeword x̂ for a tail-biting convolutional code begins and ends in

the MAP state ŝ, as long as P(x̂|y) > 1
2
.

Proof. Consider a codeword x̂ with P(x̂|y) > 1
2
. By (2.5), P(x̂|y) = P(x̂|y, sx̂)P(sx̂|y), where

sx̂ is the starting state of x̂. This implies that P(sx̂|y) > 1
2
. The MAP state is arg max

s′
P(s′|y),

which must be sx̂, since all other states s′ must have P(s′|y) < 1
2
.

Theorem 1 shows that the application of TB SEA followed by the Viterbi algorithm (or

the ROVA) will always yield the MAP codeword x̂ of the tail-biting code, not just the MAP

codeword for the terminated code starting in ŝ (as long as the probability of error is less than

1
2
). In most practical scenarios, the word-error probability (1 − P(x̂|y)), even if unknown

exactly, is much less than 1
2
, so the theorem holds. As a result, in these cases TB SEA

selects the same codeword x̂ as would the TB ROVA of Sec. 2.2.2, and computes the same

reliability P(x̂|y).

2.5.4 The TB BCJR Algorithm for State Estimation

While several related papers such as [31] and [32] have proposed ways to estimate the starting

state of a tail-biting decoder, none computes exactly the posterior probability of the starting

state, P(s|yL), as described for TB SEA. Upon a first inspection, the tail-biting BCJR (TB
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BCJR) of [26] appears to provide a similar method of computing this probability. Applying

the forward recursion of the BCJR algorithm provides posterior probabilities that are denoted

as αL(s) = P(s|yL) in [26]. Thus, it would appear that the state-estimation algorithm of

Sec. 2.5.1 can be replaced by a portion of the TB BCJR algorithm. This would yield a

significant decrease in computational complexity, from roughly q2ν operations per trellis

segment for TB SEA to qν for the TB BCJR. However, as will be shown in Sec. 2.7, the

word-error performance of the tail-biting BCJR when used in this manner is significantly

inferior to that of TB SEA.

As noted in [28] and [29], the tail-biting BCJR algorithm is an approximate symbol-

by-symbol MAP decoder. It is approximate in the sense that the forward recursion of the

TB BCJR in [26] does not strictly enforce the tail-biting restriction, allowing non-tail-biting

“pseudocodewords” to appear and cause errors. [26] requires the probability distributions of

the starting and ending states to be the same, which is a weaker condition than requiring all

codewords to start and end in the same state. [28] and [29] have shown that when the tail-

biting length L is large relative to the memory order, the suboptimality of the TB BCJR in

terms of the bit-error rate is small. However, we are concerned with word-error performance

in this chapter. We find that when the TB BCJR is used to estimate the initial state ŝ and

its probability P(ŝ|yL), followed by ROVA(ŝ) for the most likely state ŝ, the impact on word

error is severe (Fig. 2.7). Frequent state-estimation errors prevent the Viterbi algorithm

in the second phase from decoding to the correct codeword. Thus, the approximate tail-

biting BCJR of [26] is not effective as a replacement for TB SEA when using the word-error

criterion.

In contrast, the exact symbol-by-symbol MAP decoder for tail-biting codes in [30, Ch. 7]

does enforce the tail-biting restriction, and has complexity on the same order as that of TB

SEA. However, because the symbol-by-symbol MAP decoder selects the most probable input

symbols while TB SEA + ROVA(ŝ) selects the most probable input sequence, TB SEA +

ROVA(ŝ) is recommended for use in retransmission schemes that depend on the word-error
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Table 2.1: Complexity per trellis segment of the proposed algorithms (disregarding branch

metric computations).

Algorithm Pat
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D
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Key modules of decoders

VA(s) qν 0 0 0 qν+k 0

ROVA(s) [1] qν qν qν 2qν(2qk − 1)− 1 3qν+k 2qν

PRC 0 1 q2ν q2ν(2qk − 1)− 1 q2ν+k q2ν + 1

TB SEA 0 0 q2ν q2ν(2qk − 1)− 1 q2ν+k q2ν

Approx ROVA(s) [18] qν qν 0 qν(qk − 1) qν+k + 1 qν

Tail-biting decoders that provide reliability output

TB ROVA q2ν q2ν q2ν 2q2ν(2qk − 1)− qν 3q2ν+k 2q2ν

TB SEA + ROVA(ŝ) qν qν q2ν + qν (q2ν + 2qν)(2qk − 1)− 2 q2ν+k + 3qν+k q2ν + 2qν

Approx TB ROVA q2ν q2ν 0 q2ν(qk − 1) q2ν+k + qν q2ν

probability.

2.6 Complexity Analysis

Table 2.1 compares the complexity per trellis segment of each of the discussed algorithms,

assuming that the conditional p.d.f. f(y`|bm→r` ) has already been computed for every branch

in the trellis. The columns labeled ‘Path metrics’, ‘Cand. prob.’, and ‘Overall prob.’ refer

to the number of quantities that must be computed and stored in every trellis segment, for

the path metrics of the Viterbi algorithm, the candidate path probability of (2.26), and the

overall path probability of (2.27), respectively. The number of operations per trellis segment

required to compute these values is listed in the columns labeled ‘Additions’, ‘Multiplica-

tions’, and ‘Divisions’.

The ROVA(s) row of Table 2.1 corresponds to Raghavan and Baum’s ROVA [1] for a

terminated code starting and ending in state s. The operations listed include the multiplica-

tions required for the path metric computations of the Viterbi algorithm for state s, VA(s).
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The TB ROVA row represents performing the ROVA for each of the qν possible starting

states as described in Sec. 2.2.2, so each of the quantities is multiplied by qν .

The PRC row corresponds to the proposed Post-decoding Reliability Computation of

Sec. 2.4. The complexity incurred to determine the candidate path (e.g., by the BVA or the

A* algorithm) is not included in this row and must also be accounted for, which is why no

path metrics are listed for PRC. Compared to TB ROVA, due to combining computations

into a single pass through the trellis, the complexity of PRC is reduced by approximately a

factor of 2. This is because TB ROVA calculates a candidate path probability for each of the

qν starting states (due to decoding to the ML codeword each time), whereas the combined

trellis-processing of PRC involves only one candidate path. Both algorithms compute qν

overall path probabilities, so the ratio of complexity is roughly 1+qν

qν+qν
≈ 1

2
.

The reduction in complexity of TB SEA compared to PRC is modest, with slightly fewer

multiplications and divisions required due to the absence of the candidate path calculations

in TB SEA. Importantly, performing TB SEA followed by ROVA(ŝ) for the ML state ŝ is

shown to be an improvement over TB ROVA for moderately large ν. TB SEA + ROVA(ŝ)

requires approximately one half the additions, one third the multiplications, and one half the

divisions of TB ROVA. TB SEA’s complexity reduction is partly due to the fact that it does

not require the add-compare-select operations of the Viterbi algorithm, which TB ROVA

performs for each starting state. Note also that the number of trellis segments processed

in TB SEA is constant (L segments), whereas the number of trellis segments processed by

many tail-biting decoders (e.g., the BVA) depends on the SNR.

Lastly, the computational costs of performing Fricke and Hoeher’s simplified ROVA [18]

are listed in the Approx ROVA(s) row, along with the tail-biting approximate version of

Sec. 2.3 (Approx TB ROVA). In both of these cases, the word-error outputs are estimates.

In contrast, TB ROVA and TB SEA + ROVA(ŝ) compute the exact word-error probability

of the received word.

For the special case of rate-1/n binary convolutional codes with ν = 6 memory elements,
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Figure 2.6: Examples of the computations per trellis segment for the tail-biting decoders

listed in Table 2.1 corresponding to rate-1/n binary convolutional codes, for ν = 6 memory

elements.

Table 2.2: Generator polynomials g1, g2, and g3 corresponding to the simulated rate-1/3

tail-biting convolutional code. dfree is the free distance, Adfree is the number of nearest

neighbors with weight dfree, and LD is the analytic traceback depth.

ν 2ν g1 g2 g3 dfree Adfree LD

6 64 117 127 155 15 3 21

Fig. 2.6 gives an example of the number of additions, multiplications, and divisions that must

be performed per trellis segment for the three tail-biting decoders in Table 2.1. TB SEA +

ROVA(ŝ) is competitive with Approx TB ROVA in terms of the number of multiplications

and divisions that must be performed, but Approx TB ROVA requires fewer additions than

TB SEA + ROVA(ŝ).
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2.7 Numerical Results

2.7.1 Convolutional Code

Table 2.2 lists the rate-1/3, binary convolutional encoder polynomials from Lin and Costello

[17, Table 12.1] used in the simulations. The number of memory elements is ν, 2ν is the

number of states, and {g1, g2, g3} are the generator polynomials in octal notation. The code

selected has the optimum free distance dfree, which is listed along with the analytic traceback

depth LD [40]. Adfree is the number of nearest neighbors with weight dfree. The simulations

in this section use a feedforward encoder realization of the generator polynomial.

2.7.2 Additive White Gaussian Noise (AWGN) Channel

For antipodal signaling (i.e., BPSK) over the Gaussian channel, the conditional density

f(y`|bi→j` ) can be expressed as

f(y`|bi→j` ) =
n∏

m=1

1√
2πσ2

exp

{
− [y`(m)− x`(m)]2

2σ2

}
, (2.30)

where y`(m) is the mth received BPSK symbol in trellis-segment `, x`(m) is the mth output

symbol of the encoder branch from state i to state j in trellis segment `, and σ2 is the noise

variance. For a transmitter power constraint P , the encoder output symbols are x`(m) ∈
{+
√
P ,−
√
P} and the energy per bit is Eb = P n

k
. This yields an SNR equal to P/σ2 = 2 k

n
Eb
N0

when the noise variance is σ2 = N0/2.

2.7.3 Simulation Results

This section provides a comparison of the average word-error probability computed by the

tail-biting reliability-output algorithms for the AWGN channel using the rate-1/3, 64-state
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tail-biting convolutional code listed in Table 2.2. The simulations in Fig. 2.7 use L = 128

input bits and 384 output bits. The ‘Actual’ curves in the figures show the fraction of

codewords that are decoded incorrectly, whereas the ‘Computed’ curves show the word-error

probability computed by the receiver. ‘Actual’ values are only plotted for simulations with

more than 100 codewords in error.

Fig. 2.7 evaluates the performance of Sec. 2.2.2’s TB ROVA and Sec. 2.4’s PRC. In

the figure, PRC is applied to the output of the Bidirectional Viterbi Algorithm (BVA),

a suboptimal tail-biting decoder. The ‘Actual’ word-error performance of the suboptimal

‘BVA’ is slightly worse than that of the ML ‘Exact TB ROVA’, but the difference is not

visible in Fig. 7. However, even though the bidirectional Viterbi decoder may choose a

codeword other than the ML codeword, the posterior probability P(x̂L|yL) computed by

PRC is exact. Thus, PRC provides reliability information about the decoded word that the

receiver can use as retransmission criteria in a hybrid ARQ setting.

Fig. 2.7 also shows the performance of the combined TB SEA + ROVA(ŝ) approach

in comparison with TB ROVA. As shown in Thm. 1, the word-error probability calculated

by the computationally efficient TB SEA + ROVA(s) is identical to that of TB ROVA,

except when the probability of error is extremely high (i.e., when P(x̂|y) < 1
2
). Even in the

high-error regime, however, the difference is negligible.

The performance of the exact and approximate versions of TB ROVA is compared in

Fig. 2.7. For each starting state s, the ‘Exact TB ROVA’ uses Raghavan and Baum’s ROVA

[1] and the ‘Approx. TB ROVA’ uses Fricke and Hoeher’s simplified ROVA [18], as described

in Sec. 2.3. The approximate approach results in an estimated word-error probability that is

very close to the exact word-error probability. Both reliability computations invoke the same

decoder, the tail-biting Viterbi algorithm (‘TB VA’), so the ‘Actual’ curves are identical.

Finally, Fig. 2.7 also shows that when the forward recursion of the ‘TB BCJR’ of [26] is

used to estimate the starting/ending state, there is a severe word-error penalty for disregard-

ing the tail-biting restriction, as discussed in Sec. 2.5.4. The ‘TB BCJR’ simulations used
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Figure 2.7: Computed and actual word-error probability of the exact TB ROVA, TB SEA fol-

lowed by ROVA(ŝ), and the Bidirectional Viterbi Algorithm (BVA) followed by the Post-de-

coding Reliability Computation (PRC). Also shown are the computed word-error probability

estimates for Approx TB ROVA. All simulations use the rate-1/3, 64-state convolutional code

listed in Table 2.2 with L = 128 input bits and 384 output bits and transmission over the

AWGN channel. The ‘Computed’ values are the word-error probabilities calculated by the

receiver (averaged over the simulation) and the ‘Actual’ values count the number of words

decoded incorrectly. The ‘TB BCJR’ method of estimating the initial state is included for

comparison, indicating that there is a severe penalty for disregarding the tail-biting restric-

tion. Note that all curves except for the two ‘TB BCJR’ curves are almost indistinguishable.
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one iteration through L = 128 trellis segments. Simulations with additional loops around the

circular trellis did not improve the actual word-error probability, since the tail-biting condi-

tion was not enforced. Care should be taken when estimating the starting-state probability

P(s|yL) based on observations of yL in multiple trellis-loops.

Fig. 2.8 provides a histogram of the word-error probabilities computed by the receiver for

the rate-1/3, 64-state convolutional code listed in Table 2.2, with L = 32 input bits, 96 output

bits and SNR 0 dB (Eb/N0 = 1.76 dB). Fig. 2.8 illustrates that the exact and approximate

TB ROVA approaches give very similar word-error probabilities, whereas the word-error

probabilities computed by the tail-biting BCJR followed by ROVA(ŝ) differ significantly.

The difference in the histogram for the TB BCJR is due to poorer decoder performance.

Frequent errors in the state-estimation portion of the tail-biting BCJR cause the word-error

probability to be high.

2.8 Conclusion

We have extended the reliability-output Viterbi algorithm to accommodate tail-biting codes,

providing several tail-biting reliability-output decoders. TB ROVA invokes Raghavan and

Baum’s ROVA for each possible starting state s, and then computes the posterior probability

of the ML starting state, P(ŝ|y), in order to compute the overall word-error probability. We

then demonstrated an approximate version of TB ROVA using Fricke and Hoeher’s simpli-

fied ROVA. We introduced the Post-decoding Reliability Computation, which calculates the

word-error probability of a decoded word, and the Tail-Biting State-Estimation Algorithm,

which first computes the MAP starting state ŝ and then decodes based on that starting state

with ROVA(ŝ).

A complexity analysis shows that TB SEA followed by ROVA(ŝ) reduces the number of

operations by approximately half compared to TB ROVA. Importantly, Theorem 1 proved

that the word-error probability computed by TB SEA + ROVA(ŝ) is the same as that
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Figure 2.8: Histograms of the word-error probability, plotted on a logarithmic scale, com-

puted by three reliability-output decoders: TB ROVA with ML decoding and exact reliability

computations, Approx TB ROVA with ML decoding and approximate reliability computa-

tions, and the TB BCJR for sub-optimal estimation of the starting state ŝ followed by

ROVA(ŝ). Each histogram includes simulations of the same 2000 transmitted codewords

and noise realizations. The vertical axis is the number of times among the 2000 decoded

words that the word-error probability falls within the histogram bin. The two ML decoders

compute P(x̂L|yL) for the same decoded word x̂L, whereas the suboptimal BCJR-based de-

coder decodes to a codeword that is not necessarily the same as x̂L. All simulations use the

rate-1/3, 64-state convolutional code listed in Table 2.2, with L = 32 input bits, 96 output

bits and SNR 0 dB (Eb/N0 = 1.76 dB).
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computed by TB ROVA in SNR ranges of practical interest. Because of this, TB SEA is

a suitable tail-biting decoder to use in reliability-based retransmission schemes (i.e., hybrid

ARQ), being an alternative to Approx TB ROVA.
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CHAPTER 3

Low-latency Variable-length Coding with Feedback

3.1 Introduction

3.1.1 Overview and Related Literature

Despite Shannon’s 1956 result [41] that noiseless feedback does not increase the (asymptotic)

capacity of point-to-point, memoryless channels1, feedback has other benefits for these chan-

nels that have made it a staple in modern communication systems. For example, feedback

can simplify encoding and decoding operations and has been incorporated into incremen-

tal redundancy (IR) schemes proposed as early as 1974 [43]. Hagenauer’s introduction of

rate-compatible punctured convolutional (RCPC) codes allowed the same encoder to be used

under varying channel conditions and used feedback to determine when to send additional

coded bits [44]. Additionally, the information-theoretic benefit of feedback for reducing

latency through a significant improvement in the error exponent, which governs the error

probability as a function of blocklength, has been well understood for some time. See, for

example, [45–48].

Perhaps the most important benefit of feedback is its ability to reduce the (average)

blocklength required to approach capacity. Polyanskiy, Poor, and Verdú [24] quantified the

backoff from capacity at short blocklengths without feedback, demonstrating that there is a

severe penalty on the maximum achievable rate. Even when the best fixed-length block code

1Feedback does, however, provide bounded capacity-gain for the multiple access channel (MAC) and
unbounded gain for the two-user Gaussian interference channel (IC) [42]. In this chapter, we focus on
feedback in point-to-point channels.
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is paired with an Automatic Repeat reQuest (ARQ) strategy, the maximum rate is slow to

converge to the asymptotic (Shannon) capacity. However, when variable-length coding is

used on channels with noiseless feedback, the maximum rate improves dramatically at short

(average) blocklengths [25].

With variable-length coding, decoding after every individual received symbol is problem-

atic from a practical perspective because it increases the decoder complexity tremendously.

Instead of decoding once after all ` symbols have been received (as occurs with fixed-length

codes), the receiver might attempt decoding after each symbol 1, 2, ..., `, where ` is now a ran-

dom variable.2 Because the maximum ` is unbounded, the random coding in [25] assumes

an infinite blocklength. Additionally, the round-trip propagation-delay incurred between

channel uses in most cases will render such a scheme infeasible (since the transmitter waits

for feedback of the previous channel output before sending the next coded symbol).

These practical considerations motivated Chen et al. [49,50] to study the effects of peri-

odic decoding (i.e., only decoding and sending feedback after every I > 1 symbols). Chen et

al. concluded that the rate penalty incurred by limiting decoding times is a constant term.

That is, throughput performance can approach capacity as long as the interval between peri-

odic decoding times grows sub-linearly with the expected latency. Furthermore, the analysis

in [49] and [50] used codebooks consisting of repeated finite-length-codes, showing that a

code with maximum-length N can be used in a variable-length transmission scheme and

provide the same performance as an infinite-length code (as in [25]), up to second order

terms. The importance of these results is that “good” finite-length codes can still achieve

rates approaching capacity at short blocklengths.

Contemporaneous with [24] and [25], Chen et al. [51, 52] showed that the relatively sim-

ple decoding of short-blocklength convolutional codes in an incremental redundancy setting

2In Polyanskiy’s noiseless-termination paradigm [25], one could make the argument that the decoder only
needs to attempt decoding once, when it receives the termination symbol. However, the transmitter would
be decoding after each feedback symbol in order to determine when to terminate, so the system complexity
still increases due to repeated decoding.
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could match the throughput delivered by long-blocklength turbo codes. This led to the

subsequent work in [49] and [50], which made connections between the theory and prac-

tical codes. Incremental redundancy and hybrid ARQ have been discussed elsewhere in

the recent communication literature (e.g., [13, 15, 53]), but those papers are not focused on

characterizing the maximum rate at short blocklengths. In [13], Visotsky et al. propose

a hybrid ARQ algorithm that uses the reliability of received packets to determine the size

of subsequent transmissions. However, in contrast to reliability-based retransmission pro-

tocols that compute the posterior probability of the received packet (e.g., those using the

ROVA in [15, 23, 54]), [13] evaluates the reliability in terms of the average magnitude of

the log likelihood-ratios of the received information bits. This approach requires a map-

ping between reliability metric and the word-error rate, which often requires approximations

or bounding techniques. In contrast, the ROVA-based approach computes the word-error

probability exactly.

