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Abstract of the Dissertation

Encoding for Degraded Broadcast Channels

and

Resource Allocation for Content Distribution in

Peer-to-Peer Networks

by

Bike Xie

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2010

Professor Richard D. Wesel, Chair

The broadcast communication network is a telecommunication network with

exactly one source and multiple receivers. This dissertation presents results re-

garding to two different broadcast communication systems: broadcast channels

(BC) and peer-to-peer (P2P) networks. The BC is a single-hop communication

network consisting of one transmitter and multiple receivers which observe the

transmitted signal through different channels and decode their individual mes-

sages. In contrast, the P2P network 1 is a multi-hop broadcast or multi-cast com-

munication network consisting of one source node, possibly some relay nodes, and

multiple receivers which download transmitted packages through different rout-

ings and decode a common message.

This first part of the dissertation explores encoding schemes for degraded

1A general P2P network can simultaneously contain multiple multi-cast communications,
and hence have more than one source nodes. In this dissertation, we focus on the simplified
model of the P2P network which contains only one broadcast or multi-cast communication.

xix



broadcast channels (DBC) which are BCs with a sequence of receivers, each

receiving a degraded version of the signal received by the previous receiver. We

are interested in what we call “natural” encoding for the DBC. A natural encoding

(NE) scheme is one in which symbols from independent codebooks, each using

the same alphabet, are combined using the same single-letter function that adds

distortion to the channel. This dissertation shows that NE schemes achieve the

boundary of the capacity region for the multi-user broadcast Z channel, the two-

user group-additive DBC, and the two-user discrete multiplicative DBC. This

dissertation also defines and studies the input-symmetric DBC and introduces

a permutation encoding approach for the input-symmetric DBC and proves its

optimality.

In addition, this dissertation provides an explicit expression for the capacity

region of the two-user broadcast Z channel. Specifically, the NE scheme for the the

two-user broadcast Z channel is to encode the information messages corresponding

to each user independently and then transmit the binary OR of these two streams.

Nonlinear turbo codes that provide a controlled distribution of ones and zeros

are used to demonstrate a low-complexity scheme that works close to the optimal

boundary.

Inspired by Witsenhausen and Wyner, we define and explore the conditional

entropy bound F ∗ for DBCs. Denote q as the distribution of the channel input

X. For any given q, and H(Y |X) ≤ s ≤ H(Y ), where H(Y |X) is the condi-

tional entropy of Y given X and H(Y ) is the entropy of Y , define the function

F ∗
TY X ,TZX

(q, s) as the infimum of H(Z|U), the conditional entropy of Z given U

with respect to all discrete random variables U such that a) H(Y |U) = s, and b)

U and Y, Z are conditionally independent given X. This dissertation studies the

function F ∗, its properties and its calculation. This dissertation then represents

xx



the capacity region of the DBC X → Y → Z using the function F ∗
TY X ,TZX

. Fi-

nally, this dissertation applies these results to several classes of DBCs and their

encoders as discussed above.

The second part of the dissertation investigates the problem of transferring a

file from one server to multiple receivers in a peer-to-peer (P2P) network. The

objective is to minimize the weighted sum download time (WSDT) for the one-

to-many file transfer. Previous work has shown that, given an order at which

the receivers finish downloading, the minimum WSDT can be solved in polyno-

mial time by convex optimization, and can be achieved by linear network coding,

assuming that node uplinks are the only bottleneck in the network. This disser-

tation, however, considers heterogeneous peers with both uplink and downlink

bandwidth constraints specified. The static scenario is a file-transfer scheme

in which the network resource allocation remains static until all receivers finish

downloading. This dissertation shows that the static scenario can be optimized

in polynomial time by convex optimization, and the associated optimal static

WSDT can be achieved by linear network coding. This dissertation also proposes

static routing-based and rateless-coding-based schemes that both have almost-

optimal empirical performances. The dynamic scenario is a file-transfer scheme

which can re-allocate the network resource during the file transfer. This dis-

sertation also proposes a dynamic rateless-coding-based scheme, which provides

significantly smaller WSDT than the optimal static scenario does.

xxi



CHAPTER 1

Introduction

In the 70’s, Cover [1], Bergmans [2] and Gallager [3] established the capacity

region for degraded broadcast channels (DBCs), which are broadcast channels

(BC) with a sequence of component channels, each being a degraded version

of the previous one. A common optimal transmission strategy to achieve the

boundary of the capacity region for DBCs is the joint encoding scheme typically

referred to as superposition coding [4] [1] [2] [3]. Specifically, the data sent to

the user with the most degraded channel is encoded first. Given the codeword

selected for that user, an appropriate codebook for the user with the second most

degraded channel is selected, and so forth.

An independent-encoding scheme can also achieve the capacity of any DBC,

as described in Appendix I [5]. This scheme essentially embeds all symbols from

all the needed codebooks for the less-degraded user into a single super-symbol

(but perhaps with a large alphabet). Then a single-letter function uses the input

symbol from the more-degraded user to extract the needed symbol from the super

symbol provided by the less-degraded user.

A simple encoding scheme that is optimal for some common DBCs is an

independent-encoding approach in which symbols from independent codebooks

each with the same alphabet as X are combined using the same single-letter

function that adds distortion to the channel. We refer to this encoding scheme

as the natural encoding (NE) scheme. As an example, the NE scheme for a
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two-receiver broadcast Gaussian channel has as each transmitted symbol the real

addition of two real symbols from independent codebooks.

The NE scheme is known to achieve the boundary of the capacity region for

several broadcast channels including broadcast Gaussian channels [6], broadcast

binary-symmetric channels [2] [7] [8] [9], discrete additive degraded broadcast

channels [10] and two-user broadcast Z channels [11] [12]. This dissertation shows

that NE schemes also achieve the boundary of the capacity region for the multi-

user broadcast Z channel, the two-user group-additive DBC, and the two-user

discrete multiplicative DBC.

The input-symmetric channel was introduced by Witsenhausen and Wyner

[9] and studied in [13] [14] and [15]. We extend the definition of the input-

symmetric channel to the definition of the input-symmetric DBC. We introduce

an independent-encoding scheme employing permutation functions of indepen-

dently encoded streams (the permutation encoding approach) for the input-

symmetric DBC and proves its optimality. The discrete additive DBC [10] is

a special case of the input-symmetric DBC, and the optimal encoding approach

for the discrete additive DBC [10] is also a special case of the permutation en-

coding approach. The group-additive DBC is a class of input-symmetric DBCs

whose channel outputs are group additions of the channel input and noise. The

permutation encoding approach for the group-additive DBC is the group-addition

encoding approach, which is the NE scheme for the group-additive DBC.

A separate question addressed in the dissertation involves content distribu-

tion in peer-to-peer (P2P) overlay networks. P2P applications (e.g, [16], [17], [18],

[19]) are increasingly popular and represent the majority of the traffic currently

transmitted over the Internet. A unique feature of P2P networks is their flexible

and distributed nature, where each peer can act as both a server and a client
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[20]. Hence, P2P networks provide a cost-effective and easily deployable frame-

work for disseminating large files without relying on a centralized infrastructure

[21]. These features of P2P networks have made them popular for a variety of

broadcasting and file-distribution applications [21] [22] [23] [24] [25] [26] [27].

In a P2P file transfer application, the key performance metric from an end-

user’s point of view is the delay, or the time it takes for an end-user to download

the file. We consider the problem of minimizing weighted sum downloading time

(WSDT) for one-to-many file transfer in a P2P network. Consider a source node

s that wants to broadcast a file of size B to a set of N receivers, {1, 2, · · · , N},
in a P2P network. We start with a simplified model for the P2P network. It is

assumed that node uplinks and downlinks are the only bottlenecks in the network

and that every peer can connect to every other peer through routing in the overlay.

Most research in P2P consider node uplinks as the only bottlenecks because the

uplink capacity is often several times smaller than the downlink capacity for

typical residential connections (e.g., DSL and Cable). However, the downlink

capacity can still be exceeded when a peer downloads from many other peers

simultaneously, as in the routing-based scheme proposed in [28]. For this reason,

this dissertation considers heterogeneous peers with both uplink and downlink

bandwidth constraints.

The static scenario is a file-transfer scenario in which the network resource

allocation keeps static until all the receivers finish downloading. This dissertation

shows that the static scenario can be optimized in polynomial time by convex

optimization, and the associated optimal static WSDT can be achieved by lin-

ear network coding. This dissertation also develops a very tight lower bound to

the minimum WSDT, and proposes a static routing-based scheme and a static

rateless-coding-based scheme which have almost-optimal empirical performances.
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The dynamic scenario is a file-transfer scenario which can re-allocate the net-

work resource during the file transfer. This dissertation also proposes a dynamic

rateless-coding-based scheme, which provides significantly smaller WSDT than

the optimal static scenario does.

1.1 A Road Map

Chapter 2 introduces a mathematical tool for investigating the encoding schemes

for degraded broadcast channels. This mathematical tool provides an closed-

form expression of the capacity region and a method to determine the optimal

encoding schemes for DBCs.

Chapter 3 applies the mathematical tool developed in Chapter 2 to the multi-

user broadcast Z channel, and demonstrates the optimality of the natural encod-

ing scheme for multi-user broadcast Z channels.

Chapter 4 defines and investigates the input-symmetric DBC, which contain

most common discrete DBCs. A particular encoding scheme, referred to as per-

mutation encoding scheme, is introduced for IS-DBCs. Chapter 4 also applies

the results in Chapter 2 to proves the optimality of the permutation encoding

scheme for IS-DBCs.

Chapter 5 combines the results in Chapter 2-4 to demonstrate that the NE

scheme also achieves the whole boundary of the capacity region for discrete mul-

tiplicative DBCs.

Chapter 6 re-investigates the broadcast Z channel and focuses on the two-user

case. An alternative proof without applying the mathematical tool in Chapter

2 is provided for readers who are interested in the two-user broadcast Z channel

only. Chapter 6 also provides the details of the optimal encoding scheme for the
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two-user broadcast Z channel, and provides nonlinear-turbo codes to demonstrate

a low-complexity scheme that works close to the optimal boundary.

Chapter 7 investigates the network resource allocation for content distribution

in peer-to-peer networks. A simplified model for the P2P network is assumed that

node uplinks and downlinks are the only bottlenecks in the network and that every

peer can connect to every other peer through routing in the overlay. The static

file-distribution scenario and the dynamic scenario are studied separately. For the

static scenario, Chapter 7 develops the optimal resource allocation to minimize

the weighted sum downloading, an lower bound to the minimum WSDT, and

several practical schemes which empirically have almost-optimal performance.

For the dynamic scenario, Chapter 7 provides a practical solution to the ordering

problem and proposes a rateless-coding-based scheme which provides significantly

smaller WSDT than the optimal static scheme does.

Figure 1.1 shows the dependence among chapters. Chapter 2-5 are best read

in order. However, Chapter 4 may be read directly after Chapter 2. Reader also

may safely go straight to Chapter 6 if the encoding schemes and the practical

channel coding design for broadcast Z channels are of primary interest, or Chapter

7 if the resource allocation for content distribution in P2P networks is of primary

interest.

1.2 Contributions

The main contributions of this dissertation are the relatively simple encoding

schemes for several classes of degraded broadcast channels and the strategies

for network resource allocation for content distribution in peer-to-peer networks.

The details of the contributions are listed below by chapter.
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Chapter 1

Introduction

Chapter 2

Conditional Entropy 

Bound F*

Chapter 3

Multi-user Broadcast 

Z Channel
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Degraded Broadcast 

Channels
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Degraded Broadcast 

Channels

Chapter 8

Conclusion

Chapter 3

two-user Broadcast 

Z Channel

Chapter 7

Resource Allocation 

for P2P Networks

Figure 1.1: Dependence among chapters
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Chapter 2) develops a mathematical tool, the conditional entropy bound F ∗,

for degraded broadcast channels. With the help of this tool, Chapter 2 pro-

vides an closed-form expression of the capacity region for DBCs by using F ∗,

and establishes the relationship between F ∗ and the optimal encoding schemes

for DBCs. These results are applied in Chapter 3-5 to multi-user broadcast Z

channels, input-symmetric DBCs, and discrete multiplicative DBCs.

Chapter 3) provides an closed-form expression of the conditional entropy

bound F ∗ to multi-user broadcast Z channels. Based on this result, Chapter

3 applies the results regarding to F ∗ to multi-user broadcast Z channels and

demonstrates that the NE scheme achieves the whole boundary of the capacity

region for multi-user DBCs.

Chapter 4) defines the input-symmetric DBCs and introduces the permuta-

tion encoding scheme for the IS-DBC. Chapter 4 also applies the conditional

entropy bound F ∗ to prove that the uniform input distribution is optimal, and

the permutation encoding scheme achieves the whole boundary of the capacity

region for IS-DBCs. As a consequence, the NE scheme for group-additive DBCs

achieves the whole boundary of the capacity region.

Chapter 5) combines the results of Chapter 2-4 to prove that the NE scheme

also achieves the whole boundary of the capacity region for discrete multiplicative

DBCs.

Chapter 6) provides an alternative proof of the optimality of the NE scheme

for two-user broadcast Z channels without applying F ∗. Chapter 6 also establishes

an explicit closed-form expression of the capacity region for two-user broadcast

Z channels, develops the details of the optimal encoding scheme, and provides

nonlinear-turbo codes to demonstrate a low-complexity scheme that works close

to the optimal boundary.
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Chapter 7) shows that the static scenario can be optimized in polynomial time

by convex optimization, and the associated optimal static WSDT can be achieved

by linear network coding. Chapter 7 also proposes a static routing-based scheme

and a static rateless-coding-based scheme that have almost-optimal empirical

performances. In addition, Chapter 7 provides a practical solution to the order-

ing problem in dynamic rate allocation and proposes a dynamic rateless-coding-

based scheme, which provides significantly smaller WSDT than the optimal static

scheme does. The deployment of rateless codes simplifies the mechanism of the

file-transfer scenario, enhances the robustness to packet loss in the network, and

increases the performance (without considering packet overhead).
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CHAPTER 2

A Conditional Entropy Bound for Discrete

Degraded Broadcast Channels

Several mathematica tools have been developed to investigate the capacity region

and coding scheme for broadcast channels. Shannon’s entropy power inequality

(EPI) [29] is the first one, which gives a lower bound on the differential entropy of

the sum of independent random variables. In Bergmans’s remarkable paper [6], he

applied EPI to establish a converse showing the optimality of the coding scheme

given by [1] [2] (the NE scheme) for broadcast Gaussian channels. “Mrs. Gerber’s

Lemma” [30] provides a lower bound on the entropy of a sequence of binary-

symmetric channel outputs. Wyner and Ziv later developed “Mrs. Gerber’s

Lemma”, which provides a lower bound on the entropy of a sequence of binary-

symmetric channel outputs, and applied it to establish a converse showing that

the NE scheme for broadcast binary-symmetric channels suggested by Cover [1]

and Bergmans [2] achieves the boundary of the capacity region [7]. EPI and “Mrs.

Gerber’s Lemma” play the same significant role in proving the optimality of the

NE schemes for broadcast Gaussian channels and broadcast binary-symmetric

channels.

Witsenhausen and Wyner studied a conditional entropy bound for the channel

output of a discrete channel and applied the results to establish an outer bound

of the capacity region for DBCs [8] [9]. For broadcast binary-symmetric channels,
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this outer bound coincides with the capacity region.

This chapter extends ideas from Witsenhausen and Wyner [9] to study a

conditional entropy bound, F ∗, for the channel output of a discrete DBC. We

established a number of theorems concerning various properties of this condi-

tional entropy bound and developed two main theorems. The first main theorem

represents the capacity region for discrete DBCs with F ∗, which bring us a more

insight view of the capacity region for DBCs. We apply this theorem in Chapter

2 to prove the optimal input-signal distribution for input-symmetric DBCs. The

second main theorem establishes the relationship between the evaluation of F ∗

and the optimal encoding schemes for the DBC. We later apply this theorem in

Chapter 3-5 to prove the optimality of NE scheme for multi-user broadcast Z

channels and discrete multiplicative DBCs.

This chapter is organized as follows: Section 2.1 defines the conditional en-

tropy bound F ∗(·) for the channel output of a discrete DBC and represents the

capacity region of the discrete DBC with the function F ∗. Section 2.2 establishes

a number of theorems concerning various properties of F ∗. Section 2.3 evalu-

ates F ∗(·) and indicates the optimal transmission strategy for the discrete DBC.

Section ?? delivers the summary.

2.1 The Conditional Entropy Bound F ∗(·)

Let X → Y → Z be a discrete memoryless DBC where X ∈ {1, 2, · · · , k},
Y ∈ {1, 2, · · · , n} and Z ∈ {1, 2, · · · ,m}. Let TY X be an n× k stochastic matrix

with entries TY X(j, i) = Pr(Y = j|X = i) and TZX be an m×k stochastic matrix

with entries TZX(j, i) = Pr(Z = j|X = i). Thus, TY X and TZX are the marginal

transition probability matrices of the degraded broadcast channel.
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Definition 1. Let vector q in the simplex ∆k of probability k-vectors be the

distribution of the channel input X. Define the function F ∗
TY X ,TZX

(q, s) as the

infimum of H(Z|U), the conditional entropy of Z given U , with respect to all

discrete random variables U such that

• a) H(Y |U) = s;

• b) U and Y, Z are conditionally independent given X, i.e., the sequence

U,X, Y, Z forms a Markov chain U → X → Y → Z.

For any fixed vector q, the domain of F ∗
TY X ,TZX

(q, s) in s is the closed interval

[H(Y |X), H(Y )], where H(Y |X) is the conditional entropy of Y given X and

H(Y ) is the entropy of Y. This will be proved later in Lemma 3. The func-

tion F ∗(·) is an extension to the function F (·) introduced in [9]. We will use

F ∗
TY X ,TZX

(q, s), F ∗(q, s) and F ∗(s) interchangeably.

Theorem 1. F ∗
TY X ,TZX

(q, s) is monotonically nondecreasing in s and the infi-

mum in its definition is a minimum. Hence, F ∗
TY X ,TZX

(q, s) can be taken as the

minimum H(Z|U) with respect to all discrete random variables U such that

• a) H(Y |U) ≥ s;

• b) U and Y, Z are conditionally independent given X.

The proof of Theorem 1 will be given in Section 2.2.

Theorem 2. The capacity region for the discrete memoryless degraded broadcast

channel X → Y → Z is the closure of the convex hull of all rate pairs (R1, R2)

satisfying

0 ≤ R1 ≤ I(X; Y ), (2.1)

R2 ≤ H(Z)− F ∗
TY X ,TZX

(q, R1 + H(Y |X)), (2.2)
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for some q ∈ ∆k, where I(X; Y ) is the mutual information of between X and

Y , H(Y |X) is the conditional entropy of Y given X, and H(Z) is the entropy

of Z resulting from the channel input’s distribution q. Thus, for a fixed input

distribution q and for λ ≥ 0, finding the maximum of R2 + λR1 is equivalent to

finding the minimum of F ∗(q, s)− λs as follows:

max(R2 + λR1)

= max (H(Z)− F ∗(q, R1 + H(Y |X)) + λR1 + λH(Y |X)− λH(Y |X))

= H(Z)− λH(Y |X) + max (−F ∗(q, R1 + H(Y |X)) + λ(R1 + H(Y |X)))

= H(Z)− λH(Y |X)−min (F ∗(q, s)− λs) (2.3)

Proof: The capacity region for the DBC is known in [1] [3] [4] as

c̄o


 ⋃

p(u),p(x|u)

{(R1, R2) : R1 ≤ I(X; Y |U), R2 ≤ I(U ; Z)}

 , (2.4)

where c̄o denotes the closure of the convex hull operation, and U is the auxiliary

random variable which satisfies the Markov chain U → X → Y → Z and |U| ≤
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min(|X |, |Y|, |Z|). Rewrite (2.4) and we have

c̄o


 ⋃

p(u),p(x|u)

{(R1, R2) : R1 ≤ I(X; Y |U), R2 ≤ I(U ; Z)}



=c̄o


 ⋃

pX=q∈∆k





⋃

p(u,x) with pX=q



(R1, R2) :

R1 ≤ I(X; Y |U)

R2 ≤ I(U ; Z)










 (2.5)

=c̄o


 ⋃

pX=q∈∆k





⋃

p(u,x) with pX=q



(R1, R2) :

R1 ≤ H(Y |U)−H(Y |X)

R2 ≤ H(Z)−H(Z|U)












(2.6)

=c̄o


 ⋃

pX=q∈∆k





⋃

H(Y |X)≤s≤H(Y )



(R1, R2) :

R1 ≤ s−H(Y |X)

R2 ≤ H(Z)− F ∗
TY X ,TZX

(q, s)












(2.7)

=c̄o


 ⋃

pX=q∈∆k



(R1, R2) :

0 ≤ R1 ≤ I(X; Y )

R2 ≤ H(Z)− F ∗
TY X ,TZX

(q, R1 + H(Y |X))






 ,

(2.8)

where pX is the vector expression of the distribution of channel input X. Some

of these steps are justified as follows:

• (2.5) follows from the equivalence of
⋃

pX=q∈∆k

⋃
p(u,x) with pX=q and

⋃
p(u),p(x|u);

• (2.7) follows from the definition of the conditional entropy bound F ∗;

• (2.8) follows from the nondecreasing property of F ∗(s) in Theorem 1, which

allows the substitution s = R1 + H(Y |X) in the argument of F ∗. Q.E.D.

Note that for a fixed distribution pX = q of the channel input X, the items

I(X; Y ), H(Z) and H(Y |X) in (2.8) are constants. This theorem provides the
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relationship between the capacity region and the conditional entropy bound F ∗

for a discrete degraded broadcast channel. It also motivates the further study of

F ∗.

2.2 Properties of F ∗(·)

In this section, we will extend ideas from [9] to establish several properties of

the conditional entropy bound F ∗(·). In [9], Witsenhausen and Wyner defined

a conditional entropy bound F (·) for a pair of discrete random variables and

provided some properties of F (·). The definition of F (·) is restated here. Let

X → Z be a discrete memoryless channel with the m× k transition probability

matrix T , where the entries T (j, i) = Pr(Z = j|X = i). Let q be the distribution

of X. For any q ∈ ∆k, and 0 ≤ s ≤ H(X), the function FT (q, s) is the infimum

of H(Z|U) with respect to all discrete random variables U such that H(X|U) = s

and the sequence U,X,Z is a Markov chain. By definition, FT (q, s) = F ∗
I,T (q, s),

where I is an identity matrix. Since F ∗(·) is the extension of F (·), most of the

properties of F ∗(·) in this section are generalizations of properties of F (·) in [9].

For any choice of the integer l ≥ 1, w = [w1, · · · , wl]
T ∈ ∆l and pj ∈ ∆k

for j = 1, · · · , l, let U be a l-ary random variable with distribution w, and let

TXU = [p1 · · ·pl] be the transition probability matrix from U to X. We can
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compute

p = pX = TXUw =
l∑

j=1

wjpj (2.9)

ξ = H(Y |U) =
l∑

j=1

wjhn(TY Xpj) (2.10)

η = H(Z|U) =
l∑

j=1

wjhm(TZXpj) (2.11)

where hn : ∆n → R is the entropy function, i.e., hn(p1, · · · , pn) = −∑
pi ln pi.

Thus the choices of U satisfying conditions a) and b) in the definition of

F ∗
TY X ,TZX

(q, s) corresponds to the choices of l,w and pj for which (2.9) (2.10)

yields p = q and ξ = s.

Let S = {(p, hn(TY Xp), hm(TZXp)) ∈ ∆k × [0, ln n]× [0, ln n]|p ∈ ∆k}. Since

∆k is (k− 1)-dimensional, ∆k× [0, ln n]× [0, ln n] is a (k +1)-dimensional convex

polytope. The mapping p → (p, hn(TY Xp), hm(TZXp)) assigns a point in S for

each p ∈ ∆k. Because this mapping is continuous and the domain of the mapping,

∆k, is compact and connected, the image S is also compact and connected.

Let C be the set of all (p, ξ, η) satisfying (2.9) (2.10) and (2.11) for some choice

of l, w and pj. By definition, the set C is the convex hull of the set S. Thus, C
is compact, connected, and convex.

Lemma 1. C is the convex hull of S, and thus C is compact, connected, and

convex.

Lemma 2. i) Every point of C can be obtained by (2.9) (2.10) and (2.11) with

l ≤ k + 1. In other words, one only need to consider random variables U taking

at most k + 1 values.

ii) Every extreme point of the intersection of C with a two-dimensional plane can
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be obtained with l ≤ k.

The proof of Lemma 2 is the same as the proof of a similar lemma for F (·) in

[9]. The details of the proof are given in Appendix II.

Let C∗ = {(ξ, η)|(q, ξ, η) ∈ C } be the projection of the set C onto the (ξ, η)-

plane. Let C∗q = {(ξ, η)|(q, ξ, η) ∈ C } be the projection onto the (ξ, η)-plane of

the intersection of C with the two-dimensional plane p = q. By definition, C∗ =
⋃

q∈∆k
C∗q. Also, C∗ and C∗q are compact and convex. By definition, F ∗

TY X ,TZX
(q, s)

is the infimum of all η, for which C∗q contains the point (s, η). Thus

F ∗
TY X ,TZX

(q, s) = inf{η|(q, s, η) ∈ C} = inf{η|(s, η) ∈ C∗q}. (2.12)

Lemma 3. For any fixed q as the distribution of X, the domain of F ∗
TY X ,TZX

(q, s)

in s is the closed interval [H(Y |X), H(Y )], i.e.,[
∑k

i=1 qihn(TY Xei), hn(TY Xq)],

where ei is a vector, for which the ith entry is 1 and all other entries are zeros.

Proof : For any Markov chain U → X → Y , by the Data Processing Theorem

[31], H(Y |U) ≥ H(Y |X) and the equality is achieved when the random variable

U = X. One also has H(Y |U) ≤ H(Y ) and the equality is achieved when

U is a constant. Thus, the domain of F ∗
TY X ,TZX

(q, s) in s is [H(Y |X), H(Y )]

for a fixed distribution of channel input X. Since q is the distribution of X,

H(Y |X) =
∑k

i=1 qihn(TY Xei) and H(Y ) = hn(TY Xq). Q.E.D.

Theorem 3. The function F ∗
TY X ,TZX

(q, s) is defined on the compact convex do-

main {(q, s)|q ∈ ∆k,
∑k

i=1 qihn(TY Xei) ≤ s ≤ hn(TY Xq)} and for each (q, s) in

this domain, the infimum in its definition is a minimum, attainable with U taking

at most k + 1 values.

Proof: By Lemma 3, the function F ∗ is defined on the compact domain
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{(q, s)|q ∈ ∆k,
∑k

i=1 qihn(TY Xei) ≤ s ≤ hn(TY Xq)}. This domain is con-

vex because ∆k is convex, the entropy function hn(TY Xq) is concave in q and
∑k

i=1 qihn(TY Xei) is linear in q. For each (q, s) in this domain, the set {η|(s, η) ∈
C∗q} is non-empty. It is in fact a compact interval since C∗q is compact. Therefore,

F ∗
TY X ,TZX

(q, s) = inf{η|(s, η) ∈ Cq} = min{η|(s, η) ∈ Cq} = min{η|(q, s, η) ∈ C}.
(2.13)

By Lemma 2 i), this minimum is attained with U taking at most k + 1 values.

Q.E.D.

By Lemma 2 ii), the extreme points of C∗q can be attained by convex combina-

tions of at most k points of S. Thus, every linear function of (ξ, η) could attain

its minimum with U taking at most k value since every linear function of (ξ, η)

achieves its minimum over C∗q at an extreme point of the compact set C∗q.

Lemma 4. The function F ∗
TY X ,TZX

(q, s) is jointly convex in (q, s).

Proof : F ∗
TY X ,TZX

(q, s) is jointly convex in (q, s) because C is a convex set. In

particular, the domain of F ∗ is convex by Theorem 3. For any two points (q1, s1)

and (q2, s2) in the domain, and for any 0 ≤ θ ≤ 1,

F ∗
TY X ,TZX

(θq1 + (1− θ)q2, θs1 + (1− θ)s2)

= min{η|(θq1 + (1− θ)q2, θs1 + (1− θ)s2, η) ∈ C}
≤min{θη1 + (1− θ)η2|(q1, s1, η1), (q2, s2, η2) ∈ C}
=θF ∗

TY X ,TZX
(q1, s1) + (1− θ)F ∗

TY X ,TZX
(q2, s2).

Therefore, F ∗
TY X ,TZX

(q, s) is jointly convex in (q, s). Q.E.D.

Now we give the proof of Theorem 1. Since Theorem 3 has shown that the

infimum in the definition of F ∗ is a minimum, it suffices to show that F ∗(s) =
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F ∗
TY X ,TZX

(q, s) is monotonically nondecreasing in s. For any fixed q, the domain

of s is [H(Y |X), H(Y )]. On the one hand,

F ∗(q, H(Y |X)) = min{H(Z|U)|pX = q, H(Y |U) = H(Y |X)}
≤ min{H(Z|U)|pX = q, U = X}
= H(Z|X). (2.14)

On the other hand, for any s ∈ [H(Y |X), H(Y )],

F ∗(q, s) = min{H(Z|U)|pX = q, H(Y |U) = s}
≥ min{H(Z|U,X)|pX = q, H(Y |U) = s} (2.15)

= H(Z|X), (2.16)

where (2.15) follows from H(Z|U) ≥ H(Z|U,X) and (2.16) follows from the

conditional independence between Z and U given X. Inequalities (2.14) and

(2.16) imply that for any s ∈ [H(Y |X), H(Y )],

F ∗(q, s) ≥ F ∗(q, H(Y |X)). (2.17)

Combining (2.17) and the fact that F ∗(q, s) is convex in s for any fixed q, we

have F ∗(q, s) is monotonically nondecreasing in s. Q.E.D.

