University of California

Los Angeles

Turbo code design for high spectral efficiency

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Electrical Engineering

by

Christina Fragouli

The dissertation of Christina Fragouli is approved.

Greg Pottie

John Villasenor

Panagiotis Christofides

Richard D. Wesel, Committee Chair

University of California, Los Angeles

ii

iii

To my father

v

TABLE OF CONTENTS

1 Introduction

2 Convolutional Codes

2.1

2.2

2.3

24

2.5

State Space Equations

Algebraically Equivalent Encoders

221

Search space for Algebraically Equivalent Encoders

Minimality among range-equivalent encoders

Control theory applied to convolutional encoders

24.1

2.4.2

24.3

244

Controllability of state vector
Controllability of output vector
Observability

Minimality in Control

Minimality under periodic puncturing

2.5.1

2.5.2

2.5.3

254

2.5.5

2.5.6

2.5.7

Periodic symbol puncturing
Search space
Algorithm to determine zero-output loops
Performance of encoders with a zero-output loop
Code search and Simulation results
Bit-wise Puncturing o000 L

Symbol-wise puncturingo

vi

3 Proposed Turbo Code Structure and Constituent Encoder De-

SIgN . . . e e 45
3.1 Desired Constituent Encoder Distance Properties 48
3.2 Distance Upper Bounds 49
3.3 Range of Encoders to Search 51

3.3.1 Application to Bit Interleaving 56
3.3.2 Application to Symbol Interleaving 57

4 Interleaver Design for Turbo Codes 61
4.1 Spread Interleavero oL 62
4.2 Extended Spread Interleaver 65
4.3 Construction Procedure 68
4.4 Existence of Semi-Random Interleavers 69

5 Simulation Results 73
5.1 2 bits/sec/Hz PCTCM with 16 QAM 76
5.2 2 bits/sec/Hz PCTCM with 8 PSK 81
5.3 4 bits/sec/Hz PCTCM with 8 x 8 PAM=64 QAM 93

6 Conclusions e 97

References 99

vii

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

LisT oF FIGURES

Canonical form for feedforward and feedback encoders. 7
Encoder {As, B2, C2, D>} has an error event of length one 11

Encoder {A, By, Cy,D;}does not have an error event of length one 11

Different types of encoder equivalence 12
State diagram of a not delay preserving encoder 21
State diagram of a not degree preserving encoder 22
State diagram of a catastrophic encoder 22

Performance of code C5 under periodic symbol puncturing with

period p=4 35

Performance of code Cs under periodic symbol puncturing with

period p=4 e 36

Performance of code Cy under periodic symbol puncturing with

period p=4 37
Performance comparison of code Co and Cy 39
Performance comparison of code Co and C3 40

Performance of code (5 vs. mutual information under periodic
symbol puncturing with period p = 4. Transmitted rate is 0.25

bits per channel useo L0000 41

Performance of code C3 vs. mutual information under periodic
symbol puncturing with period p = 4. Transmitted rate is 0.25

bits per channel use 42

viii

2.15 Performance of code Cy vs. mutual information under periodic

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

9.3

symbol puncturing with period p = 4. Transmitted rate is 0.25

bits per channeluse 43

2 bits/sec/Hz PCTCM turbo code with rate 4/4 constituent encoders 46
2 bits/sec/Hz PCTCM turbo code with rate 4/3 constituent encoders 47

Set of input Hamming weight equivalent and algebraic equivalent

encoders to an encoder Co 52
Encoder structure with two memory chains 55
Parallel Concatenated Turbo Code 62
Two Sets Of Interrelated Error Events 63
Case for parameters S 64
Case for parameters T 66
Another case for parameters T 66
Case for parameters X 67
Necessary Condition for Constraint 1 70
Necessary Condition for Constraint 2 71
Labeling for the constellations used in the simulations 75

2 bits/sec/Hz/ turbo code employing 16 QAM. Capacity=1.76 dB.
Constrained capacity=2.1 dB. Interleaver length=8, 192 symbols.
Input block size 8,192 x4 bits 7

2 bits/sec/Hz/ turbo code employing 16 QAM. Reproduction of
[DP95a] results. Interleaver length=16,384 symbols. Interleaver
(30-0-0). Input block size 16,384 x 2 bits 78

ix

5.4

9.5

2.6

5.7

2.8

2.9

2 bits/sec/Hz/ turbo code employing 16 QAM. Comparison of the
proposed system performance, with the simulation reproduced per-

formance of [DP95a]. Both systems have the same input block size

in bits 16,384 x 2= 8,192 X 4 . .+« o i 79

2 bits/sec/Hz/ turbo code employing 16 QAM. Comparison of the
Block Error Rate performance of the proposed system and the

simulation reproduced system in [DP95a]. Both systems have the

same input block size in bits 16,384 x 2 =8,192x4 80

2 bits/sec/Hz/ turbo code employing 8 PSK. Capacity=1.76 dB.
Constrained capacity=2.8 dB. Interleaver length=>5, 000 symbols.
Input block size 5,000 x 4 bits. The interleaver (25,6,1) lowers the

error floor of the random interleaver 81

2 bits/sec/Hz/ turbo code employing 8 PSK. Capacity=1.76 dB.
Constrained capacity=2.8 dB. Interleaver length=>5, 000 symbols.
Input block size 5,000 x 4 bits. The interleaver (25,6,1) lowers the

error floor of the random interleaver 83

2 bits/sec/Hz/ turbo code employing 8 PSK. Capacity=1.76 dB.
Constrained capacity=2.8 dB. Interleaver length=2, 500 symbols.
Input block size 2,500 x 4 bits 84

2 bits/sec/Hz/ turbo code employing 8 PSK. Capacity=1.76 dB.
Constrained capacity=2.8 dB. Interleaver length=2, 500 symbols.
Input block size 2,500 x 4 bits. The interleaver (20,4,1) lowers the

error floor of the random interleaver 85

5.10

5.11

5.12

5.13

5.14

5.15

2 bits/sec/Hz/ turbo code employing 8 PSK. Capacity=1.76 dB.
Constrained capacity=2.8 dB. Interleaver length=2, 500 symbols.
Input block size 2,500 x 4 bits. The interleaver (20,4,1) lowers the

block error floor of the random interleaver

2 bits/sec/Hz/ turbo code employing 8 PSK. Comparison of the 8-
PSK encoders: encl= {027, 010, 06, 01, 03, 011, 014} employing
an (20, 4, 1) interleaver and enc2={031, 01, 05, 013, 011, 015,
017} employing an (20, 5, 0) interleaver). Interleaver length=2, 500
symbols. Input block size 2,500 x 4 bits

2 bits/sec/Hz/ turbo code employing 8 PSK. Block error rate for
two 8 PSK encoders encl={027, 010, 06, 01, 03, 011, 014}
employing an (20, 4, 1) interleaver and enc2={031, 01, 05, 013,
011, 015, 017} employing an (20, 5, 0) interleaver). Interleaver
length=2, 500 symbols. Input block size 2,500 x 4 bits

2 bits/sec/Hz/ turbo code employing 8 PSK. Encoder employed:
enc2={031, 01, 05, 013, 011, 015, 017}. Input block size 2, 500 x
4 bits. The interleaver (20,5,0) lowers the error floor of the random

(0,0,0) interleavero oo

2 bits/sec/Hz/ turbo code employing 8 PSK. Encoder employed:
enc2={031, 01, 05, 013, 011, 015, 017}. Input block size 2, 500 x
4 bits. The interleaver (20,5,0) lowers the block error floor of the

random interleaver L

4 bits/sec/Hz/ turbo code employing 8 PAM. Capacity 5.74 dB.
Constrained Capacity 6.6 dB. Interleaver length 4,096 symbols.
Input block size 4,096 x 4 bits

xi

5.16 4 bits/sec/Hz/ turbo code employing 8 PAM. Simulations repro-
duction of bit interleaved system in [BDM96]. Interleaver length
4,096 symbols. Input block size 4,096 x 4 bits

5.17 4 bits/sec/Hz/ turbo code employing 8 PAM. Block Error Rate
performance of the proposed system and the simulations repro-
duced system in [BDM96]. Interleaver length 4,096 symbols. In-
put block size 4,096 x 4 bits

xii

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

4.1

5.1

LisT oF TABLES

Codes with m = 4 memory elements, £ = 1 input, and n = 4
outputs, optimized for Hamming distance under bit-wise periodic

puncturing, with period p=4
Distance characteristics of bit-wise punctured codes
Analytic distance properties of codes in Table 2.3

Codes with m = 4 memory elements, £ = 1 input, and n = 4 out-
puts, optimized for Hamming distance under symbol-wise periodic

puncturing, with period p=4

Residual distance for codes in Table 2.4 under period-four erasure

patterns Lo e

Bit Error Rate Performance for codes in Table 2.4. Simulations

with traceback depth L, =40

Code fragments optimized for df,

Part of Table 3.2 in [Wes96].

Squared Euclidean Distance for Error Events. Rows W: symbol-

wise input weight. Columns L: symbol wise error event length.

Codes optimized for d%, oL L

xiii

5.2

9.3

Squared Euclidean Distance for Error Events for the 8 PSK en-
coder 027, 010, 06, 01, 03, 011, 014. The nearest neighbors are
given in parentheses. L denotes the error event length. d%, de-
notes the smallest output Euclidean distance associated with error
events of length L and symbol-wise input weight two.
Squared Euclidean Distance for Error Events for the 8-PSK en-
coder {031, 01, 05, 013, 011, 015, 017}. The nearest neighbors
are given in parentheses. L denotes the error event length. d%, de-
notes the smallest output Euclidean distance associated with error

events of length L and symbol-wise input weight two.

xXiv

ACKNOWLEDGMENTS

Prof. Rick Wesel had the kindness to accept me in his research group, and since
then has invariably been the best advisor a student could wish for. His enthusi-
asm for research, high standard of excellence and integrity, and deep knowledge
of his subject have been a great source of inspiration for me. He offered substan-
tial help to every aspect of a graduate student life at UCLA, from highlighting
innovative research perspectives to buying new chairs and computers, from fund-
ing Brazil conferences to English language suggestions (he did not edit this text).
What I most appreciated though was his active involvement in research, his im-
mediate understanding of a problem and fast response with possible solutions
and literature references, his ability to communicate subtle notions with clarity
and conciseness, and his unlimited availability for questions and comments. This

work could not have been made without his constant help and support.

I was also fortunate to have the opportunity to work with Prof. Ali Sayed.
His professional expertise and knowledge set an example of excellence for me.
Prof. M. Srivastava and Prof. R. Jain have promoted my admission at UCLA,
and involved me in research during my first year of studies. Prof. Srivastava’ s

dedication and expertise were greatly appreciated.

My fellow group members Christos Komninakis, Xueting Liu, Wei Shi and
later Mark Shane have greatly contributed to my research with their useful com-
ments and interaction, and have created a friendly and inspiring working envi-

ronment.

Prof. Greg Pottie, Prof. John Villasenor and Prof. Panagiotis Christofides

have served on my Ph.D. committee despite their heavy schedule.

Dr Divsalar and Dr McEliece have very kindly replied to my questions re-

XV

garding their work, and generously supplied me with relevant material. Dr K.
Narayanan and Dr J. Gass have offered very helpful suggestions and comments.
Dr N. Seshadri and Dr W. Turin have created an inspiring and motivating envi-

ronment during my summer internship at AT&T.

Irene Andreadis has warmly welcomed me in her house during my first days
in the US, and all the years thereafter. I would like to thank her for her care, her
hospitality, and her kindness.

My fellow students and good friends Christos Komninakis, Vaggelis Petsalis,
Javier Garcia-Frias, George Kondylis, Peyman Meshat, and Vijay Sivaraman have
also helped me with acquiring a technical background through fruitful discussions.

I would like to thank them for the many good times.

My friends Athina Markopoulou, Dina Danaka, Ellh Paxou, and Persa Kyritsi,
although not in LA, were still very close to me. My grandmother Marika, my
grandfather Stelios, my mother and my sister Nataly have offered me their love

and support.

xvi

Vita

1991-1996 B.S. in Electrical Engineering, National Technical University of
Athens.

1996-1998 M.S. in Electrical Engineering, University of California, at Los
Angeles.

1998-2000 Ph.D. in Electrical Engineering University of California, at Los
Angeles.

PUBLICATIONS
e C. Fragouli, C. Komninakis, and R. D. Wesel, “Minimality under periodic

puncturing”, submitted in ICC 2001, June 11-15, Helsinki, Finland.

C. Fragouli and R. D. Wesel, “Turbo encoder design for symbol interleaved
parallel concatenated trellis coded modulation,” accepted (summer 2000)

to IEEE Transactions on Communications.

C. Fragouli, N. Seshadri and W. Turin, “On the reduced trellis equalization
Using the M-BCJR Algorithm,” CISS 2000, March 15-17 2000, Boston.

C. Komninakis, C. Fragouli, A. Sayed and R. D. Wesel, “Adaptive multi-
input multi-output fading channel equalization using kalman estimation,”

ICC 2000, N ew Orleans, Louisiana, June 18-22 2000.

xvii

C. Fragouli and R. D. Wesel, “Semi-random interleaver design criteria,”
Communication Theory Symposium at Globecom 99, Rio de Janeiro, Brazil,

December 5-9, 1999.

C. Komninakis, C. Fragouli, R.D. Wesel, A. Sayed, “Channel estimation
and equalization in fading,” 33rd Asilomar Conference on Signals, Systems,

and Computers, Pacific Grove, CA. October 24-27, 1999.

C. Fragouli and R. D. Wesel, “Convolutional codes and matrix control
theory,”in proceedings of the 7th International Conference on Advances in

Communications and Control, June 28-July 2, 1999, Ath ens, Greece.

C. Fragouli and R. D. Wesel, “Symbol interleaved parallel concatenated

7

trellis coded modulation ,” in the Communication Theory Miniconference

in conjunction with ICC 99, June 6-10, 1999.

C. Fragouli, V. Sivaraman,and M. B. Srivastava, “Controlled multimedia
wireless link sharing vi a enhanced class-based queuing with channel-state-

dependent packet scheduling”, in the proceedings of Infocom 98.

P. Lettieri, C. Fragouli, and M. B.Srivastava, “Low power error control for

wireless links” ,in the proceedings of Mobicom 97.

xXViii

ABSTRACT

of the Dissertation
Turbo code design for high spectral efficiency
by

Christina Fragouli
Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 2000
Professor Richard D. Wesel, Chair

This thesis addresses turbo-encoder design for coding with high spectral efficiency
using parallel concatenated trellis coded modulation (PCTCM) and symbol in-
terleaving. The turbo-encoder design involves the constituent encoder design and
the interleaver design. The state space description of convolutional codes serves
as the foundation of the constituent encoder optimization. As an application
we examine minimality under periodic puncturing. The constituent encoders are
optimized for symbol-wise effective free distance, and each has an infinite symbol-
wise impulse response. We identify the canonical structures for the constituent
encoder search space. In many cases of practical interest, the optimal structure
for these constituent encoders connects the memory elements in a single row. To
lower the error floor, new semi-random interleaver design criteria and a construc-
tion method extends the spread-interleaver concept introduced by Divsalar and
Pollara. Simulation results between 0.5 dB and 0.6 dB from constrained capacity
for rates of 2 and 4 bits/sec/Hz, show that the proposed system can converge at

a lower SNR than previously reported systems.

Xix

CHAPTER 1

Introduction

The channel coding theorem establishes the existence of codes that allow
transmission through a channel at any rate less than the channel capacity with
an arbitrarily small probability of error [CT91, Gal68, Ash65, Shad8, Shab7].
However, there is no systematic procedure for constructing practical codes that
meet the specifications of the coding theorem. Before the emergence of turbo
codes in 1993 [BCT93], the error correcting codes achieved a reliable perfor-
mance several dB from capacity [Wes98, J 95]. Turbo codes managed, with finite
complexity, to offer performance within fractions of a dB from capacity. Since
then, they have increasingly attracted the interest of the coding community, and

are becoming part of the next generation of standards.

The main objective of this thesis is to develop design techniques for turbo
codes with high spectral efficiency, i.e. multiple bits/sec/Hz. The proposed turbo
encoder structure uses parallel concatenated trellis coded modulation (PCTCM)
and symbol interleaving. The turbo encoder design involves the constituent en-

coder design and the interleaver design.

This thesis is organized as follows. Chapter 2 reviews a general descrip-

tion of convolutional encoders that is provided by linear matrix equations, called

discrete-time state-space equations in control theory. We introduce the notion of
algebraically equivalent encoders and use the rational form theorem to establish
the structural properties of an exhaustive set of encoders that are algebraically

distinct.

To acquire a better understanding of the state-space equations framework, we
discuss how the notions of controllability, observability and minimality in control,
are applied to convolutional code design. The notion of output-observability can

be used to ensure minimality of a convolutional code.

As an application, we investigate minimality of convolutional encoders after
periodic puncturing. A minimal encoder, when periodically punctured, produces
a higher rate encoder that may or may not be minimal. We assess the performance
of codes that are non-minimal under puncturing, and propose a fast algorithm
to determine minimality under puncturing. As an example we optimize rate
1/4 unpuctured codes for Hamming weight under both bit-wise and symbol-wise

periodic puncturing. Code tables and simulation results are included.

The turbo encoder design consists of two components, the constituent en-
coder design and the interleaver design, which are examined in Chapters 3 and 4

respectively.