3.1.2 Contributions

In this chapter, we investigate the performance of variable-length feedback (VLF) codes

with blocklengths less than 300 symbols. In the VLF coding framework of Polyanskiy et

al. [25], the receiver determines when to stop transmission and informs the transmitter via

noiseless feedback. This is different from the variable-length feedback codes with termination

(VLFT) introduced in [25] and explored in [49, 50], which use a special termination symbol

on the forward channel to indicate when to stop. The transmitter’s control of the stopping

time enables zero-error VLFT codes, whereas VLF codes always have a nonzero (average)

probability of error. The intent of the special termination-symbol is to model practical

systems that have a highly-reliable control-channel that can effectively be considered noise-

free, which allows the communication and termination aspects to be considered separately.

From a simulation perspective, the termination symbol in the VLFT framework is equivalent

to having a genie at the receiver that informs the decoder when it has received a sufficient
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number of noisy symbols to decode correctly.

However, the cost of knowing when the receiver has decoded successfully, either via

termination symbols or common error-detection techniques such as CRCs, may be negligible

for large blocklengths but is significant for small blocklengths [55]. In fact, ignoring this cost

in the VLFT framework allows rates higher than the Shannon capacity when the average

blocklength is small [25]. As a consequence, for the especially short blocklength regime (i.e.,

less than 100 symbols), the VLFT approach is not a realistic model.

In this dissertation, we evaluate the short-blocklength performance of two categories

of VLF codes: 1) decision-feedback coding schemes, for which feedback is only used to

inform the transmitter when to stop (also called stop-feedback), and 2) information-feedback

schemes, which allow the transmitter to adapt its transmission based on information about

the previously received symbols.

There is a large gap between the lower and upper bounds in [25] on achievable rate at

short blocklengths for VLF codes. This chapter demonstrates explicit decision-feedback

and information-feedback coding schemes that surpass the random-coding lower bound in

[25]. These schemes use convolutional codes due to their excellent performance at short

blocklengths. Numerical examples are given for the binary symmetric channel (BSC) and

binary-input additive white Gaussian noise (BI-AWGN) channel.

The decision-feedback scheme in Williamson et al. [23] uses Raghavan and Baum’s

Reliability-Output Viterbi Algorithm (ROVA) [1] for terminated convolutional codes to com-

pute the posterior probability of the decoded word and stops transmission when that word

is sufficiently likely. This is similar to the reliability-based retransmission scheme in Fricke

et al. [15], except that Fricke et al. is not focused on evaluating the short-blocklength per-

formance. While the reliability-based retransmission scheme in [23] delivers high rates at

relatively short blocklengths, the termination of the convolutional codes introduces rate loss

at the shortest blocklengths.

Tail-biting convolutional codes, on the other hand, start and end in the same state,
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though that starting/ending state is unknown at the receiver. In exchange for increased

decoding complexity, tail-biting codes do not suffer from rate loss at short blocklengths.

However, Raghavan and Baum’s ROVA [1] applies only to terminated convolutional codes.

In [54], Williamson, Marshall and Wesel introduce a reliability-output decoder for tail-biting

convolutional codes, called the tail-biting ROVA (TB ROVA). This chapter compares the

reliability-based retransmission scheme using the TB ROVA with an alternative approach

using Cyclic Redundancy Checks (CRCs), called code-based error detection. Both the ROVA

and TB ROVA allow the decoder to request retransmissions without requiring parity bits to

be sent for error detection.

When delay constraints or other practical considerations preclude decoding after every

symbol, decoding after groups of transmitted symbols is required. Selecting the incremen-

tal transmission lengths that maximize the throughput is non-trivial, however. Sec. 3.6.7

provides a numerical optimization algorithm for selecting the m optimal blocklengths in a

general m-transmission incremental redundancy scheme. Sec. 3.6.8 particularizes this algo-

rithm to the reliability-based scheme using the TB ROVA.

Our information-feedback scheme, from Williamson et al. [56], borrows from the error-

exponent literature and uses two-phase incremental redundancy to deliver high rates at short

blocklengths. The communication phase uses tail-biting convolutional codes and the confir-

mation phase uses a fixed-length repetition code to confirm or deny the receiver’s tentative

decision. Sec. 3.6.9 particularizes the blocklength-selection algorithm of Sec. 3.6.7 to the two-

phase scheme, using the assumption of rate-compatible sphere-packing error probabilities.

Finally, we evaluate the short-blocklength performance of the active sequential hypothesis

testing scheme in Naghshvar et al. [2, 3] and compare it to our two-phase incremental re-

dundancy scheme. Whereas the two-phase scheme transmits packets, the hypothesis testing

scheme uses feedback after every received symbol to adapt its subsequent transmissions.

The remainder of this chapter proceeds as follows: Sec. 3.1.3 introduces relevant notation.

Sec. 3.2 provides a review of the fundamental limits for VLF codes from [25] and presents sev-
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eral extensions of the random-coding lower bound to VLF systems with “packets”. Sec. 3.2

also includes improved VLF achievability bounds based on two-phase information feedback.

Sec. 3.3 and Sec. 3.4 investigate decision-feedback and information-feedback schemes, respec-

tively. Sec. 3.5 concludes the chapter.

3.1.3 Notation

In general, capital letters denote random variables and lowercase letters denote their real-

izations (e.g., random variable Y and value y). Superscripts denote vectors unless otherwise

noted, as in y` = (y1, y2, . . . , y`), while subscripts denote a particular element of a vector: yi

is the ith element of y`. The expressions involving log( ) and exp{ } in information-theoretic

derivations are valid for any base, but numerical examples use base 2 and present results in

units of bits.

3.2 VLF Coding Framework

3.2.1 Finite-blocklength Information Theory

For finite-length block codes without feedback, Polyanskiy et al. [24] provide achievability

(lower) and converse (upper) bounds on the maximum rate, along with a normal approx-

imation of the information density that closely approximates both bounds for moderate

blocklengths. In contrast to the tight characterization of the no-feedback case, there is a

large gap between the lower and upper bounds for VLF codes at short average blocklengths

presented in [25]. This section reviews the fundamental limits for VLF codes from [25] and

provides extensions of the lower bound to repeat-after-N codes, which are similar in prin-

ciple to the finite-length VLFT codes studied in [49, 50]. This framework will allow us to

evaluate the short-blocklength performance of the decision-feedback schemes in Sec. 3.3 in

terms of these fundamental limits. This section also provides extensions of the lower bound

to information-feedback codes with two phases.
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We assume there is a noiseless feedback channel. The practical implications of this

assumption will be discussed further in Sec. 3.3. The noisy forward channel is memoryless,

has input alphabet X and has output alphabet Y . The channel satisfies

P(Yn|Xn, Y n−1) = P(Yn|Xn) (3.1)

= P(Y1|X1) ∀ n = 1, 2, . . . (3.2)

A discrete, memoryless channel (DMC) is a special case when X and Y are countable.

Definition 1. (From [25]) An (`,M, ε) variable-length feedback (VLF) code is defined

by:

• A message W ∈ W = {1, . . . ,M}, assumed to be equiprobable. (The positive integer

M is the cardinality of the message set W.)

• A random variable U ∈ U with |U| ≤ 3 and a probability distribution PU on U .3 U

represents common randomness that is revealed to both the transmitter and receiver

before communication begins, which facilitates the use of random-coding arguments in

the sequel.

• A sequence of encoder functions fn : U ×W ×Yn−1 → X , n ≥ 1, which defines the nth

channel input:

Xn = fn(U,W, Y n−1). (3.3)

• A sequence of decoder functions gn : U × Yn → W , n ≥ 1, providing an estimate Ŵn

of the message W at time n:

Ŵn = gn(U, Y n). (3.4)

• An integer-valued random variable τ ≥ 0, which is a stopping time of the filtration

Gn = σ{U, Y1, . . . , Yn}. The stopping time satisfies

E[τ ] ≤ `. (3.5)

3A proof of the upper bound on the cardinality of U is given in [25].
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• A final decision computed at time τ , at which time the error probability must be less

than ε (0 ≤ ε ≤ 1):

P[Ŵτ 6= W ] ≤ ε. (3.6)

Eq. (3.5) indicates that for an (`,M, ε) VLF code, the expected length will be no more

than `. The rate R is given as R = logM
`

. In this chapter, we often refer to the average

blocklength ` as the expected latency, which counts only the number of channel uses (i.e.,

transmitted symbols). The latency does not include delays inherent in practical systems,

such as round-trip propagation delay, decoding delay, etc. A central assumption of this

work is that there are no strict delay constraints, which would otherwise impose an upper

limit on the maximum number of transmitted symbols before declaring an erasure. For

an alternative treatment of feedback communication that analyzes the relationship between

blocklength and delay, see work by Sahai (e.g., [57]).

Enc.
W

fn( )

Xn Channel

P (Yn|Xn)

Yn Dec.

gn( )
Ŵn

Transmitter Receiver

1{τ = n}

Figure 3.1: Illustration of the VLF coding framework, with message W , encoder (Enc.)

output Xn at time n, memoryless channel output Yn, and decoder (Dec.) estimate Ŵn.

The feedback link (dashed line) to the encoder is assumed to be noiseless. With decision

feedback, the transmitter disregards the received symbols Yn and only uses feedback to

determine whether to stop (i.e., when τ = n).

In the definition above, the receiver attempts to decode after each received symbol.

Because the final decision is not computed until time n = τ , the estimates Ŵn for n < τ can
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be thought of as tentative estimates that may not affect the decoding outcome. This differs

slightly from [25], which does not require the decoder to compute the tentative estimates

gn(U, Y n) for n < τ . We include the definition of Ŵn here for consistency with the reliability-

based stopping approach in Sec. 3.3. The receiver uses some stopping rule (to be specified

in Sec. 3.3) to determine when to stop decoding and informs the transmitter via feedback.

This VLF coding framework is illustrated in Fig. 3.1.

Polyanskiy et al. [25] define a class of VLF codes called stop-feedback codes that

satisfy:

fn(U,W, Y n−1) = fn(U,W ). (3.7)

For stop-feedback codes, the encoded symbols are independent of the previously received

noisy-channel outputs. The feedback link is used only to inform the transmitter when the

receiver has determined that the transmission should terminate. This paradigm was referred

to as decision feedback in early papers by Chang [58] and by Forney [22], the term which

we will use in the sequel. Massey [59] referred to this case as a channel that is used without

feedback.

Decision-feedback codes are practically relevant because they require only one bit of

feedback for the receiver to communicate its termination decision or to request additional

symbols. In the communication and networking literature, the feedback bit is usually referred

to as an ACK (acknowledgment) or NACK (negative acknowledgment). A consequence of the

decision-feedback restriction is that the codeword corresponding to messageW , {Xn(W )}∞n=1,

can be generated before any symbols are transmitted over the channel, as the codeword does

not depend on the realizations of {Yn}∞n=1.

Whereas noiseless feedback is in general not a practically sound assumption, a single bit

of ACK/NACK feedback can be made virtually noiseless by use of a sufficiently strong error-

correction code. For the feedback rate to be relatively low compared to the forward rate,

however, (and therefore negligible in terms of the forward/feedback link budget) feedback
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must only be sent after decoding packets of multiple symbols, rather than after every received

symbol. Packet-based VLF codes are explored further in the next subsection.

Another practical scenario that may motivate the assumption of noiseless feedback is an

asymmetric communication link in which the transmitter’s power constraint is significantly

smaller than that of the receiver. Consider, for example, a battery-operated sensor node

that, due to its limited transmit energy, imposes a low received SNR at the base station. If

the base station’s budget for decoding energy and feedback transmit energy are essentially

unlimited, it can make sense to declare the feedback noiseless.

In contrast to decision-feedback codes, the class of VLF codes in which (3.7) is not

generally true is referred to as information-feedback codes. The most general form of

information feedback is for the receiver to communicate all of its received symbol values to the

transmitter. With information feedback, the transmitter may take advantage of the feedback

to adapt its transmissions to better refine the receiver’s estimate, directing the receiver to the

correct codeword. Naghshvar et al. [2, 3, 60–62] discuss this type of feedback in the context

of active sequential hypothesis testing. In both [2] and [3], for example, Naghshvar et al.

present a deterministic, sequential coding scheme for DMCs using information feedback that

achieves the optimal error-exponent. In general, with information feedback the transmitter

must wait for feedback from the receiver before generating each coded symbol.

Some examples of information feedback include [63], which provides feedback beyond

simple ACKs and NACKs, [64], which feeds back the least reliable segments of a received

convolutional code sequence, and [65], which feeds back the least reliable variable nodes of a

non-binary LDPC code. The trellis-based decoding method described by Freudenberger and

Stender in [64] enables the transmitter to resend only the unreliable segment(s) of a trellis,

instead of retransmitting an entire block (as in type-I hybrid ARQ schemes) or retransmitting

additional increments that are agnostic to the received sequence (as in type-II hybrid ARQ

schemes with decision feedback). In both [63] and [64], the receiver does not send the received

symbol Yn as feedback, but sends some quantized representation of the received symbols.
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In Vakilinia et al. [65], after decoding a high-rate non-binary LDPC code, the receiver uses

feedback to inform the transmitter which symbols to resend. We classify these schemes as

information feedback because unlike decision feedback, the transmitter uses the feedback to

actively decide which coded symbol(s) to transmit next.

Ooi and Wornell [66, 67] describe a technique for feedback communication termed the

compressed-error-cancellation framework, in which the receiver (noiselessly) sends back a

block of received symbols Y n and the transmitter compresses the original length-n block

based on the feedback of Y n. See Ooi [68] for additional references to early work on com-

munication with feedback.

As described by Chang [58], in “information feedback systems, the receiver reports back

in whole or in part the received information and the sender will decide whether or not he

is satisfied with the information as received, and in the latter event, he will send corrective

information”. In contrast, Chang [58] describes the receiver’s possible feedback messages in

decision-feedback systems as either “please proceed” (ACK) or “please repeat” (NACK).

3.2.2 Fundamental Limits for VLF Codes

The following VLF achievability theorems make use of the information density i(xn; yn) at

blocklength n, defined as

i(xn; yn) = log
dP(Y n = yn|Xn = xn)

dP(Y n = yn)
. (3.8)

We now restate Polyanskiy et al.’s achievability result for VLF codes:

Theorem 2 (Random-coding lower bound [25, Theorem 3]). For a scalar γ > 0, ∃ an

(`,M, ε) VLF code satisfying

` ≤ E[τ ], (3.9)

ε ≤ (M − 1)P[τ̄ ≤ τ ], (3.10)
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where γ is a threshold for the hitting times τ and τ̄ :

τ = inf{n ≥ 0 : i(Xn;Y n) ≥ γ} (3.11)

τ̄ = inf{n ≥ 0 : i(X̄n;Y n) ≥ γ}. (3.12)

In (3.12), X̄n is distributed identically to Xn according to P(Xn), but is independent of

(Xn, Y n).

Although the random-coding lower bound in Thm. 2 gives an upper bound on the av-

erage blocklength ` corresponding to the maximum achievable rate for codes with cardinal-

ity M and error probability ε, it is not always straightforward to compute the achievable

(`, logM
`

) pairs. In [23, Appendix B], Williamson et al. provide a method for computing these

blocklength-rate pairs, based on numerical evaluation of an infinite sum. For the AWGN

channel, each term in the sum requires a 3-dimensional numerical integration. In Sec. 3.6.1

of this chapter, we describe a different method of computing the average stopping time E[τ ]

in (3.9) based on Wald’s equality [69, Ch. 5]. This technique is computationally simpler and

does not suffer from numerical precision issues that arise in evaluating an infinite sum. As

explained in Sec. 3.6.1, the new method applies only to channels with bounded information

density i(Xn;Yn) (e.g, the BSC or BI-AWGN channel, but not the AWGN channel with

real-valued inputs).

It is straightforward to extend Polyanskiy et al.’s random-coding lower bound [25] to

VLF codes derived from repeating length-N mother codes, which we will show in Cor. 1.

We begin by defining (`,M, ε) repeat-after-N VLF codes, for which the coded symbols for

n > N repeat the first N symbols. Let r ∈ {1, . . . , N} be the index within each block of N

symbols, i.e., n = sN + r for some s ∈ {0, 1, . . . }.

Definition 2. An (`,M, ε) repeat-after-N VLF code is defined as in Def. 1, except the

following are different:
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• A sequence of encoder functions fr : U × W × Yn−1
sN+1 → X , which defines the nth

channel input, where r ∈ {1, . . . , N}, n ≥ 1, s = bn−1
N
c:

Xn = fr(U,W, Y
n−1
sN+1) . (3.13)

• A sequence of decoder functions gr : U ×YnsN+1 →W, providing an estimate Ŵn of the

message W , where r ∈ {1, . . . , N}, n ≥ 1:

Ŵn = gr(U, Y
n
sN+1). (3.14)

A practical consequence of this definition is that for decision-feedback repeat-after-N

codes, only N unique coded symbols need to be generated for each message, due to the

following property:

Xn = fr(U,W ). (3.15)

Because the decoder only uses the received symbols from the current length-N block, we

define the following modified information density:

iN(Xn;Y n) = log
dP(Y n

sN+1 = ynsN+1|Xn
sN+1 = xnsN+1)

dP(Y n
sN+1 = ynsN+1)

(3.16)

= log
dP(Y r = ynsN+1|Xr = xnsN+1)

dP(Y r = ynsN+1)
. (3.17)

Corollary 1 (Random-coding lower bound for repeat-after-N codes). Suppose that N is

large enough such that P[τ ≤ N ] > 0. Then for a scalar γ > 0, ∃ an (`,M, ε) repeat-

after-N VLF code satisfying (3.10) and

` ≤ E[τ ] =

N−1∑
n=0

P[τ > n]

1− P[τ > N ]
, (3.18)

where γ is a threshold for the hitting times τ and τ̄ :

τ = inf{n ≥ 0 : iN(Xn;Y n) ≥ γ} (3.19)

τ̄ = inf{n ≥ 0 : iN(X̄n;Y n) ≥ γ}. (3.20)
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We will show in Sec. 3.3 that repeat-after-N VLF codes constructed by puncturing con-

volutional codes can deliver throughput surpassing that of the random-coding lower bound

of Thm. 2, even when the random-coding lower bound does not use the repeat-after-N re-

striction. Similar behavior was seen in Chen et al. [49, 50], which explores the effect of

finite-length codewords on the achievable rates of VLFT codes. The proof of Cor. 1 is in

Sec. 3.6.3.

Thm. 1 can also be extended to accommodate repeat-after-N codes that permit decoding

only at m specified intervals (modulo Nm): n ∈ {N1, N2, . . . , Nm, Nm + N1, . . . }. Similar

to the repeat-after-N setting, the coded symbols for n > Nm repeat the first Nm symbols.

We define Ii = Ni −Ni−1 as the transmission length of the ith transmission (i = 1, . . . ,m),

where N0 = 0 for notational convenience. This framework models practical systems, in

which decoding is attempted after groups of symbols instead of after individual symbols.

The following corollary provides the achievability result for random coding with “packets”.

Corollary 2 (Random-coding lower bound for m-transmission repeat-after-Nm codes). Sup-

pose that Nm is large enough such that P[τ ≤ Nm] > 0. Then for a scalar γ > 0, ∃ an

(`,M, ε) m-transmission, repeat-after-Nm VLF code satisfying (3.10) and

` ≤ E[τ ] =

m−1∑
i=0

IiP[τ > Ni]

1− P[τ > Nm]
, (3.21)

where γ is a threshold for the hitting times τ and τ̄ :

τ = inf {n ≥ 0 : iN(Xn;Y n) ≥ γ} ∩ {N1, N2, . . . , Nm, Nm +N1, . . . }, (3.22)

τ̄ = inf {n ≥ 0 : iN(X̄n;Y n) ≥ γ} ∩ {N1, N2, . . . , Nm, Nm +N1, . . . }. (3.23)

The proof of Cor. 2 is omitted. It closely follows that of Cor. 1 and relies on the fact that

decoding can only occur at the specified intervals, so the expected stopping time in (3.21) is

a sum of probabilities, weighted by the ith transmission length Ii.
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3.2.3 Two-phase Information-feedback Lower Bounds

Note Thm. 2, Cor. 1, and Cor. 2 all use decision feedback to prove the existence of codes

with the specified rates. We now present two achievability theorems for information-feedback

coding schemes, in which the transmitter uses prior received symbols to determine the subse-

quent encoder outputs. Both are two-phase (communication and confirmation) schemes, for

which the communication phase uses random coding as in Polyanskiy et al.’s random-coding

lower bound. The first theorem considers a fixed-length confirmation phase and the second

theorem considers a variable-length confirmation phase.