The proof of Theorem 1 also gives an endpoint of F ∗(s),

F ∗(q, H(Y |X)) = H(Z|X), (2.18)

which is achieved when U = X. The following theorem will provide the other
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endpoint,

F ∗(q, H(Y )) = H(Z), (2.19)

which is obtained when U is a constant.

Theorem 4. For H(Y |X) ≤ s ≤ H(Y ), a lower bound of F ∗(s) is

F ∗(s) ≥ s + H(Z)−H(Y ). (2.20)

F ∗(s) is differentiable at all but at most countably many points. At differentiable

points of F ∗(s),

0 ≤ dF ∗(s)
ds

≤ 1. (2.21)

Proof :

I(U ; Z) ≤ I(U ; Y ) (2.22)

⇒H(Z)−H(Z|U) ≤ H(Y )−H(Y |U)

⇒H(Z|U) ≥ H(Y |U) + H(Z)−H(Y )

⇒F ∗(s) ≥ s + H(Z)−H(Y ). (2.23)

Some of these steps are justified as follows:

• (2.22) follows from the Data Processing Theorem [31];

• (2.23) follows from the definition of F ∗(s).

When the random variable U is a constant, H(Y |U) = H(Y ) and H(Z|U) =

H(Z). Thus, equality in (2.23) is attained when s = H(Y ). Since F ∗(s) is

convex in s, it is differentiable at all but at most countably many points. If F ∗(s)

is differentiable at s = H(Y ), then dF ∗(s)
ds

∣∣∣
s=H(Y )

≤ 1 because the line s+H(Z)−
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s or

slope 0
H(Z|X)

H(Y|X) H(Y)

H(Z)

line s+H(Z) H(Y)
with slope 1

slope

(q, )

F*(q,s)

C
*

q

Figure 2.1: Illustrations of the curve F ∗(q, s) = F ∗
TY X ,TZX

(q, s) shown in bold,
the region C∗q, and the point (0, ψ(q, λ)).

H(Y ) with slope 1 supports the curve F ∗(s) at its end point (H(Y ), F ∗(H(Y ))).

For any H(Y |X) ≤ s < H(Y ) where F ∗(s) is differentiable, since F ∗(s) is convex,

the slope of the supporting line at the point (s, F ∗(s)) is less than or equal to the

slope of the supporting line s + H(Z) − H(Y ) at the point (H(Y ), F ∗(H(Y ))).

Thus, for any H(Y |X) ≤ s ≤ H(Y ) where F ∗(s) is differentiable

dF ∗(s)
ds

≤ 1. (2.24)

dF ∗(s)
ds

≥ 0 because F ∗(s) is monotonically nondecreasing. The illustrations of the

function F ∗(s) = F ∗
TY X ,TZX

(q, s) and C∗q are shown in Fig. 2.1. Q.E.D.

For X ∼ q, where q is a fixed vector, by Theorem 2, finding the maximum

of R2 + λR1 is equivalent to finding the minimum of F ∗(q, s) − λs. Theorem 4

indicates that for every λ > 1, the minimum of F ∗(q, s) − λs is attained when

s = H(Y ) and F ∗(s) = H(Z), i.e., U is a constant. Thus, the non-trivial range

of λ is 0 ≤ λ ≤ 1.

The following theorem is the key to the applications in Section 6.1 and is an
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extension and generalization of Theorem 2.4 in [9]. Let X = (X1, · · · , XN) be

a sequence of channel inputs to the degraded broadcast channel X → Y → Z.

The corresponding channel outputs are Y = (Y1, · · · , YN) and Z = (Z1, · · · , ZN).

Thus, the sequence of the channel outputs (Yi, Zi), i = 1, · · · , N , are conditionally

independent of each other given the channel inputs X. Note that the channel

outputs (Yi, Zi) do not have to be identically or independently distributed since

X1, · · · , XN could be correlated and have different distributions. Denote qi as

the distribution of Xi for i = 1, · · · , N . Thus, q =
∑

qi/N is the average of the

distribution of the channel inputs. For any q ∈ ∆k, define F ∗
T

(N)
Y X ,T

(N)
ZX

(q, Ns) be

the infimum of H(Z|U) with respect to all random variables U and all possible

channel inputs X such that H(Y |U) = Ns, the average of the distribution of

the channel inputs is q and U → X → Y → Z is a Markov chain.

Theorem 5. For all N = 1, 2, · · · , and all TY X ,TZX , q, and H(Y |X) ≤ s ≤
H(Y ), one has

F ∗
T

(N)
Y X ,T

(N)
ZX

(q, Ns) = NF ∗
TY X ,TZX

(q, s). (2.25)

Proof : We first prove that F ∗
T

(N)
Y X ,T

(N)
ZX

(q, Ns) ≥ NF ∗
TY X ,TZX

(q, s). Since

Ns = H(Y |U) =
N∑

i=1

H(Yi|Y1, · · · , Yi−1, U) (2.26)

=
N∑

i=1

si, (2.27)

where si = H(Yi|Y1, · · · , Yi−1, U) and (2.26) follows from the chain rule of entropy
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[4],

H(Z|U) =
N∑

i=1

H(Zi|Z1, · · · , Zi−1, U) (2.28)

≥
N∑

i=1

H(Zi|Z1, · · · , Zi−1, Y1, · · · , Yi−1, U) (2.29)

=
N∑

i=1

H(Zi|Y1, · · · , Yi−1, U) (2.30)

≥
N∑

i=1

F ∗
TY X ,TZX

(qi, si) (2.31)

≥ NF ∗
TY X ,TZX

(
N∑

i=1

qi/N,

N∑
i=1

si/N) (2.32)

= NF ∗
TY X ,TZX

(q, s). (2.33)

Some of these steps are justified as follows:

• (2.28) follows from the chain rule of entropy [4];

• (2.29) holds because conditional entropy decreases when the conditioning

increases;

• (2.30) follows from the fact that Zi and Z1, · · · , Zi−1 are conditionally in-

dependent given Y1, · · · , Yi−1;

• (2.31) follows from the definition of F ∗ if considering the Markov chain

(U, Y1, · · · , Yi−1) → Xi → Yi → Zi;

• (2.32) results from applying Jensen’s inequality to the convex function F ∗.

By the definition of F ∗
T

(N)
Y X ,T

(N)
ZX

(q, Ns), Equation (2.33) implies that

F ∗
T

(N)
Y X ,T

(N)
ZX

(q, Ns) ≥ NF ∗
TY X ,TZX

(q, s). (2.34)
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On the other hand, in the case that U is composed of N independently identically

distributed (i.i.d.) random variables (U1, · · · , UN), and each Ui → Xi achieves

pXi
= q, H(Yi|Ui) = s and H(Zi|Ui) = F ∗

TY X ,TZX
(q, s), one has H(Y |U) =

Ns and H(Z|U) = NF ∗
TY X ,TZX

(q, s). Since F ∗
T

(N)
Y X ,T

(N)
ZX

is defined by taking the

minimum,

F ∗
T

(N)
Y X ,T

(N)
ZX

(q, Ns) ≤ NF ∗
TY X ,TZX

(q, s). (2.35)

Combining (2.34) and (2.35), one has F ∗
T

(N)
Y X ,T

(N)
ZX

(q, Ns) = NF ∗
TY X ,TZX

(q, s). Q.E.D.

Theorem 5 indicates that if using the degraded broadcast channel X → Y →
Z for N times, and for a fixed q as the average of the distribution of the channel

inputs, the conditional entropy bound F ∗
T

(N)
Y X ,T

(N)
ZX

(q, Ns) is achieved when the

channel is used independently and identically for N times, and single use of the

channel at each time achieves the conditional entropy bound F ∗
TY X ,TZX

(q, s).

2.3 Evaluation of F ∗(·)

In this section, we evaluate F ∗(s) = F ∗
TY X ,TZX

(q, s) via a duality technique, which

is also used for evaluating F (·) in [9]. This duality technique also provides the

optimal transmission strategy for the DBC X → Y → Z to achieve the maximum

of R2 + λR1 for any λ ≥ 0.

Theorem 3 shows that

F ∗
TY X ,TZX

(q, s) = min{η|(s, η) ∈ Cq} = min{η|(q, s, η) ∈ C}. (2.36)

Thus, the function F ∗
TY X ,TZX

(q, s) is determined by the lower boundary of C∗q.
Since C∗q is convex, its lower boundary can be described by the lines supporting

its graph from the below. The line with slope λ in the (ξ, η)-plane supporting C∗q
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as shown in Fig. 2.1 has the equation

η = λξ + ψ(q, λ), (2.37)

where ψ(q, λ) is the η-intercept of the tangent line with slope λ for the function

F ∗
TY X ,TZX

(q, s). Thus,

ψ(q, λ) = min{F ∗(q, ξ)− λξ|H(Y |X) ≤ ξ ≤ H(Y )} (2.38)

= min{η − λξ|(ξ, η) ∈ Cq} (2.39)

= min{η − λξ|(q, ξ, η) ∈ C}. (2.40)

For H(Y |X) ≤ s ≤ H(Y ), the function F ∗(s) = F ∗
TY X ,TZX

(q, s) can be repre-

sented as

F ∗(s) = max{ψ(q, λ) + λs| −∞ < λ < ∞}. (2.41)

Theorem 1 shows that the graph of F ∗(s) is supported at s = H(Y |X) by a line of

slope 0, and Theorem 4 shows that the graph of F ∗(s) is supported at s = H(Y )

by a line of slope 1. Thus, for H(Y |X) ≤ s ≤ H(Y ),

F ∗(s) = max{ψ(q, λ) + λs|0 ≤ λ ≤ 1}. (2.42)

Let Lλ be a linear transformation (q, ξ, η) → (q, η − λξ). It maps C and S
onto the sets

Cλ = {(q, η − λξ)|(q, ξ, η) ∈ C}, (2.43)

and

Sλ = {(q, hm(TZXq)− λhn(TY Xq))|q ∈ ∆k}. (2.44)

The lower boundaries of Cλ and Sλ are the graphs of ψ(q, λ) and φ(q, λ) =
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hm(TZXq) − λhn(TY Xq) respectively. Since C is the convex hull of S, and thus

Cλ is the convex hull of Sλ, ψ(q, λ) is the lower convex envelope of φ(q, λ) on ∆k.

In conclusion, ψ(·, λ) can be obtained by forming the lower convex envelope

of φ(·, λ) for each λ and F ∗(q, s) can be reconstructed from ψ(q, λ) by (2.42).

This is the dual approach to the evaluation of F ∗.

Theorem 2 represents the capacity region for a DBC by the function F ∗(q, s).

Since ψ(q, λ) and F ∗(q, s) can be constructed by each other from (2.38) and

(2.42), for any λ ≥ 0, the associated point on the boundary of the capacity

region may be found (from its unique value of R2 + λR1) as follows

max
q∈∆k

max{R2 + λR1|pX = q}

= max
q∈∆k

max{H(Z)− F ∗(q, s) + λs− λH(Y |X)}

= max
q∈∆k

(H(Z)− λH(Y |X)−min{F ∗(q, s)− λs})

= max
q∈∆k

(H(Z)− λH(Y |X)− ψ(q, λ)). (2.45)

We have shown the relationship among F ∗, ψ and the capacity region for the

DBC. Now we state a theorem which provides the relationship among F ∗(q, s),

ψ(q, λ), φ(q, λ), and the optimal transmission strategies for the DBC.

Theorem 6. i) For any 0 ≤ λ ≤ 1, if a point of the graph of ψ(·, λ) is the convex

combination of l points of the graph of φ(·, λ) with arguments pj and weights wλ,

j = 1, · · · , l, then

F ∗
TY X ,TZX

(∑
j

wjpj,
∑

j

wjhn(TY Xpj)

)
=

∑
j

wjhm(TZXpj). (2.46)

Furthermore, for a fixed channel input distribution q =
∑

j wjpj, the optimal
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transmission strategy to achieve the maximum of R2 + λR1 is determined by l,wj

and pj. In particular, an optimal transmission strategy has |U| = l, Pr(U =

j) = wj and pX|U=j = pj, where pX|U=j denotes the conditional distribution of

X given U = j.

ii)For a predetermined channel input distribution q, if the transmission strategy

|U| = l, Pr(U = j) = wj and pX|U=j = pj achieves max{R2+λR1|
∑

j wjpj = q},
then the point (q, ψ(q, λ)) is the convex combination of l points of the graph of

φ(·, λ) with arguments pj and weights wλ, j = 1, · · · , l.

The proof is given in Appendix III.

Note that if for some pair (q, λ), ψ(q, λ) = φ(q, λ), then the correspond-

ing optimal transmission strategy has l = 1, which means U is a constant.

Thus, the line η = λξ + ψ(q, λ) supports the graph of F ∗(q, ·) at its endpoint

(H(Y ), H(Z)) = (hn(TY Xq), hm(TZXq)).

2.3.1 Example: broadcast binary-symmetric channel

For the broadcast binary-symmetric channel X → Y → Z with

TY X =


1− α1 α1

α1 1− α1


 , TZX =


1− α2 α2

α2 1− α2


 , (2.47)

where 0 < α1 < α2 < 1/2, one has

φ(p, λ)
∆
= φ((p, 1− p)T , λ)

= hm(TZXq)− λhn(TY Xq)

= h((1− α2)p + α2(1− p))− λh((1− α1)p + α1(1− p)), (2.48)
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where h(x) = −x ln x− (1− x) ln(1− x) is the binary entropy function. Taking

the second derivative of φ(p, λ) with respect to p, we have

φ′′(p, λ) =
−(1− 2α2)

2

(α2p + (1− α2)(1− p))((1− α2)p + α2(1− p))

+
λ(1− 2α1)

2

(α1p + (1− α1)(1− p))((1− α1)p + α1(1− p))
, (2.49)

which has the sign of

ρ(p, λ) = −(
1− α1

1− 2α1

− p)(
1− α1

1− 2α1

+ p) + λ(
1− α2

1− 2α2

− p)(
1− α2

1− 2α2

+ p). (2.50)

For any 0 ≤ λ ≤ 1,

min
p

ρ(p, λ) =
λ

4(1− 2α2)2
− 1

4(1− 2α1)2
. (2.51)

Thus, for λ ≥ (1 − 2α2)
2/(1 − 2α1)

2, φ′′(p, λ) ≥ 0 for all 0 ≤ p ≤ 1, and so

ψ(p, λ) = φ(p, λ). In this case, the optimal transmission strategy achieving the

maximum of R1 also achieves the maximum of R2 + λR1, and thus the optimal

transmission strategy has l = 1, which means U is a constant.

Note that φ(1/2 + p, λ) = φ(1/2 − p, λ). For λ < (1 − 2α2)
2/(1 − 2α1)

2,

φ(p, λ) has negative second derivative on an interval symmetric about p = 1/2.

Let pλ = arg minp φ(p, λ) with pλ ≤ 1/2. Thus pλ satisfies φ′p(pλ, λ) = 0.

By symmetry, the envelope ψ(·, λ) is obtained by replacing φ(p, λ) on the

interval (pλ, 1−pλ) by its minimum over p, which is shown in Fig. 2.2. Therefore,

the lower envelope of φ(p, λ) is

ψ(p, λ) =





φ(pλ, λ), for pλ ≤ p ≤ 1− pλ

φ(p, λ), otherwise.
(2.52)
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Figure 2.2: Illustration of φ and ψ function for the broadcast binary-symmetric
channel.

For the predetermined distribution of X, pX = q = (q, 1 − q)T with pλ <

q < 1− pλ, (q, ψ(q, λ)) is the convex combination of the points (pλ, ψ(pλ, λ)) and

(1−pλ, ψ(1−pλ, λ)). Therefore, by Theorem 6, F ∗(q, s) = h2(TZX ·(pλ, 1−pλ)
T ) =

h(α2 +(1−2α2)pλ) for s = h2(TY X · (pλ, 1−pλ)
T ) = h(α1 +(1−2α1)pλ), and 0 ≤

pλ ≤ q or 1−q ≤ pλ ≤ 1. This defines F ∗(q, ·) on its entire domain [h(α1), h(α1 +

(1− 2α1)q)], i.e., [H(Y |X), H(Y )]. For the predetermined distribution of X, q =

(q, 1− q)T with q < pλ or q > 1−pλ, one has φ(q, λ) = ψ(q, λ), which means that

a line with slope λ supports F ∗(q, ·) at point s = H(Y ) = h(α1 + (1− 2α1)q, and

thus the optimal transmission strategy has l = 1, which means U is a constant.

2.4 Summary

This chapter defines and explores the conditional entropy bound F ∗ for discrete

DBCs. F ∗(q, s) is the infimum of H(Z|U) with respect to all auxiliary random

variables U given that the input-signal distribution is q and H(Y |U) = s. Two

main theorems regarding to F ∗ in this chapter establish the relationship among
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F ∗, the capacity region, and optimal encoding schemes for DBCs. The first

main theorem represents the capacity region for discrete DBCs with F ∗, which

bring us a more insight view of the capacity region for DBCs. We apply this

theorem in Chapter 2 to prove the optimal input-signal distribution for input-

symmetric DBCs. The second main theorem establishes the relationship between

the evaluation of F ∗ and the optimal encoding schemes for the DBC. We later

apply this theorem in Chapter 3-5 to prove the optimality of NE scheme for

multi-user broadcast Z channels and discrete multiplicative DBCs.
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CHAPTER 3

Natural Encoding for Multi-User Broadcast Z

Channels

3.1 Definition of the Broadcast Z Channel

The Z channel, shown in Fig. 3.1(a), is a binary asymmetric channel which is

noiseless when symbol 1 is transmitted but noisy when symbol 0 is transmitted.

The channel output Y is the binary OR of the channel input X and Bernoulli

distributed noise with parameter α. The capacity of the Z channel was studied

in [32]. The Broadcast Z channel is a class of discrete memoryless broadcast

channels whose component channels are Z channels. A two-user broadcast Z

channel with marginal transition probability matrices

TY X =


1 α1

0 1− α1


 , TZX =


1 α2

0 1− α2


 , (3.1)

where 0 < α1 ≤ α2 < 1, is shown in Fig 3.1(b). The two-user broadcast Z

channel is stochastically degraded and can be modeled as a physically degraded

broadcast channel as shown in Fig. 6.4, where α∆ = (α2 − α1)/(1 − α1) [11].

In the NE scheme for broadcast Z channels, the transmitter first independently

encodes users’ information messages into binary codewords and then broadcasts

the binary OR of these encoded codewords. The NE scheme achieves the whole
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Figure 3.1: The broadcast Z channel
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Figure 3.2: The degraded version of the broadcast Z channel

boundary of the capacity region for the two-user broadcast Z channel [11] [12].

In this section, we will show that the NE scheme also achieves the boundary of

the capacity region for multi-user broadcast Z channels.

3.2 F ∗ for the broadcast Z channel

For the broadcast Z channel X → Y → Z shown in Fig. 3.1(b) and Fig. 6.4 with

TY X =


1 α1

0 β1


 , TZX =


1 α2

0 β2


 , (3.2)

where 0 < α1 ≤ α2 < 1, β1 = 1− α1, and β2 = 1− α2, one has

φ(p, λ)
∆
= φ((1− p, p)T , λ) = h(pβ2)− λh(pβ1). (3.3)
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Figure 3.3: Illustrations of φ(·, λ) and ψ(·, λ) for the broadcast Z channel

Taking the second derivative of φ(p, λ) with respect to p, we have

φ′′(p, λ) =
−β2

2

(1− pβ2)pβ2

− −λβ2
1

(1− pβ1)pβ1

, (3.4)

which has the sign of

ρ(p, λ) = pβ1β2(1− λ) + λβ1 − β2. (3.5)

Let β∆
∆
= β2/β1. For the case of β∆ ≤ λ ≤ 1, φ′′(p, λ) ≥ 0 for all 0 ≤ p ≤ 1.

Hence, φ(p, λ) is convex in p and thus φ(p, λ) = ψ(p, λ) for all 0 ≤ p ≤ 1. In

this case, the optimal transmission strategy achieving the maximum of R1 also

achieves the maximum of R2 + λR1, and the optimal transmission strategy has

l = 1, i.e., U is a constant. Note that the transmission strategy with l = 1 is a

special case of the NE scheme in which the only codeword for the second user is

an all-ones codeword.

For the case of 0 ≤ λ < β∆, φ(p, λ) is concave in p on [0, β2−λβ1

β1β2(1−λ)
] and

convex on [ β2−λβ1

β1β2(1−λ)
, 1]. The graph of φ(·, λ) in this case is shown in Fig. 3.3.

Since φ(0, λ) = 0, ψ(·, λ), the lower convex envelope of φ(·, λ), is constructed by

drawing the tangent through the origin. Let (pλ, φ(pλ, λ)) be the point of contact.
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The value of pλ is determined by φ′p(pλ, λ) = φ(pλ, λ)/pλ, i.e.,

ln(1− β2pλ) = λ ln(1− β1pλ). (3.6)

Let q = (1 − q, q)T be the distribution of the channel input X. For q ≤ pλ,

ψ(q, λ) is obtained as a convex combination of points (0, 0) and (pλ, φ(pλ, λ))

with weights (pλ − q)/pλ and q/pλ. By Theorem 6, it corresponds to s = [(pλ −
q)/pλ]0 + [q/pλ]h(β1pλ) = qh(β1pλ)/pλ and F ∗(q, s) = q/pλ · h(β2pλ). Hence, for

the broadcast Z channel,

F ∗
TY X ,TZX

(q, qh(β1p)/p) = qh(β2p)/p (3.7)

for p ∈ [q, 1], which defines F ∗
TY X ,TZX

(q, ·) on its entire domain [qh(β1), h(qβ1)].

Also by Theorem 6, the optimal transmission strategy U → X achieving max{R2+

λR1|
∑

j wjpj = q} is determined by l = 2, w1 = (pλ − q)/pλ, w2 = q/pλ,

p1 = (1, 0)T and p2 = (1 − pλ, pλ)
T . Since the optimal transmission strategy

U → X is a Z channel as shown in Fig. 3.4, the random variable X could also

be constructed as the OR operation of two Bernoulli random variables with pa-

rameters (pλ − q)/pλ and 1 − pλ respectively. Hence, the optimal transmission

strategy for the broadcast Z channel is still the NE scheme in this case. For

q > pλ, ψ(q, λ) = φ(q, λ) and so the optimal transmission strategy has l = 1, i.e.,

U is a constant. Therefore, we provide an alternative proof to show that the NE

scheme achieves the whole boundary of the two-user broadcast Z channel.
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Figure 3.4: The optimal transmission strategy for the two-user broadcast Z chan-
nel

3.3 Natural Encoding for Multi-user broadcast Z channel

Let X = (X1, · · · , XN) be a sequence of channel inputs to the broadcast Z

channel X → Y → Z satisfying (3.2). The corresponding channel outputs are

Y = (Y1, · · · , YN) and Z = (Z1, · · · , ZN). Thus, the sequence of the channel

outputs (Yi, Zi), i = 1, · · · , N , are conditionally independent with each other

given the channel inputs X. Note that the channel outputs (Yi, Zi) do not have to

be identically or independently distributed since X1, · · · , XN could be correlated

and have different distributions.

Lemma 5. Consider the Markov chain U → X → Y → Z with
∑

i Pr(Xi =

0)/N = q, if

H(Y |U) ≥ N · q

p
· h(β1p), (3.8)

for some p ∈ [q, 1], then

H(Z|U) ≥ N · q

p
· h(β2p) (3.9)

= N · q

p
· h(β1pβ∆), (3.10)

The proof is given in Appendix IV.

Consider a K-user broadcast Z channel with marginal transition probability

34



. . .

X Y1 Y2 Y3 YK
YK-1

1 / 1 / /

Figure 3.5: The K-user broadcast Z channel

matrices

TYjX =


1 αj

0 βj


 , (3.11)

where 0 < α1 ≤ · · · ≤ αK < 1, and βj = 1 − αj for j = 1, · · · , K. The K-user

broadcast Z channel is stochastically degraded and can be modeled as a physically

DBC as shown in Fig. 3.5. The NE scheme for the K-user broadcast Z channel

is to independently encode the K users’ information messages into K binary

codewords and broadcast the binary OR of these K encoded codewords. The jth

user then successively decodes the messages for User K, User K − 1, · · · , and

finally for User j. The codebook for the jth user is designed by random coding

technique according to the binary random variable X(j) with Pr{X(j) = 0} = q(j).

Denote X(i) ◦ X(j) as the OR of X(i) and X(j). Hence, the channel input X is

the OR of X(j) for all 1 ≤ j ≤ K, i.e., X = X(1) ◦ · · · ◦X(K). From the coding

theorem for DBCs [2] [3], the achievable region of the NE scheme for the K-user

broadcast Z channel is determined by

Rj ≤ I(Yj, X
(j)|X(j+1), · · · , X(K)) (3.12)

= H(Yj|X(j+1), · · · , X(K))−H(Yj|X(j), X(j+1), · · · , X(K)) (3.13)

=

(
K∏

i=j+1

q(i)

)
· h(βj

j∏
i=1

q(i))−
(

K∏
i=j

q(i)

)
· h(βj

j−1∏
i=1

q(i)) (3.14)

=
q

tj
h(βjtj)− q

tj−1

h(βjtj−1) (3.15)
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Figure 3.6: The communication system for the multi-user broadcast Z channel

where tj =
∏j

i=1 q(i) for j = 1, · · · , K, and q = Pr(X = 0) =
∏K

i=1 q(i). Denote

t0 = 1. Since 0 ≤ q(1), · · · , q(K) ≤ 1, one has

1 = t0 ≥ t1 ≥ · · · ≥ tK = q. (3.16)

We now state and prove that the achievable region of the NE scheme is the

capacity region for the multi-user broadcast Z channel. Fig. 3.6 shows the com-

munication system for the K-user broadcast Z channel. X = (X1, · · · , XN) is

a length-N codeword determined by the messages W1, · · · ,WK . Y1, · · · ,YK are

the channel outputs corresponding to the channel input X.

Theorem 7. If
∑N

i=1 Pr{Xi = 0}/N = q, then no point (R1, · · · , RK) such that





Rj ≥ q
tj

h(βjtj)− q
tj−1

h(βjtj−1), j = 1, · · · , K

Rd = q
td

h(βdtd)− q
td−1

h(βdtd−1) + δ, for some d ∈ {1, · · · , K}, δ > 0

(3.17)

is achievable, where the tj are as in (3.15) and (3.16).

Proof (by contradiction): This proof borrows the idea of proving the converse
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of the coding theorem for broadcast Gaussian channels [2]. Lemma 5 plays the

same role in this proof as the entropy power inequality does in the proof for

broadcast Gaussian channels.

We suppose that the rates of (3.17) are achievable, which means that the prob-

ability of decoding error for each receiver can be upper bounded by an arbitrarily

small ε for sufficiently large N

Pr{Ŵj 6= Wj|Yj} < ε, j = 1, · · · , K. (3.18)

By Fano’s inequality, this implies that

H(Wj|Yj) ≤ h(ε) + ε ln(Mj − 1), j = 1, · · · , K. (3.19)

Let o(ε) represent any function of ε such that o(ε) ≥ 0 and o(ε) → 0 as ε → 0.

Equation (3.19) implies that H(Wj|Yj), j = 1, · · · , K, are all o(ε). Therefore,

H(Wj) = H(Wj|Wj+1, · · · ,WK) (3.20)

= I(Wj; Yj |Wj+1, · · · , WK) + H(Wj|Yj ,Wj+1, · · · ,WK) (3.21)

≤ I(Wj; Yj |Wj+1, · · · ,WK) + H(Wj|Yj) (3.22)

= H(Yj|Wj+1, · · · ,WK)−H(Yj |Wj,Wj+1, · · · ,WK) + o(ε), (3.23)

where (3.20) follows from the independence of the Wj, j = 1, · · · , K. From (3.17),

(3.23) and the fact that NRj ≤ H(Wj),

H(Yj |Wj+1, · · · ,WK)−H(Yj |Wj,Wj+1, · · · ,WK)

≥N
q

tj
h(βjtj)−N

q

tj−1

h(βjtj−1)− o(ε). (3.24)

37



Next, using Lemma 5 and (3.24), we show in the Appendix V that

H(YK) ≥ Nh(βKq) + Nδ − o(ε), (3.25)

where q = tK =
∑N

i=1 Pr(Xi = 0)/N . Since ε can be arbitrarily small for sufficient

large N , o(ε) → 0 as N → ∞. For sufficiently large N , H(YK) ≥ Nh(βKq) +

Nδ/2. However, it contradicts

H(YK) ≤
N∑

i=1

H(YK,i) (3.26)

=
N∑

i=1

h(βK · Pr(Xi = 0)) (3.27)

≤ Nh(βK ·
N∑

i=1

Pr(Xi = 0)/N) (3.28)

= Nh(βKq). (3.29)

Some of these steps are justified as follows:

• (3.26) follows from YK = (YK,1, · · · , YK,N);

• (3.28) is obtained by applying Jensen’s inequality to the concave function

h(·);

• (3.29) follows from q =
∑N

i=1 Pr(Xi = 0)/N .

The desired contradiction has been obtained, so the theorem is proved.

3.4 Summary

This chapter applies the conditional entropy bound F ∗ to prove that the NE

scheme achieves the whole boundary of the capacity region of multi-user DBCs.
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As an example of the application of F ∗, this chapter shows the power of the

mathematica tool of this conditional entropy bound for DBCs.
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CHAPTER 4

Permutation Encoding for Input Symmetric

Degraded Broadcast Channels

The input-symmetric channel was introduced by Witsenhausen and Wyner [9]

and studied in [13] [14] and [15]. We extend the definition of the input-symmetric

channel to the definition of the input-symmetric DBC. This chapter introduces an

independent-encoding scheme employing permutation functions of independently

encoded streams (the permutation encoding approach) for the input-symmetric

DBC and proves its optimality. The discrete additive DBC [10] is a special case of

the input-symmetric DBC, and the optimal encoding approach for the discrete ad-

ditive DBC [10] is also a special case of the permutation encoding approach. The

group-additive DBC is a class of input-symmetric DBCs whose channel outputs

are group additions of the channel input and noise. The permutation encoding

approach for the group-additive DBC is the group-addition encoding approach,

which is the NE scheme for the group-additive DBC.

