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Abstract of the Dissertation

Joint Channel Estimation and Decoding
For Wireless Channels

by

Christos Komninakis

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2000

Professor Richard D. Wesel, Chair

This dissertation is composed of two main parts. The first and largest part deals with

joint phase estimation and turbo-decoding in a flat Rayleigh fading channel. At the

region of low SNR where turbo-codes operate, and particularly if the variation of the

Rayleigh channel is quite large –i.e., large Doppler– the task of channel estimation

becomes quite challenging and should be done jointly with turbo-decoding for better

results. To this end, a Markov model is developed for a discretized version of the

channel phase (since this is a bigger problem for PSK transmission than amplitude

variation) and then the Forward-Backward algorithm is used on the phase trellis im-

plied by this Markov model to acquire the channel phase iteratively, while performing

turbo-decoding. Clearly, as the iterations proceed, the reliability of the coded symbols

increases, causing them to act somewhat as pilots and facilitate the phase estimation

process also.

This channel estimation scheme combines well with spectrally efficient trellis turbo-

codes and offers comparable performance to existing pilot averaging techniques at half

the bandwidth. To assess the proximity of the performance to channel capacity, upper

xvii



bounds to the capacity of idealized Markovian channel models are developed, and it is

demonstrated that performance as close as 1.3 dB from these upper bounds to capac-

ity without explicit CSI is possible. Also, this technique for iterative quantized phase

estimation is extended to the case where antenna diversity is available at the receiver,

and the performance improvement due to diversity is shown to be almost as much as

the increase in channel capacity.

The second part of this dissertation addresses joint channel estimation and equal-

ization for a general system with nT transmitter and nR receiver antennas, impaired

by co-channel interference and ISI. A Kalman filter is used to track the frequency-

selective channel, which is modeled as a first-order vector autoregressive process. The

Kalman filter is aided by delayed decisions from a MIMO m.m.s.e. DFE, which equal-

izes and decouples the transmitted signals, based on channel estimates received from

the Kalman filter. This approach works much better than conventional adaptive al-

gorithms such as LMS and RLS, at the expense of higher complexity. Furthermore,

suitable coding options for that equalization and interference cancellation scheme are

briefly discussed.

xviii



CHAPTER 1

Introduction

Research interest in the field of wireless communications has grown steadily in recent

years, and this trend is very likely to continue well into the future. From the physical

layer point of view, the goal is to devise schemes and techniques that increase the in-

formation rate and improve the robustness of a communication system under the harsh

conditions of the wireless environment. The wireless communication channel is the

source of various impairments to a digital communication system, due to factors such

as the relative mobility of transmitter and receiver, multipath propagation, interfer-

ence from other users of the frequency spectrum, and time-variation, more commonly

known as fading.

In this dissertation, based on widely accepted statistical models for the wireless

channel, we explore receiver design and algorithms aimed at combating the detrimen-

tal effects of wireless propagation. More specifically, the focus is on two relatively

recent advances in communication theory and practice, namely turbo-codes [1] and

the use of multiple transmitter and receiver antennas to boost the data rate [2]. Both

are treated here from the viewpoint of combining the procedures of channel estimation

with the decoding and equalization mechanisms respectively, something that is often

overlooked in the literature, relying on the assumption that channel state information

is somehow available at the receiver.

While this assumption might be reasonable in operating conditions of slow time-

variation and high signal-to-noise ratios (SNR), it is becoming increasingly outdated as
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more powerful transmission and coding techniques emerge and broadband applications

require higher information rates. In those situations of low operating SNR and high

spectral efficiency, the channel estimation problem needs to be considered jointly with

that of decoding and equalization at the receiver. In particular, the iterative nature of

the turbo-decoding algorithm opens the possibility of integrating channel estimation

and decoder iterations, such that the two processes can benefit from each other. There

is great potential for performance improvement rather than obtaining one-shot channel

estimates and keeping the decoding process isolated.

For the problem of multiple antennas, this dissertation provides a solution to im-

prove the equalization and interference cancellation performance by allowing for knowl-

edge of largely invariant channel parameters to aid the estimation process, rather than

employing general adaptive equalization algorithms. Based on a first-order autoregres-

sive model for the MIMO channel time-variation, a Kalman filter is used to track the

channel and an finite MIMO decision-feedback equalizer (DFE) to equalize it, aided

by channel estimates from the Kalman filter and a prediction module.

1.1 Overview of Wireless Channels

For straightforward communication system design, an ideal channel is one that exhibits

constant frequency response over the transmission band, and thus produces an undis-

torted replica of the transmitted signal at the receiver, possibly delayed and scaled. In

other words, if the transmitted signal s(t) has an equivalent lowpass frequency repre-

sentation S(f), occupying total bandwidth W , then the equivalent lowpass frequency

response C(f) of an ideal channel is:

C(f) = jC(f)j � ej\C(f) = C � ej2��f (1.1)
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for all frequencies in the band W of interest. If s(t) goes through the above ideal

channel, the received signal will be:

r(t) = C � s(t� �): (1.2)

Of course, real world transmission media, such as the mobile wireless channel,

have imperfections, which impair reliable transmission of information. The task of

the receiver becomes more complicated when those impairments are a priori unknown

and/or changing with time. Although the physical phenomena causing signal distor-

tion are very complex and often non-linear, their effects upon the transmitted signal

can be quite accurately modeled by a linear, possibly time-variant system. This dis-

sertation uses widely accepted linear, time-varying models of the wireless channel to

study various receiver structures, and lumps the effects of thermal and environmental

noise into the model as Additive White Gaussian Noise (AWGN).

The challenges posed by the wireless channel to digital communication are mainly

due to relative mobility of transmitter and receiver, coupled with multipath propaga-

tion. The net effects upon a transmitted pulse in general are dispersion and fading.

Dispersion refers to the widening in time of a transmitted pulse, causing it to overlap

with pulses transmitted at adjacent times, a phenomenon known as intersymbol inter-

ference (ISI). In the frequency domain this occurs when the transmission rate is high

enough, such that the transmitted bandwidth exceeds the coherence bandwidth of the

channel. So, if the transmission bandwidth is broad enough, the channel is bound to be

frequency-selective and thus dispersive. Fading describes the fluctuation of the signal

attenuation with time, which can be very severe and is due to motion or other changes

in the environment.

Significant time variability is not always associated with dispersion. In fact, at

lower transmission rates (narrowband transmission) the channel usually exhibits fast

time variation, but little frequency selectivity. This situation is described as flat fading,

3



whereby the channel introduces a time-varying attenuation that affects all frequency

components of the transmitted signal equally. For increasing transmission rates, the

fading is typically slower with respect to the transmission period, but the channel of-

ten becomes dispersive. Hence, in a relatively wideband transmission the channel

frequency response varies with frequency across the bandwidth of the digitally mod-

ulated signal (as well as in time), causing slowly time-varying ISI between adjacent

symbols, in what is called frequency-selective fading.

In broad terms, the time variability of a flat fading wireless channel depends on the

relative velocity between transmitter and receiver or moving scatterers in the environ-

ment, with respect to the transmission rate. A common way to quantify this is to refer

to the Doppler rate fDT , which is defined as the product of the maximum Doppler

frequency shift (fD) experienced by a mobile receiver and the transmission symbol

period T . Equivalently, this is the ratio of fD to the transmission baud rate.

Higher Doppler rates lead to faster varying channels, where the time correlation

between successive channel gains is smaller. Thus, the channel gain becomes less

than a specified level more often but stays at this low level (a fade) for a shorter time

duration. On the one hand, this increases the time diversity of the channel, which

can be exploited with coding and interleaving, because in a given time interval more

independent looks at the channel are available. On the other hand, faster variation

makes the task of channel estimation all the more difficult, particularly in a high-noise

environment, in which powerful channel codes –such as turbo-codes– operate. In the

limit of independent channel coefficients no estimation is possible.

For a frequency-selective fading channel the problem of time-variation, although

still significant, becomes less critical for two main reasons. First, as explained before,

the time-variation is usually slower with respect to the transmission rate. Second, one

more source of diversity, frequency diversity is available in this case, since different

4



parts of the transmitted power spectrum experience different attenuation due to the

frequency selective channel. One means to exploit frequency diversity is equalization,

whereby the goal of the receiver is to intelligently combine information carried by all

taps of the linear filter modeling the channel. When those taps are also time varying,

the equalizer has to adapt as the channel changes. Hence, for equalization of a time-

varying frequency-selective channel to be effective, accurate channel estimation and

tracking is required.

1.2 Overview of Dissertation Topics

In accordance with the basic distinction between flat and frequency-selective fading

channels outlined in the previous section, this dissertation consists of two main parts.

The first deals with joint channel estimation and turbo-decoding in a flat fading chan-

nel, and discusses ways to achieve reliable communication at rates close to channel

capacity, both with and without antenna diversity at the receiver. The second part

considers tracking and equalization (and, briefly, coding) for a frequency-selective

multi-input multi-output (MIMO) Ricean channel, whereby one or more antennas are

employed at the transmitter and receiver.

Chapter 2 briefly reviews symbol interleaved trellis turbo-codes and the Forward-

Backward algorithm used to decode them. This algorithm is a powerful tool that can

also be applied to estimation problems based on an appropriate hidden Markov model

(HMM). Chapter 3 introduces a widely accepted statistical model for the frequency-flat

Rayleigh fading channel encountered in narrowband transmission in a rich scattering

environment. Identifying acquisition of the channel phase as a more significant prob-

lem for PSK turbo-codes than amplitude fading leads to the introduction of a Markov

model that approximates both the values and the statistical properties of the fading

phase. Then, it is possible to construct a trellis representing this Markov phase model,

5



with states representing intervals of the continuous channel phase.

Building on those premises, Chapter 4 discusses algorithms for joint phase estima-

tion and turbo-decoding, using an adapted version of the Forward-Backward algorithm

as the phase estimation tool. Two main classes of algorithms are described and simu-

lated in various flat Rayleigh fading channels: a computationally intensive supertrellis,

combining the channel and code trellises into a supertrellis, and a more effective ap-

proach based on separate trellises that describe the channel and the constituent codes.

Performance is evaluated via simulation and also assessed in an absolute sense with

respect to channel capacity. For this purpose a sequence of progressively tighter upper

bounds on the constrained capacity of a purely Markov simplification to the Rayleigh

fading channel is derived, and performance of a turbo-code with joint iterative channel

estimation and decoding is demonstrated to approach these capacity bounds.

Chapter 5 extends the algorithms for joint phase estimation and turbo-decoding to

the case where antenna diversity of order L is available at the receiver. Performance

is assessed via simulations, and compared against performance achieved with itera-

tive optimum filtering for channel estimation. The discussion is again limited to flat

Rayleigh fading channels, and the performance gain due to receiver spatial diversity is

found to match the gain promised by the capacity improvement.

Finally, the second part of the dissertation (Chapters 6 and 7) addresses the problem

of channel tracking and equalization for multi-input multi-output (MIMO) time-variant

frequency-selective channels. These channels model the corrupting effects of inter-

symbol interference (ISI), co-channel interference (CCI), and noise. Chapter 6 derives

a first-order autoregressive model to describe the MIMO channel variation, such that

tracking can be performed by a Kalman filter.

Chapter 7 describes the proposed receiver, in which hard decisions to aid the

Kalman tracking algorithm come from a MIMO finite-length minimum-mean-squared-

6



error decision-feedback equalizer (MMSE-DFE), which performs the equalization task.

Since the optimum DFE for a wide range of channels produces decisions with a delay

� > 0, the Kalman filter tracks the channel with a delay. A channel prediction mod-

ule bridges the time gap between the channel estimates produced by the Kalman filter

and those needed for the DFE adaptation. The proposed algorithm offers good track-

ing behavior for multi-user fading ISI channels at the expense of higher complexity

than conventional adaptive algorithms. The coding problem for such a transmission

scenario is also briefly discussed. Applications include synchronous multiuser detec-

tion of independent transmitters, as well as coordinated transmission through many

transmitter/receiver antennas, for increased data rate.

Finally, Chapter 8 discusses how the work in both parts of this dissertation connects

with various areas of active research in the field of communication theory, particularly

in recent years. Also, the future work that will greatly enhance the results herein is

outlined.

The main contributions of the work presented in this dissertation are:

� A Markov model for the channel phase of a flat Rayleigh fading channel.

� Two algorithms for joint iterative phase estimation and turbo-decoding, also ap-

plicable when receiver diversity is available.

� A sequence of upper bounds on the capacity of systems with pilot assisted phase

estimation, based on the Markov phase model above.

� An algorithm for channel tracking and equalization of frequency-selective, multi-

ple-input multiple-output (MIMO) channels, based on Kalman estimation and

finite length MIMO MMSE DFE.

7



Part I

TURBO-CODES IN FLAT FADING
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CHAPTER 2

Trellis Turbo-Codes and the Forward-Backward

Algorithm

Since their introduction [1] in 1993, parallel concatenated codes (in short “turbo-

codes”) and their variants, such as serially concatenated codes, have captured the in-

terest of the coding community and are being incorporated in the next generation of

standards. This is due to their impressive error correcting capabilities with reasonable

complexity, offering reliable communication within fractions of a dB from channel

capacity, at least in the AWGN channel [3], and in the perfectly interleaved, ideally

phase-coherent flat Rayleigh fading channel [4]. This dissertation examines the per-

formance of turbo-codes in flat Rayleigh fading, without assuming knowledge of the

channel at the receiver.

In particular, in an effort to achieve high spectral efficiency, this dissertation con-

centrates on trellis turbo-codes. In other words the transmitted signals are selected

from constellations of higher cardinality than BPSK. For completeness, Fig. 2.1 shows

a schematic diagram of a symbol-interleaved trellis turbo-code, designed following the

guidelines in [5].

The symbol interleaved turbo-codes used in this dissertation are special cases of the

diagram in Fig. 2.1. Whether a connection is active or not is determined by exhaustive

computer searches over all possible constituent encoders, as described in [5] and [6],

where tables of good constituent codes are given. The conventions about naming the

9
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Figure 2.1: Generic diagram of parallel trellis turbo-code. Which of the connections

shown are active is the subject of constituent encoder design. Notice that for an even

number of input bits, flipping two groups of bits after symbol interleaving permits

to use the same constituent code at both the upper and lower encoder. In this way,

different bits are punctured in both encoders, thus all bits are systematic only once.

octal polynomials that describe the constituent codes are discussed in [7]. The main

point of this symbol-interleaved design for high spectral efficiency turbo-codes is to

preserve the order of the input bits u0; : : : ; uk�1 and interleave them as a group, or,

in other words as a symbol u 2 GF(2k), hence the symbol interleaver. After each

constituent encoder, the output bits are mapped to a constellation point x, which is

then transmitted through the channel.

Because of the symbol-oriented description of those trellis turbo-codes, the con-

stituent decoders (Soft-Input Soft-Output modules, –SISO– in [8], [9]) exchange ex-

trinsic information about symbols u = [u0; u1; : : : ; uk�1] (and not bits u0; : : : ; uk�1)

through the interleaver/deinterleaver pair. So, the soft informationP (u; I) and P (u;O)

exchanged between the decoders with symbol turbo-decoding (see Fig. 2.2) is in vector

10



form, because the symbols u 2 GF(2k) can take more than two values. In bit decod-

ing, scalars are enough to convey the log-likelihood ratio of each bit ui 2 GF(2). It

can be shown that symbol decoding is exactly equivalent to the bit-oriented decoding

of trellis turbo-codes described in [7], but devoid of the additional assumption that bits

within a symbol u 2 GF(2k) are conditionally independent given the whole observed

sequence. The absence of this implicit assumption in symbol turbo-decoding generally

improves performance [10], while the coding scheme of Fig. 2.1 eliminates puncturing

constraints placed on the constituent encoders and interleaver by [11].

In any case the basic tool for decoding is the Forward-Backward algorithm [12],

which is briefly described below. In its initial form in [12] this algorithm provides

maximum a posteriori (MAP) decoding of trellis codes, but its iterative use for the

decoding of turbo-codes has revived interest in it as a powerful estimation tool, not

only for codes but also for any hidden Markov model (HMM —see [13] and [14]). It

is an algorithm that operates on blocks of data.

Specifically, given the whole sequence yN1 of N observations fytgt=1;::: ;N from an

HMM with inputs u, states S 2 S = fm : m = 0; 1; : : : ; jSj � 1g and outputs x (the

y’s can be noisy observations of the coded symbols x from a code with inputs u), the

posterior probability of the input symbol ut at every time instant t is:

P (ut = ujyN1 ) = G � P (ut = u; y
N
1 ) = (2.1)

= G �
X

(m0;m)2E(u)

P (St�1 = m
0
; St = m; y

N
1 ) (2.2)

= G �
X

(m0;m)2E(u)

8><>:P (St�1 = m
0
; y

t�1
1 )| {z }

�t�1(m0)

�P (St = m; ytj St�1 = m
0)| {z }

t(m0;m)

�

P (yNt+1j St = m)| {z }
�t(m)

9>=>; (2.3)
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where G is an irrelevant constant G = 1=P (yN1 ), and:

E(u) = f(m0
; m) : 9 state transition (St�1 = m

0 ! St = m) with input ut = ug
(2.4)

is the set of transitions between states that produce the desired input symbol u. For

t = 1; : : : ; N; and for m = 0; 1; : : : ; jSj � 1, the “forward” variables at(m) and the

“backward” variables �t(m) are computed through the recursions:

�t(m) =
X
m0

�t�1(m
0) � t(m0

; m) (2.5)

�t(m) =
X
m0

t+1(m;m
0) � �t+1(m

0); (2.6)

For the above recursions, knowledge of the initial and final states S0 and SN is needed.

Thus, for every N -symbol block, the encoder is forced to terminate at the zero state,

which implies that for every block it is S0 = SN = 0. Therefore, the following

initialization of the forward and backward variables is necessary for the recursions:

�0(m) = Pr(S0 = m) =

8<: 1 if m = 0

0 otherwise
(2.7)

In a similar fashion:

�N (m) = Pr(SN = m) =

8<: 1 if m = 0

0 otherwise
(2.8)

For a single trellis code, (2.1) can be used to perform MAP decoding, but in the

iterative decoding of turbo-codes, sketched in Fig. 2.2, certain modifications are nec-

essary to preserve the independence of information used by constituent decoders as

much as possible. For straightforward MAP decoding of the symbol ut it is enough to

identify the u that maximizes the quantity:X
(m0;m)2E(u)

�t�1(m
0) � t(m0

; m) � �t(m): (2.9)
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For the forward and backward recursions [9] for the �’s and �’s respectively, the cru-

cial quantity to be computed is:

t(m
0
; m) = Pr (St = m; yt j St�1 = m

0)

= Pr (St = mj St�1 = m
0) � Pr (yt j St = m;St�1 = m

0) (2.10)

= Pr (u : St�1 = m
0 ! St = m) � Pr (yt j x(m0 ! m)) ; (2.11)

where x(m0 ! m) is the output symbol of the code (or, in general, the noiseless

observable of the Hidden Markov Model) corresponding to the state transition m0 !
m. Eq. (2.11) shows that t(m0

; m) is essentially the product of the probability of

the state transition and the probability of the observation given that the state transition

took place. When the algorithm is used iteratively, as in Fig. 2.2, the first part of (2.11)

is the extrinsic probability about the input, denoted P (u; I) in the literature [3] and

provided by the other constituent decoder.