In the variable-length communication phase (for both bounds), the transmitter sends

coded symbols according to the random codebook, as in Thm. 2. Once the receiver has

decided that the first n received symbols are sufficiently reliable (i.e., i(Xn;Y n) ≥ γ for

some threshold γ > 0), the confirmation phase begins and the transmitter sends a coded

confirmation message (ACK/NACK) on the forward channel to indicate to the receiver

whether its tentative estimate is correct. The receiver informs the transmitter via noiseless

feedback whether it received an ACK or a NACK. When the receiver decodes an ACK, the

transmission terminates. If the receiver decodes a NACK, the receiver discards the received

symbols and the process begins again with the transmission of a new communication phase.

There are two possible errors in the confirmation phase. An ACK may be decoded by the

receiver incorrectly as NACK with probability pa→n. Similarly, a NACK can be mistaken for

an ACK with probability pn→a. Correct reception of the confirmation phase has probability

pa→a = (1− pa→n) for ACK and pn→n = (1− pn→a) for NACK.

Let N denote that event that the receiver decodes a NACK in the confirmation phase

(following a single communication phase). The probability of this event is given by

P(N ) = P{Ŵτ∗ 6= W}︸ ︷︷ ︸
receiver’s estimate incorrect

pn→n + P{Ŵτ∗ = W}︸ ︷︷ ︸
receiver’s estimate correct

pa→n, (3.24)

where τ ∗ is the stopping time when the decoder decides that the ML codeword is sufficiently
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likely, as defined in Sec. 3.6.3. Upper bounding the first term in (3.24) as

P{Ŵτ∗ 6= W} ≤ (M − 1)P[τ̄ ≤ τ ] (3.25)

as in the random-coding lower bound (Thm. 2), and upper bounding the second term in

(3.24) by 1, we have

P(N ) ≤ (1− pn→a)(M − 1)P[τ̄ ≤ τ ] + pa→n. (3.26)

The probability of error after a communication-and-confirmation pair is

P{Ŵτ∗ 6= W} pn → a. The overall probability of (undetected) error ε is given by

ε =
P{Ŵτ∗ 6= W}pn→a

1− P(N )
(3.27)

≤ (M − 1)P[τ̄ ≤ τ ]pn→a
1− P(N )

. (3.28)

Note that the confirmation-phase crossover probabilities pn→a and pa→n may not be sym-

metric. A skewed hypothesis test may be employed by the receiver to bias against deciding

NACK, since decoding NACKs incurs a latency cost due to starting over.

The first of our two achievability theorems for information-feedback codes uses a repe-

tition code of length Nconf in the confirmation phase. Based on a variable-length random-

coding communication phase and a fixed-length confirmation phase, we have the following

theorem:

Theorem 3 (Two-phase information-feedback lower bound, fixed-length confirmation

phase). For a scalar γ > 0 and integer Nconf > 0, there exists an (`,M, ε) information-

feedback VLF code satisfying

` ≤ E[τ ] +Nconf

1− P(N )
, (3.29)

ε ≤ (M − 1)P[τ̄ ≤ τ ]pn→a
1− P(N )

, (3.30)

where P(N ) is the probability of the receiver decoding a NACK in the confirmation phase,

which satisfies P(N ) < 1, and γ is used as a threshold for determining the hitting times τ
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and τ̄ :

τ = inf{n ≥ 0 : i(Xn;Y n) ≥ γ} (3.31)

τ̄ = inf{n ≥ 0 : i(X̄n;Y n) ≥ γ}. (3.32)

While the stopping time τ is defined the same way in Thm. 3 (which uses information-

feedback) and in the random-coding lower bound of Thm. 2 (decision-feedback), the con-

firmation phase in Thm. 3 permits a smaller value of the threshold γ to be used, which

decreases the expected value E[τ ]. When chosen properly, the additional latency of Nconf

symbols in the confirmation block can decrease the overall two-phase latency. The proof of

Thm. 3 is given in Sec. 3.6.4. Sec. 3.6.5 describes how to evaluate the bounds numerically.

Our second information-feedback scheme uses a binary, sequential hypothesis test in

the second phase to decide between ACK and NACK at the decoder, instead of a fixed-

length repetition code like in Thm. 3. A hypothesis testing rule known as Wald’s sequential

probability ratio test (SPRT) [70] provides tight bounds on the probability of error resulting

from this sequential hypothesis test. The communication phase of this scheme is identical

to the communication phase of Thm. 3. This scheme comes from Chen et al. [71], which

analyzed both the error exponent and asymptotic expansion of the coding rate.

The two hypotheses for the confirmation phase are H0 (the receiver’s tentative estimate

Ŵτ is correct and the transmitter has sent a forward ACK) and H1 (the receiver’s esti-

mate is incorrect and the transmitter has sent a forward NACK). P0(Y ) and P1(Y ) are the

distributions of Y associated with hypotheses H0 and H1, respectively. The log likelihood-

ratio of the ith observed channel output Yi is defined as Λi = log P1(Yi)
P0(Yi)

, which yields a log

53



likelihood-ratio Λn of the first n channel outputs Y n given by

Λn = log

n∏
i=1

P1(Yj)

n∏
i=1

P0(Yj)
(3.33)

=
n∑
i=1

Λi. (3.34)

In particular, under hypothesis H0, the transmitter sends X = xc in each transmission, and

sends X = xe under hypothesis H1. (This is a variable-length repetition code.) The log

likelihood-ratio is then Λi = log P (Yi|Xi=xe)
P (Yi|Xi=xc)

.

Let t0 < 0 and t1 > 0 be the decision thresholds for the receiver to decide H0 and H1,

respectively. (The thresholds will be specified later.) Transmission of the variable-length

repetition code continues until one of these thresholds is crossed. Thus, the confirmation-

phase stopping time µ is defined as

µ = inf{n ≥ 0 : Λn ≤ t0 or Λn ≥ t1}. (3.35)

At time µ, the receiver accepts hypothesis H0 if Λµ ≤ t0 or H1 if Λµ ≥ t1. (This is the

so-called SPRT.)

Wald’s SPRT obeys the following bounds on the probability of error [70]:

P0(accept H1) = pa→n ≤ exp{−t1}, (3.36)

P1(accept H0) = pn→a ≤ exp{t0}, (3.37)

Note that the “error” corresponding to accepting hypothesis H1 denotes that the receiver

decodes an ACK as a NACK and the two-phase scheme starts over, although no message

errors occur. The “error” corresponding to accepting hypothesis H0 occurs when the receiver

decodes a NACK as an ACK, which does result in an undetected error at the receiver. By

(3.26), the probability of the receiver decoding a NACK is given by

P(N ) ≤ (M − 1)P[τ̄ ≤ τ ](1− pn→a) + pa→n (3.38)

≤ (M − 1)P[τ̄ ≤ τ ] + exp{−t1}. (3.39)
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Note that in (3.39), the upper bound from Wald’s SPRT on pn→a cannot be used to upper

bound P(N ), so P(N ) only depends on the threshold t1 (decide H1), not t0 (decide H0).

Importantly, Wald’s framework shows that any other sequential hypothesis test (i.e.,

besides the SPRT) with error probabilities p′a→n ≤ pa→n and p′n→a ≤ pn→a necessarily has

expected length E[µ′] ≥ E[µ] [70]. Thus, given desired error probabilities in the confirmation

phase, we can use Wald’s SPRT to minimize the expected length E[µ].

Putting this together with the random-coding lower bound for the communication phase,

we have the following theorem:

Theorem 4 (Two-phase, information-feedback lower bound, variable-length confirmation

phase). For scalars γ > 0, confirmation threshold t0 < 0, and retransmit threshold t1 > 0,

there exists an (`,M, ε) information-feedback VLF code satisfying

` ≤ E[τ ] + E[µ]

1− P(N )
, (3.40)

ε ≤ (M − 1)P[τ̄ ≤ τ ]pn→a
1− P(N )

, (3.41)

≤ (M − 1)P[τ̄ ≤ τ ] exp{t0}
1− (M − 1)P[τ̄ ≤ τ ]− exp{−t1}

, (3.42)

where µ is defined as in (3.35), P(N ) is the probability of the receiver decoding a NACK in the

confirmation phase, which satisfies P(N ) < 1, and γ is used as a threshold for determining

the hitting times τ and τ̄ :

τ = inf{n ≥ 0 : i(Xn;Y n) ≥ γ} (3.43)

τ̄ = inf{n ≥ 0 : i(X̄n;Y n) ≥ γ}. (3.44)

The proof of Thm. 4 is omitted. It closely follows that of Thm. 3, which is given in

Sec. 3.6.4. Details for computing the expected stopping time of the confirmation phase,

E[µ], are provided in Sec. 3.6.6.
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Figure 3.2: An example of the information-feedback lower bounds given in Thm. 3 (vari-

able-length communication phase, fixed-length confirmation phase) and Thm. 4 (vari-

able-length communication phase, variable-length confirmation phase) compared to the de-

cision-feedback lower bound of Thm. 2 (variable-length communication phase only), for the

BSC with crossover probability p = 0.05 and error probability ε = 10−3. Sec. 3.6.5 and

Sec. 3.6.6 describe how to evaluate Thm. 3 and Thm. 4 numerically, respectively.
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Fig. 3.2 demonstrates the improvement provided by the two-phase information-feedback

lower bounds of Thms. 3 and 4 compared to the decision-feedback bound of Thm. 2. For

this example of the BSC with crossover probability p = 0.05 and error constraint ε = 10−3,

the confirmation phase (based on information feedback from the communication phase) im-

proves the achievable rate for blocklengths less than approximately 150 bits, with the biggest

improvement under 50 bits. In this region, random coding alone (with decision feedback) re-

quires a substantial number of transmitted symbols to meet the ε error requirement, whereas

the addition of a confirmation phase allows a smaller average value E[τ ] in the first phase.

Past 150 bits, however, the two-phase information feedback and one-phase decision feedback

bounds promise roughly the same rates. Interestingly, the throughput predicted by the fixed-

length confirmation phase (Thm. 3) and the variable-length confirmation phase (Thm. 4)

are not significantly different. This may be because of the upper bounds employed for P(N )

in (3.39) and E[µ] are not tight.

A separate example of the two-phase information-feedback bound given in Chen et al. [71]

for a stricter error constraint of ε = 10−6 shows a more drastic improvement compared to

random coding. This behavior agrees with the intuition that random coding and decision

feedback can be beneficial for establishing a tentative estimate of the ML codeword, but that

the active confirmation phase based on information feedback is key to meeting the ε error

requirement.

Whereas the decision-feedback approach of Thm. 2 requires only one bit of feedback per

forward-channel use, the information-feedback approach of Thms. 3 and 4 assume that the

receiver feeds back each received symbol Yn. For channels with non-binary outputs (e.g.,

the BI-AWGN channel), this would require a significant increase in the feedback rate. More

importantly, in practical systems that use packet transmissions (as in Thm. 2), decision

feedback requires the ACK/NACK bit to be sent only once per packet. Information feed-

back nonetheless assumes all received symbols Y n are fed back. Alternatively, the receiver

in the information-feedback setting may convey its tentative decoding estimate Ŵn (with
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cardinality M), but only once per communication phase.

The two-phase framework of Thms. 3 and 4 are considered information feedback because

the transmitter uses the feedback from the first phase to select the confirmation symbols in

the second phase. However, within each phase, the transmitter does not adapt its output

based on the received symbols, so each phase can be categorized as using decision feedback

only.

The active sequential hypothesis testing work of Naghshvar et al. [72] refers to the relative

advantage of information-feedback coding versus decision-feedback coding as adaptivity gain,

in reference to the benefit of the transmitter adapting to the realization of the channel.

Sequentiality gain occurs when a variable-length coding strategy is used in place of fixed-

length block coding.

3.2.4 Converse Bounds

Whereas the preceding theorems have all been lower bounds, we now review upper bounds

on the maximum rate in the non-asymptotic regime. Polyanskiy et al.’s converse in [25] for

VLF codes comes from [46, Lemmas 1 and 2]:

Theorem 5 ( [25, Theorem 4]). For an arbitrary DMC with capacity C and 0 ≤ ε ≤ 1− 1
M

,

any (`,M, ε) VLF code satisfies:

logM ≤ `C + hb(ε)

1− ε , (3.45)

where hb(ε) is the binary entropy function.

The concept of maximal relative entropy is central to Thm. 6 below. The maximal

relative entropy C1 is defined as

C1 = max
x1,x2∈X

D (P(Y |X = x1)||P(Y |X = x2)) . (3.46)

When C1 is finite, we have the following converse result, which is tighter than Thm. 5:
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Theorem 6 ( [25, Theorem 6]). For a DMC with 0<C≤C1<∞ and 0 < ε ≤ 1 − 1
M

, any

(`,M, ε) VLF code satisfies:

` ≥ sup
0<ξ≤1− 1

M

[
1

C

(
logM − FM(ξ)−min

(
FM(ε),

ε

ξ
logM

))

+

∣∣∣∣1− εC1

log
λ1ξ

ε(1− ξ) −
hb(ε)

C1

∣∣∣∣+
]
, (3.47)

FM(x) = x log(M − 1) + hb(x), 0 ≤ x ≤ 1, (3.48)

λ1 = min
y,x1,x2

P(Y = y|X = x1)

P(Y = y|X = x2)
∈ (0, 1). (3.49)

As shown in Fig. 3.3(a) for the binary symmetric channel (BSC) with crossover probability

p = 0.05, there is a considerable gap between the lower and upper bounds on the maximum

rate at short blocklengths. This is in contrast to the finite-blocklength bounds for fixed-length

codes without feedback, which are tight and can be approximated at moderate blocklengths

(e.g., n > 100) by the normal approximation [24]. Because of the gap in the fundamental

limits for VLF codes, it is not clear what finite-blocklength performance is achievable. To

investigate this, we present two deterministic coding schemes in Sec. 3.3 and Sec. 3.4 and

analyze their performance in the short-blocklength regime (n < 300). In both schemes, we

fix the target error probability ε and explore what rate can be achieved at short blocklengths.

3.3 Decision-feedback Codes

3.3.1 Reliability-based Error Detection

This section presents a decision-feedback coding scheme using reliability-based error detec-

tion. Recall that in any decision-feedback scheme, the receiver must have a stopping rule

that guarantees the error probability is less than ε. Many practical systems use CRCs for

explicit error detection, sometimes referred to as a code-based approach. However, at short

blocklengths, the latency overhead of a CRC strong enough to meet the ε requirement may
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result in a significant rate penalty. Here we investigate reliability-based error detection,

choosing to stop decoding when the posterior probability of the decoded word is at least

(1 − ε). This does not require additional coded symbols to be sent for error detection. We

show at the end of this section that a reliability-based decoding scheme can outperform

CRC-based error detection at short blocklengths and can deliver throughput surpassing the

random-coding lower bound.

For practical purposes, we consider only repeat-after-N codes in this section. After

receiving the nth transmitted symbol, the receiver computes the posterior probability (the

reliability) of the maximum a posteriori (MAP) message Ŵn, where

Ŵn = arg max
i∈W

P(W = i|Y n
sN+1). (3.50)

The stopping rule for the reliability-based (RB) retransmission scheme is defined according

to:

τ (RB) = inf{n ≥ 0 : P(W = Ŵn|Y n
sN+1) ≥ 1− ε}. (3.51)

In principle, the computation of the M posterior probabilities in (3.50) can be performed

for any code, such as LDPC codes. However, even for moderate blocklengths, this may not

be computationally feasible in general, similar to the complexity challenge of ML decoding.

Fortunately, for terminated convolutional codes, Raghavan and Baum’s Reliability-Output

Viterbi Algorithm (ROVA) [1] gives an efficient method to compute P(W = Ŵn|Y n
sN+1), the

posterior probability of the MAP message4. The computational complexity of the ROVA

is linear in the blocklength and exponential in the constraint length, on the same order as

that of the Viterbi Algorithm. This allows the receiver to implement the stopping rule in

(3.51) without explicitly evaluating all M posterior probabilities. Due to this construction,

the overall probability of error in the reliability-based stopping scheme will satisfy the ε

4When the source symbols are equiprobable, there is a one-to-one correspondence between the MAP
message and the ML codeword, the latter of which is identified by both the Viterbi Algorithm and the
ROVA.
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constraint:

P[Ŵτ (RB) 6= W ] = E
[
1− P[Ŵτ (RB) = W |Y τ (RB)

sN+1 ]
]
≤ ε. (3.52)

An alternative algorithm for computing the MAP message probability for terminated

convolutional codes is given by Hof et al. [21], which provides a modification to the Viterbi

Algorithm that permits decoding with erasures according to Forney’s generalized decoding

rule [22]. The MAP message probability can also be computed approximately by Fricke

and Hoeher’s simplified (approximate) ROVA [18], which is an ML sequence decoder that

computes an estimated posterior probability.

However, terminated convolutional codes suffer from rate loss at short blocklengths, as de-

scribed earlier, and Raghavan and Baum’s ROVA [1] does not permit decoding of throughput-

efficient tail-biting convolutional codes (TBCCs). Williamson et al. [54]’s tail-biting ROVA

describes how to compute the posterior probability of MAP messages corresponding to tail-

biting codewords. In the simulations that follow, we use both the ROVA for terminated

codes and, when computational complexity permits, the TB ROVA for tail-biting codes. In

particular, we implement an efficient version of the TB ROVA called the Tail-Biting State-

Estimation Algorithm (TB SEA) from [54] that reduces the number of computations but

still computes the MAP message probability exactly5.

The details of our decision-feedback scheme are as follows. Similar to Fricke and Hoe-

her [15]’s reliability-based retransmission criteria for hybrid ARQ, if the computed word-error

probability at blocklength n is greater than the target ε, the decoder signals that additional

coded symbols are required (sends a NACK), and the transmitter sends another coded sym-

bol. When the word-error probability is less than ε, the decoder sends an ACK, and transmis-

sion stops. We encode a message with k = logM message symbols into a mother codeword

of length N . One symbol is transmitted at a time, using pseudo-random, rate-compatible

5The TB SEA and TB ROVA compute the same probability as long as P(W = Ŵn|Y ) > 1
2 . In the

proposed reliability-based retransmission scheme with ε < 1
2 , this condition is met for τ (RB) = n, so the TB

SEA is an ML sequence decoder.
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puncturing of the mother code. At each decoding opportunity, the receiver uses all received

symbols to decode and computes the MAP message probability. If the receiver requests

additional redundancy after N symbols have been sent, the transmitter begins resending the

original sequence of N symbols and decoding starts from scratch. (This is a repeat-after-N

VLF code.) While some benefit can be accrued by retaining the N already-transmitted

symbols (for example, by Chase code combining), we do not exploit this opportunity in our

scheme for the sake of simplicity.

Similar to the random-coding lower bound for repeat-after-N codes in Cor. 1, we can

express the latency λ(RB) and the throughput R
(RB)
t of the proposed scheme as

λ(RB) ≤
1 +

N−1∑
i=1

PNACK(i)

1− PNACK(N)
, (3.53)

R
(RB)
t =

k

λ(RB)
(1− PUE), (3.54)

where PNACK(i) is the probability that a NACK is generated because the MAP message

probability is less than (1 − ε) when i coded symbols (modulo N) have been received, and

PUE is the overall probability of undetected error. Note PUE ≤ ε by definition of the stopping

rule, as shown in (3.52). We obtain PNACK(i) and PUE via simulation in the following section

and plot the resulting (λ(RB), R
(RB)
t ) pairs. We have included the factor (1 − PUE) in the

throughput expression to emphasize that we are only counting the messages that are decoded

successfully at the receiver (i.e., the goodput).

In the following subsection, we will compare simulations of the reliability-based retrans-

mission scheme with the random-coding lower bound of Thm. 2. For the sake of clarity, we

first provide a comparison of the stopping rules in each scheme. The receiver in Thm. 2

stops decoding when the information density crosses a threshold γ as in (3.11), which can

be expressed as

τ = inf

{
n ≥ 0 :

dP(Xn = xn|Y n = yn)

dP(Xn = xn)
≥ exp{γ}

}
. (3.55)
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With decision feedback and a random codebook, each encoder output xn ∈ X is equally

likely and the sequence probability can be written in terms of the product distribution:

dP(Xn = xn) =
n∏
i=1

dP(Xi = xi). (For the BSC, dP(Xn = xn) = 2−n.)