Chapter 3 proposes a method for parallel concatenated trellis coded modula-
tion using symbol interleaving. We describe the proposed turbo encoder struc-
ture, derive the constituent encoder optimization criteria and extend the effective
distance bounds to symbol-wise inputs. Based on the results of Chapter 2, the
appropriate encoder structure for turbo-code constituent encoders is identified
and applied to the special case of PCTCM. The identified search space applies to
all turbo-code constituent encoders and is not restricted to symbol interleaving,

or trellis coded modulation. As an example, we optimize constituent encoders

for bit-interleaved turbo codes coupled with BPSK.

Chapter 4 proposes new interleaver design criteria that extend the spread-
interleaver concept introduced in [DBP97] to multiple error events. This exten-
sion helps to explain why the spread interleaver is specifically designed to be
semi-random. We also propose a semi-random interleaver construction method,
and discuss the existence of interleavers that meet specified constraint parame-

ters.

Chapter 5 uses the proposed turbo structure and design techniques, to present
simulation results for 2 bits/sec/Hz employing 16-QAM and 8-PSK, and 4 -
bits/sec/Hz employing 64-QAM= 2 x 8-PAM. The performance at BER 107 is
between 0.5 dB and 0.6 dB from constrained capacity. The proposed system can

converge at a lower SNR than previously reported systems.

The main contributions of the work presented in this thesis, are:

e An algebraic criterion for minimality among range equivalent encoders
(Chapter 2).

e Search space for algebraically equivalent encoders (Chapter 2).

e An algorithm to examine whether periodic puncturing causes a convolu-
tional encoder to have zero output loops other than the self-loop around

the zero state (Chapter 2).

e Design criteria and distance bounds for turbo code constituent encoders to

symbol interleaving (Chapter 3).
e Search space for turbo code constituent encoders(Chapter 3).

e Interleaver design criteria for turbo codes (Chapter 4).

A semi-random interleaver construction method (Chapter 4).

CHAPTER 2

Convolutional Codes

Codes optimized for a particular distance property can be identified by means
of exhaustive search within an appropriate set of potential codes. The main
contribution of this chapter is to develop the framework that Chapter 3 uses to

determine an appropriate search space for turbo code constituent encoders.

Without concatenation, searching for good trellis codes that maximize the free
distance, requires examining only one code within each group of range equivalent
encoders, i.e. equivalent in Forney’s sense ([For70], [Wes96] definition 16). So
it is sufficient to restrict attention within a set of canonical encoders, which are

identified by Forney [For70].

Definition 1 Range Equivalent Two encoders are called range equivalent if

they have the same set of output sequences.

Turbo codes involve optimizing the constituent convolutional encoders for output
distance under specific input to output mappings. Range-equivalent codes can
have quite different performance. For example, feedback encoders always have a
range-equivalent feedforward encoder which would perform poorly with parallel
concatenation. In this case an exhaustive search should use a different search
space. This chapter examines the structural properties of encoders that should

be included in an exhaustive search for turbo code constituent encoders.

The largest set of encoders an exhaustive search might need to examine is the
set of encoders that are not strictly equivalent ([Wes96], definition 15) to each

other.

Definition 2 Strictly equivalent Two encoders are called strictly equivalent if

they have the same mapping of input to output sequences.

If two encoders are not strictly equivalent (or range equivalent), we say they are

strictly distinct (or range distinct respectively).

A general description of convolutional encoders is provided by linear matrix
equations called discrete-time state-space equations in control theory. To acquire
a better understanding of the state-space equations framework, we discuss how
the notions of controllability, observability and minimality from control theory
are applied to convolutional code design. The notion of output-observability can
be used to ensure the minimality of a convolutional code. As an application, we

investigate minimality of convolutional encoders after periodic puncturing.

2.1 State Space Equations

A general description of a convolutional encoder with £ inputs, n outputs, and
m memory elements is given by the state-space equations over GF'(2):
8j+1 = SjA+UjB
r; = SjC'FUjD (21)
where s; is the state vector of dimension 1 xm, u; is the input vector of dimension
1 X k, and z; is the output vector of dimension 1 x n.

Matrix A € GF(2) of dimension m x m determines the way the m memory

elements are connected. For a feedforward encoder with memory elements con-

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

77

FIGURE 2.1: CANONICAL FORM FOR FEEDFORWARD AND FEEDBACK EN-

CODERS

nected in a single row, matrix A has m—1 terms “1” in the superdiagonal and all
other entries equal to zero. This Toeplitz form matrix is called “backward-shift”
[HJ85]. For example, the feedforward encoder with three memory elements con-

nected in one row, depicted in Fig. 2.1, can be described by the backward-shift

010
A;=[(001
000

matrix Aq:

For a feedforward encoder with memory elements connected in R rows, A is equal
to the direct sum of R backward-shift matrices, one corresponding to each of the

memory elements.

Definition 3 Direct sum The direct sum of the matrices A1y, Agg, ... is the

block diagonal matriz:

Ay 00
A=|0 Ax 0 (2.2)
0o 0

For example, the feedforward encoder with two rows of memory elements in

Fig. 2.1, can be described by A,:

A2:

(s erRerlan]
SO OoOH—
OO OoOOo
OO O

For feedforward encoders, there exists an integer L < m, such that A = 0,

where m is the number of memory elements.

For a feedback encoder with the memory elements connected in a single row,
A is the companion matrix of the encoder’s feedback polynomial. The companion

matrix of a polynomial is defined [HJ85] as:

Definition 4 Companion Matrix Consider the monic polynomial

f(D) = D*+ fsD*+ foD*+ fiD + fo

The matriz:
0 1 0 O
0 0 1 o0
A=10 0 0 1 (2.3)
fo fi o fs

is called companion matriz of the polynomial f(D).

For feedback encoders with R memory rows, A is the direct sum of R companion
matrices, one corresponding to each memory row. For feedback encoders, it holds

that A’ # 0 for any positive integer L. Moreover, there exists a positive integer

P < 2™ such that A = A.

Matrix B € GF(2) of dimension k£ x m determines how the inputs drive the
memory elements. For example, the states that can be reached in one trellis step
starting from the zero state are the 2* linear combinations of the rows of B. If the
rows of B are not linearly independent, then the corresponding trellis diagram

has parallel transitions.

The encoders with a feedback polynomial that has a nonzero constant term
fo =1, do not have input-weight-one error events. An input weight one sequence

drives the encoder through the sequence of states:
0—ob = bA—> ... A > ...

where L is integer and b; is a row of B. The nonzero input causes the encoder
to go from state zero to state b;. The encoder can return to the zero state (with
zero input), if there exists row b; and integer L such that b;AL = 0. But this
would imply that AL has left eigenvalue 0, and as a result A has eigenvalue 0.
The characteristic polynomial though, which for companion matrices is equal to

the feedback polynomial, since fy = 1, does not have 0 as a root.

Matrix C € GF(2) of dimension m x n determines how the output depends
upon the current state. If an output is systematic, then the corresponding column
has zero elements. Finally, matrix D € GF(2) of dimension k£ x n determines

how the current input contributes to the output.

The generator matrix G(D) for an encoder with state space representation

{A,B, C,D} can be calculated as:
G(D)=D+B(D'I-A)HC (2.4)

where D is the indeterminate delay operator and I the identity matrix. Different

{A,B, C,D} encoders may have the same generator matrix.

2.2 Algebraically Equivalent Encoders

Definition 5 Algebraically equivalent Two encoders are called algebraically

equivalent if they map the same input error events to the same output error events.

If two encoders are not algebraically equivalent, we say they are algebraically

distinct.

Definition 6 Error event (/[BDM91] pg. 61) An error event is a trellis path
of finite length that starts and ends in the zero state, and does not visit the zero

state in between.

The difference between strict equivalence and algebraic equivalence, is that
algebraic equivalence refers to error events. Strict equivalence (definition 2), as
well as range equivalence (definition 1), refer to sequences that might be infinite

or semi-infinite, and are not concerned with the encoder memory state.

Two algebraically equivalent encoders are strictly equivalent. Two encoders
are strictly equivalent, if and only if they have the same generator matrix. Two
encoders that have the same generator matrix though are not necessarily alge-

braically equivalent. For example, the encoder {A;, By, Cy,Dy}:
_ 0 - i)

0 1000
[51 82 83 S4]j+1:[81 52 S3 54]j 000 1 + [U1 U2U3]j 1 111
1010 |01 10|
T o0
(11 y2y3y4]j:[81 S92 83 84]j 000UO0]|T [u1 u2u3]j 0101
0001 (00 1 1]
C D1
(2.5)
is strictly equivalent to the encoder {Ag, By, Ca, Do }:
01 11
[81 82]j+1:[81 Sg]j[l 1]+[u1 U2u3]j 11
. , 11
A, N —
B2
000 1 1 001
[y1y2y3y4]j:[5152]j[0 0 0 0]+[U1UQU3]j 8 (1) (1) % (2.6)
—_——
Co]?);

10

Fig. 2.2 and 2.3 provide an example to illustrate how encoders {A;,B;,Cy, Dy}
and {Ag,Ba, Ca, Dy} are strictly equivalent but not algebraic equivalent. As-
sume that the input to both encoders is the semi-infinite sequence: {3 0 0 0...},

then both encoders produce the same output sequence: {3 0 0 0...}. Encoder

0/0

3/3

@

FIGURE 2.2: ENCODER {Aj, Bz, Cy, Dy} HAS AN ERROR EVENT OF LENGTH

ONE

{A2,B3,C5,D,} (Fig. 2.2) goes through an error event of length one, with in-
put and output equal to 3, and then stays in the zero loop around the zero state.

Encoder {A1,B;,Cy,D;} with input 3 and output 3, exits the zero state to en-

. 3/3

0/0 0/0

“5 @

FIGURE 2.3: ENCODER {A;,B;,C;,D;}DOES NOT HAVE AN ERROR EVENT

OF LENGTH ONE

ter the zero-input zero-output loop around the states {16, 11, 7}, where it stays
forever, i.e. does not return to zero state. This encoder does not have an error

event of length one with input 3 and output 3. Actually, it does not have any

11

error event of length one. Thus it is not algebraically equivalent to the encoder

{A2a B2a C2a DZ}

Strict equivalence in turn implies range equivalence. Two encoders with gen-
erator matrices G1(D) and Gy(D) are range equivalent if and only if there exists a
nonsingular matrix 7'(D) such that Gy (D) = T(D)G1(D). For strictly equivalent

encoders T'(D) = I where I is the identity matrix.

Figure 2.4 shows that for any encoder C, progressively exist, a set of encoders
algebraically equivalent to C, which is a subset of the set of encoders that are
strictly equivalent to C, which in turn is a subset of the set of encoders that are

range equivalent to C.

Range Equivalent

FIGURE 2.4: DIFFERENT TYPES OF ENCODER EQUIVALENCE

12

2.2.1 Search space for Algebraically Equivalent Encoders

Consider the state vector similarity transformation 5; = s;S, where S is a non-
singular matrix. Under this transformation, the encoders described by the linear

systems:
8]'_|_1 = SjA + UjB 8]'_|_1 :S]‘SAS_I + UjBS_l
.Tj = SjC + UjD l‘j :S]‘SC + UjD (27)

where S is a nonsingular matrix, are strictly equivalent, since they have the same

generator matrix:
G(D)=D+BS' (D' I-SAS™)'SC=D+B(D'T-A)"'C (2.8)

where I is the identity matrix.

Moreover, an invertible transformation maps the zero state to the zero state,
thus the encoders have the same mapping from input error events to output
error events, and are also algebraically equivalent. The matrix S™'AS, with S
nonsingular, is called similar to the matrix A. For example, matrix Ag is similar

to matrix Aq:

0100 11017701 00770010
1101 |1o011floo1o0]|]|1011 .
ooo0o1|=|10o00llooo0o1]|lo111 (2.9)
001 1 ooo01ll1010]loo0o01
As S AL e

13

Encoder {Ay, By, Cy, D, } is algebraically equivalent to encoder { As, B3, C3, D3}:

(V1007 (111 0]
1 101
[s1s0838al;=1[s1828384l; 1 g 0 0 1 (T [Muewus; |1 1 11
1 100
001 1) L !
A3—SA;S-1 B3=B;S~!
(000 17 7100 1]
00 0O
[y1 y2y3y4]j=[31 325354]j 0000t [w U2U3]j 0101
(0000 loo11]
Cs5-SC, D3=D1
(2.10)

In an exhaustive search for algebraically distinct codes, it is redundant to
examine similar matrices A. The range of matrices A to consider, that are not
similar to each other, can be found from the rational form theorem presented in
Horn and Johnson ([HJ85], pg. 154) and the references therein. The following
definitions [HJ85] help to review the terminology employed by this theorem.

Definition 7 Annihilate A polynomial whose value is the zero matrix at matrix

A, is said to annihilate A.

Definition 8 Minimal polynomial The minimal polynomial of a matriz A 1is
the unique monic polynomaial of minimum degree that annihilates A. The minimal
polynomial has exactly the same roots as the characteristic polynomaial but possibly
with smaller algebraic multiplicity. Every monic polynomial is both the minimal

and the characteristic polynomial of its companion matriz.

Definition 9 Invariant factors The invariant factors of a matriz A are the

unique monic polynomials fi(N), fa(A) ... fr(X) with the following properties:

1. fi(A) is the minimal polynomial of A.

14

2. The product of all the invariant factors is the characteristic polynomial of

A.

3. Their degrees are monotone non-increasing
4. fk:—f—l(A) divides fk()\) e fl (A)

The invariant factors can be determined in a definite way for a matrix A. Two
matrices are similar if and only if their invariant factors are identical. To each

invariant factor can be associated a companion matrix.

Theorem 1 Rational Form Theorem Any matriz over a field F is similar
over F to the direct sum of the companion matrices of its invariant factors. These

nvariant factors are uniquely determined polynomials with coefficients from F.

This theorem tells us that in order to consider all the possible different ma-
trices A of dimension m X m, consider all the polynomials of degree m, their
subsequent valid factorizations into invariant factors, and finally the direct sum

of the associated companion matrices.

The direct sum of R companion matrices has exactly the same form as the
matrix A of a canonical form encoder with R rows of memory elements. The
feedback in each row is determined by the corresponding invariant factor. If the

corresponding invariant factor is of the form D™ there is no feedback.

In other words the rational form theorem states that for any convolutional
encoder with m memory elements, no matter how these memory elements are
connected, there exists an algebraically equivalent encoder with the memory el-
ements connected in R rows for some R. Thus in an exhaustive search over
algebraically distinct encoders, it is sufficient to consider the canonical memory
structures with R rows, provided all possible ways of input and output connec-

tion, which are not restricted to be of any specific form, are taken into account.

15

2.3 Minimality among range-equivalent encoders

Definition 10 Range minimality Among all range-equivalent encoders (defi-
nition 1), the encoder that uses the smallest number of memory elements is called

mainimal.

Theorem 2 A feedforward encoder is minimal iof and only if:

e [t 1s delay preserving.
e [t is degree preserving.

e [t is non catastrophic.

This particular discussion of minimality is from [Wes00]. A similar analysis was

initialy presented in [For70].

Definition 11 Delay Preserving A feedforward encoder is called delay pre-
serving if and only if delay(u(D)G(D)) = delay(u(D)) where delay(u(D)) of
the 1 x k wvector u(D) is the minimum power of D in the vector’s polynomial

components.

Definition 12 Degree Preserving A feedforward encoder is called degree pre-

serving if and only if

degree(u(D)G(D)) = max (degree(u;(D)) + m;)

1<i<k

where degree(u(D) of a vector u(D) is the mazimum power of D in the polynomial
vector’s components, m; = maz;(degreeg;;(D)), and g;;(D) are the polynomial

elements of the generator matriz G[D].

16

Definition 13 Catastrophic An encoder, either feedforward or feedback, is
called catastrophic, if and only if an infinite input weight sequence is mapped

to a finite output weight sequence.

Although Theorem 2 applies only to feedforward encoders, it has been ex-

tended to include feedback encoders in [JW93, FJW96, LFM94].

We are going to present an algebraic criterion to determine whether a given
encoder {A,B,C,D} is minimal or not. In this scope we apply well known
control-theory results, and examine what the minimality conditions imply for the

state diagram of a convolutional code.

2.4 Control theory applied to convolutional encoders

In control theory [Che99], the discrete-time state-space equations are examined
through the notions of controllability, observability and minimality. Controlla-

bility is a property that applies to both the state vector, and the output vector.

2.4.1 Controllability of state vector

State vector controllability implies that the encoder should have an irreducible

state space diagram, have all states accessible.

Definition 14 The state vector s; is said to be controllable, if there exists an
input sequence, that can drive s; from any initial state s, to any final state s,

in a finite number of steps.

Algebraic test

This criterion involves only the A and B matrices in the equation for s;:

17

Sj_|_1 = SjA + ’U,jB (211)

Because of linearity, it is sufficient to be able to go from the zero state, to any

state, in a finite number of steps. Thus:

So — 0 BA™!
S1 = ulB BAm—2
s9 = u;BA + uyB = S = [U1lUg - . Uy

Sm = BA™ ! +u,BA™ 2+ .. +4,B B

It is enough to examine up to m steps, since from the Cayley-Hamilton theorem,

A™ can be expressed as a function of lower powers of A. The matrix:
B Am—l
B Am—2
B
of dimension km x m is called controllability matrix. The state vector s; is

controllable if and only if the controllability matrix is full rank.

2.4.2 Controllability of output vector

Output vector controllability simply states that all the outputs should be used

in the state space diagram.

Definition 15 The output vector y; is said to be controllable, if given the current
output vector yy there exists an input sequence that after a finite number of steps

can produce any outputl vector y.

