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ABSTRACT OF THE DISSERTATION

Universal trellis codes and concatenated
trellis-coded modulations for the compound
linear vector Gaussian channel

by
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Professor Richard D. Wesel, Chair

In broadcast scenarios or in the absence of accurate channel probability distri-
bution information, code design for consistent channel-by-channel performance,
rather than average performance over a channel distribution may be desirable.
Root and Varaiya’s compound channel coding theorem for linear Gaussian chan-
nels promises the existence of codes that operate reliably whenever the channel
mutual information is above the transmitted rate. Such codes are called univer-
sal codes for their respective classes. Many communication channels of interest,
such as multiple-antenna (space-time) channels, frequency-hopped communica-
tion channels and multicarrier communication channels can be modeled as a
family of linear vector Gaussian channels. The practical design goal of universal
codes is to guarantee consistent performance on every channel that supports the
information transmission rate with a mutual information gap that is similar to

the capacity gap of a well-designed AWGN-specific code on the AWGN channel.

The first part of this dissertation illustrates the design of universal trellis

codes for the most comprehensive compound linear Gaussian vector channel as
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a low-latency universal coding solution for multiple-antenna wireless links with
the assumption of reliable channel estimation at the receiver. Universal trellis
codes presented here deliver comparable or in some cases superior error-rate per-
formance under quasistatic fading channels to trellis codes of similar complexity
that are designed specifically for the quasistatic fading scenario, while providing
consistently good channel-by-channel performance that may not be provided for

codes designed for the average fading scenario.

The design criteria for universal trellis codes is then extended to the case of
capacity-approaching serially-concatenated turbo codes. The second part of the
dissertation investigates the design of universal serially-concatenated trellis codes
(serial turbo codes) first for the periodic erasures channel with period two, and

then for space-time channels with two transmitters.

Among other contributions of this dissertation is an analysis of the effect on
universality of the use of matrix constellations on the vector Gaussian channel and
the design of robust phase-noncoherent trellis-coded modulations for multicarrier

communication channels with phase errors.
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CHAPTER 1

Universal codes for the compound linear vector

Gaussian channel

1.1 Introduction

Root and Varaiya’s compound channel theorem [64] applied to the linear Gaussian

vector channel
y = Hx +w, w ~ N (0, NoI) (1.1)

indicates that a single code can achieve reliable information transmission at a rate
R bits per symbol for every channel H that induces at least R bits per symbol of
mutual information (MI). The immediate implication of this result is that good
error performance over one particular linear Gaussian channel does not have to
come at the expense of significant performance degradation over others. At a
given decoding complexity, codes with consistently good proximity to capacity

over a class of channels will be referred to as universal codes in this thesis.

Universal codes are particularly interesting for multiple antenna (space-time)
systems in richly scattering environments [19] because of the wide range of pos-
sible channels. However, recent research on space-time coded systems has exclu-
sively focused on designing for the average performance over quasistatic Rayleigh
fading channels ([26, 18, 51|, [27], [61], [53], [60], [39]). In the light of the afore-

mentioned compound channel coding theorem, universal codes will have good



performance on every channel with sufficient mutual information and thus under
any quasistatic fading statistics. In contrast, there exist good codes for qua-
sistatic Rayleigh channels that experience a wide variation in performance over

matrix channels with the same mutual information.

Section 1.2 reviews the capacity expressions for the vector Gaussian channel
(1.2). This section also proves that in the absence of channel information at the
transmitter, when the compound channel includes all the channels with a given
set of eigenvalues, the capacity achieving input distribution on the compound

channel employs uniform transmit power across the transmit antennas.

Section 1.3 introduces the concept of excess mutual information as a measure
of how close a code is operating to the channel capacity on a particular channel.
This section then poses the universal code design problem over a compound

channel as a minimax excess mutual information game.

For robust performance across the compound channel, a universal trellis code
has good minimum distance over all linear Gaussian channels with similar mu-
tual information. Section 1.4 formulates the smallest (i.e., worst-case) minimum
distance of an error event over all channels with a given set of eigenvalues. The
minimum distances of a code under unitary channels and under singular channels
yield a lower bound on the worst-case minimum distance over all channels that

support the transmission rate.

Section 1.5 presents encoder rate and complexity requirements on space-time
trellis coded modulations for universal performance. A minimax excess-MI search
for universal space-time trellis coded modulation over two transmit antennas is
detailed. An example universal space-time trellis-coded modulation (ST-TCM)
has better compound channel performance than ST-TCMs designed for qua-

sistatic Rayleigh fading and has identical or better bit error rate performance



under quasistatic Rayleigh fading than these other ST-TCMs. As an alternative
to ST-TCMs, coded performance of Alamouti’s space-time block (STB) scheme

over the compound channel is analyzed.

Raw frame error rates in quasistatic Rayleigh fading for universal codes are
slightly worse than their counterparts specifically designed for average perfor-
mance in Rayleigh fading. However, the favorable distribution of bit errors among
errored frames allows the frame error rate of universal codes to improve signifi-

cantly with the addition of a high-rate outer code.

The success of universal codes in quasistatic fading channels motivates Section
1.6, which shows that the determinant criterion used for quasistatic Rayleigh
fading channels is a minimax worst-case distance criterion over a strict subset
channels that support the rate of transmission. This subset does not include

singular channels.

1.2 The compound linear Gaussian channel

Consider the N; x N, linear Gaussian channel with unit average power constraint

per transmit antenna
y = Hx + w, w ~ N(0,1), (1.2)
El[x|[* <N
where H € CM*M ig the channel gain matrix, and w € CY*! is a vector of

additive Gaussian noise with unit variance per complex dimension. The noise

components at different receivers are assumed to be uncorrelated.

Suppose that the channel matrix belongs to a collection H = {H,,a € T},
where 7 is an arbitrary index set. Root and Varaiya’s compound channel theory

[64] defines the rate R bits/symbol to be achievable for the compound channel



H if there exists a sequence of (2V% N) codes and a sequence of real numbers
{en > 0}, such that for each N, the word error probability is bounded above by

en uniformly over all channels, and ey — 0 as N — .

The capacity of the compound channel, defined to be the the supremum of all
achievable rates, is attained by a codebook {X} with a vector Gaussian distribu-
tion of mean zero and covariance matrix S such that trace(S) < IV, in accordance

with the transmit power constraint.

Theorem 1 (Compound channel capacity, [64]) The compound channel ca-
pacity s

i i
CH) = sup Jnf log, det (I+HSH') (1.3)

bits per symbol where S is the set of Ny X N; complex valued Hermitian matrices

such that trace(S) < Nj.

From this point on we will assume N; = N, = N, to simplify the analysis. For
N, # Ny, the analysis will be the same with N = min(N,, V;), since the smallest

|N, — N,| eigenvalues of HH' will be zero.

As shown in [64], this capacity may be achieved without a-priori knowledge
of the channel at the receiver. However, since this theorem is for fixed channels
and blocklengths that are growing to infinity, pilot assisted channel estimation
affects throughput negligibly. For simplicity, we assume the receiver knows the

channel in the rest of this chapter.

The capacity achieving covariance matrix of the input distribution depends on
the collection of channels. The following corollary shows that when all channels
with a given set of singular values are included in H, the capacity-achieving

input distribution is uncorrelated and has uniform average power over transmit



antennas. We will write

H= A= ()\1,...,)\]\7) (14)
if HH' has eigenvalues \i, ..., Ay.

Corollary 1.1 Let H(A) C CN*N be the class of N x N channel matrices H = X,
The compound channel capacity of H(A) is achieved by an uncorrelated Gaussian

input distribution, i.e. S = 1. As a result, the compound channel capacity is

SN logy (14 ;) bits/symbol.

Proof 1 Pick a codeword covariance matriz S, let S = Qdiag(s)Q' be the sym-
metric eigendecomposition with s = (S1, ..., Sn), Zfil s; < N. Let w be a per-
mutation on {1,..,N}. Let sx = (Szq),-., Sx(nv)) denote the vector obtained
by permuting the elements of s by m. Let A = diag(\), A, = diag(A\;), and
H, = A?Qt. Note that H, € H(\). Then

min log, det (I+ H,SH})
= minlog, det <I + A1/2diag(sﬂ_1)A1/2>

1 .
< Z Nl log, det (I + Al/zdlag(sw_l)Al/Q)

™

1
< log,det (I + A2 (ﬁ > diag(s,r_l)> A1/2>
N
= ZlogQ(l + N)-
=1

where inequality (a) follows from the fact that log, det (I + A1/2diag(s)A1/2) isa
concave function of s. Thus, the worst-case mutual information of any admissible

S is upper bounded by that achieved by S =1. N

For N = 2 at MI = 2 bits/symbol (= 1 bit/symbol/transmit antenna) level,



A

Figure 1.1: The equal-MI curve 3logy(1 + A1)(1 + Ay) = R for R = 1 bit per
symbol per antenna. The shaded region contains the pairs (A, A2) such that

MI > 2 bits/symbol (1 bit/symbol/antenna).

Figure 1.1 shows the achievable region in the A\;-As space with uniform power

across antennas (S =1I).

1.3 Excess mutual information criterion

With uniform average transmit signal energy E; = E|z;|? across the antennas,
the compound channel capacity theorem promises the existence of a code that

can reliably transmit at R bits/symbol on every channel

y=Hx+w, w~N(0,Noly) (1.5)



such that log, det(I + ]E;—;H) > R. For a given rate and decoding complexity
per information bit, a universal code delivers similar error performance over all
channels with the same mutual information. Consider the set of channels that
support a given decoding error probability. The level of universal performance
over these channels is measured by the difference between the compound channel
capacity and the information transmission rate. This difference is called the

excess mutual information.

Consider a code that delivers R bits/symbol over N transmit antennas. Fix a
target bit error rate BERy. Associated with each channel matrix H is an average
transmit energy requirement F; = F (H) to achieve BERy. This transmit energy
requirement translates to a mutual information figure

MI (H) = log, det (I + %HH*) , (1.6)
0

which is the maximum rate that can be reliably transmitted over the static
channel H with uniform transmit power F; over the antennas. The difference
MI(H) — R is the excess mutual information, which is a measure of how close
the code is operating to channel capacity at BER = BERy. In order to compare
performance for various numbers of transmit antennas, the excess mutual infor-
mation is normalized by the number of transmit antennas to obtain the excess
mutual information per transmit antenna. The purpose of universal coding is to

minimize the worst-case excess mutual information per transmit antenna

1

Isilg){ N (MI(H) — R) (1.7)
at fixed target bit error rate (or frame error rate), latency and decoding complex-

ity per bit.

Consider the standard additive white Gaussian noise (AWGN) channel over

which complex valued symbols are transmitted with average transmit energy of



y=+vVEx+w, w~N(0,N)
Elz]* =1

For R =1 bit/symbol transmission, the best free-distance rate-1/2 64-state con-
volutional encoder driving a Gray-labeled QPSK constellation requires a signal-
to-noise-ratio (SNR) of E,/N; = 4.3 dB to achieve a bit error rate (BER) of 10°.
At this SNR, the capacity of the AWGN channel is

E; )
log, (1 + ﬁ) = 1.88 bits/symbol (1.8)
0

therefore the code requires an excess mutual information (MI) of 1.88 — R = 0.88
bits at this BER. Table 1.1 lists the excess MI performance under AWGN of
trellis codes formed by the best free-distance rate-1/2 encoders driving Gray-

labeled QPSK constellations.

Now consider the same code transmitted over two transmit antennas by means
of a serial-to-parallel converter, delivering 2 bits/symbol (1 bit/symbol/antenna).

Write

M _ JEH [:”'11 + [wl] 1.9
P R N -

where x; and z, are the odd and even-indexed symbols, respectively, from the
original single dimensional trellis code, and the average transmit energy per an-

tenna, F, is explicit. The AWGN scenario discussed above is H = 1.

When

H= (1.10)



Table 1.1: Performance of best free-distance rate-1/2 convolutional codes driving
Gray-labeled QPSK constellations. The first column is the number of encoder
states, S. The second column shows the minimum distance and the bit multi-
plicity of the minimum-distance events. For each code the SNR value, SNRy,
required to achieve BER = 1 x 107° is displayed in the third column. The fourth

column shows the corresponding excess-MI values.

S | dmin, Ny | SNRy | AMI
4 |3.16,8 |585dB | 1.26
8 |346,8 |54dB | 1.16
16 | 3.74,2 |[4.9dB | 1.03
32| 4, 16 4.65 dB | 0.97
64 | 4.21,3 |4.3dB | 0.88

the rate-1/2 code with QPSK can at best deliver uncoded performance (BER=10"°
at SNR=12.5 dB, or equivalently, excess MI = 1.12 bits/antenna) since the code

rate effectively raises to 1/1. In fact, the 64-state code in Table 1.1 completely
fails under the channel (1.10) with BER > 10~ at SNR=12.5 dB.

However, as shown in [46], there exist 64 state trellis codes that require less
than 0.88 bits of excess mutual information per antenna at BER = 1 x 107° on
both H =T and the singular H of (1.10). In order to deliver coded performance
over all 2 X 2 matrix channels (even singular channels) with sufficient MI, the
binary rate of the encoder should be less than 1/2. However, per-symbol rates
may be maintained by using constellations larger than QPSK. The maximum rate
possible for an encoder with universal performance is discussed in Section 1.5.
This example shows that a typical good AWGN trellis code does not exhibit uni-

versal behavior. As another example, Ungerboeck type trellis-coded modulations



[22] fail under erasure scenarios such as (1.10) due to the presence of uncoded

bits.

A universal trellis code should have consistently good minimum distance un-
der linear transformations (channels) having the same nonzero mutual informa-
tion. The following section characterizes the variation of minimum distance under

transformations by channels with a fixed amount of MI.

1.4 Minimum distance over the compound channel

Consider a code C for the vector channel (1.2). A codeword X € C is represented
here as a matrix of N rows and / columns where each column x; € CV*! is a

codeword symbol at time 2:
X = [x1,Xg, ..., X{] . (1.11)

Let X and X be two different codewords. Under maximum-likelihood decoding,
the probability that the decoder mistakes X for X conditioned on the perfect

knowledge of the channel matrix H at the receiver is given by
P (X—)X\H) =Q (d (X—)X\H) /\/2N0> (1.12)

where d(X — X|H) = ||[H(X — X)||; is the Euclidean distance of the event under

H, and Q(-) is the standard Gaussian tail integral.