In contrast, for a deterministic codebook (e.g., for a convolutional code), there is a one-

to-one mapping between the message W ∈ W and its length-N codeword XN(W ). For

a deterministic codebook, the reliability-based stopping rule in (3.51) can be rewritten as

follows:

τ (RB) = inf

{
n ≥ 0 :

P(W = Ŵn|Y n
sN+1)

P(W = Ŵn)
≥ 1− ε

P(W = Ŵn)

}
(3.56)

= inf

{
n ≥ 0 : log

dP(W = Ŵn|Y n
sN+1)

dP(W = Ŵn)
≥ log(1− ε) + logM

}
, (3.57)

where we have used the fact that P(W = Ŵn) = 1
M

since the messages are equiprobable. We

define a modified information density for a deterministic mother code with length N as

i(W ;Y n
sN+1) = log

dP(W = Ŵn|Y n
sN+1)

dP(W = Ŵn)
. (3.58)

Putting this together with (3.57), the reliability-based stopping rule becomes

τ (RB) = inf{n ≥ 0 : i(W ;Y n
sN+1) ≥ log(1− ε) + logM}. (3.59)

In this manner, the threshold for the modified information density in the reliability-based

retransmission scheme is γ(RB) = log(1 − ε) + logM . (Keep in mind that the information

density defined in (3.58) relates the information between the received symbols and the mes-

sage, rather than the received symbols and the transmitted symbols. The threshold γ(RB) is

in terms of the information density in (3.58).)

3.3.2 Convolutional Code Polynomials

This section briefly lists the convolutional code polynomials used in the subsequent VLF

coding simulations. For the decision-feedback coding scheme in Sec. 3.3, we use both ter-

minated convolutional codes and tail-biting convolutional codes. The former terminate in
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Table 3.1: Generator polynomials g1, g2, and g3 corresponding to the rate 1/3 convolutional

codes used in the VLF simulations. dfree is the free distance, Adfree is the number of codewords

with weight dfree, and LD is the analytic traceback depth.

# Memory # States Polynomial

Elements, ν s = 2ν (g1, g2, g3) dfree Adfree LD

6 64 (117, 127, 155) 15 3 21

10 1024 (2325, 2731, 3747) 22 7 34

a known state (usually the all-zeros state) and the latter have a common starting/ending

state, which is unknown at the receiver. For terminated convolutional codes with large

constraint lengths (ν + 1), a significant rate penalty (especially at short blocklengths) is

incurred due to the ν symbols that must be transmitted in order to arrive at the termination

state. For convolutionally coded sequences with k information bits and N coded symbols,

the rate of the terminated code is R = k+ν
N

, meaning that the effective information-rate is

Reff = k
N

and the rate-loss factor is ν
k+ν

. In contrast, there is no rate loss for tail-biting

codes, but a higher decoder complexity is required to determine the starting/ending state.

The information-feedback coding scheme in Sec. 3.4 uses only tail-biting convolutional codes.

Table 3.1, taken from Lin and Costello [17, Table 12.1], lists the generator polynomials

for the rate-1/3 convolutional codes that were used as the mother codes for our simulations.

Each code selected has the optimum free distance dfree, which is listed along with the analytic

traceback depth LD [40]. Higher-rate codewords used for the incremental transmissions are

created by pseudorandom, rate-compatible puncturing of the rate-1/3 mother codes.

All of the simulations involving the AWGN channel use the binary-input AWGN channel

(i.e., using BPSK signaling) with soft-decision decoding. The binary-input AWGN chan-

nel has a maximum Shannon capacity of 1 bit per channel use, even when the SNR η is

unbounded. However, we have included comparisons with the capacity of the full AWGN

channel (i.e., with real-valued inputs drawn i.i.d. ∼ N (0, η)). For the SNRs and capacities
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used in our examples, the binary-input restriction is a minor concern.

3.3.3 Numerical Results

Fig. 3.3(a) illustrates the short-blocklength performance of the reliability-based retransmis-

sion scheme using the ROVA for terminated convolutional codes, compared to the funda-

mental limits for VLF codes. This example uses the BSC with crossover probability p = 0.05

and target probability of error ε = 10−3. The Shannon (asymptotic) capacity of the BSC

with crossover probability p is CBSC = 1 − hb(p). The random-coding lower bound (‘VLF

achievability’) is from Thm. 2 and the upper bound (‘VLF converse’) is from Thm. 6. An

example of the random-coding lower bound for repeat-after-N codes from Cor. 1 is also

shown (‘VLF achievability, repeat-after-N’), with N = 3 logM . Both the convolutional code

simulations and the VLF bounds correspond to decoding after every received symbol. Fig.

3.3(a) also includes the maximum rate at finite blocklengths without feedback (‘Fixed-length

code, no feedback’), based on the normal approximation from [24].

Though the upper and lower bounds for VLF codes coincide asymptotically, there is a

considerable gap when latency is below 100 bits, a region in which convolutional codes can de-

liver high rates. At the shortest blocklengths, the 64-state code with fewer memory elements

performs best, due to the rate loss of the codes with larger constraint lengths. However, as

the message size k increases (and the latency increases), the more powerful 1024-state code

delivers superior throughput. As the latency continues to increase, the codes’ throughputs

fall below that of the VLF achievability bound, which is based on random coding. Ran-

dom coding improves with latency, but the word-error performance of convolutional codes

does not improve once the average latency is beyond twice the traceback depth LD of the

convolutional code [40].

The (λ(RB), R
(RB)
t ) curve for the 64-state code exhibits non-monotonic behavior near

λ(RB)=17 (k=8), likely due to non-monotonic minimum distance growth of the terminated

convolutional codes as a function of blocklength, in conjunction with non-ideal effects of
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Figure 3.3: Short-blocklength performance of the reliability-based retransmission scheme

with target probability of error ε = 10−3. Simulations use the ROVA for terminated convo-

lutional codes (term. CC) and the TB ROVA for tail-biting convolutional codes (TBCC),

with decoding after every symbol (m=N) or with decoding after m=5 groups of symbols.

Simulations are over (a) the BSC(0.05) or (b) over the AWGN channel with SNR 2.00 dB.

pseudo-random puncturing. The maximum throughput obtained for these BSC simulations

is R
(RB)
t = 0.551 bits per channel use at λ(RB) = 147.06 bits for the k = 91, 1024-state code,

which is 77.2% of the BSC capacity.

Fig. 3.3(b) shows the performance of the reliability-based retransmission scheme over the

AWGN channel with SNR 2 dB and target ε = 10−3. The Shannon capacity of the AWGN

channel with SNR P is CAWGN = 1
2

log(1 + P ), and the Shannon capacity of the BI-AWGN

channel is computed using the approximations in [73]. The random-coding lower bound

(‘VLF achievability’) is from Thm. 2, the AWGN upper bound (‘VLF converse, AWGN’) is

from Thm. 5 and particularized to the Gaussian channel, and the BI-AWGN upper bound

(‘VLF converse, BI-AWGN’) is from Thm. 6. Again, the “Fixed-length code, no feedback”

curve uses the normal approximation [24].

The terminated convolutional code (term. CC) simulations in Fig. 3.3(b) use the ROVA

and attempt decoding after every symbol, as in Fig. 3.3(a). Similar performance is observed.
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The throughput of the convolutional codes surpasses the random-coding lower bound at

short blocklengths, but plateaus around latencies of 100 bits. Convolutional codes with

more memory elements would be expected deliver improved throughput, but computational

complexity has limited us to codes with 1024 states. Additionally, the high decoding com-

plexity of the 1024-state codes prevented us from decoding after every symbol using the TB

ROVA.

3.3.4 Decoding after Groups of Symbols

In contrast, decoding less frequently is practically desirable due to the round-trip delay

inherent in the feedback loop and because of the tremendous complexity associated with

performing the ROVA after each received symbol. Decoding with the ROVA only after

packets is a natural extension of the proposed scheme, akin to the m-transmission repeat-

after-Nm codes in Sec. 3.2. When decoding only after packets are received, the latency λ(RB)

and the throughput R
(RB)
t become

λ(RB) ≤
I1 +

m−1∑
i=1

IiPNACK(Ni)

1− PNACK(Nm)
, (3.60)

R
(RB)
t =

k

λ(RB)
(1− PUE). (3.61)

Here PNACK(Ni) is the probability of retransmission when Ni coded symbols have been

received. The incremental transmission length at transmission i is Ii and the cumulative

decoding blocklength is Ni = I1 + · · ·+ Ii.

A main challenge in an m-transmission incremental redundancy scheme is to select the

set of m incremental transmission lengths {Ii}mi=1 that provide the best throughput at short

blocklengths. In general, the retransmission probabilities in expressions such as (3.60) are

non-convex and the blocklengths must be optimized numerically. Algorithm 1 in Sec. 3.6.7

presents a method to optimize the blocklengths in general incremental redundancy schemes.

Sec. 3.6.8 describes how to particularize the algorithm in order to select the m=5 optimal
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blocklengths in the reliability-based retransmission scheme using the TB ROVA for TBCCs.

Based on the optimal transmission lengths identified by Algorithm 1, shown in Table 3.2,

we simulated tail-biting convolutional codes (TBCCs) and the TB ROVA in an m=5 trans-

mission decision-feedback scheme. Fig. 3.3(b) shows the impact on throughput when de-

coding is limited to these specified decoding opportunities. Despite fewer opportunities

for decoding (and hence fewer chances to terminate transmission early), both the 64-state

and 1024-state tail-biting codes in the optimized m=5 setting deliver excellent performance

compared to the respective terminated codes that allow decoding after every symbol (i.e.,

m=N). Note also how at blocklengths less than approximately 75 bits, the m=5 TBCCs

deliver higher rates than the random-coding lower bound that requires decoding after every

symbol (‘VLF achievability, BI-AWGN’). When compared to Thm. 2’s random-coding lower

bound for repeat-after-Nm codes on the AWGN channel (‘Repeat-after-N (m=5)’), the m=5

TBCCs deliver higher rates for blocklengths up to about 125 bits. The ‘Repeat-after-N

(m=5), 64-state’ curve uses the optimal m=5 blocklengths for the 64-state TBCC, and the

1024-state curve uses the optimal m=5 blocklengths for the 1024-state TBCC. The maxi-

mum throughput obtained from these m=5 simulations is R
(RB)
t = 0.529 bits per channel use

at λ(RB) = 121.0 bits, for the k = 64, 1024-state code. This is 77.2% of the AWGN capacity

and 82.4% of the BI-AWGN capacity.

The performance of the tail-biting convolutional codes with only m=5 incremental trans-

missions is promising. Keep in mind, however, that the blocklengths were specifically op-

timized for one parameter set: ε = 10−3, SNR = 2 dB, fixed k, and a particular generator

polynomial. Adapting the codes to channels with different SNRs or error requirements would

require extensive re-characterization of the retransmission probabilities and optimization of

the blocklengths. However, it is possible to use a heuristic choice of the m blocklengths that

provides good throughput (if not optimal) across a limited range of SNRs.

Fig. 3.4 shows an example of 1024-state tail-biting convolutional codes simulated across

a range of SNRs with the same choice of m = 5 blocklengths. In particular, for k = 64,
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Table 3.2: Optimal transmission lengths {Ii}∗ for the m=5 transmission scheme using the

tail-biting ROVA, for the AWGN channel with SNR η = 2 dB. The simulated error proba-

bility P (UE) corresponding to target error probability ε = 10−3 is also plotted.

64-state TBCC

Info. Bits Target Transmission Lengths Simulated

k Error ε {I∗1 , I∗2 , I∗3 , I∗4 , I∗5} Error P (UE)

16 10−3 30, 3, 3, 5, 7 2.260× 10−4

32 10−3 57, 6, 7, 9, 16 1.960× 10−4

48 10−3 88, 9, 10, 13, 24 2.350× 10−4

64 10−3 121, 12, 13, 17, 29 2.600× 10−4

91 10−3 178, 17, 18, 22, 38 2.650× 10−4

128 10−3 261, 23, 24, 30, 46 2.440× 10−4

1024-state TBCC

Info. Bits Target Transmission Lengths Simulated

k Error ε {I∗1 , I∗2 , I∗3 , I∗4 , I∗5} Error P (UE)

16 10−3 29, 4, 4, 4, 7 2.473× 10−4

32 10−3 56, 5, 5, 7, 12 1.976× 10−4

48 10−3 80, 7, 7, 9, 16 2.085× 10−4

64 10−3 106, 9, 9, 12, 22 1.993× 10−4

91 10−3 151, 13, 14, 17, 31 2.197× 10−4

128 10−3 223, 17, 18, 24, 44 2.344× 10−4
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Figure 3.4: Performance of a heuristic blocklength-selection policy for {Ii}5
i=1 used across a

range of SNRs for a 1024-state tail-biting convolutional code with k = 64 message bits. For

all points, the target probability of error is ε = 10−3.

the m = 5 blocklengths were {I1 = 3
2
k = 96, I2 = 1

4
k = 16, I3 = 1

4
k = 16, I4 = 1

4
k =

16, I5 = 3
4
k = 48}. The corresponding 2 dB throughput for the optimized m = 5, k = 64

blocklengths from Fig. 3.3(b) is also shown. For reference, the throughput corresponding

to the optimized blocklengths for the 1024-state code is 0.5290, whereas the throughput for

the heuristic blocklengths is 0.5196. Fig. 3.4 demonstrates that as the SNR increases, the

maximum rate achieved by this heuristic blocklength-selection policy is 2
3
, since the highest

rate possible is k
I1

= 2
3
. A more aggressive (higher rate) initial length I1 should be chosen if

SNRs above 4 dB are expected, which may reduce the throughput at low SNRs.

Note that for all of the VLF simulations shown in this section, at least 25 undetected

word-errors were accumulated for each value of k. Because the ROVA-based stopping rule

with target ε = 10−3 guarantees that the average probability of error is no more than 10−3,

it is not important for us to characterize the error probability exactly. For this chapter, we

are more concerned with the performance in terms of throughput and latency. Observations

from VLF simulations show that collecting at least 25 word errors is sufficient for estimating

the throughput and latency.
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Table 3.3: Simulated probabilities of undetected error P (UE) corresponding to the CRC

simulations in Fig. 3.5 for the 2 dB AWGN channel. The 12-bit CRCs fail to meet the error

constraint of ε = 10−3, but the stronger 16-bit CRCs generally satisfy the constraint. Gen-

erator polynomials for “good” A-bit CRCs from [4] are listed in hexadecimal in parentheses.

For example, 0xcd indicates the polynomial x8 + x7 + x4 + x3 + x + 1. The k + A column

indicates the number of bits input to the rate-1/3 convolutional encoder. Cells labeled −
indicate that no simulations were run for that value of k + A.

Input Bits P (UE) P (UE)

k + A 12-bit CRC (0xc07) 16-bit CRC (0x8810)

24 1.479× 10−1 1.000× 10−4

30 − 8.618× 10−4

34 1.036× 10−3 1.077× 10−3

40 − 2.105× 10−4

48 2.935× 10−3 2.025× 10−4

64 3.504× 10−3 2.538× 10−4

91 4.646× 10−3 3.017× 10−4

128 6.755× 10−3 5.370× 10−4

181 8.864× 10−3 6.667× 10−4

3.3.5 Code-based Error Detection

In practice, decision-feedback schemes often use a checksum (e.g., a CRC) at the receiver to

detect errors in the decoded word. However, the additional parity bits of a CRC that must

be sent impose a latency cost that may be severe at short blocklengths. For an A-bit CRC

appended to k message bits, the throughput (not counting the check bits) is R
(CRC)
t = k

k+A
Rt,

where Rt is defined similarly to (3.54) for the reliability-based scheme. Equivalently, the

rate-loss factor from an A-bit CRC is A
k+A

.
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Using a error-detection code to determine retransmission requests is sometimes referred

to as code-based error detection [15], in contrast to reliability-based error detection with the

ROVA. As noted in Frick and Hoeher’s [15] investigation of reliability-based hybrid ARQ

schemes, the rate loss and undetected error probability of the code-based approach depend

critically on the blocklengths and target error probabilities involved.

Fig. 3.5 provides an example of the throughput obtained when decoding after every

symbol and using a 16-bit CRC for error detection. After decoding the 64-state TBCC

(which has k + A input bits), the receiver re-computes the CRC to check for errors. As

expected, the rate loss of the CRCs at blocklengths less than 50 bits severely limits the

achievable rates. The 64-state TBCCs decoded with the TB ROVA deliver higher rates until

the average blocklength reaches about 75 to 100 bits. For moderately large blocklengths

(e.g., 150 bits and greater), the throughput penalty induced by CRCs becomes less severe.

(As the information length k increases, the rate-loss factor A
k+A

decays to zero.) Note that

decoding after every symbol prevents simulation of higher-constraint-length convolutional

codes (e.g., 1024-state codes).

Importantly, using ROVA guarantees the probability of error to be less than ε (as long

as the length-N mother code is long enough to meet this constraint on average), but CRCs

provide no such guarantee. In this example, in fact, TBCC simulations with 12-bit CRCs

failed to meet the target of ε = 10−3, as shown in Table 3.3. As a result, the codes with

12-bit CRCs do not qualify as (`,M = 2k, ε = 10−3) VLF codes and the throughput obtained

for the 12-bit CRCs is not plotted in Fig. 3.5. Both the 12-bit and 16-bit CRC polynomials

are from [4] and are listed in Table 3.3.

The 16-bit CRCs generally provide sufficiently low error probabilities, but at the expense

of reduced rate versus the 12-bit CRCs. One exception when the 16-bit CRC fails to meet

the ε = 10−3 constraint in our simulations is when k + A = 34 (k ≈ A = 16), as shown

in Table 3.3. This high error probability seems to be an outlier compared to the other 16-

bit CRC simulations, but is is consistent with findings from previous CRC research, such
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Figure 3.5: A comparison of two decision-feedback schemes, the reliability-based retrans-

mission scheme with the ROVA and the code-based approach with 12-bit and 16-bit CRCs.

Using ROVA guarantees the probability of error to be less than ε, but CRCs provide no such

guarantee. In this example, the 12-bit CRCs fail to meet the target of ε = 10−3.

as [74]. In [74], Witzke and Leung show that the undetected error probability of a given

A-bit CRC polynomial over the BSC can vary widely as a function of the channel bit-error

rate, especially for small values of k. The present variable-length simulations complicate

matters further, due to the stopping rule that terminates when the CRC matches, even if

erroneously. Additional simulations with k+A = 30 and k+A = 40 were performed in order

to illustrate the sensitivity of the error probability to the information length k (Table 3.3).

In general, it is difficult to determine exactly how many CRC bits should be used to

provide the maximum throughput for hybrid ARQ schemes, since the error probability de-

pends on the SNR. Communication system designers will likely be tempted to conservatively

select large CRC lengths, which restricts the short-blocklength throughput. In contrast, the

ROVA-based approach always guarantees a target error probability. Still, future work that

explores the performance of VLF codes at larger blocklengths (e.g., ∼ 400 bits and above)

may benefit from code-based error detection.
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3.4 Information-feedback Codes

3.4.1 Two-Phase Incremental Redundancy

In the previous section, we demonstrated that convolutional codes decoded with the ROVA in

a decision-feedback setting could deliver throughput above the random-coding lower bound.

Does using information feedback allow us to achieve even greater rates? This section ex-

plores this question with a two-phase incremental redundancy scheme from [56] that uses

information feedback and improves upon the short-blocklength performance of the ROVA-

based scheme. Similar to the two-phase schemes used in Thms. 3 and 4, the proposed scheme

consists of communication and confirmation phases. Here both phases have fixed lengths.

In the communication phase, after the receiver attempts to decode a block of coded

symbols, noiseless feedback informs the transmitter of the decoding result. In the subsequent

confirmation phase, the transmitter sends a coded ACK/NACK on the forward channel

depending on whether decoding was successful. Via noiseless feedback, the receiver informs

the transmitter which confirmation message (ACK or NACK) it decoded. If the receiver

decodes an ACK, it will proceed to the next message. If the receiver decodes a NACK, the

two phases are repeated until an ACK is decoded at the receiver in the confirmation phase. A

main difference in the proposed scheme compared to Thms. 3 and 4 is that in this case, both

phases have fixed lengths. Instead of the receiver stopping transmission when its estimate is

sufficiently reliable, as in the decision-feedback schemes of Sec. 3.3, the transmission lengths

are chosen to be sufficiently large to guarantee the ε error constraint. A practical implication

is that feedback need not be sent until the end of each fixed-length phase.