Algebraic test
Using the same steps as before, the output after m + 1 steps is given by:
BA™!C
BA™2C
Ym = [UrUg . . UUmy1] | - (2.12)

BC
D

18

The output vector y; is controllable if and only if the above matrix of dimensions

k(m + 1) x n is full rank.

2.4.3 Observability

Definition 16 A system is said to be observable, if the knowledge of both the
input and output sequences for a finite number of steps, is sufficient to determine

the initial state sq and thus the corresponding state sequence.

If the state diagram of a system {A,B,C,D} has two loops with the same
input and the same output, the system is unobservable. But because of linearity,
this implies that the state diagram also has a loop with zero input and zero
output. Thus the question of observability can be resolved by looking at the
system output when the input is zero.

Algebraic Test

The system is observable if and only if the matrix:

[CAC...A™I1C] (2.13)

of dimensions m X mn is full rank.

2.4.4 Minimality in Control

Theorem 3 A realization {A,B, C,D} is called minimal:

e if and only if it has the smallest number of state variables among all real-

wzations with the same transfer function.

e if and only if the state state vector s is controllable and observable.

The first condition implies that minimality in control theory corresponds to min-

imality among strictly equivalent encoders, and not among range equivalent en-

19

coders. The second condition leads to the following observation: minimality
among strictly equivalent encoders implies that it is not necessary to have two
loops with the same input and the same output in the state diagram. One such

loop is sufficient.
By the same token minimality among range equivalent encoders implies that
it is not necessary to have two loops with the same output in the state diagram,

one such loop is enough. To describe this condition, we use the term of output

observability.

Definition 17 Output Observability The linear system {A,B, C,D} is said
to be output observable, if the state sequence {so, s1,...,Sn} is uniquely deter-

mined by the knowledge of the output sequence {yo, Y1, ... ,yn} for a finite number
of steps N.

Algebraic test

A system is output observable if and only if the following conditions hold:

1. The matrix D has full rank (condition for delay preserving),

2. The matrix

C AC A2C ... A™'C
D BC BAC ... A™2C
0 D BC .. A™3C
00 0 0 D

has full rank.

An encoder is minimal if and only if it is output observable, as is stated in the

following theorem, presented in [LEM94]:

Theorem 4 An encoder is minimal if and only if any of the following equivalent

conditions hold:

20

1. There exists an integer N, such that the mapping of output sequences {yo, y1,

. YN} to state sequences {sg, $1,-..,Sn} is one to one, where N < m.

2. No state other than the zero state is the starting or ending state of a semi-

infinite zero-label path.

Theorem 4 is equivalent to saying that an output observable encoder is delay
preserving, degree preserving, and non catastrophic (Theorem 2). This is easy
to see by interpreting these properties for the state diagram of a feedforward

convolutional encoder.

1. Not Delay Preserving

The state diagram contains a branch exiting the zero state with output zero

0/0

u/0

FIGURE 2.5: STATE DIAGRAM OF A NOT DELAY PRESERVING ENCODER

towards a state S, as depicted in Fig. 2.5. There are two ways to produce
a semi-infinite all zero output sequence, by either ending it at state S, or
at the zero state. Thus such an encoder is not output observable. Also this
encoder does not satisfy the minimality principle, because the existence of

this branch is redundant.

2. Not Degree Preserving
The state diagram contains a branch entering the zero state with output

zero emanating from a state S, as depicted in Fig. 2.6, different than the

21

0/0

u/0

FIGURE 2.6: STATE DIAGRAM OF A NOT DEGREE PRESERVING ENCODER

self loop. There are two ways to produce a semi-infinite all zero output
sequence, by either starting at state S or at the zero state. Thus such an

encoder is not output observable either, and this branch is not necessary.

3. Catastrophic

The state diagram contains a loop with output all zero, different than the

@

FIGURE 2.7: STATE DIAGRAM OF A CATASTROPHIC ENCODER

-—————|

Us/0

self loop, as depicted in Fig. 2.7. An all zero semi-infinite sequence can
start from any state of this loop. Thus such an encoder is not output
observable. The zero-output loop does not contribute anything new to the
possible output sequences, it only reproduces the outputs of the self loop.

Thus this encoder cannot be minimal.

22

Note that for feedforward codes, no loop other than the self-loop around the zero
state can have all-zero input. Thus a zero-output loop that does not include the

zero state always implies a catastrophic feedforward encoder.

2.5 Minimality under periodic puncturing

Trellis codes can be designed to offer reliable performance over periodic era-
sure channels. Such channels arise for example from partial-band interference
in frequency-hopped or multicarrier transmission, that is dispersed by a block

interleaver.

Lapidoth [Lap94| analysed convolutional codes under periodic erasures. We-
sel, Liu and Shi [WLS00] describe techniques for the analysis and design of trellis
codes, optimized for Euclidean weight under periodic erasures. Founded on their
work, this section further investigates codes optimized for puncturing, and elab-

orates on the minimality of the punctured codes.

When periodically punctured, a minimal encoder produces a higher rate en-
coder that may or may not be minimal. If it is not minimal, it is not output
observable [LFM94, FJW96, FW99| and possibly catastrophic. A code search
can use a fast algorithm to determine minimality under puncturing, and a pro-
posed method to assess the performance of non-minimal under puncturing codes.
As an example, the paper optimizes rate 1/4 unpunctured codes for Hamming
weight under both bit-wise and symbol-wise periodic puncturing. Code tables

and simulation results are included.

23

2.5.1 Periodic symbol puncturing

Periodic symbol puncturing [WLS97] with period p can be described by a p-
element vector & = [a; ... ap), a; € {0,1}, applied to the output of a convolutional

encoder:
Sj_|_1 = S]‘A + UjB (214)

iEj = SjC —+ UjD

Yj = A(i%p)Tj
where “%” denotes the modulo operation, s, is the state vector of dimension 1xm,
u; is the input vector of dimension 1 x £, z; is the output of the unpunctured
convolutional code of dimension 1 X n, and y; is the output after puncturing. A
code under periodic symbol puncturing is periodically time-variant, in the sense

that the output corresponding to a specific encoder state and input depends on

the phase 7 of the puncturing pattern (on whether a; = 0 or a; = 1).

A p — q erasure pattern has ¢ zero values a; = 0 (erased), and p — ¢ nonzero
values a; = 1 (unerased). Trellis codes {A, B, C, D} can offer consistent per-
formance (according to the criteria in [WLSO00]) over the set of all p — g erasure
patterns of interest. This set is constrained by the number of memory elements
m, number of inputs £ and number of outputs n of the code, as is determined
in [WLSO00]. For example every a code fails when punctured to rate greater than

one (negative redundancy).

Section 2.3 defined as minimal the encoder that uses the smallest number of
memory elements among all its range equivalent encoders. Theorem 4 established
that a minimal encoder is output observable (definition 17), that is, the knowledge
of the output sequence for a finite number of steps, is sufficient to determine the

initial state sy and thus the corresponding state sequence.

24

Assume that the encoder {A,B,C,D} is minimal. Puncturing creates a higher
rate encoder, that may or may not be output observable, depending on whether
puncturing has left enough structure to the output sequences to determine the
corresponding state sequences. If the punctured encoder is not output observable,
then two different semi-infinite state sequences are mapped to the same output
sequence. From linearity this implies that the code may have a zero-output loop
different than the self-loop around the zero state. If the input to such a zero
output loop is non-zero, the encoder is catastrophic. A catastrophic code maps
an infinite input weight sequence to a finite output weight sequence, which causes

the code to fail.

During a search for codes under periodic puncturing, care must be taken to
identify codes that become non-minimal under puncturing. In Section 2.5.2 we
discuss the appropriate search space for the code search. Section 2.5.3 intro-
duces a fast algorithm to check whether an encoder has a zero output loop under
a specific puncturing pattern. Section 2.5.4 proposes a method to assess the
performance of the encoders containing such a loop. Section 2.5.5 investigates
the performance of our example 1/4 codes under both bit-wise and symbol-wise

puncturing, and provides code tables as well as simulation results.

2.5.2 Search space

An exhaustive search maximizing free distance over all minimal encoders of a
given rate and number of memory elements yields codes with better distance
properties than any non-minimal encoder with the same complexity can achieve.
To optimize the performance of a code under a single specific periodic puncturing
pattern, an exhaustive search can safely exclude any non-minimal codes under

this pattern.

25

However, optimizing the performance of a single code under a family of peri-
odic puncturing patterns is a multi-criterion optimization problem [WLS00], that
does not necessarily have a unique solution. Often, no single code gives the best
possible performance for all puncturing patterns. The search seeks to identify
the subset of codes that offer reasonable performance over the whole family of
puncturing patterns. This subset may include codes that become non-minimal
under one or more of the puncturing patterns Such a code may even be the best
choice when considering its performance for all puncturing patterns. As a re-
sult, an exhaustive search considering several puncturing patterns, cannot safely
exclude codes that are do not retain minimality under all puncturing patterns.
For example, when punctured to uncoded (rate 1, no redundancy) an encoder is
always non-minimal, since the minimal encoder in this case contains no memory
elements. Still such a pattern might be of interest in a partial-band jamming

application.

The search space for trellis codes is the set of encoders that are not range
equivalent to each other. Two encoders are called range equivalent [Wes96] if
they have the same set of output sequences. This is Forney’s notion of equiva-
lence [For70]. For non-minimal encoders that have a zero output loop, the input
sequence mapped to the zero output loop determines whether the encoder is
catastrophic or not, which has a dramatic effect on performance. It is quite often
the case that there are two range-equivalent encoders, and one is catastrophic

while the other is not.

Thus we propose to use an exhaustive set of encoders that are strictly distinct
as the search space. Two encoders are called strictly equivalent [Wes96] if they
map the same input sequence to the same output sequence. If two encoders

are not strictly equivalent we say they are strictly distinct. The rational form

26

theorem in [FW00] provides a method for identifying an exhaustive set of strictly
distinct encoders. A group theoretic approach in [BGMO98| provides a different

way of identifying such a set.

2.5.3 Algorithm to determine zero-output loops

To determine whether puncturing causes a code state diagram to have a zero-
output loop, one may start from all states, and all the the distinct phases of the
puncturing pattern (for example the p — ¢ = 4 — 2 puncturing pattern [0 1 0 1]
has two distinct phases: [0 10 1] and [1 01 0]) and check if this state belongs to

a zero output loop.

The loop which after puncturing has only zero outputs, before puncturing,
must have at least one zero output. Otherwise, since at least one a; is nonzero,
the nonzero output eventually adds distance to the loop. Moreover, the zero

output is aligned with a nonzero a;.

This observation leads to the proposed algorithm: start only from the states
with a zero output, and align this zero output with a phase of the puncturing
pattern such that a; = 1, i.e. the first symbol of the period is not punctured.
For example, for a code with six memory elements under the p — ¢ = 4 — 2
puncturing pattern [0 1 0 1], instead of starting from the 63 nonzero states under
both phases, it is sufficient to start from the three states that have a zero output
coupled with phase [1 0 1 0], which amounts to a reduction by 96.83% of the

search space.

This observation can be applied to the adaptation of Lapidoth’s algorithm
[Lap94] presented in [WLSO00], as follows. Start only from states j that have a
zero output (Sy = Sg) and use a phase of the puncturing pattern that starts with

an unpunctured erasure coefficient.

27

2.5.4 Performance of encoders with a zero-output loop

The performance of a code over an AWGN channel is determined by its free
distance. For codes optimized for periodic puncturing, the corresponding metric is
residual distance. Residual distance [WLS00] indicates how much output distance
is provided by the code after periodic attenuation. In other words, residual

distance is the the free distance of the punctured code.

Consider a non-minimal code with a zero-input zero-output loop, decoded
with the standard Viterbi algorithm. The free distance is not necessarily equal
to the minimum output distance associated with the encoder’s error events. As
error events we refer to the trellis paths of finite length that leave the zero state

once and return to it only once ([BDM91] pg. 61).

However, the free distance is equal to that of a strictly equivalent minimal
encoder, and for minimal encoders free distance is also the minimum distance as-
sociated with the encoder’s error events. This minimal strictly equivalent encoder
may also be used to compute transfer function bounds. A reduced complexity
transfer function bound, and a method for calculating the transfer function bound

for codes under periodic erasures, are described in [WLS00, Wes99, WL98|.

As an example, consider the non-minimal encoder {A;, By, Cy, Dy} (2.2) that
contains a zero-input zero-output loop. This encoder is strictly equivalent to the
minimal encoder {Az, By, C2, D5} in (2.2.1). The encoder {A,, B, Ca, Dy} may
be used to calculate the free distance and the transfer function bounds for the

encoder {A1,B;,Cy,D4}.

The following theorem allows the determination the free distance of a code
containing a zero-output loop without converting it to a minimal equivalent en-

coder:

28

Theorem 5 The free distance of a (non-minimal) code containing a zero output
loop, is equal to the minimum output distance of all paths that start and end in
the zero state, and all paths that start in the zero state and end in the zero-output

loop.

Proof

The non-minimal encoder {A, B, C, D} is not output observable. Thus there
exists a state vector equivalence transformation §; = Ps;, where P is a nonsin-
gular matrix determined by the observability matrix O = [C CA ... CA™]
[Che99], that leads to an algebraically equivalent encoder of the form:

A, O B,
[SO Sno]j+1 - [SO Sno]j [Aot Anoz] T |: B, :|
~ N——

o

A B

yj =I[so Sﬂo]j [o] +u;D (2.15)
C

G,
C

where the m-dimensional state vector s is divided into an an observable part s,
and and a not observable part s,,. By dropping the unobservable state vector
Sno We obtain an observable state equation of lesser dimension, that corresponds

to a strictly equivalent observable (minimal) encoder.

Assuming C is full rank, the zero input - zero output loop is described by the

state equations:
So =0, Spo = Apno2Sno (2.16)

where 0 is the zero vector. That is, for the strictly equivalent observable encoder,
the zero-input zero-output loop is mapped to the self-loop around the zero state.
The error events that start and end in the zero state s, = 0 for the minimal

encoder, may start or end in the zero loop for the non-minimal encoder. 0

29

2.5.5 Code search and Simulation results

In this section we present code tables and simulation results for rate 1/4 codes
employing BPSK with m = 6 memory elements, optimized for periodic punctur-
ing with period p = 4. To identify good codes we examined both symbol-wise

and bit-wise puncturing.

Symbol-wise puncturing is described by (2.1). For bit-wise puncturing with
period equal to the number of outputs (p = n) (2.5.1) is replaced by (2.17):

yj = Xj O) é (217)

where © stands for the element by element multiplication of vectors x; and a.
Bit puncturing with a p — ¢ puncturing pattern amounts to to ignoring ¢ out of
p outputs of the initial code, and thus leads to a time-invariant code of a higher

rate.

To describe an encoder we give in octal notation the feedback polynomial
f(D), the k =1 row by of matrix B, the n = 4 columns {c; ...c,s} of matrix C,
and the £ = 1 row d; of matrix D. For example, code Cy in Table 2.4, described
by the polynomials {0140, 040, 054, 062, 052, 013, 07} has the {A,B,C,D}

state-space description:

01 00 00
001000
0 00O1O0O0
0 00 O0O0T1 B
| 000 0 01
A
1 1 1 0
01 00
1 011
Yi=Si|l1 00 0 -|-uj[(] 11 1]
——
0111 D
| 0 0 01
c

30

2.5.6 Bit-wise Puncturing

For bit-wise puncturing an exhaustive search examined all strictly distinct rate
1/4 feedback encoders such that, when punctured to uncoded, all resulting 1/1
encoders are non-catastrophic. The search was restricted to feedback encoders,
since all rate 1/1 feedforward encoders are catastrophic, (with the exception of

the 1/1 codes with generator polynomials [D*], k =1...m).

Let d2

tree denote the minimum residual Hamming distance for each set of

4 — ¢ punctured codes, ¢ = 0...3, i.e., for each set of codes with the same rate.
Each 1/4 code, leads to a set of four 1/3 codes under 4 — 1 puncturing, six 1/2
codes under 4 — 2 puncturing and four 1/1 codes under 4 — 3 puncturing. The

free distance of the unpunctured code is equal to d% For 4 — 3 puncturing

ree’

the output Hamming distance of non-catastrophic codes is always equal to one

(d3,,, =1).

ree
Table 2.1 presents three codes, each achieving the highest residual Hamming

dq

Free for one value of ¢, ¢ = 0,1, 2, as Table 2.2 shows.

Code {f:b17 C1, Cg, C3, Cy4, dl
B, | {0101, 040,010, 052, 066, 077, 017
B, | {0123, 040, 044, 064, 011, 027, 02}
B, | {0123, 040, 050, 066, 076, 077, 10}

TABLE 2.1: CODES WITH m = 4 MEMORY ELEMENTS, k£ = 1 INPUT, AND n =4
OUTPUTS, OPTIMIZED FOR HAMMING DISTANCE UNDER BIT-WISE PERIODIC

PUNCTURING, WITH PERIOD P=4

COde dz'r‘ee d}ree do'r‘ee
B 3 7 | 14
B, | 2 8 [11
Bs | 4 g [12

TABLE 2.2: DISTANCE CHARACTERISTICS OF BIT-WISE PUNCTURED CODES

31

Table 2.3 provides in detail the distance characteristics of the codes presented
in Tables 2.1 and 2.2 . In the second row, the d, subscript denotes the unpunc-
tured output bits. For example, di5 stands for the residual distance when the
two MSB bit outputs are not punctured and the two LLSB outputs are punctured,
do34 stands for the residual distance when the output MSB bit is punctured, and

d1034 stands for the free distance when no output bit is punctured.