While for MAP decoding of a single code, the same t(m
0
; m) (including the a

priori input probability term P (u; I)) is used both for the recursions (2.5)-(2.6) and for

the MAP decision (2.9), iterative symbol decoding of turbo-codes works differently:

P (u; I) is included in the t(m
0
; m) used to perform the recursions (2.5)-(2.6), but

is omitted when producing the updated extrinsic probability P (u;O) to be fed to the

other decoder. This is given by:

P (u;O) =
X

(m0;m)2E(u)

�t�1(m
0) � ~t(m0

; m) � �t(m); (2.12)

where ~t(m
0
; m) = Pr (yt j x(m0 ! m)). This avoids direct circulation of the same

soft information between the two constituent decoders.

Finally, note that for reasons of computational complexity and numerical stability

in practice the algorithm is not used in its multiplicative form outlined above. Instead,

logarithms of the quantities �, � and  are used, and this allows additions to replace
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Figure 2.2: Schematic diagram of the turbo decoder, using two Forward-Backward

algorithms (SISO modules in [9]) exchanging soft information about the input u to the

encoder, through a uniform interleaver and a deinterleaver. At the end of the itera-

tions, the extrinsic information produced by the two SISOs is added and the u with the

maximum sum is decoded.

multiplications and the max� operation to replace summation. The max� operation is

defined as:

max�fz1; z2g = max(z1; z2) + log
�
1 + e

�jz1 � z2j
�
: (2.13)

The additive correcting function log
�
1 + e

�jz1 � z2j
�

applied to the result of the

plain max operation can be omitted with a small degradation in performance [3]. In

this case, the algorithm is only performing operations known as add-compare-select,

which have very efficient hardware implementations. In all simulations presented in

this dissertation we use the symbol-oriented Forward-Backward algorithm described

in this chapter, and specifically the additive version of the algorithm with the max�

operation of (2.13).
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CHAPTER 3

Flat Rayleigh Fading

A widely accepted statistical model for non-dispersive wireless fading channels has

been introduced in [15], and is commonly referred to as Clarke’s fading model. Ac-

cording to this model, after matched filtering and proper sampling, the discrete repre-

sentation of the received signal at time t is:

yt = at � xt + nt; t = 0; 1; 2; : : : (3.1)

where xt is the transmitted constellation point (in this chapter from an M -PSK con-

stellation), fntg is an i.i.d. (white) complex Gaussian noise process, with variance

�
2 = No=2 per dimension, and fatg is the correlated channel fading process, mod-

eled as a circular complex Gaussian random process. This model assumes absence of

line of sight (worst case fading) and a continuum of scatterers in the vicinity of the

omnidirectional mobile receiver antenna, in other words a rich scattering environment.

Under those conditions, the channel coefficient at time t is at = Xt + jYt =

jatjej�at , where fXtg and fYtg are mutually uncorrelated, zero-mean Gaussian pro-

cesses, each with correlation properties determined by the Doppler frequency fD, see

[16]:

Rc(�) = E[XtXt+� ] = E[YtYt+� ] = 
2Jo(2�fD�) (3.2)

where Jo(�) is the zero-order modified Bessel function of the first kind, and 2 = 0:5

for normalized power. This autocorrelation gives rise to the well-known U-shaped
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normalized power spectral density in Jakes [17]:

Sxx(f) = Syy(f) =

8>>>><>>>>:
1

2�fDT

1s
1�

�
f

fDT

�2
; jf j < fDT

0; otherwise

(3.3)

If fXtg and fYtg are zero-mean (worst case—no line of sight), the marginal distribu-

tions of jatj and �
a
t are Rayleigh and uniform respectively, hence the term “Rayleigh

fading”. Specifically, the marginal pdf of the phase is P�a(�) = 1=2�, for � 2 [��; �),
while the amplitude marginal pdf for normalized unit power is Pjaj(r) = 2r e�r

2

, for

r � 0.

3.1 Markov model for the phase

Clarke’s model for the channel fading process is realistic and has been found to quite

accurately match field measurements of physical channels. However, the autocor-

relation properties of the amplitude process fjatjg and, mainly, the phase process

f�at g, which poses the primary problem in PSK transmission, are non-Markovian and

hence difficult to analyze and exploit with the Forward-Backward algorithm. Based on

the spectrum of (3.3), the correlation coefficient �jaj(�) for the fading amplitude and

��a(�) for the phase of the fading process fatg are shown in Fig. 3.1. Observe that the

autocorrelation is decreasing with the time-lag, as expected, but not in an exponential

fashion, as in a truly Markov process.

To utilize the power of the Forward-Backward algorithm in estimation we derive

a suitable finite-state Markov model for the channel phase, depending on the Doppler

rate fDT , similar to the one in [18] for the fading amplitude. The issue of whether

approximating Clarke’s fading process [17] with a first-order Markov process is rea-

sonable or not was answered in the affirmative in [19] for the fading amplitude, but the
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Figure 3.1: Correlation coefficient for the amplitude and the phase of the fading pro-

cess fatg for fDT = 0:05. The approximation used in [16] to derive ��a(�) for the

phase is problematic at small lags, hence the dotted part of the curve.

result also carries over to the channel phase process, which is of interest here. Specifi-

cally, for the amplitude fading rt = jatj of a phase-coherent channel it is shown in [19]

that the ratio I(rt; rt�2j rt�1)=I(rt; rt�1; rt�2), which is a measure of deviation from

Markovity for the channel amplitude frtg, is very small, and becomes smaller with

decreasing Doppler rate. A similar result can be shown for the fading phase process

f�at g. Besides, it is intuitively obvious that a Markov model with a sufficiently high

number of states can mimic the statistics of any process arbitrarily well, although the

number of states necessary in our case to make the model very accurate would be be-
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yond practical interest. In this dissertation, we limit the number of states K to a small

integer multiple of the cardinality of the PSK constellation for simplicity.

The receiver can form a K-state Markov model for the quantized version Qt of

the phase fading process �
a
t , where fQtg; t = 0; 1; 2; : : : is a time-homogeneous,

discrete-time, stationary Markov chain, taking values in the finite state space Q =

fq0; q1; : : : ; qK�1g, a set of “quantized channel phase distortion states” qi:

qi =
2�i

K

; i = 0; 1; 2; : : : ; K � 1; (3.4)

in the following fashion, introducing a quantization operator �(:):

Qt = qi , �(�at ) = qi , �
a
t 2

h
qi � �

K

; qi +
�

K

�
:

The transition probabilities Pqi;qj , i; j = 0; 1; : : : ; K � 1 of the Markov chain are

independent of t by stationarity, and can be computed for known Doppler rate fDT

from the joint pdf of two successive sampled fading phases:

Pqi;qj = Pr(Qt+1 = qj j Qt = qi) (3.5)

=

R qi+�=K
qi��=K

R qj+�=K
qj��=K

p(�at ; �
a
t+1)d�

a
t d�

a
t+1R qi+�=K

qi��=K
p(�at )d�

a
t

(3.6)

where the marginal pdf is uniform, and the joint pdf is [16]:

p(�at ; �
a
t+1)=

1� �
2

4�2

�p
1� B

2 +B(� � B cos�1(B))

(1� B
2)3=2

�
where B = � � cos(�at+1 � �

a
t ), and � = Jo(2�fDT ).

The model described above is essentially an approximation in a dual sense: First, it

maps all real fading angles �a 2 [��; �) to a finite number of “quantized fading phase

states” qi, i = 0; 1; : : : ; K � 1. Moreover, the model approximates the dynamics of

the continuous process f�at gt=0;1;::: ;1 with a discrete Markov chain, taking values in

the finite-state space Q and having stationary probabilities pi = 1=K and transition
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probabilities Pqi;qj . It should be noted, however, that the channel estimation algorithm

(based on the Forward-Backward algorithm) in Rayleigh fading does not perceive the

channel phase as quantized to the K values of (3.4); the algorithms of Chapters 4 and

5 remain aware of the continuous nature of �at , but are based on the assumption that

�
a
t is uniformly distributed in a sector of length 2�=K, given that it belongs in that

sector. Hence, the finite-state Markov model is merely a way to reduce the infinite

cardinality of the set of possible phases �at to K “phase states”, such that reliabilities

can be assigned to them by the Forward-Backward algorithm.
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Figure 3.2: BER of turbo-code, in different fDT , for different pilot insertion ratios.

Performance with affine fading amplitude estimation from the received amplitude is

very close to the case when the receiver has access to genie-provided channel ampli-

tude jatj.

A Markov model closely related to the one described above was derived in [18]

to model the amplitude fading of a phase-coherent Rayleigh fading channel. In that
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paper, several channel amplitude levels corresponded to binary symmetric channels

(BSCs) with different crossover probabilities, thereby creating a Finite-State Markov

Channel (FSMC). Here we recognize the phase distortion in a Rayleigh channel as a

more severe problem for PSK transmission than amplitude fading.

This qualitative observation, along with the difficulty of obtaining coherent phase

reference in a high Doppler, low SNR environment, indicates that the main channel

estimation effort for PSK turbo-codes should be devoted to acquiring phase coherence

rather than exact estimates for the fading amplitude jatj. Thus, the two receivers de-

rived in the next chapter create the finite-state Markov (FSM) model outlined above

and use it to estimate the channel phase with the Forward-Backward algorithm [12].

For the fading amplitude estimation they rely on a simple MMSE, symbol-by-symbol

affine estimator from the received amplitude of the form cjatj = Ajytj + B. As shown

in Fig. 3.2, this method for amplitude estimation, combined with Forward-Backward

phase estimation on the FSM phase model, performs only slightly worse than when

having perfect channel amplitude knowledge at the receiver. This result supports the

decision to use a simple estimator for the fading amplitude and reserve the power of

the Forward-Backward algorithm for phase estimation.

3.2 Quantized phase estimation

The performance of turbo-codes in flat fading was examined in [4]. In [20] and [21] it

was recognized that additional performance benefits are possible when moving from

“one-shot” channel estimation (e.g. from pilots) to iterative estimation, integrated with

turbo decoding. Specifically, in [20] and [21] the channel estimators perform optimum

(Wiener) filtering of symbols at each iteration (only pilots at first, and all symbols

in subsequent iterations taking into account their reliability), thus exploiting extrinsic

information produced by the turbo decoder about coded symbols.
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In this section, we also apply the principle of iterative channel estimation, but not

with filtering of pilots and coded symbols. Instead, we employ the Forward-Backward

algorithm for “quantized phase” estimation based on the FSM model derived in sec-

tion 3.1. In section 4.1.1 joint phase estimation and turbo decoding proceed along a

supertrellis, constructed by merging the trellises of the code and the Markovian chan-

nel state structure. In section 4.1.2 we demonstrate better performance by using a

separate Forward-Backward algorithm to estimate the phase state, operating on the

trellis of the FSM phase model and exchanging soft information with the constituent

decoder SISO [9].

Notice that in both approaches the Forward-Backward algorithm operates on the

K-state Markov phase model, and obtains soft phase estimates in the form of a proba-

bility distribution on the K phase states at each time instant (implicitly in the supertrel-

lis, explicitly with the separate trellises). Fig. 3.3 demonstrates the rationale behind this

choice of “quantized phase” estimation: at the low SNR where turbo-codes operate, it

is advantageous to have a phase estimate with small precision but high reliability (as

is possible with the Forward-Backward algorithm on a finite-state phase model) rather

than continuous valued estimates of limited reliability, like those provided by optimum

filtering, which exhibits higher MSE.

Under the assumption of knowing the correct phase state (i.e. sector), which is a

reasonable assumption with the Forward-Backward algorithm, Fig. 3.3 indicates that

at low SNR and high Doppler (or, equivalently more sparse pilot spacing under the

chosen Doppler of fDT = 0:05) the “quantized phase” estimation approach outper-

forms Wiener filtering solutions in the estimation MSE sense, even with the coarse,

symbol-by-symbol amplitude estimation cjatj = Ajytj+B. In fact, it is this amplitude

error that accounts for most of the estimation MSE, as seen from the fact that beyond

K = 32 no additional MSE gain is obtained by increasing the number of “quantized
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phase states.” Of course, at high SNR optimum linear pilot filtering works better than

our non-linear “quantized phase” estimation, even if this is assumed to always identify

the correct sector.

However, “quantized” estimation seems to have an advantage in the very noisy

region of operation of turbo-codes, insofar as the channel estimation MSE is an indi-

cation of turbo-code bit error rate performance. For a fixed SNR, the sequence of thin

curves shows decreasing MSE from linear filtering for increasing pilot density. This

can be thought of as the improvement to channel estimation expected as the Wiener

filter acquires more knowledge about the transmitted data through the turbo iterations.

Even in this case, (e.g. when every third symbol becomes perfectly known, i.e. D = 2,

the lowest thin curve in Fig. 3.3) if the non-linear phase estimation guesses the correct

sector it promises slightly less MSE at low SNR.

For the derivation of the MSE in the cases of D > 0, please refer to Appendix A.

The dotted curve, corresponding to the MSE of estimation when all coded symbols are

known (essentially forD = 0, or estimation of ak from all observables yt = at+nt; t =

�1; : : : ;1) is only included in the plot to mark the best estimation MSE that could

be hoped for, if all data symbols were known. Of course, in that case there would

be no need for decoding, and thus no need for channel estimation either. It comes

as no surprise that this scenario (all symbols known) induces the lowest estimation

MSE. The analytical expression for it is derived from a well-known result for optimal

discrete-time smoothing (see, for instance, [22]).

Given all observations yt; t = �1; : : : ;1 of a process fytg, the optimum (i.e. lin-

ear least-mean-square) l.l.m.s. estimator of the process fatg is the so-called non-causal

Wiener filter:

K

�
e
j!
�
=
Say(e

j!)

Sy(ej!)
; (3.7)
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and the corresponding minimum mean-squared error (m.m.s.e) is:

Ej~atj2 = 1

2�

Z �

��

�
Sa

�
e
j!
�� jSay(ej!) j2

Sy(ej!)
d!

�
(3.8)

In our case, the noise is additive (yt = at + nt) with power spectral density Sn(f) =

No = �
2
n, so the power spectra involved in the m.m.s.e. are:

Say(f) = Sa(f) =
1

�

p
f
2
d � f

2
; jf j � fd; (3.9)

Sy(f) = Sa(f) + Sn(f) = Sa(f) +No; (3.10)

where fd = fDT is the discrete Doppler frequency.

So, the m.m.s.e. becomes (with f = !=2�):

m.m.s.e. =

Z 1=2

�1=2

No � Sa(f)
No + Sa(f)

df (3.11)

= No �
Z fd

�fd

1

1 +No�

p
f
2
d � f

2
df (3.12)

=
2

�

�
 
�

2
+

2�p
1� �

2
� arctanh

 
� � 1p
1� �

2

!!
; (3.13)

where � =
1

��
2
nfd

=
1

�NofDT
. Observe the synergistic effect of increasing Doppler

rate and noise power in the expression for the m.m.s.e., which indicates that the es-

timation task becomes increasingly difficult for a more-noisy, faster-varying channel.

Conversely, for fDT ! 0 (no variation) and/or �n ! 0 (no noise) the estimation

MSE with an optimum smoothing filter of infinite length goes to zero, as expected

intuitively.
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Figure 3.3: Mean-Squared Error (MSE) of channel estimation for a Rayleigh fading

channel with fDT = 0:05 under two scenarios: thin lines represent MSE after Wiener

filtering of 10, 20, or 40 pilot symbols spaced one every D data symbols, while thick

lines show the MSE resulting from simple affine amplitude estimation using only the

received amplitude, and uniform phase uncertainty within a sector of 2�=K radians,

K = 8; 16; 32, given that the correct sector is known. Note that this largely corre-

sponds to the estimation procedure followed in the sequel. Observe that for low SNR

the second approach is better. Of course, the dotted thin curve of the MSE when all

symbols are known (could be thought of as “D = 0”) is the best of all, but this serves

only as an indication of the lowest MSE that can be hoped for.
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CHAPTER 4

Algorithms for Joint Data and Channel Estimation

Optimal decoding in flat fading —either minimum bit error rate (MAP) decoding or

maximum likelihood sequence detection (MLSD)— requires either explicit or implicit

estimation of the channel. This chapter describes the FSM-model-based receiver algo-

rithms in detail and presents simulation results.

4.1 Forward-Backward phase estimation

For “quantized phase” estimation with the Forward-Backward algorithm either on a

supertrellis or on separate trellises the basic quantities needed are the probabilities

Pq0;q of the channel phase transitioning from state (sector) q0 to q (given in (3.5)-(3.6))

and the likelihoods P (yt j Qt = q; xt = x). At time t, the received complex symbol is

yt = jytj � ej�
y
t , where the total received angle �yt is the sum of three distinct angles:

�

y
t = �

x
t + �

a
t + �

�
t ; (4.1)

as shown in Fig. 4.1. In this figure, �xt is the transmitted constellation point angle,

as the constituent trellis M-PSK code transitions from state c0 to c, i.e., xt(c0 ! c) =

1 � ej�xt . The fading angle �at is defined from the fading scale factor at = jatj � ej�at , and

�
�
t is the noise-induced additional angle, having distribution P (��):

P (��;�) =
e
��2

2�
�
h
1 +

p
�� cos��e(� cos �

�)2erfc(�� cos��)
i
; (4.2)
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y = a � x + n

x
a � x = jaj � ej(�

x+�a)

�
�

�
x

�
a

Figure 4.1: Addition of angles in fading

where erfc(�) is the complementary error function and the parameter � of the distri-

bution depends on the fading amplitude: � =
jaj
�
p
2
. Since the true fading ampli-

tude is unknown, the receiver uses the symbol-by-symbol MMSE affine estimatorcjatj = Ajytj + B (with coefficients A and B depending only on the SNR of oper-

ation). Then it is straightforward to compute the desired likelihood of the received

phase \yt = �

y
t given the channel phase state q and the transmitted point x:

Pr (yt j Qt = q; xt = x(c0 ! c)) = (4.3)

= Pr (�
y
t = � j �(�at ) = q; �t = �; �

x
t = \x(c

0 ! c)) (4.4)

def
= f(� j q; �; x) (4.5)

= Pr (�xt + �
a
t + �

�
t = �j �(�at ) = q; �; �

x
t = \x) (4.6)

= Pr
�
�
a
t + �

�
t = � � \x j �at � U

h
q � �

K

; q +
�

K

i�
(4.7)

=
K

2�
�
Z ��\x�q+ �

K

��\x�q� �

K

P (��;�)d�� (4.8)

where P (��;�) was given in (4.2) and � is approximated by:

�̂t =
Ajytj+B

�

p
2

(4.9)

Thus, using the transition probabilitiesPq0;q from (3.6) for the quantized channel phase,

and f(� j q; �; x) from (4.8) we proceed to derive the joint algorithms on the supertrel-

lis and on the separate trellises for the code and the channel.
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4.1.1 Supertrellis algorithm

An initial approach to joint estimation and decoding is to combine the Markov model

for the quantized fading phase discussed in Chapter 3 with the trellis describing the

code, to form a supertrellis. In essence, the receiver observes the output of a finite-

state machine (i.e., the encoder output xt) multiplied with the output of a Markov

process (i.e., the “fading phase state” Qt) under AWGN. At time t, the state St of the

supertrellis is an ordered pair consisting of the channel state Qt and the code state Ct,

giving St = (Qt; Ct) = (q; c) = m, with m = 0; 1; : : : ; 2�K � 1, for a code with �

memory elements.

Fig. 4.2 shows the block diagram of the turbo-coded system. Each constituent

encoder at the transmitter produces log2M bits, mapped onto anM -PSK constellation.

The symbols are transmitted into the fading channel in blocks of N , to preserve the

fading phase correlation for the receiver supertrellises. Thus, the switches A and A
0

flip every NT seconds, where N is the turbo-code blocklength and T the baud period.