Definition 1 For a given H, the smallest of pairwise codeword distances is called

the dyin(H) of the code:

Amin(H) = ;{n;?(d (X — X|H> . (1.13)

10



The dpmin(H) of a code is closely related to the eigenvalues of HH'. Through-

out this section we will use the following ordering for the eigenvalues:
H) M <h<..<)y (1.14)
X-X2¢ (<G < (1.15)
Lemma 1 (Universal codes have to be full rank [9]) Let(;,i=1,..., N be

the eigenvalues of (X — X)(X — X)t such that §; < (1. If & = 0, then for any
m > 0, there exists Hy with A\; = 0, MI(H) = m such that d(X — X|H,) = 0.

Consider a system with two transmit antennas. One example of (; = 0 arises
under spatial repetition, i.e. when the two transmit antennas simply repeat the
same single-dimensional coded signal, in which case channels of the form

hy —hy
ha —ho

(1.16)

will cause destructive interference of the transmitted signals resulting in zero
minimum distance. Simple spatial repetition cannot achieve robust performance
over the matrix compound channel. The full-rank criterion also appears in code

design optimizing average performance in quasistatic Rayleigh fading channels
([26],[61]).

For an N x N system, Theorem 2 below formulates the smallest dp,;,(H) of
a given code over all channels H = X and finds those least-favorable channels
under which dp;,(H) is the smallest. This result can then be used to characterize
the minimum distance over all channels H = A such that MI = Zfil log, (1 +

Ai)=constant.

A~

Theorem 2 (Least favorable channels) For a given codeword pair (X,X),

X # X, let

V - diag(¢) - VI (1.17)

11



be the eigendecomposition of (X — X)(X — X)T such that ( < (G < ... < (n.
Then,

H=>~A\

min d2 (X — X|H) = XTC = i)\N—i_l_iCi (118)
=1

and the minimum is attained by any of the least favorable channels

/

{H —UAVI U um'tary} (1.19)

where A = (AN, -y M), and A = diag(j\).

Proof 2 Any H = X can be written as H = UA/~X1/2RJr where U, R are unitary
matrices over C. Let Q = R'V. Then Q is unitary. Since U does not effect the

pairwise distance

mip, 2 (X = X|H) (1.20)
- nglziigry ir (A1/2Q - diag(C) - QTAI/Z)
N N
= quf}]iigryz Qi I An41-iG

=1 j=1

N
= min {Z AiCr(iy : T permutation on (1, ..., n)}
i=1
N
=D Avii (1.21)
i=1

since we adopted (; < (iv1, N < Aip1. Note that (1.21) holds when Q is the
identity matriz. Therefore, the least favorable channel has R = V, and the

statement follows. M

For N = 2, two cases for the eigenvalue pair (Aj, Ay) are of special interest:
A1 = Ag, and Ay = 0. At MI = 2 bits/symbol level, these cases are A\; = Ay = 1,
and \; = 0, \s = 3. Note that when A\; = Ay = 1, the channel matrix H is

12



necessarily unitary, and the transmitted codeword matrix can be recovered with
no interference between the two antennas. The error performance on any unitary
channel is identical to the error performance under the parallel AWGN channel
H = I. Theorem 3(a) shows that the minimum distance of a code over these
two cases at the same MI level yields a lower bound on the minimum distance
over the compound 2 x 2 channel. Part (b) of the theorem extends this result to

general V.

Theorem 3 (Unitary and rank-deficient channels) For the N x N com-
pound channel at M1 = R bits/symbol level, let dy be the smallest dym (H) of
a code over all channels H = A.

(a) For N = 2, the minimum distance dx = d, »,), under the least favorable

channel 1s lower bounded as

min d(/\h/\2)

(A1,A2):MI=R
> .fR X min {d(QR/271’2R/271), d(0,2R—1)} , (1.22)
where
21+(R/2) + 9R/4 +1
fr= : (1.23)
23R/4 4 2R/2 4 QR[4 4]

[r 18 decreasing for increasing R. The maximum value of dy, »,) over the com-
pound 2 X 2 channel is attained on either a rank-deficient channel or a unitary

channel:

max d)\ A
(A1,22):MI=R (A1,22)

= Imax {d(zR/271’2R/271), d(O,QR—l)} . (1.24)

13



(b) For N > 2,

min dy
A:MI(A)=R

> [r min{d(o,...,o,zR/n—1,2R/n—1)7 d(o,...,0,0,22R/n—1)}-
Proof 3 Part (a): At R bits/symbol MI, we have (log(1 + A1) + log(1l + X)) =
R. For a given pair (A, \s) of eigenvalues, let (X — X) be an error event that

achieves the smallest dpin (H) of the code over all channels H = (A, \g). Let
(X = X) 2 ({1, G) with ¢ < Go. Then

d%)q,)@) = MG+ A (125)

Let Ay = X € [0,2%/2 — 1], s0 that Ay = (2% —1 — X)/(1+ )\). Using (1.25) and
G < (y,

diprse yoneqy < (2% =1)(G+G) (1.26)
dfon_yy < (2F=1)G. (1.27)

These inequalities arise because any particular ((1, (o) pair upper bounds the min-

14



imum dy, », over all ((1,(2) pairs. Therefore

2 —1 -\
Boupe) = A@*( T1ea ) .

(a) d22R/2_1 9R/2_1 2R —1- )\
> A( 2 =G | + ¢

14+ A

A
 9R/2 _ d(2R/2 1,2R/21)

2R—1—)\
+<1+7)\_/\)C1

® A
z oR/2 _ d2R/2 1,2R/2_1)

. (M _ A) Ao an-)

14+ A 28 —1

(;) A n 1 2R 1 -\ 3
- 2R/2 —1 2R —1 1+ A

X min {d%2R/271 2R/271) d(O QR _ 1)}

= TR()\) mln{d 2R/2 12R/2 1) d(02R 1)} (128)

Inequalities (a) and (b) follow from (1.26) and (1.27) respectively, and (c) follows
when the larger of the two distances is replaced by the smaller. The function rg(\)
attains its minimum on X € (0,1) at A, = 28/* — 1, with m = fr given in
(1.23). Figure 1.2 shows \/Tr as a function of X for several R values. For R <3
bits/symbol, fr > 0.9.

To prove the second statement, we use the fact that the function

9O = & npy, A€ (0,272 1] (1.29)

PO14A

is continuous and convez on (0,28/2—1) therefore it has a mazimum on [0, 2%/% —

1] at either A =0 or A = 2%/2 — 1,

Part (b): Consider N = 3. Let B = X — X be an error event of the code, let
¢ < G < (3, be the eigenvalues of EET. For A\ < Xy < A3, let d%)\h)\z,)\s)(E)

15
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Figure 1.2: The function /rg for R = 1, 1.5, 2, 2.5, 3.
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be the minimum squared Euclidean distance of this event under channels H =

(A1, A2, A3). By Theorem 2,

d%)\l,)\z,)\:g) (E) = /\IC3 + )\QCQ + )\3C1_

Fiz \; € [0,2%/3 1] and minimize dy, 2o ng) Under the constraint MI(A1, Ao, A3) =

R or MI()\Q, Ag) =R-— 10g2(1 + Al)

. 2
min d (E)

A1, A2,)

A2,A3:MI(A2,A3)=R—log,(1+A1) (A1,42,3)

= MG+ min A2Co + A3y

A2,A3:MI(A2,A3)=R—logy(14+A1)

i

> i3

—
=

+(fr)? min {dfo,zR’/ngR’/Ll)’ d?O,O,QR'fl) }

where R' = R =logy(1 4+ \1). Inequality (i) follows from the proof of part (a) by

noting that under the constraint MI(A\y, A3) = R,

d?o,zR’/2—1,2R’/2—1) < (2RI/2 —1)(¢ +¢)
d?o,o,2R’-1) < (ZR' - 1)¢.

Now, R' < R implies fr > fr and R' > 2R/3 implies

2 2
d(0,2R’/2—1,2R’/2—1) > d(O,ZR/3—1,2R/3—1)
2 2
d(0,0,2R’ —-1) > d(0,0,22R/3—1)
therefore,
min d(A17A27A3) (E)

A2,A3:MI(A2,A3)=R—log,(1+XA1)

> fR min {d(o,QR/S_I,QR/S_l), d(O’O’QQR/ZZ_l)}

which leads to

min d)\ Ao
Al,/\z,)\g:MI()\l,)\z,)\:g):R (A1:Az.A3)

Z fR min {d(O,QR/3_1,2R/3_1), d(0,0,22R/3_1)} .

17
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Note that on channels with A1 = 0, the worst-case minimum distance 1s already

2

(0,2R/212R/2_ 1) similarly, on channels with A\ = 0, Ay = 0,

upper bounded by d

an upper bound to the worst-case minimum distance s d%o 0,0R_1)"
b

The case for general N 1is proved by induction. To illustrate the induction
step, take N = 4. For an error event E =2 ({1, (3, (3,(4), we have, by using the
result for N = 3,

. 2
min d E
A2 s A MI(A2, A )= R ()\1,)\2,)\3,)\4)( )

> fr min {d(o,o,zR’/3—1,2R’/3—1)a d(0,0,0,22R’/3—1)}

where R' = R —log,(1 + A1) € [3R/4, R]. Therefore,

: 2
min d E
A2 A3 A MI(Ap, A ) = (/\1,/\2,)\3,)\4)( )

2 fR min {d(o’o’zR/4_1’2R/4_1) 3 d(0,0’0,22R/4_1) }

and the theorem follows. W

1.5 Minimax search for universal space-time trellis codes

This section describes the tools used to conduct an efficient search for universal
codes over two transmit antennas. Section 1.5.1 discusses the binary encoder
rate and complexity requirements for ST-TCMs to maintain coded performance
across a family of matrix channels. Section 1.5.2 details a minimax excess-MI code
search for one bit/symbol/antenna over two transmit antennas and describes the
performance of the resulting codes over the compound 2 x 2 channel. Part 1.5.3
compares the performance of the universal codes with the performance of existing
ST-TCMs as well as with Alamouti’s orthogonal STB scheme in conjunction with
a standard trellis code. Finally, Part 1.5.4 discusses the case for more than two

transmit antennas.
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1.5.1 Requirements for universal performance

Consider k bits/symbol transmission over N antennas using N X 2™ — point
constellations. A consequence of Lemma 1 is that for robust performance over
the compound matrix channel, m should be large enough to maintain redundancy
under singular channels, when one or more eigenmodes of the channel is zero. In
fact m should be larger than £ to maintain an effective code rate strictly less than
one under every channel H with rank 1 (when only one eigenvalue is nonzero).
Equivalently, a given N x 2™ — PSK/QAM scheme can deliver at best uncoded

performance over channels H with rank less than or equal to %

Another consequence of Lemma 1 is a requirement on effective code length
(ECL). The ECL of a code is defined ([49], [14]) to be minimum symbol-wise
Hamming distance of the code, i.e., the smallest of the number of symbols by

which any two codewords differ:
ECL = min | {i : x; # X;}| (1.34)
X#X

For trellis codes, effective code length is upper bounded by the the duration of
the shortest error event, in symbols. If the length of the error event X — X is
[ symbols, then rank(X — X) < min(N,[). If I < N, then per Lemma 1, there
exists a singular N x N channel with a prescribed MI such that d(X — X|H) = 0.
Therefore, to retain nonzero distance over the compound N x N matrix channel,
the code should have ECL > N. Theorem 4, below, relaxes these constraints of

rate and ECL by forcing a minimum rank requirement on the compound channel.

Theorem 4 For1 <r < N, let H" C CN*¥ denote the the collection of N x N
complex valued matrices H such that rank(H) > r. A k-bits/symbol 2"-state
N x 2™ — QAM/PSK universal trellis code for H" satisfies

% <, [%J >N+, (1.35)
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Proof 4 That k/m < r is proved above. The effective code length of a k-
bits/symbol trellis code with 2 states is bounded [66] as

ECL < [%J Tl (1.36)

where | z] is the largest integer not greater than z. For a trellis code with a par-
ticular ECL, there is at least one error event with at most ECL nonzero columns.
Such an error event has at most ECL nonzero (’s. If ECL < N —r and channels
may have N —r zero eigenvalues, then we can find a channel H with N —r zero

eigenvalues that forces dpyin(H) =0. M

1.5.2 Code search for 1 bit/symbol/antenna transmission over two

transmit antennas

Theorem 2 showed that a given error event X — X attains its minimum distance
over the compound 2 X 2 channel when the channel eigenvector corresponding to
the larger eigenvalue ()\;) of HH' aligns with the eigenvector corresponding to
the smaller eigenvalue (¢;) of (X — X)(X — X)!. If the distance corresponding
to the least-favorable channel can be evaluated for all the error events, then
it is possible to conduct a search for the codes which have the highest worst-
case pairwise Euclidean distance over all channels inducing a minimum mutual
information. In general, forward trellis search with Viterbi elimination on the
product-state trellis based on the squared distance A(s + (1 A2 will not work

since this distance measure is not additive over consecutive trellis branches.

However, for a fixed channel, the minimum-distance error event can be found
by a forward trellis search. As a result of the continuity of A;(o+(1 Ao, a sufficiently

fine sampling of the continuum of 2x 2 channels will yield the worst-case minimum
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distance event with the desired accuracy. For the worst-case minimum distance

event at a given MI level, it is sufficient to consider 2 x 2 channels of the form

. 0
H= /) 1 0 cos(¢) sin(¢p)e’

1.37
0 Vi 1| [—sin(@) cos(¢p)e’ (137

with logy (1+X2)(1+kA)=MI, ¢ € [0,27), 6 € [0,27). The parameter k = \; /Ay

is the eigenvalue skew of matrix HH.

Theorem 3 proves that at fixed MI, good minimum distances on singular
channels and on unitary channels guarantee good minimum distance under any
channel with the same MI. For improved accuracy in guaranteeing bit error rate

we have searched for codes with the following sampling of the channel space
Ak =0.5,A¢p =7/4, A0 =7/8, (1.38)

for 2 x 8-PSK transmission, which provides accuracy in the worst-case squared
distance of more than two decimal digits. This sampling results in more than
three hundred different channels at the same MI level, and the complexity of
a simplistic exhaustive code search over these channels is prohibitive even for
modest number of states. In order to alleviate this complexity burden, the brute-

force search is pruned via the following observations.

1. For any channel instance, the distance of an error event is an upper bound
on the worst-case distance of the code over all channels with the same MI.
Therefore, a candidate universal code is discarded as soon as an error event
for any channel sample produces a distance less than the highest worst-case
distance for the best code found so far. This enables the search to accelerate
as it progresses, since the rejection threshold of codes will increase with

time.