The number given in parentheses is N,. For no puncturing N, would be the
total number of input bits of all error events that have output distance equal
to the free distance. For codes under periodic puncturing, NV, is the natural
extension of this idea, as is described in [WLS00]. The notation “(z/)” indicates
that the encoder has a zero-input zero-output loop, and the distance from the

zero state to this loop determines the residual distance.

d2T€€
Code T T da T [@ [
By [4(7) | 5(9) | 4(4) | 5(a) | 3(A) | 6(<)
B, [6(30) | 2(21) |5 (4) [6(30) | 3(z) | 5(d)
B, | 5(6) | 4(6) | 4(2]) | 4(z) | 4(2]) | 5(4)
Code dlree d())cree
d123 d124 d134 d234 d1234

B [3(2) | 8(4) [8(d) [7() | 14(12)
B, | 3(4) | 3(@) | 3(d) | 3(d) 11(4)
B, | 8(6) | 10(11) | 8(11) | 9(4) | 12(11))

TABLE 2.3: ANALYTIC DISTANCE PROPERTIES OF CODES IN TABLE 2.3

2.5.7 Symbol-wise puncturing

For symbol-wise puncturing, we performed a partial search over a set of strictly
distinct feedback encoders. Feedback encoders were chosen as more resilient to
catastrophicity. As noted in [WLSO00] a catastrophic feedforward code may lead

to a non-catastrophic feedback code, while a catastrophic feedback code always

32

leads to a catastrophic range equivalent feedforward code. The search was partial
in that it did not exhaust the set of strictly distinct encoders due to computational

limitations, but it included a full set of range distinct encoders.

Ignoring cyclic shifts, puncturing with period four leads to one 4 — 3 pattern

[0 0 0 1] with associated free distance denoted by d%_,, two 4 — 2 puncturing

free’

patterns [0 0 1 1] and [0 1 0 1] with associated free distance denoted by d%

free
and d(}iee respectively, and one 4 — 1 puncturing pattern [0 1 1 1] with associated

07
free:

free distance denoted by d The free distance of the unpunctured code, can
be viewed as corresponding to the puncturing pattern [1 1 1 1], and is denoted

by d}zee. Puncturing to rate one (uncoded), for non-catastrophic codes, always

01 _
free — 1

implies distance d
Table 2.4 presents codes that are non-catastrophic when punctured to un-
coded, and offer consistent performance under the different puncturing patterns.
The metrics presented in the third and fourth column are calculated [WLSO00] as:
JdB = Z 10 10g10(4(d51 Tee)2) (218)

J

where él(clgfree)2 is the squared Euclidean distance corresponding to Hamming
distance d; and BPSK constellation normalized to unit energy (E; = 1). The
summation is over all puncturing patterns a;.

Jur = 3 H logy(4(d,,)?) (2.19)

J

where ¢; is the number of punctured symbols for the puncturing patterns a;.
Table 2.5 gives the residual distance characteristics of these codes. Lp is the
natural extension of traceback depth for codes under periodic erasures. Both NV,

and Lp are described in detail in [WLS00].

The codes in Table 2.5 achieve much higher residual Hamming distance than

the codes in Table 2.3: for 4 — 0 puncturing (unpunctured) they achieve distance

33

C {f,b1,c1,C2,C3,¢4, di } Jur | Jas

C, | {170, 40, 66, 56, 13,33, 17} | 70.3 | 15.21

C, | {140, 40,42, 16,11, 25,17} | 70.3 | 15.21

C, [{140.40.52.06.65. 15,74} [70.3 | 15.21

C, | {113,40,24,74,22,65,64} | 70.8 | 15.25

Cs | {151, 40, 40, 60, 76,07, 13} | 70.8 | 15.25
1 +

(124,60, 64, 22,06, 43,16} | 70.8 | 15.25
C, | {136,60,40,62,01,27,7} | 70.8 | 15.25
Cs | 1160, 40,74, 16,41, 71,157 | 70.8 | 15.25
Co | {140,40,54,62,52,13,7} | 70.0 | 15.26

Cho | {140, 40,12, 56, 35,63, 17} | 70.6 | 15.24
Ch | {120,40,64,06,43,67,16} | 705 | 15.23
Ch | {140,40,26,45,65,13, 17} | 70.5 | 15.23
Chs | {174,40,15,55,07,47,16} | 705 | 15.23
Ch | {110,40, 45, 65,63,07, 15} | 69.5 | 15.00
Cis | {146,40,24,42,62, 11,17} | 69.5 | 15.00
Che | {150, 60,25, 65,37, 77,15} | 69.5 | 15.00

TABLE 2.4: CODES WITH m = 4 MEMORY ELEMENTS, k£ = 1 INPUT, AND
n = 4 OUTPUTS, OPTIMIZED FOR HAMMING DISTANCE UNDER SYMBOL-WISE

PERIODIC PUNCTURING, WITH PERIOD pP=4

up to 20 as opposed to 14, for 4 — 1 puncturing they achieve distance up to
14 as opposed to 8, and for 4 — 2 puncturing they achieve distance up to 8 as
opposed to 4. The reason is that the set of non-catastrophic codes under bit-
wise puncturing is much smaller than the set of non-catastrophic codes under
symbol-wise puncturing. The limited number of non-catastrophic codes incurs
much smaller achievable distance for the rest of the puncturing patterns. An
intuitive explanation may be the following. The rate 1/4 codes of our example
transmit at each trellis step four BPSK symbols. Symbol and bit-puncturing of
period four can be viewed as special cases of puncturing BPSK symbols (output
bits) with period sixteen. The 4 —2 puncturing pattern [1 1 0 0], applied bit-wise
is equivalent to the bit erasure pattern: ajs =[1100110011001100].
When applied symbol-wise, it corresponds to the bit puncturing pattern: a%, =

1111111100000 0 0]. Bit-wise puncturing with period four is more

34

dispersed than symbol-wise puncturing with period four, which may lead to codes

more prone to catastrophicity.

Bit Error Rate

=
o

-6 i i i i i i i i i
-4 -2 0 2 4 6 8 10 12 14
SNR (dB)

FIGURE 2.8: PERFORMANCE OF CODE (; UNDER PERIODIC SYMBOL PUNC-

TURING WITH PERIOD p = 4

Table 2.6 shows the Bit Error Rate performance at two SNR points for each
puncturing pattern, for the codes in Table 2.4. The codes are distinguished by
small trade-offs.

Figures 2.8, 2.9 and 2.10 plot the performance of codes Cs, C3 and Cy respec-

tively, in BER vs. SNR (in dB), for all possible periodic puncturing patterns.

Code Cj offers better performance when unpunctured (pattern 1111), and code

35

Bit Error Rate

SNR (dB)

FIGURE 2.9: PERFORMANCE OF CODE (3 UNDER PERIODIC SYMBOL PUNC-

TURING WITH PERIOD p =4

Cy better performance for the 4 — 2 puncturing patterns (0101 and 0011). Code
Cs very similar performance to C5. The Viterbi simulation used traceback depth
Lp = 40. Fig. 2.11 compares the the performance of codes C5 and Cy, while

Fig. 2.12 compares the the performance of codes Cy and Cs.

Figures 2.13, 2.14 and 2.15 plot BER vs. mutual information (in bits per

channel use) for codes Cs, C3 and Cy. Mutual information is calculated, for a

36

Bit Error Rate

SNR (dB)

FIGURE 2.10: PERFORMANCE OF CODE Cy UNDER PERIODIC SYMBOL PUNC-

TURING WITH PERIOD p =4

p — ¢ puncturing pattern, as [WLSO00]:

P T10g,(1+SNR), ¢=0...3. (2.20)
P

This plot allows one to examine proximity to capacity for each puncturing pat-
tern. For example, code Cy at BER=107° requires a consistent excess mutual
information between 0.77 — 0.885 for all five erasure patterns. This amount of
excess mutual information is very similar to the one required in [WLS00] for rate

1/3 codes.

37

Code TTTT 0TTT 0011 0T0T

Qiree | Ny [Lo | @%0e [Ny [Lo | 4% [Ny [L | 4% | Ny | Lo
Cy [20 [7I[IT[1T (419 6 [12[10] 8 [59 15
L | 20 [40[10 IT [2 [9] 6 [I0]10] 8 |I0I] 15
Cy 120 (2410 1T [29 6 [28[17] 8 [9915
T 19 (3819 [IT [6] 9 7 [32[1l 8 3212
19 (381 9 [IL [6] 9 7 [33[11 8 |35 12
Cs 119 (3219 [11T [2 9 7 [49[14] 8 [6315
L 19 (40 9 [IT [4 [9| 7 [4l[14| 8 |63 15
Cy | 19 [24[9 [1T [4 9 7 [4#4[14] 8 [64 15
Cy | I8 [8 [8 [12 [2 19 7 [I8[IT] 8 [213
Coo | I8 8 7 [13 [20[13] 6 [810 8 | 7117
Con | 19 [40[10 12 [10[10] 6 | 4 [10] 8 | 55 | 17
o [19 [24[11] 12 (413 6 [8 [13] 8 [48 15
Cia | 10 [40 [11 [12 [20[13 6 [9 [13 8 |57 15
W 19 [24[10] 13 [32[13] 5 [2[10] 7 [1213
Cis | 19 (16 7 1 13 (4213 5 [610 7 | 8 [13
Cw | 19 24110 13 29[13 5 [4 10 7 | 1213

TABLE 2.5: RESIDUAL DISTANCE FOR CODES IN TABLE 2.4 UNDER PE-

RIOD-FOUR ERASURE PATTERNS

p=141 1111 0111 0011 0101
dB —1.0 0.5 0.5 2.0 2.75 4.25 2.75 4.25
Code | x1073 | x107° | x1073 | x107° | x1073 | x107° | x1073 | x107°
(@) 1.68 3.4 2.09 6.3 3.28 14.2 2.24 4.3
Oy 1.35 1.6 1.92 3.2 3.72 17.0 2.87 8.1
Cs 1.07 1.6 1.96 5.3 6.27 40.2 2.49 7.9
Y 2.94 7.7 3.18 7.9 4.85 20.8 3.23 5.7
Cs 3.17 7.7 3.36 8.5 4.99 19.1 3.44 6.0
’6 2.59 6.7 2.72 6.9 5.32 18.8 2.92 7.6
7 2.37 4.3 2.59 94 4.68 18.5 2.28 5.9
Cy 2.15 4.9 241 7.8 4.24 16.9 2.38 5.6
Cy 2.18 6.0 1.87 5.4 2.63 10.3 1.56 3.1
Cho 1.55 3.5 1.97 4.1 3.59 12.7 2.16 5.4
Chi 2.28 5.8 2.37 6.4 3.48 12.1 2.25 5.4
Cia 2.15 4.6 2.50 8.7 5.01 23.4 2.14 5.0
Cis 247 5.0 3.01 11.3 5.h9 25.5 2.30 5.9
Cla 1.91 3.1 2.27 5.7 3.81 15.0 2.63 8.0
Cis 2.55 6.4 3.07 5.3 5.22 33.0 3.05 8.5
Cis 1.89 4.5 2.19 6.1 3.93 19.2 2.39 8.6

TABLE 2.6: BIT ERROR RATE PERFORMANCE FOR CODES IN TABLE 2.4.

SIMULATIONS WITH TRACEBACK DEPTH Lp = 40

38

Bit Error Rate

SNR (dB)

FIGURE 2.11: PERFORMANCE COMPARISON OF CODE (5 AND Cy

39

Bit Error Rate

SNR (dB)

FIGURE 2.12: PERFORMANCE COMPARISON OF CODE (5 AND Cj

40

Bit Error Rate

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Channel Mutual Information (bits/channel use)

FIGURE 2.13: PERFORMANCE OF CODE (3 VS. MUTUAL INFORMATION UNDER
PERIODIC SYMBOL PUNCTURING WITH PERIOD p = 4. TRANSMITTED RATE IS

0.25 BITS PER CHANNEL USE

41

Bit Error Rate

-7 i i i i i i
0.2 0.4 0.6 0.8 1 1.2 14 1.6
Channel Mutual Information (bits/channel use)

FIGURE 2.14: PERFORMANCE OF CODE (5 VS. MUTUAL INFORMATION UNDER
PERIODIC SYMBOL PUNCTURING WITH PERIOD p = 4. TRANSMITTED RATE IS

0.25 BITS PER CHANNEL USE

42

Bit Error Rate

0.2 0.4 0.6 0.8 1 1.2 14 1.6
Channel Mutual Information (bits/channel use)

FIGURE 2.15: PERFORMANCE OF CODE (9 VS. MUTUAL INFORMATION UNDER
PERIODIC SYMBOL PUNCTURING WITH PERIOD p = 4. TRANSMITTED RATE IS

0.25 BITS PER CHANNEL USE

43

44

CHAPTER 3

Proposed Turbo Code Structure and

Constituent Encoder Design

This chapter presents a method for parallel concatenated trellis coded mod-
ulation (PCTCM) with constituent encoders of rate k/n, k > 1. The k binary
inputs are one symbol over the extension field GF(2¥). Two main approaches
are proposed in the literature for the turbo encoder structure, one employing
bit interleaving by Benedetto et al. [BDM96], and the other employing symbol
interleaving by Robertson and Worz [RW96, RW98].

For bit interleaving, k bit interleavers are used to keep the bit streams sep-
arate. The first constituent encoder in [BDM96], for k even, has half of the &
input bits as systematic outputs and a parity output. The second constituent
encoder is the same as the first, but the other half of the £ input bits become

systematic. Thus the overall turbo encoder is systematic.

For symbol interleaving as described in [RW96, RW98|, to have the overall
turbo encoder systematic, the interleaver maps even symbol positions to even
symbol positions and odd ones to odd. The output of the second encoder is
de-interleaved and the output symbols from each encoder are punctured alter-
natively. The odd-to-odd and even-to-even interleaving was first described by

Barbulescu and Pietrobon in [BP94], and is equivalent to using two separate

45

symbol interleavers of half the length, one for the odd positions and another for
the even ones. This additional structure of the symbol interleaver reduces the
interleaving gain, as is also observed by Ogiwara and Yano in [OY98]. Moreover,

puncturing complicates the design of the constituent encoders.

Our proposed approach combines the turbo encoder approach of [BDM96]
with a symbol interleaver. Each k/n constituent encoder, for k even, has k/2 sys-
tematic outputs and r > 1 parity outputs. The n = §+ r total output bits of the
encoder are mapped to one constellation point. The upper constituent encoder
has as systematic outputs the £/2 MSB input bits while the lower constituent
encoder has as systematic outputs the £/2 LSB input bits. Thus the systematic
bits are evenly divided between the constituent encoders without puncturing or
interleaver constraints as in [RW96] (in [OY98] the interleaver constraints are

removed but puncturing is still employed).

u, MSB
ts 16 QAM
U XX
XX X
el el dal -l 888
XX X

‘SYMBOL ‘ N o=

INTERLEAVER

16 QAM
XXX
& s] [o] (XXX
! 2] 153 > T T eeee
XX X

&
q

FI1cure 3.1: 2 BITs/sEc/Hz PCTCM TURBO CODE WITH RATE 4/4 CON-

STITUENT ENCODERS

Fig. 3.1 shows an example of the proposed parallel turbo code structure that
employs 16 QAM modulation in connection with rate 4/4 constituent encoders,

each with g = 2 systematic and r = 2 parity outputs. Fig. 3.2 shows a second

46

example of the proposed structure that employs 8 PSK modulation in connection
with for rate 4/3 constituent encoders, each with g = 2 systematic and r =1
parity outputs. The generalization to k/n encoders using 2"-point constellations

is straightforward when £ is even.

tﬁg 8-PSK
U e%oe
Halal o fal4aly e .
e,
‘SYMBOL ‘
INTERLEAVER
g%— 8-PSK
e%oe
T e ACT SET I
N .o.

FI1Gure 3.2: 2 BITS/sEc/Hz PCTCM TURBO CODE WITH RATE 4/3 CON-

STITUENT ENCODERS

Generally, using a symbol interleaver is equivalent to using £ bit interleavers
that implement the same interleaving pattern. In contrast, interleaving the k£ bits
separately allows spreading of the components of one error event to k-times more
error events, typically accumulating more distance. Thus the symbol interleaver
imposes a structure that reduces the interleaver gain of a turbo encoder. Despite
the loss in interleaver gain, we are motivated to use symbol interleaving because

it imposes fewer assumptions on iterative decoding, as discussed below.

Our iterative decoder implements the Soft Input Soft Output (SISO) equa-
tions appearing in [BDM97], with input bit probabilities substituted by input
symbol probabilities. Let Y; be the observed sequence at the SISO module cor-
responding to the upper constituent encoder, and u = {uy} the input symbols
sequence we try to estimate. The iterative turbo decoder uses the assumption

that the exchanged input symbol probabilities are independent. This is not true

47

because they are conditioned on the observed output sequence Yj:

P(u|Y:) # I, P(u| Y1) (3.1)

Using bit interleaving leads to the additional assumption that the bits {u;,}

within each symbol u; are also independent. Again this is not true:
P(ug|Y1) # ILP(ugi| Y1) (3-2)

Symbol interleaving avoids this additional assumption of independence (assuming
equality in (3.2)).