Fig. 3.6 shows a diagram of the proposed two-phase incremental redundancy scheme.

I1 symbols are transmitted in the first communication phase and decoded with blocklength

N1 = I1. Next, Nconf symbols conveying ACK or NACK are transmitted in the confirmation

phase. The total number of symbols sent in the ith two-phase cycle is I ′i = Ii+Nconf. Trans-

mission stops when the receiver has decoded an ACK in the confirmation phase, even if the

74



I1 I2 Nconf 

Decoding 
Attempt 

Decoding 
Assessment 

Nconf 

N1 = I1
N1
' = I1

'

N2
'

I2
'

N2

Figure 3.6: A notional diagram of the two-phase communication scheme. The ith two-phase

cycle (i = 1, . . . ,m) has a communication-phase transmission with Ii symbols and a confir-

mation-phase transmission with Nconf symbols. The number of symbols transmitted in the

ith cycles is I ′i = Ii +Nconf. Ni is the number of communication-phase symbols transmitted

by the end of the ith cycle. N ′i is the total number of symbols transmitted by the end of the

ith cycle. The dashed vertical lines indicate the communication phase decoding attempts

and confirmation phase ACK/NACK decoding assessments. Feedback occurs at each of these

vertical lines.
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Figure 3.7: An illustration of the events that can lead to correct decoding, undetected errors,

or additional retransmissions.
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transmitter actually sent a NACK. If a NACK is decoded, another round of communica-

tion and confirmation occurs; I2 symbols are transmitted and decoded using the cumulative

blocklength N2 = N1 + I2, and then another Nconf symbols are transmitted.

The communication-phase transmission length in the ith transmission is Ii and the de-

coding blocklength is Ni = Ni−1 + Ii. The confirmation-phase transmission length is always

Nconf. The ith confirmation message is decoded independently of the previous confirmation

blocks. If the receiver still has not decoded an ACK by the mth transmission, the scheme

disregards all earlier transmissions and starts over with I1 communication symbols and Nconf

confirmation symbols. The total number of channel uses at the ith decoding attempt, N ′i , is

N ′i =


i∑

j=1

I ′j , 1 ≤ i ≤ m

uN ′m +
v∑
j=1

I ′j , i = um+ v

. (3.62)

The scheme is analogous to type-I hybrid ARQ with an additional confirmation phase when

the maximum number of transmissions m is 1.

As shown in Fig. 3.7, message decoding errors occur only when a forward NACK is

decoded as an ACK (occurring with probability pn→a = 1−pn→n), in which case the receiver

is unaware that it has decoded incorrectly. (All message errors are undetected errors.) When

forward ACKs are decoded as NACKs (occurring with probability pa→n = 1 − pa→a), the

message incurs additional latency due to retransmission, but no errors are made.

We denote the probability of decoding incorrectly in decoding attempt i with blocklength

Ni as P (ζi) and the probability that the decoder picks the correct codeword as P (ζci ) =

1 − P (ζi). We assume that successful decoding of confirmation messages occurs with equal

probability regardless of whether ACK or NACK was sent, i.e., pa→a = pn→n.

Throughout this section, we assume that a simple repetition code of length Nconf is sent in

the confirmation phase. For the binary-input Gaussian channel with SNR η, this means the

confirmation-phase error probability is pn→a = Q(
√
Nconfη), where Q(u) = 1√

2π

∫∞
u

exp −t
2

2
dt

is the tail probability of the standard normal distribution. For the BSC with crossover
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probability p, the confirmation-phase error probability is

pn→a =


Nconf∑

t=dNconf/2e

(
Nconf

t

)
pt(1− p)Nconf−t, Nconf odd

1
2

(
Nconf

Nconf/2

)
pNconf/2(1− p)Nconf/2 +

Nconf∑
t=Nconf/2+1

(
Nconf

t

)
pt(1− p)Nconf−t, Nconf even

(3.63)

Let Ni be the event that the receiver decodes the ith confirmation message as a NACK,

which has the following probability:

P (Ni) =


P (ζ1)pn→n + P (ζc1)pa→n, i = 1

P (Ni−1)P (ζi|Ni−1)pn→n + P (Ni−1)P (ζci |Ni−1)pa→n, 2 ≤ i ≤ m

P (Nm)uP (Nv), i = um+ v

. (3.64)

For convenience we also define P (N0) = 1. With probability P (Ni), the transmitter sends

increment (i+ 1) with length Ii+1, followed by another Nconf confirmation symbols.

For 2 ≤ i ≤ m, the expression for P (Ni) in (3.64) can be expanded into terms similar

to those for the i = 1 case. Because of the dependence on previous decoding outcomes,

the number of these terms grows exponentially with i, but the overall probability is tightly

upper bounded by the two dominant terms as follows:

P (Ni) <P (ζ1, ζ2, . . . , ζi)p
i
n→n + P (ζ1, ζ2, . . . , ζi−1, ζ

c
i )p

i−1
n→npa→n . (3.65)

Approximating the joint error probability as the marginal error probability, i.e.,

P (ζ1, ζ2, . . . , ζi) ≈ P (ζi), we have the following approximation for 2 ≤ i ≤ m:

P (Ni) ≈ P (ζi)p
i
n→n + [P (ζi−1)− P (ζi)]p

i−1
n→npa→n . (3.66)

Similarly, the probability of undetected error in the ith transmission, P (UEi), is well

approximated as P (UEi) ≈ P (ζi)p
i−1
n→npn→a for i = 1, . . . ,m. For integers u ≥ 1 and

1 ≤ v ≤ m, P (UEum+v) = P (Nm)uP (UEv). The overall probability of (undetected) error

for a message is

P (UE) = (1− P (Nm))−1 P (UEm
1 ), (3.67)
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where

P (UEm
1 ) =

m∑
i=1

P (UEi). (3.68)

Note that unlike the two-phase achievability schemes in Thms. 3 and 4, the receiver in

this scheme retains previous received symbols after decoding a NACK in the confirmation

phase, until the mth two-phase cycle. This dependence complicates the analysis and leads to

the approximations in (3.66). In contrast, the receiver in Thms. 3 and 4 discards all received

symbols and starts over whenever it decodes a NACK in the confirmation phase. As a result,

no approximations are required.

With these equations for the error probability and the probability of decoding a NACK,

we can compute the expected blocklength and rate of the two-phase scheme. The expected

latency λ(two-phase) (i.e., the average number of channel uses before decoding an ACK at the

receiver) and throughput R
(two-phase)
t are computed as follows:

λ(two-phase) = (1− P (Nm))−1
m∑
i=1

I ′iP (Ni−1), (3.69)

R
(two-phase)
t =

k

λ(two-phase)
(1− P (UE)) (3.70)

=
k(1− P (Nm))(1− P (UE))

m∑
i=1

I ′iP (Ni−1)
(3.71)

=
k(1− P (Nm)− P (UEm

1 ))
m∑
i=1

I ′iP (Ni−1)
, (3.72)

where k is the number of information symbols in each attempted message. The expression in

(3.69) includes the factor (1−P (UE)) so that R
(two-phase)
t excludes undetected errors and thus

only counts messages that are decoded successfully at the receiver. Note the instantaneous

rate at the completion of the ith transmission is Ri = k/N ′i . Finally, the expected number
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of decoding attempts D(two-phase) is:

D(two-phase) = (1− P (Nm))−1
m∑
i=1

P (Ni−1) . (3.73)

3.4.2 Rate-Compatible Sphere-Packing Analysis

The expressions (3.69-3.73) are general and may be applied to any error-correction code

and any channel model. In this section, we use the rate-compatible sphere-packing (RCSP)

analysis of Williamson et al. [55] and Chen et al. [50, 75] to approximate the two-phase

performance possible for an idealized rate-compatible family of sphere-packing codes. RCSP

assumes that the code achieves a (geometrically impossible) perfect packing of decoding

spheres at each of the jth communication-phase transmissions (j = 1, . . . ,m). A discussion

of the resulting error probability for both bounded-distance (BD) and maximum-likelihood

(ML) decoders follows.

Example. For the AWGN with SNR η, the squared sphere-packing decoding radius cor-

responding to blocklength Nj is r2
j = Nj(1 + η) 2−2k/Nj . For a BD decoder, errors occur

when the noise power is larger than the squared decoding radius. The sphere-packing (SP)

probability of decoding error PBD
SP (ζj) associated with radius rj is

PBD
SP (ζj) = P

( Nj∑
n=1

z2
n > r2

j

)
= 1− Fχ2

Nj
(r2
j ), (AWGN) (3.74)

where the noise samples are zn ∼ N (0, 1) and Fχ2
Nj

(u) is the CDF of a chi-square random

variable with Nj degrees of freedom. If an ML decoder is used instead of a BD decoder,

(3.74) is not a bound on the error performance, but can provide a close approximation in

some cases for convolutional codes [55]. Note that (3.74) is the marginal probability of error,

which does not depend on decoding success in the (j − 1)th decoding attempt.

Shannon’s sphere-packing bound [76] provides a lower bounds on the optimal probability

of error for an ML decoder. In this chapter, we use the asymptotic approximation of (51) in

[76]. As described in Chen et al. [50], Shannon’s asymptotic approximation is not meaningful
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for rates above capacity, so we have used the RCSP BD error probability in (3.74) for these

rates to provide a meaningful lower bound.

Example. For the BSC with crossover probability p, the probability of error for BD decoding

with blocklength Nj can be lower bounded as follows [50]:

PBD
SP (ζj) ≥

Nj∑
t=rj+1

(
Nj

t

)
pt(1− p)Nj−t, (BSC) (3.75)

where rj is the radius of the smallest Nj-dimensional sphere that contains at least 2Nj−k

words:

rj =

{
r :

r−1∑
t=0

(
Nj

t

)
< 2Nj−k,

r∑
t=0

(
Nj

t

)
≥ 2Nj−k

}
. (3.76)

For all blocklengths Nj < k, the radius rj is zero and the probability of error PBD
SP (ζj) is

exactly one. As noted in Chen et al. [50], when the 2k uniform decoding regions perfectly

fill the Nj-dimensional space, ML decoding and BD decoding are identical.

For a fixed message length k, the lower bound on error probability given in (3.75) is not

monotone in the blocklength Nj, which makes it difficult to optimize the blocklengths {Ni}.
In the optimizations that follow, we use the following approximation instead:

PBD
SP (ζj) ≈ (1− ρj)

(
Nj

rj

)
prj(1− p)Nj−rj +

Nj∑
t=rj+1

(
Nj

t

)
pt(1− p)Nj−t (BSC) (3.77)

ρj =

2Nj−k −
rj−1∑
t=0

(
Nj
t

)
(
Nj
rj

) . (3.78)

That is, ρj is the fraction of the Nj-dimensional words at radius rj from a particular codeword

that “belong” to that codeword. For this approximate BD decoder, an error is declared if

the noise causes the received word to lie outside the sphere of radius rj, or, with probability

(1− ρj), if the received word lies exactly at distance rj from the transmitted codeword.
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3.4.3 Optimization of Blocklengths Using RCSP

Eqs. (3.74-3.76) provide bounds on the communication-phase error probabilities for block-

length Nj in the proposed two-phase scheme, but it remains to select the optimal blocklength

for each of the m transmissions (j ∈ {1, . . . ,m}). In particular, we would like to select the

transmission lengths {Ii} and Nconf that maximize the throughput R
(two-phase)
t , under a con-

straint on the undetected error probability P (UE), as follows:

{Ii}∗, N∗conf = arg max
{Ii},Nconf

R
(two-phase)
t s.t. P (UE) ≤ ε. (3.79)

Even for relatively small m (e.g., m = 3), this task is non-trivial. Algorithm 1 in Ap-

pendix 3.6.7 describes an efficient method for computing locally-optimal blocklengths.

Table 3.4 lists the optimal blocklengths identified by Algorithm 1 in an m=5 two-phase

scheme for the AWGN channel with SNR η = 2.00 dB, for k ∈ {16, 32, 64, 91, 128}, using

the constraint that ε ≤ 10−3. Table 3.4 assumes probabilities of error predicted by RCSP

with BD decoding, as in (3.74). Similarly, Table 3.5 lists the optimal two-phase blocklengths

identified by Algorithm 1 in an m=5 two-phase scheme for the BSC(p = 0.05), for k ∈
{16, 32, 64, 91, 128}, using the constraint that ε ≤ 10−3. Table 3.5 assumes probabilities of

error predicted by RCSP with BD decoding, as in (3.77).

Figs. 3.8 and 3.9 illustrates the corresponding rates that would be achievable with ide-

alized RCSP code families, for the AWGN channel and BSC, respectively. Each point on

the ‘Two-phase RCSP’ curve represents the throughput and latency corresponding to the

optimal m=5 communication-phase and confirmation-phase blocklengths (determined by Al-

gorithm 1) for a fixed message size k. For the AWGN channel, the results of the optimization

for both the ML and BD versions of the RCSP analysis are shown.

Interestingly, we observed that increasing the number of decoding opportunities m did

not significantly increase the throughput predicted by the RCSP BD analysis for the AWGN

channel. This contrasts with the VLFT setting of [55], in which larger m values were

associated with improved rates. In this two-phase scheme, increasing m incurs a latency
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overhead of Nconf additional symbols, which explains why the rate does not necessarily

improve with increased m.

3.4.4 Two-Phase Convolutional Code Simulations, AWGN

This section shows that the two-phase RCSP analysis can closely predict the performance of

simulated tail-biting convolutional codes (TBCCs) and, more importantly, that TBCCs can

deliver throughput surpassing both the random-coding lower bound and Sec. 3.3’s ROVA-

based decision-feedback scheme. In particular, the simulated m=5 two-phase scheme used

TBCCs in the communication phase and a repetition code of length Nconf in the confirmation

phase. The 64-state and 1024-state convolutional code polynomials are specified in Table 3.1.

The blocklengths used for the TBCCs, given in Table 3.4, are those identified by the

blocklength-selection algorithm that assumes RCSP. Also shown in Table 3.4 are the simu-

lated probabilities of undetected error P (UE) corresponding to both 64-state and 1024-state

implementations of the TBCCs.

For some values of k, the simulated error probabilities exceeded the target error proba-

bility of ε = 10−3, which means that the listed set of convolutional code blocklengths does

not qualify as an (`,M = 2k, ε = 10−3) VLF code. This is not unexpected, since not all

tail-biting convolutional codes can match the idealized RCSP BD approximation. This de-

ficiency is particularly noticeable for larger values of k, since the word-error probability of

convolutional codes decays once the blocklength is several times the traceback depth [40].

In order to fairly compare the throughput obtained for simulated codes with the VLF

bounds from Sec. 3.2, we must use codes that satisfy the ε error constraint. Table 3.4 also

provides the optimal blocklengths for the two-phase scheme using stricter error targets of

3 × 10−4 and 10−4, followed by the simulated error probabilities P (UE) corresponding to

these tail-biting convolutional codes.

Finally, using only the sets of blocklengths from Table 3.4 that meet the error constraint
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Table 3.4: Optimal transmission lengths {Ii}∗ and N∗conf obtained from the blocklength-s-

election algorithm for the two-phase scheme on the AWGN channel, assuming RCSP error

probabilities for bounded-distance decoding. The simulated error probability P (UE) for the

two-phase scheme with 64-state and 1024-state TBCCs is also shown. Only simulations

achieving P (UE) ≤ ε = 10−3 are shown in Fig.3.8. Both RCSP analysis and TBCC simula-

tions use m=5 transmissions and SNR η = 2 dB. P (UE) values listed as − were not recorded

since larger values of the target error ε yielded satisfactory results.

Info. Bits Transmission Lengths Target Simulated P (UE)

k {I∗1 , I∗2 , I∗3 , I∗4 , I∗5 , N∗conf} Error ε 64-state TBCC 1024-state TBCC

16 27, 7, 6, 6, 9, 5 10−3 6.150× 10−4 6.239× 10−4

32 51, 11, 11, 11, 12, 5 10−3 8.780× 10−4 6.400× 10−4

64 100, 15, 11, 10, 18, 5 10−3 1.881× 10−3 9.667× 10−4

91 131, 15, 13, 14, 23, 6 10−3 1.846× 10−3 9.314× 10−4

128 183, 17, 15, 16, 28, 6 10−3 2.753× 10−3 1.674× 10−3

16 28, 10, 7, 6, 9, 6 3× 10−4 1.920× 10−4 2.155× 10−4

32 54, 11, 8, 8, 12, 6 3× 10−4 2.230× 10−4 −
64 95, 13, 11, 12, 19, 7 3× 10−4 4.580× 10−4 −
91 134, 15, 13, 15, 22, 7 3× 10−4 6.720× 10−4 −
128 188, 18, 17, 16, 27, 7 3× 10−4 1.016× 10−3 6.667× 10−4

16 29, 12, 9, 7, 9, 7 10−4 5.500× 10−5 −
32 50, 10, 9, 9, 13, 8 10−4 7.900× 10−5 −
64 97, 14, 11, 12, 18, 8 10−4 1.790× 10−4 −
91 137, 17, 13, 13, 22, 8 10−4 2.760× 10−4 −
128 191, 22, 16, 15, 26, 8 10−4 3.670× 10−4 −
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Figure 3.8: Achievable rates of the m=5 two-phase incremental redundancy scheme for the

AWGN channel, including predictions from RCSP analysis and simulations using tail-biting

convolutional codes (TBCCs). The AWGN channel SNR is 2 dB and the undetected error

probability is constrained to be less than ε = 10−3.

of P (UE) ≤ 10−3, Fig. 3.8 displays the throughput results of the tail-biting convolutional

code simulations. For the values of k where more than one target error provided a simulated

P (UE) ≤ 10−3, only the row with the greatest P (UE) is displayed in Fig. 3.8. (This is also

the row with the greatest throughput.)

Fig. 3.8 includes the fundamental limits for VLF codes from Sec. 3.2. The ‘VLF converse’

is from Thm. 5 and the ‘VLF achievability’ curve is from the random-coding lower bound of

Thm. 2, both originally from Polyanskiy et al. [25]. Fig. 3.8 demonstrates that convolutional

codes in the two-phase scheme can deliver throughput at least as high as the VLF random-

coding lower bound at low latencies. This is true for the m=5 two-phase scheme despite the

fact that the random-coding bound allows the decoder to terminate after transmission of

any individual symbol. Finally, the ‘Fixed-length code, no feedback’ curve uses the normal

approximation from [24]. Note that even though multiple achievability theorems in [24]

predict rates close to both the converse and the normal approximation, results for explicit
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codes that achieve the non-asymptotic optimal rates are scarce.

At the shortest blocklengths (k ∈ {16, 32}), Fig. 3.8 shows that ML-decoded convo-

lutional codes provide slightly better error performance than the RCSP analysis based on

bounded-distance decoding, which results in superior throughput for the convolutional codes.

As k increases, however, the convolutional code performance falls short of the RCSP pre-

diction. Eventually, around a latency of 150 bits, even the 1024-state convolutional code’s

performance lags that of the VLF lower bound. The maximum throughput obtained from

these simulations is R
(two-phase)
t = 0.5699 bits per channel use at λ(two-phase) = 159.5 bits for

the k = 91, 1024-state code, which is 83.2% of the AWGN capacity. The poor performance

of the convolutional codes for larger values of k is expected because the free distance of the

convolutional codes does not improve once the blocklength of the mother code has exceeded

the analytic traceback depth LD [40]. In contrast, the RCSP analysis and the VLF random-

coding lower bound both have code performance that continues to improve as blocklength

increases.

3.4.5 Two-Phase Convolutional Code Simulations, BSC

Table 3.5 lists the two-phase blocklengths identified by Algorithm 1 that were used for the

TBCC simulations over the binary symmetric channel with crossover probability p = 0.05.

Table 3.5 also gives the simulated probabilities of undetected error P (UE) corresponding

to both 64-state and 1024-state implementations of the two-phase scheme with tail-biting

convolutional codes.

Fig. 3.9 displays the corresponding throughput results of the TBCC simulations. Fig. 3.9

includes the VLF bounds on the maximum rate from Sec. 3.2. The ‘VLF converse’ is from

Thm. 6 and the ‘VLF achievability’ curve is from random-coding lower bound of Thm. 2,

both originally from Polyanskiy et al. [25]. The ‘Fixed-length code, no feedback’ curve uses

the normal approximation [24].