ON SUPERTRELLIS
FORW-BACK

ON SUPERTRELLIS
FORW-BACK

IL

DIL

IL

TRELLIS
ENCODER

4-PSK

TRELLIS
ENCODER

4-PSK{Bits}

NT

{Bits}

NT

ntat

A A
0

Figure 4.2: Block diagram of system employing iterative decoder.

The receiver consists of two identical modules that run the Forward-Backward al-

gorithm and exchange soft information about the data through a uniform interleaver-

deinterleaver pair. Each of them performs joint data and channel estimation internally,

but provides the other estimator with extrinsic information only for the data, since the

two blocks of constellation points (pertaining to unscrambled and scrambled data) are
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transmitted successively into the channel and undergo independent fading. Thus, in-

formation about the channel produced by one of the estimators would be irrelevant to

the other. However, within each block of N symbols, the channel is correlated, which

facilitates the joint estimation of channel phase and data.

The crucial quantity to compute in each supertrellis for iterative decoding [9], is:

t(m
0
; m)

def
= Pr (yt; St = (q; c) j St�1 = (q0; c0)) = (4.10)

= Pr (St = (q; c)jSt�1 = (q0; c0)) � Pr (yt jSt�1 = (q0; c0); St = (q; c)) (4.11)

For the first term of (4.11) we have:

Pr (St = (q; c) j St�1 = (q0; c0)) =

= Pr
�
�(�at ) = q j�(�at�1) = q

0� � Pr (ut such that Ct = c jCt�1 = c
0) (4.12)

= Pq0;q � P (ut; I); (4.13)

where P (ut; I) denotes the extrinsic information about the input ut provided by the

other soft decoder, and Pq0;q is the transition probability (3.5) of the quantized channel

phases. The second term of (4.11) is clearly f(� j q; �; x) as defined in (4.5)-(4.8).

Note that the algorithm described above can be used with or without pilot symbols.

The transition metric t(m0
; m) of (4.10) connects only superstates (m0

; m) with valid

code state transitions (c0 ! c). In the case of pilots injected in the coded data stream,

the code state does not change, and the only valid supertrellis branches are those with

c = c
0. Here we only present simulation results with no pilot symbols.

Fig. 4.3 presents the simulated BER performance of the system depicted in Fig. 4.2

under Rayleigh fading with fDT = 0:05. The constituent codes are identical, 8-state,

recursive systematic rate-1/2, Gray-labeled 4-PSK codes, with maximum effective

Hamming distance. They are fully described by the octal parity polynomials h0 = 15

and h1 = 17. The number of quantized phases was K = 8, resulting in 64-state
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Figure 4.3: Supertrellis and non-iterative pilot filtering performance in Clarke’s chan-

nel with fDT = 0:05. The dashed curve shows performance of the same turbo-code in

the same channel with ideal interleaving and perfect CSI at the receiver. The dashed

vertical line marks the capacity in this ideal case.

supertrellises, and the blocklength was N = 5000 symbols. For this relatively high

Doppler rate the performance is about 6:5 dB worse than when the same turbo-code

operates under the ideal assumptions of perfect interleaving and perfect CSI (dashed

curve). However, this gap is not very informative, since the constrained capacity of the

two channels considered with uniform i.i.d. 4-PSK inputs is quite different at this high

Doppler.

The vertical dashed line (“C” in Fig. 4.3) marks the capacity of the idealized sce-

nario of perfectly known at at receiver. It is simply I(X;Y jA), a weighted aver-

age of the AWGN capacity under the Rayleigh distribution pA(a) = 2a e�a
2

, giving
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Eb=No = �0:08 dB for the rate 1=2 of interest. The capacity is smaller when CSI is un-

available at the receiver and has to be estimated from received values (much smaller for

larger Doppler rates, and zero in the limit of i.i.d. fading). A more detailed discussion

about constrained 4-PSK capacity under fading follows in section 4.2.2. To demon-

strate the difficulty of obtaining accurate CSI in a practical system at high Doppler, we

also simulated a pilot-symbol assisted system [23] with the same turbo-code. Specif-

ically, a more sophisticated variant of pilot averaging in [24], using 3 pilot symbols

every 5 data symbols performs almost 4 dB worse than our joint iterative estimator

with no pilot symbols at all. Even if we plot against Es=No disregarding the sacrifice

of 3=8 = 37:5% in rate of the pilot system [24], the supertrellis system is still almost

2 dB better. The reason is that essentially every coded symbol with the supertrellis

iterations becomes somewhat a pilot, as its reliability increases.

The supertrellis receiver designed and simulated in this section has advantages and

limitations. An obvious advantage is its ability to work without external acquisition

circuitry or pilot symbols at relatively high Doppler rate. The low rate of each con-

stituent code (here 1=2) compensates for the absence of pilot symbols, allowing the

supertrellis algorithm to determine whether a change in the received phase is due to

the code or to a change in the channel. Thus, although this scheme does not lose rate

directly because of pilots that bear no information, it is the rate reduction inherent in

the constituent encoder design that makes channel estimation possible. On a higher

level this can be viewed as incorporating the training in the code design, instead of

explicitly injecting pilot symbols in the coded data stream of a higher rate code.

The main limitation is computational complexity, since the number of states in

each supertrellis is the product of the code states and the number of phase intervals

K. If M -PSK is used, then K � 2 �M for reasonable phase estimation. This leads

to at least 64-state supertrellises with 4-PSK and 128-states with 8-PSK for 8-state
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constituent codes. Another limitation concerns diversity. The channel estimation pro-

cedure along the supertrellis precludes channel interleaving, because the algorithm

relies on the correlation between successive phases. Hence, only implicit diversity,

due to the interleaver between constituent codes, is provided.

4.1.2 Algorithm on separate trellises

In this section we derive and simulate a better structure for joint channel estimation and

turbo decoding based on the Forward-Backward algorithm running on separate trellises

for the channel phase and the code. Unlike the supertrellis algorithm presented in sec-

tion 4.1.1, the joint iterative receiver in this section relies on known pilot symbols [23]

for initial and subsequent channel estimates. For a powerful high-rate channel code,

we designed a trellis turbo-code with overall rate of 1 bit/sec/Hz, where the constituent

encoders are the best 8-state, rate-2/2 code fragments (see [5]-[10]), each producing

one systematic and one parity bit per 2-bit input, and their outputs are mapped onto a

Gray-labeled 4-PSK constellation, as shown in Fig. 4.4. This turbo-code will be the

running example in this section and in the next chapter.

Observe that the trellis turbo encoder depicted in Fig. 4.4 is similar to the generic

form discussed in Chapter 2 and [10]. Despite the difference in generating the parity

bits, the encoder in Fig. 4.4 can be shown to be exactly equivalent to the generic form

in Fig. 2.1 of Chapter 2. The specific constituent encoders, described by the set of octal

polynomials fh0 = 13; h1 = 7; h2 = 1; h3 = 17g, corresponding to the feedback, the

entrance of the two input bits, and the generation of the output bit respectively were

identified by exhaustive search conducted as in [10]. The interested reader can find

more details about constituent encoder design for trellis turbo-codes in [6] and [7].

Fig. 4.5 shows the transmitter block diagram. Notice the difference between the

turbo interleaver (TIL), which is a random interleaver obtained as in [6, Ch. 4], and the
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Figure 4.4: The turbo-code used in this section and Chapter 5, with overall rate of 1

bit/sec/Hz and rate-2/2, 8-state constituent encoders.

channel interleaver (CIL), which can be a regular block interleaver. Pilots are injected

into the coded data stream at a rate of Z � 1 pilots every D coded PSK symbols,

and the blocklength is N = 4100. Thus, for every 2N input bits, a total of 2N D+Z
D

symbols are transmitted in flat Rayleigh fading.

rate 2/2
encoder

4-PSK
MAPPER

MUX

rate 2/2
encoder

4-PSK
MAPPER

MUX

TIL

CIL

CIL

pilots
to channel

Figure 4.5: Transmitter block diagram for pilot-aided turbo-code.

Fig. 4.7 shows the receiver block diagram expanded in the direction of processing

time, only to show the potential for a parallel or pipelined implementation. Each of the
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two main building blocks, denoted Q and C, implements the Forward-Backward al-

gorithm (Q-SISO and C-SISO) on a separate trellis that describes the Markov channel

phase and the code respectively, exploiting extrinsic information taken from the other

block after the appropriate interleaving/deinterleaving operation – T(D)IL or C(D)IL.

These two Soft-Input-Soft-Output (SISO) modules and their input/output functionality

are depicted in Fig. 4.6. In the customary SISO notation of [9] P (� ; I) is extrinsic

information about a certain quantity (the channel phase state q or the input symbol u

or the output symbol x) entering the SISO block, while P (� ; O) is the updated ex-

trinsic information about the pertinent quantity (again q, u or x) at the output of the

corresponding Forward-Backward (SISO) block.

Q-SISO
P(x ; I) P(q ; O)

C-SISO
P(q ; I)

P(u ; I)

P(x ; O)

P(u ; O)

Figure 4.6: Basic SISO building blocks of the receiver.

The states are quantized channel phases q for Q-SISO and code states c for C-SISO,

and the crucial quantity to compute is t(statet�1; statet). Specifically, for Q-SISO:

t(q
0
; q) = Pr (yt; Qt = q j Qt�1 = q

0)

=
X
x

Pr (yt; Qt = q; xt = xj Qt�1 = q
0)

= Pq0;q �
X
x

Pr(xt = x) � Pr (yt j Qt = q; xt = x)

= Pq0;q �
X
x

P (x ; I) � f (� j q; �; x) ; (4.14)

where the phase state transition probability Pq0;q is precomputed for known Doppler

via (3.5)-(3.6), and � is the received angle. The function f (� j q; �; x) is defined as in

(4.5). Note that the Q-SISO operates on the whole received block of symbols, coded

and pilots alike, but only outputsP (q ; O) for the coded symbols, because information
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for the channel state during a pilot transmission is irrelevant to the C-SISO. Thus, at

a time when a pilot is processed, the above summation is trivial (only one possible

x has non-zero probability) and P (q ; O) is not produced; just the �(q) and �(q)

quantities are updated in the channel trellis. For the C-SISO, we proceed with a similar

computation, simpler in this case, since only coded data are processed and there is only

one operating mode:

t(c
0
; c) = Pr (yt; Ct = c j Ct�1 = c

0)

=
X
q

Pr (yt; Ct = c; Qt = qj Ct�1 = c
0)

= Pr (uj c0 ! c) �
X
q

Pr(Qt = q) � Pr (�yt = �j Qt = q; xt = \x(c
0 ! c))

= P (u ; I) �
X
q

P (q ; I) � f (� j q; �; x(c0 ! c)) : (4.15)

Again, here P (u ; I) is the extrinsic information about the information symbol u

(composed of 2 bits) passed by the other C-SISO, while P (q ; I) is the extrinsic

information about the channel state, provided by the Q-SISO.

The performance of the proposed receiver has been checked in two flat fading

channels, with Doppler rates 0:01 and 0:05, and the results are shown in Figures 4.8

and 4.9 respectively, for various pilot insertion rates. For comparison purposes, the

plots include the performance of the same turbo-code when perfect CSI is available at

the receiver. The vertical lines show the SNR where capacity equals the transmitted

rate, assuming perfect CSI at the receiver (which is a lower bound to the SNR where

capacity equals the transmitted rate when realistic channel estimation is performed

through pilots). If not explicitly stated otherwise, the simulation was performed by

considering K = 8 channel states at the receiver. From the two cases shown, setting

K = 16 offers no improvement for fDT = 0:01, but some improvement for fDT =

0:05. The solid performance curves with different pilot spacingD provide some insight

into the question of what pilot density is required for a given channel dynamic, as this
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Figure 4.7: Receiver expansion in the processing time axis. Notice the possibility of

parallel or pipelined operation.

is expressed by the Doppler rate fDT .

Note that in the slower changing channel (fDT = 0:01) the performance is about

1:5 dB away from the case when perfect CSI is available. The performance difference

from perfect CSI is much more pronounced (about 4:5 dB) in Fig. 4.9, because the

channel is less strongly correlated when fDT = 0:05, which makes the estimation

task more difficult, so the corresponding SNR (or capacity) penalty resulting from

the lack of perfect channel estimates is larger. In general it is difficult to determine

quantitatively exactly how the channel capacity is affected by the channel dynamics in

order to quantify the intuitive statement made above. Detailed discussion on the effect

of the rate of change of the channel on the capacity for a simplified, purely Markovian

channel model related to Clarke’s flat Rayleigh fading is the topic of the next section.

Nevertheless, observe that a small number of pilots permits an increase in the overall

rate of the system with separate trellises to 1 bit/sec/Hz, (excluding the pilots) relative

to the rate of 1=2 bit/sec/Hz for the supertrellis receiver. Furthermore, the complexity
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Figure 4.8: BER of turbo-code, for fDT = 0:01 and for different pilot insertion ra-

tios. Performance lags behind the perfect CSI case by about 1:5 dB. For perspective,

the curve marked with triangles is the performance reported in [21], with a similar

turbo-coded system with half the spectral efficiency as the one presented here.

of the separate trellises approach is much smaller (the Q-SISO has K = 8 or 16 states

and the C-SISO 8 states), and the BER performance improves. However, these positive

impacts on the rate, complexity and performance come at the expense of larger latency,

due to channel interleaving.

Specifically, the two methods for joint channel estimation and turbo-decoding dis-

cussed in this section demand the following in terms of complexity and latency, for

every decoder iteration (in parentheses the numbers in our 4-PSK simulations):
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Figure 4.9: BER of turbo-code, for fDT = 0:05 and for different pilot insertion ratios.

� supertrellis: two Forward-Backward algorithms, each on a supertrellis with 2� �
K states (64 states), and 2K branches (16 here) emanating from each state. This

number can be reduced, by pruning less likely transitions to phase-states far

apart from the current one, particularly for small Doppler rates. This receiver

suffers no extra latency from channel interleaving.

� separate trellises: less complexity, four Forward-Backward algorithms in all.

Two for the two fully connected K-state Q-SISOs (K = 8), and two for the

2�-state C-SISOs (� = 3). Higher latency, because of channel interleaving at

the transmitter and deinterleaving at the receiver. Here we implemented those

block interleavers to be of equal size to the turbo-code blocklength N , but this
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is not necessary, particularly for high Doppler rates. The turbo-code latency is

obviously unavoidable.

Finally, for comparison, the complexity of a pilot-averaging system obtaining one-

shot channel estimates without iteration is just two 2�-state C-SISOs per iteration, plus

the additional one-time cost of pilot filtering per block. The latency from channel

interleaving is the same as in the separate trellises scenario. Thus, one-shot Wiener

filtering of pilots has much less complexity but misses the benefit of interaction of the

estimation and the decoding procedures, which assist each other in our joint estimation

schemes.

4.2 Channel capacity

4.2.1 Simplified finite-state Markov channel (FSMC) model

For Clarke’s flat Rayleigh channel of (3.1), where the process fatg is stationary and

ergodic, the definition of the capacity in Gallager [25] applies:

C = lim
N!1

1

N

� I �XN ;Y N
�

(4.16)

where XN and Y N denote sequences of channel inputs and outputs respectively. Here

we are interested in the constrained capacity for inputs from a finite uniform con-

stellation, such as the 4-PSK we use. If the decoding delay is constrained to be small

enough relative to the decorrelation time of the channel, then no positive rate is achiev-

able, and outage probability, not capacity, becomes the correct performance measure

[26]. In this discussion decoding delay will not be constrained, hence the capacity

definition (4.16) is valid.

However, direct computation of the capacity of Clarke’s channel (3.1), with the

process fatg having autocorrelation and power spectral density given by (3.2) and (3.3)
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is an open problem, although work has been done considering a piecewise constant

channel or exponential autocorrelation, see [27]. Another body of work has determined

the capacity of any finite-state Markovian channels (FSMC) in [28] and more generally

in [29]. This is useful, because in practice a FSMC becomes a good model that mimics

any channel statistics, if the number of states is chosen large enough.

Here, we study the following FSMC —admittedly more benign than Clarke’s, but

largely equivalent, and capturing most of the performance-driving phenomena of (3.1):

yt = e
jQt � xt + nt; t = 0; 1; 2: : : : (4.17)

where fQtgt=0;1;::: is the discrete K-state Markov chain of section 3.1, taking the val-

ues (3.4). In other words, the FSMC of (4.17) induces no amplitude fading, but rotates

the transmitted phase by a discrete amount, correlated in time according to the Markov

model of section 3.1, and adds AWGN.

The channel models of (3.1) and (4.17) have differences and similarities. For

instance, the process fQtg is not strictly bandlimited, unlike Clarke’s fatg process.

Moreover, the FSMC only adds discrete phase distortion and no amplitude fading,

hence it is more benign. Despite those differences, results obtained for the FSMC

largely carry over to the more realistic channel model of Clarke, uniformly shifted by

about 1�1:5 dB. The relative ordering of simulations remains unchanged. This, along

with the mathematical tractability of the FSMC in terms of capacity bounds, is the

reason we focus attention on the FSMC model of (4.17) in this section.

Note that to simulate in this FSMC, the only modification in the algorithms derived

so far is the definition of f(� j q; �; x) of (4.5). Since the channel phase is now discrete,

there is no need for integration as in (4.8) and � is fixed. So for the FSMC:

f (� j q; �; x) = P

�
�
� = � � q � \x;� =

1

�

p
2

�
(4.18)
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with P (��;�) as given in (4.2). Simulating in the pure FSMC of (4.17) eliminates the

(small) discrepancy of the Rayleigh simulation, in which the channel in fact follows

Clarke’s model, but the receiver models it as having Markovian transitions between

phase sectors. Results from simulations in the FSMC are shown in section 4.2.3, after

deriving the capacity bounds in section 4.2.2.

4.2.2 Bounds on the capacity of a FSMC

For the capacity of any stationary, ergodic FSMC the definition (4.16) still applies.

The algorithm in [29] (generalizing the results of [28]) offers a way to compute the

capacity of a FSMC like the one considered here. However, the computation needed

to obtain the limiting distributions of vectors �n and �n, where �n(k) = p(Qn =

qk j xn�1; yn�1) and �n = p(Qn = qk j yn�1), k = 0; 1; : : : ; K � 1 (see [29]) is

infeasible for a number of statesK in the Markov model beyondK = 2 or 4. However,

this is insufficient for our purposes here, since K � 8 for 4-PSK is needed to maintain

reasonable similarity between the real world fading of Clarke and the FSMC of (4.17).

A computationally much simpler solution is to upper-bound the constrained ca-

pacity of the FSMC described in the previous section. An obvious, easy to compute,

but very loose upper bound of CFSMC of this Markovian quantized phase-distortion

channel is the constrained capacity given the current state Q of the channel:

CFSMC = lim
N!1

1

N

� I �XN ;Y N
� � lim

n!1
I(Xn;Yn j Qn) (4.19)

Clearly this is the constrained capacity of the AWGN channel with PSK inputs, de-

picted in Fig. 4.10 as IUB(D = 0) versus symbol SNR, Es=No. But it is possible

to compute a sequence of progressively tighter upper bounds on CFSMC , from the

following theorem:

Theorem 1 For any finite-state Markov channel (FSMC) with states Q, a sequence of
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progressively tighter and asymptotically tight upper bounds to the capacity CFSMC is:

IUB(D) =
1

D

� I �XD
1 ;Y D

1 j Q0; QD+1

�
, D = 0; 1; 2; : : : ;1 (4.20)

where, for D = 0 we define the upper bound to be given by (4.19), or IUB(0) =

I(X;Y j Q). �

The proof of this theorem is relegated to the Appendix. From the proof it also

becomes obvious how to obtain asymptotically tight lower bounds on CFSMC , namely

the quantities ILB(D) = IUB(D) � 2 logK

D
, where K is the number of states of the

Markov channel. Unfortunately, those bounds are not tight enough to be useful for the

first few terms (i.e., for D = 0; 1; 2) that we evaluate numerically below.