The use of a symbol interleaver implies that the constituent encoders should
be optimized for “symbol effective free distance.” This term refers to the mini-
mum output distance when the input symbol sequence has exactly two symbols
different from zero as opposed to the usual notion of effective free distance which
refers to the minimum output distance for a binary input Hamming distance of

two.

In the rest of this dissertation, we use several variations of effective free dis-
tance. The superscript refers to the output distance, Hamming (H) or Euclidean
(E). The number in the subscript denotes the input weight, whether bit-wise (b)
or symbol-wise (s). We always imply squared Euclidean distance. For example,
d%, stands for the output squared Euclidean distance when the symbol-wise input

weight is two.

3.1 Desired Constituent Encoder Distance Properties

An analytical upper bound to the bit error probability of turbo codes by Benedetto
and Montorsi in [BM96] identified effective free distance as a key parameter. A

similar analysis still holds when the input of the constituent encoders is over

48

GF(2*%), with the slight modification that the input Hamming weight now refers
to Hamming weight in the extension Galois field GF(2¥). Repeating the analy-
sis for symbol-wise input along the lines of [BM96] (we do not repeat the exact
derivation here), two main guidelines for the design of constituent encoders are

derived:

e For a given symbol interleaver length, to achieve interleaver gain, the con-
stituent convolutional encoders must have infinite output weight when the
input symbol sequence contains only one symbol different than zero (d2 =
00).

e Among the encoders with d = oo, the ones with the best symbol effec-

tive distance (Hamming d, or Euclidean d% depending on the application)

optimize the asymptotic turbo code performance.

The first guideline equivalently states that there should be no parallel transitions

in the trellis diagram, which was also presented in [RW96].

3.2 Distance Upper Bounds

Consider convolutional codes with £ binary inputs, m memory elements, and
r parity (not systematic) outputs. Assume that d = oo, i.e. the impulse
response corresponding to every one of the £ binary inputs is infinite. Divsalar
et al. presented in [DP95b] and [DM96] the following bound on the effective free

distance df} that is a key design metric for constituent encoders used with bit

d < min q%w r, 2 + Vm]:TD (3.3)

interleaving [BM96]:

49

where | z| denotes the largest integer smaller than z, and [z] denotes the smallest

integer larger than z.

For symbol interleaved PCTCM, it is interesting to examine the d%, bound.
It can be shown that an upper bound to df, when d” = oo, with r parity (not

systematic) outputs and k binary inputs, is given by substituting & with 2% — 1

in (3.3):
om 2m—17.
o .
d32 S min <’Vﬁ—‘ r, 2r + {ﬁJ) (34)

The proof follows along the same lines as the proof of (3.3) given in [DP95b].
The main point is the following: If the feedback polynomial of a convolutional
encoder is primitive, then the state diagram has one loop with zero inputs and
nonzero outputs. This loop includes all the 2™ — 1 nonzero states. An input
sequence with two non-zero symbols causes the encoder to enter the loop (with
the first nonzero input) and exit it (with the second nonzero input). The output
weight of any output parity bit going around the whole loop is 2™~!. If k binary
inputs exist, there are k& ways to enter and leave the loop via single input bits,
and thus the minimum output weight of a single parity output, along the part
of the loop that it travels before it exits, can be in the best case, 27! /k. Con-
sidering symbol inputs, there are instead 2¥ — 1 ways to join/exit this loop, and
thus the minimum output weight of a single parity bit can be, in the best case,
2m1 /(28 —1). This reasoning leads to the second argument of the minimization
in (3.4). In general, 2F —1 inputs should be taken into account instead of k, which
can be similarly applied to the bit-wise proof in [DM98] for the first argument

and for non-primitive feedback polynomials.

The upper bound (3.4) indicates that there is less symbol-wise effective free
distance available than bit-wise, as expected. Indeed, grouping any convolutional
code’s error events symbol-wise instead of bit-wise, can only reduce the effective

distance.

20

3.3 Range of Encoders to Search

This section, relies on the framework developed in Chapter 2 to examine the
structural properties of encoders that should be included in an exhaustive search

for turbo code constituent encoders.

When searching for encoders that maximize effective distance, we can rule

out codes that are input-Hamming-weight equivalent to already examined ones.

Definition 18 Input-Hamming-weight equivalent Two encoders are called
input-Hamming-weight equivalent if they map the same input weight error events

to the same output distance.

If two encoders have the same mapping from input to output error events,
then they also have the same mapping from input weight error events to output
error events. Thus two algebraically equivalent encoders (definition 5) are also
input-Hamming-weight equivalent. The set of input-Hamming-weight equivalent
encoders to an encoder C is a subset of the set of encoders that are algebraically

equivalent to C, as Fig. 3.3 illustrates.

Two strictly equivalent encoders (definition 2) are not necessarily input-Ham-
ming-weight equivalent, because two encoders with the same mapping from input
sequences to output sequences do not necessarily have the same input weight error
events. Also, two input-Hamming-weight equivalent encoders are not necessarily

strictly equivalent, because different inputs can have the same input weight.

Chapter 2 introduced the state space description of convolutional codes. For

example, the upper constituent encoder in Fig. 3.1 with feedback polynomial

51

[51 52 83 8a];4) = [51 52 83 4] [

[yl Y2 Y3 y4]j = [51 S2 S3 84]j

Input Hamming Weight
Equivalent

Algebraically
Equivalent

°C

EQUIVALENT ENCODERS TO AN ENCODER C

f(D)=D* + D +1 has the following state-space description:

FIGURE 3.3: SET OF INPUT HAMMING WEIGHT EQUIVALENT AND ALGEBRAIC

0100 100 0
[00101 [0101]
000 1|t [muwusuld;ig g g 1
1100J [0011J
Ay B,
(3.5)
1000 1100
1100 1100
1000 |1 [muwusul; | g1 1 ¢
100 0 100 1
Ca Dy
(3.6)

92

Section 2.2.1 established that the range of matrices A to consider, that do
not lead to algebraic equivalent encoders, can be found from the rational form
theorem presented in Horn and Johnson ([HJ85], pg. 154) and the references
therein. This theorem states that for any convolutional encoder with m memory

elements, no matter how these memory elements are connected, there exists an

algebraic equivalent encoder with the memory elements connected in R rows for
some R. The following theorem helps to further refine the encoder structures of

interest for turbo codes.

Theorem 6 Consider a convolutional encoder with k inputs, r parity outputs,

and m memory elements. For all (k, m, r) values such that
k <min (2™ —2,7(2" % - 1)) (3.7)

the bound in (3.3) cannot be achieved if the m memory elements are connected
in multiple “disconnected” memory rows, that is, multiple distinct memory rows

with no common inputs.

Proof
It suffices to show that the use of multiple rows of memories enforces an upper

bound on the effective free distance lower than the bound in (3.3).

Assume that the m memory elements are connected in R rows with m; mem-
ory elements in row j, j =1... R, and Zle m; =m. Let k; be the number of
inputs in row j, k; < k, Zf':l k; =k, and r; be the number of outputs from
row 7, r; < r. In the example of Fig. 3.4, R=2, m =4, mi = mg = 2, k = 3,

ki=2,ks=1,r=3and r, =ry = 2.

For one memory chain j, df} is bounded by:

om; 2m~—1 .
dfy < min ([—]-‘ T, 215 + \‘ i T]J) (3.8)
k; k;

So for the total encoder it holds that:

: (2 2mi~r;
e, (e [] |77)
, . (2™ 2mi~ly
i ([]e [7]) o

93

To show that the multiple-rows upper bound is lower, it suffices to show that

it is lower for both the two terms of the min function in (3.3).

1. For the second term of the bound:

If the m memories are connected in one row:

2m—1
< o + { p TJ (3.10)
If the m memories are connected in R rows:
2msi Ly
d? < min |2 3.11
< i, (2 + 757 @1
R 1
o 2Ty
<or+ F:HTJ (3.12)

Note that perhaps m; < m*, but (3.12) is still an upper bound to (3.11).
2. Similarly, for the first term of the bound:

If the m memories are connected in one row:
2m
dil < [7w r (3.13)

If the m memories are connected in R rows:

R .
AL
i< | B

If it holds that k£ < 2™ — Zle 2™ for all possible R and m; partitions, then

(3.14)

(3.13) and (3.14), are related by a strict inequality. However for any integer g,
1 < ¢ < m, integers m;, 0 < m; < m, and integer R > 1 it holds that:

R
D omi<omay 2t <2m 42 (3.15)
j=1

so it suffices that k < 2™~' — 2. Similarly, for strict inequality between (3.10)
and (3.12), it suffices that k& < r(2™72 —1). O

54

Disconnected memory rows are described by block diagonal matrices A and B,
so the state equation in (2.1) can be decomposed into a separate state equation for
each memory row. Fig. 3.4 shows an example of an encoder with two disconnected

memory rows, described by the state equation:
0100 10
[81 S92 S3 84]j+1 = [81 S92 S3 84]]' + [U1 U2 Ug]j 8 8

- 7
-~

SO
SO
—o o
OO

- -

u, rn Lt
o— OUTPUT 1

OUTPUT 2
U, S, |e S, OUTPUT 3

FIGURE 3.4: ENCODER STRUCTURE WITH TWO MEMORY CHAINS
In an exhaustive search, if the memory elements connected in a single row
(most “connected” case) give a code with df}, that achieves the upper bound,
there is no need to expand the search to multiple rows. This is very often the
case in practice. The rational form theorem and Theorem 6 usually result in a
small number of matrices A to examine. However, for each matrix A all matrices

B, C, and D still have to be examined.

The input vector transformation 4 = uT for any k£ x k matrix T that performs
row permutation also leads to input-Hamming-weight equivalent encoders. In-
deed, the corresponding generator matrices G(D) and TG(D) still map the same
input weight error events to the same output distance. Thus in an exhaustive
search there is no need to examine both sets of matrices (B, D) and (TB, TD).

For example, keep only the matrices B where each row (interpreted as a binary

95

number) is greater than the previous row, coupled with all possible matrices D.
Similarly output Hamming weight is not affected by permuting the r outputs,

which in this case reduces the number of matrices C to examine.

3.3.1 Application to Bit Interleaving

Table 3.1 provides code fragments with k£ inputs, r parity outputs, and m memory
elements optimized for df, and identified through exhaustive search using our
proposed structure. Such tables are useful for bit-interleaving coupled with BPSK
or 4-PSK modulation, and outperform in terms of df} similar code tables provided
in [DM96]. Benedetto et al. use a group theoretic approach to propose a different
structure in [BGM98] and provide encoder tables that are equally good (but not

better) in terms of df} than the codes identified in Table 3.1.

To describe an encoder we give in octal notation the feedback polynomial f,
the k rows {b;...b;} of matrix B, the r columns {c;...c,} of matrix C, and
the 7 columns {d; ...d,} of matrix D that correspond to the r parity outputs.
For example the upper constituent encoder in Fig. 3.1 with state-space equations

(3.5), (3.6) is described as:

{f,b1,bs, b3, by, c1, c2,dy, do} = {023,010, 05,01, 03,017, 04, 015, 016}

Table 3.1 includes for each code fragment the upper bound on the effective
distance dY,, the df} distance, the dj; distance, and the free distance denoted by
dfree, with the number of nearest neighbors in parentheses. The code fragments
can be made systematic by adding k£ systematic outputs. So although their free
distance might be zero, the free distance of the complete code will be positive
because of the additional systematic outputs. Codes noted with a * have repeated

outputs and do not perform well in simulations [DM96].

26

(r=1, k=2) code fragments
m {f,b1,bs,c1,d1 } dp, | dpy diy | diree
1 {03,01,01,01,0} 1 0(1) 00 0(1)
2 {07,02,01, 03,02} 2 2(3) | 0(1) | o(17)
3 {011, 02,05, 03,03} 4 4(2) | 2(4) | 0(33)
4 {027,010, 03,07, 03} 6 6(2) | 4(12) | 0(65)
5 {053, 020, 03,010, 03} 10 | 10(2) | 5(12) | 0(129)

(r=2, k=2) code fragments
m {f,bl,bz,cl,cz,dl,dZ} dp. db% dg df?‘ee
1 {03,01,01,01,0,01, 02} 2 2(5) 00 2(37)
2 {07,02,03,02,03, 01, 03} 4 4(2) | 2(2) | 2(34)
*3 {011, 02,05, 03,03, 03,03} 8 8(2) | 4(4) | 0(33)
3 {015, 04, 05,04, 07,03,02} 8 7(2) | 3(1) 1(1)
1 {023,010, 012,02,013,03,03} | 12 | 12(2) | 3(1) | 1(2)

(r=1, k=3) code fragments
m {f,bl,bQ,b3,C1,d1} di2 dg dgs dfree
1 {03,01,01,01, 01,0} 1 0(3) 00 0(3)
2 {05, 02, 02,03, 03,05} 2 1(2) | 0(2) | 0(c0)
3 {017,04,02,07,06,05} 3 2(6) 00 0(00)
4 {033,014, 02,05,013,07} 4 4(2) | 2(7) | 0(c0)

TABLE 3.1: CODE FRAGMENTS OPTIMIZED FOR d}}
3.3.2 Application to Symbol Interleaving

For PCTCM we are interested in (k,m,r + k/2) constituent encoders with r
parity and k/2 systematic outputs optimized for d%,. Theorem 6 can be extended
to symbol-wise inputs by replacing k£ with 2¥ — 1. Theorem 6 and (3.4) refer
to output Hamming distance. For the simulations we want to maximize the
output Euclidean distance d¥,. Although there is no monotone relation between
Hamming and Euclidean distance, they are closely related. For example, for 16

QAM and Gray labeling [WLO00], it holds that:
d? < d¥ < 24" (3.17)

Proof

A constellation’s edge profile lists the minimum distance edge for each binary

o7

symbol error [WLCO00]. Each edge can be expressed as a linear combination of
the basis vectors that label the constellation. For 16 QAM and Gray labeling,
the basis vectors vq, ve, v3, v4 in [Wes96] Table 3.2 pg. 47 must be equal the
orthonormal basis vectors B={0001, 0100, 0010, 1000} ([Wes96] Chapter 4).
Each of the vectors in B corresponds to Hamming weight one. The sum of any
two vectors in B corresponds to Hamming weight two. The sum of any two
vectors in B corresponds to Hamming weight three. The sum of all four vectors

corresponds to Hamming weight four. Thus Table 3.2, which reproduces part of

Edge label d? | d¥ | 2d7
U1 1 1 2
Vg 1 1 2
V2 + U1 2 2 4
U3 1 1 2
U3 + V1 2 2 4
U3 F Uy 21 4 4
Vg + Vo + V1 3 5} 6
Uy 1 1 2
V4 + U1 2 4 4
Vg + Vo 2 2 4
Vg + Vo + U1 3 5 6
V4 + V3 2 2 4
Vg + Vo + V1 3 D §]
V4 + V3 + V1 3 5} 6
V4 + V3 + Vo 3 5} 6
V4 t+v3+ve+v; | 4 8 8

TABLE 3.2: PART OF TABLE 3.2 IN [WES96].

Table 3.2 in [Wes96]| for the readers convenience, proves the claim in (3.17). O

Motivated by the previous arguments, and because completely exhaustive
searches are beyond our computational capabilities, for the simulation results in
Chapter 5 we restrict our attention to encoders with memory elements connected

in a single row.

For symbol interleaving, to have ds; = oo, the k rows {b;...by} of matrix

B ¢ GF(2)**™, have to be linearly independent, i.e. matrix B has to be full-

o8

rank and £ < m. Moreover, the input vector transformation 4 = uT for any
k x k nonsingular matrix T does not affect the symbol-wise input-Hamming-
weight. So there is no need to examine both sets of matrices: {A,B, C,D} and

{A,TB, C, TD} for any nonsingular T.

In the special case where £ = m, the rows/columns of matrix B form a basis.
Any other basis is related with a linear transformation to it. For example, matrix

B; is related with a linear transformation to matrix Ba:

1000 10007r1000
0101| (o1o01||l0o100 518
ooo0o1|=|looo1|]l0oo010 (3.18)
0011 001 1/]l0oo0o01
B: T B

So in an exhaustive search it is sufficient to use any one full-rank matrix B,
since any other full-rank matrix B is related through a linear transformation T

to it, coupled with all possible matrices D.

For our exhaustive searches we could not examine one matrix B coupled with
all matrices D, because our constituent encoders are half-systematic which implies

a special structure on matrix D:

(3.19)

oO=O O
OO O

99

60

CHAPTER 4

Interleaver Design for Turbo Codes

The turbo encoder performance depends upon both the constituent encoders
and the interleaver it employs. Chapter 2 addressed the constituent encoders
design. This chapter addresses the interleaver design, which again can be applied

to both bit and symbol interleaving.

Interleaver design for turbo codes is mainly targeted towards lowering the
error floor, which is the flattening of the error-rate curve that turbo codes exhibit
for moderate and high values of SNR. In this scope, Perez et. al. [PSC96] have
shown that the turbo code asymptotic performance approaches the free-distance
asymptote. The error floor observed with turbo codes is due to their relatively
small free distance and consequently relatively flat free-distance asymptote. Thus
to lower the error floor the free-distance of the turbo code must be maximized
for a fixed interleaver length. Based on this observation various methods (for
example [And97, OS97]) have been proposed to maximize the turbo code output
distance by designing the interleaver tailored to specific constituent codes, and
trying to break turbo code error events of low output weight. Some methods (for
example [DM97, HM97|) also propose interleaver design through cost function
minimization.

This chapter starts with the spread-interleaver introduced by Divsalar and

61

Pollara and extends the design criteria to multiple error events based on the
interleaver’s role in the overall error event distances. The extension helps to

explain why the spread interleaver is specifically designed to be semi-random.