Similarly to the AWGN example, Fig. 3.9 demonstrates that the convolutionally coded
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Table 3.5: Optimal transmission lengths {Ii}∗ and N∗conf obtained from the blocklength-selec-

tion algorithm for the two-phase scheme over the BSC, assuming RCSP error probabilities.

The simulated error probability P (UE) for the two-phase scheme with 64-state and 1024-state

TBCCs is also shown. Fig.3.9 shows the corresponding throughputs. Both RCSP analysis

and TBCC simulations use m = 5 transmissions and crossover probability p = 0.05.

Info. Bits Transmission Lengths Target Simulated P (UE)

k {I∗1 , I∗2 , I∗3 , I∗4 , I∗5 , N∗conf} Error ε 64-state 1024-state

16 25, 8, 8, 3, 6, 3 10−3 6.620× 10−4 4.368× 10−4

32 42, 8, 8, 7, 10, 5 10−3 1.000× 10−4 7.036× 10−5

64 85, 9, 8, 11, 15, 5 10−3 1.970× 10−4 1.141× 10−4

91 119, 13, 12, 12, 19, 5 10−3 2.270× 10−4 1.260× 10−4

128 172, 13, 9, 16, 23, 5 10−3 3.740× 10−4 2.078× 10−4
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Figure 3.9: Achievable rates of the m = 5 two-phase incremental redundancy scheme for the

BSC, including predictions from RCSP analysis using bounded-distance decoding (BDD)

and simulations using tail-biting convolutional codes (TBCC sim.). The BSC crossover

probability is p = 0.05 and the undetected error probability is constrained to be less than

ε = 10−3.
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two-phase scheme over the BSC can deliver throughput at least as high as the VLF random-

coding lower bound at low latencies. This is true for the m=5 two-phase scheme despite

the fact that the random-coding bound allows the decoder to terminate after transmission

of any individual symbol. The maximum throughput obtained from these simulations is

R
(two-phase)
t = 0.6265 bits per channel use at λ(two-phase) = 145.2 bits for the k = 91, 1024-

state code, which is 87.8% of the BSC capacity.

3.4.6 Information-feedback vs. Decision Feedback, AWGN

Finally, we compare numerical results from the ROVA-based decision-feedback scheme in

Sec. 3.3 and the two-phase information-feedback scheme earlier in this section. For the

AWGN channel with SNR 2 dB, Fig. 3.10 displays the throughputs obtained for the optimal

m=5 blocklengths for both schemes. Recall that the decision-feedback scheme uses tail-

biting convolutional codes with the TB ROVA to determine when to stop, whereas the

information-feedback scheme uses tail-biting convolutional codes in the communication phase

and repetition codes in the confirmation phase to confirm or deny the receiver’s tentative

decisions.

At the shortest blocklength (k = 16), the two schemes perform similarly, but the decision-

feedback scheme plateaus earlier than the information-feedback scheme, for both the 64-state

codes and 1024-state codes. Even though two-phase scheme incurs a latency penalty of Nconf

confirmation symbols during each round, this additional information allows the receiver to

terminate earlier overall.

A key difference from a practical perspective is that the decision-feedback scheme requires

only 1 bit of (noiseless) feedback per decoding attempt, whereas the information-feedback

approach requires noiseless feedback of all Ii received symbols in the ith communication-

phase transmission (or, equivalently, feedback of some other representation of the decoded

message ŴNi).
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Figure 3.10: A comparison of the two-phase (information feedback) and ROVA-based ap-

proaches (decision feedback) for VLF codes on the AWGN channel. The two-phase scheme

and the ROVA-based approach both use tail-biting convolutional codes (TBCCs) with m = 5

transmissions. In both cases, the undetected-error probability is required to be less than

ε = 10−3.

3.4.7 Active Sequential Hypothesis Testing

This section compares the short-blocklength performance of the active sequential hypoth-

esis testing scheme from Naghshvar et al. [2, 3] with the random-coding lower bound from

Thm. 2. We begin by briefly reviewing the scheme presented in [2, 3], which is a deter-

ministic, sequential coding scheme for DMCs using information feedback that achieves the

optimal error-exponent. We then demonstrate via simulation that this scheme delivers rates

significantly greater than those predicted by the random-coding lower bound.

After receiving each channel output symbol Yn, the receiver computes the posterior prob-

ability of each message i ∈ W , denoted as ρi(n) = P[W = i|Y n]. The belief (i.e., the posterior
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probability) of each message is updated according to:

ρi(n) =
ρi(n− 1)P(Y = y|X = xi)

M∑
j=1

ρj(n− 1)P(Y = y|X = xj)

, (3.80)

where xi = f(W = i, Y n−1 = yn−1) is the encoder output at time n corresponding to message

i and is based on the previous received symbols yn−1. In this section, we assume equiprobable

initial beliefs, i.e., ρi(0) = 1
M
∀ i ∈ W , although any starting distribution is valid.

The encoder also computes the posterior probabilities ρi(n), using the noiseless feedback

of Yn. After transmitting each symbol, the encoder partitions the M messages into two sets,

S1 and S0, such that the sum of the posterior probabilities of the messages in each set is as

close to one half as possible, i.e.,
∑
i∈S0

ρi(n) ≈ ∑
i∈S1

ρi(n) ≈ 1
2
. For messages i ∈ S0, the coded

symbol sent is xi = 0, and for messages i ∈ S1, xi = 1.

The stopping time τ is defined as

τ = min{n ≥ 0 : max
i∈W

ρi(n) ≥ 1− ε}, (3.81)

which is the same stopping rule that we use for the ROVA in Sec. 3.3.1 with convolutional

codes. Similar to the ROVA-based scheme, the error probability of this scheme is no more

than ε > 0, which is fixed. As noted in [3], this is a “possibly suboptimal stopping rule” in

the sense that it is not guaranteed to yield the minimal average blocklength. The decoder’s

decision at time τ is Ŵτ = arg max
i∈W

ρi(τ).

Three important quantities for the hypothesis testing scheme are the channel capacity

C, the maximal relative entropy C1, and C2, the maximum likelihood ratio, defined as

C2 = max
y∈Y

max
x∈X

P(Y |X = x)

min
x∈X

P(Y |X = x)
. (3.82)

We assume that C ≤ C1 ≤ C2 <∞.

For M > 2, the expected stopping time (average blocklength) is upper bounded as

follows [2, 3]:

E[τ ] ≤ log 1−ε
ε

C1

+
log(M − 1)

C
+

3C2
2

CC1

. (3.83)
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The bound above can be interpreted to mean that, on average, it takes roughly log(M−1)
C

channel uses for the posterior ρi(n) to go from 1
M

to 1
2
, and another

log 1−ε
ε

C1
channel uses for

ρi(n) to reach 1− ε.

This bound is similar to an earlier result for symmetric DMCs, due to Burnashev [46,

Thm. 2]:

E[τ ] ≤ log 1
ε

C1

+
logM

C
+ CP , (3.84)

where CP is a constant determined by the transition probability matrix of the channel,

P . Burnashev’s result is also based on an active sequential hypothesis testing (i.e., using

information feedback).

Naghshvar et al. [2, 3] have used (3.83) to show that this deterministic coding scheme

achieves the optimal error-exponent (by taking the limit as ε → 0 and allowing M → ∞).

As ε → 0 and M → ∞, the constant term
3C2

2

CC1
becomes negligible, but it is not obvious

what impact this constant penalty has on short-blocklength performance. In fact, for the

BSC(p = 0.05) with ε = 10−3, the lower bound on rate corresponding to (3.83) is even looser

than the random-coding lower bound of Thm. 2 (Fig. 3.11). Despite an elegant scheme

that uses information feedback to carefully select each coded symbol Xn, the bound does

not guarantee rates any better than what can be achieved with random coding and decision

feedback.

However, it is not clear whether the coding scheme described in [2,3] can perform better

than the bound given by (3.83). Note that (3.83) can be approximated as follows by ignoring

the constant terms:

E[τ ] ≈ log 1−ε
ε

C1

+
log(M − 1)

C
. (3.85)

A Monte Carlo simulation of the hypothesis testing scheme, based on Algorithm 2 in [3]

and shown in Fig. 3.11, demonstrates that the approximation of (3.85) closely approxi-

mates the simulated short-blocklength performance. This active sequential hypothesis test-
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Figure 3.11: Monte Carlo simulations of active sequential hypothesis testing (ASHT) from

Naghshvar et al. [2, 3] demonstrate the benefits of information feedback compared to deci-

sion-feedback VLF achievability based on random coding. Also shown are results from the

m=5 two-phase incremental redundancy scheme from Sec. 3.4.1.

ing (ASHT) simulation delivered rates that surpassed both the lower bound in (3.83) and

the random-coding lower bound of Thm. 2 (Fig. 3.11).

Algorithm 2 in [3] has complexity of order M2 (at the transmitter), so it is computation-

ally challenging to evaluate the ASHT scheme for larger message sizes. (For comparison, ML

decoding in general has complexity of orderM .) Fig. 3.11 uses k = log2M ∈ {2, 3, . . . , 11}.
At least 25 message errors were obtained for each value of k in the simulation.

Naghshvar et al.’s ASHT scheme [3] assumes that feedback is sent after every received

symbol Yn−1, and uses the feedback to determine each of the subsequent transmitted symbols

Xn. In contrast, the m=5 two-phase incremental redundancy scheme from this chapter uses

packet transmissions and only requires feedback to be sent after each packet. Feedback from

the communication-phase packet is used to determine the repetition-coded ACK or NACK

packet in the confirmation phase, rather than to determine individual coded symbols. In this
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sense, the ASHT scheme is more “active” because it responds to feedback at the smallest

possible interval (after every received symbol). The performance of the two-phase scheme for

the BSC is shown in Fig. 3.11. The ASHT scheme approaches capacity much faster, reaching

89.5% of capacity at an average blocklength 17.23 bits (k=11). However, computational

complexity has prevented us from simulating higher values of k (and higher latencies) for

the ASHT scheme. The packet-based nature of the two-phase scheme has significantly lower

computational requirements that make it more attractive for practical implementation.

3.5 Conclusion

This chapter demonstrated a reliability-based decision-feedback scheme that provides through-

put surpassing the random-coding lower bound at short blocklengths. We selected convo-

lutional codes for their excellent performance at short blocklengths and used the tail-biting

ROVA to avoid the rate loss of terminated convolutional codes. For both the BSC and

AWGN channels, convolutional codes provided throughput above 77% of capacity, with

blocklengths less than 150 bits. While codes with higher constraint lengths would be ex-

pected to provide superior performance, computational considerations limited us to evaluate

64-state codes with decoding after every symbol and 1024-state codes in an m=5 transmis-

sion incremental redundancy setting. We introduced a novel blocklength-selection algorithm

to aid in selecting the m=5 transmission lengths and showed that despite the limitations on

decoding frequency, the incremental redundancy scheme is competitive with decoding after

every symbol. Finally, we demonstrated that the latency overhead of CRCs imposes a severe

rate-loss penalty at short blocklengths, whereas reliability-based decoding does not require

transmission of separate error-detection bits.

This chapter also demonstrated two information-feedback coding schemes, namely two-

phase incremental redundancy and active sequential hypothesis testing. Similar to the m=5

ROVA-based incremental redundancy scheme, we showed how the blocklength-selection algo-
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rithm could be used to optimize the throughput for the two-phase scheme. The combination

of tail-biting convolutional codes and repetition codes in the two-phase scheme delivered

higher rates than the tail-biting convolutional codes in the decision-feedback setting. This

improvement is due to the adaptive nature of information-feedback codes. Similarly, the

active sequential hypothesis testing scheme provided even higher rates than the two-phase

scheme, in exchange for more frequent decoding attempts and feedback opportunities.

Most importantly, this chapter has shown that feedback codes, due to their variable-

length structure, offer tremendous gains in rate at short blocklengths compared to fixed-

length codes without feedback. The various assumptions in this chapter on the amount

of noiseless feedback and on the decoding intervals must be closely examined for practical

systems to determine what is realistic. It is expected that the m-transmission decision-

feedback setting, requiring only a single bit of feedback per packet transmission, is the most

practically relevant in general. However, systems operating in the short-blocklength regime

that can accommodate some degree of “active” encoding and more-frequent decoding, as in

the two-phase scheme, will benefit from higher rates than can be achieved with decision-

feedback alone.

3.6 Appendix

3.6.1 Numerical Computation of the VLF Lower Bound

For channels with bounded information density, Wald’s equality (also known as Wald’s iden-

tity or Wald’s lemma) allows us to compute an upper bound on the expected stopping time

E[τ ] in the random-coding lower bound of Thm. 2 as follows:

E[τ ] ≤ log(M − 1) + log 1
ε

+B

C
, (3.86)

where B <∞ is the upper bound on the information density:

B = sup
x∈X , y∈Y

i(x; y). (3.87)
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Proof. Defining Sj = i(Xj;Yj) = log
P (Yj |Xj)
P (Yj)

, we have

Sn = i(Xn;Y n) = log
P (Y n|Xn)

P (Y n)
(3.88)

=
n∑
j=1

log
P (Yj|Xj)

P (Yj)
(3.89)

=
n∑
j=1

Sj, (3.90)

where (3.89) follows due to the random codebook generation. Since the Sj are i.i.d with

E[Sj] = C, Wald’s equality gives the following result [69, Ch. 5] :

E[Sτ ] = E[τ ]E[S1]. (3.91)

This leads to the following upper bound on E[τ ]:

E[τ ] =
E[Sτ ]

C
(3.92)

=
E[Sτ−1 + Sτ ]

C
(3.93)

≤ γ +B

C
, (3.94)

where (3.94) follows from the definition of the threshold γ in the random-coding lower bound

and of B above.

Based on the fact that we can pick γ = log M−1
ε

in order to satisfy the ε error constraint,

we have the following:

E[τ ] ≤ log M−1
ε

+B

C
, (3.95)

which proves (3.86).

Examples. For the BSC with crossover probability p, B = log 2(1−p). For the binary-input

AWGN channel, B = log 2 (regardless of the signal-to-noise ratio).
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3.6.2 Maximal Relative Entropy

A number of the bounds in Polyanskiy et al. [25] and Naghshvar et al. [2, 3] are limited to

channels with finite maximal relative entropy. In this section, we review the definition of the

maximal relative entropy and derive this quantity for the binary symmetric channel and the

binary-input AWGN channel with soft-decision decoding.

The maximal relative entropy C1 is defined as

C1 = max
x1,x2∈X

D (P(Y |X = x1)||P(Y |X = x2)) (3.96)

= max
x1,x2∈X

EP(Y |X=x1)

[
log

P(Y |X = x1)

P(Y |X = x2)

]
. (3.97)

Examples. Due to the symmetry of the binary symmetric channel with crossover probabil-

ity p, we can write the maximal relative entropy CBSC
1 as

CBSC
1 = EP(Y |X=0)

[
log

P(Y |X = 0)

P(Y |X = 1)

]
(3.98)

= EP(Y |X=0)

[
1{Y = 0} log

1− p
p

+ 1{Y = 1} log
p

1− p

]
(3.99)

= (1− p) log
1− p
p

+ p log
p

1− p (3.100)

= (1− 2p) log
1− p
p

. (3.101)

For the binary-input AWGN with soft-decision decoding, when the SNR is η = P
σ2 , the

channel inputs are x ∈ {+
√
P ,−
√
P} and the noise variance is σ2. Without loss of generality,
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we can pick x1 = +
√
P and x2 = −

√
P , so that the maximal relative entropy CBI-AWGN

1 is

CBI-AWGN
1 = EP(Y |X=+

√
P )

[
log

P(Y |X = +
√
P )

P(Y |X = −
√
P )

]
(3.102)

= EP(Y |X=+
√
P )

[
log

exp{− 1
2σ2 (Y −

√
P )2}

exp{− 1
2σ2 (Y +

√
P )2}

]
(3.103)

= EP(Y |X=+
√
P )

[
2
√
PY

σ2

]
(3.104)

=
2
√
P

σ2
EP(Y |X=+

√
P ) [Y ] (3.105)

=
2P

σ2
(3.106)

= 2η, (3.107)

where (3.106) follows because the mean of Y under P(Y |X = +
√
P ) is

√
P .

Thus, we have showed for both the BSC and the BI-AWGN channel that C1 < ∞.

3.6.3 Proof of Cor. 1

Proof of Random-coding lower bound for repeat-after-N codes. The proof closely follows that

of [25, Theorem 3]. We define M stopping times τj for the jth codeword:

τj = inf{n ≥ 0 : iN(Xn(j);Y n) ≥ γ}, (3.108)

where Xn(j) is the first n symbols of the jth codeword. At each n, the decoder evaluates

the M information densities iN(Xn(j);Y n) and makes a final decision at time τ ∗ when the

first of these (possibly more than one at once) reaches the threshold γ:

τ ∗ = min
j=1,...,M

τj. (3.109)

The decoder at time τ ∗ selects codeword m = max{j : τj = τ ∗}.
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The average blocklength ` = E[τ ∗] is upper bounded as follows:

E[τ ∗] ≤ 1

M

M∑
j=1

E[τj|W = j] (3.110)

= E[τ1|W = 1] (3.111)

= E[τ ] (3.112)

=
∞∑
n=0

P[τ > n] (3.113)

=
(
1 + P[τ > N ] + P[τ > N ]2 + . . .

)N−1∑
n=0

P[τ > n] (3.114)

=

∑N−1
n=0 P[τ > n]

1− P[τ > N ]
. (3.115)

Eq. (3.111) follows from the symmetry of the M stopping times and (3.112) is by the defini-

tion of τ as given in (3.19). Because the modified information densities depend only on the

symbols in the current N -block, repeat-after-N VLF codes satisfy the following property,

which leads to (3.114):

P[τ > n] = P[τ > N ]sP[τ > r], (3.116)

where n = sN + r. The condition that P[τ ≤ N ] > 0 in Cor. 1 is required so that

P[τ > N ] < 1, guaranteeing that the sum in (3.114) will converge.

Using Ŵn to denote the decoder’s decision at time n, an error occurs if the decoder

chooses Ŵτ∗ 6= W . The probability of error ε can be bounded due to the random codebook
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generation:

ε = P[Ŵτ∗ 6= W ] (3.117)

≤ P[Ŵτ∗ 6= 1|W = 1] (3.118)

≤ P[τ1 ≥ τ ∗|W = 1] (3.119)

≤ P
[ M∪
j=2
{τ1 ≥ τj}|W = 1

]
(3.120)

≤ (M − 1)P[τ1 ≥ τ2|W = 1] (3.121)

= (M − 1)P[τ ≥ τ̄ ]. (3.122)

The last line follows because (τ, τ̄) have the same distribution as (τ1, τ2) conditioned on

W = 1.

3.6.4 Proof of Thm. 3

Proof of two-phase, information-feedback lower bound (fixed-length confirmation phase). Due

to the random-coding construction as in Cor. 1, the expected length of the first phase is upper

bounded by E[τ ]. The latency in the second phase is always Nconf. Because the transmission

restarts when a NACK is received, we divide the overall latency by the complement of the

probability of receiving a NACK at the receiver, as in the proof of Cor. 1. Thus the average

blocklength ` is upper bounded according to

` ≤ E[τ ] +Nconf

1− P(N )
, (3.123)

proving (3.29). The condition that P(N ) < 1 in Thm. 3 is required so the geometric series

implied by (3.29) will converge.

Using Ŵn to denote the decoder’s decision at time n, an error occurs if the decoder

chooses Ŵτ∗ 6= W (a communication-phase error) and if a NACK is decoded as an ACK (a

confirmation-phase error), or if this combination occurs after the receiver has decoded one
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or more consecutive NACKs. The probability of error ε is then given by

ε =
P[Ŵτ∗ 6= W ]pn→a

1− P(N )
. (3.124)

As in the proof of Cor. 1, the communication-phase error can be bounded due to the random

codebook generation:

P[Ŵτ∗ 6= W ] ≤ (M − 1)P[τ̄ ≤ τ ]. (3.125)

Combining (3.124) and (3.125), we have

ε ≤ (M − 1)P[τ̄ ≤ τ ]pn→a
1− P(N )

, (3.126)

proving (3.30).