Witsenhausen and Wyner made two seminal contributions in [8] and [9]: the

notion of minimizing one entropy under the constraint that another related en-

tropy is fixed and the use of input symmetry as a way of solving an entire class of

channels with a single unifying approach. Benzel [10] used the first idea to study

discrete additive degraded broadcast channels. Recently Liu and Ulukus [13] [14]

used both ideas together to extend Benzels results to include the larger class
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of discrete degraded interference channels (DDIC). This chapter defines what it

means for a degraded broadcast channel to be input-symmetric (IS) and pro-

vides an independent-encoding scheme which achieves the capacity region of all

input-symmetric DBCs.

4.1 Input-Symmetric Degraded Broadcast Channels

The input-symmetric channel was first introduced in [9] and studied further in

[13] [14] [15]. The definition of the input-symmetric channel is as follows: Let Φn

denote the symmetric group of permutations of n objects by the n×n permutation

matrices. An n-input m-output channel with transition probability matrix Tm×n

is input-symmetric if the set

GT = {G ∈ Φn|∃Π ∈ Φm, s.t. TG = ΠT} (4.1)

is transitive, which means each element of {1, · · · , n} can be mapped to every

other element of {1, · · · , n} by some permutation matrix in GT [9]. An important

property of input-symmetric channel is that the uniform distribution achieves

capacity.

Extend the definition of the input-symmetric channel to the input-symmetric

DBC as follows:

Definition 2. Input-Symmetric Degraded Broadcast Channel: A discrete memo-

ryless DBC X → Y → Z with |X | = k, |Y| = n and |Z| = m is input-symmetric
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if the set

GTY X ,TZX

∆
= GTY X

∩ GTZX
(4.2)

= {G ∈ Φk|∃ΠY X ∈ Φn, ΠZX ∈ Φm,

s.t. TY XG = ΠY XTY X , TZXG = ΠZXTZX} (4.3)

is transitive.

Lemma 6. GTY X ,TZX
is a group under matrix multiplication.

Proof : Every closed subset of a group is a group. Since GTY X ,TZX
is a subset

of Φk, which is a group under matrix multiplication, it suffices to show that

GTY X ,TZX
is closed under matrix multiplication. Suppose G1, G2 ∈ GTY X ,TZX

such that TY XG1 = ΠY X,1TY X , TZXG1 = ΠZX,1TZX , TY XG2 = ΠY X,2TY X and

TZXG2 = ΠZX,2TZX . Thus,

TY XG1G2 = ΠY X,1ΠY X,2TY X , (4.4)

and

TZXG1G2 = ΠZX,1ΠZX,2TZX . (4.5)

Therefore, G1G2 ∈ GTY X ,TZX
. Q.E.D.

Let l = |GTY X ,TZX
| and GTY X ,TZX

= {G1, · · · , Gl}.

Lemma 7.
∑l

i=1 Gi = l
k
11T , where l

k
is an integer and 1 is an all-ones vector.

Proof : Since GTY X ,TZX
is a group, for all j = 1, · · · , l,

Gj

(
l∑

i=1

Gi

)
=

l∑
i=1

GjGi =
l∑

i=1

Gi. (4.6)
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Hence,
∑l

i=1 Gi has k identical columns and k identical rows since GTY X ,TZX
is

transitive. Therefore,
∑l

i=1 Gi = l
k
11T . Q.E.D.

Definition 3. A subset of GTY X ,TZX
: {Gi1 , · · · , Gils

} is a smallest transitive sub-

set of GTY X ,TZX
if

ls∑
j=1

Gij =
ls
k
11T , (4.7)

where ls
k

is the smallest possible integer for which (4.7) is satisfied.

4.2 Examples: broadcast binary-symmetric channels and

broadcast binary-erasure channels

The class of input-symmetric DBCs includes most of the common discrete memo-

ryless DBCs. For example, the broadcast binary-symmetric channel X → Y → Z

with marginal transition probability matrices

TY X =


1− α1 α1

α1 1− α1


 and TZX =


1− α2 α2

α2 1− α2


 ,

where 0 ≤ α1 ≤ α2 ≤ 1/2, is input-symmetric since

GTY X ,TZX
=






1 0

0 1


 ,


0 1

1 0






 (4.8)

is transitive.

Another interesting example is the broadcast binary-erasure channel with
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Figure 4.1: The group-additive degraded broadcast channel.

marginal transition probability matrices

TY X =




1− a1 0

a1 a1

0 1− a1


 and TZX =




1− a2 0

a2 a2

0 1− a2


 ,

where 0 ≤ a1 ≤ a2 ≤ 1. It is input-symmetric since its GTY X ,TZX
is the same as

that of the broadcast binary-symmetric channel shown in (4.8).

4.3 Group-additive DBC

Definition 4. Group-additive Degraded Broadcast Channel: A degraded broadcast

channel X → Y → Z with X,Y, Z ∈ {1, · · · , n} is a group-additive degraded

broadcast channel if there exist two n-ary random variables N1 and N2 such that

Y ∼ X ⊕N1 and Z ∼ Y ⊕N2 as shown in Fig. 4.1, where ∼ denotes identical

distribution and ⊕ denotes group addition.

The class of group-additive DBCs includes the broadcast binary-symmetric

channel and the discrete additive DBC [10] as special cases.

Theorem 8. Group-additive DBCs are input-symmetric.

Proof : For the group-additive DBC X → Y → Z with X,Y, Z ∈ {1, · · · , n},
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let Gx for x = 1, · · · , n, be 0-1 matrices with entries

Gx(i, j) =





1 if j ⊕ x = i

0 otherwise

for i, j = 1, · · · , n. (4.9)

Gx for x = 1, · · · , n, are actually permutation matrices and have the property

that Gx1 · Gx2 = Gx2 · Gx1 = Gx1⊕x2 . Let (γ0, · · · , γn−1)
T be the distribution of

N1. Since Y has the same distribution as X ⊕N1, one has

TY X =
n∑

x=1

γxGx. (4.10)

Hence, TY XGx = GxTY X for all x = 1, · · · , n. Similarly, we have TZXGx =

GxTZX for all x = 1, · · · , n, and so

{G1, · · · , Gn} ⊆ GTY X ,TZX
. (4.11)

Since the set {G1, · · · , Gn} is transitive by definition, GTY X ,TZX
is also transitive

and hence the group-additive degraded broadcast channel is input-symmetric.

Q.E.D.

By definition,
∑n

j=1 Gj = 11T , and hence, {G1, · · · , Gn} is a smallest transi-

tive subset of GTY X ,TZX
for the group-additive DBC.

4.4 Example: IS-DBC not covered in [13] [14]

The class of DDICs and the corresponding DBCs studied in [13] [14] have to sat-

isfy the condition that the transition probability matrix TZY is input-symmetric,

i.e., GTZY
is transitive. The input-symmetric DBC, however, does not have to

satisfy this condition. The following example provides an IS-DBC which is not
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covered in [13] [14]. Consider a DBC X → Y → Z with transition probability

matrices

TY X =




a c

b d

c a

d b




, TZY =


e f g h

g h e f


 ,

and

TZX = TZY TY X =


α β

β α


 , (4.12)

where a + c = b + d = 1, e + f + g + h = 1, α = ae + bf + cg + dh and

β = ag + bh + ce + df . This DBC is input-symmetric since its GTY X ,TZX
is the

same as that of the broadcast binary-symmetric channel shown in (4.8). It is not

covered in [13] [14] because

GTZY
=








1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




,




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0








(4.13)

is not transitive.

4.5 Optimal input distribution and capacity region

Consider the input-symmetric DBC X → Y → Z with the marginal transition

probability matrices TY X and TZX . Recall that the set C is the set of all (p, ξ, η)

satisfying (2.9) (2.10) and (2.11) for some choice of l, w and pj, j = 1, · · · , l, the

set C∗ = {(ξ, η)|(q, ξ, η) ∈ C } is the projection of the set C on the (ξ, η)-plane,

and the set C∗q = {(ξ, η)|(q, ξ, η) ∈ C } is the projection on the (ξ, η)-plane of the
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intersection of C with the two-dimensional plane p = q.

Lemma 8. For any permutation matrix G ∈ GTY X ,TZX
and (p, ξ, η) ∈ C, one has

(Gp, ξ, η) ∈ C.

Proof : Since (p, ξ, η) satisfying (2.9) (2.10) and (2.11) for some choice of l, w

and pj,

l∑
j=1

wjGpj = Gp (4.14)

l∑
j=1

wjhn(TY XGpj) =
l∑

j=1

wjhn(ΠY XTY Xpj) = ξ (4.15)

l∑
j=1

wjhm(TZXGpj) =
l∑

j=1

wjhm(ΠY XTZXpj) = η. (4.16)

Hence, (Gp, ξ, η) satisfying (2.9) (2.10) and (2.11) for the choice of l, w and

Gpj,j = 1, · · · , l. Q.E.D.

Corollary 1. ∀p ∈ ∆k and G ∈ GTY X ,TZX
, one has C∗Gp = C∗p, and so F ∗(Gp, s) =

F ∗(p, s) for any H(Y |X) ≤ s ≤ H(Y ).

Lemma 9. For any input-symmetric DBC, C∗ = C∗u, where u denotes the uni-

form distribution.

Proof : For any (ξ, η) ∈ C∗, there exits a distribution p such that (p, ξ, η) ∈ C.

Let GTY X ,TZX
= {G1, · · · , Gl}. By Corollary 1, (Gjp, ξ, η) ∈ C for all j = 1, · · · , l.

By the convexity of the set C,

(q, ξ, η) = (
l∑

j=1

Gjp , ξ, η) ∈ C, (4.17)
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where q =
∑l

j=1 Gjp. Since GTY X ,TZX
is a group , for any permutation matrix

G′ ∈ GTY X ,TZX
,

G′q =
l∑

j=1

G′Gjp =
l∑

j=1

Gjp = q. (4.18)

Since G′q = q, the ith entry and the jth entry of q are the same if G′ permutes

the ith row to the jth row. Since the set GTY X ,TZX
for an input-symmetric DBC

is transitive, all the entries of q are the same, and so q = u. This implies that

(ξ, η) ∈ C∗u. Since (ξ, η) is arbitrarily taken from C∗, one has C∗ ⊆ C∗u. On the

other hand, by definition, C∗ ⊇ C∗u. Therefore, C∗ = C∗u. Q.E.D.

Now we state and prove that the uniformly distributed X is optimal for input-

symmetric DBCs.

Theorem 9. For any input-symmetric DBC, its capacity region can be achieved

by using the transmission strategies such that the broadcast signal X is uniformly

distributed. As a consequence, the capacity region is

c̄o



(R1, R2) :

R1 ≤ s− hn(TY Xe1),

R2 ≤ hm(TZXu)− F ∗
TY X ,TZX

(u, s),
hn(TY Xe1) ≤ s ≤ ln(n)



 ,

(4.19)

where e1 = (1, 0, · · · , 0)T , n = |Y|, and m = |Z|.

Proof : Let q = (q1, · · · , qk)
T be the distribution of the channel input X for

the input-symmetric DBC X → Y → Z. Since GTY X
is transitive, the columns
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of TY X are permutations of each other.

H(Y |X) =
k∑

i=1

H(Y |X = i) (4.20)

=
k∑

i=1

qihn(TY Xei) (4.21)

=
k∑

i=1

qihn(TY Xe1) (4.22)

= hn(TY Xe1), (4.23)

which is independent of q. Let l = |GTY X ,TZX
| and GTY X ,TZX

= {G1, · · · , Gl}.

H(Z) = hm(TZXq) (4.24)

= hm(TZXq) (4.25)

=
1

l

l∑
i=1

hm(TZXGiq) (4.26)

≤ hm(TZX
1

l

l∑
i=1

Giq) (4.27)

= hm(TZXu), (4.28)

where (4.27) follows from Jensen’s inequality. Since C∗ = C∗u for the input-

symmetric DBC,

F ∗(q, s) ≥ F ∗(u, s). (4.29)

Plugging (4.23), (4.28) and (4.29) into (2.7), the expression of the capacity region
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for the DBC, the capacity region for input-symmetric DBCs is

c̄o


 ⋃

pX=q∈∆k

{
(R1, R2) : R1 ≤ s−H(Y |X), R2 ≤ H(Z)− F ∗

TY X ,TZX
(q, s)

}



(4.30)

⊆ c̄o


 ⋃

pX=q∈∆k



(R1, R2) :

R1 ≤ s− hn(TY Xe1)

R2 ≤ hm(TZXu)− F ∗
TY X ,TZX

(u, s)






 (4.31)

= c̄o



(R1, R2) :

R1 ≤ s− hn(TY Xe1)

R2 ≤ hm(TZXu)− F ∗
TY X ,TZX

(u, s)



 (4.32)

= c̄o
{
(R1, R2) : pX = u, R1 ≤ s−H(Y |X), R2 ≤ H(Z)− F ∗

TY X ,TZX
(u, s)

}

(4.33)

⊆c̄o


 ⋃

pX=q∈∆k

{
(R1, R2) : R1 ≤ s−H(Y |X), R2 ≤ H(Z)− F ∗

TY X ,TZX
(q, s)

}

 ,

(4.34)

Note that (4.30) and (4.34) are identical expressions, hence (4.30 - 4.34) are

all equal. Therefore, (4.19) and (4.32) express the capacity region for the input-

symmetric DBC, which also means that the capacity region can be achieved

by using transmission strategies where the broadcast signal X is uniformly dis-

tributed. Q.E.D.

4.6 Permutation encoding approach and its optimality

The permutation encoding approach is an independent-encoding scheme which

achieves the capacity region for input-symmetric DBCs. The block diagram of

this approach is shown in Fig. 4.2. In Fig. 4.2, W1 is the message for User 1, which

sees the better channel TY X , and W2 is the message for User 2, which sees the
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Figure 4.2: The block diagram of the permutation encoding approach

worse channel TZX . The permutation encoding approach is first to independently

encode these two messages into two codewords X1 and X2, and then to combine

these two independent codewords using a single-letter operation.

Let Gs be a smallest transitive subset of GTY X ,TZX
. Denote k = |X | and ls =

|Gs|. Use a random coding technique to design the codebook for User 1 according

to the k-ary random variable X1 with distribution p1 and the codebook for User

2 according to the l-ary random variable X2 with uniform distribution. Let Gs =

{G1, · · · , Gls}. Define the permutation function gx2(x1) = x if the permutation

matrix Gx2 maps the xth
1 column to the xth column, where x2 ∈ {1, · · · , ls} and

x, x1 ∈ {1, · · · , k}. Hence, gx2(x1) = x if and only if the xth
1 row, xth column

entry of Gx2 is 1. The permutation encoding approach is then to broadcast X

which is obtained by applying the single-letter permutation function X = gX2(X1)

on symbols of codewords X1 and X2. Since X2 is uniformly distributed and
∑ls

j=1 Gj = ls
k
11T , the broadcast signal X is also uniformly distributed.

User 2 receives Z and decodes the desired message directly. User 1 receives

Y and successively decodes the message for User 2 and then for User 1. The

structure of the successive decoder is shown in Fig. 4.3. Note that Decoder 1 in

Fig. 4.3 is not a joint decoder even though it has two inputs Y and X̂2.

In particular, for the group-additive DBC with Y ∼ X ⊕ N1 and Z ∼ Y ⊕
N2, the permutation function gx2(x1) is the group addition x2 ⊕ x1. Hence the

permutation encoding approach for the group-additive DBC is the NE scheme
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Figure 4.3: The structure of the successive decoder for input-symmetric DBCs
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Figure 4.4: The structure of the successive decoder for degraded group-addition
channels

for the group-additive DBC. The successive decoder for the group-additive DBC

is shown in Fig. 4.4, where

ỹ = y ⊕ (−x̂2). (4.35)

From the coding theorem for DBCs [2] [3], the achievable region of the per-

mutation encoding approach for the input-symmetric DBC is determined by

R1 ≤ I(X; Y |X2) (4.36)

= H(Y |X2)−H(Y |X) (4.37)

=
ls∑

x2=1

Pr(X2 = x2)H(Y |X2 = x2)−
k∑

x=1

Pr(X = x)H(Y |X = x) (4.38)

=
ls∑

x2=1

Pr(X2 = x2)hn(TY XGx2p1)−
k∑

x=1

Pr(X = x)hn(TY Xex) (4.39)

=
ls∑

x2=1

Pr(X2 = x2)hn(ΠY X,x2TY Xp1)−
k∑

x=1

Pr(X = x)hn(TY Xe1) (4.40)

= hn(TY Xp1)− hn(TY Xe1), (4.41)
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and

R2 ≤ I(X2; Z) (4.42)

= H(Z)−H(Z|X2) (4.43)

= hm(TZXu)−
ls∑

x2=1

Pr(X2 = x2)hm(TZXGx2p1) (4.44)

= hm(TZXu)−
ls∑

x2=1

Pr(X2 = x2)hm(ΠZX,x2TZXp1) (4.45)

= hm(TZXu)− hm(TZXp1), (4.46)

(4.47)

where u is the k-ary uniform distribution, p1 is the distribution of X1, and ex is

a 0-1 vector such that the xth entry is 1 and all other entries are 0. Hence, the

achievable region is

c̄o


 ⋃

p1∈∆k



(R1, R2) :

R1 ≤ hn(TY Xp1)− hn(TY Xe1)

R2 ≤ hm(TZXu)− hm(TZXp1)






 (4.48)

Define F̃ (s) as the infimum of hm(TZXp1) with respect to all distributions p1

such that hn(TY Xp1) = s. Hence the achievable region (4.48) can be expressed

as



(R1, R2) :

R1 ≤ s− hn(TY Xe1),

R2 ≤ hm(TZXu)− envF̃ (s),
hn(TY Xe1) ≤ s ≤ hn(TY Xu)



 ,

(4.49)

where envF̃ (s) denotes the lower convex envelope of F̃ (s). In order to show that

the achievable region (4.49) is the same as the capacity region (4.19) for the
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input-symmetric DBC, it suffices to show that

envF̃ (s) ≤ F ∗(u, s) (4.50)

For any U → X with uniformly distributed X,

H(Z|U) =
∑

u

Pr(U = u)H(Z|U = u) (4.51)

=
∑

u

Pr(U = u)hm(TZXpX|U=u) (4.52)

≥
∑

u

Pr(U = u)F̃ (hn(TY XpX|U=u)) (4.53)

≥
∑

u

Pr(U = u)envF̃ (hn(TY XpX|U=u)) (4.54)

≥ envF̃ (
∑

u

Pr(U = u)hn(TY XpX|U=u)) (4.55)

= envF̃ (H(Y |U)), (4.56)

where pX|U=u is the conditional distribution of X given U = u. Some of these

steps are justified as follows:

• (4.53) follows from the definition of F̃ (s);

• (4.55) follows from Jensen’s inequality.

Therefore, by definition, envF̃ (s) ≤ F ∗(u, s).

The results of this subsection may be summarized in the following theorem.

Theorem 10. The permutation encoding approach achieves the capacity region

for input-symmetric DBCs, which is expressed in (4.48) (4.49) and (4.19).

Corollary 2. The group-addition encoding approach achieves the capacity region

for group-additive degraded broadcast channels.
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Conjecture 1. The alphabet size of the code for User 2, ls, is equal to the alphabet

size of the channel input, k, in a permutation encoding approach for any input-

symmetric DBC. In other words, a smallest transitive subset {G1, · · · , Gls} of

GTY X ,TZX
for any input-symmetric DBC has

ls∑
j=1

Gj = 11T . (4.57)

4.7 Summary

The input-symmetric DBC is a class of discrete DBCs, which contains most

commonly studied DBCs including broadcast binary-symmetric channels, broad-

cast binary-erasure channels, and group-additive DBCs. This chapter defines

the input symmetry for DBCs and introduces the permutation encoding scheme

which employs permutation functions of independently encoded streams for the

input-symmetric DBC. We apply the results regarding to F ∗ in Chapter 2 to

prove that the uniform input distribution is optimal for IS-DBCs and then the

permutation encoding scheme achieves the whole capacity region for IS-DBCs.

As a consequence, the NE scheme (also the permuatation encoding scheme) for

group-additive DBCs achieves the whole capacity region.
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CHAPTER 5

Natural Encoding for Discrete Multiplicative

Degraded Broadcast Channels

The discrete multiplicative DBC is a discrete DBC whose channel outputs are

discrete multiplications (multiplications in a finite field) of the channel input and

noise. This chapter combines the results of Chapter 3, Chapter 4, and the results

of the conditional entropy bound to prove that the NE scheme achieves the whole

boundary of the capacity region for discrete multiplicative DBC.

5.1 Discrete Multiplicative Degraded Broadcast Channels

Definition 5. Discrete Multiplicative Degraded Broadcast Channel: A discrete

DBC X → Y → Z with X, Y, Z ∈ {0, 1, · · · , n} is a discrete multiplicative

degraded broadcast channel if there exist two (n + 1)-ary random variables N1

and N2 such that Y ∼ X ⊗ N1 and Z ∼ Y ⊗ N2 as shown in Fig. 5.1, where ⊗
denotes discrete multiplication.

By the definition of discrete multiplication and group addition, the multi-

plication of zero and any element in {0, 1, · · · , n} is always zero and {1, · · · , n}
under the discrete multiplication operation forms a group. Hence, the discrete

DBC X → Y → Z has the channel structure as shown in Fig. 5.2. The sub-

channel X̃ → Ỹ → Z̃ is a group-additive DBC with marginal distributions TỸ X̃
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Figure 5.1: The discrete degraded broadcast multiplication channel.
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Figure 5.2: The channel structure of a DBC with erasures.

and TZ̃X̃ = TZ̃Ỹ TỸ X̃ , where X̃ , Ỹ , Z̃ = {1, · · · , n}. For the discrete multiplica-

tive DBC X → Y → Z, if the channel input X is zero, the channel outputs Y

and Z are zeros for sure. If the channel input is a non-zero symbol, the channel

output Y is zero with probability α1 and Z is zero with probability α2, where

α2 = α1 +(1−α1)α∆. Therefore, the marginal transmission probability matrices

for X → Y → Z are

TY X =


1 α11

T

0 (1− α1)TỸ X̃


 , TZY =


1 α∆1T

0 (1− α∆)TZ̃Ỹ


 , (5.1)

and

TZX = TZY TY X =


1 α11

T

0 (1− α1)TỸ X̃





1 α∆1T

0 (1− α∆)TZ̃Ỹ


 =


1 α21

T

0 (1− α2)TZ̃Ỹ


 ,

(5.2)

where 1 is an all-ones vector and 0 is an all-zeros vector.
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5.2 Optimal input distribution

The sub-channel X̃ → Ỹ → Z̃ is a group-additive DBC, and hence, GTỸ X̃ ,TZ̃X̃

is transitive. For any n × n permutation matrix G̃ ∈ GTỸ X̃ ,TZ̃X̃
with TỸ X̃G̃ =

ΠỸ X̃TỸ X̃ and TZ̃X̃G̃ = ΠZ̃X̃TZ̃X̃ , the (n + 1)× (n + 1) permutation matrix

G =


1 0T

0 G̃


 (5.3)

has

TY XG =


1 α11

T

0 (1− α1)TỸ X̃





1 0T

0 G̃


 =


1 0T

0 ΠỸ X̃


 TY X , (5.4)

and so G ∈ GTY X
. Similarly, G ∈ GTZX

, and hence G ∈ GTY X ,TZX
. Therefore, any

non-zero element in {0, 1, · · · , n} can be mapped to any other non-zero element

in {0, 1, · · · , n} by some permutation matrix in GTY X ,TZX
, however, no matrix in

GTY X ,TZX
maps zero to non-zero element or non-zero element to zero. Hence, any

permutation matrix G ∈ GTY X ,TZX
has

G =


1 0T

0 G̃


 , (5.5)

for some G̃ ∈ GTỸ X̃ ,TZ̃X̃
. These results may be summarized in the following

Lemma:

Lemma 10. Let GTỸ X̃ ,TZ̃X̃
= {G̃1, · · · , G̃l}. Hence, GTY X ,TZX

= {G1, · · · , Gl},
where

Gj =


1 0T

0 G̃j


 , (5.6)

for j = 1, . . . , l.

58



Now we state and prove that the uniformly distributed X̃ is optimal for the

discrete degraded broadcast multiplication channel.

Lemma 11. Let pX = (1 − q, qpT
X̃

)T ∈ ∆n+1 be the distribution of channel in-

put X, where pX̃ is the distribution of X̃. For any discrete multiplicative DBC,

C∗pX
⊆ C∗(1−q,quT )T and C∗ =

⋃
q∈[0,1] C∗(1−q,quT )T , where u ∈ ∆n denotes the uni-

form distribution.

The proof of Lemma 11 is similar to that of Lemma 9 and the details are

given in Appendix VI.

Theorem 11. The capacity region of the discrete multiplicative degraded broad-

cast channel can be achieved by using transmission strategies where X̃ is uniformly

distributed, i.e., the distribution of X has pX = (1− q, quT )T for some q ∈ [0, 1].

As a consequence, the capacity region is

c̄o
[ ⋃

q∈[0,1]

{
(R1, R2) : R1 ≤ s− qhn(TỸ X̃e1),

R2 ≤ h((1− α2)q) + (1− α2)q ln(n)− F ∗
TY X ,TZX

((1− q, quT )T , s)
}]

. (5.7)

Proof : Let pX = (1 − q, qpX̃)T be the distribution of the channel input X,

where pX̃ = (p1, · · · , pn)T . Since GTỸ X̃
is transitive and the columns of TỸ X̃ are
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permutations of each other.

H(Y |X) =
n∑

i=0

H(Y |X = i) (5.8)

= (1− q)H(Y |X = 0) +
n∑

i=1

qpihn(TỸ X̃ei) (5.9)

=
n∑

i=1

qpihn(TỸ X̃e1) (5.10)

= qhn(TỸ X̃e1), (5.11)

which is independent of pX . Let GTY X ,TZX
= {G1, · · · , Gl}.

H(Z) = hn+1(TZXpX) (5.12)

=
1

l

l∑
i=1

hn+1(TZXGipX) (5.13)

≤ hn+1(TZX
1

l

l∑
i=1

GipX) (5.14)

= hn+1

(
TZX(1− q, quT )T

)
(5.15)

= h((1− α2)q) + (1− α2)q ln(n) (5.16)

where (5.14) follows from Jensen’s inequality. Since C∗pX
⊆ C∗(1−q,quT )T for the

discrete multiplicative DBC,

F ∗(pX , s) ≥ F ∗((1− q, quT )T , s). (5.17)

Plugging (5.11), (5.16) and (5.17) into (2.7), the capacity region for discrete
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multiplicative DBCs is

c̄o
[ ⋃

pX∈∆k

{
(R1, R2) : R1 ≤ s−H(Y |X),

R2 ≤ H(Z)− F ∗
TY X ,TZX

(q, s)
}]

(5.18)

⊆ c̄o
[ ⋃

pX∈∆k

{
(R1, R2) : R1 ≤ s− hn(TỸ X̃e1),

R2 ≤ h((1− α2)q) + (1− α2)q ln(n)

− F ∗
TY X ,TZX

((1− q, quT )T , s)
}]

(5.19)

= c̄o
[ ⋃

q∈[0,1]

{
(R1, R2) : R1 ≤ s− qhn(TỸ X̃e1),

R2 ≤ h((1− α2)q) + (1− α2)q ln(n)

− F ∗
TY X ,TZX

((1− q, quT )T , s)
}]

(5.20)

= c̄o
[ ⋃

pX=(1−q,quT )T

{
(R1, R2) : R1 ≤ s−H(Y |X),

R2 ≤ H(Z)− F ∗
TY X ,TZX

(q, s)
}]

(5.21)

⊆ c̄o
[ ⋃

pX∈∆k

{
(R1, R2) : R1 ≤ s−H(Y |X),

R2 ≤ H(Z)− F ∗
TY X ,TZX

(q, s)
}]

, (5.22)

where c̄o denotes the convex hull of the closure. Note that (5.18) and (5.22) are

identical expressions, hence (5.18 - 5.22) are all equal. Therefore, (5.20) expresses

the capacity region for the DM-DBC, which also means that the capacity region

can be achieved by using transmission strategies where the broadcast signal X

has distribution pX = (1− q, quT )T for some q ∈ [0, 1]. Q.E.D.
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Figure 5.3: The block diagram of the NE scheme for the discrete multiplicative
DBC.

5.3 Optimality of the NE scheme for DM-DBCs

The NE scheme for the discrete multiplicative DBC is shown in Fig. 5.3. W1 is

the message for User 1 who sees the better channel TY X and W2 is the message for

User 2 who sees the worse channel TZX . The NE scheme is first to independently

encode these two messages into two codewords X1 and X2 respectively, and then

to broadcast X which is obtained by applying the single-letter multiplication

function X = X2 ⊗ X1 on symbols of codewords X1 and X2. The distribution

of X2 is constrained to be pX2
= (1 − q, quT )T for some q ∈ [0, 1] and hence

the distribution of the broadcast signal X also has pX = (1− q, quT )T for some

q ∈ [0, 1], which was proved to be the optimal input distribution for the discrete

multiplicative DBC. User 2 receives Z and decodes the desired message directly.

User 1 receives Y and successively decodes the message for User 2 and then for

User 1.

Let pX = (1− q, qpX̃)T be the distribution of the channel input X, where pX̃

is the distribution of sub-channel input X̃. For the discrete multiplicative DBC
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X → Y → Z,

φ(pX , λ) = hn+1(TZXpX)− λhn+1(TY XpX) (5.23)

= hn+1(


 1− q + qα2

q(1− α2)TZ̃X̃pX̃


)− λhn+1(


 1− q + qα1

q(1− α1)TỸ X̃pX̃


) (5.24)

= h(q(1− α2))− q(1− α2)hn(TZ̃X̃pX̃)

− λ (h(q(1− α1))− q(1− α1)hn(TỸ X̃pX̃)) (5.25)

= h(qβ2)− λh(qβ1) + qβ2(hn(TZ̃X̃pX̃)− λ

1− α∆

hn(TỸ X̃pX̃)), (5.26)

where β1 = 1− α1 and β2 = 1− α2.