In Fig. 4.10 we plot the loose upper bound IUB(0) of (4.19), as well as the tighter

bounds IUB(1) and IUB(2) against the channel SNR, for three FSMC’s, with constant

unit amplitude and K = 8 phase states, derived from Rayleigh channels with Doppler

rates of 0:01, 0:05 and 0:1. Observe the capacity reduction with increasing Doppler

rates, which demonstrates the increasing difficulty of reliable channel estimation in

faster varying channels, even in cases where the noise is negligible. In the limit of

the uncorrelated channel, (i.i.d. discrete distortion phases) channel estimation is im-

possible, and the constrained PSK capacity is identically zero regardless of the SNR.

Conversely, when the Doppler rate is 0:01, the bounds show small capacity losses with

respect to perfect channel information (IUB(0)), indicating that in this case very good

channel estimates can be obtained due to the strong time correlation.

From a different viewpoint the bounds IUB(D), D > 0 are not just capacity bounds

in a case with no pilot symbols available at the receiver. IUB(D) also upperbounds

capacity for a pilot-aided system, whereby groups of Z � 1 pilot symbols are injected

into the coded data stream, spacedD or more coded symbols apart. This is true because

IUB(D) decreases in D, and no group of pilots can ever offer better estimates of the
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Figure 4.10: Bounds on CFSMC for i.i.d. 4-PSK inputs, for Markov-phase channels

derived from three different Rayleigh channels with Doppler rates fDT , as described

in Chapter 3.

channel for t = 1; : : : ; D than noiseless knowledge of the channel states Q0; QD+1 at

the outer edges of each group of D information symbols.

4.2.3 Performance in the FSMC relative to capacity

This section presents the BER performance of the algorithms discussed in section 4.1,

simulated in the FSMC of (4.17). The only adaptation needed in the joint phase estima-

tion and turbo decoding algorithms for the supertrellis as well as the separate trellises

is shown in (4.18).
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Figure 4.11: BER vs. Eb=No, for the turbo-code in the FSMC with K = 8 quantized

phases derived from fDT = 0:05. The solid vertical line shows the capacity bound

IUB(2), while the dashed curve and line show performance and capacity respectively

given perfect interleaving (IL) and CSI.

Fig. 4.11 shows the supertrellis simulation result. Note that both the solid curve

(supertrellis in FSMC) and the dashed curve (same turbo code and channel with per-

fect interleaving and CSI at the receiver) are about 1 dB better than their Rayleigh

counterparts in Fig. 4.3. Also, the solid vertical line marks the Eb=No = 0:2 dB of

the capacity bound IUB(2), at rate 1=2 bit/sec/Hz. This shows that the supertrellis re-

ceiver, due to the absence of pilots and channel interleaving performs quite far from

the tightest capacity bound. In contrast, the same turbo-code with perfect interleaving

and CSI performs very close to capacity, which is given by IUB(0) and marked by the
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vertical dashed line in Fig. 4.11.
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Figure 4.12: Capacity bounds and simulated BER in Markov channel for various pilot

insertion rates. Vertical lines labeled C0; C1; C2 mark the Es=No where the capacity

bounds IUB(D); D = 0; 1; 2 respectively reach rate 1. Simulations with noiseless pi-

lots (exact channel knowledge) every D = 0; 1; 2 coded symbols, for which C0; C1; C2

are exact capacities, are plotted with dashed curves, marked with diamonds, circles

and squares respectively. Solid curves are simulations with usual noisy pilots. SNR is

plotted as Es=No, to keep distance from capacity bounds consistent.

In Fig. 4.12 we show simulation results of the joint estimator on separate trellises in

the Markov phase channel with K = 8 discrete phases, derived from fDT = 0:05. The

conventional simulations (solid curves) are with D = 5, and D = 1, namely injecting

pilot symbols every 5, or every other coded data symbol. The dashed curves show

simulation results when injecting one noiseless pilot, i.e., exact CSI, every D = 1 or

2 symbols. The dashed curve marked with “3” shows performance with perfect CSI
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everywhere. All three of these simulation scenarios are idealized, since no noiseless

pilots or perfect CSI can be available, but they are cases where the capacity bounds

IUB(D); D = 0; 1; 2 are no longer a bound, but the true capacity of these idealized

transmission situations. Observe that the distance of the “noiseless” pilot simulated

BER curves for D = 1 and 2 from the respective capacity bounds (dashed vertical

lines marked C1; C2) is the same, a consistent 1:3 dB. Also note, that performance

is plotted against symbol SNR Es=No, unlike previous curves, in order to show the

consistent SNR gap with respect to the capacity bounds.

The results of simulations in the Markov phase channel (those included in Fig. 4.12

and others) are summarized in Table 4.1 in the following fashion. The first column (D)

shows how many consecutive information symbols are transmitted into the channel

before Z = 1 or more (in the second column) consecutive pilot symbols are injected.

In cases marked “noisy” in the third column, the pilot symbols are conventional pilots,

offering noisy estimates of the channel at the edge-points of a D-symbol information

block. Cases marked “noiseless” (NL) refer to the unrealistic scenario of a noiseless

pilot, offering exact channel knowledge between groups of D symbols. For those cases

the bounds IUB(D) are no longer bounds, but the exact capacity for this idealized

transmission scheme. The fourth column of the table shows the Es=No in dB, at which

a BER of 10�4 is reached. The last two columns show the SNR gap between the

simulated performance and performance with perfect CSI everywhere, and the SNR

gap from the tightest appropriate capacity bound computed in section 4.2.2. Observe

that the gap from the capacity bounds is smaller than that from perfect CSI, which

shows that in this noisy, fast-varying channel the performance with perfect CSI is not

achievable. For the first 3 rows, the correct capacity bound is C1 = 1:1 dB, i.e., the

Es=No where IUB(D = 1) reaches rate 1. For all other rows, the tightest bound is

C2 = 1:4 dB, i.e., the SNR at which IUB(D = 2) reaches rate 1.
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D Z pilot nature SNR @ 10�4 Gap from CSI Gap from C1;2

1 1 noisy 3:38 dB 2:58 dB 2:28 dB

1 3 noisy 3:26 dB 2:46 dB 2:16 dB

1 1 noiseless 2:4 dB 1:6 dB 1:3 dB

2 1 noiseless 2:7 dB 1:9 dB 1:3 dB

5 1 noisy 4:86 dB 4:06 dB 3:46 dB

5 3 noisy 4:4 dB 3:6 dB 3:0 dB

5 1 noiseless 3:4 dB 2:6 dB 2:0 dB

10 1 noisy 5:95 dB 5:15 dB 4:55 dB

10 3 noisy 5:51 dB 4:71 dB 4:11 dB

10 1 noiseless 4:81 dB 4:01 dB 3:41 dB

Table 4.1: Simulation results for the pilot-aided turbo-code in the FSMC derived from

fDT = 0:05.

The results in Table 4.1 are not surprising. They indicate steady improvement as

the number of pilot symbols and the rate at which pilot groups are injected increase.

Obviously the scenarios of the third and fourth row are closest to capacity, and the

SNR gap increases as groups of pilots are further apart from each other (D increases).

It must be noted that results in Fig. 4.12 and Table 4.1 are in terms of Es=No and

thus do not take into account the energy expended on pilots, because this makes their

correspondence with the capacity bounds more clear. For instance, if shown against

Eb=No, row 6 of Table 4.1 would be worse than row 5, because a lot of energy is wasted

on evidently unnecessary pilot symbols.

On a related issue, for the case on the first row of Table 4.1 with Z = 1 and

D = 1, BER of 10�4 is reached at Es=No = 3:38 dB, or Eb=No = 6:38 dB, since the

information rate is 1=2 bit/symbol, as reduced by the pilots from the rate-1 turbo-code.
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The same BER at the same information rate is achieved at Eb=No � 7:0 dB with the

supertrellis receiver, see Fig. 4.11, because the turbo-code there is of rate-1/2. This

performance improvement of at least 0:6 dB highlights the positive effect of channel

interleaving in providing diversity for the separate trellises approach, despite the larger

complexity of the supertrellis.
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CHAPTER 5

Diversity Reception in Flat Fading

For a general multipath fading channel, reception errors usually occur when the time-

varying signal attenuation introduced by the channel is large, or when the channel is

in a deep fade. A good strategy to overcome this problem is to provide the receiver

with several replicas of the information signal, transmitted over independently fading

channels, and hence reduce the probability that all signal components will fade simul-

taneously [30]. The presence of conditionally independent replicas of the information-

bearing signal at the receiver is called diversity. There are three common types of

diversity: frequency, time and space. Frequency diversity is only possible if the trans-

mission bandwidth exceeds the channel coherence bandwidth —i.e., it is not available

in flat fading. An equalizer, a RAKE receiver [31, 32], or coded multicarrier transmis-

sion [33] can exploit frequency diversity. Time-diversity is often accomplished with

coding and interleaving; trellis codes do the same in a bandwidth-efficient fashion.

Spatial diversity is achieved by using multiple receiver antennas. This form of diver-

sity avoids the bandwidth expansion implicit in frequency and (often) time diversity,

but requires additional complexity in the RF and baseband portions of the receiver.

This chapter extends the algorithm for joint phase estimation and turbo-decoding

on separate trellises, derived in Chapter 4, to the case where several (L � 1) branches

of spatial diversity are available at the receiver, thus simultaneously exploiting antenna

diversity and time-diversity with the turbo-code. In this scenario, the utilization of

the L soft channel estimates provided by the quantized phase estimators to the turbo-
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decoder may be thought of as iterative ”soft diversity combining”. Achievable perfor-

mance of turbo-codes using this estimation method is compared with the performance

when the estimation method is iterative Wiener filtering of received symbols and then

maximal ratio combining [30, Chp. 14] in the turbo-decoder. The discussion is again

limited to flat Rayleigh fading channels, and simulation results help assess the BER

performance with respect to the capacity gains promised by receiver diversity.

5.1 Transmission and channel model

To demonstrate joint iterative estimation and decoding of pilot-aided turbo-codes when

receiver diversity is available, we use the same rate-1 bit/sec/Hz turbo-code as in sec-

tion 4.1.2. Fig. 5.1 repeats the structure of the transmitter for convenience. The con-

stituent encoders are the best 8-state, rate-2/2 code fragments, identified via exhaustive

search as in [10], each producing one systematic and one parity bit per 2-bit input, and

their outputs are mapped onto a Gray-labeled 4-PSK constellation, following the gen-

eral turbo-trellis coding paradigm of Chapter 2. The encoders are the same as the ones

in Fig. 4.4. Notice, that as in section 4.1.2, for each block of 2N input bits, the N D+Z
D

pilots and coded symbols form each constituent encoder are transmitted contiguously

into the channel; the switch flips every N D+Z
D

T seconds, where T is the baud period.

rate 2/2
encoder

4-PSK
MAPPER

rate 2/2
encoder

4-PSK
MAPPER

TIL

CIL

CIL

MUX

MUX

pilots

N
D+Z
D

T

Figure 5.1: Block diagram of the transmitter in a pilot-aided trellis turbo-coded system.
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The channel with one transmitter and L � 1 receiver antennas produces inde-

pendent realizations of the fading coefficients and the noise at each of the receiver

branches, as shown in Fig. 5.2.

... ... ...x

a
(L)

a
(2)

a
(1)

y
(1) = a

(1) � x + n
(1)

y
(2) = a

(2) � x + n
(2)

y
(L) = a

(L) � x + n
(L)

Figure 5.2: Flat fading channel with L branches of receiver diversity.

Each of the diversity channels is modeled as an independent non-dispersive (flat)

Rayleigh fading channel, correlated in time, based on Clarke’s fading model [15], as

explained in Chapter 3. According to this model, after matched filtering and proper

sampling, the discrete representation of the received signal at time t and diversity

branch i, i = 1; : : : ; L, is:

y

(i)
t = a

(i)
t � xt + n

(i)
t ; i = 1; : : : ; L; t = 0; 1; 2; : : : (5.1)

where xt is the transmitted constellation point. The channel coefficients and the noise

are independent in the different channels, but the fading in each channel remains time-

correlated:

Ea

(i)
t1
[a

(j)
t2
]� = Jo(2�fDT jt1 � t2j) � �(i� j) (5.2)

En

(i)
t1
[n

(j)
t2
]� = No � �(t1 � t2) � �(i� j) (5.3)

and the noise process has variance �2 = No=2 per dimension. Each time-correlated

channel fading process fa(i)t g, i = 1; : : : ; L is modeled as a zero-mean circular com-

plex Gaussian random process. The marginal distributions of ja(i)t j and �
a(i)

t = \a
(i)
t
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for each i are Rayleigh and uniform respectively [17], hence the term “Rayleigh fad-

ing”. The correlation properties of each fading processes a(i)t , i = 1; : : : ; L —see

(5.2)— depend on the common Doppler rate fDT for all receiver branches, since they

are probably mounted on the same physical device and move simultaneously.

5.2 General iterative receiver

Given the turbo-coded, pilot-aided transmission model of Fig. 5.1, the block diagram

of a generic receiver with iterative channel estimation and diversity of order L is de-

picted in Fig. 5.3.

The blocks “D1” and “D2” are the constituent decoders (SISOs) for the turbo-code,

and they implement the Forward-Backward algorithm. They exchange extrinsic infor-

mation (P (u; I); P (u;O)) about the 2-bit input symbols u through the uniform random

interleaver/deinterleaver pair TIL/TDIL. At the same time they produce extrinsic in-

formation P (x;O) about the coded symbols x, in order to assist the channel estimation

procedure on all diversity branches. Estimation is performed by the array of identical

modules E1i;E2i, i = 1; : : : ; L. For the functionality of these estimation blocks, this

chapter considers two options.

In the first approach, henceforth dubbed the “quantized approach”, (dashed feed-

back path in Fig. 5.3) no operation other than channel deinterleaving is performed on

the probability vectors P (x;O) before they are fed back into the estimator modules.

They, in turn, produce probability vectors about the quantized channel phase, in exactly

the same fashion as the Q-SISO blocks described in Chapter 4. In the second itera-

tive estimation algorithm, the “filtering approach”, (solid feedback line in Fig. 5.3) the

vector of soft information P (x;O)—each entry of this vector is the extrinsic proba-

bility of a possible constellation point x—passes through the nonlinearity “NonLin”,
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Figure 5.3: Receiver block diagram for turbo-decoder with diversity and iterative chan-

nel estimation.

which provides a coded symbol estimate x̂. Then, those estimates x̂ are deinterleaved

and pilot symbols are injected into the stream, replicating the procedure followed at

the transmitter. Then, this stream of estimated coded symbols x and pilots is used by

the estimator modules, which perform optimal filtering in order to produce channel

estimates â(i), i = 1; : : : ; L to be used by the turbo-decoders in the next iteration.

The next two sections explain both algorithms in detail, and discuss issues such

as estimation in the first iteration, or the nature of the nonlinear operation “NonLin”.

Description of both algorithms amounts to analyzing the functionality of the blocks

denoted E1i;E2i, i = 1; : : : ; L in Fig. 5.3 for both the “quantized approach” and
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the “filtering approach”, as well as the corresponding metric used by the constituent

decoders “D1” and “D2” in conjunction with each channel estimation method.

5.2.1 Quantized phase approach

For PSK transmission the acquisition of phase coherence is a more critical problem

than fading amplitude estimation, as discussed in Chapter 3. Thus, the quantized

phase algorithm invests most of the computational effort into obtaining an accurate

probability distribution Pi(q;O) on the quantized phases q = Q

�
�
a(i)
�

of each diver-

sity channel i = 1; : : : ; L via the Forward-Backward algorithm. Thus, each estimation

module E1i;E2i of Fig. 5.3 becomes a Q-SISO, described in Chapter 4. For an esti-

mate of the fading amplitude
��
a
(i)
�� each Q-SISO uses a simple, symbol-by-symbol

optimum affine estimator from the received amplitude, namely:

[ja(i)j = A � jy(i)j+B; i = 1; : : : ; L (5.4)

where A, B are real coefficients depending on the SNR (hence the same for all i), and

they are computed to ensure unbiasedness and MMSE of the amplitude estimates.

For the phase estimation, each Q-SISO considers the quantized version of the chan-

nel phase �a
(i)

into K phase intervals as in section 4.1.2. All the Q-SISOs (there are

2L of them in the receiver) create the same Markov model, which approximates the

values and the statistical properties of each �a
(i)

. The transition probabilities between

phase sectors depend on the common Doppler rate fDT , and can be computed as in

(3.5)-(3.6). Fig. 5.4 provides an example of the Markovian transition probabilities for

the quantized phase, as derived for two Doppler rates.

Given the quantized version q of the channel phase
�
q = 2�j

K
; j = 0; 1; : : : ; K � 1

�
,

the ith Q-SISO considers the real-valued phase �a
(i)

to be uniformly distributed within

the interval
�
q � �

K
; q + �

K

�
. Then, recall from Fig. 4.1 that on each diversity branch
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Figure 5.4: Transition probabilities for fDT = 0:05 (left) and fDT = 0:01 (right), for

K = 8 quantized phases.

the received angle �(i) = \y
(i)
t at time t is the sum of the common transmitted angle

\xt, the fading angle �a
(i)

t and the noise induced angle ��
(i)

t , distributed as in (4.2).

With that in mind, as in section 4.1.2, each Q-SISO runs the Forward-Backward

algorithm on the trellis of the quantized Markovian channel phases, and produces

probabilities Pi(q;O) for those quantized phases q, on each diversity channel i, i =

1; : : : ; L. To do that, following the derivation in (4.14) and using (4.5), it is straight-

forward for the ith Q-SISO to compute the branch metric (i)t (q0; q) as follows:



(i)
t (q0; q)

def
= Pr

�
y

(i)
t =

���y(i)t ��� ej�(i); q(i)t = q j q(i)t�1 = q
0
�

(5.5)

= P (q0 ! q)�
X
x

P (x; I) � K
2�

Z �(i)�\x�q+ �
K

�(i)�\x�q� �
K

P

�
�
�;�

(i)
t

�
d�

�(5.6)

where P (��;�) was given in (4.2) and �

(i)
t is approximated, using the estimate[ja(i)j

from (5.4), by:

c
�

(i)
t =

A

���y(i)t ���+B

�

p
2

(5.7)

Thus, using the precomputed Markovian transition probabilities P (q0 ! q), as

well as the extrinsics P (x; I) fed back by the constituent turbo-decoder “D1” or “D2”,
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each Q-SISO is able to provide the desired extrinsic information Pi(q;O) about the

quantized channel phase in each diversity branch. Those L distinct vectors of extrinsic

probabilities Pi(q;O), i = 1; : : : ; L are subsequently deinterleaved and passed to the

turbo-decoder (“D1” or “D2”), as shown in Fig. 5.3.

At the first iteration, when no prior P (x; I) is available, all inputs P (x; I) to the

Q-SISOs are set to zero (in the log domain), denoting equal probabilities, with the

exception of points t in time which belong to a pilot slot. Since the pilot symbol is

known a priori, each Q-SISO uses the most skewed pmf there, setting the probability

of the pilot symbol to a very large number (certainty) and the others to zero. This

special handling of the pilots also carries over to subsequent iterations of the estimation

procedure. Thus, for pilots, the summation of (5.6) is trivial (only one possible x

has non-zero probability). At times t corresponding to coded data and not pilots the

summation of (5.6) is necessary to compute the correct branch metric (i)t (q0; q) and

run the Forward-Backward algorithm in each Q-SISO.