An interleaver of length N is completely described by a mutually exclusive
and collectively exhaustive listing of the integers from 1 to N. Define f(i) to be
the integer in the 7** position in the list. The input symbol in position i before

interleaving is in position f(i) after interleaving.

4.1 Spread Interleaver

Consider a parallel concatenated turbo code as in Fig. 4.1. The interleaver takes

the input block of the upper encoder and produces the input block for the lower

encoder.

output extrinsic.
probabilities information
from i

upper | UM - Upper :

constituent}------ - channel pper)

constituent ——— interleaver
encoder decoder
interleaver output
j probabilities

from

lower channel lower

constituent----- -

constituent ——

decoder !
extrinsic.
information

de-interleaver

encoder

FIGURE 4.1: PARALLEL CONCATENATED TURBO CODE

During decoding, an error event at the output of the upper decoder will
be interleaved and spread to different error events of the lower decoder. The
interleaver determines which error events exchange a-priori information during
decoding. For simplicity from now on we refer to the interleaver input as input

to the upper constituent encoder and to the interleaver output as input to the

62

lower constituent encoder.

The role of the interleaver is to interconnect the error events of the constituent
encoders in such a way that the total output weight of a turbo encoder codeword
accumulates distance from as many distinct error events as possible from each

constituent encoder.

A specific interleaving pattern leads to the partition of the upper and lower
encoder inputs into sets of interrelated error events. For example in Fig. 4.2 we

can distinguish two such sets for an example error event.

000000000
o < N d

$éocveeds

FIGURE 4.2: Two SETS OF INTERRELATED ERROR EVENTS

The output weight associated with a turbo code error event, is the sum of the
output weights of all the constituent error events belonging in the same set. So
the bigger a set is, the more output weight it accumulates. A constituent error
event with many component input symbols although it might itself have very
small output distance, through the multiplicity of its inputs will be involved with
a large number of error events and thus the overall turbo code error-event will

have large distance.

This observation implies that the constituent events with a small number of
inputs lead to the lowest output distance. A commonly used example is that when
a constituent encoder has a single error event of input weight one, it unavoidably

maps to a single error event of weight one in the second constituent encoder. This

63

produces a very small total output weight, unless the constituent encoders have

infinite impulse responses.

A second way to have a small number of interconnected error events is depicted
in Fig. 4.3 where component symbols of one error event in the upper encoder
become part of the same error event in the second encoder. This case can be
avoided by using the spread interleaver introduced by Divsalar and Pollara. The
spread interleaver is described in [DBP97] as a semi-random interleaver based on
the random selection without replacement of /V integers from 1 to N under the

following constraint.

Corollary 1 The ™" randomly selected integer f(i) must be rejected if there exists

j <1, such that:

0<i—j <8, 1f(@) = FOI< S, (4.1)

This constraint guarantees that if two symbols ¢, j are within distance S; in the
upper constituent encoder, they cannot be mapped to distance less than Sy in

the lower constituent encoder.

i
0O

.

oJe
f) ()

FIGURE 4.3: CASE FOR PARAMETERS S

64

4.2 Extended Spread Interleaver

An extension of the spread interleaver concept considers multiple error events
in the upper encoder. As an example Fig. 4.4 depicts two error events of the
upper encoder that interchange their component symbols, and thus the weight
accumulation stops in two steps. To avoid this situation we define two more
parameters 17 and 75 and impose on the construction of the spread interleaver an
additional constraint. Again, randomly select without replacement integers from
1 to N, and if the 5" selection f(i) satisfies Constraint 1 described previously,

check if the following condition is also satisfied.

Corollary 2 The i randomly selected integer f(i) must be rejected if there exist

g, k,1 <1, such that:

0<i—j<Ti, |f(&) — f(k)| < T3, (4.2)

0< k=1 <T, FG) - FOI<T

This constraint guarantees that two relatively close component symbols 7 and
j in the upper encoder, do not have f(k) near f(i) and f(l) near f(j) in the lower
encoder, with £ and [near each other in the upper encoder. Figs. 4.4 and 4.5

illustrate error events that are avoided.

This procedure can be extended to three error events in the upper encoder.
Define parameters X; and X, and impose on the semi-random interleaver the

following additional condition.

65

| K

ch OC
o0 oC

f)10) (k) 1(1)

FIGURE 4.4: CASE FOR PARAMETERS T

000 00O 000

00O 000 000

FIGURE 4.5: ANOTHER CASE FOR PARAMETERS T

Corollary 3 Thei'" randomly selected integer f(i) must be rejected if there exist

i, k,l,m,n <1, such that:

0<i—j< Xy, 1f(&) = f(k)] < X, (4.3)
0< k-1 <X, 70) - Fm)] < X,
0<[m—n|<X, [f(n) = fF(D)] £ X,

Fig. 4.6 illustrates an example of an avoided error event. Extension to more than
three error events is usually not of interest, because it leads to increased output

weight that does not determine the free distance.

To motivate the introduction of Constraints 2 and 3 consider the following
example for a symbol interleaved system with constituent encoders of rate 4/3

employing 8-PSK. The element (w,l) of Table 4.1 is the minimum squared Eu-

66

nm | k o

..><OO><®®

O oS @IS
f(n) () t(m) 1G) (k) f(1)

FIGURE 4.6: CASE FOR PARAMETERS X

IWNL] 2 [3] a5 6] 7] 8] ogfw]ufi2]d]u]is]i]ir]
2 [117 L17] 1.76 | 2.34 [2.34 [2.34 | 2.34 | 2.93 | 2.93 [4.10 | 4.10 | 4.10 | 4.10 | 4.69 [4.69 | 5.87
3 | — 059059059 1.17 | 1.17 | 1.75 | 1.75 | 2.34 | 2.34 | 2.34 | 2.92 | 2.92 | 2.92 | 2.92 | 3.51
4 | |~ [059]0.59]0.59]0.590.59] 0.59 | 1.17 | 1.17 | 1.76 | 1.76 | 1.76 | 2.34 | 2.34 | 2.93

TABLE 4.1: SQUARED EUCLIDEAN DISTANCE FOR ERROR EVENTS. Rows
W: SYMBOL-WISE INPUT WEIGHT. COLUMNS L: SYMBOL WISE ERROR EVENT

LENGTH.

clidean distance, associated with a constituent encoder error event with input
symbol-wise input Hamming weight w, and symbol-wise length [. Observe that
when Constraint 1 is satisfied with (S7, S2) = (10, 10), the minimum squared Eu-
clidean distance that can be associated with the error event depicted in Fig. 4.3 is
4.10+1.17 = 5.27 (let the upper error event have length 11 and the lower 2). For
the case depicted in Fig. 4.4 though, if the constituent error events have length
2 or 3 the associated squared Fuclidean distance is 4 x 1.17 = 4.68. For the case
depicted in Fig. 4.5 the minimum squared Euclidean distance is 6 x 0.59 = 3.54.
Thus these error events dominate the performance and should be mitigated be-
fore further increasing S; and S;. Similarly, the minimum squared Euclidean
distance associated with the error event depicted in Fig. 4.6 is 6 x 1.17 = 7.02,

so this error event also determines the performance for S; and Ss larger than 16.

67

The symbol interleaved codes in particular might benefit more from the ex-
tended interleaver design because of the larger multiplicity of error events with
small number of inputs as opposed to the smaller number of such error events for

bit interleaved codes.

4.3 Construction Procedure

A uniform interleaver of length N is created by randomly selecting without re-
placement integers from 1 to N with equal probability. For a semi-random inter-
leaver the randomly selected integers need to satisfy a set of imposed constraints.

This subsection presents a technique for constructing such interleavers.

The generation of a length N interleaver consists of N steps, where each step
selects an integer for the respective position. At the i** step of the interleaver
generation the interleaver contains 7—1 assigned numbers and there exist N —i+1
unassigned numbers. Randomly select one of the NV — 7 + 1 unassigned numbers
with equal probability, for example number j. Check if placing number j at
interleaver position % violates any of the imposed constraints. If it does not
violate any constraints, then continue with the next step 7 + 1. If it does violate
a constraint, try to place j in between two other previously assigned indices.
Uniformly choose one of the i candidate positions and check if placing j there
violates any of the constraints. Continue until either all previously assigned
assigned indices have been examined or a suitable position is found. If there
does not exist an appropriate position, repeat for a number selected among the

unassigned and not already examined N — ¢ numbers &, k£ # j.

68

4.4 Existence of Semi-Random Interleavers

The design procedure does not guarantee that it will identify a semi-random
interleaver that meets the constraints, even if such an interleaver exists. Whether
such an interleaver exists at all depends upon the interleaver length N and the

specific design parameter values Si, Sy, 11, 15 and X, Xo.

Corollary 4 If only Constraint 1 is imposed, a necessary and sufficient condition

for at least one interleaver of length N to exist is:

N > 5.5, (4.4)

Proof
To prove the necessary part, consider an interleaver matrix of length N. We
cannot have at positions 4, j |i — j| < Si, values that differ by Sy —1...1. So

obviously N > S5. Define the set of integers:
Upg={d,d+1,...,d+ Sy —1}, for 1 <d < N —S,.

None of these Sy integers in U; may be placed within S; to each other. So in the
interleaver matrix, between any two of these integers at least S; — 1 other integers
have to be placed (Fig. 4.7) and the interleaver has to have length (S, — 1)(S; —
1) + S,. Moreover, each of the S; — 1 integers z in the first interval belongs to
a different U, set that has S, elements, so the interleaver must have one more
integer set of length S; — 1. In total the interleaver has to contain the elements
of the set U; and at least Sy distinct integer sets of length S; — 1, so its length
has to be greater than Sy(S; — 1) + So = S55.

To prove that 4.4 is also a sufficient condition, we show how to construct two

different interleavers of length S;S55. Consider a block interleaver of dimensions

69

,,,

FIGURE 4.7: NECESSARY CONDITION FOR CONSTRAINT 1

Sy X S;. Write the numbers 1... N by columns. Each column has length S5 so

the elements in each row differ by exactly S:

1 So+1 ... (S1—=1)Sy+1
2 S+2 ... (S1-1)S+2
SQ 252 :9152

Reading though the rows starting from the upper left corner we get an interleaver

that doesn’t satisfy constraint 1:
[1SQ+1(51_1)52+1252+2 5’15’2].

The number Sy + 1 is within distance S; — 1 to number 2 = | — j| = S; — 1 and

|f(@) — f(4)] = Sz — 1. There are at least two ways to avoid this:

1. Start from the lower left end, ie form the interleaver:
[SQ 252 5152 B SQ—]. e s 22 SQ+2 (51—1)52+2 1SQ+]_
(S1 —1)Sy+1].

2. Start from the upper right corner, ie form the interleaver:

[(51—1)52+1 52+11 (Sl_l)SQ+2 SQ+22 SQ]

As has been noted in the literature, this kind of block interleaver does not
perform well. Observe that constraint 2 is consistenly not met, since for each
neighbor integers k, | the intergers £ + 1 and [+ 1 are also neighbor. Thus the

spread interleaver is specifically designed to be semi-random; it is not sufficient

70

to satisfy constraint 1.

Similarly for Constraint 2, we can find a lower bound of the interleaver length
as following: Again define the set V; of integers that are within 75 to an arbitrary

integer d.
Vd:{d,d+1, ,d+T2—1}, fOI'TQSdSN—TQ.

Assume that 77 < 257, and T, < S; as is usually the case.

Consider Fig. 4.8. Because of Constraint 1, the elements of V,; cannot be
placed within S; to each other. Let X, be the set of 2(7} — 1) integers placed
within 7 to integer d. Each integer j € X, prevents another 2(7, — 1) inte-
gers from taking part in the sets: Xgi1,...Xg1m,—1, or else Constraint 2 will be

violated. Since there exist 75 —1 X-sets the interleaver length has to be at least:

N > 4(T, — 1) (T, - 1) + TbTh

*d 41
B T T d+Ty1
‘O." O‘ .‘O.'. O‘.'.‘O.'. O‘ . ‘O'.' O‘ [N] o0 .‘O"' O‘
T,-1 T,-1 T,-1 T,-1 T,-1
Sp-1

FIGURE 4.8: NECESSARY CONDITION FOR CONSTRAINT 2

71

72

CHAPTER 5

Simulation Results

This chapter provides simulation results of the proposed system for 2 bits/sec-
/Hz employing 16-QAM and 8-PSK, and 4 bits/sec/Hz employing 64-QAM=
2 x 8-PAM.

The performance metrics are Bit Error Rate, and Block Error Rate vs. SNR
(in dB). Bit Error Rate is a typical performance metric for channel codes. Turbo
code data transmission and decoding occurs in blocks, thus Block Error Rate
promotes understanding of the system’s behavior, and is the appropriate metric
for systems employing ARQ protocols or some other form of treating block (as

opposed to bit) failure.

The turbo code performance curve consists of three parts: the region before
convergence, the waterfall region where the code converges and the performance
achieves low error rates within tenths of dB, and the error floor where the error

curve flattens and follows the free distance asymptote.

Two criteria assess the performance of a turbo code. The first is at what
SNR the code converges, which determines the lowest SNR (in dB) at which the
code may achieve an acceptable performance (around 10~ for Bit Error Rate
below 1072 for Block Error Rate). This SNR. is compared against the constrained

capacity, which is the mutual information between the channel’s input drawn

73

uniformly from a finite constellation and the channel’s output [Ung82]. The
convergence SNR depends upon the input-output effective distance characteristics

of the code.

The second criterion is, at what error rate the curve meets the error floor of
the code, which determines the lowest error rate that the code may achieve. The
error floor depends upon the free distance of the code, which in turn is related

to the interleaver the turbo code employs, as is discussed in Chapter 4.

Table 5.1 contains in octal notation codes identified through computer search,
and optimized for normalized dZ, with the edge profile optimal [WKL97, WL00]

constellation labelings illustrated in Fig. 5.1.

Our search over all interesting constituent convolutional encoders mapped
onto the chosen labeling, in fact produces all interesting constituent codes that
could be found with any other labeling related to the chosen one by a binary linear
transformation. If two constellations are related with a linear transformation, an
exhaustive search would lead to the same encoders with the linear transformation
applied to their output. The set of labelings related to each other with a linear
transformation is broad enough to include all common labelings. For example the
Gray, Natural, and Reordered 8-PSK labeling reported in [BDM96], are included

in such a set.

The encoders in Table 5.1 employ the single memory chain structure identified
in Chapter 3. Each code has k/2 MSB inputs as systematic outputs, and r parity
outputs. To describe a code we give in octal notation the feedback polynomial f,
the k rows {b; ... b} of matrix B, the r columns {c; ... c,} of matrix C and the
r columns {d; ...d,} of matrix D that correspond to the r parity outputs. The
simulated codes are shown in bold face. The search identified a large number of

codes with the same value of d%, and comparable number of nearest neighbors.

74

TABLE 5.1: CODES OPTIMIZED FOR d%,
Codes optimized for d%, for 16-QAM

{f’ bla b?a b3, b4a C1, Co, dl, d2} dfé dsE3
1023,010,05,01,03, 04,017,016,0157 3(4) 1(1
1023,010,05,01,03,04,06,016,011} 3(9) 202)
T031,010,011,013,017, 014,06,015,04} 305) 1(1)

Codes optimized for d% for 64-QAM=8 x 8-PAM

{f’b17b27b37b4aclad1} df? dsE3
1027,01,011,015,07,015,014} 0.3810(3) | 0.1905(5)
1035,010,011,013,07,016,010} 0.3810(3) | 0.1905(5)
1025,010,014,01,07.05,011} 0.3810(7) | 0.3810(66)
Codes optimized for dZ, for 8 PSK
{f’b17b27b37b4aclad1} d-SEQ dg.?)

{027,010,06,01,03,011,014}

1.171573(3)

0.585786(5)

1035,012,016,01,015,011,05}

1.171573(3)

0.585786(5)

1027,015,014,010,07,03,016

1.171573(3)

0.585786(5)

1 5 7 1 7
0O 4 6 > 6
10 8 12 14
3 5
11 9 13 15 4 01 2 3 6 7 45
(a) 16 QAM (b) 8 PSK (c) 8 PAM

FIGURE 5.1: LABELING FOR THE CONSTELLATIONS USED IN THE SIMULATIONS

The constituent encoders of rate greater than one (4/3 for example) are catas-
trophic, but the overall turbo encoder isn’t. The upper constituent encoder (for
example, in Fig. 3.1) has as systematic bits the g MSB input bits, so in the

catastrophic loops (i.e. nonzero-input, zero-output loops) only the £ LSB bits

2

may be nonzero. Similarly the lower constituent encoder has as systematic bits

the g LLSB input bits so in a catastrophic loop only the g MSB input bits may be

75

nonzero. Because the input symbols for the upper and lower constituent encoder
catastrophic loops are different, the overall turbo encoder does not have an error
event that involves catastrophic loops in both the constituent encoders, so the
overall turbo encoder is not catastrophic. Each constituent encoder individually
implies no coding gain; the coding gain of our system is provided by connecting

two constituent encoders in the proposed turbo encoder structure.

The interleavers used in the simulations are uniform random or semi-random,
as specified in each case. To describe an interleaver we give the constraint parame-
ters described in Chapter 4 in the following order: (S, T', X), where S; = S, = S,
T, =T, =T, and X; = Xy = X. A random interleaver can be described by the

spread parameters (0, 0, 0).