For the sub-channel X̃ → Ỹ → Z̃, define φ̃(pX̃ , λ
1−α∆

) = hn(TZ̃X̃pX̃) −
λ

1−α∆
hn(TỸ X̃pX̃). Define ϕ(q, pX̃ , λ) as follows:

ϕ(q, pX̃ , λ) = h(qβ2)− λh(qβ1) + qβ2ψ̃(pX̃ ,
λ

1− α∆

), (5.27)

where ψ̃ is the lower envelope of φ̃(pX̃ , λ
1−α∆

) in pX̃ . With this definition,

note that ψ(pX , λ), the lower envelope of φ(pX , λ), is also the lower envelope

of ϕ(q, pX̃ , λ).

Lemma 12. ψ((1− q, quT )T , λ), the lower envelope of φ(pX , λ) in pX at pX =

(1− q, quT )T is on the lower envelope of ϕ(q, u, λ) in q.

The proof is given in Appendix VII. Lemma 12 indicates that the lower en-

velope of φ(·, λ) at pX = (1− q, quT )T can be decomposed into two steps. First,

for any fixed q, the lower envelope of φ(pX , λ) in pX̃ is ϕ(q, pX̃ , λ). Second, for

pX̃ = u, the lower envelope of ϕ(q, u, λ) in q coincides with ψ(pX , λ), the lower

envelope of φ(pX , λ) in pX .

Now we state and prove that the NE scheme is optimal for the discrete mul-
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tiplicative DBC.

Theorem 12. The NE scheme with time sharing achieves the boundary of the

capacity region for the discrete multiplicative degraded broadcast channel.

Proof : Theorem 11 shows that the boundary of the capacity region for the

discrete multiplicative DBC can be achieved by using transmission strategies

with uniformly distributed X̃, i.e., the input distribution pX = (1−q, quT )T . For

pX = (1−q, quT )T , ψ((1−q, quT )T , λ) can be attained by the convex combination

of points on the graph of ϕ(q, u, λ). Since

ϕ(q, u, λ) = h(qβ2)− λh(qβ1) + qβ2ψ̃(u,
λ

1− α∆

), (5.28)

which is the sum of φ(q, λ) for the broadcast Z channel and q times the constant

β2ψ̃(u, λ
1−α∆

). Hence, by a discussion analogous to Section 6.1, ψ((1−q, quT )T , λ)

can be attained by the convex combination of 2 points on the graph of ϕ(q, u, λ).

One point is at q = 0 and ϕ(0,u, λ) = 0. The other point is at q = pλ, where pλ

is determined by ln(1− β2pλ) = λ ln(1− β1pλ).

Note that the point (0,0) on the graph of ϕ(q, u, λ) is also on the graph of

φ(pX , λ). By Theorem 6, the point (pλ, ϕ(pλ,u, λ)) is the convex combination

of n points on the graph of φ(pX , λ), which corresponds to the group-addition

encoding approach for the sub-channel X̃ → Ỹ → Z̃ because the group-addition

encoding approach is the optimal NE scheme for the group-additive DBC X̃ →
Ỹ → Z̃. Therefore, by Theorem 6, an optimal transmission strategy for the

discrete multiplicative DBC X → Y → Z has the NE structure as shown in

Fig. 5.4. Q.E.D.

If the auxiliary random variable U = 0, then the channel input X = 0. If U

is a non-zero symbol, then X = 0 with probability 1 − pλ. In the case where U
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Figure 5.4: The optimal transmission strategy for the discrete multiplicative
degraded broadcast channel

and X are both non-zero, X̃ can be obtained as X̃ = Ũ ⊕ Ṽ , where ⊕ is a group

operation equivalent to group addition in the group-additive degraded broadcast

sub-channel X̃ → Ỹ → Z̃, Ũ is uniformly distributed and Ṽ is an n-ary random

variable.

Since the NE scheme is optimal for discrete multiplicative DBCs, its achievable

rate region is the capacity region for discrete multiplicative DBCs. Hence, the

capacity region for the discrete multiplicative DBC in Fig. 5.1 is

c̄o
[ ⋃

pU=(1−q,quT )T ,pV ∈∆n+1

{
(R1, R2) : R2 ≤ H(U⊗V ⊗N2)−H(U⊗V ⊗N2|U)

R1≤H(U⊗V ⊗N1|U)−H(U⊗V ⊗N1|U⊗V )
}]

. (5.29)

5.4 Summary

This chapter combines the results of Chapter 3, Chapter 4, and the results of

the conditional entropy bound to prove that the NE scheme achieves the whole

boundary of the capacity region for discrete multiplicative DBC.
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CHAPTER 6

Explicit Capacity Region and Nonlinear Turbo

Coding for Two-User Broadcast Z Channels

The Z channel is the binary-asymmetric channel shown in Fig. 6.1(a). The ca-

pacity of the Z channel was studied in [32]. Nonlinear trellis codes were designed

to maintain a low ones density for the Z channel in [33] and parallel concatenated

nonlinear turbo codes were designed for the Z channel in [34]. Fig. 6.1(b) shows

a two-user broadcast Z channel.

Chapter 3 has already shown that the NE scheme achieves the whole boundary

of the capacity region for multi-user broadcast Z channels. This chapter, however,

provides an alternative proof without applying the conditional entropy bound F ∗

to show the optimality of the NE scheme for two-user broadcast Z channels. This

chapter also establishes an explicit expression of the capacity region for two-user

broadcast Z channels, and provides nonlinear-turbo codes that demonstrate a

X

Y1

1

0

1

a1

Y2

0
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}

0
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Figure 6.1: (a) Z channel. (b) Broadcast Z channel.
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low-complexity scheme that works close to the optimal boundary.

This chapter is organized as follows. Section 6.1 introduced definitions and no-

tation for broadcast channels. Section 6.2 provides the explicit expression of the

capacity region for the two-user broadcast Z channel and the proof that indepen-

dent encoding can achieve the optimal boundary of the capacity region. Section

6.3 presents nonlinear-turbo codes, designed to achieve the optimal boundary, and

Section 6.4 provides the simulation results. Section 7.8 delivers the summaries.

6.1 Definitions and Preliminaries

6.1.1 Degraded broadcast channels

The general representation of a discrete memoryless broadcast channel is given

in Fig. 6.2. A single signal X is broadcast to M users through M different

channels. Channel A2 is a physically degraded version of channel A1 and broad-

cast channel X → Y1, Y2 is physically degraded if p(y1, y2|x) = p(y1|x)p(y2|y1)

[35]. A physically degraded broadcast channel with M users is shown in Fig. 6.3.

Since each user decodes its received signal without collaboration, we only need to

consider the marginal transition probabilities p(y1|x), p(y2|x), · · · , p(yM |x) of the

component channels A1, A2, · · · , AM . Since only the marginal distributions affect

receiver performance, the stochastically degraded broadcast channel is defined in

[2] and [35].

Let A1 be a channel with input alphabet X , output alphabet Y1, and transi-

tion probability p1(y1|x). Let A2 be another channel with the same input alphabet

X , output alphabet Y2, and transition probability p2(y2|x). A2 is a stochastically
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Figure 6.2: Broadcast channel.

degraded version of A1 if there exists a transition probability q(y2|y1) such that

p2(y2|x) =
∑

y1∈Y1

q(y2|y1)p1(y1|x). (6.1)

A broadcast channel with receivers Y1, Y2 · · · , YM is a stochastically degraded

broadcast channel if every component channel Ai is a stochastically degraded

version of Ai−1 for all i = 2, · · · ,M [2]. Since the marginal transition probabili-

ties p(y1|x), p(y2|x), · · · , p(yM |x) completely determine a stochastically degraded

broadcast channel, we can model any stochastically degraded broadcast channel

as a physically degraded broadcast channel with the same marginal transition

probabilities.

Theorem 1 ([2] [3]). The capacity region for the two-user stochastically degraded

broadcast channel X → Y1 → Y2 is the convex hull of the closure of all (R1, R2)

satisfying

R2 ≤ I(X2; Y2) R1 ≤ I(X; Y1|X2), (6.2)

for some joint distribution p(x2)p(x|x2)p(y1, y2|x), where the auxiliary random

variable X2 has cardinality bounded by |X2| ≤ min {|X |, |Y1|, |Y2|}.
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Figure 6.3: Physically degraded broadcast channel.

6.1.2 The broadcast Z channel

The Z channel is a binary-asymmetric channel with Pr{y = 0|x = 1} = 0 (see

Fig. 6.1(a)). If symbol 1 is transmitted, symbol 1 is received with probability 1.

If symbol 0 is transmitted, symbol 1 is received with probability α and symbol

0 is received with probability 1 − α. We can consider a Z channel as the OR

operation of the channel input X and Bernoulli noise N with parameter α (see

Fig. 6.4(a)) and vice versa. In an OR Multiple Access Channel, each user equiv-

alently transmits over a Z channel when the other users are treated as noise [34].

Thus, in an OR network with multiple transmitters and multiple receivers, each

transmitter associated with more than one receivers sees a broadcast Z channel

if the other transmitters are treated as noise. The diagram of a two-user broad-

cast Z channel is shown in Fig. 6.1(b), where α2 ≥ α1. Because broadcast Z

channels are stochastically degraded, we can model any broadcast Z channel as

a physically degraded broadcast Z channel as shown in Fig. 6.4(b), where

α∆ =
α2 − α1

1− α1

. (6.3)

69



X

N

Pr(N=1)=

YOR

(a)

X Y1

1

Y2

1

0

1

0

(b)

Figure 6.4: (a) OR operation view of Z channel. (b) Physically degraded broad-
cast Z channel.

6.2 Optimal Transmission Strategy for the 2-User Broad-

cast Z Channel

Since the broadcast Z channel is stochastically degraded, its capacity region can

be found directly from Theorem 1. The capacity region for the broadcast Z

channel X → Y1 → Y2 (see Fig. 6.5) is the convex hull of the closure of all

(R1, R2) satisfying

R2 ≤ I2 = I(X2; Y2)

= H
(
(p2γ + q2q1)(1− α2)

)− p2H
(
γ(1− α2)

)− q2H
(
q1(1− α2)

)
, (6.4)

R1 ≤ I1 = I(X; Y1|X2)

= p2

(
H(γ(1− α1))− γH(1− α1)

)
+ q2

(
H(q1(1− α1))− q1H(1− α1)

)
,

(6.5)

for some probabilities q1, q2, γ, where q1 = p(x = 0|x2 = 0), q2 = p(x2 = 0),

γ = p(x = 0|x2 = 1), H(p) is the binary entropy function, p1 = 1−q1, p2 = 1−q2

and

α2 = Pr{y2 = 1|x = 0} = 1− (1− α1)(1− α∆). (6.6)

Each particular choice of (q1, q2, γ) in Fig. 6.5 specifies a particular transmis-
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Figure 6.5: Information theoretic diagram of the system.

sion strategy and a rate pair (I1, I2). We say that the optimal boundary of a

capacity region is the set of all Pareto optimal points (I1, I2), which are points

for which it is impossible to increase rate I1 without decreasing rate I2 or vice

versa. A transmission strategy is optimal if and only if it achieves a rate pair on

the optimal boundary. We say a set of transmission strategies is sufficient if all

rate pairs on the optimal boundary can be achieved by using these strategies and

time sharing. Furthermore, a set of transmission strategies is strongly sufficient if

these strategies can achieve all rate pairs on the optimal boundary without using

time sharing. (6.4) and (6.5) give a set of pentagons that yield the capacity region

through their convex hull, but do not explicitly show the optimal transmission

strategies or derive the boundary of the rate region.

6.2.1 Optimal transmission strategies

Theorem 2 identifies a set of optimal transmission strategies and provides an

explicit description of the boundary of the capacity region.

Theorem 2. For a broadcast Z channel with 0 < α1 < α2 < 1, the set of the

optimal transmission strategies (q1, q2, γ), which satisfy

γ = 0, (6.7)
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1

(1− α1)(eH(1−α1)/(1−α1) + 1)
≤ q1 ≤ 1, (6.8)

and

log(1− q1(1− α1))
(
H(q1(1− α2))− q1(1− α2) log

1− q2q1(1− α2)

q2q1(1− α2)

)

= log(1− q1(1− α2))
(
H(q1(1− α1))− q1H(1− α1)

)
, (6.9)

are strongly sufficient. In other words, all rate pairs on the optimal boundary of

the capacity region can be achieved by using exactly the transmission strategies,

described in (6.7-6.8), without the need for time sharing. Furthermore, applying

(6.7-6.9) to (6.4) and (6.5) yields an explicit expression of the optimal boundary

of the capacity region.

Before proving Theorem 2, we present and prove some preliminary results.

From (6.4) and (6.5), we can see that the transmission strategies (q1, q2, γ) and

(γ, 1− q2, q1) have the same transmission rate pairs. So we can assume γ ≤ q1 in

the rest of the section without loss of generality.

Theorem 3. For a broadcast Z channel with 0 < α1 < α2 < 1, any transmission

strategy (q1, q2, γ) with 0 < q2 < 1, 0 < γ < q1 is not optimal.

The proof is given in Appendix VIII.

Corollary 1. The set of all the transmission strategies with γ = 0 is sufficient

for any broadcast Z channel with 0 < α1 < α2 < 1.

Proof: From Theorem 3, we know that the transmission strategy (q1, q2, γ) is

optimal only if at least one of these four equations q2 = 0, q2 = 1, γ = q1, γ = 0 is

true. Hence the set of all the transmission strategies with q2 = 0, q2 = 1, γ = q1

or γ = 0 is sufficient. When q2 = 0, q2 = 1 or γ = q1, the transmission rate for
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the second user, I2 in equation (6.4), is zero. ( This optimal rate pair is the point

B in Fig. 6.6(a), which will see later.) Since this point can also be achieved by

the transmission strategy with γ = 0, q2 = 1 and q1 = arg max(H(x(1 − α1)) −
xH(1− α1)), all the optimal rate pairs on the optimal boundary of the capacity

region can be achieved by using the transmission strategies with γ = 0 and time

sharing. Thus, the set of all the transmission strategies with γ = 0 is sufficient.

From Corollary 1, we can set γ = 0 in Fig. 6.5 without losing any part of

the capacity region and so the designed virtual channel X2 → X is a Z channel.

Since we can consider the output of a Z channel as the OR operation of two

Bernoulli random variables, an independent encoding scheme that works well for

the broadcast Z channel will be introduced later in this chapter.

Applying γ = 0 to (6.4) and (6.5) yields

R2 ≤ I2 = H(q2q1(1− α2))− q2H(q1(1− α2)), (6.10)

R1 ≤ I1 = q2H(q1(1− α1))− q2q1H(1− α1). (6.11)

according to Corollary 1, the capacity region is the convex hull of the closure

of all rate pairs (R1, R2) satisfying (6.10) and (6.11) for some probability q1, q2.

Any optimal transmission strategy maximizes I1 + λI2 for some nonnegative λ.

In order to find the constraints on q1 and q2 for optimal transmission strategies,

we consider the following optimization problem: maximize I1 + λI2 for any fixed

λ ≥ 0. Theorem 4 provides the solution to this maximization.
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Theorem 4. The optimal solution to the maximization problem

maximize I1 + λI2 (6.12)

subject to I2 = H(q2q1(1− α2))− q2H(q1(1− α2))

I1 = q2H(q1(1− α1))− q2q1H(1− α1)

0 ≤ q2 ≤ 1, 0 ≤ q1 ≤ 1,

is unique and it is given below for any fixed λ ≥ 0.

Define

ϕ(x) =
log(1− (1− α1)x)

log(1− (1− α2)x)
, (6.13)

ψ(x) =
1

xeH(x)/x + x
. (6.14)

Case 1: if 0 ≤ λ ≤ ϕ(ψ(1 − α1)), then the optimal solution is q∗2 = 1, q∗1 =

ψ(1−α1), which satisfies (6.9), and the corresponding rate pair is I∗1 = H(q∗1(1−
α1))− q∗1H(1− α1), I

∗
2 = 0.

Case 2: if λ ≥ ϕ(1), then the optimal solution is q∗2 = ψ(1 − α2), q
∗
1 = 1, which

satisfies (6.9), and the corresponding rate pair is I∗1 = 0, I∗2 = H(q∗2(1 − α2)) −
q∗2H(1− α2).

Case 3: if ϕ(ψ(1 − α1)) < λ < ϕ(1), then the optimal solution satisfies (6.15)-

(6.16):

q∗1 = ϕ−1(λ) =
eλ − 1

eλ(1− α2)− (1− α1)
, (6.15)

log(1− q∗1(1− α1))
(
H(q∗1(1− α2))− q∗1(1− α2) log

1− q∗2q
∗
1(1− α2)

q∗2q
∗
1(1− α2)

)

= log(1− q∗1(1− α2))
(
H(q∗1(1− α1))− q∗1H(1− α1)

)
. (6.16)

The proof is given in Appendix IX. From cases 1,2 and 3, (q1, q2) is a maximizer
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of (6.12) if and only if the pair (q1, q2) satisfies (6.8) and (6.9). In other words,

if (q1, q2) doesn’t satisfy (6.8) or (6.9), (q1, q2) can not be a maximizer of (6.12)

and hence the transmission strategy (q1, q2, γ = 0) is not optimal. Since we have

proved Corollary 1, the set of all the transmission strategies which satisfy (6.7-

6.9) is also sufficient. Therefore the capacity region is the convex hull of the

closure of all rate pairs (R1, R2) satisfying (6.10) and (6.11) for some q1, q2 which

satisfy (6.8) and (6.9).

A sketch of a capacity region is shown with two upper bounds in Fig. 6.6(a).

From case 1 in Theorem 4, we can see that point B corresponds to the largest

transmission rate for the first user. The first upper bound is the tangent of the

achievable region in point B, and its slope is −1/ϕ(ψ(1− α1)). From case 2, we

show that point A provides the largest transmission rate for the second user. The

second upper bound is the tangent of the achievable region in point A, and its

slope is −1/ϕ(1). Case 3 gives us the optimal boundary of the achievable region

except points A and B.

Given α1 and α2, which completely describe a two-user degraded broadcast Z

channel, the optimal boundary of the capacity region can be explicitly described

using (6.8-6.11). The curve of the capacity region is described by the range of q1

from (6.8). The associated q2 values follow from (6.9). The curve of the capacity

region boundary is the set of (I1, I2) pairs resulting from using these q1 and q2

values in (6.10) and (6.11). For example, for α1 = 0.15 and α2 = 0.6, the range

of q1 values is 0.445 < q1 < 1 and the associated capacity region boundary is

plotted in Fig. 6.12.

Finally, we prove Theorem 2. Since we have proved that the set of all the

transmission strategies satisfying (6.7-6.9) is sufficient, we only need to show that

any rate pair on the optimal boundary of the capacity region can be achieved
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Figure 6.6: (a) The capacity region and two upper bounds. (b) Point Z can not
be on the boundary of the capacity region.
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Figure 6.7: Communication system for 2-user broadcast Z channel.

without using time sharing.

Proof by contradiction: Suppose the point Z in Fig. 6.6(b) is on the optimal

boundary of the capacity region for the broadcast Z channel and only can be

achieved by time sharing of points X and Y , which can be directly achieved by

using transmission strategies satisfying (6.7-6.9). Clearly, The slope of the line

segment XY is neither zero nor infinity. Suppose the slope of XY is −k, 0 < k <

∞, so points X and Y provide the same value of I1 + 1
k
I2. From Theorem 4, the

optimal solution to the maximization problem max(I1 + λI2) is unique, therefore

neither X nor Y maximizes (I1 + 1
k
I2). Thus, there exists an achievable point P

on the right upper side of the line XY and the triangle 4XY P is in the capacity

region. So the point Z must not be on the optimal boundary of the capacity

region (contradiction).
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Figure 6.8: Optimal transmission strategy for broadcast Z channels.

6.2.2 Independent encoding scheme

The communication system for the two-user broadcast Z channel is shown in

Fig. 6.7. In a general scheme, the transmitter jointly encodes the independent

messages W1 and W2, which is potentially quite complex. Theorem 2 demon-

strates that an independent encoding scheme can achieve the optimal boundary

of the capacity region. Since γ = 0 is strongly sufficient, the virtual channel

X2 → X is a Z channel. Thus, the broadcast signal X is the OR of two Bernoulli

random variable X1 and X2, which is an independently encoding scheme. The

system diagram of the independent encoding scheme is shown in Fig. 6.8. First

the messages W1 and W2 are encoded separately and independently. X1 and X2

are two binary random variables with Pr{Xj = 1} = pj and Pr{Xj = 0} = qj.

Thus pj + qj = 1, j = 1, 2. The transmitter broadcasts X, which is the OR of X1

and X2. From Theorem 2, this independent encoding scheme with any choice of

(q1, q2) satisfying (6.8) and (6.9) can achieve a rate pair (I1, I2) on the optimal

boundary of the capacity region.
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Figure 6.9: 16-state nonlinear turbo code structure, with k0 = 2 input bits per
trellis section.

6.3 Nonlinear-Turbo Codes for the Two-User Broadcast

Z Channel

In this section we show a practical implementation of the transmission strategy for

the two-user broadcast Z channel. As proved in Section 6.2, the optimal boundary

is achieved by transmitting the OR of the encoded data of each user, provided that

the density of ones of each of these encoded streams is chosen properly. Hence,

a family of codes that provides a controlled density of ones is required. We use

the nonlinear turbo codes, introduced in [34], to provide the needed controlled

density of ones. Nonlinear turbo codes are parallel concatenated trellis codes

with k0 input bits and n0 output bits per trellis section. A look-up table assigns

the output label for each branch of the trellis so that the required ones density

is achieved. Each constituent encoder for the turbo code in this chapter is a

16-state trellis code with k0 = 2 and the trellis structure shown in Fig. 6.9. The

output labels are assigned via a constrained search that provides the required

ones density for each case, using the tools presented in [34] for the Z Channel.

The output labels for the codes with rate pair (R1 = 1/6, R2 = 1/6), which is

simulated on a broadcast Z channel with α1 = 0.15, α2 = 0.6, are listed in Table

6.1.
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Table 6.1: Labeling for constituent trellis codes. Rates R1 = 1/6, R2 = 1/6.
Rows represent the state s1s2s3s4, columns represent the input u1u2. Labeling in
octal notation.

User 1 User 2
state input state input

00 01 10 11 00 01 10 11
0000 40 20 10 04 0000 07 34 62 51
0001 20 40 04 10 0001 34 07 51 62
0010 10 04 02 01 0010 25 16 43 70
0011 04 10 01 02 0011 16 25 70 43
0100 02 01 40 20 0100 61 13 54 26
0101 01 02 20 40 0101 13 61 26 54
0110 42 21 14 05 0110 23 15 52 64
0111 21 42 05 14 0111 15 23 64 52
1000 01 02 04 10 1000 70 43 16 25
1001 02 01 10 04 1001 43 70 25 16
1010 04 10 20 40 1010 51 62 34 07
1011 10 04 40 20 1011 62 51 07 34
1100 05 14 21 42 1100 64 52 15 23
1101 14 05 42 21 1101 52 64 23 15
1110 20 40 01 02 1110 26 54 13 61
1111 40 20 02 01 1111 54 26 61 13

1Y e

Decoder 2

Decoder 1 1X̂

2X̂

1Y�
Figure 6.10: Decoder structure for user 1.
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Figure 6.11: Perceived channel by each decoder.

Receiver 1 uses successive decoding as shown in Fig. 6.10. Denote as X̂2

the decoded stream corresponding to user 2. Since the transmitted data is x =

x1(OR)x2, whenever a bit x2 = 1, there is no information about x1, and x1 can

be considered an erasure. Hence, the input stream to Decoder 1 is

ŷ1 = e(y1, x̂2) =





y1 if x̂2 = 0,

e if x̂2 = 1.
(6.17)

Therefore, Decoder 2 sees a Z Channel with erasures as shown in Fig. 6.11.

The tools presented in [34] were general enough to be applied to the Z Channel

with erasures. Note that if α1 is much smaller than α2 we can use hard decoding

in Decoder 2 instead of soft decoding without any loss in performance. Since

the code for user 2 is designed for a Z Channel with 0-to-1 crossover probability

1− (1− α2)q1, and the channel perceived by Decoder 2 in user 1 is a Z-Channel

with crossover probability 1 − (1 − α1)q1 < 1 − (1 − α2)q1, the bit error rate of

x̂2 is negligible compared to the bit error rate of Decoder 1. In fact, in all the

simulations shown in Section 6.4, which include 100 frame errors of user 1, none

of the errors were produced by Decoder 2.
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α2 = 0.6 for receiver 1 and 2 respectively: achievable capacity region, simulated
rate pairs (R1, R2) and their corresponding optimal rates.

6.4 Results

We have simulated the transmission strategy for the two-user broadcast Z channel

with crossover probabilities α1 = 0.15 and α2 = 0.6, using nonlinear turbo codes,

with the structure shown in Fig. 6.9. Fig. 6.12 shows the achievable region of

the rate pairs (R1, R2) on this channel, and the simulated rate pairs. It also

shows the optimal rate pairs used to compute the ones densities of each code.

For each of these four simulated rate pairs, the loss in mutual information from

the associated optimal rate is only 0.04 bits or less in R1 and only 0.02 bits or

less in R2. Table 6.2 shows bit error rates for each rate pair, the ones densities p1

and p2, and the interleaver lengths K1 and K2 used for each code. For simplicity,

we chose K1 and K2 so that the codeword length n would be the same for user 1

and user 2, except for rate pairs R1 = 1/2 and R2 = 1/22, where one codeword

length of user 2 is twice the length of user 1.
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Table 6.2: BER for two-user broadcast Z channel with crossover probabilities
α1 = 0.15 and α2 = 0.6.

R1 R2 p1 p2 K1 K2 BER1 BER2

1/12 1/5 0.106 0.56 4800 1700 2.54× 10−5 1.24× 10−5

1/6 1/6 0.196 0.5 2048 2048 7.01× 10−6 5.33× 10−6

1/3 1/9 0.336 0.3739 4608 1536 7.13× 10−6 6.70× 10−6

1/2 1/22 0.463 0.1979 5632 1024 9.27× 10−7 3.27× 10−6

6.5 Summary

This chapter proves that the NE scheme achieves the whole boundary of the

capacity region for two-user broadcast Z channels without applying results of

the conditional entropy bound F ∗. In particular, the NE scheme for two-user

broadcast Z channels is to independently encode the message corresponding to

each user and transmit the binary OR of the encoded signals. This chapter also

establishes an explicit expression of the capacity region for two-user broadcast

Z channels, and provides the distributions of the outputs of each encoder that

achieve the optimal boundary. Nonlinear-turbo codes that provide a controlled

distribution of ones and zeros in their codewords were used to demonstrate a

low-complexity scheme that works close to the optimal boundary.
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CHAPTER 7

Minimizing Weighted Sum Download Time for

One-to-Many File Transfer in Peer-to-Peer

Networks

7.1 Background

Consider a scenario where millions of peers would like to download content from

a source node in the Internet. The source node has sufficient bandwidth to serve

tens or hundreds of receivers, but not millions. In the absence of IP multicast,

one solution is to form the source node and the peers into a P2P overlay network

and distribute the content using application layer multicast [36] [37]. In this

scenario, the content in the source node is partitioned into chunks. Peers not

only download chunks or coded chunks (e.g. a linear combination of multiple

chunks) from the source node and other peers but also upload to some other

peers that are interested in the content.

This chapter focuses on content distribution applications (e.g, BitTorrent [16],

Overcast [27]) in which peers are only interested in content at full fidelity, even if

it means that the content does not become available to all peers at the same time.

The key issue for these P2P applications is to minimize download times (delays)

to receivers. Since it usually takes several hours or days for a peer to download

content in full fidelity, our work is less concerned with interactive response times
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and transmission delays in buffers and in the network.

In order to understand the fundamental performance limit for one-to-many

file transfer in P2P networks, it is assumed that all nodes are cooperative, and a

centralized algorithm provides the file-transfer scenario with the full knowledge

of the P2P network including the source node’s uplink capacity , and the weights,

downlink capacities, and uplink capacities of peers. The cooperative assumption

holds in many practical applications, for example, in closed content distribution

systems where the programs are managed by a single authority.

P2P applications (e.g, [16], [17], [18], [19]) are increasingly popular and repre-

sent the majority of the traffic currently transmitted over the Internet. A unique

feature of P2P networks is their flexible and distributed nature, where each peer

can act as both a server and a client [20]. Hence, P2P networks provide a cost-

effective and easily deployable framework for disseminating large files without

relying on a centralized infrastructure [21]. These features of P2P networks have

made them popular for a variety of broadcasting and file-distribution applications

[21] [22] [23] [24] [25] [26] [27].

Specifically, chunk-based and data-driven P2P broadcasting systems such as

CoolStreaming [22] and Chainsaw [23] have been developed, which adopt pull-

based techniques [22], [23]. In these P2P systems, the peers possess several

chunks and these chunks are shared by peers that are interested in the same

content. An important problem in such P2P systems is how to transmit the

chunks to the various peers and create reliable and efficient connections between

peers. For this, various approaches have been proposed including tree-based and

data-driven approaches (e.g. [25] [38] [39] [40] [41] [42] [43]).

Besides these practical approaches, some research has begun to analyze P2P

networks from a theoretic perspective to quantify the achievable performance.
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The performance, scalability and robustness of P2P networks using network cod-

ing are studied in [36] [44]. In these investigations, each peer in a P2P network

randomly chooses several peers including the server as its parents, and also trans-

mits to its children a random linear combination of all packets the peer has re-

ceived. Random linear network coding [45] [46] [47], working as a perfect chunk

selection algorithm, makes elegant theoretical analysis possible. Some other re-

search investigates the steady-state behavior of P2P networks with homogenous

peers by using fluid models [48] [49] [50].