At every time t, each constituent decoder (“D1” or “D2” in Fig. 5.3) receives

from the L Q-SISOs after deinterleaving the L vectors Pi(q; I), i = 1; : : : ; L, each

of length K—the number of quantized phase states. These K-entry vectors Pi(q; I),

i = 1; : : : ; L, contain the soft information about the quantized channel phase q(i) on

each of the diversity branches, so denote their entries:

P

�
q
(i); I

�
; q

(i) = 0; : : : ; K � 1; i = 1; : : : ; L: (5.8)

For ease of notation, boldface letters denote the L-length vectors of the received (dein-

terleaved) samples and the quantized phases: yt = [y
(1)
t : : : y

(L)
t ] and qt = [q

(1)
t : : : q

(L)
t ].

Clearly, the “vector phase-state” qt of the L-branch diversity channel can take one of

anyKL possible values. Given the independence between diversity channels, the prob-
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ability of the channel vector-state is:

P (qt = q) =

LY
i=1

P (q(i); I): (5.9)

Thus, the constituent decoder can run the Forward-Backward algorithm on the

code trellis, and compute the branch metric t(c0; c), based on the vector observations

yt. Since the channel estimates obtained from the Q-SISOs are not hard estimates

â
(i) of the fading coefficients, but soft estimates, i.e. probabilities that the channel

phase is in one of K sectors, the decoder performs soft-diversity combining. With this

quantized approach, and denoting the code states as c0 and c, each decoder (“D1” or

“D2”) computes the Forward-Backward branch metric t(c0; c) as follows:

t(c
0
; c) = Pr (yt; Ct = cj Ct�1 = c

0) (5.10)

= P (ut such that c0 ! c) � P (yt j x(c0 ! c)) (5.11)

= P (u; I) �
X
q

P (yt;qt = q j x(c0 ! c)) (5.12)

= P (u; I) �
X
q

P (qt = q) � P (yt j x(c0 ! c);q) (5.13)

= P (u; I) �
X

q(1);::: ;q(L)

LY
i=1

P (q(i); I) � P
�
y

(i)
t j x(c0 ! c); q(i)

�
(5.14)

= P (u; I) �
X

q(1);::: ;q(L)

LY
i=1

P (q(i); I) � K
2�

Z �(i)�\x�q+ �
K

�(i)�\x�q� �
K

P (��;�
(i)
t )d��

Of the terms in the above formula, P (u; I) is the extrinsic information about the input

symbol u and is provided by the other constituent decoder, while P (q(i); I) is provided

by the ith Q-SISO. The summation involves KL distinct terms, each of which is the

product of two terms, as shown in (5.14). Hence, the constituent decoder “D1” (or

“D2”) essentially performs soft combining of the quantized soft channel estimates

coming from the estimators E1i, i = 1; : : : ; L (or E2i, i = 1; : : : ; L), which are

all identical Q-SISO modules.
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Due to the soft combining of channel estimates, the complexity of the quantized

approach is quite high. For L = 2 diversity branches at the receiver, every full iteration

of the joint estimator and turbo-decoder involves 2L = 4 Forward-Backward runs on

the K-state Q-SISOs (8 states here) with branch metrics computed as in (5.5)-(5.6),

as well as two Forward-Backward runs on the 8-state constituent decoders “D1” and

“D2” with branch metrics computed as in (5.10)-(5.14). Note that, because of the op-

eration in the log-domain, multiplications in the above formulas become summations

and summations become the max� operation (2.13). However, complexity is still an

issue, so we limit the number of quantized phases to K = 8 (twice the cardinality of

the 4-PSK constellation). The performance of this receiver is presented in section 5.3.

5.2.2 Optimum filtering approach

This section describes an alternative approach for iterative joint channel estimation

and decoding, based on optimum filtering of received symbols (only pilots at the first

iteration, coded symbols and pilots alike in subsequent iterations). Iterative filtering

solutions have been proposed in [21] and in [20] for low-rate turbo-codes with BPSK

constellations. The treatment here is general, and in fact can also cover non-PSK

constellations, unlike the quantized phase approach in section 5.2.1. Nevertheless,

we limit our simulations in section 5.3 to the familiar 8-state, 4-PSK turbo-code of

Fig. 4.4.

With the filtering approach, the solid feedback lines in Fig. 5.3 are active (the

dashed lines refer to the quantized phase approach). The purpose of the channel esti-

mation modules E1i, E2i, i = 1; : : : ; L, is to obtain estimates for the complex channel

gains a(i)1 , a(i)2 , i = 1; : : : ; L, and provide those estimates (after deinterleaving) to the

appropriate constituent decoder “D1” or “D2”. For this purpose, each estimator E1i

(or E2i) performs optimum (Wiener) filtering of received symbols at every iteration.
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Intuitively, as decoder iterations proceed and more reliable knowledge about the coded

symbols x is obtained, the estimators are able to provide better estimates of the channel

gains a(i), in turn contributing to a better performance by the constituent decoders.

In the first iteration, when no knowledge about the transmitted symbols x, other

than the pilots, is available, the estimators E1i, E2i, i = 1; : : : ; L are pilot filters. These

filters are identical for all 2L diversity branches, and are derived as in Appendix A,

given the filter length, the Doppler rate fDT , the number D of coded symbols between

pilot slots, the number Z of pilot symbols per slot, and the SNR. Specifically, the pilot-

only filter (POF) W o
k (where k = 0; 1; : : : ; D � 1 specifies the time index within the

coded data slot between two adjacent pilot slots that the filter W o
k is intended for) is an

FIR filter, represented as a horizontal vector in (A.2):

W
o
k = Rak ;~y �R�1

~y ; k = 0; 1; : : : ; D � 1; (5.15)

where the entries of vectorRak ;~y and matrixR~y are computed in Appendix A. ThoseD

distinct POFs are computed once, at the beginning of the simulation, and subsequently

used for the first iteration of every turbo-coded block, by all 2L estimators. They filter

received samples corresponding to pilots only (denote them ~y(i) after derotation of y(i)

with the known pilot symbol x) and produce channel estimates a(i)1 , i = 1; : : : ; L (and

a

(i)
2 , i = 1; : : : ; L) to be used by the constituent decoders “D1” (and “D2”respectively).

Now consider how the constituent decoder “D1” (the same holds for “D2”, so we

suppress the subscripts) uses the channel estimates a(i), i = 1; : : : ; L, after deinter-

leaving, to compute the metric t(c
0
; c). In essence the decoder performs maximal

ratio combining of the L received samples y(i)t , i = 1; : : : ; L, collected in the vector
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yt as follows:

t(c
0
; c) = Pr (yt; Ct = cj Ct�1 = c

0) (5.16)

= P (ut such that c0 ! c) � P (yt j ât; x(c0 ! c)) (5.17)

= P (u; I) � (�G1) � kyt � ât x(c0 ! c)k2 (5.18)

= P (u; I) �G2 �
�
2Rfy�t ât x(c0 ! c)g � kâtk2jx(c0 ! c)j2�; (5.19)

where ât is the L-length vector comprising the estimates a(i), i = 1; : : : ; L, and Rf�g
denotes the real part, and G1, G2 are irrelevant nonnegative constants. Note that in the

case of PSK transmission, where all symbols x are of equal energy, the metric (5.19)

can take the simpler form:

t(c
0
; c) = P (u; I) � R fy�t ât x(c0 ! c)g : (5.20)

It is obvious that, although the inner product y�t ât in (5.20) above involves L com-

plex multiplications, the metric derived above for the decoder in the iterative filtering

approach is still much simpler than the one in (5.14) for the “quantized approach”.

However, some additional complexity ensues in the filtering approach after the

first iteration. The reason is that the estimation modules E1i, E2i, i = 1; : : : ; L need

estimates of the coded symbols (call those estimates x̂) and cannot exploit the vectors

P (x;O) of extrinsic information about x, which is what the decoders “D1” and “D2”

provide. This is why the nonlinearity “NonLin” is included in the (solid) feedback

paths of Fig. 5.3. The purpose of this nonlinearity is to use the vector of probabilities

P (x;O) for every t and provide a hard estimate x̂ for the coded symbol x, such that

the filters E1i, E2i can use x̂ to improve their channel estimates in the next iteration.

A simple way to obtain x̂ is to simply choose as x̂ the constellation point xm with

the maximum P (x;O), or:

x̂ = xm () P (xm;O) � P (xl; 0); l = 0; 1; : : : ;M � 1; l 6= m; (5.21)
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where M is the constellation size. We refer to this type of nonlinearity as hard tentative

decoding. A better way to obtain x̂ is to use the soft information in P (x;O) in a more

sophisticated fashion. Recall that the entries of the vector P (x;O) at each time are the

log-probabilities of every constellation point x. Hence, it makes sense to set:

x̂ =

M�1X
l=0

Pr(xl) � xl =
M�1X
l=0

e
P (xl;O) � xl: (5.22)

In the simulations results presented in the next section we use the nonlinearity of

(5.22), but the performance degradation if the simpler (5.21) is used is very small.

After the estimates for the coded symbols x̂ have been produced for the whole

block, the receiver replicates the operations of the transmitter, by interleaving them

and adding pilot symbols (refer to Fig. 5.3, solid feedback path). So, at the input of

the estimation blocks E1i, E2i, i = 1; : : : ; L, we now have an approximated replica of

the transmitted sequence. In all iterations but the first, the estimators use this sequence

to derotate the received samples y(i)1 , y(i)2 , i = 1; : : : ; L, so that Wiener filtering of

the derotated ~y
(i)
1 , ~y(i)2 can follow, to produce new channel estimates â(i)1 , â(i)2 . We call

each of those Wiener filters—they are the same on all 2L diversity branches—an “all-

symbol filter” (ASF), to distinguish it from the pilot-only filter (POF) Wo of (5.15),

which is used only at the first iteration.

The ASF is easier to compute than the POF, because it only filters derotated sam-

ples that passed through the channel at adjacent times, unlike the POF, which only

filters pilots. Moreover, there is only a single ASF for every time t, while a differ-

ent POF W
o
k was needed for every position k = 0; 1; : : : ; D � 1 between pilot slots.

Assume the ASF is an FIR filter with 2L1 + 1 coefficients, stored in the vector Zo.

Then, from linear estimation theory (see [34]) and given the SNR and Doppler rate,

the optimum ASF is given by:

Z
o = Eak~y

� � [E~y~y�]
�1

= Rak ;~y �R�1
~y ; (5.23)
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where, analogous to Appendix A, ~y is a vector containing 2L1 + 1 derotated consecu-

tive received samples:

~y = [~yk�L1
~yk�L1+1 : : : ~yk+L1

]
T
= a + ~n (5.24)

Hence, the entries of the horizontal vector Rak;~y are:

Rak;~y(n) = Jo (2�fDT � jL1 � nj) ; n = 0; 1; : : : ; 2L1; (5.25)

where Jo(�) is the zero-order modified Bessel function of the first kind and the matrix

R~y is:

R~y = Ra + 2�2I2L1+1; (5.26)

where the matrix Ra = Eaa� is symmetric and Toeplitz, with entries:

Ra(n;m) = Jo (2�fDT � jn�mj) ; n;m = 0; 1; : : : ; 2L1: (5.27)

The ASF Z
o operates for every time t and at every diversity branch to yield updated

channel estimates:

â

(i)
t = Z

o �
h
~y
(i)

t�L1
~y
(i)

t�L1+1 : : : ~y
(i)

t+L1

iT
; i = 1; : : : ; L; t = 0; 1; 2; : : : ; N � 1;

which are subsequently deinterleaved and provided to decoder “D1” or “D2” for the

next algorithm iteration. The above filtering equation ignores the “edge-effects” at

the beginning and end of turbo-coded blocks of N symbols, where there are not

enough samples on either side of the symbol of interest to support two-sided filter-

ing (i.e. smoothing). The same is true for pilot-only filtering and the POF in (5.15),

which is also a two-sided filter (smoother). However, this problem can easily be solved

either via inclusion of a few additional pilots at the edges of each block, or by design-

ing special optimum filters to take into account those edge-effects. This is a minor

problem for the filtering approach (also noticed in [21]), and it does not exist at all in

the “quantized approach” because of the Markov approximation of the channel phase.
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The complexity of the “filtering approach” is significantly less than that of the

quantized approach for reasonable lengths of the POFs (2L0Z) and the ASF (2L1+1).

But the receiver structure of Fig. 5.3 remains valid and describes both algorithms on a

high level. Here, the estimator blocks E1i, E2i, i = 1; : : : ; L are FIR filters and not

Forward-Backward algorithms, so there are only two Forward-Backward algorithms

to run per iteration, those of the constituent decoders.

5.3 Simulation results

This section presents the simulated BER performance of the “quantized approach”

presented in section 5.2.1 and the “filtering approach” of section 5.2.2 in a flat cor-

related Rayleigh fading channel with diversity order of L = 2. The turbo-code used

throughout is the same as in Chapter 4, with 8-state constituent encoders, as shown

in Fig. 4.4. The blocklength is N = 4100, and pilots are injected into the coded data

stream at a rate of Z � 1 pilots every D coded 4-PSK symbols. The generic diagram

of the iterative diversity receiver is that of Fig. 5.3, with the estimation blocks E1i, E2i,

i = 1; 2, and the decoders “D1” and D2” as described previously for the two estima-

tion methods. Two groups of simulations are presented, for Doppler rates fDT = 0:01

and fDT = 0:05 in Figs. 5.5 and 5.6 respectively.

We observe that for both Doppler rates, the filtering approach provides better per-

formance than the quantized approach by more than 1 dB, and is also less intensive

computationally, as pointed out before. For the quantized approach we used the famil-

iar Markov model for the channel phase with K = 8 phase states, while for the filter-

ing approach the simulation parameters were L0 = 5 pilots on either side for the POF

(i.e. total of 10 pilot symbols) for both Doppler rates, and L1 = 16 for fDT = 0:01

and L1 = 10 for fDT = 0:05 for the ASF (i.e. totals of 33 and 21 filtered symbols re-

spectively). The number of iterations was 12 for fDT = 0:01, and 10 for fDT = 0:05,

62



−3 −2 −1 0 1 2 3
10

−5

10
−4

10
−3

10
−2

10
−1

Quantized, 20sy.−1pi.
Filtering, 20sy.−1pi.
perfect CSI          

B
E

R

C

E
b
=N

o
, in dB

Figure 5.5: BER of turbo-code, for fDT = 0:01 for the two channel estimation meth-

ods, and given perfect CSI. The vertical line marks the capacity given perfect CSI.

for both estimation methods, so the superior performance of the filtering approach in

both Doppler rates comes with reasonable complexity.

In absolute values of SNR per information bit (Eb=No) the performance with both

estimation methods (quantized and filtering) degrades for increasing Doppler rate, as

seen in Figs. 5.5 and 5.6. Furthermore, the SNR gap between iterative estimation

performance and performance achieved when perfect CSI is available at the receiver

increases with increasing Doppler rate (e.g., with filtering, this SNR gap is 1:5 dB for

fDT = 0:01, and 3:2 dB for fDT = 0:05). This happens despite the fact that per-

fect CSI performance itself improves with increasing Doppler, due to a larger amount

of available time-diversity, and indicates, as noted also in Chapter 4, that the channel

estimation problem becomes harder for increasing Doppler, which makes sense intu-
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Figure 5.6: BER of turbo-code, for fDT = 0:05 for the two channel estimation meth-

ods, and given perfect CSI. The vertical line marks the capacity given perfect CSI.

itively. In the limit of a channel fading independently, there is unlimited time-diversity

to harvest given “genie-provided” CSI, but the estimation task becomes impossible in

the absence of any time-correlation.

5.3.1 Capacity with receiver diversity

This section discusses channel capacity in the case where spatial diversity is available

at the receiver. The results indicate that both algorithms discussed above indeed exploit

the SNR advantage offered by diversity, and gain almost as much SNR because of it

(with respect to operation without diversity) as the capacity improvement is. In the

interest of keeping the capacity computation tractable, we restrict ourselves to time-

independent fading (the assumption of independence across the L diversity channels
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always remains) and also assume perfect knowledge of the fading gains at the receiver.

Specifically, consider L-branch diversity reception in flat Rayleigh fading, where

the received sample yi at each branch is:

yi = ai � x + ni; i = 1; : : : ; L; (5.28)

and denote the SNR as � = Px
No

, where Px is the average transmitted power of the

constellation point x. Then, collecting all received values into a vector of length L:

y = a � x + n; (5.29)

where all vectors a and n are assumed independent of each other and in time. The

capacity of this vector channel, when there is no time constraint and given perfect

channel knowledge at the receiver, is given by (see [2]):

CL =

Z
log2(1 + � aa�)Pa(a)da; (5.30)

where Pa is the distribution of the fading vector a. For instance, in the case of no

fading (L-branch AWGN diversity) where a = 1L always, we have that:

C
AWGN
L = log2(1 + �L); (5.31)

in other words the intuitively pleasing result that the AWGN capacity with L diversity

branches is the same as if the receiver has only one antenna, but the transmitter uses L

times more power. In the specific case of L = 2, the SNR gain from diversity is 3 dB.

In Rayleigh fading, where each element (fading scale factor) ai in the vector a is

a zero-mean, unit variance complex Gaussian random variable —i.e. ai � NC (0; 1)—

then it is expected that the SNR advantage due to diversity will be greater than 3 dB

for L = 2, because of the “sphere-hardening” phenomenon. In other words, the L-fold

receiver diversity helps in a dual fashion: it captures more of the transmitter power and
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stabilizes against channel spatial fluctuations [2]. This becomes obvious by writing the

capacity of (5.30) with Rayleigh fading in the form:

CL =

Z
log2

 
1 + �

LX
i=1

jaij2
!
P (ja1j; : : : ; jaLj) dja1j � � �djaLj; (5.32)

in which the argument of the logarithm points to the optimum combining receiver, the

“maximal-ratio combiner”. Fig. 5.7 shows the capacity against SNR for L = 2 and

L = 1, and the separation between the two curves is greater than 3 dB for every SNR.
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Figure 5.7: Capacity (with Gaussian inputs) for i.i.d. Rayleigh fading channels with

receiver diversity orders of L = 1 and L = 2. Perfect channel knowledge at the

receiver is assumed.

In particular, at the nominal rate of 1 bit/sec/Hz, where the turbo-code of this chap-

ter operates (excluding the pilots) the diversity gain in capacity is 3:5 dB. And a com-

parison of the simulation results for the “quantized estimation” between Figs. 5.5 and

4.8, and also between Figs. 5.6 and 4.9, shows that the quantized algorithm in fact
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gains about 3-3:5 dB of SNR in both cases when the 2-fold diversity exists. The same

is true for the “filtering approach” to iterative estimation, as became evident when we

simulated this approach without diversity (L = 1).

For ease of comparison, Figs. 5.8 and 5.9 include results for Doppler rates fDT =

0:01 and fDT = 0:05 respectively, with diversity orders of L = 1 (dotted curves) and

L = 2 (solid curves) of both receivers, along with the capacity vertical lines. It is clear

that both iterative estimation algorithms benefit from the existence of 2-fold diversity

approximately as much as the above capacity result would indicate ( � 3:5 dB). In

other words, both Figs. 5.8 and 5.9 show that the second branch of available spatial di-

versity at the receiver improves the simulated performance of both the “quantized” and

the “filtering” iterative receivers by approximately the same amount that it enhances

the channel capacity. The filtering approach maintains its superiority in performance

over the quantized phase estimator both with and without diversity, as is obvious from

the BER simulations in Figs. 5.8 and 5.9.