21



. An S-state code has a product-state trellis with S? states. A reduced-state
description of the product-state trellis can be obtained by identifying a

simpler equivalent state diagram ([30], [10]).

. Codes with immediately apparent rank deficiency (for example, having the
same generators for each antenna) are excluded from the search. Lemma
1 showed that universal codes have to be full rank. Similarly, catastrophic

codes are eliminated.

. Symmetry across antennas and time invariance of the generator functions

is exploited to further reduce the search.

. The sensitivity of the distance of an error event to the parameters ¢, 0,  is
not uniform through the space of channels. For example, for channels with
A1 = Mg, the distance of an error event is independent of § and ¢. In fact,

2

% HH(Al,Az,O, $)(X - X)

x )\2 — )\1, (139)

therefore a less dense sampling of the § dimension could be sufficient for

channels with \; & .

In this fashion, the total number of channels to be considered can be reduced

without sacrificing accuracy of the search.

A more accurate description of the error performance of a trellis code involves

the multiplicities of the minimum-distance events. In particular, the bit error rate

(BER) of a trellis code can be approximated using the truncated union bound

(TUB) which takes into account the information bit errors caused by minimum-

distance events as well as their distance. The truncated union bound yields an

estimate (but not a bound) on the BER for high SNRs as

BER & N; Q ( dunin (H)/ /2o ) (1.40)
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where N, is the total number of bit errors that are caused by minimum-distance
events, averaged over all states. Note that in (1.40), the signal energy FE; per

transmit antenna is absorbed in the channel matrix.

The truncated union bound approximation yields an estimate of the trans-
mit SNR required to achieve a certain BER, say BER=10"°, on any particular
channel. The SNR figure is then used to compute the excess MI required on that
particular channel, as discussed in Section III. Each channel in the sampled fam-
ily of compound matrix channels (1.38) thus has an excess MI figure associated
with it. The maximum of these excess MI figures gives the worst-case perfor-
mance of the code over the family. Figure 1.3 illustrates the minimax excess-MI

code-search algorithm based on TUB estimates of the bit error rate.

The excess MI computation based on the TUB is typically optimistic since er-
ror events that do not have minimum distance are ignored by the TUB. However,
the TUB can be made very accurate by including a few more distances. Exact

excess MI figures are obtained through simulation.

A linear feedforward encoder with m — 1 memory elements which takes two
input bits per cycle and generates six output bits (for two 8PSK symbols) per

cycle can be compactly represented as

m

W)=Y u@t-dgld), =12 b=012

d=0
where two information bits, u(2t), u(2t — 1), are input to the encoder at time ¢,
ylgj ) is the bth bit of the 8PSK symbol from the jth transmit antenna and g,Ej )(d)
are the corresponding binary generators. The least significant bit has index b = 0.
The number of states is S = 2™ L. Figure 1.4 illustrates this encoder.

Table 1.2 lists 4-, 8-, 16-, 32- and 64-state linear encoders for 2 x 8PSK trans-

mission, found by exhaustive search to minimize the maximum TUB-estimated
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u(2y) u(2t-1) u(2t-2) . u(2t-m)

oD

Do

Figure 1.4: Two bits per symbol encoder using a single shift register. At
time ¢, encoder takes two input bits, u(2t), u(2t — 1) to produce bits y,gj)(t),
je{l,.., N}, b€{0,1,..., K — 1} where N, is the number of transmit antennas
and K is the number of output bits per antenna. With m memory elements, the

number of states is 2”71 since input bits are shifted two at a time.

excess MI at BER=10"5. The actual maximum excess MI required to achieve
BER=10"? in simulation over the compound 2 x 2 matrix channel is denoted
as AMI. The excess MI figures of equivalent complexity per bit standard (sin-
gle dimensional) best rate—% + QPSK schemes on the AWGN channel only are
displayed in Table 1.1. Universal codes for the compound matrix channel are
competitive with codes designed for those 2 x 2 diagonal channels with equal
eigenvalues and with a single zero eigenvalue [46]. At 32 states, the universal
code becomes competitive with the AWGN code performance on the AWGN

channel.

For AWGN channels alone, the best free-distance rate-1/2 32-state linear
encoder (go = 65,91 = 57) driving a Gray-labeled QPSK constellation has
dmin(AWGN) = 4, and a corresponding NV, = 1. Using Viterbi decoding with trel-
lis termination after 128 data symbols and full-traceback, this code achieves BER

= 107° on the AWGN channel at SNR = 4.65 dB, corresponding to an excess MI
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Table 1.2: Minimax excess-MI 2x8-PSK codes found by exhaustive search. En-
coder generator vectors in octal notation: 157 — 1 + D + D3 4+ D* 4+ D3 + DS,
035 — D?+ D3+ D*+ D®. Gray-labeled 8-PSK: {0,2,3,1,5,7,6,4} going around
the circle. Third column: Maximum excess MI per transmit antenna required
over the compound 2 x 2 channel at BER = 1 x 1072, based on simulation. Fourth
column: Percent excess MI loss under AWGN from the best Ungerboeck-code for
AWGN performance at similar complexity (Table 1.1).

S (90 91> 93) (95, 9%, 93) AMI | %loss
4 | (013,010,001), (002,004,007) | 1.80 | 43
8 | (021,017,007), (002,036,035) | 1.40 | 21
16 | (061,012,071),(032,017,027) | 1.23 | 19
32 | (157,066, 121), (050,024,070) | 1.06 | 8
64 | (316,108,272),(127,218,353) | 0.95 | 8

of 0.97 bits at 1 bit/symbol rate. The proposed universal 32-state 2 bits/symbol
code has less minimum distance under the AWGN, d,i, (AWGN) = 3.55 but with
better bit error multiplicity N, = 0.125, and requires an excess MI of 1.06 bits
per transmit antenna. However, this code handles every matrix channel with
similar performance. In fact, the maximum excess MI required to achieve BER
= 1 x 107° over the compound matrix channel is 1.06 bits. The parallel AWGN
channel is therefore a least-favorable matrix channel for this code. Note that
the two codes have similar complexity per decoded bit. The added consistent
performance over the compound matrix channel costs less then 0.1 bits of excess

MI for this case.

Figure 1.5 shows the eigenvalue pair scatter plot for the 32-state universal

ST-TCM on the A\; — Ay plane. Every marker in the figure is a simulated op-
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erating point of BER = 107 on a channel with eigenvalues as the coordinates.
The universal code requires at most 1.06 bits of excess MI per transmit antenna
to achieve BER = 107° on any channel, losing about 0.09 bits from the best
AWGN performance achieved by the standard QPSK trellis code operating only
in AWGN.

1.5.3 Comparison with other approaches

Orthogonal space-time block codes (STB) ([51], [60]) are attractive candidates
for imposing robust error performance over the compound matrix channel since
they transform matrix channels to single-antenna channels. For 2 bits/symbol
transmission over two transmit antennas, the orthogonal scheme of Alamouti
[51] can be combined with a 2 bits/symbol standard trellis code. This STB code
effectively transforms the 2 x N, channel to a single-dimensional channel with
quasistatic gain |[H|| = (3 <y, ([Hitl* + [Hi2|*))'/?. For two receivers, the

effective channel is

e = |[H||zp +wp, wp ~N(0,Np) (1.41)

= VA + X 3+ wp (1.42)

At constant mutual information level, a standard trellis code driving an Alamouti
STB code will appear best under the singular channels since singular channels
maximize the quantity (37, ;[H;;|*) under a constant MI constraint. Similarly,
the code will appear worst under the equal-eigenvalue (equivalently, unitary or
AWGN) channels since these channels minimize (3, ;, |H;;|*) under constant

MI. Note that the MI provided by the channel is

MI(H) =logy(1 + A1)(1+ A2)  bits/symbol (1.43)
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— - TCM + STB

12% | x universal 2 x 8PSK
—— excess Ml/tx = 0.97 bits
Ot\| '+ excess Ml/tx=0

Figure 1.5: Eigenvalue pair scatter plot for the universal 32-state ST-TCM and
the STB+TCM scheme at BER = 107°. For the ST-TCM scheme, the worst-case
MI to achieve BER = 107 is 4.12 bits/symbol, attained over unitary channels.
The MI requirement of the TCM + STB scheme at BER = 107° is a linear
function of channel eigenvalues with worst-case total MI is 4.74 bits/symbol (ex-
cess-MI = 1.37 bits/symbol/antenna), attained on unitary channels. The stan-
dard trellis code operating only on AWGN requires MI = 3.94 bits/symbol at
BER = 1 x 107°.
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whereas the MI provided by the Alamouti scheme is
log,(1+ A1 + Ag)  bits/symbol, (1.44)

the capacity of the effective channel in (1.42). As a consequence of the data
processing inequality, the MI (1.44) provided by Alamouti’s scheme could never
exceed the original MI (1.43). Note that for nonsingular channels there is a
loss in MI imposed by the orthogonal STB scheme. The worst loss occurs for
parallel AWGN. For the operating point of interest, approximately A\; = Ay =
4.17(6.2 dB), this loss is about 0.76 bits per symbol per antenna. For higher
A’s associated with higher rates, this loss would be more severe. The 32-state 2
bits/symbol TCM of Ungerboeck [22] achieves BER = 1075 at E,/N, = 9.2 dB.
This corresponds to an excess MI of 1.22 bits per 2 bit symbol in AWGN. When
driving the Alamouti STB code

X X
b (1.45)

*

—x5 X

over 2 X 2 singular channels, it requires 9.2 dB SNR per transmit antenna to
achieve BER = 107°, yielding an excess MI of 0.61 bits per symbol per antenna.
Over the diagonal equal-gain (AWGN) channel, it requires 6.2 dB SNR per trans-
mit antenna to achieve BER = 1075, requiring an excess MI of 1.37 bits. This
scheme requires at least 0.61 bits and at most 1.37 bits of excess MI to achieve
BER = 10 ®° on any matrix channel. At the same complexity and BER, our
universal space-time code requires at most 1.06 bits of excess MI. For 64 states,
the TCM + STB scheme requires at least 0.58 bits (on singular channels) and at
most 1.32 bits (on unitary channels) of excess MI per transmit antenna to achieve
BER = 10 7% on the 2 x 2 compound channel. At this complexity, the universal

code requires a worst-case excess MI of 0.95 bits per transmit antenna.
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Figure 1.5 also displays the MI requirement of the 32-state TCM + STB
scheme over the unordered eigenvalues i, Ao of HH, H € C?*2. The operating
MI curve of this scheme is a straight line since the BER performance depends
only on the sum \; + Ay. Figure 1.6 shows the proximity to channel capacity
for the 32-state universal code, the 32-state TCM + STB scheme and two recent
codes designed for quasistatic Rayleigh fading, for a set of matrix channels with
different eigenvalue skews. For each skew value, the performance results under
8 different channels sampled according to (1.38) are recorded, and the minimum
and maximum values of the required excess MI at BER=1 x 10~ are displayed.
When the channel is singular, the universal code requires a maximum excess MI
of 0.99 bits at BER=1 x 107°. The 32-state full-rate code of Yan and Blum
[39], denoted YB, delivers worse than uncoded performance when the channel
is singular (k = 0). The expanded orthogonal construction of Siwamogsatham
and Fitz [53], denoted SF, has minimum distance of v/2 under every singular
channel, thus delivering exactly uncoded performance with 1.12 bits of excess MI
per antenna. The TCM + STB scheme is the best for singular channels, requiring

only 0.61 bits of excess MI per antenna on all singular channels.

At the other end of the skew spectrum, the YB, SF, and the universal codes
have similar performance under AWGN with excess MIs of 1.06-1.10 bits per
antenna (SNR = 5-5.2dB/tx) whereas the TCM + STB code performs worst,
requiring 1.37 bits per antenna (SNR = 6.2 dB/tx). The excess MI requirement
for the SF code is 1.10 bits Figure 1.7 displays the BER performance of the four

codes as well as the uncoded QPSK transmission over the channel

[ 0.5 0.5-|
[—0.5 —0.5J

The YB code performs approximately 1 dB worse than the uncoded transmission
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Figure 1.6: Excess MI profile of the universal code in comparison with the codes
designed for quasistatic Rayleigh fading, based on BER = 10~°. The excess MI
profiles are consistent with the minimum distance analysis of Theorem 2: Worst
case performance over singular channels (x = 0) and worst-case performance over
the AWGN channel (k = 1) limit the worst-case performance over all eigenvalue

skews.
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Figure 1.7: Bit error rate performance of the universal code in comparison with
SF, YB and TCM + STB, under the singular channel Hy of (1.46). Uncoded 2
bits/symbol performance is provided for reference. Excess MI requirements for
the universal, SF, YB and TCM + STB schemes are 1, 1.12, 1.55 and 0.61 bits

per transmit antenna, respectively.
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Figure 1.8: Bit error rate performance of the universal code in comparison with

the SF, YB codes as well as the TCM + STB scheme under the unitary channel.

whereas the SF code delivers approximately uncoded performance. The universal
code maintains coded performance with about 1 dB coding gain at BER = 107°.
For this singular channel, the TCM + STB scheme outperforms the universal
trellis code by 3 dB at BER=10"5. Although the STB+TCM scheme requires
9.2 dB to achieve BER=107° on all singular channels, the SNR requirement for
the ST-TCM scheme varies between 9.5 dB (excess-MI = 0.66 bits/tx.) and 11.6
dB (excess-MI = 0.97 bits/tx.).

Figure 1.8 displays the BER performance of these codes under the AWGN
channel. The YB code, SF code and the universal code all perform similarly

whereas the TCM + STB scheme is about 1 dB worse at BER=10"5.

Figure 1.9 compares bit error rate (BER) performances under quasistatic
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Figure 1.9: Bit error rate performance of the universal code under quasistatic
Rayleigh fading in comparison with two full-rate codes designed for this channel

model and a STB-coded TCM.

Rayleigh fading. For a frame duration of 128 2-bit data symbols with trellis
termination, the BER performance of the 32-state universal code is 1 dB better
than that of the YB code, and is same as the SF code. The TCM + STB scheme
outperforms the universal ST-TCM by about 0.3dB. All codes have similar de-

coding complexity and rate.