3.6.5 Numerical Computation of Thm. 3

This section describes how to numerically evaluate the information-feedback lower bound

(with a fixed-length confirmation phase) of Thm. 3. In order to plot the best possible rate

for this information-feedback lower bound, we need to optimize over the threshold γ and the

confirmation blocklength Nconf, given a fixed message cardinality M and target error ε′. The

decision-feedback VLF lower bound from Thm. 2, plotted in earlier sections, is somewhat

more straightforward, since only γ needs to be chosen. The two-parameter optimization in

this bound is more difficult.

We begin by considering the following bound on P[τ̄ ≤ n]:

P[τ̄ ≤ n] = E[1{τ̄ ≤ n}] (3.127)

= E[1{τ ≤ n} exp{−i(Xτ ;Y τ}] (3.128)

≤ exp{−γ}, (3.129)

where the last inequality follows because i(Xτ ;Y τ ) ≥ γ by definition in (3.31). Accordingly,
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we can write the following

P[τ̄ ≤ τ ] =
∞∑
n=0

P[τ = n]P[τ̄ ≤ n] (3.130)

≤
∞∑
n=0

P[τ = n] exp{−γ} (3.131)

= exp{−γ}, (3.132)

which leads to a looser bound on the average probability of error as follows:

ε ≤ (M − 1) exp{−γ}pn→a
1− P(N )

. (3.133)

The average communication-phase blocklength E[τ ] can be computed using Wald’s equal-

ity, as described in [77], or it may be computed as follows:

E[τ ] =
∞∑
n=0

P[τ > n] (3.134)

≤
∞∑
n=0

P[i(Xn;Y n) < γ]. (3.135)

For each value of n, the term P[i(Xn;Y n) < γ] can be evaluated numerically. For the

AWGN channel, this computation involves a 3-dimensional integral for each n. The BSC

computation is simpler: P[i(Xn;Y n) < γ] can be rearranged in terms of the C.D.F. of a

binomial random variable.

For a given error constraint ε′, we pick a starting confirmation block N0 = 1 and then

find γ0, the smallest γ such that the right-hand side of (3.133) is smaller than ε′ (which

guarantees that ε < ε′). We then evaluate the right-hand side of (3.29) to find the average

blocklength ` corresponding to these parameters. We search for the best parameters by

increasing γ0 and increasing N0 until the optimum is found.

The rate for each (M, ε) pair may be further improved (with additional computational

complexity) by considering a skewed hypothesis test for deciding ACK or NACK at the

receiver, based on the Nconf confirmation symbols. The balanced hypothesis test would have
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pn→a = pa→n, but this is not necessarily optimal. Because decoding a NACK results in a

costly restart, it may be preferable to skew the receiver’s hypothesis test towards ACK, since

errors in both the communication phase and confirmation phase should be rare.

As an example, consider the following ACK/NACK decision rule for the BSC with thresh-

old Nth at the receiver (0 ≤ Nth ≤ Nconf):

• H0: Decide ACK if at least Nth of Nconf bits are 1’s.

• H1: Decide NACK if less than Nth of Nconf bits are 1’s.

Introducing the threshold Nth complicates the lower bound computation because Nth must be

optimized for each value of Nconf. Some time can be saved by recognizing that since NACKs

are costly in terms of latency, Nt > dN2 e will not be selected and need not be evaluated. We

repeated this optimization process across a wide range of M values (and fixed ε), ultimately

arriving at the curve in Fig. 3.2, which includes an optimization over the skew threshold Nth.

3.6.6 Numerical Computation of Thm. 4

This section describes how to numerically evaluate the information-feedback lower bound

(with a variable-length confirmation phase) of Thm. 4. Note that the expected stopping

time of the confirmation phase, E[µ], can be upper bounded as follows [71]:

E[µ|H0] ≤ 1

Dc,e

[pa→a(−t0 +B)− pa→n t1] (3.136)

E[µ|H1] ≤ 1

De,c

[pn→n(t1 +B) + pn→a t0] , (3.137)
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where

Dc,e = D
(
P (Yi|Xi = xc)||P (Yi|Xi = xe)

)
(3.138)

= −EH0 [Λi(Y )], (3.139)

De,c = D
(
P (Yi|Xi = xe)||P (Yi|Xi = xc)

)
(3.140)

= EH1 [Λi(Y )], (3.141)

B = sup |Λi(Y )|. (3.142)

That is, B is the upper bound on Λi(Y ) under either hypothesis. Putting together (3.136)

and (3.137), we have

E[µ] = E[µ|H0]P[H0] + E[µ|H1]P[H1] (3.143)

≤ 1

Dc,e

(
pa→a(−t0 +B)− pa→n t1

)
+

(M − 1)P[τ̄ ≤ τ ]

De,c

(
pn→n(t1 +B) + pn→a t0

)
(3.144)

≤ 1

Dc,e

(
− t0 +B

)
+

(M − 1)P[τ̄ ≤ τ ]

De,c

(
t1 +B

)
(3.145)

Because the exponential error bounds from Wald’s SPRT [70] in (3.37) and (3.36) are upper

bounds on pa→n and pn→a, they cannot be applied to all of the confirmation-phase error

terms in (3.144), leading to the looser bound on E[µ] in (3.145).

Example. For the binary symmetric channel with crossover probability p, the bound on the

log likelihood-ratios is B = log 1−p
p

, and the average value is

EH0 [Λ1(Y )] = (1− 2p) log
1− p
p

= C1. (3.146)

Since the BSC is symmetric, Dc,e = De,c = C1, which allows us to particularize (3.145)

as

E[µ] ≤ 1

C1

[
−t0 +B + (M − 1) exp{−γ}

(
t1 +B

)]
. (3.147)
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However, because the bound in (3.145) is not always tight, a better approach may be to

evaluate E[µ] in the following manner, similar to the computation of E[τ ] in Sec. 3.6.5.

E[µ] =
∞∑
n=0

P[µ > n] (3.148)

≤
∞∑
n=0

P[t0 < Λn < t1], (3.149)

since P[µ > n] ≤ P[t0 < Λn < t1] by the definition of µ. For each value of n, the term

P[t0 < Λn < t1] can be evaluated numerically. As we will see for the BSC, this probability

can be rearranged in terms of C.D.F.s of a binomial random variable.

Example. For the BSC(p) with p < 1
2
, we assume w.l.o.g. that the transmitter sends xc=0

under H0 and xe=1 under H1 in the confirmation phase. Then the number of ones in the

received sequence Y n is a random variable d, distributed ∼Bin(n, pi), where p0 = p under

H0 and p1 = 1− p under H1.

The log likelihood-ratio is

Λn = log
P (Y n|Xn = xne )

P (Y n|Xn = xnc )
(3.150)

= log
pn−d(1− p)d
(1− p)n−dpd (3.151)

= 2d log
1− p
p
− n log

1− p
p

(3.152)

= 2dB − nB, (3.153)

where B = log 1−p
p
> 0.
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The upper bound on the retransmission probability is

P[µ > n] ≤ P[t0 < Λn < t1] (3.154)

= P[t0 < 2dB − nB < t1] (3.155)

= P[nB + t0 < 2dB < nB + t1] (3.156)

= P

[
nB + t0

2B
< d <

nB + t1
2B

]
, (3.157)

where (3.157) can be computed from the C.D.F. of d ∼Bin(n, pi).

Thus, we can separately compute E[µ|H0] and E[µ|H1] to yield E[µ] as follows:

E[µ|H0] ≤
∞∑
n=0

P

[
nB + t0

2B
< d <

nB + t1
2B

]
, d ∼ Bin(n, p0) (3.158)

E[µ|H1] ≤
∞∑
n=0

P

[
nB + t0

2B
< d <

nB + t1
2B

]
, d ∼ Bin(n, p1) (3.159)

E[µ] = E[µ|H0]P[H0] + E[µ|H1]P[H1]. (3.160)

We used the above approach to illustrate the achievability in Thm. 4 for the BSC(p=0.05)

with ε = 10−3 in Fig. 3.2, rather than the looser bound on E[µ] in (3.145).

Similar to the blocklength-selection algorithm of Sec. 3.6.7, we used a coordinate-descent

algorithm to minimize E[µ] over the parameters γ, t1, and t0, subject to the error constraint

ε in (3.42). Recognizing that this two-phase bound can only improve upon the one-phase

decision-feedback bound in Thm. 2 if the communication phase is shorter, the search for the

optimal γ can be limited to the range [γmin, γmax], where γmin is the smallest γ that meets

the error constraint (given t1 and t0) and γmax is the threshold used for the decision-feedback

bound.

3.6.7 General Blocklength-selection Algorithm

Selecting the m incremental transmission lengths {Ii} that minimize the latency (or equiva-

lently, maximize the throughput) of VLF coding schemes is non-trivial. The complexity of a
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brute-force search grows exponentially with m for a fixed k, and grows linearly with k for a

fixed m. In this section, we describe an efficient blocklength-selection algorithm that can be

used to identify suitable blocklengths for general incremental redundancy schemes. The goal

of the algorithm is to select the m integer-valued incremental transmission lengths {Ii} (and

possibly the integer-valued confirmation blocklength Nconf, if using a two-phase scheme) as

follows:

{Ii}∗, N∗conf = arg min
{Ii},Nconf∈Z

λ s.t. P (UE) ≤ ε. (3.161)

For the decision-feedback scheme using the TB ROVA in Sec. 3.3, the probability of unde-

tected error is less than ε by definition, so the constraint can be ignored. Note the objective

function λ in (3.161) is in general not convex. Even in the simple case when the retrans-

mission probabilities are survivor functions of a chi-square distribution as in [55], when

Pre(N) = 1 − Fχ2
N

(r2
N), λ is not convex. The latency λ for the two-phase approach in

Sec. 3.4.3 is even more complicated, since the probability of retransmission (i.e., the proba-

bility of decoding a NACK at the receiver) that is approximated by (3.66) has several terms,

and because the confirmation blocklength Nconf must also be optimized.

Algorithm 1 illustrates the proposed blocklength-selection algorithm for anm-transmission

incremental redundancy scheme without confirmation blocks. (Sec. 3.6.9 describes how the

algorithm can be applied to the two-phase scheme with confirmation blocks.) Starting from

a pseudo-random initial vector {I1, I2, . . . , Im}, the algorithm employs performs coordinate

descent, wherein one transmission length Ii is optimized while all others are held fixed. (See

function single coord search( ) in Algorithm 2.) Via the function compute objective( ), the

objective function λ is evaluated for positive and negative unit steps in increment Ii and Ii

is updated if the objective improves (Steps (9) and (11) in Algorithm 2).

Once the objective cannot be improved by any single-coordinate steps, diagonal steps

from each of the possible two-coordinate pairs (Ii, Ij) are evaluated. (See function dou-

ble coord search( ) in Algorithm 3.) The function pair(n) returns the coordinate indices

(i, j) ∈ {1, . . . ,m}×{1, . . . ,m} that represent one of these
(
m
2

)
pairs. For each two-coordinate
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pair, four possible neighboring diagonal steps are evaluated. The transmission lengths Ii and

Ij are updated if the best of the four diagonal steps improves the objective λ. This continues

until the objective cannot be improved by additional diagonal steps.

The entire process then starts over from another pseudo-random initial vector. Random

restarts are employed in order to avoid getting stuck at local optima of λ, of which there can

be many.

Empirical trials of this algorithm for several different families of retransmission prob-

abilities demonstrated significantly reduced computation time compared to a brute-force

approach (which is in general not possible for large k). Furthermore, while this algorithm is

not guaranteed to find the global optimum, results show that the final objective value λbest

was improved compared to results from an earlier quasi-brute-force trial.

Algorithm 1: General algorithm for selecting optimal transmission lengths {Ii}.

1 for r = 1 to max restarts do

2 Pick pseudo-random initial lengths {I1, . . . , Im};
3 Re-order initial lengths so that I1 is largest;

4 λ← 106, λbest ← 106, resolution← 10−3;

5 ({Ii}, λ)← single coord search({Ii}, λ, λbest, resolution) (Alg. 2);

6 ({Ii}, λ)← double coord search({Ii}, λ, λbest, resolution) (Alg. 3);
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Algorithm 2: single coord search({Ii}, λ, λbest, resolution): Single-coordinate descent

portion of Algorithm 1.

1 for t = 1 to max iterations do

2 λlast ← λ;

3 for i = 1 to m do

4 break flag ← 0;

5 while break flag == 0 do

6 λ← compute objective(I1, . . . , Ii, . . . , Im);

7 λ+ ← compute objective(I1, . . . , Ii + 1, . . . , Im);

8 λ− ← compute objective(I1, . . . , Ii − 1, . . . , Im);

9 if λ+ ≤ λ then

10 Ii ← Ii + 1, continue;

11 if λ− < λ then

12 Ii ← Ii − 1, continue;

13 break flag ← 1;

14 λ← compute objective(I1, . . . Im);

15 if λ < λbest then

16 λbest ← λ, {Ii}best ← {Ii};

17 if λlast − λ < resolution then

18 break;
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Algorithm 3: double coord search({Ii}, λ, λbest, resolution): Double-coordinate (di-

agonal) descent portion of Algorithm 1.

1 for t = 1 to max iterations do

2 λlast ← λ;

3 for n = 1 to
(
m
2

)
do

4 (i, j)← pair(n);

5 break flag ← 0;

6 while break flag == 0 do

7 λ← compute objective(I1, . . . , Ii, . . . , Ij, . . . Im);

8 λ++ ← compute objective(I1, . . . , Ii + 1, . . . , Ij + 1, . . . Im);

9 λ+− ← compute objective(I1, . . . , Ii + 1, . . . , Ij − 1, . . . Im);

10 λ−+ ← compute objective(I1, . . . , Ii − 1, . . . , Ij + 1, . . . Im);

11 λ−− ← compute objective(I1, . . . , Ii − 1, . . . , Ij − 1, . . . Im);

12 λmin ← min(λ++, λ+−, λ−+, λ−−);

13 if λmin < λ then

14 Ii ← Ii(λmin), continue;

15 break flag ← 1;

16 λ← compute objective(I1, . . . Im);

17 if λ < λbest then

18 λbest ← λ, {Ii}best ← {Ii};

19 if λlast − λ < resolution then

20 break;
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3.6.8 TB ROVA Version of Blocklength-selection Algorithm

For the decision-feedback scheme of Sec. 3.3 that uses the TB ROVA to compute the posterior

probability of the decoded word, the probability of retransmission Pre(N) is the probability

that the posterior at blocklength N is less than (1 − ε), which is difficult to determine

analytically.6 Instead, we obtained estimates of the empirical retransmission-probabilities of

the rate-1/3 convolutional codes in Table 3.1 and used those estimates of Pre(N) to compute

the objective λ in the algorithm.

To do so, we first simulated fixed-length transmission of rate-1/3, tail-biting convolutional

codes from Table 3.1 at a small number of pseudo-randomly punctured blocklengths Nsim

for each fixed message-size k, where Nsim ∈ {k : k
4

: 3k}. For each (k,Nsim) pair, we counted

the number of decoded words with posterior probability less than (1− ε), indicating that a

retransmission would be required, until there were at least 100 codewords that would trigger

a retransmission. We computed Pre(Nsim) according to

Pre(Nsim) =
# codewords triggering retransmission

total # codewords simulated
. (3.162)

The full set of estimated retransmission probabilities P̃re(N) for N ∈ {1, . . . , 3k} was then

obtained by a log-polynomial interpolation of the simulated values of Pre(Nsim). Finally, the

estimated probabilities were used in the algorithm to select the optimal transmission lengths

{Ii}∗. The performance of the decision-feedback VLF scheme using these m=5 optimal

blocklengths is evaluated in Sec. 3.3. We used max restarts = 100 in our implementation.

3.6.9 Two-phase Version of Blocklength-selection Algorithm

The two-phase scheme with confirmation blocks operates in the same manner as above,

except that there are (m + 1) integer coordinates to optimize instead of m, and additional

6For a given convolutional code, the weight spectrum for each blocklength N could be used to bound or
approximate the posterior probability and that could be used to bound or approximate the retransmission
probability, but spectrum-based approaches tend not to be tight over a wide range of SNRs. Further com-
plicating the task is the weight spectrum must be based on a rate-compatible, puncturing pattern. Instead
of optimizing this puncturing pattern, we use the same pseudo-random puncturing pattern throughout.
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conditions must be added to ensure that any steps explored in the algorithm satisfy the

constraint P (UE) ≤ ε. The retransmission probability in this case is the probability of

decoding a NACK at the receiver, given by (3.66). The optimal transmission lengths {Ii}∗

obtained from the algorithm were evaluated in the two-phase, information-feedback setting

for both the AWGN channel and BSC in Sec. 3.4.

An additional difference in the optimization of the two-phase increments for the BSC

is that the communication-phase error probability predicted by RCSP is not monotonic in

the blocklength. In order to avoid getting stuck at local optima, the two-phase version of

Algorithm 1 for the BSC evaluated positive and negative length-2 steps of Ii in addition to

unit steps. The confirmation-blocks Nconf searches were still limited to unit steps. We used

max restarts = 1000 for the BSC and max restarts = 100 for the AWGN channel.
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CHAPTER 4

Does Using Feedback Reduce Energy?

As shown by Polyanskiy et al. [25] and Chen et al. [49, 50], variable-length coding with

feedback can significantly improve the maximum rate at short blocklengths compared to

fixed-length codes without feedback. Equivalently, the latency required to achieve a cer-

tain rate close to capacity is lower for codes with feedback. When a transmitter’s power

consumption is proportional to the number of transmitted symbols, it is therefore tempt-

ing to conclude that variable-length feedback codes reduce power consumption compared to

fixed-length codes at short blocklengths.

However, this conclusion ignores the impact of variable-length coding on the receiver’s

power consumption. In many applications, decoding energy constitutes a large portion of

the overall energy budget. As discussed by Grover, Woyach, and Sahai in [78], the decoder

power may be larger than the transmitter power for short-range communication. Whereas

communication with fixed-length block codes requires decoding once per codeword, variable-

length feedback codes require multiple decoding attempts. In Polyanskiy et al.’s VLF coding

framework [25], decoding is attempted after every transmitted symbol, so an average block-

length of ` corresponds to ` decoding attempts (on average). Similarly, in [79], Polyanskiy et

al. show that noiseless feedback dramatically improves the minimum transmitter energy re-

quired to send k bits through the Gaussian channel. The analysis in [79] permitted decoding

after every symbol, but did not consider the associated receiver energy.

In contrast to [25] and [79], this chapter investigates the tradeoff between transmitter

and receiver power consumption for VLF codes by analyzing an incremental redundancy
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scheme with uniform increments, which was introduced in [49,50]. In this scheme, decoding

occurs only after uniform increments of length I ≥ 1. This limitation reduces the number

of decoding attempts, similar to the m-transmission VLF codes of Ch. 3 and existing m-

transmission schemes in the communication literature (e.g., [13, 15, 53]). Yet it is still not

clear if the savings in transmitted symbols (and transmitter power) provided by feedback

coding make up for the increase in decoding attempts (and receiver power) when compared

to fixed-length coding.

To analyze this balance, Sec. 4.1 introduces an energy model that includes contributions

from both the transmitter and receiver. Sec. 4.2 formulates an optimization problem for both

fixed-length codes without feedback and VLF codes, and Sec. 4.3 concludes the chapter.

4.1 Energy Model

In order to fairly compare the impact of variable-length feedback coding on energy consump-

tion, we use the following model. Transmission takes place over a binary-input AWGN chan-

nel with power constraint η (i.e., transmitted symbols are drawn from {+√η,−√η}). We

assume w.l.o.g. that the noise variance is unity, so that the SNR is η. Due to the limited re-

sources of the decoder, only hard-decision decoding is allowed, which means that the channel

is effectively a binary symmetric channel (BSC). The Shannon capacity is CBSC = 1−hb(p),
where hb(p) is the binary entropy and p is the crossover probability of the channel, related

to η by p = Q(
√
η). The Q function Q() is the tail of a standard normal random variable,

i.e., Q(x) = 1√
2π

∞∫
x

e−t
2/2dt.

The overall energy consumption E is given by

E = {#transmitted symbols} × αη︸ ︷︷ ︸
Tx. energy

+ {# decoding attempts} × β︸ ︷︷ ︸
Rx. Energy

. (4.1)

In (4.1), inspired by similar formulas in [80] and [81], α is a constant related to the per-

symbol energy consumption of the transmitter and β is a constant based on the per-codeword
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decoding energy. The parameter β may also be chosen to account for any other energy costs

that are incurred for each decoding attempt, such as the wake-up/transition power consumed

in the idle time between decoding attempts, for both the transmitter and the receiver. The

energy required to send the decision-feedback message (ACK/NACK) may also be included

in β. In this manner, many of the practical aspects of incremental redundancy that were

ignored in the information-theoretic VLF framework of [25] can be accounted for by a proper

selection of α and β. Both α and β are device-specific and depend on parameters such as

the symbol time, decoding algorithm, etc. The units are chosen such that the energy E is in

Joules.