5.4 Conclusions

This first part of the dissertation (Chapters 2 through 5) discussed the problem of joint

channel estimation and turbo-decoding in frequency-flat, time-correlated Rayleigh fad-

ing, without assuming the availability of perfect channel state information (CSI) at the

receiver. Two methods based on the construction of a finite-state Markov model for

the fading channel phase have been analyzed and simulated, with and without antenna

diversity at the receiver. With the first method, the finite state machines of the channel

and the code are combined to form a supertrellis, along which the channel and the

data are jointly being estimated, without pilot symbols or channel interleaving. The

second method employs separate trellises for decoding and phase estimation. This

method uses pilot symbols and channel interleaving with higher rate codes, and pro-
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vides good performance approaching a sequence of upper bounds to capacity with

reasonable complexity. The estimation of channel phase and data is done jointly, on

the supertrellis or on the separate trellises, via the Forward-Backward algorithm. Also,

generalized iterative Wiener filtering is considered as an alternative for estimation, and

shown to achieve good performance with high-rate trellis turbo-codes.
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Figure 5.8: BER performance of turbo-code in flat Rayleigh fading with fDT = 0:01,

with diversity orders of L = 2 (solid curves) and L = 1 (dashed curves). The “quan-

tized” approach for estimation is marked with “o”, while the “filtering” approach with

“4”. Vertical lines (solid and dashed) mark the respective capacities with Gaussian

inputs and perfect CSI, for L = 2 and L = 1. Notice that pairs of similarly marked

solid and dashed curves maintain an SNR distance of � 3:5 dB, or that both quantized

and filtering simulations improve with diversity about as much as capacity does.
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Figure 5.9: BER performance of turbo-code in flat Rayleigh fading with fDT = 0:05.

Naming conventions are the same as in Fig. 5.8. Again, notice that the second branch

of diversity improves the simulations (dashed to solid curve with the same marker) by

about as much as it improves the capacity (dashed to solid vertical line).
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Part II

MIMO SYSTEMS IN

FREQUENCY-SELECTIVE FADING
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CHAPTER 6

MIMO Frequency-Selective Channel

6.1 Introduction

This second part of the dissertation addresses the problem of channel tracking and

equalization for multi-input multi-output (MIMO) time-variant frequency-selective

channels. These channels model the corrupting effects of inter-symbol interference

(ISI), co-channel interference (CCI), and noise. The frequency selectivity of the chan-

nel arises in a MIMO (nT ; nR) wireless system, where nT � 1 is the number of trans-

mitter antennas and nR � 1 is the number of receiver antennas, as a result of relatively

high transmission rates, whereby the transmission bandwidth exceeds the coherence

bandwidth of the channel. Regarding the time-variant nature of the MIMO frequency-

selective channel, this dissertation considers it to be significant within a packet of data,

hence the need for channel tracking arises in order for the equalization to be effective.

In other words, this and the next chapter consider the MIMO transmission problem for

the important area of operation, where the transmission rate is high enough to generate

resolvable multipath at the receiver, and at the same time the transmitted packet is long

enough (or the transmission rate slow enough) to render an assumption of constant

channel in every data burst inaccurate.

Most of the discussion of MIMO transmission in this and the next chapter is gen-

eral enough to cover both the case of nT independent users with one antenna each

(which can be thought of as the multi-user detection problem, for instance in wideband
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multiple access systems [35], [36]), as well as the case of one user with coordinated

transmissions through nT antennas for higher data rate (which is akin to the systems of

[2], [37]). This difference clearly has a big effect upon the choice of appropriate cod-

ing mechanisms for the MIMO system, discussed in Chapter 7, but does not affect the

tracking procedure. For MIMO tracking we use a Kalman filter, aided by staggered

decisions from a finite-length MMSE-DFE, which performs the task of equalization

and separation of the sources.

An excellent review article [38] by Qureshi discusses adaptive equalization of a

single-input single-output (SISO) dispersive channel (nT = nR = 1). For a fading

SISO channel with ISI, a comprehensive review of the extensive research is [39]. In

[40] we present a special case of the results in this dissertation, applicable to the SISO

scenario. For array measurements at the receiver (nT = 1; nR > 1) an adaptive ap-

proach based on per-survivor-processing (PSP) is explored in [41]. The same case

(nT = 1; nR > 1) but for flat fading (no ISI) was treated from the estimation and

coding perspective in Chapter 5. But when more transmitters are sharing the band-

width, there are two broad classes of techniques to combat co-channel interference

(CCI) at the receiver. One is to suppress interference, possibly in an adaptive fashion,

as in [42]. Another strategy is to decode all nT data sequences simultaneously (e.g.

[36]), possibly with a blind/adaptive approach [43]. The method we demonstrate in the

next chapter embraces the second paradigm, with a few key differences from previous

approaches.

First, we adopt the design of a finite-length MMSE-DFE from [44] for practical

implementation. Then, we consider the channel taps to have significant time-variation

from symbol to symbol, but with largely invariant specular mean and Doppler, which

can be identified during a training phase. After that, in tracking mode, the Kalman

filter and this finite MIMO DFE cooperate to adapt to the rapid channel variations.
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It should be noted that, at least for the single-user (SISO) channel, Kalman-based

estimation methods are quite common in the literature (e.g., [45] uses the extended

Kalman filter to track a channel with unknown delays). Also, in [46] the Kalman

approach is used to formulate extended forms of the Recursive Least-Squares (RLS)

algorithm, and the tracking superiority of those is demonstrated compared to the stan-

dard RLS and Least Mean-Squares (LMS) algorithms.

In Chapter 7 we use a Kalman filter to track the time-variation of the MIMO chan-

nel taps. These taps are typically modeled as mutually uncorrelated circular complex

Gaussian random processes, having locally constant means, due to large scale path

loss, reflections and shadowing effects, as discussed in section 6.2. We assume the tap

means known from a preceding training phase, and concentrate on tracking their time-

variant part, which has autocorrelation properties corresponding to the wide-sense sta-

tionary and uncorrelated scattering “WSSUS” model of Bello [47]. If the tap means

are zero, the channel is said to introduce Rayleigh fading (worst case), while a non-

zero mean tap corresponds to Ricean fading. The Kalman channel estimator is aided

by previous hard decisions about the transmitted symbols from all users, produced by

the MIMO equalizer.

Assuming perfect knowledge of the MIMO channel, the optimum receiver is a

maximum likelihood sequence estimator (MLSE), but its complexity is prohibitive,

even for low order channels with a small number of inputs and outputs. In Chap-

ter 7 we use the MIMO finite-length minimum-mean-squared-error decision-feedback

equalizer (MMSE-DFE), developed in [44] and optimized for decision delay � � 0.

The choice of � > 0 improves performance for a wide range of channels, as shown

in [40] for the single-user channel. However, this delay poses the problem of channel

prediction when combined with the Kalman tracking procedure mentioned above, be-

cause there is a time gap of � between channel estimates produced by the Kalman filter
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(aided by the delayed DFE decisions) and the channel estimates needed for the current

DFE adaptation. We discuss simple methods to bridge this time gap, and show simula-

tion results to demonstrate that the joint tracking and equalization algorithm proposed

in Chapter 7 offers good performance. In fact, it outperforms conventional adaptive

equalization algorithms, such as LMS or RLS, which do not have an explicit mecha-

nism for incorporating the largely invariant channel statistics, such as the Doppler rate

and the channel mean, in case they are known to the receiver from a previous training

phase.

Finally, also in Chapter 7, we briefly outline channel coding strategies suitable for

use with this channel estimation and equalization system. If the channel was constant

and the nT interfering data streams were perfectly decoupled and equalized, then the

effective channel between transmitter and receiver after equalization would have a

periodic (i.e. periodically time-varying) nature, as noticed in [48]. However, due

to the estimation error by the Kalman filter and, more importantly, the finite length

of the MIMO DFE, perfect decoupling is not possible. Our experiments show that

while most of the ISI is cancelled, significant interference remains across the nT data

streams after equalization. Therefore, a space-time code designed in [37] outperforms

a one-dimensional trellis code optimized for diversity and coding across transmitter

antennas. Section 7.4 discusses the coding issue in more detail.

6.2 MIMO channel model

At every receiver antenna of the MIMO channel with nT inputs and nR outputs, a linear

combination of all transmitted data sequences, each distorted by time-varying ISI, is

observed under white Gaussian noise. Specifically, the observable y(j)t from receiver j
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(with j = 1; : : : ; nR) at time t is:

y

(j)
t =

nTX
i=1

�(i;j)X
m=0

c
(i;j)
m (t) x

(i)
t�m + v

(j)
t (6.1)

where c(i;j)m is the mth tap of the impulse response of order �(i;j) between the ith input

x
(i) and the jth output y(j) of the MIMO channel. The complex baseband constellation

point x(i)t�m is transmitted by the ith user at time t �m, and v

(j)
t is the complex noise

sample at the jth receiver. In essence, there exist a total of nTnR interfering, time-

varying ISI channels c(i;j)(t) (see Fig. 6.1 for a (2; 2) system):

c(i;j)(t) =
h
c

(i;j)
0 (t) c

(i;j)
1 (t) : : : c

(i;j)

�(i;j)
(t)
i

(6.2)

and each of their taps can be written as:

c
(i;j)
m (t) = �c(i;j)m + h

(i;j)
m (t); m = 0; : : : ; � (6.3)

where we define � = maxi;j �
(i;j), and set c(i;j)m (t) = 0 for m > �

(i;j).

c
(2;1)(t)

x
(1)
t

x
(2)
t

c
(2;2)(t)

c
(1;2)(t)

y
(1)
t

y
(2)
t

c
(1;1)(t)

Figure 6.1: The interfering ISI channels in a (2; 2) MIMO system.

The time-varying part h(i;j)m (t) of each tap in (6.3) is a zero-mean, wide-sense-

stationary complex Gaussian process, uncorrelated with any other h(i
0;j0)

m0 (t), and has

time-autocorrelation properties governed by the Doppler rate fDT , (T is the baud du-

ration) as in [17]:

Efh(i;j)m (t1)[h
(i;j)
m (t2)]

�g�Jo
�
2�f

(i;j;m)

D T jt1 � t2j
�

(6.4)
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where Jo(�) is the zero-order Bessel function of the first kind. Notice that each of

the nTnR(� + 1) taps varies independently (although this will not be essential in our

development) and can have a different Doppler rate. More importantly, the autocorre-

lation functions are non-rational, hence no ARMA model is an exact representation of

the time evolution of the channel taps. However, only the first few correlation terms

(for small jt1 � t2j) are important for the design of any receiver. Thus, even low order

autoregressive models, or even a simple Gauss-Markov model, can capture most of

the channel tap dynamics and lead to effective tracking algorithms, as demonstrated

below.

Analogous to a Single-Input, Single-Output (SISO) system with nT = nR = 1, we

can write the MIMO channel input-output relationship in vector form as a matrix FIR

filter. By collecting the outputs y(j)t of (6.1) from all receiver antennas at time t into a

nR-dimensional column vector yt:

yt =

�X
m=0

Cm(t)xt�m + vt; (6.5)

where yt and vt are column vectors of length nR, xt�m are column vectors of length

nT , and Cm(t) are nR � nT matrix channel taps (instead of the scalar SISO taps).

Each of the matrices Cm(t), m = 0; : : : ; � contains the tap c(i;j)m (t) of (6.1) and (6.3)

in its (j; i)th position. This formulation of the MIMO channel (6.5) is useful in the

DFE design of section 7.1.2, but for the purpose of MIMO channel tracking via the

Kalman filter, presented in section 7.1.1, we will need an alternative notation for the

input-output relationship, of the form:

yt = Xt � ct + vt; (6.6)

where the nR � nRnT (� + 1) data matrix Xt is a “wide” matrix with the transmitted

symbols repeated diagonally, according to the Kronecker product:

Xt=
h
x

(1)
t : : : x

(nT )
t x

(1)
t�1: : : x

(nT )
t�1 : : : x

(1)
t�� : : : x

(nT )
t��

i

 InR (6.7)
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and ct is a long vector of length nTnR(� + 1) containing all the channel taps at time t,

ct = �c+ ht:

ct =
h
c

(1;1)
0 (t) : : : c

(1;nR)
0 (t) : : : c

(nT ;1)
0 (t) : : : c

(nT ;nR)
0 (t) : : :

c
(1;1)
� (t) : : : c(1;nR)� (t) : : : c(nT ;1)� (t) : : : c(nT ;nR)� (t)

�T
: (6.8)

With this setup, the channel is a complex Gaussian vector process ct with dimensions

(nTnR(� + 1))� 1, which has a constant mean vector �c. The time-variant part of the

channel is the vector process fhtg. According to the WSSUS model of Bello [47],

all the channel taps are independent, namely all the entries of vector ht vary indepen-

dently, according to the autocorrelation model of (6.4). If we let index k enumerate all

the taps k = 1; : : : ; nTnR(� + 1), and denote f (k)D = f

(i;j;m)

D the Doppler of the mth

tap of the channel from input i to output j, then the normalized spectrum for each tap

fh(k)t g is:

Sk(f)=

8>>>>><>>>>>:

1

�f

(k)

D T

1vuut1�
 

f

f

(k)

D T

!2
; jf j < f

(k)

D T

0; otherwise

(6.9)

Exact modeling of the vector process fhtg with an autoregressive (AR) model is

impossible. For implementation of a Kalman filter, we approximate the MIMO channel

variation fhtg with the following multichannel AR process of order p, as done in [49]

for nT = nR = 1:

ht =

pX
l=1

A(l)ht�l +Gwt; (6.10)

where wt is a zero-mean i.i.d. circular complex Gaussian vector process with correla-

tion matricesRww(j) for every lag j given byRww(j) = Efwtw
�
t+jg = InT nR(�+1)�(j).

Due to the WSSUS assumption, the matrices A(l), l = 1; : : : ; p and G of the model

(6.10) must be diagonal. For the selection of their diagonal entries, various criteria of
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optimality can be adopted, such that the AR(p) model of (6.10) would be a “best-fit”

to the true channel autocorrelation of (6.4). One such criterion can be to require the

process (6.10) to be such that 90% of the energy spectrum of each tap is contained in

the frequency range jf j < f

(k)

D T , as indicated by (6.9).

For simplicity we adopt a first-order AR model (p = 1) and denote F = A(1). So,

(6.10) becomes:

ht = Fht�1 +Gwt (6.11)

Then we fix the diagonal entries of matricesF andG (call them fk and gk respectively)

to capture the most essential parts of the channel variation, namely how “fast” and how

“much” the time-varying part h(k) of each channel tap varies with respect to the mean

of that tap �ck. The speed of variation is determined by the Doppler, or equivalently by

the relative velocity between the nT antennas of the transmitter and the nR antennas

of the receiver. At least for the scenario of coordinated transmission, the assumption

of equal Doppler rates f (k)D T = fDT , k = 1; : : : ; nTnR(� + 1) makes intuitive sense,

so we adopt it in the simulations, although the algorithm derivation certainly does not

rely on that. The diagonal entries of F are all fk = f = Jo (2�fDT ), and this choice

sets the autocorrelation of the taps modeled by (6.11) to equal the true autocorrelation

at unit lag. Obviously, larger Doppler rate fDT implies smaller fk = f , hence faster

channel variation.

Having fixed the rate of channel variation via F, the magnitude of variation of the

k
th tap is then controlled by the diagonal entries gk of G, since the power of the time-

variant part of each tap is Ejh(k)j2 =
g2
k

1�f2 , from (6.11). The amount of variation of

each tap with respect to the mean is expressed by the “specular-to-diffuse power ratio”

Kk, as follows:

Kk
def
= 10 log

� j�ckj2
Efjh(k)j2g

�
=10 log

� j�ckj2
g
2
k=(1� f

2
k )

�
(6.12)

79



The ratio Kk indicates the ratio of power of the kth mean channel tap to the mean-

squared power of the random, time-variant part of that tap, analogous to the Ricean

factor defined in the wireless channel literature. Clearly, K = �1 dB corresponds

to Rayleigh taps, while large positive values of K in dB represent almost no channel

variation at all. In the simulations of Chapter 7, although again it is arbitrary, we

choose equal values of Kk = K for all the taps.

Although higher order models than (6.11) can be constructed for larger p, it turns

out that this simple first-order approximation is enough to model the channel dynamics

to the extent necessary for a receiver to operate. For perspective, in a 2:4 GHz trans-

mission with baud rate of 20 KHz and Doppler frequency fD = 200 Hz (corresponding

to vehicular velocity of 90 Km/h or 56 mph), then fDT = 0:01 and fk = 0:999. Also,

a value of K = 6 dB implies that the average power of each tap variation is one-fourth

of the constant mean tap value.

For the SISO case (i.e. nT = 1; nR = 1) a useful method to obtain the sequence

of matrices A(l); l = 1; : : : ; p during a training mode is provided in [49], via higher-

(than-second)-order statistics (HOS). Their method is effective and requires only rea-

sonable assumptions about the transmitted sequence and the noise. An analogous train-

ing method can be adopted for general MIMO channels. But the way we formulated

the AR(1) model of (6.11) here, the information needed to construct the model is only

the channel mean �c, the Doppler rates, the ratios Kk and the noise variance. Hence, we

assume that these quantities are known from a training phase, and focus on decision-

aided tracking of the channel for relatively long time spans, without retraining.
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CHAPTER 7

Receiver Structure and Performance

7.1 Receiver structure

The receiver uses a Kalman filter to track the channel and a DFE to equalize it. The

Kalman filter assumes that the DFE hard decisions are correct and uses them to es-

timate the next channel value, while the DFE assumes correct Kalman filter channel

estimates, and uses them in turn to equalize the channel. In general, the optimum de-

cision delay � � 0 can be determined analytically given a channel (see [44]). For a

wide range of channels (including, but not limited to, non-minimum-phase channels),

it turns out that a DFE producing decisions with � > 0 is optimal. Even for the few

channels where � = 0 is best, it doesn’t degrade performance to use a DFE with

� > 0, provided there are enough taps in the feedforward and feedback filters. Thus,

it makes sense, particularly for time-varying channels like the ones treated here, to use

decision delays � > 0.

But when � > 0, a time gap is created. At time t, when the last received vector

is yt, the DFE produces the hard-decision x̂t��. The staggered decisions cause the

Kalman filter to operate with delay, that is, operate at time t � �, since it only has

available hard decisions from the DFE up to then. However, the DFE design still needs

channel estimates up to time t. Thus the receiver needs to use channel prediction to

bridge the time gap between the Kalman channel estimation and the channel estimates

needed for the current DFE adaptation.

81



The proposed system block diagram of Fig. 7.1 shows the time succession of steps

(1) through (4) below. The notation zn2n1 (or zn2n1 ) means the collection of vector valued

(or scalar) variables zn1 : : : zn2 (or zn1 : : : zn2). In Fig. 7.1 the flow of new information

is clockwise, starting from top left, with each of the blocks corresponding to one of the

following actions:

1. ĥt�� = K�ĥt���1;yt���1; x̂t���1t�����1

�
2. ĥtt��+1 = P

�
ĥt��;y

t
t��

�
3.
�
W

opt
t ;B

opt
t

�
= design DFE(ĥtt�Nf

)

4. x̂t�� = DFE(Wopt
t ;B

opt
t )

Design
Equalizer

Decision

Kalman
Filter

Channel

Predictor

W
opt

t
, Bopt

t

yt
t��

yt
t�Nf

x̂t��

ĥt
t��+1

ĥt��

[ ĥt�Nf
� � � ĥt���1 � ]

ĥt���1

yt���1

x̂t���1
t�����1

Figure 7.1: MIMO Receiver block diagram.