5.1 2 bits/sec/Hz PCTCM with 16 QAM

For 2 bits/sec/Hz PCTCM with 16 QAM, the constituent encoders implement 4 /4
codes with » = 2 parity and g = 2 systematic outputs, and have m = 4 memory
elements. The whole turbo encoder is depicted in Fig. 3.1. The simulated code

is in the first row of Table 5.1.

For interleaver length 8,192 symbols (input block size in bits: 8,192 x 4), the
performance is within 0.5 dB of constrained capacity at BER 107° (Fig. 5.2)
with a semi-random interleaver (30-0-0). The same figure also plots the bit-
interleaved performance published in [DP95a] for 2 bits/sec/Hz PCTCM with 16
QAM, constituent encoders with 4 memory elements, interleaver length 16,384
symbols, and input block size in bits: 16,384 x 2. We compare systems that
do not have the same interleaver length (or interleaver gain), but have the same

input block size in bits, which we believe is more interesting from a designer’s

76

6 iter.]
6 iter. bit |]
8 iter.

8 iter. bit |3
14 iter.

|
I

[E=Y
o

Bit Error Rate

[3Y
OI

2.6 2.7 2.8 2.9
E,/No (dB)

FiGure 5.2: 2 BITS/SEC/HZ/ TURBO CODE EMPLOYING 16 QAM.
CAPACITY=1.76 DB. CONSTRAINED CAPACITY=2.1 DB. INTERLEAVER

LENGTH=S, 192 SYMBOLS. INPUT BLOCK SIZE 8,192 x 4 BITS

point of view.

The proposed symbol interleaved system can converge 0.05 dB earlier with 6
decoder iterations, and 0.1 dB earlier with 8 decoder iterations, but has an error
floor at around 5 x 10~® which seems higher than the error floor in [DP95a]. This
may be expected when comparing a symbol to a bit interleaved system, assuming
both are optimized for df,.. The smaller available symbol-wise distance, leads

to a smaller achievable dy,.. for the symbol-interleaved system, and thus a higher

7

error floor. The higher error floor becomes more apparent for smaller interleaver

lengths.

Fig. 5.2 also shows that the proposed system can converge 0.2 dB earlier by
increasing the number of decoder iterations. This property may be desirable for
such applications as deep-space communications, where the gain in dB can make
worthwhile the extra complexity and time delay that increased decoder iterations

involve.

6 iter.
8 iter.
11 iter.
o 14 iter. E
g SN —H Biter. exact |
.. - 8iter. exact |
10 : : : ;
D)
< 10
04
S
o
-‘510
10
10
10
2.7 2.8 2.9
Eb/No(dB)

FIGURE 5.3: 2 BITS/SEC/HZz/ TURBO CODE EMPLOYING 16 QAM. REPRO-
DUCTION OF [DP95A] RESULTS. INTERLEAVER LENGTH=16,384 SYMBOLS.

INTERLEAVER (30-0-0). INPUT BLOCK SIZE 16,384 X 2 BITS

78

To study the behavior of the system in [DP95a] when increasing the number of
decoder iterations, Fig. 5.3 reproduces the curves published in [DP95a] according
to the specifications therein. The dashed line plots the published curves (denoted

“exact” in the legend), while the solid lines plot the reproduced curves.

| =x= 6 iter. repr
—+— 6 iter. symbol
- 8iter. bit
- 8 iter. symbol
-0~ 11 iter. bit]
—&- 11 iter. symbol |
A 14 iter. bit J
| =7 14 iter. symbol |3

>

Bit Error Rate

E,/No (dB)

FIGURE 5.4: 2 BITS/SEC/Hz/ TURBO CODE EMPLOYING 16 QAM. CoM-
PARISON OF THE PROPOSED SYSTEM PERFORMANCE, WITH THE SIMULATION
REPRODUCED PERFORMANCE OF [DP95A]. BOTH SYSTEMS HAVE THE SAME

INPUT BLOCK SIZE IN BITS 16,384 x 2 =28,192 x 4

Fig. 5.4 compares the proposed symbol interleaved system with the simulated

bit interleaved system [DP95a] for different number of decoder iterations. The

79

proposed system can converge around 0.1 dB earlier for 14 decoder iterations.

The error floor seems to be the same for both systems.

10°

6 iter. repr

6 iter. symbol
8 iter. bit

8 iter. symbol
10 iter. bit

10 iter. symbol ||
12 iter. bit]
12 iter. symbol |]
14 iter. bit
14 iter. symbol |]

Block Error Rate

10_ I I I I I 1 I
E,/No (dB) '

FIGURE 5.5: 2 BITS/SEC/HZ/ TURBO CODE EMPLOYING 16 QAM. COMPARI-
SON OF THE BLOCK ERROR RATE PERFORMANCE OF THE PROPOSED SYSTEM
AND THE SIMULATION REPRODUCED SYSTEM IN [DP95A]. BOTH SYSTEMS

HAVE THE SAME INPUT BLOCK SIZE IN BITS 16,384 x 2 = 8,192 x 4

Fig. 5.5 plots the Block Error Rate performance of the proposed symbol inter-
leaved system. For comparison the same figure also plots the block error rate of
the reproduced bit interleaved system in [DP95a]. The symbol interleaved system

has a lower block error floor by almost an order of magnitude, which implies that

80

fewer blocks fail, but when they do, they have more bit errors. We believe this
difference results from the constituent encoders employed, and is not a general
property of the symbol interleaved systems. Indeed, for 8-PAM (see Section 5.3)

the symbol interleaved system has a higher block error floor.

5.2 2 bits/sec/Hz PCTCM with 8 PSK

-©: 6iter. (0,0,0)
-©- 6iter. (25,6,1)
-8 8iter. (0,0,0)
-8~ 8iter. (25,6,1)
% 10 iter. (0,0,0) |]
= 10 iter. (25,6,1) ||
<€ 20iter. (0,0,0)
-4 20 iter. (25,6,1) |-

Bit Error Rate

3.2 3.25 3.3 3.35 3.4 3.45 3.5
Eb/No (dB)

FiIGurE 5.6: 2 BITS/SEC/HzZ/ TURBO CODE EMPLOYING 8 PSK.
CApPACITY=1.76 DB. CONSTRAINED CAPACITY=2.8 DB. INTERLEAVER
LENGTH=), 000 syMBOLS. INPUT BLOCK SIZE 5,000 x 4 BITS. THE INTER-

LEAVER (25,6,1) LOWERS THE ERROR FLOOR OF THE RANDOM INTERLEAVER

81

For 2 bits/sec/Hz PCTCM with 8 PSK, the constituent encoders implement a
4/3 code with r = 1 parity and g = 2 systematic outputs and have m = 4

memory elements. The whole turbo encoder is depicted in Fig. 3.2.

For interleaver length 5, 000 symbols (input block size in bits: 5,000 x 4), the
performance is within 0.6 dB of constrained capacity at BER=10"° (Fig. 5.6).
The interleaver (25,6,1) lowers the error floor of the random (0,0,0) interleaver.
Fig. 5.7 plots the Block Error Rate performance corresponding to the bit error

rate curves in Fig. 5.6. The designed interleaver also lowers the block error floor.

Fig. 5.8 plots the performance for interleaver length 2,500 symbols (input
block size in bits: 2,500 x 4), with a random (0,0,0) interleaver. The same figure
plots the performance of the symbol interleaved system in [RW96] for interleaver
length 5,000 symbols, input block size in bits: 5,000 x 2, 2 bits/sec/Hz PCTCM
with 8 PSK, but constituent encoders with m = 3 memory elements which leads
to roughly half the decoder complexity. The proposed system can converge up

to 0.25 dB earlier.

The random interleaver causes a high error floor, which can be lowered by
using a more elaborate interleaver. Figures 5.9 and 5.10 show that the interleaver
(20,4,1) lowers both the bit error rate and block error rate error floor compared

to the random interleaver.

The search for 8 PSK constituent encoders optimized for dZ, produced around
9,500 encoders with the same value of d%,. The simulated encoder in Figures 5.8,
5.9 and 5.10 was chosen among them to have the smaller number of d%, nearest
neighbors possible. To study the achievable free distance with this encoder, ta-
ble 5.2 depicts the smallest output Euclidean weight associated with error events

of symbol wise input weight two, and error event length L, denoted as di;.

82

10

-©: 6iter. (0,0,0)
-©— 6iter. (25,6,1)
-8 8iter. (0,0,0)
-8 8iter. (25,6,1)
| - #%&- 10iter. (0,0,0)
—= 10 iter. (25,6,1) |4
<€ 20 iter. (0,0,0)
- 20 iter. (25,6,1) ||
~

Block Error Rate

3.2 3.25 3.3 3.35 3.4 3.45 3.5
Eb/No (dB)

FIGurRE 5.7: 2 BITS/SEC/Hz/ TURBO CODE EMPLOYING 8 PSK.
CAarPACITY=1.76 DB. CONSTRAINED CAPACITY=2.8 DB. INTERLEAVER
LENGTH=)5,000 SYMBOLS. INPUT BLOCK SIZE 5,000 X 4 BITS. THE INTER-

LEAVER (25,6,1) LOWERS THE ERROR FLOOR OF THE RANDOM INTERLEAVER

Observe that d%*° = 6.83, the output Euclidean weight does not increase
with the error event length after length L = 20. This implies that the highest
output free distance associated with S-type error events (Fig. 4.3) is bounded
by 6.83 + 1.17 = 8 (one error event with length L = 2 and one error event with
L > 20). Increasing the S parameter value to more than 20 does not offer any

improvement. Moreover this distance upper bounds the output distance of all

83

4 iter from Rob
8 iter.

8 iter from Rob
12 iter.

18 iter.

Bit Error Rate

10_ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31 32 33 34 35 36 37 38 39 4 3.1

E,/No (dB)
Ficure 5.8: 2 BITS/SEC/HzZ/ TURBO CODE EMPLOYING 8 PSK.

CAPACITY=1.76 DB. CONSTRAINED CAPACITY=2.8 DB. INTERLEAVER

LENGTH=2,500 sYMBOLS. INPUT BLOCK SIZE 2,500 X 4 BITS

error events of S type that may occur during decoding. This does not seem a

desirable property.

For T type error events (Fig. 4.4) , to achieve free distance equal to 8 (the free
distance achieved by S type events), the interleaver needs to satisfy the second
constraint with value at least 7" = 12, since 8 — 3 x 1.17 = 4.49 (three error
events of length two, that correspond to output weight 1.17, and one error event

that corresponds to output weight 4.49). Error events of length smaller than 13

84

10 T] .]
-©- 6iter. (20,4,1) |]
-8 8iter. (0,0,0)

—8- 8iter. (20,4,1)
% 10 iter. (0,0,0) |4
c| =% 10 iter. (20,4,1)|]
<€ 20iter. (0,0,0) |]
—~+ 20 jter (20.4,1)1]

............... I VR i Bl Van A ba” S

Bit Error Rate

3.2 3.25 3.3 3.35 3.4 3.45 3.5
Eb/No (dB)

FiIGurRE 5.9: 2 BITS/SEC/HzZ/ TURBO CODE EMPLOYING 8 PSK.
CAarPACITY=1.76 DB. CONSTRAINED CAPACITY=2.8 DB. INTERLEAVER
LENGTH=2,500 SYMBOLS. INPUT BLOCK SIZE 2,500 X 4 BITS. THE INTER-

LEAVER (20,4,1) LOWERS THE ERROR FLOOR OF THE RANDOM INTERLEAVER

have associated output weight smaller than 4.49. But, for IL=2, 500, there does
not exist an interleaver with 7' parameter equal to 7' = 12. For T' = 4, the
minimum output Euclidean distance associated with T type error events is equal
to: 1.76 + 3 x 1.17 = 5.27. The X type error events (Fig. 4.4) have distance at
least 1.17 x 6 = 7.03 (six error events of length two). Thus for this encoder, and

the (20, 4, 1) interleaver, the T type error event upper bound the free distance

85

10

-©: 6iter. (0,0,0)
-©- 6iter. (20,4,1)
-8 8iter. (0,0,0)
-8 8iter. (20,4,1)
- % 10 iter. (0,0,0)
| == 10iter. (20,4,1) |]
<€ 20 iter. (0,0,0)
-4 20 iter. (20,4,1) |]

Block Error Rate

3.2 3.25 3.3 3.35 3.4 3.45 3.5
Eb/No (dB)

FiGure 5.10: 2 BITS/sSEC/Hz/ TURBO CODE EMPLOYING 8 PSK.
CAarPACITY=1.76 DB. CONSTRAINED CAPACITY=2.8 DB. INTERLEAVER
LENGTH=2,500 SYMBOLS. INPUT BLOCK SIZE 2,500 X 4 BITS. THE INTER-

LEAVER (20,4,1) LOWERS THE BLOCK ERROR FLOOR OF THE RANDOM INTER-

LEAVER

to be at most 5.27.

To overcome this limitation, instead of designing an interleaver to fit an en-
coder, we followed the reverse procedure. We initially identified an interleaver of
length 2,500 with the higher values of S and T parameters possible. This was
an (20-5-0) interleaver. Then we performed a search among the 9,500 identified

86

L 2 3 4 5 6 7 8 9 10 11
dL, | iz | vz | () | n7e(d) | 2.93(1) | 2.342) | 2.34(2) | 3.51(1) | 3.51(1) | 3.51(1)

L 12 13 14 15 16 17 18 19 20 21
dL, | 2.10(3) | 5.27(1) | 4.69(2) | 2.69(2) | 5.86(1) | 5.86(1) | 5.86(1) | 6.44(3) | 6.83(1) | 6.83(1)
L 22 23 24 25 26 27 28 29 30 35

dL, | 6.83(1) | 6.83(1) | 6.83(1) | 6.83(1) | 6.83(1) | 6.83(1) | 6.83(1) | 6.83(1) | 6.83(1) | 6.83(1)

TABLE 5.2: SQUARED EUCLIDEAN DISTANCE FOR ERROR EVENTS FOR THE
8 PSK ENCODER 027, 010, 06, 01, 03, 011, 014. THE NEAREST NEIGHBORS
ARE GIVEN IN PARENTHESES. L DENOTES THE ERROR EVENT LENGTH. d5,
DENOTES THE SMALLEST OUTPUT EUCLIDEAN DISTANCE ASSOCIATED WITH

ERROR EVENTS OF LENGTH L AND SYMBOL-WISE INPUT WEIGHT TWO.

8 PSK encoders that achieve the highest d¥, value, with the following criteria:

1. The output Euclidean weight of error events of length two or higher to be

as large as possible (useful for all S, T and X error events).

2. The minimum output Euclidean weight of error events of length 7'+1 or

higher to be as large as possible (useful for 7" error events).

3. The minimum output Euclidean weight of error events of length S+1 or

higher to be as large as possible (useful for S error events).

4. The output weight to increase with the error event length.

Among the good codes the search identified, we simulated the code described
by the encoder polynomials: {031, 01, 05, 013, 011, 015, 017}. Table 5.3,
similarly to Table 5.2, depicts for this new code the smallest output Euclidean
weight associated with error events of symbol wise input weight two, and error
event length L, denoted as di!. The output weight increases with the error
event length. The free distance achievable with the (20, 5, 0) interleaver is equal
to 5.85 (1.17 4+ 7.03 = 8.2 for S events, 3 x 1.17 + 2.34 = 5.85 for T events and
3 x 1.17 =7.02 for X events).

87

L 2 3 4 5 6 7 8 9 10 11
db, | a7y | 117(2) | 1.76(2) | 1.76(2) | 2.34(1) | 2.34(1) | 2.34(1) | 2.92(1) | 3.51(2) | 3.51(1)

L 12 13 14 15 16 17 18 19 20 21
dL, | 3.51(1) | 4.10(1) | 4.69(2) | 4.69(1) | 4.69(1) | 5.86(3) | 5.86(2) | 6.44(2) | 6.44(2) | 7.03(1)
L 22 23 24 25 26 27 28 29 30 35

dL, | 7.03(1) | 7.03(1) | 7.62(1) | 8.20(2) | 8.20(1) | 8.20(1) | 8.78(1) | 9.37(2) | 9.37(2) | 11.13(2)

TABLE 5.3: SQUARED EUCLIDEAN DISTANCE FOR ERROR EVENTS FOR THE
8-PSK ENCODER {031, 01, 05, 013, 011, 015, 017}. THE NEAREST NEIGH-
BORS ARE GIVEN IN PARENTHESES. L DENOTES THE ERROR EVENT LENGTH.
dL, DENOTES THE SMALLEST OUTPUT EUCLIDEAN DISTANCE ASSOCIATED

WITH ERROR EVENTS OF LENGTH L AND SYMBOL-WISE INPUT WEIGHT TWO.

This encoder is specifically designed to perform well in conjunction with an
(20, 5, 0) interleaver. Fig. 5.11 plots the bit error rate for both the simulated
8 PSK encoders. By choosing the appropriate encoder, the designer has the
choice either to achieve convergence at a lower SNR, or to have a lower error

floor. Fig. 5.12 compares the block error rate of the two designed encoders.

Fig. 5.13 plots the bit error rate performance for the new encoder {031, 01,
05, 013, 011, 015, 017} when used with a random (0,0,0) and the designed
(20,5,0) interleaver. Fig. 5.14 plots the corresponding block error rate perfor-

mance.