In a P2P file transfer application, the key performance metric from an end-

user’s point of view is the delay, or the time it takes for an end-user to download

the file. In [24], Li, Chou, and Zhang explore the problem of delivering the file to

all receivers in minimum amount of time (equivalently, minimizing the maximum

delay to the receivers) assuming node uplinks are the only bottleneck in the

network. They introduce a routing-based scheme, referred to as Mutualcast,

which minimizes the maximum delay to all receivers with or without helpers.

The uplink and downlink capacities of each peer are usually determined at

the application layer instead of the physical layer, because an Internet user can

have several applications that share the physical downlink and uplink capacities.

The peer weights depend on the applications. For broadcast applications such

as CoolStreaming [22] and Overcast [27]in which all peers in the P2P network

are interested in the same content, all peer weights in the content distribution

system can be set to 1. In multicast applications such as “Tribler” [51] peers

called helpers, who are not interested in any particular content, store part of the

content and share it with other peers. Assign weight zero to helpers, and weight

1 to receivers. In some applications, P2P systems partition peers into several

classes and assign different weights to peers in different classes.
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7.2 Introduction

This chapter considers the problem of minimizing weighted sum download time

(WSDT) for one-to-many file transfer in a peer-to-peer (P2P) network. Consider

a source node s that wants to broadcast a file of size B to a set of N receivers

i ∈ {1, 2, · · · , N} in a P2P network. Our model assumes that the source uplink

bandwidth constraint Us, the peer uplink bandwidth constraints Ui, and the

peer downlink bandwidth constraints Di are the only bottlenecks in the network.

Limited only by these constraints, every peer can connect to every other peer

through routing in the overlay network.

The general problem of minimizing WSDT divides into an exhaustive set of

cases according to three attributes. The first attribute is whether the allocation

of network resources is static or dynamic. In the static scenario, the network

resource allocation remains unchanged from the beginning of the file transfer

until all receivers finish downloading. The dynamic scenario allows the network

resource allocation to change as often as desired during the file transfer.

The second attribute is whether downlink bandwidth constraints are consid-

ered to be unlimited (i.e. Di = ∞) or not (i.e.Di ≤ ∞). Most research in P2P

considers the download bandwidth constraints to be unlimited because the up-

link capacity is often several times smaller than the downlink capacity for typical

residential connections (e.g., DSL and Cable). However, consideration of down-

link bandwidth constraints can be important. The downlink capacity can still

be exceeded when a peer downloads from many other peers simultaneously, as in

the routing-based scheme proposed in [28].

The third attribute is whether we consider the special case of sum download

time (i.e. Wi = 1 for all i) or the general case of weighted sum download time
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which allows any values of the weights Wi.

With these cases in mind, here is an overview of the results presented in this

chapter. For the static scenario that considers download bandwidth constraints

Di ≤ ∞ and allows any values of Wi Section 7.3 uses a time-expanded graph and

linear network coding to show that the minimum WSDT and the correspond-

ing allocation of network resources may be found in polynomial time by solving

a convex optimization problem. We also present a lower bound on minimum

WSDT that is easily computed and turns out to be tight across a wide range of

parameterizations of the problem.

While the minimum WSDT for the static scenario may be found in polynomial

time using the approach of Section 7.3, that approach is sufficiently computation-

ally intensive that Sections 7.4 and 7.5 provide lower complexity alternatives. In

some cases, the lower complexity approaches are exactly optimal. For the re-

maining cases, the lower bound of Section 7.3 shows that their performance is

indistinguishable from the lower bound and hence closely approach optimality

across a wide range of parameterizations.

Sections 7.4 and 7.5 build on the foundation of the Mutualcast algorithm [24].

Mutualcast is a static rate allocation algorithm designed to minimize the maxi-

mum delay to all peers in the case where Di = ∞. Section 7.3 concludes by show-

ing that Mutualcast achieves that section’s lower bound when Wi = 1 for all i

and therefore minimizes sum download time as well as maximum download time.

Inspired by this result, Section 7.4 proposes a generalization of this algorithm,

Extended Mutualcast, that minimizes sum download time even when the down-

load bandwidth constraints Di are finite and distinct from each other. When

uplink bandwidth resources are plentiful, Extended Mutualcast also minimizes

weighted sum download time regardless of weights because each receiver is down-
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loading content as quickly as possible given its download bandwidth constraint

and the upload bandwidth constraint of the source.

It is notable that Mutualcast and Extended Mutualcast achieve their opti-

mal results while utilizing only depth-1 and depth-2 trees. Inspired by this fact

and the technique of rateless coding, Section 7.5 attacks the general problem of

minimizing weighted sum download time(WSDT) by proposing a convex opti-

mization approach that assumes only trees of depth one or two. Then, Section

7.5 proposes a simple water-filling approach using only depth-1 and depth-2 trees.

While the optimality of this approach is not proven, Section 7.5.5 shows that its

performance matches that of the lower bound of 7.3 for a wide variety of param-

eterizations. Thus this water-filling approach provides a simple algorithm that

empirically achieves the lower bound on WSDT for all cases of the static scenario

across a wide range of parameterizations.

Turning our attention to the dynamic scenario, Wu et al. [28] demonstrate

that given an order in which the receivers finish downloading, the dynamic allo-

cation (neglecting downlink bandwidth constraints) that minimizes WSDT can

be obtained in polynomial time by convex optimization and can be achieved

through linear network coding. They also propose a routing-based scheme which

has almost-optimal empirical performance and demonstrate how to significantly

reduce the sum download time at the expense of a slight increase in the maximum

download time.

Dynamic schemes can reduce the minimum sum download time to approxi-

mately half that of the static case, at least when downlink capacities are con-

sidered to be infinite [28]. Essentially, [28] shows that to optimize WSDT the

network resource allocation should remain constant during any “epoch”, a pe-

riod of time between when one receiver finishes downloading and another finishes
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downloading. Thus, one optimal solution for the dynamic scenario is “piecewise

static”. However, [28] leaves the proper selection of the ordering as an open prob-

lem and does not address the finite downlink capacities Di < ∞ or the general

case of weighted sum download time which allows any values of the weights Wi.

Section 7.6 provides a practical solution for the dynamic scenario. Specifically,

it provides an approach the ordering problem left open by [28] by reformulating

the problem as that of determining the weights that should be assigned during

each static epoch so as to produce the piecewise static solution that minimizes

the WSTD (according to the original weights). This approach handles both finite

downlink capacities Di < ∞ and the general case of weighted sum download

time which allows any values of the weights Wi. A key result of this section

is that, regardless of how the overall weights Wi are set, the “piecewise static”

solution may be obtained by finding the appropriate weights for each epoch and

solving the static problem for that epoch. Furthermore, during any epoch the

appropriate weights of all peers are either 1 or zero with the exception of at

most one ”transitional” peer whose weight can be anywhere between zero and 1.

Neglecting the ”transitional” node, the ordering problem becomes approximately

one of choosing which peers should be served during each epoch. Having resolved

the ordering problem in this way, the simple water-filling approach of Section 7.5

provides the rate allocations for the source and for each peer during each of the

piecewise-static epochs. Thus this section provides a complete solution for the

dynamic scenario. Because the selection of the ordering and the rate allocation

are both close to optimal, we conjecture that the overall performance of this

solution is close to optimal across a wide range of parameterizations.

Section 7.8 delivers the conclusions of this chapter.
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7.3 Convex Optimization of WSDT in the Static Case

This section considers static P2P network in which the source node with uplink

bandwidth Us seeks to distribute a file of size B so as to minimize the weighted

sum of download times given a static allocation of resources. No peer leaves or

joins during the file transfer. There are N peers who want to download the file

that the source node has. Each peer has weight Wi, downlink capacity Di and

uplink capacity Ui, for i = 1, 2, · · · , N . It is reasonable to assume that Di ≥ Ui

for each i = 1, · · · , N since it holds for typical residential connections (e.g., Fiber,

DSL and Cable). In case of Di < Ui for some i, we just use peer i’s part of the

uplink capacity which equals to its downlink capacity and leave the rest of the

uplink capacity unused.

Denote the transmission rate from the source node to peer j as rs→j and the

transmission rate from peer i to peer j as ri→j. The total download rate of peer

j, denoted as dj, is the summation of rs→j and ri→j for all i 6= j. Since the total

download rate is constrained by the downlink capacity, we have

dj = rs→j +
∑

i6=j

ri→j ≤ Dj (7.1)

for all j = 1, · · · , N . As a notational convenience, we also denote rj→j as the

transmission rate from the source node to peer j so that

dj =
N∑

i=1

ri→j ≤ Dj (7.2)

for all j = 1, · · · , N . The total upload rate, denoted as uj, is constrained by the

uplink capacity. Hence, we also have uj =
∑

i6=j rj→i ≤ Uj for all j = 1, · · · , N .

One example of the peer model is shown in Fig. 7.1. The downlink capacity
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Figure 7.1: The peer model

and uplink capacity of peer 1 are D1 and U1 respectively. Thus, the total down-

load rate rs→1 +
∑4

i=2 ri→1 =
∑4

i=1 ri→1 has to be less than or equal to D1, and

the total upload rate
∑4

i=2 r1→i has to be less than or equal to U1.

7.3.1 The Time-Expanded Graph

As one of the key contributions of [28], Wu et al. used a time-expanded graph

to show how the dynamic scenario decomposes into epochs. This section applies

the time-expanded graph approach provided in [28] to the static case.

To obtain the time-expanded graph for a P2P network with N peers, we need

to divide the time into N epochs according to the finishing times of the peers.

One peer finishes downloading at the end of each epoch so that the number of

epochs is always equal to the number of peers. Let ∆ti denote the duration of

the i-th epoch. Hence, i receivers finish downloading by time ti =
∑i

k=1 ∆tk. If

peers i and i + 1 finish downloading at the same time, ∆ti+1 = 0.

Each vertex in the original graph G corresponds to N vertices, one for each

epoch, in the time-expanded graph G(N) as follows: We begin with the original

P2P graph G with node set V = {s, 1, · · · , N} and allowed edge set E. For each

v ∈ V and each n ∈ {1, · · · , N}, G(N) includes a vertex v(n) corresponding to
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the associated physical node v in the n-th epoch. For each e ∈ E going from u

to v and each n ∈ {1, · · · , N}, G(N) includes an edge e(n) going from u(n) to v(n)

corresponding to the transmission from u to v during the n-th epoch.

The subgraph G(n) = (V (n), E(n)) for n = 1, · · · , N characterizes the network

resource allocation in the n-th epoch. To describe a rate allocation in the original

graph G, edges are typically labeled with the rate of information flow. However,

since each epoch in the time-expanded graph G(N) has a specified duration, each

of the N edges in the time-expanded graph corresponding to an edge in G is

labeled with the total amount of information flow across the edge during its

epoch. This is the product of the flow rate labeling that edge in the original

graph G and the duration of the epoch.

The time-expanded graph also includes memory edges. For each v ∈ V and

each n ∈ {1, · · · , N − 1}, there is an edge with infinite capacity from v(n) to

v(n+1). These memory edges reflect the accumulation of received information by

node v over time.

As just described, the time-expanded graph not only describes the network

topology, but also characterizes the network resource allocation over time until

all peers finish downloading in a P2P network. As shown in [28] by Wu et al.,

even in the dynamic scenario the network resource allocation can remain static

throughout each epoch without loss of optimality. In this section, we apply the

time-expanded graph to the static scenario in which the rate allocation remains

fixed for the entire file transfer.

As an example, consider the following scenario. A P2P network contains a

source node seeking to disseminate a file of unit size (B = 1). Its upload capacity

is US = 2. There are three peers {1, 2, 3} with upload capacities U1 = U2 = U3 =

1 and download capacities D1 = D2 = D3 = ∞.
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Fig. 7.2 gives one possible static rate allocation, showing the allocated rate

for each edge of the original P2P graph G. (Edges with zero allocated rate are

not shown.) The source node transmits with a rate of 1 to peer 1 and with rate

1/2 to peers 3 and 4. Peer 1 transmits with rate 1 to peer 2 but does not transmit

to any other peers. Peers 2 and 3 transmit with rate 1/2 to Peer 1, but do not

transmit to any other peers.

Fig. 7.3 shows the time-expanded graph induced by the static rate allocation

shown in Fig. 7.2. Because there are three peers, this time-expanded graph has

3 epochs. The peers are numbered in the order they finish downloading; peer 1

finishes first followed by peer 2 and then peer 3. The first epoch lasts ∆t1 = 1/2

time units, the second epoch lasts ∆t2 = 1/6 time units, and the third epoch

lasts ∆t3 = 4/3 time units.

Peer 1 finishes first because it sees the full upload capacity of the source. As

shown in Fig. 7.2 it sees rate 1 directly from the source. The other half of the

source upload capacity is relayed to peer 1 by peers 2 and 3 immediately after

they receive it. Hence peer 1 receives information with an overall rate of r1 = 2

and finishes downloading the entire file, which has size B = 1 at time t1 = 1/2.

As a result, the duration of the first epoch is ∆t1 = 1/2.

Peer 2 sees rate 1/2 directly from the source and rate 1 relayed to peer 2

by peer 1. Hence it sees an overall upload capacity of r2 = 3/2 and finishes

downloading the entire file at time t2 = 2/3. The duration of the second epoch

can be computed as t2 − t1 = 1/6.

Because it receives no help from the other two peers, peer 3 sees an overall

upload rate of only r3 = 1/2, which it receives directly from the source. It finishes

downloading the entire file at time t3 = 2. The duration of the third epoch can

be computed as t3 − t2 = 4/3.
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The sum of the download times for the example of Figs. 7.2 and 7.3 is 1/2 +

2/3 + 2 = 3 1/6 . Now let’s consider an example that minimizes the sum of the

download times and in which peers finish at the same time.

Fig. 7.4 shows the rate allocation that achieves the minimum possible sum

of download times for a static allocation in this scenario, which turns out to be

1 4/5. The allocation shown in Fig. 7.4 is perfectly symmetric. Each peer receives

rate 2/3 directly from the source and rate 1/2 from each of the two other peers.

Each peer receives an overall rate of 5/3. Hence all three peers finish downloading

simultaneously at t = 3/5 and the second and third epochs have zero duration.

7.3.2 Transmission Flow Vectors and a Basic Network Coding Result

In Subsection 7.3.1 there was a tacit assumption that all of the information

received by a peer is useful. For example, we assumed that the information

relayed from peer 2 to peer 1 did not repeat information sent from the source

to peer 1. In the examples of Subsection 7.3.1, one can quickly construct simple

protocols that ensure that no critical flows are redundant. In this subsection,

we review a general result that uses network coding theory to show that there is
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always a way to ensure that no critical flows are redundant.

Consider a general graph G = (V, E), which could be either a rate-allocation

graph G such as Figs. 7.2 or 7.4 or a time-expanded graph such as G3 described in

Figs. 7.3 and 7.5. Denote c(e) as the capacity of the edge e ∈ E. A transmission

flow from the source node s to a destination node i is a nonnegative vector f

of length |E| satisfying the flow conservation constraint: excessv(f) = 0,∀v ∈
V \{s, i},where

excessv(f) =
∑

e∈In(v)

f(e)−
∑

e∈Out(v)

f(e). (7.3)

The total flow supported by f is
∑

e∈Out(s) f(e). This “flow” could be a flow

rate with units of bits per unit time if we are considering a rate allocation graph

such as Fig. 7.2 or it could be a total flow with units of bits or packets or files if

we are considering a time-expanded graph such as Fig. 7.3.

As an example, the flow vector f describing the flow in Fig. 7.3 from S(1) (the

source in the first epoch) to destination node 2(2) (peer 2 in the second epoch,

when peer 2 finishes downloading) has the nonzero elements f(e) shown in Table

7.1. Examining Table 7.1 verifies that the flow conservation constraint (7.3) is

satisfied and that the total flow supported is equal to 1 file.
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Table 7.1: Table showing nonzero elements f(e) for the flow vector f from S(1)

to 2(2) in Fig. 7.3.

e f(e)

S(1) → 2(1) 1/4

S(1) → 1(1) 1/2

1(1) → 2(1) 1/2

2(1) → 2(2) 3/4

S(1) → S(2) 1/4

S(2) → 2(2) 1/12

S(2) → 1(2) 1/6

1(2) → 2(2) 1/6

The following lemma states that a given fixed flow (or flow rate) can be

achieved from the source to all destinations as long as there is a feasible flow

vector supporting the desired flow from the source to each destination. i.e. We

can achieve this flow to all destinations with network coding without worrying

about possible interactions of the various flows..

Lemma 1. (Network Coding for Multicasting [45] [46]) In a directed

graph G = (V, E) with edge capacity specified by a vector c , a multicast session

from the source node s to a set of receivers i ∈ {1, . . . , N} can achieve the same

flow r for each i ∈ {1, . . . , N} if and only if there exits a set of flows {fi} such

that

c ≥ max
i

fi (7.4)

where fi is a flow from s to i with flow r. Furthermore, if (7.4) holds, there exists

a linear network coding solution.
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7.3.3 A Convex Optimization

Given an order in which the peers will finish downloading, say peer i finishes at

the end of the ki-th epoch, applying Lemma 1 to the time-expanded graph G(N)

with the set of destination nodes i ∈ {1, . . . , N} gives a characterization of all

feasible downloading times, as concluded in the following lemma.

Lemma 2. Lemma: (Feasible Downloading Times with Given Order

[28]) Consider a P2P network in which node Di = ∞. Given an order in which

the nodes will finish downloading a file with size B, say node i finishes at epoch

ki, a set of epoch durations ∆ti is feasible if and only if the following system of

linear inequalities has a feasible solution:

∆ti ≥ 0, i = 1, · · · , N, (7.5)

g ≥ fi, i = 1, · · · , N, (7.6)
∑

v:u(i)→v(i)

gu(i)→v(i) ≤ cu∆ti, ∀u ∈ V, i = 1, · · · , N, (7.7)

where cu is the uplink capacity of peer u, and fi is a flow from first-epoch source

node s(1) to node i’s termination-epoch node i(ki) with flow rate B.

As an example, the epoch durations of Fig. 7.3 are feasible because each of the

flow vectors (one example was given in Table 7.1) satisfy the feasibility constraints

of Lemma 2.

Let tj denote the delay to peer j for j = 1, · · · , N . Given a static network

resource allocation ri→j, (i, j ∈ {1, · · · , N}) as shown for example in Fig. 7.2,

the maximum flow to peer j, denoted as rj, is equal to the minimum cut between

source node s and peer j in the rate-allocation graph (i.e. a graph such as

Fig. 7.2, not the time-expanded graph). This follows from the Max-Flow-Min-
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Cut Theorem. Hence, tj ≥ B
rj

,∀j.

From applying network coding results such as Lemma 1 to the rate alloca-

tion graph alone, we cannot conclude much about feasible download times since

Lemma 1 addresses only the feasibility of the same flow to all destinations. How-

ever, by applying Lemma 1 to the time-expanded graph we can show that tj = B
rj

can be achieved simultaneously for all j = 1, · · · , N . Lemma 3 below states this

result.

Lemma 3. Given a static network resource allocation ri→j, (i, j = 1, · · · , N),

for a P2P network, the only Pareto optimal (smallest) delay vector is tj = B
rj

for

j = 1, · · · , N , where rj is the minimum cut from the source node s to peer j.

Proof. It has been shown that tj ≥ B
rj

for j = 1, · · · , N . Hence, it is sufficient

to show that tj = B
rj

for j = 1, · · · , N is achievable. Without loss of generality,

assume that r1 ≥ r2 ≥ · · · ≥ rN > 0. Construct a static scheme (i.e. a time-

expanded graph G(N)) as follows:

(1) ∆ti = B
ri
− B

ri−1
, where r0 , ∞;

(2) Flow capacity of edge i(k) → j(k) is ri→j∆tk for 1 ≤ i 6= j ≤ N and

k = 1, · · · , N ;

(3) Flow capacity of edge s(k) → j(k) is rs→j∆tk for j, k = 1, · · · , N ;

(4) Flow capacity of edge j(k) → j(k+1) is infinity for j = 1, ·, N and k =

1, · · · , N − 1;

(5) The destination nodes in the time-expanded graph are node i(i) for i =

1, · · · , N . In other words, peer i finishes at the end of i-th epoch.

According to the constructions (1) and (5), the delay to peer i is ti =
∑i

k=1 ∆tk =

B
ri

. According to the constructions (2) and (3), in the subgraph G(k), the maxi-

mum flow from s(k) to i(k) is equal to ri∆tk for all i, k = 1, · · · , N . Therefore, in

this time-expanded graph G(N), the maximum flow from source node s to node
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i(i) is greater than or equal to

i∑

k=1

ri∆tk = B.

Therefore, by Lemma 1 and Lemma 2, there exists a linear network coding solu-

tion to multicast a file with size B from the source node s to peer i within delay

ti = B
ri

for all i = 1, · · · , N .

The maximum flow ri can be found by solving a linear optimization. Specifi-

cally, a set of flow rates {ri}N
i=1 is feasible if and only if there exists a solution to

the following system of linear inequalities:

ri→j ≥ 0, ∀i, j = 1, · · · , N ; (7.8)

N∑
i=1

ri→i ≤ Us; (recall that ri→i , rs→i) (7.9)

N∑

j=1,j 6=i

ri→j ≤ Ui, ∀i = 1, · · · , N ; (7.10)

N∑
j=1

rj→i ≤ Di, ∀i = 1, · · · , N ; (7.11)

0 ≤ f
(k)
i→j ≤ ri→j,∀i, j, k = 1, · · · , N ; (7.12)

f
(k)
k→j = 0, ∀j 6= k; (7.13)

N∑
j=1

f
(k)
j→i =

N∑

j=1,j 6=i

f
(k)
i→j, ∀i 6= k; (7.14)

N∑
i=1

f
(k)
i→k ≥ rk, ∀k = 1, · · · , N, (7.15)

where ri→j (i, j = 1, · · · , N) represents the network resource allocation and f
(k)
i→j
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(i, j = 1, · · · , N) is a flow from the source node s to peer k.

By Lemma 3, the minimum WSDT is the solution to the convex optimization

of minimizing
∑N

i=1 WiB/ri subject to (7.8-7.15). Thus, we can conclude the

following theorem:

Theorem 1. Consider multicasting a file with size B from a source node s to

peers {1, · · · , N} in a P2P network with both uplink and downlink capacity limits.

The minimum weighted sum downloading time for the static scenario and the

corresponding optimal static allocation can be found in polynomial time by solving

the convex optimization of minimizing
∑N

k=1 WkB/ri subject to the constraints

(7.8-7.15).

Theorem 1 gives a solution to the most general static case that we are consid-

ering in this chapter. However, it can be extended further by adding other linear

network constraints (e.g. edge capacity constraints), which are not a concern of

this chapter.

7.3.4 The Uplink-Bandwidth-Sum Bound

For a P2P network with a source node and N peers, the convex optimization in

Theorem 1 has N3 +N2 +N variables and 2N3 +3N2 +N +1 linear constraints.

The complexity for the interior point method to solve this convex optimization

is O((N3)3.5) [52].

Even though the convex optimization can be solved in polynomial time, its

complexity is still too high for practical applications when N is large. Hence,

bounds on the minimum WSDT and static schemes having network resource al-

locations that may be computed with low complexity are desired. In this subsec-

tion, we provide an analytical lower bound to the minimum WSDT with O(N2)
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complexity for computing both the bound itself and the associated rate alloca-

tions.

Consider the cut of {V r i} → {i} for any static allocation ri→j i, j ∈
{1, · · · , N}, the maximum flow rate from the source node s to peer i, ri, is

limited by

ri ≤
N∑

j=1

rj→i ≤ Di, (7.16)

and

N∑
i=1

ri ≤
N∑

i=1

N∑
j=1

rj→i (7.17)

=
N∑

j=1

rj→j +
N∑

j=1

N∑

i=1,i 6=j

rj→i (7.18)

≤ Us +
N∑

j=1

Uj. (7.19)

Consider the cut of {s} → {1, · · · , N}, ri is also bounded by

ri ≤
N∑

j=1

rj→j ≤ Us. (7.20)

Inequalities (7.16) and (7.20) indicate that the downloading flow rate for peer i

is limited by peer i’s downlink capacity and the source node’s uplink capacity

respectively. These two constraints are not only valid for the static scenario but

also for dynamic scenarios.

Inequality (7.19) shows that the sum of the downloading flow rates for all

peers is bounded by the total amount of the network uplink resource. Again, this

constraint holds in both the static and dynamic cases.

These three constraints characterize an outer bound to the region of all feasible
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sets of {ri}N
i=1 satisfying (7.8 - 7.15). Therefore, for any static scheme, every set

of feasible flow rates {ri}N
i=1 must satisfy (7.16), (7.19) and (7.20). However, not

all {ri}N
i=1 satisfying (7.16), (7.19) and (7.20) are feasible.

Consider the following example: Let B = 1, US = 3, and U1 = U2 = U3 = 1

(with D1 = D2 = D3 = ∞), the downloading flow rates r1 = r2 = 3, r3 = 0

satisfies the constraints (7.16), (7.19) and (7.20), but are not feasible because

there is no solution to (7.8 - 7.15) with r1 = r2 = 3, r3 = 0, i.e., no static scenario

to support r1 = r2 = 3, r3 = 0 simultaneously. Specifically, for r1 + r2 = 6, all

upload capability must be deployed, including that of peer 3. However, since r3 =

0, any transmission by peer 3 would violate the conservation-of-flow constraint.

Because all feasible sets of {ri}N
i=1 satisfy (7.16) (7.19) and (7.20), the solution

to the following minimization problem provides a lower bound to the minimum

WSDT for the static scenario:

min
∑N

i=1 Wi
B
ri

subject to
∑N

i=1 ri ≤ Us +
∑N

i=1 Ui

0 ≤ ri ≤ D̃i , min(Di, Us),∀i = 1, · · · , N,

(7.21)

where only ri (i = 1, · · · , N) are the variables. Empirical experiments presented

in Section 7.5.5 show that this lower bound is tight for most P2P networks.

The minimization problem (7.21) is a convex optimization. Its optimal so-

lutions are also the solutions to the associated Karush−Kuhn−Tucker (KKT)
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conditions [52]. The KKT conditions for problem (7.21) are

−Wi · 1

r2
i

+ λ + µi = 0, i = 1, · · · , N ; (7.22)

N∑
i=1

ri − Us −
N∑

i=1

Ui ≤ 0, λ ≥ 0; (7.23)

ri − D̃i ≤ 0, µi ≥ 0; (7.24)

λ(
N∑

i=1

ri − Us −
N∑

i=1

Ui) = 0; (7.25)

µi(ri − D̃i) = 0, i = 1, · · · , N. (7.26)

Solving the KKT conditions yields the following optimal solution for {ri}:

r∗i =

{ √
Wi ·R, if

√
Wi ·R < D̃i

D̃i if
√

Wi ·R ≥ D̃i

, (7.27)

where R is chosen such that

N∑
i=1

r∗i = min(Us +
N∑

i=1

Ui,

N∑
i=1

D̃i). (7.28)

The lower bound to the WSDT for the static scenario is then

N∑
i=1

Witi ≥
N∑

i=1

Wi
B

r∗i
, (7.29)

with r∗i as specified in 7.27.

For the special case where Wi = 1 and Di = ∞ (i = 1, · · · , N), the solution

given in (7.27) becomes

r∗i = min(Us,
Us +

∑N
i=1 Ui

N
), (7.30)
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and the lower bound to the minimum WSDT is

N∑
i=1

ti ≥ NB

min(Us,
Us+

PN
i=1 Ui

N
)
. (7.31)

Mutualcast [24] was designed to minimize the maximum download time for

the case where Di = ∞. However, since Mutualcast can achieve the download

time of B

min(Us,
Us+

PN
i=1

Ui
N

)
for all peers, it achieves the lower bound of (7.29) for the

Wi = 1 case. This fact shows both that the lower bound of (7.29) is tight when

Wi = 1 and Di = ∞ and that Mutualcast minimizes sum download time as well

as the maximum download time when Di = ∞.

7.4 Mutualcast and Extended Mutualcast for the Equal-

Weight Static Case

The concluding paragraph of Section 7.3.4 stated that Mutualcast minimizes

the sum download time for the case where Di = ∞. In this section we extend

Mutualcast to provide an algorithm we call Extended Mutualcast that handles

finite constraints on Di (possibly delivering different rates to different peers) while

still minimizing the sum download time.

7.4.1 Mutualcast

Mutualcast delivers the same rate to every peer. Assuming Di = ∞, Mutualcast

can support peers with any rate R ≤ min(Us,
Us+

PN
i=1 Ui

N
). The key aspect of

Mutualcast is that the source first delivers bandwidth to each node according to

how much that node can share with all other peers. After that, if the source

has any upload bandwidth left over, it is divided evenly among all peers. This
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leftover rate goes serves only one peer; it is not relayed to any other peers. Thus

Mutualcast first forms a series of depth-two trees from the source to all nodes.

Then, if there is any source upload bandwidth left over, it is used to form a series

of depth-one trees. Here is a specification of the Mutualcast algorithm (without

considering helper nodes):

Algorithm 1 The Mutualcast Algorithm for Network Resource Allocation

1: Given broadcast rate R ≤ min(Us,
Us+

PN
i=1 Ui

N
).

2: Given an ordering of the peers. (Without loss of generality, assume the order
is 1, · · · , N .)

3: for i = 1 to N do
4: rs→i ← min(R, Ui/(N − 1)).
5: ri→j ← rs→i for j 6= i.
6: R ← R− rs→i.
7: Us ← Us − rs→i.
8: end for
9: rs→i ← rs→i + R.

Mutualcast delivers information to all peers at the same rate. As described

in Algorithm 1 the highest rate that Mutualcast can deliver is

R = min(Us,
Us +

∑N
i=1 Ui

N
). (7.32)

Consider two examples with ten peers, one in which R = Us and one in which

R =
Us+

PN
i=1 Ui

N
.