For the same simulation, Figure 1.10 displays the distribution of bit errors
among errored frames not in outage (MI(H) > 2 bits). For the universal code,
approximately one quarter of these errored frames contain 3 or less bit errors.
This ratio is around ten percent for the YB and SF codes. The histogram num-

ber of bit errors frame in the YB and SF code both peak around 6 bit errors
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Figure 1.10: The distribution of bit errors over different non-outage frames

(MI(H) > R) over ten thousand errored non-outage frames.
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Figure 1.11: Frame error rate performance of the universal code under quasistatic
Rayleigh fading in comparison with other coded schemes after a 3-bit-error cor-

recting code.

per/frame. For the YB code nearly half of these errored frames contain 36 or
more bit errors. The FER performance of the universal code benefits the most
from a three-error-correcting outer code, by more than 0.6 dB. The FERs of other
codes improve only by about 0.2 dB. The STB4+TCM scheme has favorable FER
performance over the ST-TCMs at high SNRs.

Figure 1.11 compares the frame error rate performances of the YB, SF, TCM
+ STB and universal codes under quasistatic Rayleigh fading after a three-error-

correcting outer code.

For four and eight states, the work of Sandu, Heath and Paulraj [52] shows
that the TCM 4 STB schemes have better FER performance than the ST-TCMs
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under quasistatic Rayleigh fading. However, Sandu, Heath and Paulraj predicted
that with increasing number of states the advantage of TCM + STB schemes
diminishes. Results displayed in Figures 1.9 and 1.11 are in agreement with this

prediction.

1.5.4 Search for universal codes over more antennas

For N x N ST-TCMs, the sampling of N x N complex-valued matrices becomes
prohibitive. Instead, one can search over space of N x 1 vector channels and
minimize the maximum excess-MI required to achieve the target BER. For the
single-receiver case, the channel matrix is a 1 X N vector h. Let E be an error
event matrix of a code that is transmitting at R bits/symbol. For a single receiver,
the minimum distance of this error event under a minimum MI-constraint of R

bits/symbol is

2 _ : 2
(@) ®) g =, 0in,  [IBE] (1.47)
= min ||hE||? (1.48)
[h]|=(2-1)1/2
= (2B - 1) (EE"). (1.49)

Therefore, a fine sampling of N x 1 channels at constant MI will yield an accurate

estimate of the worst-case minimum error event eigenvalue of the code.

Another possible way to decrease the complexity of an N x N search is to

impose a minimum rank constraint on the matrix channels H. If H has rows hy,
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k=1,.. N, then

(dn, - (E))

min

= min tr(HEETH) (1.50)
H:MI(H)>R, rank(H)>r
N
— : 2
B H:MI(H)anlzl,Irlank(H)Zr;HthH (1.51)
> 728" — 1) (EED) (1.52)
r(2®r —1)
a1y =y (®),, (1.53)

1.6 Universal design vs. design for quasistatic Rayleigh

channels

Consider a quasistatic channel with a coherence interval large compared to the
constraint length of the code. When the entries of the channel matrix follow a
complex Gaussian distribution ([26], [61]), the coding gain at high SNR (of a
full-rank code) in terms of average performance is determined by the minimum
determinant

A} = min det (X - X) (X - X)T (1.54)

XX

of the error events. From a universal coding perspective, the minimum squared
distance under any channel H = A provides an upper bound on the minimum de-
terminant of the code. In fact, using arithmetic-mean geometric-mean inequality,

the minimum determinant is upper bounded as

2
A* < dmin (H)

P = 2det(HH')’ (1.55)

Theorem 5 shows that the determinant of an error event is proportional to the

smallest squared distance of the event over a restricted set of channels that sup-
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port the rate of transmission. The minimum determinant of the code is therefore

proportional to the smallest dp;,(H) of the code over the same set of channels.

Theorem 5 The determinant of an error event X — X is proportional to the

minimum squared distance of the event over the set of channels
Hi={He CV*" :1+log,det(HH') > R}, (1.56)

in fact, if X — X 2 ¢, then

N 1/N )
A .
(H CZ) = NEE )N s, ¢ (X - X|H) : (1.57)

Proof 5 Theorem 2 indicates that infy.g~y d?,,, (X — X|H) = Zfil Av41-iGi

min
with the convention \; < Aiy1 and (; < (1. Over all channel eigenvalue vectors

A such that Hfil i > 2871 this sum is minimized when
A= i=1,...,.N (1.58)

and B > 0 s such that HZI\;I \i = 28 —1, resulting in a minimum squared distance

of

N 1/N
d* = Z ?g = NB = N(2f=)!/N (11 g) . (1.59)

Note that H € H; implies

R < log, (1 + det(HHY)) (1.60)
< log, (det(I + HHT)) (1.61)
= MI(H), (1.62)
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Figure 1.12: The subcollection of channels #; of (1.56) at MI = 1 bit per symbol
per antenna for two antennas, in the A;-\y space. The collection of all the channels

that have unit capacity per antenna, is the region above the dashed curve.
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therefore 7, is a proper subset of all the N x N channels that can support rate
R. In fact H; does not include any singular channel. At R = 2 bit/symbol level,

Figure 1.12 shows #; in comparison to the achievable region of Figure 1.1.

Thus, searches based on the minimum-determinant of a code have some uni-
versality, but only for a subset of nonsingular channels that can support the rate
of transmission. Perhaps more importantly, these searches often ignore the rate

and ECL requirements for operation on singular channels.

Finally, the minimum distance of the error event over all channels with at
least R bits of mutual information is given [65] by the waterfilling formula
N

inf 2 (X = X|H) =3 -7 (1.63)

H:MI(H)>R -
=1

where

q 1/q
¢ =2%1 (H Q) (1.64)
i=1

j 1/j
g=max{ j: 2% (H g) > (1.65)

=1

However, this criterion is not amenable to code search.

1.7 Summary

This chapter characterized space-time trellis codes that deliver consistent perfor-
mance on every channel matrix with similar mutual information. The minimum-
distance based analysis led to a minimax search for space-time trellis codes having
the best worst-case proximity to capacity over the entire collection of matrix chan-
nels. In particular, such universal codes maintain a nonzero coding gain over all

channels. 32- and 64-state 2-bits/symbol trellis codes found by exhaustive search
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have universal bit error rate performance across the channels that support the
transmission rate, with worst-case excess mutual informations of 1.06 bits and
0.95 bits per antenna, respectively, guaranteeing good bit error rate performance

under any quasistatic fading distribution.

The search space for general vector-labeled space-time trellis codes is pro-
hibitively large for more than three transmit antennas to conduct an exhaustive
search for universal trellis codes. Such a search is further complicated by the
complex nature of the TUB-based search criterion. Chapter 2 focuses on the
class of multiplexed two-dimensional trellis codes and a simplified universality

criterion to search for universal codes for more than two transmit antennas.
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CHAPTER 2

Universal space-time codes from

two-dimensional trellis codes

2.1 Introduction

This chapter extends the ideas in Chapter 1 to propose universal space-time
trellis codes formed by straightforward multiplexing of two-dimensional linear
trellis codes over two, three and four transmit antennas. These multiplexed trellis
codes have simpler maximum-likelihood decoding than general multidimensional

(vector-labeled) trellis codes while still providing excellent performance.

Section 2.2 summarizes our results on the worst-case minimum-distance of a
space-time code under linear transformations with equal mutual information and
derives a simple approximate criterion for universal behavior. This section also
formulates the encoder rate, constellation size and trellis complexity requirements
for universal space-time trellis codes formed by multiplexing a two-dimensional

dimensional trellis code.

Section 2.3 presents several linear trellis codes, found by exhaustive search
over their respective encoder classes. These codes provide universal performance
when multiplexed over two, three and four transmit antennas and received with
maximume-likelihood decoding. When the trellis complexity required for univer-

sality over the rank-unconstrained compound channel exceeds practical limits,
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reduced-rank schemes with favorable eigenvalue spreads provide universal per-
formance in conjunction with algebraic outer codes that restore the lost diver-
sity. The performance variation of universal codes as compared to other existing
space-time codes over different channel instances is illustrated via extensive sim-
ulations. Our discussion ends with simulation results showing that the average
error performance of the proposed universal codes over quasistatic Rayleigh fad-
ing is comparable, and in some cases superior, to existing space-time codes with
similar decoding complexity designed specifically for the average error probabil-
ity performance. A channel-by-channel look at the 2 x 2 and 3 x 3 quasistatic
Rayleigh fading demonstrates why the proposed universal codes deliver excellent
average Rayleigh fading error probability performance and why these universal
codes provide a channel-by-channel reliability that codes designed only for good

average performance may not provide.

2.2 Design guidelines for universal space-time trellis codes

2.2.1 An approximate criterion for universality

Let X and X be two different codewords of a space-time code C for N, transmit
antennas, and let E = X — X denote the codeword difference matrix. Recall
that under maximum-likelihood (ML) decoding, the probability that the decoder
mistakes X for X conditioned on the perfect knowledge of the channel matrix H

at the receiver is given by
A d? (EH
P (X = X|H) _of 2 EH (2.1)
2N,

where d>(E[H) = ||[HE|]?> = trace (HEETH) is the squared Euclidean norm

of the codeword difference matrix E when transformed by the channel H, and
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Q(-) is the standard Gaussian tail integral function. For a fixed channel H, the

minimum of the squared-distance d?(E|H) over all E is the d2. (H) of the code.

min

With maximum-likelihood decoding, the universal performance of a space-

2

time code results from its ability to sustain good dy;,(H) over a family A of chan-

nel instances that support the transmission rate. The smallest value of d2;,(H)
over the compound channel is a function of the eigenvalues of the codeword dif-
ference matrices. For a given codeword difference matrix E, n = (n, ..., ny,) will

be the vector of eigenvalues of EE' with the ordering

T 2 T2 2 2 T’Nta (22)

and we will write E = 7). The eigenvalues of HH', where H is an N, x N, channel

gain matrix, are denoted by A;, ¢ =1, ..., N, with the ordering
A > Ao > > A, (2.3)

and we write H 2 X where A = (Aq,..., Ay,). As in Chapter 1, we assume that

N, < N,.

Consider the N, x N; compound channel with capacity R bits per symbol
H(N;, N, R) = {H € CM N : MI(H) > R}. (2.4)

For a particular code, we are interested in the minimum of the squared Euclidean
norm, d*(E|H), of a codeword difference matrix E = 5 over all instances H
of the compound channel . In order to find the minimum of d*(E|H) over
all H € H(N,, Ny, R), we first consider the minimum over all H = A. Chap-
ter 1 showed that for a given codeword difference matrix E and a given set of
channel eigenvalues A, d?(E/H) = ||HE||? is minimized when the channel aligns

its strongest modes with the weakest eigendirections of EE' and vice versa. In
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particular,

N,
inf {d®(B[H) : HH' = A} = > Ay, 114, (2.5)
=1
therefore
N,
inf d?(EH) = inf i L 2.6
HeH(Nr,N¢,R) ( | ) A:Zﬁv_’"llogZ(l—h\i)ZRi_Zl Nt ( )

The solution to the optimization problem

Ny
min E AiNN+1—i

=1

Ny
subject to MI(H) = Zlog2 1+X\)>R
i1

has the waterpouring form [65] with the worst-case channel

Ny
H® = Z \//\T'ouin;rvtﬂ—z’a (2.7)
i=1

where {u, € C¥>*1},_; y is any orthonormal set of vectors and n; is the
eigenvector of EE that corresponds to n;. The worst-case channel eigenvalues

are given by
QR/N*GNn<(M) 1 ;1. . N*
A= oS o (2.8)
0, i=N*"+1,...,N,

where N* = max {k : 2®/¥Gy(n) > nn, 41k, k < N,} is the number of nonzero

eigendirections that the worst-case channel uses and

N, 1/k
Gk(n)z( II m) L k=1,..,N, (2.9)

i=N¢—k+1

is the geometric-mean of the smallest & eigenvalues of EET.
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Figure 2.1: Interplay between the channel vector h and the eigenvectors of EE'
where E is a codeword difference matrix, E = X — X, for N, = 1. Among all
channels h, the probability of mistaking X for X is the highest when h' aligns
with the weakest eigenvector (n3 above) of EE' (left). Among all channels h,
the most favorable channel for ML-detection of this error event is when h' aligns

with the strongest eigenvector (n; above) of EE' (right).

This exact solution, however, does not yield a simple criterion for universality

except for N, = 1, in which case the worst-case channel is given by

he = (28— 1) nl, (2.10)
where ny, is the eigenvalue corresponding to the weakest eigenvector of EE.
Figure 2.1 illustrates this case.

A space-time code will perform identically over any /V; x 1 channel with a fixed
MI if and only if codeword difference matrices are scalar multiples of unitary ma-
trices [31]. This implies that the eigenvalues of EE' are equal, for any codeword

difference E. However, equality in the error event eigenvalues usually comes at
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the expense of a reduced minimum-Euclidean distance (e.g., [51], [54]), which
means that the same code will experience a performance penalty under unitary

N, x N; channels, as compared to an AWGN code at the same complexity.

The purpose of universal coding is to deliver R bits per symbol with consis-
tently good error probability across all instances of the NV, x Ny compound channel
H(N;, Ny, R). This would guarantee consistent performance for any N, < N;. In
fact, for any N, < Ny, H(N,, Ny, R) is equivalent to the subset of H(N;, N;, R)

consisting of square matrices G of rank less than or equal to V., i.e.,
H(N,, Ny, R) = {G € H(Ny, N, R) : rank(G) < N, } (2.11)

where = is in the sense that for H € CN"*Ne G € CNexNe,

H
H=G ifandonlyif UG = for some unitary U. (2.12)
0

For example, the subset of singular channels G in H(N;, Ny, R) is equivalent to
the compound channel H(1, Ny, R) with N, = 1. The equivalence H = G implies
that a space-time code would have identical error probability performance under

G and H under ML decoding.

An approximate criterion for universality over H(N, N, R) is obtained by
bounding the worst-case distance over the compound channel. First, an up-
per bound on the worst-case minimum-distance on the compound channel comes
from the minimum-distance over the equal-eigenvalue (\; = 28/N —1,i =1,..., N)

channels. For a codeword difference E,

N

inf /\i77N+17i(EET)
ALY 1082(14')\4;)2}2;

< (2% - 1) i"?N+1z’(EET) (2.13)
= (2% - 1) A_E(E) (2.14)

48



where A (E) = trace(EET) is the squared Euclidean-norm of E.