88

S A siter encl
e P e D e [—=- 8 iter. enc2]
... 'ql 15|ter.encl B

Bit Error Rate

10_'ffiEfffffiEffffiiEffffiEfffffiEffffiEEffffiEfffffiEffffiiiffffiifffffiiff':

IIZIZ[[IIIZZIIIIIZZZ[IIIIZZ[[IIIIZZ[IIIZ:ii[IIIZZ[IIIIIZZ[IiIZZZ[IIIIZZ[[IIIZi[I'

32 325 33 335 34 345 35 355 3.6
E,/No (dB)

FIGURE 5.11: 2 BITS/SEC/HZz/ TURBO CODE EMPLOYING 8 PSK. COMPARI-
SON OF THE 8-PSK ENCODERS: ENC1= {027, 010, 06, 01, 03, 011, 014} EM-
PLOYING AN (20, 4, 1) INTERLEAVER AND ENC2={031, 01, 05, 013, 011, 015,
017} EMPLOYING AN (20, 5, 0) INTERLEAVER). INTERLEAVER LENGTH=2, 500

SYMBOLS. INPUT BLOCK SIZE 2,500 X 4 BITS

89

O 6 iter. encl |

Block Error Rate

_3 .

10 7F e =0 Biter enc2 | i N N N
co| B Bliter.encd [l N N g]
o B 8iter.enc2 | NN]
...... ~F 10idter.encd| N NG

4| | %= 10iter. enc2

10 hil e Biter. encLl i N
ol A8 iter ene2l

10'5 i i i i i i i i i
3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6

Eb/No(dB)

FIGURE 5.12: 2 BITS/sEC/HZ/ TURBO CODE EMPLOYING 8 PSK.
BLOCK ERROR RATE FOR TwWO 8 PSK ENCODERS ENC1={027, 010,
06, 01, 03, 011, 014} EMPLOYING AN (20, 4, 1) INTERLEAVER AND
ENC2={031, 01, 05, 013, 011, 015, 017} EMPLOYING AN (20, 5, 0) IN-
TERLEAVER). INTERLEAVER LENGTH=2,500 SYMBOLS. INPUT BLOCK SIZE

2,500 x 4 BITS

90

8PSK, IL=5000, enc={031,01,05,013,011,015,017}

10_ £ T T T 3 T T T
b - ©- 6iter. (0,0,0)
—-©- 6iter. (25,6,1)
-8 8iter. (0,0,0)
102k —& 8iter. (25,6,1)
: & 10iter. (0,0,0) |
—4— 10 iter. (25,6,1) |1
- 15iter. (0,0,0) |]
3 <& 15iter. (25,6,1)
10 F : R
O 1n4
510 F E
o
S
m
5 10_5 = =
10_6 = .
107 e =
10° :
3.2 3.25 3.3 3.35 3.4 3.45 35 3.55 3.6
E,/No (dB)

FIGURE 5.13: 2 BITS/SEC/HZ/ TURBO CODE EMPLOYING 8 PSK. ENCODER
EMPLOYED: ENC2={031, 01, 05, 013, 011, 015, 017}. INPUT BLOCK SIZE
2,500 x 4 BITS. THE INTERLEAVER (20,5,0) LOWERS THE ERROR FLOOR OF

THE RANDOM (0,0,0) INTERLEAVER

91

L

< 10

x

S

[0

X

8 | -

o 107k © 6|ter.(0,0,0) f

| e~ 6iter. (20,6,0)

|8 8iter. (0,0,0)

| =B 8iter. (20,6,0)

| % 10iter. (0,0,0)
-4| | =% 10iter. (20,6,0)

10 F: :

-l -4+ 15iter. (0,0,0)

107 ‘ ‘ * ‘ ‘ ‘
32 325 33 335 34 345 35 355 36
E,/No (dB)

FIGURE 5.14: 2 BITS/SEC/HZ/ TURBO CODE EMPLOYING 8 PSK. ENCODER
EMPLOYED: ENC2={031, 01, 05, 013, 011, 015, 017}. INPUT BLOCK SIZE
2,500x4 BITS. THE INTERLEAVER (20,5,0) LOWERS THE BLOCK ERROR FLOOR

OF THE RANDOM INTERLEAVER

92

5.3 4 bits/sec/Hz PCTCM with 8 x 8 PAM=64 QAM

For 4 bits/sec/Hz PCTCM with 8 x 8 PAM=64 QAM (Fig. 5.15), the constituent
encoders implement a 4/3 code with = 1 parity and % = 2 systematic outputs,

and have m = 4 memory elements.

For interleaver length 4,096 symbols (input block size in bits: 4,096 x 4),
and (30, 0, 0) interleaver, the performance at BER 107% is within 0.6 dB of

constrained capacity. Compared with the bit-interleaved system performance in

10_1"' """" T I o T L T IR IR S
pmiiiiil —— 6iter

—x— 6 iter bit |]
—1 8iter
—>— 8 iter bit |3
—-©- 10 iter
—Z— 11 iter
—=- 12 iter

Bit Error Rate

7.05 7.1 7.15 7.2 7.25 7.3 7.35 7.4 7.45 7.5 7.55
E,/No (dB)

FIGURE 5.15: 4 BITS/SEC/HZ/ TURBO CODE EMPLOYING 8 PAM. CAPAC-
ITY 5.74 DB. CONSTRAINED CAPACITY 6.6 DB. INTERLEAVER LENGTH 4,096

SYMBOLS. INPUT BLOCK SIZE 4,096 X 4 BITS

93

[BDM96] for 4 bits/sec/Hz PCTCM with 64 QAM, 4 memory elements, inter-
leaver length 4,096 symbols (input block size in bits: 4,096 x 4), and (30 —0—0)
interleaver, the proposed symbol interleaved system can converge earlier (e.g.,
approximately 0.1 dB for 8 iterations) but has an error floor around an order of
magnitude higher. The proposed system also has the property of converging at

a lower SNR as the number of decoder iterations increase (up to a point).

10"

—— 6 it. reproduction
| —+- 6 it. original

—< 8it. reproduction
“{ —>- 8it. original]
| - 10it. reproduction |]
—&- 16 it. reproduction |

Bit Error Rate

7.2 7.25 7.3 7.35 7.4 7.45 7.5
E,/No (dB)

FIGURE 5.16: 4 BITS/SEC/HZ/ TURBO CODE EMPLOYING 8 PAM. SIMULA-
TIONS REPRODUCTION OF BIT INTERLEAVED SYSTEM IN [BDM96]. INTER-

LEAVER LENGTH 4,096 sYMBOLS. INPUT BLOCK SIZE 4,096 X 4 BITS

Fig. 5.16 reproduces the system in [BDM96] according to the specifications

94

therein. The employed code does not seem to offer better performance when

increasing the number of decoder iterations.

Fig. 5.17 plots the block error rate of the proposed system. The same fig-
ure also plots the block error rate of reproduced through simulations system in
[BDM96]. The system in [BDM96] has a lower block error floor by an order of
magnitude. To improve the error floor of the proposed system, an interleaver-
encoder optimization procedure may follow the steps presented in detail for 8-PSK

encoders in Section 5.2.

95

—— 6 iter

—x— 6 iter bit
—- 8iter

—>— 8 iter bit
—-©- 10 iter

—-O— 10 iter bit ||
—— 11 iter]
—&— 11 iter bit |]
—=- 12 iter
—- 12 iter bit |]

Block Error Rate

7.05 7.1 7.15 7.2 7.25 7.3 7.35 7.4 7.45 7.5 7.55
E,/No (dB)

FIGURE 5.17: 4 BITS/SEC/HZ/ TURBO CODE EMPLOYING 8 PAM. BLOCK ER-
ROR RATE PERFORMANCE OF THE PROPOSED SYSTEM AND THE SIMULATIONS
REPRODUCED SYSTEM IN [BDMO96]|. INTERLEAVER LENGTH 4,096 SYMBOLS.

INPUT BLOCK SIZE 4,096 X 4 BITS

96

CHAPTER 6

Conclusions

This thesis examined a method to achieve high spectral efficiency using symbol
interleaved parallel concatenated trellis coded modulation. The turbo encoder
design consists of two parts, constituent encoder design and interleaver design,

examined in Chapters 3 and 4 respectively.

Chapter 2 introduced the state-space representation of convolutional codes
and the notion of algebraic equivalence. The rational form theorem shows that in
order to examine all algebraically distinct encoders, it is sufficient to consider only
the canonical memory structures with R rows. An algebraic criterion, derived
from application of control theory notions to convolutional code design, allows
to check minimality among range equivalent encoders. As an application, we
proposed a method to check minimality under periodic puncturing, and assess
the performance of non minimal encoders. Simulation results and code tables for
1/4 codes optimized for Hamming weight under both bit-wise and symbol-wise

puncturing are included.

The constituent encoder design (Chapter 3) determined the optimization cri-
teria and extended the effective distance bound to symbol-wise inputs. Based on
the framework developed in Chapter 2 we identified the canonical structures for

the constituent encoder search space. In many cases of practical interest, the op-

97

timal structure for these constituent encoders connects the memory elements in a
single row. This single row generally applies to turbo-code constituent encoders
for parallel concatenation and is not restricted to symbol interleaving or trellis
coded modulation. As an example, we presented codes optimized for bit-wise

effective distance coupled with BPSK.

The interleaver design (Chapter 4) extended the spread interleaver design to
take into account multiple error events, and proposed a semi-random interleaver

construction method.

Simulation results (Chapter 5) for 2 bits/sec/Hz with 16-QAM, 2 bits/sec/Hz
with 8-PSK, and 4 bits/sec/Hz with 64-QAM show that the proposed symbol
interleaved system, as compared to the systems reported in the literature, can
converge at lower SNR. To lower the error floor we proposed a two step method for
interleaver - constituent encoder optimization (Chapter 5). Using the appropriate
encoder optimization criteria allows to trade-off convergence at a lower SNR for

a lower error floor.

98

[And97]

[Ash65]
(BCTY93]

[BDMO1]

[BDMY6]

[BDM97]

[BGMOS]

[BM96]

[BP94]

[Che99]
[CTO1]

[DBP97]

REFERENCES

Andersen J. “ Interleaver design For turbo coding .” In International
Symposium on Turbo Codes, 1997.

Ash R. Information Theory. Dover Publications, NY, 1965.

Berrou C., Clavieux A., and Thitimajshima P. “Near Shannon limit
error-correcting coding: turbo codes .” In IEEFE International Confer-
ence on Communications, pp. 1064-1070, Geneva, Switzerland, May
1993.

Biglieri E., Divsalar D., McLane P. J., and Simon M. Introduction to
Trellis-Coded Modulation. Macmillan Publishing Company, New York,
1991.

Benedetto S., Divsalar D., Montorsi G., and Pollara F. “Parallel con-
catenated trellis coded modulation.” In IEEE International Confer-
ence on Communications, volume 2, pp. 974-978, Dallas, TX, USA,
June 1996.

Benedetto S., Divsalar D., Montorsi G., and Pollara F. “A soft-input
soft-output APP module for the iterative decoding of concatenated
codes.” IEEE Communications Letters, 1(1):22-24, January 1997.

Benedetto S., Garello R., and Montorsi G. “A search for good convo-
lutional codes to be used in the construction of turbo codes.” IFEE
Transactions on Communications, 46(9):1101-1105, September 1998.

Benedetto S. and Montorsi G. “Unveiling turbo codes:some results on
parallel concatenated coding schemes.” In IEEE Transactions on Info.
Theory, volume 42, pp. 409-429, March 1996.

Barbulescu A. S. and Pietrobon S. S. “Interleaver design for turbo
codes.” In Electronics Letters, volume 30, pp. 2107-2108, 8 December
1994.

Chen C. “Linear System Theory and Design.” Ozxford University
Press, 1999.

Cover T. M. and Thomas J. A. Elements of Information Theory. Wiley
Series in Telecommunications, USA, 1991.

Divsalar D., Benedetto S., Pollara F., and Montorsi G. “ Turbo codes:
principles and applications.” In Lecture Notes, UCLA EXTENSION,
Octomber 1997.

99

[DMO6]

[DM97]

[DM98]

[DP95a]

[DP95b]

[FJWO6]

[For70]
[FW99)

[FW00]

[Gal68]
[HJ85]
[HM97]
[J 95]

[JW93]

Divsalar D. and McEliece R. J. “Effective free distance of turbo codes
" Electronics Letters, 32(5):445-446, 29 February 1996.

Daneshgaran F. and Mondin M. “Design of interleavers for turbo
codes based on a cost function.” In International Symposium on Turbo
Codes, 1997.

Divsalar D. and McEliece R. J. “On the design of generalized con-
catenated coding systems with interleavers.” In TMO PR 42-13/, pp.
1-22, April-June 1998.

Divsalar D. and Pollara F. “Multiple turbo codes.” In MILCOM 95
Unwversal Communications, volume 1, pp. 279-285, San Diego, CA,
November 1995.

Divsalar D. and Pollara F. “On the design of turbo codes .” In TMO
PR /2-123, pp. 99-121, July-September 1995.

Forney G. D., Johannesson R., and Wan Z. “Minimal and canonical ra-
tional generator matrices for convolutional codes.” IEEE Transactions
on Info. Theory, 42(6):1865-1880, November 1996.

Forney G. D. “Convolutional codes I: algebraic structure.” IEEE
Transactions on Info. Theory, 26(6):720-738, November 1970.

Fragouli C. and Wesel R. “Convolutional codes and control theory.”
In ComCon99, Athens, Greece, June 1999.

Fragouli C. and Wesel R. D. “Turbo encoder design for high spec-
tral efficiency.” In IEFEFE Transactions on Communications, Accepted,
2000.

Gallager R. G. Information Theory and Reliable Communications. Wi-
ley Series in Telecommunications, USA, 1968.

Horn R. A. and Johnson C. R,. “Matrix Analysis.” Cambridge Uni-
versity Press, 1985.

Hokfelt J. and Maseng T. “ Methodical Interleaver Design For Turbo
Codes .” In International Symposium on Turbo Codes, 1997.

J. Proakis . Digital Communications. McGraw-Hill, Third Edition,
1995.

Johannesson R. and Wan Z. “A linear algebra approah to minimal con-
volutional encoders.” IEEFE Transactions on Info. Theory, 39(4):1219-
1233, July 1993.

100

[Lap94]

[LEMOA4]

[0897]
[0Y98]

[PSCI6]

[RW96]

[RWOS]

[Sha48]
[Sha57]
[Ung82]

[Wes96]

[Wes98]
[Wes99]

[Wes00]

Lapidoth A. “The performance of convolutional codes on the block
erasure channel using various finite interleaving techniques.” IFEFE
Transactions on Info. Theory, 40:1459-1473, September 1994.

Loeliger H., Forney G. D.; Mittelholzer T., and Trott M. D. “Min-
imality and observability of group systems.” Linear Algebra And Its
Applications, 205-206:937-963, July 1994.

b

Oberg M. and Siegel P. “ Lowering the error floor for turbo codes .
In International Symposium on Turbo Codes, 1997.

Ogiwara H. and Yano M. “Improvement of turbo trellis-coded modu-
lation system.” IFICE, E81-A(10):2040-2046, Oct 1998.

Perez L., Seghers J., and Costello D. “ A distance spectrum interpreta-
tion of turbo codes.” In IEEE Transactions on Info. Theory, November
1996.

Robertson P. and Worz T. “A novel bandwidth efficient coding scheme
employing turbo codes.” In IEEE International Conference on Com-
munications, volume 2, pp. 962-967, Dallas, TX, USA, June 1996.

Robertson P. and Worz T. “Bandwidth-efficient turbo trellis-coded
modulation using punctured component codes.” IEEE Journal in Se-
lected Areas in Communications, 16(2):206-218, February 1998.

Shannon C. E. “A mathematical theory of communication.” In Bell
Sys. Tech. Journal, pp. 379-423 623-656, 1948.

Shannon C. E. “Certain results incoding theory for noisy channels.”
In Information and Control, volume 1, pp. 6-25, 1957.

Ungerboeck G. “Channel coding with multilevel /phase signals.” IEEE
Transactions on Info. Theory, 28(1):55-67, Jan 1982.

Wesel R. D. “Trellis Code Design For Correlated Fading And Achiev-
able Rates For Tomlinson-Harashima Precoding.” PhD Dissertation,
August 1996.

Wesel H. Wireless Multimedia Communications. Addison Wesley
Longman, USA, 1998.

Wesel R. D. “Reduced complexity transfer function computation.” In
1CC99, Vancouver, Canada, June 1999.

Wesel R. D. “EE213: Channel and Source coding class notes.” EFE
Department, UCLA, Spring 2000.

101

[WKL97] Wesel R. D., Komninakis C., and Liu X. “Towards optimality in

[WL9S]

[WLOO]

[WLCO0]

[WLS97]

[WLS00]

Constellation Labeling.” In Communications Theory Mini Conference,
GlobeCom 97, pp. 23-27, Phoinix, AZ, November 1997.

Wesel R. D. and Liu X. “Analytic techniques for periodic trellis codes.”
In 36th Annual Allerton Conference on Communication, Control, and
Computing, September 1998.

Wesel R. D. and Liu X. “Edge-profile optimal constellation labeling.”
In ICC 2000, pp. 1198-1202, New Orleans, LA, June 2000.

Wesel R. D., Liu X., Cioffi M., and Komninakis C. “Constellation
Labeling for Linear Encoders.” IEEE Transactions on Info. Theory,
2000.

Wesel R. D., Liu X., and Shi W. “Periodic symbol puncturing of
trellis code.” In Thirty-first Asilomar conference on signals, systems
and computers, Nov. 1997.

Wesel R. D., Liu X., and Shi W. “Trellis codes for periodic erasures.”
IEEFE Transactions on Communications, 48(6):938-947, June 2000.

102