First an example where R = Us. Note that in general it is not possible for any

peer to receive information at a rate higher than Us. Let Us = 1, Ui = 1 for all ten

peers, and Di = ∞ for all ten peers. Mutualcast achieves R = Us = 1 by having

nine peers receive rate 1/9 from the source and forward at that rate to the nine

other peers. One peer receives no information directly from the source because by

the time the Mutualcast algorithm gets to that peer, the source upload bandwith
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has been used up.

For an example where R =
Us+

PN
i=1 Ui

N
a larger Us is necessary. Let Us = 10,

Ui = 1 for all ten peers and Di = ∞ for all ten peers. Mutualcast achieves

R =
Us+

PN
i=1 Ui

N
= 2. In the first part of the Mutualcast algorithm, all ten peers

receive rate 1/9 from the source and relay at that rate to the nine other peers. At

this point there remains 80/9 of source upload bandwidth, which is distributed

evenly so that each peer receives a rate of 8/9 directly from the source that it

does not relay. In total, each peer receives rate 2 which is comprised of rate 1

from other peers, rate 1/9 from the source that it relays to the other peers, and

rate 8/9 from the source that it does not relay.

The basic Mutualcast algorithm does not consider download constraints. The

slight modification of Mutualcast given below includes download bandwidth con-

straints Di in the simplest possible way. Note that if all peers are to receive at

the same rate, that rate must be less than the smallest download constraint. This

is reflected in line 1 of Algorithm 2.

Algorithm 2 The Mutualcast Algorithm with Download Bandwidth Constraints

1: Given broadcast rate R ≤ min
(
Us,

Us+
PN

i=1 Ui

N
, minj∈{1,...,N}(Dj)

)
.

2: Given an order of peers. (Without loss of generality, assume the order is
1, · · · , N .)

3: for i = 1 to N do
4: rs→i ← min(R, Di, Ui/(N − 1)).
5: ri→j ← rs→i for j 6= i.
6: R ← R− rs→i.
7: Us ← Us − rs→i.
8: Dj ← Dj − rs→i for j = 1, · · · , N .
9: end for

10: rs→i ← rs→i + R.

As with the original Mutualcast, Algorithm 2 delivers the same rate to every

peer. This alone is enough to prevent it from minimizes the sum download time
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in general when there are download constraints. However, it will turn out to be

an important component of Extended Mutualcast, which is an algorithm that

does minimize the sum download time under general download constraints.

7.4.2 Extended Mutualcast

Setting Wi = 1 for all i in (7.27) produces the following lower bound on the sum

download time when both upload and download constraints are considered:

N∑
i=1

B

r∗i
, (7.33)

where

r∗i =

{
R, if R < D̃i

D̃i if R ≥ D̃i

(7.34)

= min(R, Di, Us), (7.35)

where R is chosen such that

N∑
i=1

r∗i = min(Us +
N∑

i=1

Ui,

N∑
i=1

D̃i). (7.36)

This lower bound can be achieved by a routing-based scheme that we call Ex-

tended Mutualcast.

Consider a P2P network with constraints on peer uplink bandwidth and peer

downlink bandwidth. Without loss of generality, assume that D1 ≤ · · · ≤ DN .

Hence, D̃i ≤ · · · ≤ D̃N ≤ Us and r∗1 ≤ · · · ≤ r∗N . The network resource allocation

and the routing for Extended Mutualcast are provided in Algorithms 3 and 4

respectively.
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Algorithm 3 Network Resource Allocation for Extended Mutualcast

1: Calculate R and r∗i (i = 1, · · · , N) from (7.33-7.36).
2: Initialize network resource allocation ri→j ← 0.
3: if R ≤ D̃1 then
4: r∗i = R for all i = 1, · · · , N .
5: Apply Algorithm 2 with rate R to the network.
6: else if D̃j < R ≤ D̃j+1 for j ∈ {1, · · · , N − 1} then
7: r∗i = D̃i for i ∈ {1, · · · , j}.
8: r∗i = R for i ∈ {j + 1, · · · , N}.
9: for Step i = 1 to j do

10: Successively apply Algorithm 2 with rate D̃i − D̃i−1 (D̃0 , 0) to the
network with the source node s and the ordered peers {i, · · · , N}. Note
that with each successive application of Algorithm 2, the values of ri→j

accumulate.
11: end for
12: Step j + 1: Apply Algorithm 2 one final time with rate R − D̃j to the

network with the source node s and the ordered peers {j + 1, · · · , N}.
Again, the values of ri→j accumulate.

13: else if R ≥ D̃N then
14: r∗i = D̃i = Di for i = 1, · · · , N .
15: for Step i = 1 to N do
16: Successively apply Algorithm 2 with supporting rate D̃i − D̃i−1 to the

network with the source node s and the ordered peers {i, · · · , N}. Note
that with each successive application of Algorithm 2, the values of ri→j

accumulate.
17: end for
18: end if
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Algorithm 4 Routing Scheme for Extended Mutualcast

1: Given R and r∗i (i = 1, · · · , N) from (7.33-7.36).
2: Given the network resource allocation ri→j (i, j = 1, · · · , N) by Algorithm 3

where ri→i , rs→i ≥ ri→j. (This routing scheme is based on that network
resource allocation.)

3: Partition the whole file into many chunks.
4: if R ≤ D̃1 then
5: Apply the routing scheme of Mutualcast [24]. That is, for each i = 1, · · · , N

and some j 6= i, accumulatively route
ri→j

R
fraction of all chunks from the

source node to peer i, and then copy and route them from peer i to other
peers. Accumulatively route the rest of the chunks are from the source
node to all peers directly.

6: else if D̃j < R ≤ D̃j+1 for j = 1, · · · , N − 1. then

7: For k = 1, · · · , j, broadcast D̃k−D̃k−1

R
fraction of all chunks to peers

{k, · · · , N} by Mutualcast. Broadcast the rest of the chunks to peers
{j + 1, · · · , N} by Mutualcast.

8: Until peers {j + 1, · · · , N} finish downloading.
9: for Step i = j to 1 do

10: In Step i, the interesting chunks are those peer i hasn’t received.

11: For k = 1, · · · , i, accumulatively broadcast D̃k−D̃k−1

D̃i
fraction of the in-

teresting chunks to peers k, · · · , i by Mutualcast.
12: Until peer i finishes downloading.
13: Note that peers i + 1, · · · , N finish downloading before Step i.
14: Note that prior to Step i, none of the peers 1, · · · , i contain the interesting

chunks broadcast during Step i.
15: end for
16: else if R ≥ D̃N then
17: for Step i = N to 1 do
18: In Step i, the interesting chunks are those peer i hasn’t received.

19: For k = 1, · · · , i, accumulatively broadcast D̃k−D̃k−1

D̃i
fraction of the in-

teresting chunks to peers k, · · · , i by Mutualcast.
20: Until peer i finishes downloading.
21: end for
22: end if
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The network resource allocation for Extended Mutualcast (Algorithm 3) is

obtained by successively applying Algorithm 2 to the P2P network or part of the

P2P network. The network resource allocation by Algorithm 3 has rs→i ≥ ri→j

for all i, j. The flow rate to peer i, ri, is then equal to its download rate
∑N

j=1 rj→i.

The routing scheme for Extended Mutualcast (Algorithm 4) guarantees that the

entire flow rate ri is useful. For the Extended Mutualcast rate allocation, ri =

min(R, D̃i) so that the lower bound (7.33-7.36) on sum download time is achieved.

Theorem 2 formally states and proves this fact.

Theorem 2. (Minimum Sum Delay) Consider multicasting a file with size

B from a source node s to peers {1, · · · , N} in a P2P network with constraints on

peer uplink bandwidth and peer downlink bandwidth. The minimum sum download

time for the static scenario is
∑N

i=1
B
r∗i

, where r∗i , the flow rate to peer i, follows

from (7.33-7.36).

Proof. (Converse) From (7.33-7.36),
∑N

i=1
B
r∗i

is a lower bound on the minimum

sum download time. Hence, any sum download time less than
∑N

i=1
B
r∗i

is not

achievable.

(Achievability) It is sufficient to show that (a) Extended Mutualcast is applica-

ble to any P2P network, and (b) Extended Mutualcast provides a static scenario

in which the flow rate from the source node to peer i is r∗i of (7.33-7.36).

(To Show (a)) It is sufficient to show that in Algorithm 3, the rate for each

applied Algorithms 2 is attainable. In other words, each rate for the applied net-

work is less than or equal to the minimum of the source node’s uplink capacity

and the total uplink resource over all of the peers.

• If R ≤ D̃1, then R ≤ Us and R ≤ Us+
PN

i=1 Ui

N
. Hence, the rate R is attainable

for Algorithm 2 in Line 4, Algorithm 3.
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• If D̃j < R ≤ D̃j+1, consider the worst case of Di = R for i = j + 1, · · · , N

and Us = R. In this case, we have

r∗i = D̃i, i = 1, · · · , N ; (7.37)

Ui ≤ Di = D̃i, i = 1, · · · , j; (7.38)

D̃1 ≤ · · · ≤ D̃j < R = D̃j+1 = · · · = D̃N = Us; (7.39)

N∑
i=1

D̃i = Us +
N∑

i=1

Ui. (7.40)

Denote U
(i)
p as the total amount of the peers’ uplink resource used after Step

i, and U
(i)
s as the total amount of the source node’s uplink resource used

after Step i. For Step 1, D̃1 ≤ Us and D̃1 ≤
PN

i=1 D̃i

N
=

Us+
PN

i=1 Ui

N
. Hence,

Algorithm 2 in Step 1 is feasible. Suppose Algorithm 2 is feasible for Step 1

to Step n (1 ≤ n ≤ j). Then U
(i)
s = D̃i and U

(i)
p =

∑i
k=1 D̃k +(N−i−1)D̃i.

Hence,

U (i)
p ≥

i∑

k=1

D̃k =
i∑

k=1

Dk ≥
i∑

k=1

Uk, (7.41)

which indicates that Algorithm 2 for Step 1 to Step i fully deploys the

uplink resources of peers 1, · · · , i.

Now consider Algorithm 2 for Step n+1, the supporting rate is D̃n+1− D̃n.
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The source node’s uplink is R− D̃n. The total uplink resource is

Us +
N∑

i=1

Ui − (U (n)
s + U (n)

p ) (7.42)

=
N∑

i=1

D̃i − (
n∑

k=1

D̃k + (N − n)D̃n) (7.43)

=
N∑

k=n+1

(D̃i − D̃n) (7.44)

≥(N − n)(D̃n+1 − D̃n), (7.45)

where (7.43) follows from (7.40), and (7.45) follows from (7.39). Hence, the

rate D̃n+1 − D̃n is less than or equal to the total available uplink resource

(7.42) divided by the number of peers, N −n. We also can see that D̃n+1−
D̃n is less than or equal to the available source node’s uplink bandwidth,

R−D̃n. Therefore, Algorithm 2 for Step n+1 is also feasible. By induction,

Algorithm 2 is feasible for every step.

• If R ≥ D̃N , then

D1 ≤ · · · ≤ DN ≤ R ≤ Us; (7.46)

r∗i = Di = D̃i, i = 1, · · · , N ; (7.47)

N∑
i=1

r∗i =
N∑

i=1

Di ≤
N∑

i=1

Ui + Us. (7.48)

Consider the worst case of
∑N

i=1 Di =
∑N

i=1 Ui + Us. For this worst case,

Algorithm 2 in Line 14 is feasible following an argument similar to that for

the case of D̃j < R ≤ D̃j+1.

Therefore, Extended Mutualcast in Algorithm 3 is applicable to any P2P network.
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(To Show (b)) From Algorithms 2 and 3, Extended Mutualcast constructs a

static scenario with rs→i , ri→i ≥ ri→j for i, j = 1, · · · , N , and
∑N

j=1 rj→i ≥
min(R, D̃i) = r∗i . Hence, the maximum flow from the source node to peer i is

larger than or equal to

N∑

j=1,j 6=i

min(rs→j, rj→i) + rs→i (7.49)

=
N∑

j=1,j 6=i

rj→i + rs→i (7.50)

≥r∗i . (7.51)

Therefore, Extended Mutualcast provides a static scenario in which the flow rate

from the source node to peer i is r∗i of (7.33-7.36).

Theorem 2 showed that Extended Mutualcast minimizes the sum download

time for any static P2P network. When the total uplink bandwidth resource

is sufficiently abundant, Extended Mutualcast also minimizes the weighted sum

download time for any set of weights because all peers are downloading at their

limit of D̃i. Corollary 1 formally states and proves this fact.

Corollary 1. Consider multicasting a file with size B from a source node s to

peers {1, · · · , N} in a P2P network with constraints on peer uplink bandwidth

and peer downlink bandwidth. If Us +
∑N

i=1 Ui ≥
∑N

i=1 D̃i, the set of the flow

rates ri = D̃i (i = 1, · · · , N) is attainable. Hence, the minimum weighted sum

download time for the static scenario is
∑N

i=1 Wi
B
D̃i

for any given weights Wi.

Proof. (Achievability) Note that when Us +
∑N

i=1 Ui ≥
∑N

i=1 D̃i, r∗i of (7.33-

7.36) is equal to D̃i. By Theorem 2, Extended Mutualcast can achieve the down-

load rates r∗i = D̃i.
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(Converse) By Max-Flow Min-Cut Theorem, the maximum flow from source

node to peer i is limited by D̃i = min(Di, Us). Hence, any weighted sum down-

loading time less than
∑N

i=1 Wi
B
D̃i

is not achievable.

7.5 A Depth-2 Approach for the Minimizing Weighted

Sum Download Time

Section 7.4 provided a complete solution (Extended Mutualcast) for achieving the

minimum sum download time with constraints on both peer uplink bandwidth

and peer downlink bandwidth. That section concluded by showing that if the

total uplink resource is sufficiently abundant, Extended Mutualcast minimizes

WSDT for any set of weights. This section attacks the minimization of WSDT

more broadly.

Mutualcast and Extended Mutualcast construct only two types of trees to

distribute content. The first type is a depth-1 tree as shown in Fig. 7.6(a). The

source node s broadcasts content to all peers directly with rate r
(1)
s→i, i = 1, · · · , N .

The second type is a depth-2 tree as shown in Fig. 7.6(b). The source node

distributes content to peer i with rate r
(2)
s→i, and then peer i relays this content

to all other peers.

In Mutualcast, the rates r
(1)
s→i are constrained to be equal for all i. Also,

for a fixed i, r
(2)
s→i = ri→j for all j ∈ {1, · · · , N}; j 6= i. These constraints

on the network resource allocation simplify the mechanism design and allow a

simple routing-based scheme. These two constraints together ensure that each

peer downloads content at the same rate. However, to optimize WSDT peers

surely need to download content and different rates.

In Section 7.4 we saw that peers needed to download content at different rates
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Figure 7.6: The two tree sturctures used by Mutualcast and Extended Mutual-
cast: (a) Depth-1 tree; (b) Depth-2 tree.

to minimize the sum download time with peer downlink bandwidth constraints.

The Extended Mutualcast algorithm provided a way to serve the peers at different

rates corresponding to their download bandwidth constraints so as to minimize

the sum download time. However, Extended Mutualcast required successive ap-

plications of Mutualcast which led to a complicated routing protocol.

In order to serve peers at different rates to minimize WSDT and still maintain

a simple mechanism design, we apply the technique of rateless coding at the source

node. A rateless code is an erasure correcting code. It is rateless in the sense that

the number of encoded packets that can be generated from the source message

is potentially limitless [53]. Suppose the original file size is B packets, once the

receiver has received any B′ packets, where B′ is just slightly greater than B, the

whole file can be recovered.

Fountain codes [53], LT codes [54], and raptor codes [55] are rateless era-

sure codes. LT codes have linear encoding complexity and sub-linear decoding

complexity. Raptor codes have linear encoding and decoding complexities. The

percentage of the overhead packets goes to zero as B goes to infinity. In practice,

the overhead is about 5% for LT codes with file size B ' 10000 [53]. This sub-

section focuses on applying rateless erasure codes for P2P file transfer instead of
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designing rateless erasure codes. Hence, we assume the overhead of the applied

rateless erasure code is zero for simplicity. We note that if redundancy does not

need to be limitless, there are solutions that provide zero overhead [56].

7.5.1 The Rateless-Coding-Based Scheme

We propose a rateless-coding-based scheme that constructs the two types of trees

in Fig. 7.6 to distribute the content as did Mutualcast and Extended Mutualcast.

The source node first partitions the whole file into B chunks and applies a rate-

less erasure code to these B chunks producing a potentially limitless number of

chunks.

For the depth-1 tree, the source node broadcasts different rateless-coded

chunks directly to each peer. For the depth-2 trees, The source node sends dif-

ferent rateless-coded chunks to each peer, and then that peer relays some or all

of those chunks to other some or all of the other peers. A key point is that every

chunk transmitted by the source is different from every other chunk transmitted

by the source. This condition guarantees that all chunks received by a peer are

useful (because they are not a repetition of a previously received chunk). Hence,

a peer can decode the whole file as long as it receives B coded chunks.

The rateless-coding-based scheme allows peers to download content at differ-

ent rates with a simpler mechanism than the routing-based approach of Extended

Mutualcast. Peers don’t have to receive exactly the same chunks to decode the

whole file. Hence, the two types of tree structures can be combined as one tree

structure with depth 2, but without the constraint that the rate from the peer

to its neighbors has to equal the rate from the source to the peer.

The source node sends coded chunks to peer i with rate rs→i = r
(1)
s→i + r

(2)
s→i,

and peer i relays some of them to peer j (j 6= i) with rate ri→j ≤ rs→i. Note
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that the values of ri→j do not even need to be the same for a fixed value of i and

different values of j.

Another benefit of applying a rateless coding approach is that it is robust to

packet loss in the Internet if we allow some extra rate for each user.

Assuming rateless coding at the source node and constraining the P2P net-

work to include only depth-2 trees as discussed above, the network resource al-

location that minimizes WSDT can be obtained by solving the following convex

optimization problem.

min
∑N

i=1 Wi
B
ri

subject to 0 ≤ ri→j ≤ ri→i,∀i, j = 1, · · · , N,
∑N

i=1 ri→i ≤ Us,
∑N

j=1,j 6=i ri→j ≤ Ui,∀i = 1, · · · , N,

ri =
∑N

j=1 rj→i ≤ Di,∀i = 1, · · · , N,

(7.52)

where ri→i , rs→i. The complexity for the interior point method to solve this

convex optimization is O((N2)3.5) [52].

For the case of Wi = 1, Di = ∞, the optimal resource allocation is, of course,

the same as that of Mutualcast.

For the case of Wi = 1 and finite values of Di, Algorithm 3 provides an

optimal network resource allocation that certainly also solves 7.52. A key point

is that the routing of Algorithm 4 becomes unnecessary if the source employs

rateless coding. Peers need only relay the appropriate number of chunks to the

appropriate neighbors without worrying about which chunks are relayed.

For other cases, we provide a network resource allocation that we have not

proven to be optimal. We will see in Section 7.5.5 that its performance achieves
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the lower bound (7.29) across a wide range of parameterizations.

7.5.2 Resource Allocation for Networks with Di = ∞

Consider a P2P network in which peer uplink bandwidth is constrained but Di =

∞ for i = 1, · · · , N . If
∑N

i=1 Ui ≥ (N − 1)Us, then the resource allocation of

ri→j = UsUiPN
i=1 Ui

achieves the minimum WSDT with flow rates ri = Us for all

i = 1, · · · , N . (This is the case discussed at the end of Section 7.4.) Otherwise,

consider the following water-filling-type solution:

r̃i =

{ √
Wi ·R, if

√
Wi ·R < Us,

Us if
√

Wi ·R ≥ Us,
(7.53)

where R is chosen such that

N∑
i=1

r̃i = Us +
N∑

i=1

Ui −max
k

(r̃k). (7.54)

The potential suboptimality of this approach comes from the subtraction of

maxk(r̃k) on the right side of (7.54) which does not appear in (eq:ratesumforbound).

Note that when max(r̃k) ¿ Us +
∑N

i=1 Ui (this is true for large N), r̃i is close to

r∗i corresponding to the lower bound (7.27).

We now show that the proposed suboptimal network resource allocation en-

sures that the flow rate to peer i is larger than or equal to r̃i of (7.53). Hence,

the WSDT for the proposed suboptimal resource allocation is very close to the

lower bound to the minimum WSDT for large networks.
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First assign the rates for the depth-2 trees with

r
(2)
s→i = c

Ui max(r̃k)∑N
k=1 r̃k − r̃i

(7.55)

and

ri→j = c
Uir̃j∑N

k=1 r̃k − r̃i

, (7.56)

where c is chosen to be the largest possible value satisfying

N∑
i=1

r
(2)
s→i ≤ Us (7.57)

N∑

j=1,j 6=i

ri→j ≤ Ui. (7.58)

Plugging (7.55) (7.56) into (7.57) (7.58), and obtain

c = min(1,
Us

max(r̃k)α
), (7.59)

where α =
∑N

i=1
UiPN

k=1 r̃k−r̃i
.

If c = Us

α max(r̃k)
, then the depth-2 trees have already fully deployed the source

node’s uplink. The rate assignment for depth-2 trees is the network resource

allocation for the rateless-coding-based scheme.

If c = 1, then the depth-2 trees have fully deployed all peers’ uplinks, but

not the source node’s uplink. Hence, we can further deploy the rest of the source

node’s uplink to construct the depth-1 tree. After constructing the depth-2 trees,

the flow rate to peer i is

βi , r
(2)
s→i +

N∑

j=1,j 6=i

rj→i = αr̃i +
(maxk(r̃k)− r̃i)Ui∑N

k=1 r̃k − r̃i

.
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The rest of the source node’s uplink is

Us −
N∑

i=1

r
(2)
s→i = Us − α max(r̃k).

The optimal depth-1 tree can be obtained by the convex optimization

min
∑N

i=1 Wi
B
ri

subject to ri = βi + r
(1)
s→i,

r
(1)
s→i ≥ 0,∀i = 1 · · · , N,

∑N
i=1 r

(1)
s→i ≤ Us − α max(r̃k).

(7.60)

The optimal solution to the problem (7.60) is

ri =

{ √
Wi ·R, if

√
Wi ·R ≥ βi,

βi if
√

Wi ·R < βi,
(7.61)

and

r
(1)
s→i =

{ √
Wi ·R− βi, if

√
Wi ·R ≥ βi,

0 if
√

Wi ·R < βi,
(7.62)

where R is chosen such that
∑N

i=1 r
(1)
s→i = Us − α max(r̃k) (also

∑N
i=1 ri = Us +

∑N
i=1 Ui).

The complexity of calculating this suboptimal network resource allocation is

O(N2). Note that when Wi = 1 for all i = 1, · · · , N , this suboptimal network

resource allocation is the same as that of Mutualcast, and hence, this network

resource allocation is optimal for this case. For general weight settings, this

network resource allocation guarantees that the flow rate to peer i is larger than

or equal to r̃i, which is stated in the following theorem.

Theorem 3. For P2P networks with peer uplink constraints but no peer downlink
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constraints (i.e. Di = ∞), the network resource allocation determined by (7.55)

(7.56) (7.59) (7.61) and (7.62) ensures that the WSDT
∑N

i=1 WiB/ri is less than

or equal to the WSDT associated to (7.53), i.e.,
∑N

i=1 WiB/r̃i.

Proof. If c = Us

α max(r̃k)
, the flow rate to peer i is

ri = r
(2)
s→i +

N∑

j=1,j 6=i

rj→i (7.63)

= cαr̃i + c
(maxk(r̃k)− r̃i)Ui∑N

k=1 r̃k − r̃i

(7.64)

≥ cαr̃i (7.65)

=
Us

max(r̃k)
r̃i (7.66)

≥ r̃i, (7.67)

where (7.67) follows from r̃k ≤ D̃k ≤ Us. If c = 1, a feasible solution to problem

(7.60) is

r
(1)
s→i = (Us − α max(r̃k))

r̃i∑N
k=1 r̃k

.

For this feasible solution, the total flow rate to peer i with the depth-1 tree and

the depth-2 trees is

ri = βi + (Us − α max(r̃k))
r̃i∑N

k=1 r̃k

(7.68)

= (α + (Us − α max(r̃k))
1∑N

k=1 r̃k

)r̃i +
(max(r̃k)− r̃i)Ui∑N

k=1 r̃k − r̃i

. (7.69)
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Denote γ = α + (Us − α max(r̃k))
1PN

k=1 r̃k
. We have

Us +
N∑

i=1

Ui =
N∑

i=1

ri (7.70)

= γ

N∑
i=1

r̃i +
N∑

i=1

(max(r̃k)− r̃i)Ui∑N
k=1 r̃k − r̃i

(7.71)

≤ γ

N∑
i=1

r̃i +
N∑

i=1

max(r̃k)Ui∑N
k=1 r̃k

(7.72)

≤ γ

N∑
i=1

r̃i + max(r̃k) (7.73)

= γ(Us +
N∑

i=1

Ui −max(r̃k)) + max(r̃k). (7.74)

Some of these steps are justified as follows:

• (7.70) follows from the fact that all uplink resource is deployed;

• (7.72) follows from the inequality b−d
a−d

≤ b
a

when a ≥ b ≥ d ≥ 0;

• (7.73) follows from
∑N

k=1 r̃k = Us −max r̃k +
∑N

i=1 Ui ≥
∑N

i=1 Ui ≥ Ui.

Therefore, γ ≥ 1. Hence,

ri = γr̃i +
(max(r̃k)− r̃i)Ui∑N

k=1 r̃k − r̃i

≥ r̃i, (7.75)

which indicates that this feasible solution ri to the problem (7.60) provides a

WSDT less than or equal to
∑N

i=1 WiB/r̃i. Hence, the network resource allocation

determined by (7.55) (7.56) (7.59) (7.61) and (7.62) also provides a WSDT less

than or equal to
∑N

i=1 WiB/r̃i.
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7.5.3 Resource Allocation with Peer Downlink Constraints

Now we consider P2P networks with both peer uplink bandwidth constraints

and peer downlink bandwidth constraints. The idea of the resource allocation

for these P2P networks is the same as that for P2P networks without downlink

constraints. The details are provided as follows:

If Us+
∑N

i=1 Ui ≥
∑N

i=1 D̃i, from Corollary 1, Algorithm 3 provides the optimal

network resource allocation.

If Us +
∑N

i=1 Ui <
∑N

i=1 D̃i, consider a water-filling-type solution

r̃i =

{ √
Wi ·R, if

√
Wi ·R < D̃i,

D̃i if
√

Wi ·R ≥ D̃i,
(7.76)

where R is chosen such that
∑N

i=1 r̃i = Us +
∑N

i=1 Ui −max(r̃k).

First construct the depth-2 trees with rates in (7.55) and (7.56), where c is

still chosen to be the largest possible value. However, for general P2P networks,

the constraints on c are not only (7.57) (7.58), but also

βi , r
(2)
s→i +

N∑

j=1,j 6=i

rj→i ≤ D̃i. (7.77)

After constructing the depth-2 trees, the flow rate to peer i is βi. The used source

node’s uplink is cα max(r̃k). If cα max(r̃k) < Us, we can further use the rest of

the source node’s uplink to distribute content through the depth-1 tree. The

optimal resource allocation for the depth-1 tree can be obtained by the convex
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optimization

min
∑N

i=1 Wi
B
ri

subject to ri = βi + r
(1)
s→i,

r
(1)
s→i ≥ 0,∀i = 1 · · · , N,

ri ≤ D̃i,∀i = 1 · · · , N,
∑N

i=1 r
(1)
s→i ≤ Us − cα max(r̃k).

(7.78)

The optimal solution to the problem (7.78) is

ri =

{ √
Wi ·R, if βi ≤

√
Wi ·R ≤ D̃i,

βi if
√

Wi ·R < βi,

D̃i, if
√

Wi ·R > D̃i,

(7.79)

and

r̃
(1)
s→i = ri − βi, (7.80)

where R is chosen such that

N∑
i=1

ri = Us + c

N∑
i=1

Ui.

The complexity of calculating this resource allocation is O(N2).

7.5.4 Routing-Based Depth-2 Scheme

So far, this section has provided a family of rateless-coding-based schemes for

P2P file-transfer applications. In this subsection, we introduce a routing-based

scheme. This routing-based scheme is a further extension to Extended Mutual-

cast. This scheme also applies the tree structures in Fig. 7.6 to distribute content.
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The constraints on the network resource allocation for this scheme are

r
(1)
s→k1

≥ · · · ≥ r
(1)
s→kN

≥ 0, (7.81)

and

r
(2)
s→ki

≥ rki→k1 ≥ · · · ≥ rki→ki−1

≥ rki→ki+1
≥ · · · ≥ rki→kN

,∀i = 1, · · · , N, (7.82)

where (k1, · · · , kN) is the order in which the peers finish downloading. In the

rest of this section, we assume the order is (1, · · · , N) for simplicity. These

constraints are stricter than those of the rateless-coding-based scheme, and they

are introduced to simplify the routing scheme. In particular, given the order of

(1, · · · , N) in which peers finish downloading, the proposed routing-based scheme

ensures that at any time in the scheme, peer i has all packets received by peers

i + 1, · · · , N for all i = 1, · · · , N − 1. This condition is achievable if the network

resource allocation satisfies (7.81) and (7.82). For the routing-based scheme,

when peer i finishes downloading, the scheme starts to only broadcast the chunks

which peer i + 1 hasn’t received, called interesting chunks. With this condition,

the interesting chunks are also new to peers i + 2, · · · , N . The details of the

routing-based scheme is given in Algorithm 5.

The optimal network resource allocation for this routing-based scheme can be

obtained by the convex optimization of minimizing
∑N

i=1 WiB/ri subject to the

constraints (7.81) (7.82), nodes’ uplink and downlink constraints, and the flow

rate expression

ri =
N∑

j=1,j 6=i

rj→i + r
(1)
s→i + ri→i−1, i = 1, · · · , N,
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Algorithm 5 Routing-Based Scheme

1: Given the order in which the peers finish downloading. Assume the order is
(1, · · · , N) for simplicity.