Now, a lower bound is obtained as

N
> Ainvi1i(EET)
1=1

= me S e -1
] 177N+1 —j

(a) N o NEL=E og, (140

2 (ZnN+1 g) (2 PR vy )—1)

<b) ]
> ZnN—i—l » J 1mv+1 =il 1
9 AL(E) (2 gl (2.15)

where (a) uses the concavity of the logarithm function, (b) follows from the fact
that the minimum of 3V, & log, (14-);) subject to -~ log,(1+)\;) > R
occurs at A} = 2% — 1 and A\ = 0 for 7 > 1, and (c) uses the shorthand notation
Ag(E) for trace(EET) = 32V ;(EE"). The following lemma summarizes these

results.

Lemma 2 The worst-case minimum distance of a space-time code over the com-
pound N x N channel of capacity R bits per symbol is bounded as
(2% . 1) AL >  inf  d. (H)
HeH(N,N,R)

> min (QR—A% _ 1) Ap(E).

where A%, = ming trace(EE") is the minimum squared Euclidean-distance of the

code.

The first inequality of Lemma 1 implies that a universal code should have good

minimum Euclidean-distance. The second inequality of the lemma leads us to
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choose, among good minimum Euclidean-distance codes, those codes with high
minimum eigenvalue 7%, = ming 7y, (EE). Ultimately, the universal performance
of a code over the compound channel will be measured by its excess mutual
information requirement. Nevertheless, this criterion provides us with a basic

rule to prune the search for universal space-time trellis codes.

2.2.2 Multiplexing a two-dimensional trellis code

The requirements for design of universal vector-labeled space-time trellis codes
for two transmit antennas were considered in [8]. In this study, we focus on space-
time trellis codes generated by straightforward multiplexing of a two-dimensional
trellis code over the transmit antennas. This approach results in more manageable
code searches. More importantly, the resulting space-time trellis codes have the
same maximum-likelihood decoding complexity as the multiplexed code over a

single-transmit antenna channel [12].

Consider a rate-k/n convolutional encoder with memory v. For R-bits-per-
symbol transmission over N; transmit antennas using a 2™-PSK/QAM constel-
lation, we use this encoder | = R/k times (assume for simplicity that k divides
R evenly). Let (by,...,bn-1), -, (bu—1)n,---» bin—1) denote the In codeword bits
that the binary encoder would produce for [k successive input bits. If in = Nym,
then we map (bG—_1ym., ---, bim—1) onto the 2™-PSK/QAM constellation for the ith
transmit antenna, ¢ = 1, ..., N;. If In > Nym, we puncture In— Nym out of Rn bits
and group the remaining Nym bits similarly, keeping the index order. For exam-
ple, R = 3 information bits input to a rate-1/3 convolutional encoder produces
9 coded bits by, by, ..., bg. For a 2 x 16-QAM space-time code delivering R = 3
bits per symbol, we puncture one bit, say b5, and group the remaining eight bits

as (bob1bobs), (bsbgbrbg) to map two 16-QAM symbols, one for each antenna. For
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this case, there are nine different ways to puncture.

2.2.3 Encoder rate and constellation size requirements for universal

space-time codes

Universal performance over the compound channel requires the following design

rules for multiplexed two-dimensional trellis codes.

e Constellation size: Universal codes are designed to maintain redundancy

over any instance of the compound channel. Therefore, the constellation
size should be large enough to transmit R bits per symbol redundantly
even when N; — 1 of the transmit antennas fail, corresponding to a channel

matrix with N, — 1 zero rows'. Thus, the constellation size should satisfy
m > R. (2.16)

For example, for 2 bits/symbol transmission over N; = 2 antennas, we pro-
pose rate-1/3 convolutional encoders mapping 8-PSK constellations. When
one of the two transmit antennas fails, the effective code is then a rate-2/3

8-PSK trellis code.

e Trellis complexity: The effective code length (ECL) is the smallest symbol-

wise Hamming weight of an error event. For a k-bits/symbol linear trellis
code, ECL < |v/k| +1 where v is the memory of the encoder [46]. In order
to have ny, > 0, the shortest error-event of the two-dimensional code should
be long enough to occupy at least N; channel symbols when multiplexed

over N, transmit antennas. Therefore,

{%J > N,(N; — 1). (2.17)

IThe channel matrix cannot be the zero matrix which has zero MIL.
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This was noted earlier in [28]. For example, 1 bit/symbol trellis code with
S = 2% states multiplexed over three transmit antennas cannot provide full
transmit diversity if v < 6. For v = 5, the shortest error-events of the

space-time code are 3 X 2 matrices of the form

€y €3
E=|e, e (2.18)

€2 €5

where e = (eg, €1, €9, €3, €4, €5) is an error event of the original 1 bit/symbol
trellis code. The event in (2.18) has rank less than or equal to 2, i.e.,
73 (EET) = 0. The trellis complexity requirements can be relaxed by sac-
rificing one or more levels of transmit diversity. In general, for r-levels
of transmit diversity, the necessary (but not sufficient) trellis complexity
obeys

L%J > Ny(r — 1). (2.19)

With r < N; levels of transmit diversity, there is always a singular channel
that supports the transmission rate, under which two codewords cannot be
reliably (with error probability less than 1/2) distinguished at the receiver.
However, a diversity-r code with good 7} can provide universal performance
over all channels that establish at least N; — r + 1 equally strong spatial
eigenmodes. Moreover, as will be illustrated in Section 2.3, missing levels

of transmit diversity can be restored by an outer code.
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2.3 Universal space-time codes from two-dimensional trel-

lis codes

The search for universal codes is complicated by the non-additive nature of error-
event eigenvalues over trellis branches. For N; = 2, a finite sampling of channels
can be used to approximate the worst-case minimum eigenvalue of the code over
multiple forward trellis searches [8]. For N; = 3 and N, = 4, a small set of test
channels (including the unitary and some rank-deficient diagonal channels) were
used to prune the stack-based algorithm [17] to determine codes with the best

worst-case eigenvalues.

Besides the worst-case minimum eigenvalue ny,, three other code parameters
will be useful for interpreting the performance of space-time codes in different
scenarios. The minimum squared Euclidean-distance of the code

N,
Ap = min 2:1: ni(EE", (2.20)
together with its average bit multiplicity determines the high-SNR bit-error-rate

performance under unitary channels. The diversity order of the code,
Ay = m}%n rank (E), (2.21)

is the smallest number of non-vanishing eigenvalues that the error-event matrices
have. A space-time code has nonzero worst-case minimum-distance on the rank-
unconstrained compound channel if and only if it has full diversity. A final

parameter of interest is the minimum product-distance
Ak
A} = min [[m(EED, (2.22)

i=1
which determines the coding gain under Rayleigh fading at high SNR. The worst-

case ith eigenvalue over all EE' is denoted by 1} = ming n;(EE").
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All codes presented in this section are found by exhaustive search over their
class of encoders to maximize the worst-case minimum-eigenvalue 1} under a
transmit diversity constraint Ay, = r while sacrificing no more than twenty
percent of the maximum squared Euclidean-distance achievable within the same
class. In cases where 77 > 0 cannot be attained without less than twenty percent
loss in squared Euclidean-distance, the search was carried out without the squared
Euclidean-distance constraint. Ties are resolved by looking at the average bit

multiplicity of worst-case eigenvalues.

We will compare our codes with the best space-time trellis codes with similar
complexity that we have found in the literature: For N; = 2 and N; = 3, space-
time codes of Aktas et. al [12] and for Ny = 3 and N; = 4 the codes of Chen et.
al [67] have excellent error probability performance quasistatic Rayleigh fading
channels. Under quasistatic Rayleigh fading, comparison with other published
codes (e.g., [36], [40]) should follow from the simulation results that are presented
in Section 2.3.5. Due the complete loss of redundancy under at least one channel
with rank one, the worst-case compound channel performances of these codes is

similar to those of [12], [67] .

2.3.1 Universal codes for N, = 2 transmit antennas

Table 2.1 lists universal trellis codes for R = 1, 2 and 3 bits per symbol trans-
mission over two, three and four transmit antennas. We consider the R = 2 bits

per symbol case in detail.

Table 1 2.1 lists rate-1/3 + 8PSK trellis-coded modulations for for 16, 32
and 64 states (codes #2, #3, #4, respectively) such that when multiplexed over
two transmit antennas, deliver universal performance over the 2 x 2 compound

channel.
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Table 2.1: Multiplexed universal codes. R bits per symbol code trellis codes for

N, transmit antennas. A rate-k/n convolutional encoder outputs nR code bits
which are mapped on N; x 2"-PSK/QAM. 16QAM, QPSK: Gray labeling, 4PSK:
Natural labeling. 8PSK: Gray labeling 0,2,3,1,5,7.6,4 in octal going around the

circle.

Code | Ny | R | k/n | v gi Const. n*AH’min A% A%,
1 2 11]1/4]4 03 22 36 04 QPSK | n5 =5.53 80 20
2 2 12]1/3 |4 31 05 35 8PSK | n; =0.67 | 16.32 12.6
3 2 12(1/3|5 71 31 61 8PSK | n; =0.89 | <25.02 | 13.4
4 2 12(1/3|6 155 056 145 8PSK | n; =0.70 17.7 17.2
5 2 131]11/3|3 06 16 13 16QAM | 75 =0.4 1.6 4
6 3 1111/6|3]150307050411| QPSK | n3 =2.44 248 26
7 3 12|1/5 |4 31 06 02 31 02 8PSK | n3 =0.14 4.69 7.57
8 | 312|135 62 55 47 QPSK |7t =024 | 32 22
9 |3 |3|12]5 75 62 QPSK | =20 | 155 |120
10 4 12]|1/4 |4 33 23 26 06 QPSK | n3 =4.60 78.6 24
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Table 2.2: Multiplexed trellis codes with good Euclidean distance and/or good

distance under periodic erasures. R bits per symbol code trellis codes for N;

transmit antennas. A rate-k/n convolutional encoder outputs nR code bits which

are mapped on N; x 2™-PSK/QAM. 16QAM, QPSK: Gray labeling, 8PSK: Gray

labeling 0,2,3,1,5,7,6,4 in octal going around the circle.

Code | Ny | R | k/n | v i Const. | mj, AL | A
11 4 1/4 | 5 75 71 67 53 QPSK | n3 =0.29 | 49.1 36
12 2 12]1/3 |4 31 27 QPSK | n5 =1.25 16 14
13 | 22125 53 75 QPSK |75 =046 | 16 | 8
14 | 2 |2]1/2]|6 155 117 QPSK |n5=1.04| 18 | 24
15 | 2|1]1/4]4 25 27 33 37 QPSK |75 =553 | 24 | 24
16 2 12(1/3|6 173 062 115 8PSK | 3 =0.56 | 32.3 | 17.6
17 3| 1/4 | 6| 117 155 145 137 [46] | 16QAM | 5 = 0.28 | 5.03 | 14.4
18 31/2]5 65 57 QPSK | 75 <143 | 19.7 | 16
19 | 4|2|1/4|4 25 27 33 37 QPSK | 75 =2.62 | 74.14 | 30
20 4 |3 |1/4]6 135 147 135 163 8PSK | 73 =0.98 | 45.01 | 24
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Table 2.3: Space-time trellis codes for good average Rayleigh fading performance.
16QAM, QPSK: Gray labeling, 4PSK: Natural labeling. 8PSK: Gray labeling

0,2,3,1,5,7,6,4 in octal going around the circle.

Code | Ny | R | k/n | v gi Const. n*AH,min Ap | A
21 | 2 | 2| 2/4|4|from[12] | 4PSK | 95 =056 | 8 | 16
22 | 2 | 2|2/4 |5 | from[12] | 4PSK | n5 =144 | 32 | 16
23 2 1 21]2/4]6 | from[12] | 4PSK | 73 =1.04 28 18
24 | 3 |202/6|4| [12] |4PSK | m3=091 | 13 | 12
25 | 3 |2|2/6|5| [12] |4PSK |nt=0156| 8 | 14

26 | 4 | 2|2/8(5]| [67 | 4PSK |n;=0.144 | 346 | 36

TCM + Alamouti STB

27 | 2 | 2|2/3|6]| [22,[p1] | 4PSK | n5=03 | 6 | 9

@

Super-ortohogonal cod

28 | 2 | 2|2/4|6| [53] |4PSK | n5=04 | 8 | 16
Universal STTCM (8]

29 |2 |2]2/6 5| [8 8PSK | n5=0.72 | 13.0 | 12.0

30 | 2 02|2/6[6] I8 8PSK | 75 =0.80 | 13.8 | 16.0
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Figure 2.2 displays the simulated bit-error-rate performance of code #4 as
well as two other 64-state transmit-diversity schemes over the 2 X 2 compound
channel as a function of excess mutual information. The simulations are based
on full ML-decoding on frames with 127 data symbols plus three symbols for
trellis termination. With perfect channel state information at the receiver, the
performance of the ML-decoder on unitary channels H does not depend on the
particular instance of H. However, on singular channels, the performance of the
code will vary with the direction of the nonvanishing eigenvector of the channel
matrix, except for the case of an orthogonal transmit design (such as Alamouti
repetition [51]). For orthogonal transmit designs, the ML performance of the

code depends only on the sum of the eigenvalues of the channel matrix.

At BER=10"° code #4 requires no more than 0.88 bits of excess MI per
transmit antenna on singular channels and requires 0.93 bits of excess MI on
unitary channels. The rate-1/2 64-state maximal-free-distance convolutional code
([50]) with QPSK modulation (code #13 in Table 2.2) requires 0.84 bits of excess
MI on unitary channels at BER=10"5. At BER=10"°, code #4 handles every
instance of the 2 X 2 compound channel within 0.1 bits of excess MI per transmit
antenna of the best rate-1/2 + QPSK AWGN-trellis code of similar complexity
on the AWGN channel. The performance of the code over singular 2 x 2 channels

1s the performance of the code over 2 x 1 channels.