The iteration starts with the well-known Kalman filter recursions denoted by K(�),
which at time t yield the optimum linear estimator (based on our AR model) of the
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time-varying part of the channel ĥt�� as it was at time t��. For that, the Kalman filter

relies on the (assumed reliable) DFE decisions x̂t���1; : : : ; x̂t�����1, the received

vector yt���1 and the previously estimated channel vector ĥt���1. In the second step,

P(�) denotes a predictor that may exploit the additional received vectors yt; : : :yt��,

along with the last Kalman estimate ĥt�� to compute the sequence of � predicted

channels ĥt; : : : ; ĥt��+1.

Those � predicted channels, along with the Nf �� most recent channel estimates

from the Kalman filter, are used by the DFE design module (see Sect. 7.1.2) to design

the optimum feedforward matrix filter, Wopt
t , and the feedback matrix filter, Bopt

t of

an MMSE DFE. Finally, the newly designed DFE decodes one more nT -dimensional

symbol x̂t��, which is added to the collection of past (assumed reliable) decisions,

which will help the Kalman filter make a new channel estimate ĥt��+1 at the next

iteration, taking place at time instant t+1. In the following subsections we look at the

implementation of the two main receiver modules in greater detail.

7.1.1 Kalman tracking and channel prediction

For simplicity, we limit our discussion to the AR(1) channel model of (6.11), but the

extension to higher order AR models is straightforward. The channel at time t has

a constant (assumed known) mean �c and a zero-mean time-varying part ht, which

follows the AR(1) model:

ht+1 = Fht +Gwt: (7.1)

At time t, the (zero-mean) received vector yt is given by:

yt = Xt � (�c+ ht) + vt: (7.2)

Assuming the matrices F and G and the mean channel vector �c are known from a

preceding training phase, and assuming the matrix of the most recent available deci-
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sions X̂t���1 to be equal to the true Xt���1 defined in (6.7), the receiver can use

the Kalman filter to track the channel variation ht��, using as observable the vector

yt���1 � X̂t���1�c. The Kalman filter, operating with a delay � is described at time

t by the series of equations [34]:

ĥt�� = Fĥt���1 +Kt���1et���1

et���1 = yt���1 � X̂t���1(ĥt���1 + �c)

Kt���1 = (FPt���1X̂
�
t���1)R

�1
e;t���1

Re;t���1 = Rvv + X̂t���1Pt���1X̂
�
t���1

Pt�� = FPt���1F
� +GG�

�Kt���1Re;t���1K
�
t���1:

The above Kalman recursions implement the optimum linear estimator for the

time-varying part of the channel ht��. The last reliable decision made by the DFE

and used by the Kalman filter at this time is x̂t���1. For matrices F and G that are

multiples of the identity (produced, for instance, by uncorrelated fading with the same

Doppler and ratio Kk for all taps) fast algorithms for the above Kalman recursions can

be pursued (see, e.g., [50]). Note that for the block-constant fading channel model

adopted in the space-time literature [37], nothing else changes in the model of (7.1),

except for setting F = I and G = 0, which simplifies the above Kalman recursions

significantly. This makes the Ricean factors Kk in (6.12) useless, because if the chan-

nel remains unchanged for the whole block, the distinction between the mean �c and

h in (6.8) is arbitrary. However, in this case of block constant channel, adaptation of

the MIMO DFE at every time is not warranted. A few iterations of the algorithm at

the beginning of each block should be enough to adapt the matrix coefficients to the

constant channel. Then their values can remain fixed for the rest of the block.

In channels with smaller coherence time (higher Doppler) adapting the MIMO
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DFE every time instant improves performance. For designing the DFE at time t (step

3), the Nf most recent channel estimates are needed, where Nf is the order of the

matrix feedforward filter Wopt of the DFE. Up to time t � � channel estimates are

available from the Kalman filter. But the last� channel vectors ĥt; : : : ; ĥt��+1 have to

be predicted. The implementation of the prediction depends upon the SNR of operation

and how fast the channel varies. For the block-constant channel or a very slowly

varying one, the simplest choice is to assume that the channel remains constant over

� sampling periods, that is:

ĥt = ĥt�1 = � � � = ĥt�� (7.3)

where ĥt�� is already provided by the Kalman filter.

More generally, the optimal linear predictions, given that the channel follows the

AR(1) model of (7.1), but ignoring the additional received vectors yt; : : : ;yt�� are:

ĥt = F�ĥt��; : : : ; ĥt��+1 = Fĥt�� (7.4)

where again ĥt�� is the last Kalman channel estimate.

The received vectors yt; : : : ;yt��, which are also available, can be used to im-

prove the prediction for a fast varying channel at high SNR. For example, one could

formulate and optimize least-squares cost functions J(h), forcing the predicted chan-

nel vectors ĥk; k = t; : : : ; t � � + 1 to the vicinity of the values of (7.4), weighted

by how well a certain ĥk “justifies” the received vectors yt; : : : ;yt�� (see [40]). We

do not pursue this prediction avenue in this chapter, and all simulations are done using

(7.4) for channel prediction.

7.1.2 DFE design

The design of the optimum MMSE feedforward and feedback matrix filters Wopt and

Bopt of lengths Nf and Nb matrix taps respectively, as well as the optimum selection
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of the delay � for any (nT ; nR) system is solved in [44] and will not be repeated here.

It is an MMSE design, in the sense that it minimizes both the trace and the determinant

of the autocorrelation matrix Ree of the error vector et = ~xt � xt, where ~xt�� is the

vector with the nT equalized soft values at time t, as seen in Fig. 7.2. For the design,

the assumption is made that there is no error propagation, i.e. the hard decision vector

x̂t�� is the same as the transmitted vector xt��.

~x
(nT )

t��

FBF
B

opt

t

~x
(1)

t��

W
opt

t

FFF
y
(1)
t

y
(2)
t

y
(nR)
t

x̂
(nT )

t��

x̂
(1)

t��

x̂
(2)

t��

Figure 7.2: MIMO DFE block diagram.

In [44], various design methodologies are given, depending on whether there is

a feedback filter or not (in which case the design is that of an MMSE linear MIMO

equalizer). The choice of oversampling is also available without significant changes to

the derivation. For the DFE an important design choice is whether current decisions

of stronger users are available, or only past decisions from every user. The former

case would correspond to a successive cancellation scheme, and would provide better

performance at the cost of added complexity to order the nT users according to their

power before DFE operation.

Here we avoid the extra complexity by designing a symbol-spaced MIMO DFE

where only past decisions for all users are available and go into the feedback ma-

trix filter Bopt. Clearly this choice of strictly causal feedback filtering has a conse-
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quence: while it permits almost perfect cancellation of the ISI and cross-ISI, it does

not completely suppress residual cross-coupling. In other words, the i
th entry ~x

(i)
t

of the equalized vector ~xt is almost devoid of the corrupting presence of all x(j)t�k,

k 6= 0; j = 1; : : : ; nT , but the presence of current other symbols x(j)t , j 6= i, in it is

nulled somewhat less effectively.

We do not replicate the equations for optimum design of Wopt and Bopt here.

Suffice it to say that an essential part of the DFE design at every time instant t is the

formulation of the nRNf � nT (Nf + �) block pre-windowed channel matrix H:

H=

26666664
Ĉt

0 � � � Ĉt
� 0 � � � 0

0 Ĉt�1
0 � � � Ĉt�1

� 0 � � �
...

...

0 � � � 0 Ĉ
t�Nf+1

0 � � � Ĉ
t�Nf+1
�

37777775 (7.5)

where Ĉk
m; m = 0; 1; : : : ; �, k = t; t � 1; : : : ; t � Nf + 1 are the estimates of

the nR � nT channel matrices Cm(k) in (6.5). It is obvious that constructing H

of (7.5) merely involves adding the constant part �c to the long vector estimates ĥk,

k = t; t � 1; : : : ; t � Nf + 1 of the time-varying part of the channel (some of which

are estimated via the Kalman filter and some are predicted), and then rearranging the

resulting long vectors into the dimensions specified by Eq. (6.5). After the matrix

H of (7.5) has been formed, the MIMO DFE design procedure described in [44] is

straightforward, and also provides the correlation matrix Ree of the error vector as a

by-product. Fast Cholesky factorization improves the computational efficiency of this

finite-length MIMO DFE design, playing a role parallel to that of spectral factorization

for matrix filters of infinite length.
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7.2 Baseline adaptive systems

In this section we outline conventional adaptive algorithms for the DFE, such as LMS

and RLS for the case of nT transmitters and nR receivers. These adaptation mech-

anisms, unlike the Kalman-aided DFE presented above, do not estimate the channel

explicitly. Instead, they adapt the DFE matrix taps, based on observed symbols from

the time-variant channel, and hard decisions from the equalizer. LMS and RLS will

serve as baseline systems, the performance of which will be compared to the Kalman-

aided DFE through simulations in the next section. For both algorithms, consider

the concatenation of the nT � nRNf matrix FF filter and the nT � nTNb matrix FB

filter of the DFE into an nT � (nRNf + nTNb) equalizer filter Q = [W B]. At

time t, this equalizer filter Qt operates on the column “regressor” vector ut of length

nRNf + nTNb:

ut = [yTt : : :y
T
t�Nf+1 x̂

T
t���1 : : : x̂

T
t���Nb

]T (7.6)

The operation produces a vector ~xt�� of nT soft values, which are then fed to nT

slicers, as in Fig. 7.2, producing a vector of hard decisions x̂t��. Under the MMSE

criterion, each row qi; i = 1; : : : ; nT of the equalizer Qt is responsible for the mini-

mization of the cost function:

J(qi) = jx(i)t�� � qi � uj2 = jx̂(i)t�� � qi � uj2; i = 1; : : : ; nT ; (7.7)

with the high-SNR assumption of no decision errors. In the absence of knowledge

of the correlations Rx(i)u = Ex
(i)u� and Ru = Euu�, we can use the corresponding

instantaneous approximations x̂(i)u� and uu� in their place. This leads to the following

LMS recursions, which iteratively approximate the least-mean-square solution (see

[34]) separately for i = 1; : : : ; nT :

qi(t) = qi(t� 1) + �[x̂
(i)

t�� � qi(t� 1) � ut]u�t : (7.8)
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Those nT simultaneous LMS recursions for the rows qi of Q can be combined into

one, for the entire DFE Q:

MIMO LMS: Qt = Qt�1 + �[x̂t�� �Qt�1 � ut]u�t : (7.9)

Similarly, considering nT parallel RLS adaptations for each row, and this time using

instantaneous approximations for the necessary correlation matrices in a Newton re-

cursion (see [34]), we get:

qi(t) = qi(t� 1) +
h
x̂

(i)

t�� � qi(t� 1) � ut
i
u�tPt;

for i = 1; : : : ; nT ; with :

Pt = �
�1 �

�
Pt�1 � �

�1
Pt�1utu

�
tPt�1

1 + �
�1u�tPt�1ut

�
which, again, can be combined into one matrix recursion for Qt:

MIMO RLS:
Qt = Qt�1 + [x̂t�� �Qt�1 � ut]u�tPt

Pt = �
�1 �
�
Pt�1 � �

�1
Pt�1utu

�
tPt�1

1 + �
�1u�tPt�1ut

� (7.10)

with initial condition P�1 = �oI and 0� � � 1.

Note that the recursive adaptation of (7.10) above is known to not only be an ap-

proximation to Newton’s method with instantaneous values in the places of unknown

auto- and cross-correlations, but also to be the exact solution of a weighted, regularized

least-squares problem involving a block of observations and a single equalizer matrix

Q. In fact, with the obvious changes to accommodate the different dimensions of Q,

the RLS recursion of (7.10) with the update for Pt coming first, can easily be shown

to be exactly equivalent to the more compact RLS recursions given in [34, Chap. 10]
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and [51, p. 569], with the update for Pt after the equalizer update:

MIMO RLS (II):

(t) =
1

1 + �
�1u�tPt�1ut

gt = �
�1u�tPt�1(t)

Qt = Qt�1 + [x̂t�� �Qt�1 � ut] � gt
Pt = �

�1 � [Pt�1 � Pt�1utgt]

(7.11)

7.3 Simulation results

In all simulations presented in this section we implemented the Kalman-aided MIMO

DFE algorithm outlined in section 7.1 and compared the performance of the system,

as measured by its symbol error rate (SER) when transmitting 4-PSK constellation

points through (2; 2) and single-user (i.e. (1; 1)) Ricean fading channels. We assumed

the channel mean to be known at the beginning of each block of N symbols per user

and tracked with the Kalman filter thereafter. For comparison purposes the plots in-

clude (dashed lines) the SER performance with the receiver having access to “genie-

provided” perfect channel information, as well as that of conventional adaptive receiver

algorithms, such as the LMS and RLS of section 7.2, admittedly less computationally

intensive than the tracking algorithm proposed in this chapter.

The SNR is set to be the same for both users (worst-case scenario, because having

one user stronger than others facilitates decoding of every user). Also, all nTnR mean

interfering channels of (6.2) are normalized jj�c(i;j)jj2 = 1, and all ratios Kk are chosen

equal to a single K. Thus, with �2v being the noise variance at each receiver, the SNR

plotted is the SNR of each interfering channel, neglecting co-channel interference:

SNR = 10 log
1 + 10K=10

�
2
v

; (7.12)

since the input 4-PSK points are normalized to unit power. Clearly, for the (2; 2) ex-

ample, the above definition of SNR corresponds to 3 dB higher SNR (i.e. 10 lognT )

90



than that defined in space-time systems (see [2]), because we allocate unit power to

each transmitter antenna, thinking about individual uncoordinated users. For coordi-

nated transmission, to maintain a fair comparison with conventional (1; 1) systems,

input power must be split evenly among the nT transmitter antennas, which lowers the

SNR by 10 lognT dB.

In Fig. 7.3 the mean channels were the normalized versions of (1 + j)[1 0:8] and

(1 + j)[1 0:3] for the direct paths, and (1 + j)[1 � 0:8] and (1 + j)[1 � 0:5] for

the interfering paths, the Doppler rate was fDT = 0:01 (resulting in an AR(1) coef-

ficient f = 0:999) and the specular-to-diffuse power ratio was K = 6 dB. The indi-

cated symbol-error rate (SER) performance represents unsupervised channel tracking

for long blocks of N = 5000 symbols per user. The proposed Kalman-aided DFE

performs less than 1 dB from perfect channel knowledge, while LMS adaptive DFE

fails completely with such long blocklength. In Fig. 7.4 we kept the same mean (2; 2)

channel, but increased the speed of variation (f = 0:99, resulting from fDT = 0:032),

set K = 10 dB, and reduced N to 500. Performance is generally better (for LMS as

well), and still the proposed algorithm outperforms LMS adaptation of the DFE. In

both cases, the DFE has Nf = 3 and Nb = 1 matrix taps, and � = 2.

Figures 7.5 and 7.6 show simulation results for a (1; 1) system with mean channel

(1 + j)[1 2:5], K = 10 dB for both taps, and a DFE with � = 5, and Nf = 7

and Nb = 1 scalar taps. In both figures the Doppler rate is fDT = 0:01. However,

in Fig. 7.5 the channel is indeed the AR(1) model with f = 0:999 (derived from

fDT = 0:01), while in Fig. 7.6 the channel is in fact generated according to Bello’s

model with the statistics described in (6.4), and is only approximated by the AR model

of (7.1) with f = 0:999. As expected, the Kalman-aided DFE performs better when

the channel is truly AR(1), as modeled by the receiver.

In both Fig. 7.5 and 7.6 we observe that the proposed Kalman-aided DFE outper-
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Figure 7.3: Performance of (2; 2) system vs. SNR. Blocklength N = 5000, channel

derived from fDT = 0:01, K = 6 dB. RLS performance is very bad for such long

blocks and is not shown.

forms conventional LMS/RLS adaptive algorithms. It is perhaps surprising that the su-

periority of the proposed algorithm is more pronounced in the second case (Fig. 7.6),

where the AR(1) model is an approximation of the true channel. In that case, the

Kalman-aided MIMO DFE provides much better results than plain LMS/RLS adap-

tations, which do not have an explicit mechanism of incorporating known channel

statistics, and only rely on careful selection of the parameters � and � to perform

the best tracking they can. So, exploiting the knowledge of largely invariant chan-

nel parameters (i.e. the mean and Doppler) to form a first-order autoregressive model

for the channel offers a significant performance improvement, while in Fig. 7.5 the

small gains with respect to LMS/RLS probably do not justify the higher complexity of
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Figure 7.4: Performance of (2; 2) system vs. SNR. Blocklength N = 500, channel

derived from fDT = 0:032, K = 10 dB. Both LMS and RLS exhibit similar tracking

performance, much worse than the Kalman filter.

Kalman tracking.

The simulation results in Fig. 7.7 provide some insight on the issue of how the

magnitude and speed of the channel variation affect the system performance. Again,

we control the rate of variation by the Doppler, and thus by the selection of parameter

f = Jo (2�fDT ) in the model of (6.11), and the magnitude of variation with respect to

the channel mean by the Ricean factor K of (6.12). Fig. 7.7 shows the SNR required

for the system to reach a symbol error rate (SER) of 10�3 for given pairs of the abscissa

K and the Doppler. We observe the intuitively obvious fact that asK decreases and the

Doppler rate fDT increases, the problem becomes harder, and more SNR is required
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Figure 7.5: Performance of (1; 1) system vs. SNR. Blocklength N = 500, on AR(1)

channel derived from fDT = 0:01. K = 10 dB.

for 10�3 performance. Also, for a given Doppler, reducing K causes an error floor and

SER = 10�3 is never achieved, no matter how high the SNR. The situation is much

worse with the adaptive algorithms RLS and LMS, whose corresponding curves are

not included for clarity.

Furthermore, we observe that the same conclusions are true when the Kalman filter

is simulated with correct decisions (dashed curves in Fig. 7.7), rather than decisions

from the MIMO DFE (solid curves). This proves that the problematic performance in

channels with small mean (e.g. Rayleigh channel taps, whereby K = �1) coupled

with rapid variation (high fDT , small coefficients f ) is not due to failure of the DFE,

meaning increased error propagation. In fact, idealized simulations in which the DFE
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Figure 7.6: Performance of (1; 1) system vs. SNR, in real Ricean channel with

fDT = 0:01 and K = 10 dB. Blocklength N = 200.

is provided with perfect channel knowledge show good equalization performance re-

gardless of the speed (large fDT ) and magnitude (low K) of the channel variation.

This confirms that the MIMO DFE is an efficient equalization mechanism, as long as

correct channel estimates are available.

Rather, what fails under the harsh conditions of low-K/high-Doppler is the Kalman

tracking. This Kalman tracking failure for rapid channel variation does not mean that

channel estimates diverge. The Kalman filter still follows the true tap trajectories,

only with a higher mean-squared error, high enough that the channel estimates it pro-

duces are sufficiently wrong, such that the MIMO DFE cannot equalize any more. It

should be noted, however, that it takes quite violent tap fluctuation (low-K/high-fDT )
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Figure 7.7: SNR required for the (2; 2) system to reach SER = 10�3 for different

channel conditions, i.e. Ricean factor K and Doppler rate. The channel is time-varying

according to the Gauss-Markov (GM) model of (6.11).

to cause the Kalman filter to ineffectively track the taps, while the baseline LMS/RLS

adaptive algorithms exhibit high error floor for much milder channel conditions, and

never outperform the Kalman filter tracking. An additional observation for perspective

is that in the limit of very low K and very high fDT , the channel tap values become

effectively i.i.d., which makes any attempts for channel estimation futile by definition.