2: Given the network resource allocation {ri→j, r
(1)
s→i, r

(2)
s→i} for i, j = 1, · · · , N ,

which satisfies the constraints (7.81) and (7.82).
3: Partition the whole file into many chunks.
4: for Step i = 1 to N do
5: At the beginning of Step i, peer 1, · · · , i finish downloading.
6: In Step i, only broadcast the chunks which peer i doesn’t have, called in-

teresting chunks. Note that all peers i, · · · , N don’t contain the interesting
chunks.

7: Distribute interesting chunks along the depth-1 tree and the depth-2 trees
according to the network resource allocation.

8: For the depth-1 tree , the set of chunks sent to peer i contains the set of
chunks sent to peer j for i < j.

9: For the depth-2 tree in Fig. 7.6(b), the set of chunks from peer i to peer
k contains the set of chunks from peer i to peer j for k > j. Peer i only
keeps the set of chunks sent to peer i− 1 for i = 2, · · · , N .

10: The above two chunk selection constraints guarantee that peers i, · · · , N
don’t contain the interesting chunks in Step i for i = 1, · · · , N .

11: Until peer i receives all interesting chunks and finishes downloading.
12: end for
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where r1→0 = r
(2)
s→1. The complexity for the interior point method to solve the

problem is O((N2)3.5). For Case I in which Wi = 1 and Di = ∞, the optimal

network resource allocation is the same as that of Mutualcast. For the case of

Wi = 1 or Us +
∑N

i=1 Ui ≥
∑N

i=1 D̃i, by Theorem 2 and Corollary 1, Algorithm 3

provides the optimal network resource allocation.

For general cases with Us +
∑N

i=1 Ui <
∑N

i=1 D̃i, we provide a suboptimal net-

work resource allocation for this routing-based scheme. Consider the water-filling-

type solution in (7.76). Without loss of generality, assume that r̃1 ≥ · · · ≥ r̃N ,

and give the ordering (1, · · · , N) in which the peers finish downloading. First

construct the depth-2 trees with rates in (7.55) and (7.56), where c is still cho-

sen to be the largest possible value satisfying (7.57) (7.58) and (7.77). After

constructing the depth-2 trees, the effective flow rate to peer i is

βi =
N∑

j=1,j 6=i

rj→i + ri→i−1 (7.83)

= c(αr̃i +
r̃i−1 − r̃i∑N
k=1 r̃k − r̃i

Ui), (7.84)

where r̃0 , r̃1. The download rate (used downlink) for peer i is c(αr̃i+
r̃1−r̃iPN

k=1 r̃k−r̃i
Ui).

Note that the effective flow rate is smaller than the download rate for peer i. This

is because peer i only keeps a subset of chunks received from the source node. For

this reason, parts of peer i’s downlink and the source node’s uplink are wasted.

The total amount of the wasted uplink is

Uw = c

N∑
i=1

r̃1 − r̃i−1∑N
k=1 r̃k − r̃i

Ui. (7.85)

The used source node’s uplink is cαr̃1. If cαr̃1 < Us, we can further use the rest

of the source node’s uplink to distribute content through the depth-1 tree. The
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constraints on the resource allocation for the depth-1 tree are (7.81),

r
(1)
s→i ≤ Di − βi,∀i = 1, · · · , N, (7.86)

and
N∑

i=1

r
(1)
s→i ≤ Us − cαr̃1. (7.87)

Let Ŵi = mink≤i(Wk). Let D̂i = mink≤i(Dk − βk). A sub-optimal network

resource allocation for the depth-1 tree is

r
(1)
s→i =

{
√

W̃i ·R− βi, if βi ≤
√

Wi ·R ≤ D̂i,

0 if
√

W̃i ·R < βi,

D̂i − βi, if
√

W̃i ·R > D̃i,

(7.88)

and ri = r
(1)
s→i + βi, where R is chosen such that

N∑
i=1

r
(1)
s→i = Us − cαr̃1

and also
N∑

i=1

ri = Us + c

N∑
i=1

Ui − Uw.

The complexity of calculating the suboptimal resource allocation for the routing-

based scheme is O(N2).

7.5.5 Simulations for the Static Scenario

This section provides the empirical WSDT performances of the rateless-coding-

based scheme, the routing-based scheme, and compares them with the lower

bound to the WSDT. In all simulations, the file size B is normalized to be 1.
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This section shows simulations for 6 cases of network settings as follows:

• Case I: Ui = 1, Di = ∞ for i = 1, · · · , N ;

• Case II: Ui = 1, Di = 8 for i = 1, · · · , N ;

• Case III: Ui = i/N , Di = ∞ for i = 1, · · · , N ;

• Case IV: Ui = i/N , Di = 8i/N for i = 1, · · · , N ;

• Case V: Ui = 1 + 9δ(i > N/2), Di = ∞ for i = 1, · · · , N ;

• Case VI: Ui = 1 + 9δ(i > N/2), Di = 8i/N , i = 1, · · · , N ;

where δ(·) is the indicate function.

Consider small P2P networks with N = 10 peers. The performances of sum

download time versus Us for these 6 cases are shown in Fig. 7.7. The performances

of WSDT versus Us with weight Wi = i/N (i = 1, · · · , N) are shown in Fig. 7.8.

The performances of WSDT versus Us with weight Wi = 1 + δ(i > N/2) (i =

1, · · · , N) are shown in Fig. 7.9. In all these simulations, the weighted sum

download times of the rateless-coding-based scheme and the routing-based scheme

achieve or almost achieve the lower bound.

Consider large P2P networks with N = 1000 peers. The performances of

sum download time versus Us for these 6 cases are shown in Fig. 7.10. The

performances of WSDT versus Us with weight Wi = i/N (i = 1, · · · , N) are

shown in Fig. 7.11. The performances of WSDT versus Us with weight Wi =

1 + δ(i > N/2) (i = 1, · · · , N) are shown in Fig. 7.12. In all these simulations,

the weighted sum download times of the rateless-coding-based scheme and the

routing-based scheme also achieve or almost achieve the lower bound.
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Figure 7.7: Sum download time versus Us for small P2P networks with N = 10
peers.
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Figure 7.8: Weighted sum downloading time versus Us for small P2P networks
with N = 10 peers and weight Wi = i/N .
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Figure 7.9: Weighted sum downloading time versus Us for small P2P networks
with N = 10 peers and weight Wi = 1 + 99δ(i > N/2).
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Figure 7.10: Sum download time versus Us for large P2P networks with N = 1000
peers.
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Figure 7.11: Weighted sum downloading time versus Us for large P2P networks
with N = 1000 peers and weight Wi = i/N .
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Figure 7.12: Weighted sum downloading time versus Us for large P2P networks
with N = 1000 peers and weight Wi = 1 + 99δ(i > N/2).
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We also simulated for many other network settings and weight settings. In all

these simulations, the rateless-coding-based scheme achieves or almost achieves

the lower bound to the WSDT. Hence, the lower bound to the WSDT is empir-

ically tight, and the rateless-coding-based scheme has almost-optimal empirical

performance. The routing-based scheme also has near-optimal empirical perfor-

mance. However, for few cases there are clear differences between the performance

of the routing-based scheme and the lower bound.

7.6 The Dynamic Scenario

The dynamic scenario is allowed to re-allocate the network resource during the

file transfer, in particular, whenever a peer finishes downloading, joins into the

network, or leaves from the network.

7.6.1 A Piece-wise Static Approach to the General Dynamic Case

Wu et al. [28] show that to optimize WSDT the network resource allocation

should be dynamic, but may remain constant during any “epoch”, a period of

time between when one receiver finishes downloading and another finishes down-

loading. Thus, one optimal solution for the dynamic scenario is “piecewise static”.

As an example of how a “piecewise static” dynamic allocation can reduce the

WSDT, consider the example for which we studied static allocations in Section

7.3.1. Recall that the example was for a P2P network with US = 2, B = 1 and

three peers {1, 2, 3} with U1 = U2 = U3 = 1 and D1 = D2 = D3 = ∞. Fig. 7.13

shows the time-expanded graph corresponding to the optimal dynamic rate allo-

cation for this example. Because there are three peers, this time-expanded graph

describes a file transfer scenario with 3 epochs. The first epoch lasts 0.5 unit
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Figure 7.13: A time-expanded graph for a P2P network with three peers where
US = 2, B = 1, U1 = U2 = U3 = 1 and D1 = D2 = D3 = ∞. Edges are labeled
with the total information flow along the edge during the epoch. This is the
product of the rate allocation along the edge during the epoch and the duration
of the epoch.

time. In the first epoch, the source node sends half of the file to peer 1 and

the other half to peer 2. Peer 1 and peer 2 exchange their received content, and

hence, both peer 1 and peer 2 finish downloading at the same time. Hence, the

second epoch lasts 0 time units (since t2 − t − 1 = 0). The third epoch lasts

0.25 unit time, in which the source node, peer 1 and peer 2 transmits to peer 3

simultaneously. Peer 1 sends a quarter of the file. Peer 2 sends another quarter.

The source node sends the other two quarters.

This dynamic solution turns out to achieve the minimum possible sum down-

load time for this example which is 1.75. For comparison, the optimal static

solution, which we saw in Section 7.3.1 had an only slightly larger sum download

time of 1.8. This simple example shows that a dynamic rate allocation can re-
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duce WSDT. In certain cases the benefit can be significant. Dynamic schemes

can reduce the minimum sum download time to approximately half that of the

static case, at least when downlink capacities are considered to be infinite [28].

7.6.2 A Rateless-coding Approach to Dynamic Allocation

Wu et al. [28] propose a dynamic routing-based scheme. This scheme first deploys

all uplink resource to fully support the first K peers until they finish download-

ing, where K is appropriately chosen. After that, the scheme deploys all uplink

resource to fully support the next peer until it finishes downloading, an so forth.

Inspired by the work [28], we propose a dynamic rateless-coding-based scheme for

P2P networks with both peer uplink bandwidth constraints and peer downlink

bandwidth constraints. This scheme is applicable for dynamic P2P networks in

which peers may even join or leave the network.

The key idea of this dynamic rateless-coding-based scheme is similar to that

of the dynamic routing-based scheme in [28]. In particular, in each epoch, the

scheme deploys all uplink resource to fully support several chosen peers. The

details of the dynamic rateless-coding-based scheme are provided in Algorithm 6.

Algorithm 6 Dynamic Rateless-Coding-Based Scheme

1: Initiate the P2P network. Peers join into the network.
2: while A peer finishes downloading, joins into the network or leaves from the

network do
3: Select a set of peers and reset peers’ weights. (The peer selection algorithm

and the weight setting are addressed in Section 7.6.3)
4: Apply the static rateless-coding-based scheme based on the new weights

until a peer finishes downloading, joins into the network or leaves from the
network.

5: end while

Algorithm 6 provides the structure of the dynamic rateless-coding-based scheme.
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Because the peers always receive independently generated rateless coded chunks

in the static rateless-code scheme, the dynamic rateless-coding-based scheme is

also applicable for dynamic P2P network. As long as a peer receives enough

rateless coded chunks 1, it can decode the whole file. The key issue is how to set

the peers’ weights in each epoch. Since the weight setting and the static rateless-

coding-based scheme in the current epoch will influence the dynamic scheme in

the following epoches, the problem of setting weights is very complicated. We will

address this problem in Section 7.6.3 and show that this problem is approximately

equivalent to selecting a set of peers to fully support.

7.6.3 A Solution to the Ordering Problem

Wu et al. [28] demonstrate that given an order in which the receivers finish down-

loading, the dynamic allocation (neglecting downlink bandwidth constraints) that

minimizes WSDT can be obtained in polynomial time by convex optimization and

can be achieved through linear network coding. However, [28] leaves the proper

selection of the ordering as an open problem and does not address the finite

downlink capacities Di < ∞ or the general case of weighted sum download time

which allows any values of the weights Wi.

The simulations for the static scenario in Section 7.5.5 show that the WSDT

of static rateless-coding-based schemes are very close to that of the lower bound

(7.27, 7.29). Hence, the flow rates ri in (7.27) are achievable or almost achievable

by the static rateless-coding-based scheme. Recall that the constraints on the

rate ri in (7.27) are

0 ≤ ri ≤ D̃i, ∀i = 1, · · · , N,

1The number of coded chunks needed to decode the whole file is only slightly larger than
the total number of the original chunks.
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and
N∑

i=1

ri ≤ Us +
N∑

i=1

Ui.

In the following discussion, we assume that any set of flow rates ri (i = 1, · · · , N)

satisfying the above constraints is achievable by the static rateless-coding-based

scheme.

Consider one epoch of the dynamic rateless-coding-based scheme. Suppose

there are N peers in the network in the current epoch. Peer i (i = 1, · · · , N)

has uplink capacity Ui, downlink capacity Di and B − qiB received rateless-

coded chunks. Suppose the static rateless-coding-based scheme supports peer i

with flow rate ri (i = 1, · · · , N) based on a weight setting. In order to find the

optimal weight setting for the current epoch, we study the necessary conditions

for the flow rates ri (i = 1, ·, N) to be optimal.

Let us first focus on two peers in the network, say peer 1 and peer 2. The

total amount of the uplink resource supporting peer 1 and peer 2 is s = r1 + r2.

If the flow rates ri for i = 1, · · · , N is optimal, then the flow rates r1 and r2

are also the optimal resource allocation for peers 1 and 2 given that the flow

rates ri for i = 3, · · · , N are fixed. Now consider a suboptimal scenario in which

the uplink resource with the amount of s serves peers 1 and 2, and the rest of

the uplink serves other peers in all of the following epoches. This suboptimal

scenario provides a WSDT close to the minimum WSDT if s ¿ Us +
∑N

i=1 Ui

(this is true for large N). Hence, we consider this suboptimal scenario and address

the necessary conditions for r1 and r2 to be the optimal resource allocation for

peers 1 and 2.

If q1B
r1
≤ q2B

r2
, then peer 1 finishes downloading before peer 2 does. After peer

1 finishes downloading, peer 1 acts as a source node and hence the total amount

of the source nodes’ uplink is Us + U1, and peer 2 is supported by the uplink
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resource with the amount of s. Hence, the WSDT for peers 1 and 2 is

∆1 = W1
q1B

r1

+ W2(
q1B

r1

+
q2B − q1B

r1
r2

min(s,D2, Us + U1)
), (7.89)

and
∆1

r1

=
q1B

r2
1

(−W1 −W2 +
sW2

min(s, D2, Us + U1)
). (7.90)

Note that the sign of ∆1

r1
does not depend on r1. Hence, the optimal solution to

r1 is either r1 = r2q1/q2 (peer 1 and peer 2 finish at the same time) if −W1 −
W2 + sW2

min(s,D2,Us+U1)
≥ 0, or r1 = min(s, D̃1) (peer 1 is fully supported) if −W1 −

W2 + sW2

min(s,D2,Us+U1)
< 0. Similarly, if q1B

r1
≥ q2B

r2
, then peer 2 finishes downloading

before peer 1 does. The WSDT for peers 1 and 2 is

∆2 = W2
q2B

r2

+ W1(
q2B

r2

+
q1B − q2B

r2
r1

min(s,D1, Us + U2)
), (7.91)

and
∆2

r2

=
q2B

r2
2

(−W2 −W1 +
sW1

min(s, D1, Us + U2)
). (7.92)

Note that the sign of ∆2

r2
does not depend on r2 eithter. Hence, the optimal

solution to r2 is either r2 = r1q2/q1 (peer 1 and peer 2 finish at the same time)

if −W2 −W1 + sW1

min(s,D1,Us+U2)
≥ 0, or r2 = min(s, D̃2) (peer 2 is fully supported)

if −W2 −W1 + sW1

min(s,D1,Us+U2)
< 0. Therefore, the optimal resource allocation for

peer 1 and peer 2 is achieved when one of the peers is fully supported, or they

finish at the same time.

Lemma 4. Given that the flow rates to peer i for i = 3, · · · , N are fixed, and

the amount of uplink resource supporting peer 1 and peer 2 is s. If the optimal

resource allocation for peer 1 and peer 2 is achieved when they finish at the same

time, then both peer 1 and peer 2 are fully supported.

140



Proof. Let D̃+
1 = min(s, D1, Us + U2) and D̃+

2 = min(s,D2, Us + U1). According

to the above discussion, the optimal resource allocation for peer 1 and peer 2 is

achieved when they finish at the same time if and only if s ≥ D̃1 + D̃2, or ∆1

r1
≥ 0

and ∆2

r2
≥ 0.

If s ≥ D̃1 + D̃2, then r1 = D̃1, r2 = D̃2, and hence, peers 1 and 2 are fully

supported.

If ∆1

r1
≥ 0 and ∆2

r2
≥ 0, then

−W1 −W2 +
sW2

D̃+
2

≥ 0,

and

−W2 −W1 +
sW1

D̃+
1

≥ 0

. Hence, 0 ≤ W1 ≤ s−D̃+
2

D̃+
2

W2 and 0 ≤ W2 ≤ s−D̃+
1

D̃+
1

W1. Multiply the above two

inequalities and obtain

s ≥ D̃+
1 + D̃+

2 ≥ D̃1 + D̃2.

Therefor, peer 1 and peer 2 are also fully supported.

Corollary 2. Given that the flow rates to peer i for i = 3, · · · , N are fixed, and

the amount of uplink resource supporting peer 1 and peer 2 is s. The optimal

resource allocation for peer 1 and peer 2 is achieved when one of them is fully

supported or both of them are fully supported.

Corollary 3. The optimal network resource allocation in each epoch of a dynamic

scenario is only obtained when some peers are fully supported, one or zero peer

is partly supported, and the other peers are not supported.

Proof. (proof by contradiction) If two peers are partly supported, say peer 1
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and peer 2 are partly supported, then the resource allocation for peer 1 and peer

2 is not optimal by Corollary 2.

By Corollary 3, the optimal weight setting in each epoch is W = 1 for the

fully supported peers, 0 ≤ W ≤ 1 for the partly supported peer, and W = 0 for

other peers. Hence, the problem of optimizing the weight setting is approximately

equivalent to selecting a set of peers to fully support.

Now study the necessary conditions for a peer selection to be optimal in a

similar way. Suppose that the amount of uplink resource supporting peer 1 and

peer 2 is s, and the flow rates to peer i for i = 3, · · · , N are fixed.

If s < q1+q2

q1
D̃1 and s < q1+q2

q2
D̃2, then peer 1 finishes downloading if peer 1 is

fully supported, or peer 2 finishes downloading if peer 2 is fully supported. When

peer 1 is fully supported, the WSDT for peer 1 and peer 2 is ∆1 in (7.89) with

r1 = D̃1. When peer 2 is fully supported, the WSDT for these two peers is ∆2

in (7.91) with r2 = D̃2. Hence, we have

∆1 −∆2 = W1
q1B

D̃1

+ W2(
q1B

D̃1

+
q2B − q1B

D̃1
r2

min(s,D2, Us + U1)
)

− (W2
q2B

D̃2

+ W1(
q2B

D̃2

+
q1B − q2B

D̃2
r1

min(s,D1, Us + U2)
)) (7.93)

= q1BW1(
1

D̃1

− 1

D̃+
1

)− q2BW2(
1

D̃2

− 1

D̃+
2

)

+ q1BW2(
1

D̃+
2

− 1

D̃2

)(1− s

D̃1

)

− q2BW1(
1

D̃+
1

− 1

D̃1

)(1− s

D̃1

)

+ (q1BW2 − q2BW1)(
1

D̃1

+
1

D̃2

− s

D̃1D̃2

) (7.94)

≈ (
W2

q2

− W1

q1

)
q1q2B(D̃1 + D̃2 − s)

D̃1D̃2

. (7.95)
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Therefore, it is better to first fully support peer 1 if W2

q2
< W1

q1
when s < q1+q2

q1
D̃1

and s < q1+q2

q2
D̃2.

If q1

D̃1
> q2

D̃2
and q1+q2

q1
D̃1 < s < q1+q2

q2
D̃2, then peer 2 always finishes downloading

before peer 1 does. In this case, it is better to first fully support peer 1 if ∆2

r2
> 0,

i.e.,
W1

W2

>
D̃+

1

s− D̃+
1

,

or approximately
W1

W2

>
D̃1

s− D̃1

.

If q1

D̃1
< q2

D̃2
and q1+q2

q2
D̃2 < s < q1+q2

q1
D̃1, then peer 1 always finishes downloading

before peer 2 does. In this case, it is better to first fully support peer 1 if ∆1

r1
< 0,

i.e.,
W1

W2

>
D̃+

2

s− D̃+
2

,

or approximately
W1

W2

>
D̃2

s− D̃2

.

These discussions are concluded in the following theorem.

Theorem 4. Given that the amount of uplink resource supporting peer i and peer

j is s, and the flow rates to peer k for k 6= i, j are fixed. The optimal resource

allocation for peer i and peer j is to fully support peer i (i.e., ri = D̃i) if

Wi

Wj

>
{ max( qi

qj
,

s−D̃j

D̃j
) when qi

D̃i
<

qj

D̃j
,

1

max(
qj
qi

,
s−D̃i

D̃i
)

when qi

D̃i
>

qj

D̃j
.

(7.96)

Corollary 4. Consider a peer selection for a dynamic scenario which select peer
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i to fully support and peer j to not support. This peer selection is optimal only if

Wi

Wj

>
{ max( qi

qj
,

D̃i−D̃j

D̃j
) when qi

D̃i
<

qj

D̃j
,

qi

qj
when qi

D̃i
>

qj

D̃j
.

(7.97)

Proof. When peer i is fully supported and peer j is not supported, s = ri + rj =

D̃i. Plugging s = D̃i into (7.96) and obtain (7.97).

Define the binary relation Â on {1, · · · , N} as i Â j if (7.97) is satisfied.

Denote a peer selection as (I, J) where I is the set of fully supported peers and

J is the set of unsupported peers. (I, J) is optimal only if i Â j for any i ∈ I and

j ∈ J . For general P2P networks, finding the optimal (I, J) is computational

impossible because the binary relation Â is not transitive, which means

i Â j; j Â k ; i Â k.

Define the binary relation v on {1, · · · , N} as i v j if Wi

qi
≥ Wj

qj
. The binary

relation v is an approximation to the binary relation Â. i v j is equivalent to

i Â j when
qi

qj

>
D̃i − D̃j

D̃j

. (7.98)

It can be seen by plugging (7.98) into (7.97). The approximated binary relation

v has the transitive property, and hence, the peers can be ordered with respect

to v. Based on this ordering, a suboptimal peer selection algorithm and the

corresponding weight setting is constructed as shown in Algorithm 7.
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Algorithm 7 Peer Selection and Weight Setting

1: Suppose N peers are downloading in the current epoch.
2: Let B − qiB (0 < qi ≤ 1)be the number of chunks that peer i has received

for i = 1, · · · , N .
3: Sort {Wi

qi
}N

i=1 in descending order and get (k1, · · · , kN).

4: Find the smallest M such that
∑M

i=1D̃ki
≥Us+

∑N
i=1Ui.

5: Select peers {ki}M
i=1 to fully support.

6: Set Wj = 1 if j ∈ {ki}M
i=1, or Wj = 0 otherwise.

7.7 Simulations of the Dynamic Scenario

The dynamic rateless-coding-based scheme is feasible to both static P2P networks

and dynamic P2P networks. Consider a type of dynamic P2P networks which any

peer leaves from as it finishes downloading, and no peer joins into. This section

provides the empirical WSDT performances of the dynamic rateless-coding-based

scheme for static P2P networks and dynamic P2P networks with peer leaving,

and compares them with those of the the static scenario for static P2P networks.

In all simulations, the file size B is normalized to be 1. This section shows

simulations for Cases I,II,IV, and VI investigated in 7.5.5.

Consider median-size P2P networks with N = 100 peers. The performances

of sum download time versus Us for the 4 cases are shown in Fig. 7.14. Fig. 7.15

shows the relative value of the sum download time by normalizing the lower

bound to be 1 in order to explicitly compare the performances of the dynamic

rateless-coding-based scheme and the static scenario. For Case I where peers

have infinite downlink capacities, the sum download time of the dynamic rateless-

coding-based scheme is almost half of the minimum sum download time for the

static scenario for a broad range of the source node uplink Us. This result matches

the results in the previous work [28], which says that the minimum sum download

time of dynamic scenarios is almost half of the minimum sum download time of
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Figure 7.14: Sum download time versus Us for large P2P networks with N = 100
peers.
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Figure 7.15: Relative sum download time versus Us for large P2P networks with
N = 100 peers.
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static scenarios when node uplinks are the only bottleneck in the network. Our

results also show that the sum download time of the dynamic rateless-coding-

based scheme with peer leaving decreases to almost half of the minimum sum

download time for the static scenario as Us increases. For Cases II, IV, and VI,

the WSDs of the dynamic scheme and the dynamic scheme with peer leaving

are also always smaller than the minimum WSDT for the static scenario. In

particular, the WSDT of the dynamic scheme can be as small as 0.59, 0.70,

and 0.73 of the minimum WSDT for the static scenario for Cases II, IV and VI,

respectively. The WSDT of the dynamic scheme with peer leaving can be as small

as 0.71, 0.82, and 0.86 of the minimum WSDT for static scenarios for Cases II,

IV and VI, respectively. These largest improvements in percentage of deploying

the dynamic scheme is obtained when the source node can directly support tens

of the peers.

The performances of WSDT versus Us with weight Wi = i/N (i = 1, · · · , N)

are shown in Fig. 7.16. Fig. 7.17 shows the relative value of the WSDT. For Case

I, the sum download times of the dynamic rateless-coding-based scheme and the

dynamic scheme with peer leaving can be even less than half of the minimum sum

download time for the static scenario for a broad range of the source node uplink

Us. This is because the peers with largest weight finish downloading first in the

dynamic scheme. The WSDT of the dynamic scheme can be as small as 0.48,

0.49, and 0.58 of the minimum WSDT for the static scenario for Cases II, IV

and VI, respectively. The WSDT of the dynamic scheme with peer leaving can

be as small as 0.56, 0.62, and 0.77 of the minimum WSDT for the static scenario

for Cases II, IV and VI, respectively. Note that for Case VI, the WSDT of the

dynamic scheme with peer leaving is larger than that of the static scenario for

small Us. This is because the peers with larger uplink resource also have larger

weight, and they finish downloading and leave from the network first.
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Figure 7.16: Weighted sum downloading time versus Us for large P2P networks
with N = 100 peers and weight Wi = i/N .
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Figure 7.17: Relative weighted sum downloading time versus Us for large P2P
networks with N = 100 peers and weight Wi = i/N .
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The performances of WSDT versus Us with weight Wi = 1 + 99δ(i > N/2)

(i = 1, · · · , N) are shown in Fig. 7.18. Fig. 7.19 shows the relative value of the

WSDT. For Case I, the sum download times of the dynamic rateless-coding-based

scheme and the dynamic scheme with peer leaving is around half of the minimum

sum download time for the static scenario for a broad range of the source node

uplink Us. The WSDT of the dynamic scheme can be as small as 0.58, 0.55,

and 0.52 of the minimum WSDT for static scenarios for Cases II, IV and VI,

respectively. The WSDT of the dynamic scheme with peer leaving can be as

small as 0.64, 0.64, and 0.63 of the minimum WSDT for the static scenario for

Cases II, IV and VI, respectively. Note that for this weight setting, the WSDT

of the dynamic scheme with peer leaving is always smaller than that of the static

scenario for Case VI. This is because the gain by finishing peers with larger weight

is more than than the loss by the peers with larger uplink resource leaving from

the network.

Consider large P2P networks with N = 1000 peers. The performances of sum

download time versus Us for the 4 cases are shown in Fig. 7.14. Fig. 7.15 shows

the relative value of the sum download time. For Case I, the sum download time

of the dynamic rateless-coding-based scheme is around 0.55 of the minimum sum

download time for the static scenario for a broad range of the source node uplink

Us. The sum download time of the dynamic rateless-coding-based scheme with

peer leaving decreases to 0.70 of the minimum sum download time for the static

scenario as Us increases to 1000. The WSDT of the dynamic scheme can be as

small as 0.57, 0.70, and 0.70 of the minimum WSDT for the static scenario for

Cases II, IV and VI, respectively.
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Figure 7.18: Weighted sum downloading time versus Us for large P2P networks
with N = 100 peers and weight Wi = 1 + 99δ(i > N/2).
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Figure 7.19: Relative weighted sum downloading time versus Us for large P2P
networks with N = 100 peers and weight Wi = 1 + 99δ(i > N/2).
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Figure 7.20: Sum download time versus Us for large P2P networks with N = 1000
peers.
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Figure 7.21: Relative sum download time versus Us for large P2P networks with
N = 1000 peers.
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7.8 Summary

This chapter considers the problem of transferring a file from one server to mul-

tiple receivers in a P2P network with both peer uplink bandwidth constraints

and peer downlink bandwidth constraints. This chapter shows that the static

scenario can be optimized in polynomial time by convex optimization, and the

associated optimal static WSDT can be achieved by linear network coding. Fur-

thermore, this chapter proposes static routing-based and rateless-coding-based

schemes that closely approach a new lower bound on performance derived in this

chapter.

This chapter also proposes a dynamic rateless-coding-based scheme, which

provides significantly smaller WSDT than the optimal static scheme does. A

key contribution for the dynamic scenario is a practical solution to the ordering

problem left open by Wu. Our solution is to recast this problem as the prob-

lem of identifying the peer weights for each epoch of the “piecewise static” rate

allocation.

The deployment of rateless codes simplifies the mechanism of the file-transfer

scenario, enhances the robustness to packet loss in the network, and increases

the performance (without considering packet overhead). However, there still exist

several issues for rateless-coding-based scheme such as high source node encoding

complexity, packet overhead, and fast peer selection algorithm for the dynamic

scenario. The results of this chapter open interesting problems in applying rate-

less codes for P2P applications.

The optimal delay region (set of optimal download times) for one-to-many file

transfer in a P2P network can be characterized by a system of linear inequalities.