The 2 bits/symbol 64-state Zy-linear 4PSK-TCM of Aktas et al. [12](code
#23 in Table 2.3) , designed to deliver good average error-probability under

quasistatic Rayleigh fading channels, has 75 = 1.0. Over the singular channel

0.65 —0.6 — 0.47i
H= (2.23)

0 0

this code requires an excess MI of 1.10 bits per transmit antenna to achieve BER
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Figure 2.2: Channel-by-channel performance of the universal 64-state rate-1/3 +
8PSK code (#4) over the 2 x 2 compound channel. Best- and worst-case (for BER

O
O
>
¢
*

#14: rate—1/2 + QPSK max. free—distance code

#4: rate-1/3 + 8PSK universal code

#27: rate—2/3 + 8PSK + Alamoulti repetition

#24: rate—-2/4 + 2 x 4PSK code by Aktas et al. [6]
#28 : super—orthogonal code, Siwamogsatham et al.
unitary channel performance

—— best and worst singular channel performance

0.4
Excess MI per transmit antenna [bits]

0.6 0.8 1 1.2 1.4

= 107°) singular channels are identified via extensive simulation. For comparison,

the AWGN performance of the 64-state maximal free-distance rate-1/2 convolu-
tional encoder (with QPSK) (code #14), as well as the compound channel per-
formance of the 64-state rate-2/3 + 8PSK Ungerboeck-TCM + Alamouti block
signaling (code #27) and that of the super-orthogonal code of Siwamogsatham
and Fitz (code #28) are provided. Each frame consists of 127 data symbols and

3 symbols for trellis termination.
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= 107°. The uncoded QPSK transmission on the AWGN channel has excess
MI of 1.13 bits at BER = 107°. Code #23 has 7} = 1.04, with an average
bit multiplicity of 22. In comparison, code #4 has 75 = 0.73, with average bit
multiplicity of 1/32.

Another scheme that delivers 2 bits/symbol over two transmit antennas con-
sists of a good AWGN-TCM followed by Alamouti repetition [51] (Code #27 in
Table 2.3). The 64-state rate-2/3 Ungerboeck TCM [22] achieves BER = 1075
at SNR = 8.8 dB on the AWGN channel. On the compound 2 x 2 channel,
the excess MI requirement of this scheme is a linear function of the sum of the
channel eigenvalues [8]. On singular channels, this concatenated scheme requires
only 0.55 bits of excess MI per antenna at BER = 10~°, whereas on unitary
channels the excess MI is requirement is 1.26 bits per transmit antenna. Among
the three codes examined, code #4 has the most consistent channel-by-channel

performance.

We make a final comparison of trellis code #4 with the 64-state universal
space-time trellis code of [8] found by an exhaustive search over a larger class of
encoders by using a channel-by-channel estimate of the excess MI requirement
at the target bit error rate via the truncated union bound to the bit error prob-
ability. As shown in Fig. 2.3, over the 2 x 2 compound channel, the 64-state
space-time code of [8] has a worst-case excess MI requirement of 0.95 bits per
transmit antenna, 0.02 bit worse than code #4. The suboptimality of the more
complex space-time trellis code was due to the search criterion employed in [8].
In particular, the truncated union bound failed to deliver a sufficiently accurate
estimate of the excess mutual information requirement for singular channels un-
der which worst-case error event multiplicities are typically low. The simplified

encoder structure and search criterion used in this study, although approximate,
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proved to produce better universal codes.

2.3.2 Universal codes for N; = 3 and 4 transmit antennas

For R = 2 bits/symbol transmission over N; = 3 transmit antennas, our search
focused on rate-1/5 convolutional encoders. Two information bits produce ten
codeword bits, one of which is punctured, and the remaining nine are used to map
3 x 8PSK constellations. An exhaustive search over 16-state encoders and all 1-
out-of-10 puncturing patterns resulted in code #7 in Table 2.1 (by is punctured).
Code #7 has Agmin = 3 and 73 = 0.14, whereas the 16-state 4PSK STTCM
of [12] (code #24 in Table 2.3) has Agmin = 2 and 1} = 0.91. Code #7 state
achieves BER = 10 ° with a worst-case excess MI of 1.3 bits per antenna. Code
#24 cannot perform realiably under certain singular channels due to its limited
diversity.

The A%-constrained optimal-7n3 search over 32-state encoders and all punc-
turing patterns resulted in an encoder that uses only four out of the eight points.
This encoder may simply be represented as a 32-state rate-1/3 convolutional code
driving QPSK (code #38).

Figure 2.4 displays the bit-error rate performances of code #8 and the 32-
state code of [12] (code #25 in Table 2.3) on the compound 3 x 3 channel. Code
#8 (A% = 3, n3 = 0.24, A%, = 22) achieves BER = 107° with a worst-case excess
MI of 0.85 bits per antenna, code #25 requires about 0.95 bits of excess MI on
the worst-case. Section 2.3.5 compares the average error performance of these

codes under quasistatic Rayleigh fading.

A comparison the R = 2 bits per symbol schemes in Table 2.3 shows that the
worst-case minimum eigenvalues of the full-diversity NV; = 3 schemes are much

smaller than that of the full-diversity-schemes for NV, = 2 although the the A%
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Figure 2.3: Excess mutual information requirement of R = 2 bits per symbol
schemes N; = 2 and N; = 3 codes as a function of channel eigenvalue skew. Simu-
lated target BER is 10~° with maximum likelihood decoding on 127-data-symbol
frames with trellis termination. Codes: (a) 64-state Rate-2/3 + 8-PSK trel-
lis-coded modulation followed by Alamouti repetition (code #27) (b) 64-state
4-PSK code of Aktas et al. [6] (code #23), (c¢) 64-state 8-PSK multiplexed uni-
versal trellis code (code #4 of Table 1), (d) 64-state 8-PSK code from [20], (e)
uncoded QPSK modulation, (f) 64-state rate-1/2 maximal free-distance convo-
lutional encoder [26] + QPSK (code #14), (g) concatenation of the (31,21) BCH
code and code #17 of Table 1 with soft-decision decoding via and max-log-APP,
(h) 32-state 4-PSK code of Aktas et al. [6] (code #25), (i) 32-state universal
8-PSK trellis code (code #8 of Table 1).
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Performance on the compound 3 x 3 channel
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Figure 2.5: Channel-by-channel performance of the universal R = 2 bits per sym-
bol QPSK code (#7) over the 3 x 3 compound channel. Best- and worst-case (for
BER = 107°) singular channels are identified via extensive simulation. For com-
parison, the worst-case singular channel performance of the 16-state space-time
code of Aktas et al. (code #24) is provided. The space-time code was pro-
posed for average Rayleigh-fading performance. Each frame consists of 127 data

symbols and 3 symbols for trellis termination.
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figures are somewhat comparable. This is an inherent property of multiplexed lin-
ear trellis codes; at the same trellis complexity, the smallest eigenvalue decreases
rapidly with increasing rates or with increasing Ny, but increases much more
slowly with increasing trellis complexity. For this reason, trellis-code searches
based on good-A% for Ny = 3 and N; = 4 often yield A}, = 2 (which implies
n = 0 for i > 3) for up to 64-states where typically n; < 1 for 7 > 3 (for example,
[67]).

For R = 3 bits per symbol transmission over N; = 3 antennas, the binary
encoder for the multiplexed trellis code needs to have at least 64-states for full
diversity. Our search for a R = 3 bits per symbol universal TCM for N, = 3
consisting of a 64-state rate-1/4 encoder mapping a 16QAM constellation failed
to produce a full-diversity code. At 128 states, we were unable to complete the
search. However, with A}, = 2, a R = 3-bits per symbol maximal-n; scheme
was found as a result of an exhaustive search over 32-state rate-1/2 + QPSK
codes (code #9). The parameters of the 32-state maximal-free-distance rate-1/2
encoder + QPSK code [50] (code #18) is provided for comparison. Code #9
is not universal over the 3 x 3 compound channel because it does not have full
transmit diversity. However, it exhibits consistent performance over all channels

with strong A\, presence.

For N; = 4, code #10 provides maximal-n; among its class of 16-state rate-
1/4 encoders mapping two QPSK points for each information bit. Code #19
is the maximal-A}, code in this class [50]. For R = 2 bits per symbol over
N; = 4 transmit antennas, three levels of transmit diversity within this class of
encoders becomes possible at 64-states. Code #11 is the maximal-n; as well as
the maximal-A% among 32-state rate-1/4 encoders mapping two QPSK points for

each information bit. This 32-state code has n; = 0.29, A} = 49.1 and A}, = 36.
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We compare code #11 with the R = 2 bits per symbol 32-state vector-labeled
4PSK trellis-code of [67] (code #26 in Table 2.3) which was proposed for good
average Rayleigh fading performance as a result of a maximum-A7j-search over
a class of rate-2/8 encoders mapping 4 x 4PSK constellations. This code, too,
has AL = 36. Our analysis has indicated that it achieves 3 levels of transmit
diversity with n; = 0.14 and A}, = 34.6. We were not able to simulate both codes
extensively on 4 x 4 channels. However, code #10 has more favorable worst-case
eigenvalues with 75 = 0.28, (19m3)* = 2.17 and (ny)* = 4.27, as compared to
ns = 0.14, (n2m3)* = 1.09 and (72)* = 3.38 of the 32-state code of [67]. Based on
these figures, we might predict that at high SNR, code #10 will have a better
worst-case performance on as compared to the latter code, over all reduced-rank

channels that establish two strong spatial eigenmodes.

2.3.3 Universal codes by concatenation of algebraic block codes and

rank-deficient TCMs with good eigenvalue spread

When the required trellis complexity for full-diversity exceeds practical limits,
the concatenation of a rank-deficient trellis code with an outer code may restore

the diversity order at the expense of reduced transmission rates.

Our first example is the (31,21) binary BCH code concatenated with the
64-state rate-1/4 + 16QAM scheme (code #17) to deliver R = 2.03 bits per
symbol over three transmit antennas. The decoding is achieved by a Max-Log-
APP BCJR [33] followed by a Max-Log-APP decoding of the BCH code. The
interleaver is a 372-bit long block-interleaver hosting 12 codewords from the outer
code in a 124-data-symbol packet with trellis termination. At BER = 107%, this
scheme requires no more than 1 bit of excess MI on the collection of forty channels

we simulated.
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Figure 2.6: Worst-case mutual information loss of orthogonal space-time block
codes over the compound channel as a function of channel mutual information.
Alamouti repetition [51] for two antennas and the orthogonal block scheme of [6]

for three transmit antennas.
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Similar consistent channel-by-channel performance was observed with the con-
catenation of the (63,45) binary BCH code with code #17 to deliver R = 2.75
bits per symbol over N; = 4 transmit antennas. For this scenario, we used a is a
512-bit block-interleaver interleaving 8 BCH codewords over a 129-data-symbol
packet with trellis termination. This scheme required an excess MI of no more
than 1.2 bits per transmit antenna to achieve BER = 10 ° over a collection of

thirty-two rank-1 channels and the 4 x 4 unitary channel.

We were unable to run a sufficient number (on the order of hundreds) of test
channels to conclude that the concatenated approach yields universal codes for the
compound channel. However, the promising simulation results so far encourage
us to pursue an analytical understanding of the compound channel performance

of concatenated schemes.

For the target bit error rate of BER=107°, the excess MI requirement of
proposed trellis codes for two and three transmit antennas over the compound
channel is illustrated in Fig. 2.3a and Fig. 2.3b respectively. Fig. 2.3a shows
simulation-based excess MI figures for a dense sampling of 2 x 2 singular channels,
unitary channels as well as 2 x 2 channels with eigenvalue skew equal to 1/2. The
most consistent excess MI performance is obtained by the multiplexed universal
code #4. The universal code of [8] performs better on some singular channels but
requires more MI on unitary channels. The code of Aktas et al. performs well
on unitary channels, but has a wide range of performance on singular channels.
Its worst-case performance on a singular channel requires the most MI of any
code studied here. In contrast, the rate-2/3 8-PSK TCM with Alamouti repe-
tition requires the least MI on singular channels but performs noticeably worse
than all the other codes on unitary channels. This poor performance on unitary

channels is an unavoidable consequence of orthogonal space-time block designs
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with multiple receive antennas. Subsection 2.3.4 explores this phenomenon more

carefully.

Over singular channels, the TCM followed by an Alamouti repetition (marked
with (a)) achieves the target BER with the smallest excess MI requirement among
the codes displayed. The 4PSK code of [12] (marked with (b)) has a worst-
case performance over singular channels that is similar to the performance of
uncoded 4PSK over the AWGN channel (marked with (e)). At the other end of
the eigenvalue skew spectrum, code #4 and the 4PSK code of [12] deliver good
performance over unitary channels, code #4 requiring 0.02 bit more than the
4PSK code, but still 0.04 bits within that of the best 64-state rate-1/2 + QPSK
AWGN trellis code (marked with (f)). For all the codes displayed, the excess MI
requirement over channels with eigenvalue skew equal to 1/2 lies in between the

cases for singular channels and unitary channels.

Figure 2.3b summarizes the excess MI requirement of several full-diversity
schemes for NV, = 3 transmit antennas over a collection of 3 x 3 rank-1 channels
as well as 3 x 3 unitary channels. Over the collection of channels simulated, code
#8 required a maximum of 0.85 bits of excess MI per transmit antenna to achieve
BER = 107°, whereas the 4PSK code of [12] required 0.95 bits of excess MI per

transmit antenna in the worst-case.

2.3.4 Mutual information penalty of orthogonal space-time block codes

Now consider the MI penalty incurred by using an orthogonal space-time block
(STB) scheme for transmit diversity. Racall that the channel MI is MI(H) =
log, det (I + HHT) bits per symbol. For two transmit antennas, the constrained

mutual information of the Alamouti scheme [51] is given by

(MI(H)) = log, (1 + trace(HH))  bits. (2.24)

Alamouti
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On 2 X 2 unitary channels H with MI(H), the MI loss of the Alamouti scheme is
R —log, (1+2(2%/2 — 1)) bits. (2.25)

For three transmit antennas, the orthogonal linear dispersion (LD) scheme of [6]

achieves a constrained MI of

(MI(HD)) = 31og, (1 + gtrace(HHf)> bits. (2.26)

Hassibi-LD 4

On 3 x 3 unitary channels, the MI loss of this scheme is therefore
3 R/3 .
R— 1 log, (1 +4(2%* —1)) bits. (2.27)

Figure 2.6 shows the worst-case mutual information loss over the compound chan-
nel of these two orthogonal STB schemes as a function of the channel mutual
information. Both of these schemes experience heavy MI penalties for channels
with equal eigenvalues that support high data rates. Universal trellis codes have
superior worst-case compound channel performance as compared to orthogonal

block schemes.

2.3.5 Universal space-time trellis codes under quasistatic Rayleigh

fading

Universal space-time trellis codes deliver good average error performance under
quasistatic Rayleigh fading as long as the quasistatic period is longer than several
traceback depths of the codes. Figure 2.7 compares the frame-error-rate (FER)
and the bit-error rate (BER) performances of code #4 the 64-state code of [12]
(code #23) over 2 x 1 and 2 x 2 quasistatic Rayleigh fading with quasistatic dura-
tion of 130 channel symbols, three of which are used for trellis termination. The
universal code has slightly better FER and BER over the SNR range displayed.