Eq. (4.1) assumes that each decoding attempt uses the same blocklength, since otherwise

the decoding energy may be less for smaller transmitted increments. This assumption is

motivated by the incremental redundancy schemes in Ch. 3 that use punctured codes to

decode an entire codeword when only a portion of the symbols have been transmitted.

For scenarios where the receiver power consumption is dominated by front-end amplifiers

rather than the decoder, the receiver energy would scale with the number of transmitted

symbols instead of the number of decoding attempts. In these cases, the benefits of feed-

back would be more obvious, since feedback can reduce the number of transmitted symbols.

When the receiver power consumption has contributions that depend on both the number

of transmitted symbols and the number of decoding attempts, both α and β can be chosen

to include receiver contributions.

4.2 Optimization Problem

In order to compare the energy consumption of VLF and fixed-length codes without feedback,

for both cases we assume that the transmitter uses a finite codebook with M messages and

that messages are sent at regular intervals. The spacing of the transmission intervals is large

enough that there is no queue (i.e., the transmission of each message finishes before the
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beginning of the next message’s interval). For example, the transmitter may be a battery-

operated sensor node that is reporting fixed-size environmental measurements every fifteen

minutes.

4.2.1 Optimization for Fixed-length Codes without Feedback

For length-N block codes without feedback, the overall energy consumption Eno feedback is

Eno feedback = Nαη + β, (4.2)

since decoding occurs only once. Therefore, in order to to minimize the energy consumption,

we must minimize the blocklength N (since α, β, and η are constants), subject to a constraint

on the word-error probability ε:

min Eno feedback(N) = Eno feedback(N∗), (4.3)

N∗ = min{N ∈ Z++ : ∃ (M,N, ε)-code}, (4.4)

where Polyanskiy et al. [24] have defined an (M,N, ε) code as a codebook with M messages,

N channel uses, and average probability of error less than ε. (This is the standard definition

for finite-blocklength codes without feedback.)

In order to determine N∗, we can find the smallest N such that the maximum achiev-

able finite-blocklength rate logM∗(N,ε)
N

is higher than the actual rate with M messages and

blocklength N :

N∗ = min

{
N ∈ Z++ :

logM∗(N, ε)

N
≥ logM

N

}
. (4.5)

In the numerical examples to follow, we have used the normal approximation of M∗(N, ε)

from Polyanskiy et al. [24] to compute N∗. For the binary symmetric channel with crossover

probability p, the maximim achievable finite-blocklength rate using the normal approxima-

tion is given as [24, Thm. 52]:

logM∗(N, ε)

N
≈ C −

√
p(1− p)

N
log

1− p
p

Q−1(ε) +
1

2

logN

N
. (4.6)
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4.2.2 Optimization for Variable-length Feedback Codes

Similar to (4.2), the overall energy consumption EVLF for variable-length feedback codes is

EVLF = `αη +Dβ, (4.7)

where ` is the average blocklength and D is the expected number of decoding attempts.

In the random-coding lower bound of Thm. 2, from Polyanskiy et al. [25], we have used

an upper bound on ` to evaluate the average blocklength numerically:

` ≤ E[τ ], (4.8)

τ = inf{n ≥ 0 : i(Xn;Y n) ≥ γ}, (4.9)

where τ is a stopping time defined according to (4.9) and γ is a threshold chosen to satisfy

the error constraint ε.

In order to address the original concern for the increased receiver energy due to decoding

after every individual symbol, we now introduce the following modified stopping time τ(I)

for decoding interval I ≥ 1 (from [49,50]):

τ(I) = inf{n ≥ 0 : i(Xn;Y n) ≥ γ, n ∈ SI}, (4.10)

SI = {n0, n0 + I, n0 + 2I, . . . } (4.11)

where n0 is the first blocklength for which decoding is attempted. That is, τ(I) represents

the stopping time within the set of admissible blocklengths SI . Because the information

density i(Xn;Y n) is not likely to be greater than the threshold γ until the instantaneous

blocklength n is relatively close to capacity-achieving blocklength, it makes sense not to

attempt decoding until n ≥ n0 for some constant n0, hence the dependence on n0 in the

definition of SI .

In the numerical examples that follow, we have chosen n0 according to

n0 = min{n ≥ 0 : P[τ > n] < 0.99}, (4.12)
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although a variety of other heuristic choices of n0 could be made. For example, Vakilinia et

al. [65] select the first-attempt blocklength n0 based on the empirical probability of decoding

success for an LDPC code. For the channel parameters studied in this chapter, the choice

of n0 in (4.12) results in the first-attempt blocklength n0 being smaller than the capacity-

achieving blocklength logM
C

, which is essential for enabling VLF codes to achieve high rates.

With the definition of τ(I) in (4.10), the decoding energy EVLF(I) can be upper bounded

as follows:

EVLF(I) ≤ E[τ(I)]αη +

(
1 +

E[τ(I)]− n0

I

)
β, (4.13)

since the average number of decoding attempts D(I) is upper bounded as

D(I) ≤ 1 +
E[τ(I)]− n0

I
. (4.14)

That is, decoding is always attempted at blocklength n0, and then once per I transmitted

symbols after that.

The optimization problem is now to choose the decoding interval I∗ that minimizes the

energy:

min EVLF(I) = EVLF(I∗). (4.15)

This optimization problem includes an implicit error constraint of ε, based on the threshold

γ in (4.10), similar to the random-coding lower bound in Thm. 2.

Note the difference between the objective for the energy-minimization problem in (4.13)

and the objective `(I) for the related latency-minimization problem:

`(I) ≤ E[τ(I)]. (4.16)

In (4.16), choosing I = 1 minimizes the latency, but the optimal I∗ in (4.13) is not obvious

(and will likely have I∗ > 1).

The latency-minimization objective in (4.16) is based on random coding and has been

studied elsewhere for other types of feedback codes (e.g., [55, 56, 77]). Williamson et al.
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Figure 4.1: Total energy consumption as a function of the decoding interval I for vari-

able-length feedback (VLF) codes over the BSC with crossover probability p = 0.0565, SNR

η = 4 dB, and log2M = k = 128 message bits. For both the VLF codes and the fixed-length

block code without feedback, the word-error probability is required to be less than ε = 10−3.

optimized the latency for rate-compatible sphere-packing (RCSP) VLFT codes in [55], two-

phase RCSP VLF codes in [56], and tail-biting convolutional VLF codes in [77], all in the

context of m-transmission incremental redundancy schemes rather than the present scheme

with uniform increments. This chapter uses the uniform increment approach because it is

more general and permits optimization of only one parameter (i.e., the increment I).

4.2.3 Numerical Results

Fig. 4.1 illustrates the energy consumption EVLF(I) as a function of the decoding interval

I for the binary symmetric channel (BSC) with crossover probability 0.0565, SNR η = 4
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dB, and log2M = k = 128 message bits. As expected, overall energy consumption can be

improved by decoding less often (i.e., with I > 1). Infrequent decoding with an increment

I that is too large, however, increases the expected latency E[τ(I)] substantially, increasing

the transmitter power and offsetting the reduction in receiver power. In this example, the

minimum energy consumption occurs for I = 16 (i.e., this is the minimum among the

intervals that were evaluated).

Also shown in Fig. 4.1 is the minimum energy consumption Eno feedback(N∗) for block

codes with k = 128 bits, where the blocklength N∗ is computed as in (4.5). This energy

consumption does not correspond to a particular value of I, but is plotted as a horizontal

line to indicate how well the VLF codes fare in comparison to the no-feedback case. For

both the VLF codes and fixed-length codes in Fig. 4.1, the word-error probability is required

to be less than ε = 10−3.

Fig. 4.2 displays the energy consumption EVLF(I) for different decoding intervals I as a

function of the SNR in dB. For each SNR, the optimum decoding interval I∗(SNR) is plotted

with a solid line and diamond marker. Although certain choices of decoding intervals I for

VLF codes result in higher energy consumption than the fixed-length code at the same

SNR, for each SNR there is at least one decoding interval I∗(SNR) that reduces the energy

consumption compared to fixed-length coding.

In the numerical examples in this section, we used α = 1 and β = 2. Increasing β would

be expected to increase the optimum decoding interval I∗ for VLF codes.

4.3 Concluding Remarks

Note that the results in Fig. 4.2 correspond to the binary symmetric channel, since we have

assumed binary signaling (e.g., BPSK) over an AWGN channel and hard-decision decoding.

SNRs are plotted on the x-axis in order to illustrate the connection between transmitter

power η and overall energy consumption. The BSC crossover probability of p = 0.0565 in
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Fig. 4.1 corresponds to an SNR of 4 dB (SNR η = 2.5119).

Another observation from Fig. 4.2 is that decreasing the SNR η can decrease the overall

energy consumption required to transmit k = 128 bits with error probability less than

ε = 10−3, even though decreasing the SNR reduces the achievable rate. This is expected from

asymptotic information theory. Note that η is often treated as a constant in information

theory, in order to optimize a particular quantity (e.g., the asymptotic capacity or the

maximum achievable rate at finite blocklengths). The motivation usually given for η being

a constant is that the transmitter has some fixed power constraint, based on factors such

as its energy source (e.g., batteries), amplifiers, etc. In contrast, Fig. 4.2 illustrates that

it is important to pick the transmitter power η wisely in order to minimize the energy

consumption. In this manner, the battery life of a sensor node can be significantly extended

over the device lifetime.

We conclude by noting that the maximum achievable rate for finite-blocklength codes

without feedback is tightly upper bounded by the converse bounds given in [24]. For many

channel parameters, the converses are well approximated by the normal approximation,

which we have used in our numerical examples. It remains to be seen if practical codes

exist both with rates close to the maximum and with energy-efficient decoding algorithms.

In contrast, the random-coding lower bound for VLF codes from [25] is an achievability

result that guarantees the existence of codes with (at least) the specified rates. We have

shown in Ch. 3 that, indeed, (deterministic) tail-biting convolutional codes can deliver rates

above the random-coding lower bound. In this section, we have not claimed the optimality

of convolutional codes for reducing energy, nor have we investigated the actual decoding

energy required for convolutional codes. Still, the conclusions from this section indicate that

variable-length coding with feedback should be beneficial for reducing energy compared to

the best fixed-length codes, but that choosing the appropriate decoding interval is crucial.
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Figure 4.2: Total energy consumption as a function of the decoding interval I and the SNR for

variable-length feedback (VLF) codes over the BSC with crossover probability p = 0.0565

and log2M = k = 128 message bits. The solid line with diamond markers highlights

the minimum energy across all values of I evaluated. For both the VLF codes and the

fixed-length block code without feedback, the word-error probability is required to be less

than ε = 10−3.
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CHAPTER 5

Conclusion

This dissertation has demonstrated that feedback provides benefits in the short-blocklength

regime, compared to fixed-length block codes without feedback. We offered several perspec-

tives to support this conclusion, including new achievability bounds for VLF codes, based on

random coding, as well as explicit constructions of coding schemes based on convolutional

codes. The development of the tail-biting ROVA crucially enabled the use of throughput-

efficient tail-biting convolutional codes in a reliability-based retransmission scheme. Finally,

we compared the energy efficiency of codes with and without feedback.

Building on existing work in information theory that outlined the fundamental limits

for VLF codes, we presented two improved lower bounds on the maximum rate at short

blocklengths that use information feedback. Whereas the existing random-coding lower

bound uses decision-feedback alone, our two-phase information-feedback bounds allow the

transmitter to confirm or deny the receiver’s tentative estimate in a confirmation phase.

Inspired by a variety of two-phase schemes in the classical error-exponent literature that

involve asymptotics, our work has focused on the performance of the scheme at blocklengths

under 300 symbols. As expected intuitively, loosening the restriction from only allowing

decision feedback to permitting information feedback improved the achievable rates.

We noted that although the confirmation phase in our schemes permits the transmitter to

actively select coded symbols based on feedback, the transmitter is still relatively inactive, in

the sense that it does not use feedback after every symbol. More frequent use of the feedback

would be expected to lower latency further. In fact, existing research had introduced an
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active sequential hypothesis testing scheme that uses feedback after every symbol. While

this scheme attains the optimal error-exponent, we showed that this scheme’s lower bounds

on rate are loose at short blocklengths, since they were designed for (asymptotic) error-

exponent analysis. There are opportunities to improve these bounds and to design other

active hypothesis testing schemes specifically for the finite-blocklength regime.

From the perspective of a practical communication system, decoding after every sym-

bol is problematic and generally infeasible. With this in mind, we have shown how VLF

codes can be transmitted in increments and decoded only at limited intervals, as in existing

hybrid ARQ schemes. We have used insights from previous hybrid ARQ research to eval-

uate short-blocklength performance. Simulations of incremental redundancy schemes based

on convolutional codes demonstrated that the restriction to limited decoding still permits

rates above the random-coding lower bound. In particular, future systems with blocklengths

under 100 symbols would benefit from the throughput efficiency of the TB ROVA, which

does not suffer from rate penalties that occur with terminated convolutional codes and with

CRCs. For blocklengths above 300 symbols, CRCs paired with alternative error-correction

codes such as LDPC codes would likely be a better choice.

Our reliability-based retransmission schemes are the most practically relevant, since they

use only a single bit of feedback per decoding attempt to convey the receiver’s decision.

This is true for the scheme based on the TB ROVA as well as for the code-based error-

detection scheme using CRCs. While our two-phase incremental redundancy scheme used

tail-biting convolutional codes and information feedback to deliver higher rates than the

decision-feedback TB ROVA scheme, it is less likely to be adopted practically due to its

increased feedback rate. Throughout this dissertation, we have assumed that the feedback

link is noiseless, which is rarely the case. A single bit of feedback is often assumed to

be noiseless when it can be communicated reliably by adding redundancy that imposes a

negligible cost in the overall rate of the system. However, this assumption may fail to

hold when feedback occurs often and when information feedback is used with large output
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alphabets.

Individual application scenarios must be evaluated to determine which feedback assump-

tions are valid. We introduced a general energy model that imposed a cost for repeated

decoding attempts. The costs of feedback transmission could also be incorporated into this

model. One possible application that may validate the noiseless feedback assumption is a

communication link with asymmetry in power constraints or resources. For example, with a

battery-operated sensor node transmitting to a base station, it may be reasonable to assume

that the feedback rate is unlimited (and essentially noiseless).

There are many opportunities for further research of variable-length feedback codes with

finite blocklengths, both in terms of information theory and code design. We have developed

improved lower bounds on rate, but we have not addressed the converse bounds. Limiting

the scope to special cases such as decision-feedback codes or specific channels may provide

avenues to improve the converse bounds.

In our simulations, we used convolutional codes due to their excellent error performance

at short blocklengths. Feedback codes with average latencies around 500 symbols, however,

would benefit from other codes, such as LDPC codes. Focusing on specific codes may also

enable specialized retransmission rules based on alternative reliability metrics, such as the

likelihood ratios involved in iterative decoding. Further, alternative communication-and-

confirmation schemes may provide benefits compared to those presented in this dissertation.

Perhaps one of the most important goals for continuing work in this field is to design coding

schemes with feedback assumptions that are practically relevant. In many cases, a system

may be able to accommodate more than one bit of feedback per decoding attempt, but not

unlimited-rate information-feedback.

123



References

[1] A. Raghavan and C. Baum, “A reliability output Viterbi algorithm with applications
to hybrid ARQ,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1214–1216, May 1998.

[2] M. Naghshvar, M. Wigger, and T. Javidi, “Optimal reliability over a class of binary-
input channels with feedback,” in Proc. 2012 IEEE Inf. Theory Workshop (ITW), Sep.
2012, pp. 391–395.

[3] M. Naghshvar, T. Javidi, and M. A. Wigger, “Extrinsic Jensen-Shannon diver-
gence: Applications to variable-length coding,” submitted for publication. Available:
http://arxiv.org/abs/1307.0067.

[4] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial selection
for embedded networks,” in 2004 IEEE Int. Conf. Dependable Systems and Networks
(DSN), July 2004, pp. 145 – 154.

[5] S. Denic, “Robust incremental redundancy hybrid ARQ coding for channels with un-
known interference,” in Proc. 2011 IEEE Int. Symp. Inf. Theory (ISIT), St. Petersburg,
Russia, Aug. 2011, pp. 1658 –1662.

[6] I. Andriyanova and E. Soljanin, “IR-HARQ schemes with finite-length punctured LDPC
codes over the BEC,” in 2009 IEEE Inf. Theory Workshop (ITW), Taormina, Sicily,
Oct. 2009, pp. 125 –129.

[7] R. Liu, P. Spasojevic, and E. Soljanin, “Punctured turbo code ensembles,” in 2003
IEEE Inf. Theory Workshop (ITW), Paris, France, Mar. - Apr. 2003, pp. 249 – 252.

[8] Motorola, “Performance comparison of hybrid-ARQ schemes,” 3GPP input paper
TSGR1#17(00)1396, 2000.

[9] Lucent, “System performance comparison of Chase combining and adaptive IR for HS-
DPA,” 3GPP input paper TSGR1#20(01)0587.

[10] P. Frenger, S. Parkvall, and E. Dahlman, “Performance comparison of HARQ with
Chase combining and incremental redundancy for HSDPA,” in Proc. 54th IEEE Veh.
Technol. Conf. (VTC), Oct. 2001, pp. 1829 –1833.

[11] J.-F. Cheng, “On the coding gain of incremental redundancy over Chase combining,” in
Proc. 2003 IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2003, pp. 107 – 112.

[12] ——, “Coding performance of hybrid ARQ schemes,” IEEE Trans. Commun., vol. 54,
no. 6, pp. 1017 –1029, June 2006.

124



[13] E. Visotsky, Y. Sun, V. Tripathi, M. Honig, and R. Peterson, “Reliability-based incre-
mental redundancy with convolutional codes,” IEEE Trans. Commun., vol. 53, no. 6,
pp. 987– 997, June 2005.

[14] E. Uhlemann, L. Rasmussen, A. Grant, and P.-A. Wiberg, “Optimal incremental-
redundancy strategy for type-II hybrid ARQ,” in Proc. 2003 IEEE Int. Symp. Inf.
Theory (ISIT), July 2003, p. 448.

[15] J. Fricke and P. Hoeher, “Reliability-based retransmission criteria for hybrid ARQ,”
IEEE Trans. Commun., vol. 57, no. 8, pp. 2181–2184, Aug. 2009.

[16] H. Ma and J. Wolf, “On tail biting convolutional codes,” IEEE Trans. Commun., vol. 34,
no. 2, pp. 104–111, Feb. 1986.

[17] S. Lin and D. J. Costello, Error Control Coding, Second Edition. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 2004.

[18] J. Fricke and P. Hoeher, “Word error probability estimation by means of a modified
Viterbi decoder,” in Proc. 66th IEEE Veh. Technol. Conf. (VTC), Oct. 2007, pp. 1113–
1116.

[19] P. St̊ahl, J. Anderson, and R. Johannesson, “A note on tailbiting codes and their feed-
back encoders,” IEEE Trans. Inf. Theory, vol. 48, no. 2, pp. 529–534, Feb. 2002.

[20] H. Yamamoto and K. Itoh, “Viterbi decoding algorithm for convolutional codes with
repeat request,” IEEE Trans. Inf. Theory, vol. 26, no. 5, pp. 540–547, Sep. 1980.

[21] E. Hof, I. Sason, and S. Shamai (Shitz), “On optimal erasure and list decoding schemes
of convolutional codes,” in Proc. Tenth Int. Symp. Commun. Theory and Applications
(ISCTA), July 2009, pp. 6–10.

[22] G. Forney, “Exponential error bounds for erasure, list, and decision feedback schemes,”
IEEE Trans. Inf. Theory, vol. 14, no. 2, pp. 206–220, Mar. 1968.

[23] A. R. Williamson, T.-Y. Chen, and R. D. Wesel, “Reliability-based error detection for
feedback communication with low latency,” in Proc. 2013 IEEE Int. Symp. Inf. Theory
(ISIT), Istanbul, Turkey, July 2013.
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