7.4 Coding

When the nT transmitter antennas belong to individual, uncoordinated, yet assumed

synchronous users, each of them uses a separate trellis code. Hence, the Kalman track-
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ing ideas of section 7.1 can be used in a variety of ways, depending on available com-

plexity and desired performance at the receiver. The simplest solution is to do hard trel-

lis decoding for each individual user, using the decisions x̂(i), i = 1; : : : ; nT produced

by the MIMO DFE. A better approach is to use the soft values ~x(i), i = 1; : : : ; nT

before the slicers in Fig. 7.2 as input to nT independent soft trellis decoders, while of

course continuing to provide the hard decisions x̂ to the feedback section of the DFE

and the Kalman estimator.

Both the above methods however would suffer from error propagation, because

the DFE produces errors in bursts that can defeat the error correcting capabilities of

the individual trellis codes. If the system can tolerate the added latency, one way to

overcome the bursty errors from the DFE is to introduce interleaving of the outputs

of each encoder at the transmitters, and the corresponding deinterleaving operations

on each of the nT streams of soft values prior to the nT decoders at the receiver [52].

A good way to get around this problem without added latency, but with increased

receiver complexity is per-survivor processing (PSP, see [53]), whereby there is one

combination of Kalman filter and MIMO DFE for every combination of survivor paths

between the nT independent trellis decoders. Specifically, if we keep s survivor paths

for every trellis decoder, the number of necessary Kalman/DFE combinations is snT ,

and each of those functions in the way described in section 7.1. The simple solution

with a single Kalman/DFE followed by nT soft trellis decoders mentioned above is a

special case of this last arrangement, with s = 1 survivor path kept per user.

In the case of a single user with nT transmitter and nR = nT receiver antennas

for increased data rate, the correct choice of a coding scheme to fit with the channel

tracking and equalization mechanism discussed in section 7.1 is not obvious. If the

channel were to remain constant for the whole block, and if we could assume perfect

cancellation of ISI and CCI, then the effective vector channel x! ~x could be thought
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of as nT parallel channels, each with different SNR. Thus, a 1-dimensional trellis

code, coding across transmitter antennas would encounter a periodically time-varying

channel, as noticed for the layered interference cancellation scheme in [48]. Good

trellis codes for periodic channels have been designed in [54] and [55]. However, this

is not the case, since the MIMO channel is neither constant nor perfectly known, and

ISI and CCI cannot be perfectly cancelled. The finite MIMO DFE of section 7.1.2

precludes this by definition. Hence, a periodic code optimized for PECL and PPD (see

[54]) is a suboptimal choice, as confirmed from the coded simulation results marked

with “2” in Fig. 7.8. Such a code might provide better performance if the MIMO DFE

is designed for successive interference cancellation, as described in [44].

To take into account the time variation of the effective channel x ! ~x with a 1-

D code, we chose to optimize this code for diversity. Namely, for the given 4-PSK

modulation and 8 code states, we performed an exhaustive search over all rate-1/2

codes aimed at maximizing the effective code length (ECL, often referred to as the

minimum time-diversity of the code) and the product distance (PD). The best such

code is described by the polynomials g1(D) = 1 + D + D
2, g2(D) = 1 + D

2 + D
3

and has ECL = 4 and PD = 64 for a Gray-labeled 4-PSK constellation with unit

power. The curve marked with “3” in Fig. 7.8 shows its BER performance with an

8-state Viterbi decoder of traceback depth 14 (the same as for the periodic 1-D code

optimized for PECL and PPD above), fed by the soft equalized values prior to the DFE

slicers.

Clearly, both 1-D trellis codes provide a big coding gain with respect to the raw

error rate at the slicers, although many important details have been ignored at decod-

ing, such as the time-correlation of the noise after the matrix feedforward filter. The

diversity code performs better than the code optimized for periodic channels.

As shown in Fig. 7.8 it is possible to do better than both the 1-D trellis codes
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Figure 7.8: BER performance for the (2; 2) system with three different codes with 8

states (the best periodic code, the best diversity code and the best space-time code),

using the soft values prior to the DFE slicers. The channel remains the same as in

section 7.3, with Ricean factor K = 10 dB, and Doppler rate fDT = 0:01. Similar

results are obtained with different parameters.

discussed above, by using a space-time code [37]. To realize this, recall from the dis-

cussion in section 7.1.2 that the error vector e = ~x � x prior to the slicers remains

correlated with a correlation matrix Ree, which is provided by the DFE design algo-

rithm. Even if we disregard the (small) correlation of this error vector in time, the

correlation across the nT interfering channels indicated by the non-zero off-diagonal

elements of Ree suggests that residual CCI exists after the MIMO equalizer. In other

words, the proposed Kalman-aided MIMO DFE has not turned the effective channel
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x! ~x into nT non-interfering parallel channels, in which case the use of an appropri-

ate 1-D trellis code would be a good choice.

Instead, the vector channel x ! ~x has been turned into a “flat” MIMO channel,

having CCI but mostly devoid of ISI and cross-ISI. Thus, the 8-state space-time code

designed in [37] (see Fig. 5(a) there) is the best coding choice, as shown by the sim-

ulation in Fig. 7.8. For comparison with equal complexity with the 1-D codes above,

we kept the traceback depth of the vector Viterbi decoder to 7, since in this case every

trellis step corresponds to two steps of each 1-D code.

A final note concerns the decoding metric for the Viterbi decoder in both situations

(1-D codes and space-time code). Since we are aware of the correlation across trans-

mitted symbols, the correct metric for assumed transmitted vector xk and “received”

equalized vector ~x is not k~x� xkk2. Rather, it is expressed by:

M(k) = (~x� xk)�R�1
ee (~x� xk); (7.13)

where Ree is the error vector correlation matrix, which is provided as a by-product of

the MIMO DFE design. The computation of the metric of (7.13) was implemented

for both the space-time trellis decoder and the two 1-D trellis decoders. In the latter

case one just needs to combine two trellis steps in one, effectively producing a rate-

2=4 trellis code, transmitting two 4-PSK symbols at a time, very similar to the space-

time code. Since essentially the same decoding is implemented, it is clear that the

improved BER performance of the space-time code has to do solely with its ability to

combat residual interference more effectively than the 1-D codes, which are encoding

across transmitter antennas. This is not surprising, because the 1-D trellis codes were

designed to provide diversity (periodic or not, respectively) and were not intended to

overcome the coupling of interfering streams of data like the space-time code.
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7.5 Conclusions

This second part of the dissertation (Chapters 6 and 7) discussed a receiver structure

to track and equalize a MIMO frequency selective fading channel. A Kalman filter

was used for tracking the channel, and an MMSE DFE, optimized for decision delay

� � 0 to equalize the channel and suppress CCI. The time gap between channel

estimates produced by the Kalman filter and those needed for the DFE adaptation was

bridged by using a simple prediction module. This algorithm, in exchange for larger

complexity when compared to simple LMS/RLS updates of the DFE, offers improved

performance and good tracking behavior for long unsupervised blocks, close to the

performance of the idealistic case where perfect channel information is available at the

receiver. Additionally, appropriate trellis coding options compatible with this method

for tracking and equalization were discussed.
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CHAPTER 8

Conclusions and Future Work

This dissertation presented algorithms to estimate fading in a wireless channel, while

simultaneously decoding a turbo-code in flat fading (first part) or equalizing a MIMO

frequency-selective channel (second part).

Turbo-decoding in flat and frequency selective fading, without assuming prior

knowledge of the channel, has recently attracted the attention of researchers as wireless

applications become more dominant and processing capabilities of receivers increase.

Some examples are the work in [56] proposing adaptive SISO decoders, differential

detection in [57], which deteriorates at high Doppler, as well as the research in [21]

and [20], which is similar to the iterative Wiener filtering approach in Chapter 5 of this

dissertation.

Areas for future research include performance in conjunction with complexity, tak-

ing into account implementation issues such as fixed point arithmetic in digital signal

processors and timing jitter. Further research should also explore accurate capacity

computation for the fading models discussed in Chapter 3, with nonzero autocorrela-

tion for infinite lag. Research attempts in this domain include the capacity of finite-

state Markov channels in [29], which is computationally cumbersome and still only an

approximation, the bounds derived here in Chapter 4, as well as work in [27] for other

correlation models, and [58] in a more general setting. Computing channel capacity

corresponding to different algorithms of channel acquisition will provide an absolute

measure for performance evaluation in any Doppler rate and SNR operation point.
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For the problem of achieving reliable communication in a MIMO time-varying

frequency-selective channel, treated in the second part of this dissertation, the research

effort has been increasing in the past few years, as the market demands ever higher

data rates in a difficult wireless environment. This dissertation presents an algorithm

for channel tracking and equalization based on Kalman filtering and a MIMO MMSE

DFE of finite length, but a number of issues remain open. For instance, initial training

of the MIMO equalizer (before going into tracking mode) discussed in [59], is a sig-

nificant area for further research. But more importantly, code design must be done for

MIMO systems such that the code is compatible with the signal processing strategy

for interference avoidance and cancellation, see [60] and [61, 62] and [48], seeking a

code that will help approach the vast capacities promised in [2]. Significant research

contributions in this domain are the space-time codes of [37], as well as the work in

[63] and the combination of space and time diversity in [64], but much remains to be

done, particularly if the great error-correcting potential of turbo-codes is also to be

exploited in the MIMO environment.

On a different note, as signaling rates inevitably increase, the inter-symbol interfer-

ence in the channel becomes more severe, and then equalization is no longer a practi-

cal solution, because of the overhead associated with training long complex equalizers

(e.g. a MIMO DFE). In this case, the signaling paradigm of MIMO multicarrier mod-

ulation as in [65] is probably more appropriate, since it provides more natural coding

options that can approach capacity. Besides, the channel then becomes flat (viewed in

the frequency domain), which facilitates both estimation and equalization, apart from

the positive impact on the design of an appropriate channel coding scheme.
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APPENDIX A

Estimation from Pilot Symbols

Let a sequence fxtg of multiplexed coded data and known pilot symbols be transmitted

in a flat Rayleigh fading channel. Then, the observed sequence is yt = at � xt + nt,

where xt is a pilot (a known symbol) if t mod (D + Z) < Z, and an unknown

coded symbol if t mod (D+Z) � Z. This arrangement assumes that the transmitter

sends frames of D consecutive coded symbols between frames of Z consecutive pilot

symbols, and in this dissertation all symbols come from a PSK constellation and thus

have unit energy.

The purpose of an optimum (in the minimum mean-square sense) pilot-only fil-

ter (POF) at the receiver is to operate on the observations corresponding to pilots and

render optimum channel estimates âk, k = 0; 1; : : : ; D� 1 for the times t correspond-

ing to unknown transmitted data. If the one-sided length of the POF is L0 pilot slots

(therefore a total of 2L0Z pilot symbols), then there are D distinct optimum POFs W o
k ,

k = 0; 1; : : : ; D � 1, each operating on L0Z symbols on both sides of the channel es-

timate for time k. In fact, due to symmetry in time, these D POFs (horizontal vectors)

W
o
k , k = 0; 1; : : : ; D � 1 are mirrored versions of each other for indices k that are

equidistant from 0 and D � 1.

Since only observations coming from pilot symbols are going to be filtered, we can

equally well filter the derotated versions ~y of the pilot symbols, after the effect of the
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pilot x has been removed, namely:

~y = a+ ~n: (A.1)

Observe that since pilots have unit energy, this derotation does not affect the noise

statistics, so ~n are still i.i.d. complex Gaussian random variables with variance �2 per

dimension.

Collecting all the relevant derotated observations ~y in a column vector ~y of length

2L0Z, the problem is to optimally estimate ak, k = 0; 1; : : : ; D � 1 from ~y = a + ~n.

Fig. A.1 gives an example of a received stream, and the pilot-filtering operation for

D = 5, Z = 3, L0 = 2. Note that in this appendix we ignore the “edge-effects” that

occur when the channel coefficients to be estimated are located close to the edges of a

block of data, where the receiver might not have access to L0 pilot slots on either side

of the desired channel coefficient. In other words, the derivations below require L0

pilot slots (of Z symbols each) on either side of the frame of D coded data symbols,

for which the channel gains ak, k = 0; 1; : : : ; D � 1 are being estimated. The special

cases that occur when fewer than L0 pilot slots exist on one side are straightforward to

obtain.

From linear estimation theory it is well-known that since the complex vectors a,

~n and ~y are zero-mean, the optimum linear estimator of the scalar ak (and also the

optimum estimator when nonlinear estimators are considered, since all variables are

complex Gaussian) is:

W
o
k = Eak~y

� � [E~y~y�]
�1

= Rak;~y �R�1
~y ; k = 0; 1; : : : ; D � 1 (A.2)

where Rak;~y is a horizontal vector of length 2L0Z with entries:

Rak ;~y(i) = Jo (2�fDT � index(i; k)) ; (A.3)
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Figure A.1: Collection of the derotated observables corresponding to pilots into the

vector ~y for D = 5, Z = 3, L0 = 2. “p” denotes observation corresponding to a pilot

symbol, while “d” denotes an observation due to a coded data symbol. The optimum

filters W o
k , k = 0; 1; : : : ; D � 1, operate on ~y to estimate ak, k = 0; 1; : : : ; D � 1.

where Jo(�) is the zero-order modified Bessel function of the first kind and

index(i; k) =

8<: (L0 � bi=Zc � 1) �D + (L0Z � i) + k; 0 � i < L0Z

(bi=Zc � L0) �D + (i� L0Z) +D � k; L0Z � i < 2L0Z

(A.4)

The covariance matrix of the vector ~y is:

R~y = Ra + 2�2I2L0Z; (A.5)

where the matrix Ra = Eaa� is symmetric but not Toeplitz, since the symbols corre-

sponding to the fading coefficients inside the vector a were not necessarily adjacent in

the initial data stream. The entries of the matrix Ra are:

Ra(i; j) = Jo (2�fDT � [D � jbi=Zc � bj=Zcj+ ji� jj]) ; i; j = 0; : : : ; 2L0Z � 1:

(A.6)

To verify the non-Toeplitz structure of the matrix Ra, observe that:

Ra(0; 2) = Jo (2�fDT � 2) 6= Jo (2�fDT � (D + 2)) = Ra(1; 3): (A.7)
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From (A.2) and using (A.3)–(A.6) it is straightforward to compute the D distinct

optimum POFs W o
k , each of which provides the estimates:

âk = W
o
k � ~y; k = 0; 1; : : : ; D � 1: (A.8)

The minimum mean-squared error (m.m.s.e.) of the estimation is (see, for instance,

[34]):

Ej~akj2 def
= Ejak � âkj2 (A.9)

= 1� Rak;~yR
�1
y R

�
ak ;~y

(A.10)

= 1�W
o
k (Ra + I2L0Z) (W

o
k )
�
; (A.11)

and the average m.m.s.e. due to estimation from pilots can be obtained:

MSE =

D�1X
k=0

Ej~akj2; (A.12)

which is the quantity plotted against SNR in Fig. 3.3.
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APPENDIX B

Proof of Theorem 1

This appendix contains the proof of Theorem 1. Although in section 4.2 we only

use the bounds IUB(D) for the constrained capacity with i.i.d. 4-PSK inputs, these

bounds are in fact general and also apply for any input distribution, including the

capacity achieving Gaussian. For this reason, in the following proof we use the symbol

h(:) for the entropy of the input variable X , implying differential entropy, while for

X coming from a 4-PSK constellation the symbol H(:) for the entropy of a discrete

random variable is more appropriate. We first show that the sequence IUB(D), D =

0; 1; 2; : : : ;1 decreases in D, or:

IUB(D) � IUB(D + 1)

() 1

D

� �h �XD
1 j Q0; QD+1

�� h

�
X

D
1 j Q0; Y

D
1 ; QD+1

�� � (B.1)

1

D + 1
� �h �XD+1

1 j Q0; QD+2

�� h

�
X

D+1
1 j Q0; Y

D+1
1 ; QD+2

��
() 1

D

� h �XD
1 j Q0; Y

D
1 ; QD+1

� � (B.2)

1

D + 1
� h �XD+1

1 j Q0; Y
D+1
1 ; QD+2

�
() 1

D

�
DX
i=1

h

�
Xi j Q0; X

i�1
1 ; Y

D
1 ; QD+1

� � (B.3)

1

D + 1
�
D+1X
i=1

h

�
Xi j Q0; X

i�1
1 ; Y

D+1
1 ; QD+2

�
where (B.1) is the definition of mutual information, (B.2) follows from the fact that the

input X is i.i.d. and independent of all the channel states Q, while (B.3) is the chain
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rule for entropy. Now observe two facts, which hold for i = 1; : : : ; D:

h

�
Xi j Q0; X

i�1
1 ; Y

D
1 ; QD+1

� � h

�
Xi j Q0; X

i�1
1 ; Y

D+1
1 ; QD+2

�
(B.4)

because conditioning reduces entropy, and also:

h

�
Xi j Q0; X

i�1
1 ; Y

D
1 ; QD+1

�
= h

�
Xi+1 j Q1; X

i
2; Y

D+1
2 ; QD+2

�
� h

�
Xi+1 j Q0; X

i
1; Y

D+1
1 ; QD+2

�
(B.5)

by stationarity and the fact that conditioning reduces entropy. Therefore, if we denote

the terms of the sums in the LHS and RHS of (B.3) li; i = 1; : : : ; D and ri; i =

1; : : : ; D + 1 respectively for notational convenience, then (B.4) implies li � ri; i =

1; : : : ; D and (B.5) implies li � ri+1; i = 1; : : : ; D. So, assuming rmax = rk, we

have:

1

D

�
DX
i=1

li =
1

D + 1
�
"
1

D

DX
i=1

li +D �
 

1

D

DX
i=1

li

!#

� 1

D + 1
�
"
rmax +D �

 
1

D

D+1X
i=1;i6=k

ri

!#
(B.6)

=
1

D + 1
�
D+1X
i=1

ri (B.7)

where (B.6) follows from (B.4) and (B.5). This proves (B.3) and with it the claim

that IUB(D) is decreasing in D. Also, IUB(D) is non-negative, hence it has a limit.

We now show that this limit is, in fact, CFSMC , or in other words that the bound

IUB(D), D = 0; 1; 2; : : : is asymptotically tight.

1

D

� I �XD
1 ;Y D

1 j Q0; QD+1

�� 1

D

� I �XD
1 ;Y D

1

�
=

=
1

D

� �H �XD
1 j Y D

1

��H

�
X

D
1 j Y D

1 ; Q0; QD+1

��
=

1

D

� I �XD
1 ;Q0; QD+1 j Y D

1

� � 0 (B.8)

so IUB(D) upperbounds every term in the sequence 1=n � I(Xn
1 ;Y

n
1 ), n � D and

hence also upperbounds CFSMC , from (4.16). Finally, it is easy to see that the bounds
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IUB(D), D = 0; 1; 2; : : : are asymptotically (in D) tight, by examining the difference

term:

1

D

� I �XD
1 ;Q0; QD+1 j Y D

1

�
= (B.9)

=
1

D

� �H �Q0; QD+1 j Y D
1

��H

�
Q0; QD+1 j XD

1 ; Y
D
1

��
� 1

D

�H �Q0; QD+1 j Y D
1

�
(B.10)

� 1

D

�H (Q0; QD+1) (B.11)

� 2 logK

D

(B.12)

which converges to zero, as D grows without bound.
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