The code performs 1.7 dB away from outage capacity.
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—>— #27: rate-2/3 + 8PSK + Alamouti repetition
—*— #28: super—orthogonal code, Siwamogsatham et al.
— — outage probability i i

4 6 8 10 12 14 16 18 20 22 24
total received SNR [dB.]

Figure 2.7: Bit-error-rate and frame-error-rate performance of the 64-state uni-
versal TCM (code #4) as compared to 64-state code of Aktas et. al, over the
quasistatic Rayleigh fading channel, NV; = 2. Each frame consists of 127 data
symbols and three symbols for trellis termination. Maximum-likelihood decoding

on the entire frame.
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Figure 2.8 compares the FER and BER performances of 32-state code #8 and
the 32-state code of [12] (code #25) over 3 x 1 and 3 x 3 quasistatic Rayleigh
fading with quasistatic duration of 130 channel symbols, three of which are used
for trellis termination. The two codes have similar BER and FER performance
over the range of SNRs displayed, with code #8 performing slightly worse in FER,

for the 3 x 3 scenario.

Finally, Figure 2.9 compares the FER and BER performances of code #11
and the 32-state code of [67]. Code #11 has approximately the same frame-error-
rate and bit-error-rate performance with the 32-state code of [67] (code #26) over
4 x 2, 4 x 4 quasistatic Rayleigh fading channels, and slightly better bit-error-
rate performance with similar frame-error-rate performance over 4 x 1 quasistatic
Rayleigh fading.

Figure 2.10 displays the probability distribution of the ratio A\; /Ay in N x N
Rayleigh fading for N = 2, 3. For two transmit antennas, the probability that the
eigenvalues A1, Ao are more than 10 dB apart is 0.45. For N = 3, this probability
is 0.83. Universal code design which takes into account the performance over
singular channels (through high 7y ) results in good codes for the average Rayleigh

fading performance.
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Figure 2.8: Bit-error-rate and frame-error-rate performance of the 32-state uni-
versal TCM (code #7) as compared to 32-state code of Aktas et. al (code #25),
over the 3 x 1 and 3 x 3 quasistatic Rayleigh fading channels. Each frame consists
of 127 data symbols and 3 symbols for trellis termination. Maximum-likelihood

decoding on the entire frame.
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Figure 2.9: Bit-error-rate and frame-error-rate performance of the 32-state code
(#11) as compared to 32-state code of Chen et. al (code #26), over the with
4x1,4x 2 and 4 x 4 quasistatic Rayleigh fading channel. Each frame consists
of 127 data symbols and 3 symbols for trellis termination. Maximum-likelihood

decoding on the entire frame.
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POAST)

Figure 2.10: Distribution of the ratio of eigenvalues of HH' where H is an N x N
matrix of independent and identically ditributed complex Gaussian random vari-
ables. Top to bottom: Cumulative distribution function (CDF) of A3/A; in 3 x 3
Rayleigh fading, CDF of A\y/A; in 2 x 2 Rayleigh fading, CDF of A\y/\; in 3 x 3
Rayleigh fading.
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CHAPTER 3

Sercially concatenated trellis-coded modulations

for periodic erasures

3.1 Introduction

The compound channel theorem [64] for linear Gaussian channels indicates that
a single code can reliably transmit information at R bits/symbol on each channel
in an ensemble of linear Gaussian channels with capacity C' > R. The existence
of codes that perform consistently close to channel capacity over a family of
channels has become very significant with the introduction of turbo codes that
operate within tenths of a dB of the capacity on the AWGN channel [7]. Codes
that extend this performance to other channels of practical interest are highly

desirable.

The design of turbo codes for the compound channel is motivated by the
earlier work of Wesel, Liu and Shi [46] on robust trellis codes for channels with
periodically varying signal-to-noise ratios (SNRs). Recently, McEliece [43] raised
the question of how turbo-like codes would perform on nonstandard channels.
This paper revisits ideas of [46] to design robust trellis codes for use as inner
codes in a serially-concatenated scenario to provide consistent performance over
the periodic-SNR channels. Such channels appear in frequency-hopped or multi-

carrier transmissions as well as diagonally-layered space-time architectures.
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A period-2 periodic-SNR channel is specified by

Yt = Qtmod2)V Es Tt + 2 (3.1)

where z; is additive white Gaussian noise (AWGN) with variance Ny/2 per di-

mension, and the vector
5 == [do, &1] (32)
describes the nature of the time-varying attenuation behavior of the channel. The

average transmitted signal energy is Fj.

With an equal allocation of power to each symbol in the period, it is possible
to transmit R bits per two-dimensional symbol over all period-2 channels such

that

1 .
1 |az~|2E3
5 ;:0 log, (1 + N, ) >R (3.3)

where the left-hand side of (3.3) is the channel mutual information (MI).

For each channel in the ensemble, the required E;/Ny to achieve a certain
bit-error rate (BER), say 107°, gives a mutual information figure. The difference
between this MI and the transmitted rate, R, is the excess MI. The excess MI
describes how far the code is operating from the capacity of the channel. At a
fixed BER, the largest of the excess MI figures over the ensemble of channels

determines the compound channel performance of the code.

The compound period-2 periodic-erasures channel consists of two instances of
the attenuation vector: When ag = 1, a; = 0, every other symbol is erased, and

when ay = 1, a; = 1, there are no erasures, the channel is AWGN.

For example, a 64-state code of [46] (Code 1) requires E;/Ny = 4.3 dB to
achieve BER = 107° on the AWGN channel. This corresponds to an excess MI
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Figure 3.1: The SCTCM scheme.

of 0.88 bits. The same code requires F;/N; = 9.4 dB at BER = 1075 when
every other symbol is erased. The excess MI under periodic erasures is 0.64 bits.
Therefore, the code requires at most 0.88 bits of excess MI to achieve BER =

105 on the compound periodic-erasures channel.

With turbo codes it is possible to achieve lower excess MI figures at similar
BERs. The serially-concatenated scheme is especially attractive in designing for
the compound channel because robustness can be imposed on the inner code
which directly interfaces the channel. Developing on this idea, Section II extends
the existing AWGN design rules for SCTCM schemes to periodic-erasure channels
with particular emphasis on the inner TCM. In Section III we propose 4- and
8-state inner TCM schemes which are robust under periodic erasures with period
two. Section IV provides experimental results for 0.5 bits/symbol, 1 bit/symbol,
1.5 bit/symbol robust SCTCM schemes using the robust inner TCMs. Section V

describes the ongoing work and concludes the paper.

3.2 Code Design

Figure 3.1 shows a generic SCTCM scheme consisting of a rate-R° outer convo-

lutional encoder whose output, scrambled by an N-bit block interleaver, drives
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the input of a rate-R' inner convolutional encoder mapping a two-dimensional

2™-point constellation. The throughput of the overall scheme is

nR°R’ bits per symbol. (3.4)

The uniform interleaver analysis of [48] has shown that the bit error rate under
maximum-likelihood (ML) decoding decreases exponentially with the effective

free Euclidean distance of the inner code. For large interleaver sizes of N bits

E;
—log BER o< | (d? +1)/2] 10gN+(524N0 (3.5)

where d$ is the free Hamming distance of the outer code, and

1 7072 0
5 _ 5Ads o for d? even (36)

L2 — 3)d2 g+ ()2 for dg odd
where dioq is the effective free Euclidean distance of the inner code, defined to be
the minimum Euclidean distance of error events caused by two information bit
errors, and h&i‘? is that distance of error events caused by three information bit

errors.

The BER approximation (3.5) extends to the periodic erasures channel when
the input to the channel is considered to be a vector of two consecutive symbols.
Two necessary conditions for robust performance over the compound periodic

erasures channel are:

1. The concatenated code should have positive redundancy under periodic
erasures, i.e.,

2R°R' < 1. (3.7)

If the inequality in (3.7) is reversed transmission errors would be guaranteed

when every other symbol is erased. If (3.7) were an equality, only uncoded

performance would be possible under period-2 erasures.
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2. The inner TCM should have nonzero effective free Euclidean distance under
periodic erasures, in accordance with (3.5). For a given number of states,
the rate of the inner encoder should be small enough to avoid parallel

transitions:

Lemma 3 For k > 1, an S-state rate-k/n inner encoder mapping a 2"-

point constellation has zero minimum effective free Euclidean distance under

(’;) S8 (3.8)

Proof 6 For k > 1, the encoder trellis has (';) transitions per state to

periodic erasures if

describe the inputs with Hamming weight 2. If (g) > S, there are parallel

transitions between states and shortest error events are 1-symbol long.

For a 4-state encoder the maximum rate for nonzero effective free Euclidean
distance under periodic erasures is bounded by 3/4, and for an 8-state

encoder the bound is 4/5.

The design criteria consider both maximum likelihood (ML) decoding and
iterative decoding. For ML decoding, the design criterion of SCTCM for large
interleavers and very low bit error rates is to maximize the free Hamming distance
of the outer code and to maximize the effective free Euclidean distance, deq, of
the inner TCM. However, since iterative decoding is used in practice, Extrinsic
Information Transfer (EXIT) charts proposed by ten Brink [56],[55], or similar
techniques such as density evolution [15] are more useful in finding SCTCMs with
low pinch-off thresholds. As will be demonstrated, the ML decoding criterion and

iterative decoding criterion provide codes that perform very differently.

The proposed design method is based on the following steps:
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e Design of the inner code: Although the inner TCM will have zero redun-

dancy under periodic erasures for R? > 1/2, it may still have nonzero ef-
fective free Euclidean distance. To achieve nonzero effective free Euclidean
distance, the maximum rate of the inner encoder is limited by decoding

complexity (Lemma 1).

At a given decoding complexity, we search for the TCM schemes that
have high df, s under both AWGN and periodic erasures. Among those
codes having equal dy ¢, we pick the ones with lowest number of error

events caused by two information bit errors.

From a ML decoding point of view, the aim is to find the highest rate
inner encoders which have good effective free Euclidean distances under

periodic erasures.

e Design of the outer encoder: The rate of the outer code is determined by

the rate of the inner TCM and the desired bandwidth efficiency of the
overall concatenated scheme. In accordance with (3.5), candidate outer
encoders for a given rate are those with high free Hamming distances. For
final selection, we use EXIT charts to estimate the pinch-off threshold under
iterative decoding. The speed of convergence judged qualitatively from the
distance between decoder characteristics (tunnel width) after the iterative
decoding tunnel is also taken into consideration. Narrower tunnels require

more iterations to achieve a given performance.
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Figure 3.2: Simulations of BER versus Excess channel MI for 0.5 bits/symbol
SCTCM’s under both AWGN and period-2 erasures channel. See Table III for
the SCTCM numbers. 11 and 10 represent period-2 erasures patterns. Block
length=2,046, 12 iterations.
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3.3 Example SCTCM Designs for Periodic Erasures

3.3.1 SCTCM Design of 0.5 bit per symbol

A rate-1/3 encoder mapping a Gray-labeled 8-PSK constellation provides 1 bit
per symbol on the inner TCM. A rate-1/2 outer encoder then yields 0.5 bits/symbol
overall throughput. The inner TCM still has redundancy under periodic erasures.
The structure of a rate-1/3 linear systematic feedback encoder with 8 states is
shown in Figure 3.4. An exhaustive search over the generator vectors yielded the

maximal dgeg encoder under period-2 erasures as well as under AWGN (C1).

The scheme SC-1 (Table III) uses a 4-state maximum free-distance outer code
with C?. Figure 3.2 shows an error floor around BER=10"° for SC-1, which is
lowered down to BER=107% with 30 iterations. The long and narrow iterative

decoding tunnel shown in Figure 3.3 requires an increased number of iterations.

A method to lower the error floor is to use an outer encoder with larger
free distance. Using an 8-state maximal free-distance outer code (Cf) and 12

iterations, the error floor under periodic erasures is lowered (SC-3).

A better way to lower the error floor without increasing the overall complexity
is to use EXIT chart analysis to find an 8-state inner code which has a shorter
and wider iterative decoding tunnel than SC-1. Figure 3.2 shows that SC-2 which
concatenates C} and C9 is able to lower the error floor with only a slight increase
in the pinch-off threshold. As a result, SC-2 requires at most 0.16 bits of excess
MI at BER=1077 to achieve BER=10"° on AWGN as well as on periodic erasures.
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Figure 3.3: Extrinsic Information Transfer charts for some inner decoders at
Ey/Ny=3.4 dB under period-2 erasures. I4; is the a priori input to inner decoder
and [g; is the extrinsic and channel output of inner decoder. 14, is the a priori

input to outer decoder and Iy, is the extrinsic output of outer decoder.
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Figure 3.5: Simulations of BER versus Excess MI for two 1.0 bit/symbol
SCTCMs which are only different in the complexity of the outer codes. Block
length=10,000, 12 iterations.

3.3.2 SCTCM Design of 1.0 bit per symbol

The 1.0 bit per symbol SCTCM uses a rate-1/2 outer code and an inner TCM
consisting of a rate-2/3 linear systematic recursive encoder driving an 8-PSK
constellation. With a rate-2/3 inner encoder, the inner TCM has negative redun-
dancy and therefore zero minimum distance under period-2 erasures. However,

it is still possible to find an inner code with nonzero effective free distance.

Figure 3.5 shows the BER performance of two SCTCM schemes (SC-4, SC-5)
using the same inner TCM (C! driving a Gray-labeled 8-PSK) found by exhaus-
tive search to maximize d, . under periodic erasures. In comparison with SC-4,

SC-5 trades pinch-off threshold for lower error floor under periodic erasures.
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Figure 3.6: Simulations of BER versus Excess MI for two 1.0 bit/symbol SCTCMs
with 4-state inner codes. SC-5 has maximal effective free distance while SC-6 has

lowest pinch-off threshold. Block length=10,000, 12 iterations.

Figure 3.6 shows another set of simulations with a fixed outer code, C§. SC-5,
using a maximal-d; o inner TCM is compared to SC-6 using C%, which has good
pinch-off threshold based on EXIT analysis but has zero effective free distance.
Although SC-5 and SC-6 have similar performance under AWGN, SC-6 achieves a
slightly lower pinch-off threshold at the expense of a very high error floor, around
BER=1072, due to its zero minimum distance, ds, e = 0. In contrast to the error
floor of SC-1 (Figure 3.2), this error floor cannot be lowered down with more

iterations.