Hence, minimizing the WSDT for all sets of peer weights leads to the delay region.
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The set of peer weights can also be assigned according to the applications. For

instances, for a file transfer application with multiple classes of users, assign a

weight to each class of users. For an application with both receivers and helpers,

assign weight zero to helpers and positive weights to receivers. Hence, the results

of this chapter in fact apply directly to one-to-many file transfer applications

both with and without helpers.
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CHAPTER 8

Conclusion

8.1 Thesis Summary

Chapter 2-6 explore relatively simple optimal encoders for the degraded broad-

cast channel. Chapter 7 investigates the optimal resource allocation for content

distribution in peer-to-peer networks.

Chapter 2 defines and explores the conditional entropy bound F ∗ for discrete

DBCs. F ∗(q, s) is the infimum of H(Z|U) with respect to all auxiliary random

variables U given that the input-signal distribution is q and H(Y |U) = s. Two

main theorems regarding to F ∗ were established to show the relationship among

F ∗, the capacity region, and optimal encoding schemes for DBCs. The first

main theorem represents the capacity region for discrete DBCs with F ∗, which

bring us a more insight view of the capacity region for DBCs. We apply this

theorem in Chapter 2 to prove the optimal input-signal distribution for input-

symmetric DBCs. The second main theorem establishes the relationship between

the evaluation of F ∗ and the optimal encoding schemes for the DBC. We later

apply this theorem in Chapter 3-5 to prove the optimality of NE scheme for

multi-user broadcast Z channels and discrete multiplicative DBCs.

Chapter 3 applies the results of the conditional entropy bound F ∗ to prove

that the NE scheme achieves the whole boundary of the capacity region of multi-

user DBCs. As an example of the application of F ∗, Chapter 3 shows the power
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of this conditional entropy bound for DBCs.

The input-symmetric DBC is a class of discrete DBCs, which contains most

commonly studied DBCs including broadcast binary-symmetric channels, broad-

cast binary-erasure channels, and group-additive DBCs. By extending the input-

symmetry and F (·) ideas of Wyner and Witsenhausen, Chapter 4 defines the in-

put symmetry for DBCs and introduces the permutation encoding scheme which

employs permutation functions of independently encoded streams for the input-

symmetric DBC. We apply the results regarding to F ∗ in Chapter 2 to prove

that the uniform input distribution is optimal for IS-DBCs and then the permu-

tation encoding scheme achieves the whole capacity region for IS-DBCs. As a

consequence, the NE scheme (also the permuatation encoding scheme) for group-

additive DBCs achieves the whole capacity region.

Chapter 5 combines the results of Chapter 3, Chapter 4, and the results of

the conditional entropy bound to prove that the NE scheme achieves the whole

boundary of the capacity region for discrete multiplicative DBC.

Chapter 6 proves that the NE scheme achieves the whole boundary of the

capacity region for two-user broadcast Z channels without applying results of

the conditional entropy bound F ∗. In particular, the NE scheme for two-user

broadcast Z channels is to independently encode the message corresponding to

each user and transmit the binary OR of the encoded signals. Chapter 6 also

establishes an explicit expression of the capacity region for two-user broadcast

Z channels, and provides the distributions of the outputs of each encoder that

achieve the optimal boundary. Nonlinear-turbo codes that provide a controlled

distribution of ones and zeros in their codewords were used to demonstrate a

low-complexity scheme that works close to the optimal boundary.

In conclusion, natural encoding achieves the capacity region of DBCs much
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more often that has been previously known. In fact, it would seem that there

are more such cases where natural encoding achieves the DBC capacity region

waiting to be identified. It remains an open problem to prove a general theorem

establishing the optimality of natural encoding over a suitably large class of

DBCs. The results of this chapter also open interesting problems in channel

coding to find practical channel codes for the DBCs examined in this chapter.

Chapter 7 considers the problem of transferring a file from one server to mul-

tiple receivers in a P2P network in which node uplinks and downlinks are the only

bottleneck. Chapter 7 shows that the static scenario can be optimized in polyno-

mial time by convex optimization, and the associated optimal static WSDT can be

achieved by linear network coding. We also propose a static routing-based scheme

and a static rateless-coding-based scheme that have almost-optimal empirical per-

formance. Chapter 7 also provides a practical solution for the ordering problem

in dynamic rate allocation and proposes a dynamic rateless-coding-based scheme,

which provides significantly smaller WSDT than the optimal static scheme does.

The deployment of rateless codes simplifies the mechanism of the file-transfer

scenario, enhances the robustness to packet loss in the network, and increases

the performance (without considering packet overhead). However, there still

exist several issues for rateless-coding-based scheme such as high source node’s

encoding complexity, packet overhead, and fast peer selection algorithm for the

dynamic scenario. The results of Chapter 7 open interesting problems in applying

rateless codes to P2P applications.
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APPENDIX A

Appendices

A.1 Appendix I: Independent Encoding Scheme for De-

graded Broadcast Channels

The appendix presents a simple independent encoding scheme made known to

us by Telatar [5] which achieves the capacity region for DBCs. The scheme

generalizes to any number of receivers, but showing the two-user case suffices to

explain the approach. It indicates that any achievable rate pair (R1, R2) for a

DBC can be achieved by combining symbols from independent encoders with a

single-letter function. The independent encoders operate using two codebooks

{vn(i) : i = 1, · · · , 2nR1}, {un(j) : j = 1, · · · , 2nR2} and a single-letter function

f(v, u). In order to transmit the message pair (i, j), the transmitter sends the

sequence f(v1(i), u1(j)), · · · , f(vn(i), un(j)). The scheme is described below:

Lemma 13. Suppose U and X are discrete random variables with joint distribu-

tion pUX . There exist V independent of U and a deterministic function f such

that the pair (U, f(V, U)) has joint distribution pUX . [5]

Proof: Suppose U and X take values in {1, · · · , l} and {1, · · · , k} respectively.

Let V = (V1, · · · , Vl), independent of U , be a random variable taking values in

{1, · · · , k}l with Pr(Vj = i) = pX|U(i|j). Set f((v1, · · · , vl), u) = vu. Then we
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have

Pr(U = u, f(V, U) = x) = Pr(U = u, Vu = x)

= Pr(U = u)Pr(Vu = x)

= pU(u)pX|U(x|u)

= pUX(u, x). (A.1)

Q.E.D.

If the rate pair (R1, R2) is achievable for a degraded broadcast channel X →
Y → Z, there exists an auxiliary random variable U such that

(a) U → X → Y → Z;

(b) I(X; Y |U) ≥ R1;

(c) I(U ; Z) ≥ R2. (A.2)

Use Lemma 13 to find V independent of U and the deterministic function f(v, u)

such that the pair (U, f(V, U)) has the same joint distribution as that of (U,X).

Randomly and independently choose codewords
{
vn(1), · · · , vn(2nR1)

}
according

to p(vn) = pV (v1) · · · , pV (vn), and choose codewords
{
un(1), · · · , un(2nR2)

}
ac-

cording to p(un) = pU(u1) · · · , pU(un). To send message pair (i, j), the encoder

transmits f(v1(i), u1(j)), · · · , f(vn(i), un(j)).

Using a typical-set-decoding random-coding argument, the weak decoder,

given zn, searches for the unique j′ such that (zn, un(j′)) is jointly typical. The

error probability converges to zero as n goes to infinity since R2 ≤ I(U ; Z). The

strong decoder, given yn, also searches for the unique j′ such that (yn, un(j′)) is

jointly typical, and then searches for the unique i′ such that (yn, vn(i′)) is jointly
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typical given un(j′). The error probability converges to zero as n goes to infinity

since

R2 ≤ I(U ; Z) ≤ I(U ; Y ), (A.3)

and

R1 ≤ I(X; Y |U)

= H(Y |U)−H(Y |f(V, U), U)

≤ H(Y |U)−H(Y |f(V, U), U, V )

= H(Y |U)−H(Y |U, V )

= I(V ; Y |U). (A.4)

A.2 Appendix II: Proof of Lemma 2

Proof of Lemma 2: Part i) is a consequence of Lemma 1 by applying the Fenchel-

Eggleston strengthening of Caratheodory’s Theorem [57] (Theorem 18(i)(ii), p.

35). If a compact set S̃ has d or fewer connected components, and the set C̃ with

dimension d is the convex hull of S̃, then the Fenchel-Eggleston Theorem shows

that every point in C̃ is a convex combination of d or few points of S̃. Since the

dimension of C in this chapter is d = k + 1, every point of C can be achieved by

(2.9) (2.10) and (2.11) with l ≤ k + 1.

ii) Dubins’ Theorem [31] (Theorem 3.6.20, p.116) shows that if a set C̃ is convex

and compact, then every extreme point of the intersection of C̃ with d hyperplanes

is a convex combination of d+1 or fewer extreme points of C̃. A two-dimensional

plane in (k +1) dimensions can be considered as the intersection of (k +1)− 2 =

k− 1 hyperplanes. Thus every extreme point of the intersection of C with a two-

dimensional plane is a convex combination of l ≤ k extreme points of C. Part ii)
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is then proved by the fact that every extreme point of C belongs to S. Q.E.D.

A.3 Appendix III: Proof of Theorem 6

Proof of Theorem 6: i) The point (q, ψ(q, λ)) is a point on the lower bound-

ary of Cλ which is obtained as a convex combination of the points (pj, φ(pj, λ))

of Sλ with weights wj. By (2.45), the transmission strategy U → X deter-

mined by |U| = l, Pr(U = j) = wj and pX|U=j = pj, j = 1, · · · , l achieves

the maximum of R2 + λR1 subject to the constraint pX = q. Thus, the point

(q,
∑

j wjhn(TY Xpj),
∑

j wjhm(TZXpj)) is on the lower boundary of C, and hence

of C∗q. It implies that the graph of F ∗(q, ·) is supported by a line of slope λ

at that point, and thus (2.46) holds. For Part ii), if the transmission strategy

U → X determined by |U| = l, Pr(U = j) = wj and pX|U=j = pj, j = 1, · · · , l

achieves the maximum of R2 + λR1 subject to the constraint pX = q, the point

(q,
∑

j wjhn(TY Xpj),
∑

j wjhm(TZXpj)) is on the lower boundary of C∗q, and at

this point the graph of F ∗(q, ·) is supported by a line of slope λ. Thus, the point

(q, ψ(q, λ)) is the convex combination of l points of the graph of φ(·, λ) with

arguments pj and weights wj, j = 1, · · · , l. Q.E.D.
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A.4 Appendix IV: Proof of Lemma 5

Proof of Lemma 5: Lemma 5 is the consequence of Theorem 5 for the broadcast

Z channel. Since H(Y |U) ≥ N · q/p · h(β1p),

H(Z|U) ≥ F ∗
T

(N)
Y X ,T

(N)
ZX

(q, N · q/p · h(β1p)) (A.5)

= N · F ∗
TY X ,TZX

(q, q/p · h(β1p)) (A.6)

= N · q

p
· h(β2p) (A.7)

= N · q

p
· h(β1pβ∆). (A.8)

These steps are justified as follows:

• (A.5) follows from the definition of F ∗;

• (A.6) follows from Theorem 5;

• (A.7) follows from the expression of the function F ∗ for the broadcast Z

channel in (3.7);

• (A.8) follows from β∆ = Pr{Z = 0|Y = 0} = β2/β1.

A.5 Appendix V: Proof of (3.25)

Proof of (3.25): Plugging j = 1 in (3.24), we have

H(Y1|W2, · · · ,WK)−H(Y1|W1, · · · ,WK) ≥ N
q

t1
h(β1t1)−Nqh(β1)−o(ε) (A.9)

or

H(Y1|W2, · · · , WK) ≥ N
q

t1
h(β1t1)− o(ε), (A.10)

161



since

H(Y1|W1, · · · ,WK) = H(Y1|X) (A.11)

=
N∑

i=1

H(Y1,i|X) (A.12)

=
N∑

i=1

H(Y1,i|Xi) (A.13)

=
N∑

i=1

Pr(Xi = 0)h(β1) (A.14)

= Nqh(β1). (A.15)

Some of these steps are justified as follows:

• (A.11) follows from the fact that X is a function of (W1, · · · ,WK);

• (A.12) follows from the conditional independence of Y1,i,i = 1, · · · , N , given

X;

• (A.13) follows from the conditional independence of Y1,i and

(X1, · · · , Xi−1, Xi+1, · · · , XN) given Xi.

Inequality (A.10) indicates that

H(Yj |Wj+1, · · · ,WK) ≥ N
q

tj
h(βjtj)− o(ε), (A.16)
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is true for j = 1. The rest of the proof is by induction. We assume that (A.16)

is true for j, which means

H(Yj |Wj+1, · · · ,WK) ≥ N

[
q

tj
h(βjtj)− o(ε)

N

]
(A.17)

= N
q

tj + τ(ε)
N

h(βj(tj +
τ(ε)

N
)), (A.18)

where the function τ(ε) → 0 as ε → 0, since q
tj

h(βjtj) is continuous in tj. Applying

Lemma 5 to the Markov chain (Wj+1, · · · ,WN) → X → Yj → Yj+1, we have

H(Yj+1|Wj+1, · · · , WN) ≥ N
q

tj + τ(ε)
N

h(βj+1(tj +
τ(ε)

N
)) (A.19)

= N
q

tj
h(βj+1tj) + o(ε). (A.20)

Considering (3.24) for j + 1, we have

H(Yj+1|Wj+2, · · · ,WK)−H(Yj+1|Wj+1, · · · ,WK)

≥N
q

tj+1

h(βj+1tj+1)−N
q

tj
h(βj+1tj)− o(ε). (A.21)

Substitution of (A.20) in (A.21) yields

H(Yj+1|Wj+2, · · · ,WK) ≥ N
q

tj+1

h(βj+1tj+1)− o(ε), (A.22)

which establishes the induction. Finally, for j ≥ d, Nδ should be added to the

right side of (A.17) because of the presence of δ in (3.17) for j = d, and hence,

of Nδ in (3.24).
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A.6 Appendix VI: Proof of Lemma 11

Proof of Lemma 11: Let GTY X ,TZX
= {G1, · · · , Gl}. For any (ξ, η) ∈ C∗pX

, where

pX = (1− q, qpT
X̃

)T , one has (pX , ξ, η) ∈ C. Since Lemma 8 and Corollary 1 also

hold for the discrete multiplicative DBC, (GjpX , ξ, η) ∈ C for all j = 1, · · · , l. By

the convexity of the set C,

(q, ξ, η) = (
l∑

j=1

GjpX , ξ, η) ∈ C, (A.23)

where q =
∑l

j=1 GjpX . Since GTY X ,TZX
is a group, for any permutation matrix

G′ ∈ GTY X ,TZX
,

G′q =
l∑

j=1

G′GjpX =
l∑

j=1

GjpX = q. (A.24)

Hence, the ith entry and the jth entry of q are the same if G′ permutes the ith

row to the jth row. Since, for any discrete multiplicative DBC, the set GTY X ,TZX

maps any non-zero element in {0, 1, · · · , n} to any other non-zero element, all

entries except the first entry of q are the same as each other. Furthermore, no

matrix in GTY X ,TZX
maps the zero element to a non-zero element, hence the first

entry of q is the same as the first entry of pX . Therefore, q = (1 − q, quT )T .

This implies that (ξ, η) ∈ C∗(1−q,quT )T , and hence C∗pX
⊆ C∗(1−q,quT )T . Therefore,

C∗ =
⋃

q∈[0,1] C∗(1−q,quT )T . Q.E.D.

A.7 Appendix VII: Proof of Lemma 12

Proof of Lemma 12: ψ(pX , λ) is the lower envelope of ϕ(q, pX̃ , λ) in pX . For

pX = (1− q, quT )T , suppose the point (pX , ψ(pX , λ)) is the convex combination

of n + 1 points ((qi, pi), ϕ(qi,pi, λ)) on the graph of ϕ(q, pX̃ , λ) with weights wi
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for i = 1, · · · , n + 1. Therefore,

q =
n+1∑
i=1

wiqi, (A.25)

u =
n+1∑
i=1

wipi, (A.26)

ψ(pX , λ) =
n+1∑
i=1

wiϕ(qi, pi, λ). (A.27)

Since ψ̃(p, λ) ≥ ψ̃(u, λ) for the group-additive degraded broadcast sub-channel,

ϕ(qi, pi, λ) ≥ ϕ(qi,u, λ). (A.28)

Therefore, the convex combination of n+1 points ((qi,u), ϕ(qi,u, λ)) with weights

wi has
n+1∑
i=1

wiqi = q, (A.29)

and
n+1∑
i=1

wiϕ(qi, u, λ) ≤
n+1∑
i=1

wiϕ(qi,pi, λ) = ψ(pX , λ). (A.30)

On the other hand, since ψ(pX , λ) is the lower envelope of ϕ(q, pX̃ , λ) in pX ,
∑n+1

i=1 wiϕ(qi,u, λ) ≥ ψ(pX , λ) and hence
∑n+1

i=1 wiϕ(qi,u, λ) = ψ(pX , λ). There-

fore, ψ((1 − q, quT )T , λ), the lower envelope of φ(pX , λ) in pX at pX = (1 −
q, quT )T can be attained as the convex combination of points on the graph of

ϕ(q, u, λ) in the dimension of q. Q.E.D.
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A.8 Appendix VIII: Proof of Theorem 3

Here we prove Theorem 3. In (6.4) and (6.5), denote

I1(q1, q2, γ) = I(X; Y1|X2)
∣∣
q1,q2,γ

(A.31)

I2(q1, q2, γ) = I(X2; Y2)
∣∣
q1,q2,γ

(A.32)

I1,2(q1, q2, γ) = (I1, I2)
∣∣
q1,q2,γ

. (A.33)

The strategy (q1, q2, γ) has the rate pair I1,2(q1, q2, γ). The theorem is true if we

can increase both I1 and I2 when 0 < q2 < 1, 0 < γ < q1.

Firstly we compare the strategies (q1, q2, γ) and (q1 + p2δ1, q2, γ − q2δ1) for a

small positive number δ1 > 0.

∆1I1 = I1(q1 + p2δ1, q2, γ − q2δ1)− I1(q1, q2, γ)

' ∂I1(q1 + p2δ1, q2, γ − q2δ1)

∂δ1

∣∣∣
δ1=0

δ1

= −q2p2(1− α1)
(
log

1− γ(1− α1)

γ(1− α1)
+ log

q1(1− α1)

1− q1(1− α1)

)
δ1

< 0, (A.34)

∆1I2 = I2(q1 + p2δ1, q2, γ − q2δ1)− I2(q1, q2, γ)

' ∂I2(q1 + p2δ1, q2, γ − q2δ1)

∂δ1

∣∣∣
δ1=0

δ1

= q2p2(1− α2)
(
log

1− γ(1− α2)

γ(1− α2)
+ log

q1(1− α2)

1− q1(1− α2)

)
δ1

> 0. (A.35)
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The small change of the rate pair (∆1I1, ∆1I2) is shown Fig. A.1. Point A

is the rate pair of the transmission strategy (q1, q2, γ), the arrow ∆1 shows the

small movement of the rate pair (∆1I1, ∆1I2).

Secondly we compare the strategies (q1, q2, γ) and (q1 +(γ−q1)δ2, q2 +q2δ2, γ)

for a small positive number δ2 > 0.

∆2I1 = I1(q1 + (γ − q1)δ2, q2 + q2δ2, γ)− I1(q1, q2, γ)

' ∂I1(q1 + (γ − q1)δ2, q2 + q2δ2, γ)

∂δ2

∣∣∣
δ2=0

δ2

= −q2δ2

{
γ(1− α1) log

q1

γ
+ (1− γ(1− α1)) log

1− q1(1− α1)

1− γ(1− α1)

}

= q2δ2D(γ(1− α1) ‖ q1(1− α1))

> 0, (A.36)

∆2I2 = I2(q1 + (γ − q1)δ2, q2 + q2δ2, γ)− I2(q1, q2, γ)

' ∂I2(q1 + (γ − q1)δ2, q2 + q2δ2, γ)

∂δ2

∣∣∣
δ2=0

δ2

= q2δ2

{
γ(1− α2) log

q1

γ
+ (1− γ(1− α2)) log

1− q1(1− α2)

1− γ(1− α2)

}

= −q2δ2D(γ(1− α2) ‖ q1(1− α2))

< 0. (A.37)

where D(p ‖ q) is the relative entropy between distribution p and q. The

arrow ∆2 in Fig. A.1 shows the small movement of the rate pair (∆2I1, ∆2I2).

Now we show that
∆1I2

∆1I1

<
∆2I2

∆2I1

< 0. (A.38)
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1

2

1

2

Figure A.1: Capacity region and the changes of rate pairs.

∆1I2

∆1I1

<
∆2I2

∆2I1

⇔
D(γ(1− α2) ‖ q1(1− α2)) + log 1−γ(1−α2)

1−q1(1−α2)

D(γ(1− α1) ‖ q1(1− α1)) + log 1−γ(1−α1)
1−q1(1−α1)

>
D(γ(1− α2) ‖ q1(1− α2))

D(γ(1− α1) ‖ q1(1− α1))

⇔ D(γ(1− α1) ‖ q1(1− α1))

log 1−γ(1−α1)
1−q1(1−α1)

>
D(γ(1− α2) ‖ q1(1− α2))

log 1−γ(1−α2)
1−q1(1−α2)

⇔ f(x) =
D(γx ‖ q1x)

log 1−γx
1−q1x

is monotonically increasing in {x|0 < x < 1}

⇔ f ′(x) =
(
log

γx

q1x
log

1− γx

1− q1x
− (log

1− γx

1− q1x
)2 + log

γx

q1x
(

1

1− γx
− 1

1− q1x
)
)

· γ(log
1− γx

1− q1x
)−2 > 0. (A.39)

Let u = 1− γx and v = 1− q1x. So we have 0 < v < u < 1 and need to prove

that

g(u, v) = log
u

v
log

1− u

1− v
− (log

u

v
)2 + log

1− u

1− v
(
1

u
− 1

v
) > 0. (A.40)

Since
∂2g(u, v)

∂u∂v
= − (u− v)2

u2v2(1− u)(1− v)
< 0, (A.41)
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and
∂g(u, v)

∂u

∣∣
v=u

= 0 ∀0 < u < 1, (A.42)

it is true that
∂g(u, v)

∂u
> 0 ∀0 < v < u < 1. (A.43)

Considering (A.43) and g(v, v) = 0, ∀0 < v < 1, we can get g(u, v) > 0, ∀0 <

v < u < 1. Thus, the inequality (A.38) is true, which means that the slope

of ∆1 is smaller than that of ∆2 in Fig. A.1. The achievable shaded region is

on the upper right side of point A. Therefore, we can increase the rate pair

I1,2(q1, q2, γ) together and the strategy (q1, q2, γ) is not optimal when 0 < q2 < 1

and 0 < γ < q1.

A.9 Appendix IX: Proof of Theorem 4

Here we prove Theorem 4. In problem (6.12), the objective function I1 + λI2 is

bounded and the domain 0 ≤ q1, q2 ≤ 1 is closed, so the maximum exists and can

be attained. First we discuss some possible optimal solutions and then we show

that only one of them is the optimum for any fixed λ ≥ 0.

Case 0: If q1 = 0 or q2 = 0 or q1 = q2 = 1, then I1 = I2 = 0 and so it can not be

the optimum.

Case 1: If q2 = 1 and 0 < q1 < 1, then I2 = 0 and

∂I1

∂q1

= (1− α1) log
1− q1(1− α1)

q1(1− α1)
−H(1− α1) = 0 (A.44)

⇒ q∗1 =
1

(1− α1)(eH(1−α1)/(1−α1) + 1)
. (A.45)
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Case 2: If q1 = 1 and 0 < q2 < 1, then I1 = 0 and

∂I2

∂q2

= (1− α2) log
1− q2(1− α2)

q2(1− α2)
−H(1− α2) = 0 (A.46)

⇒ q∗2 =
1

(1− α2)(eH(1−α2)/(1−α2) + 1)
. (A.47)

Case 3: If 0 < q1, q2 < 1, then the optimum is attained when

q2
∂(I1 + λI2)

∂q2

+ q1
∂(I1 + λI2)

∂q1

= 0

⇒ log(1− q∗1(1− α1)) = λ log(1− q∗1(1− α2)), (A.48)

and

∂(I1 + λI2)

∂q2

= 0

⇒λ
(
H(q∗1(1− α2))− q∗1(1− α2) log

1− q∗2q
∗
1(1− α2)

q∗2q
∗
1(1− α2)

)

=
(
H(q∗1(1− α1))− q∗1H(1− α1)

)

⇒ log(1− q∗1(1− α1))
(
H(q∗1(1− α2))− q∗1(1− α2) log

1− q∗2q
∗
1(1− α2)

q∗2q
∗
1(1− α2)

)

= log(1− q∗1(1− α2))
(
H(q∗1(1− α1))− q∗1H(1− α1)

)
. (A.49)

For any fixed λ ≥ 0, the optimal solution is in Case 1,2 or 3.

Lemma 1. Function ϕ(x) = log(1−(1−α1)x)
log(1−(1−α2)x)

is monotonically increasing in the

domain of 0 ≤ x ≤ 1 when α1 < α2.

Lemma 2. The solution in Case 1 can not be the optimum when λ > ϕ(ψ(1 −
α1)).

proof: When q2 = 1 and q1 = ψ(1− α1),
∂I2
∂q1

= 0 and ∂I1
∂q1

= 0. Therefore, for
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any fixed λ, ∂(I1+λI2)
∂q1

= 0. When λ = ϕ(q1) = ϕ(ψ(1− α1)), (A.48) holds, and so

∂(I1+λI2)
∂q2

= 0.

Since ∂(I2)
∂q2

∣∣∣
q2=1,q1=ψ(1−α1)

= log(1 − ψ(1 − α1) · (1 − α2)) < 0, when λ >

ϕ(ψ(1− α1)),

∂(I1 + λI2)

∂q2

∣∣∣
q2=1,q1=ψ(1−α1)

=
∂(I1)

∂q2

∣∣∣
q2=1,q1=ψ(1−α1)

+ λ
∂(I2)

∂q2

∣∣∣
q2=1,q1=ψ(1−α1)

< 0. (A.50)

Therefore, Case 1 can not be the optimum when λ > ϕ(ψ(1− α1)).

Lemma 3. The solution in Case 2 can not be the optimum when λ < ϕ(1).

proof: When q2 = ψ(1 − α2) and q1 = 1, ∂I2
∂q2

= 0 and ∂I1
∂q2

= 0. Therefore,

for any fixed λ, ∂(I1+λI2)
∂q2

= 0. When λ = ϕ(q1) = ϕ(1), (A.48) holds, and so

∂(I1+λI2)
∂q1

= 0.

Since ∂(I2)
∂q1

∣∣∣
q2=ψ(1−α2),q1=1

= q2(1 − α2) log 1−q2+q2α2

q2α2

∣∣∣
q2=ψ(1−α2)

> 0, when λ <

ϕ(1),

∂(I1 + λI2)

∂q1

∣∣∣
q2=ψ(1−α2),q1=1

=
∂(I1)

∂q2

∣∣∣
q2=ψ(1−α2),q1=1

+ λ
∂(I2)

∂q2

∣∣∣
q2=ψ(1−α2),q1=1

< 0. (A.51)

Therefore, Case 2 can not be the optimum when λ < ϕ(1).

Lemma 4. The solution to equation (A.48) exists in (0, 1) and is unique for any

λ in the range of ϕ(0) < λ < ϕ(1).
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Proof: Equation (A.48) is equivalent to ϕ(q∗1) = λ. From Lemma 1, ϕ(q1) is

monotonically increasing. Therefore, when ϕ(0) < λ < ϕ(1), the solution q∗1is

unique and q∗1 ∈ (0, 1).

Lemma 5. The unique solution (q∗1, q
∗
2) to equation (A.48) and (A.49) in case 3

is the optimum if ϕ(ψ(1− α1)) < λ < ϕ(1).

Proof: From Lemma 4, the solution q∗1 to equation (A.48) is unique if ϕ(ψ(1−
α1)) < λ < ϕ(1). From (A.49),

m(q2) =
(
H(q∗1(1− α2))− q∗1(1− α2) log

1− q2q
∗
1(1− α2)

q2q∗1(1− α2)

)
log(1− q∗1(1− α1))

− (
H(q∗1(1− α1))− q∗1H(1− α1)

)
log(1− q∗1(1− α2))

= 0. (A.52)

Clearly, m(q2) is monotonically increasing,

lim
q2→0

m(q2) = −∞ < 0, (A.53)

and

ϕ(ψ(1− α1)) < λ < ϕ(1)

⇒q∗1 > ψ(1− α1)

⇒m(1) > 0. (A.54)

That means the unique solution q∗2 to equation (A.49) is in the domain of 0 ≤
q2 ≤ 1. Furthermore, when ϕ(ψ(1−α1)) < λ < ϕ(1), from Lemma 2 and Lemma
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3, case 1 or case 2 can not be the optimum because

∂(λI1 + (1− λ)I2)

∂q2

∣∣
q2=1,q1=ψ(1−α1)

< 0, (A.55)

∂(λI1 + (1− λ)I2)

∂q1

∣∣
q1=1,q2=ψ(1−α2)

< 0. (A.56)

Therefore, case 3 is the optimum.

Lemma 6. The unique solution (q∗2 = 1, q∗1 = ψ(1−α1)) in case 1 is the optimum

if 0 ≤ λ ≤ ϕ(ψ(1− α1)).

Proof: When 0 ≤ λ ≤ ϕ(ψ(1 − α1)), Case 3 is not optimal because there is

no solution q1 ∈ (0, 1) to equation (A.48). Case 2 is not optimal from Lemma 3.

So Case 1 is the optimum.

Lemma 7. The unique solution (q∗2 = ψ(1−α2), q
∗
1 = 1) in Case 2 is the optimum

if λ ≥ ϕ(1).

Proof: When λ ≥ ϕ(1), Case 3 is not optimal because there is no solution

q2 ∈ (0, 1) to equation (A.49). Case 1 is not optimal from Lemma 2. So Case 2

is the optimum.

From Lemma 5,6 and 7, Theorem 4 is immediately proved.
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