When 8-state inner TCM’s are used, the EXIT charts in Figure 3.7 (AWGN)
and Figure 3.8 (period-2 erasures) show how the increased complexity does not

help reduce the pinch-off thresholds via increased minimum distances. Divsalar
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Figure 3.7: EXIT charts for some inner decoders at Ej/Ny=0.7 dB under AWGN.

[15] and ten Brink [55] also reported this kind of effect. This is more evident in
the BER performance displayed in Figure 3.9 in comparison to Figures 3.5 and
3.6.

The search for robust SCTCMs over compound periodic erasure channel
should start from low complexity constituent encoders, trying to avoid high er-
ror floors by using EXIT chart analysis and checking the effective free distance.
Because of the tradeoff between pinch-off threshold and error floor, the code de-
sign should depend on the operating BER. For example, for 1.0 bit per symbol
SCTCM at BER=10"°, SC-5 is a better design as compared to SC-4 which has
an error floor around BER = 4 x 107°. SC-5 does not exhibit an early floor,

requiring an excess MI of 0.39 bits for BER = 1075.
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Figure 3.8: EXIT charts for some inner decoders at E,/Ny=6.0 dB under period-2

erasures.
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Figure 3.9: Simulations of BER versus Excess MI for two 1.0 bit/symbol SCTCMs
with 8-state inner code. SC-7 has lowest pinch-off threshold while SC-8 has

maximal effective free distance. Block length=10,000, 12 iterations.
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Table 3.1: Rate-1/2 Outer encoders with memory v

C’ v G(D)

1|1 [1+D D]

2 |2 [14D? 1+D+D?]

3 | 3| [14D? + D3 1+D+D? + D?]

3.3.3 SCTCM Design of 1.5 bits per symbol

Using the same criteria as in previous searches, we designed 1.5 bits/symbol
SCTCMs by concatenating a rate-1/2 outer code with an inner TCM consisting of
a linear recursive systematic rate-3/4 inner code driving a 16-QAM constellation.
C% has a low iterative decoding threshold and C% has maximum dg .¢ under period-
2 erasures among 8-state rate-3/4 codes. As displayed in Fig. 3.10, we have not
seen the error floor for SC-9 until BER=10"% but SC-9 is expected to have a
higher error floor than SC-10 because of its zero dfeg under period-2 erasures.
Unlike the case of 1.0 bit per symbol, at BER=1075, the SCTCM found by
iterative decoding criterion, SC-9, is preferred. The excess MI requirement is

0.46 bits.

3.4 Conclusions

The design of robust SCTCMs in this paper aims to maintain turbo perfor-
mance under periodic erasures with as little compromise as possible on the
AWGN performance. At BER=107%, the proposed SCTCMs transmitting at
0.5 bits/symbol, 1 bit/symbol and 1.5 bit/symbol require 0.16, 0.39, 0.46 bits of
excess MI, respectively. Typical 1 bit/symbol SCTCMs [23] at similar complex-
ity require 0.35 bits of excess MI at BER = 107°. The proposed 1 bits/symbol
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Figure 3.10: Simulations of BER versus Excess MI for two 1.5 bits/symbol
SCTCMs. SC-9 has the lowest pinch-off threshold while SC-10 has maximal

effective free distance. Block length=10,000,12 iterations.
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Table 3.2: Inner encoders with memory v

C'lk|n|v G(D)
111|133 [1 55 14D]
2
2 |1(33| [ 525 5]
1
312132 L0 o
0 1 )
D
4121312 10 o
101 %)
10 5
5121313 1+D3
0 1 5]
D
6 2]s(s] | ° DR
100 5
7131413 010%
_001—15;_
1
100 mpipe
$131403] 010
1+ D+D?
00 1 55
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Table 3.3: SCTCM Schemes
SC | C°| C*| R | Constellation
1] 2|1]1/6 8-PSK
2 12 1]2]|1/6 8-PSK
313 ]1]1/6 8-PSK
4 1114 1/3 8-PSK
52| 4(1/3] 8PSK
6 | 2|3 |1/3 8-PSK
712 |5 |1/3 8-PSK
8 | 2 |6 |1/3 8-PSK
9 | 2 | 7 13/8 16-QAM
10 2 | 8 |3/8 16-QAM

SCTCM handles periodic erasures as well as AWGN with only 0.04 bits of excess
MI loss.

An interesting outcome of our experiments is that it is possible to work under
periodic erasures with an inner TCM that has negative redundancy when every
other symbol is erased, as long as the effective free Euclidean distance under
periodic erasures is nonzero. On the other hand, zero effective free distances on
the inner code result in very high error floors that cannot be removed by simply
increasing the number of turbo decoding iterations. This requirement on the
effective free Euclidean distance places an upper bound on the rate of the inner
encoder with a given number of states. The combined rate of the inner and outer
encoders should be strictly lower than 1/2 to provide coded performance under

period-2 erasures.

The maximum-likelihood decoding criterion and iterative decoding criterion
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yield SCTCMs with very different performances. The ML-optimal SCTCMs have
larger effective free distances and thus lower error floors but their pinch-off thresh-
olds are usually higher. On the other hand, SCTCMs which are designed solely
based on low pinch-off thresholds tend to have higher error floors. The trade-off
between low pinch-off thresholds and low error floors is more evident under pe-
riodic erasures when most of the redundancy is removed. Such a tradeoff makes
it necessary to consider both ML and iterative decoding criteria during the code

search.
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CHAPTER 4

Universal space-time block constellations

4.1 Introduction

4.2 System Model and notation

4.2.1 Multisymbol linear space-time modulations

Consider a space-time communication system with N, transmit antennas. An
(N, @, L) linear space-time block signaling scheme is a space-time arrangement
of @) data threads over L channel uses. Also known as linear dispersion (LD) [6]

codes, an (Ny, @, L) linear space-time block signaling scheme can be represented

as
Q
S=> x,A,+jz;B,, (4.1)
qg=1
A, B, eC"L g=1,..Q (4.2)

where A, and B, are the linear dispersion matrices for the real part of complex

symbol z, and its conjugate z;, respectively.

An equivalent representation of the block code (4.1) is through the set of
N; x Q matrices {T¢, T?}lL:p defined by

(T?)i,q = (Aq)i,la (T?)i,q = (Bq)i,la (4-3)

l=1,..,L, ¢q=1,.,Q, i=1,.. N,.
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The gth column of the matrix T{ (T}) represents the the contribution of z, (}) at
time [ to the transmitted vector. Since the horizontal dimension represents space
and the vertical dimension represents threads, we call {Tf, Tﬁ’}lL:1 space-thread

matrices.

Assuming the in-phase and quadrature components of each thread are inde-
pendent random signals (although the threads may be dependent among them-

selves) with equal power 1/2, the total transmit power is
P = E[tr(SSh)]
Q
= Z tr (Ai,RA;'r’R + Ai,IA;'r,I + Bi,RB;‘r’R + Bi,IB;]) . (44)
i=1

Forl =1,...,L, let s' denote the /th column of S, i.e. the signal transmitted
for the [th symbol. Then,

EA I TR T o P B Y s
[SIIJ [T?,1+T?,I TZR_T?,RJ [XIJ
_ T?,R _T?,I T?,R T?,I XR (4.6)
T?,I T?,R T?,I _T?,R Xr
= e o] (47)
[/}

(note that 7 and T have different structure), and the space-time block-signaling

scheme (4.1) can be represented as

-
Sk
s7

XR

(4.8)

I
1
——

X7
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where

T=T°+T7T" (4.9)
and
T4 7'1{
a b
T = T T = 7 (4.10)
U U

4.2.2 The code-constrained signaling

Consider the linear Gaussian vector channel
vy =Hx+w, (4.11)

where H is the N, X N; channel matrix, and the additive noise vector w has zero-

mean complex Gaussian distribution with unit covariance matrix Eww! = I, .

The transmit structure of the linear space-time signaling scheme (4.8) on real

coordinates can now be represented as

Y= QH) (T +T")%x+W. (4.12)
where
H; -H
w=|"" 1. (4.13)
H, H;

and ® is the Kronecker product.

Recall that the unconstrained Gaussian-input mutual-information is given by
C(H) = log, det (Iy, + HH')  bits per channel use. (4.14)

Per equation 4.8, the code-constrained Gaussian-input mutual information
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1. Transmit power in terms of space-thread matrices: The total transmit
power, given in terms of the space-time dispersion matrices 4.4 is given

in terms of the space-thread matrices as

P = %EL: (trace (T7T0T) + trace (T?T?T» . (4.15)

=1
2. Singular value decompostion of the equivalent L-symbol real-valued channel

matriz: Let
H = US'/2vt (4.16)
be a singular value decomposition of H where
S= W 1] 1)

and A is the N, x N, diagonal matrix of eigenvalues of HH'. Let u’ denote
the ith column of U, and let v/ denote the jthe column of V. Then, the

real-valued matrix A has singular value decomposition

H=UI,®A*) V! (4.18)
where
o R .
u=| % 1 R ! (4.19)
W
and
vl —vl ... VNt _VNt
Y = R I R . (4.20)
Vi e vl

Consequently, the equivalent channel matrix over L symbols will have the

following singular value decomposition:

LoH = I,® U [ o A7)V (4.21)

= LoU) (L oA?) (I,eV). (4.22)
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3. Code-constrained mutual information and interference of threads: Recall

the constrained capacity expression:

CH,T)= % logy (Iory, + I @H) TTT I @H")) (4.23)

where

L L
TT =Y (" + i )+ Y (e + 1) . (a29)
=1

The first summation is a symmetric positive semidefinite matrix whose trace
determines the transmit power. The second summation is a symmetric

matrix whose trace is zero:

_ T
I+l - .
T2, T T, —Te,
T¢.Th, —T¢,T," :
- |- a2
| ' T T —TirTiR

The implication is that the matrix represented by the second summation has
at least one negative eigenvalue unless it is identically the zero matrix. For
orthogonal block designs, this matrix ¢s identically zero, indicating complete

thread independece.

4. Diversity: In terms of 79, T°?

4.3 Design of minimax-MI loss space-time block signaling

schemes

For a given linear space-time block signaling 7T, the worst-case channel minimizes

the code-constrained mutual information

C(H, T) = % 10g2 (IQLNT + (IL ® H) TTT (IL ® HT)) (427)

100



subject to

1

C(H) = 5

10g2 det (ILNT + (IL ® %) (IL X H)T) Z R. (428)

where R is the rate of information transmission in bits per channel use.

We would like to find linear space-time block schemes 7~ that minimize the

maximum mutual information loss
sup{R—-—CH,T):C(H)=R}. (4.29)

A space-time linear block signaling scheme is completely specified by the
space-thread matrices {77, 7'?} The specifies the eigenvalues and eigenvectors

of the symmetric positive semidefinite metrix
- T L T
TT =Y (T + T ) + > (1o + Ti7T) (430)
1=1 =1

where the first summationhas nonnegative eigenvalues, and the second summation

has at least one negative eigenvalue unless not identically zero.

Recall that

T, T, - T
T=[T7],,= TZTIT 757? %TLT (4.31)
therefore the matrix
LLoH)TT (I,eH") (4.32)

can also be written as a block-partitioned matrix where the , jth block is

HTT HT (4.33)
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fori,5 € {1,..., L}, i.e.,

J

LOH)TT (LeH")=[HTT H],,. (4.34)

The localization of eigenvalues of a block-partitioned matrix in terms of the
eigenvalues of the partitioned matrices is a mathematically interesting problem.
In the case where the partitions are scalars, the problem reduces to classical
eigenvalue localization. A vast number of inequalities that describe the location
of eigenvalues of a matrix in terms of its elements has been well-known. In
particular, Gerschgorin circle theorem states that the eigenvalues {\} of an n x n
matrix A = [a;;] obey

Zirlllnn {_a'z'i + Z ‘az‘j‘} <A< Jnax {aii + Z |aij‘} : (4.35)
J#i J#i
Varga [44] extended this result to block-partitioned invertebrate matrices,

partitiones matrices with vanishing main diagonal partitions. Varga’s theory is

explaind in Section 4.4. Write

[(HT:T[H"], . =D+€ (4.36)

1,J
where D is the vertebrae of the partition, i.e.

D =diag (KT T\ H, .., HTL T/ HT). (4.37)

Since D is symmetric, so is £. The Gerschgorin spectral theory summarized in

4.4 is applied to £ to upper-bound the spectral radius p(€) of £.

Theorem 6 (Code-constrained MI) For a given linear space-time block code

{At, f’)t} the code-constrained mutual information induced by the channel matriz
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H is upper- and lower-bounded as

L Ny

CH,T) < ZZlog2 1+ NHTTHY) + B) (4.38)

=1 =1
L N,

CH,T) > ZZlog2 (1+ (HTTIHT) - /3)*) (4.39)

llzl

bits per channel use, where

B = max > Smax (HTTIH) . (4.40)

ki

4.4 Appendix: Gerschgorin spectral theory for the eigen-

values of partitioned invertebrate matrices

Table 4.1: Frequently used symbols associated with linear space-time block sig-

naling schemes

N; number of transmit antennas

N, number of receive antennas

H N, x N; channel matrix of complex numbers

Q number of space-time threads

L duration of the space-time block, channel uses
u(E) | spectral radius of E
(y)* | max(y,0)

M(EE') | ith largest eigenvalue of EE!

Smax(E) | Amax(EET)

In the following, we briefly review the Gerschgorin spectral theory for parti-
tioned matrices and show how the spectral conjecture of Varga [44] can be used

to estimate the eigenvalues of the equivalent channel correlation matrix.
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Consider the nd-dimensional complex space C™.

1. Define standard unit vectors e; € C? by e = (ef.1, ---, ek,d)T, ek, = O, and
define subspaces C; = span{ey,di < k <d(i+1)—1},i=1,...,n. C; is the
projection of C™ onto its n components with indices di < k < d(i+1) — 1
with respect to the usual basis. Then C"® is a direct sum of the subspaces

Ci: C =C,®Cy® ... »C,. Call this partition of the space C*¢, .

2. Let ¢; be a vector norm on C;, i = 1, ..., n. Define the operator norm n-tuple

¢ = (¢1, tey ¢n) by

|z||s = max ¢;(Piz) ze€ C™ (4.41)

1<i<n
where P; is the projection operator from C* to C;. Let ®, be the collection

of all such operator norm n-tuples associated with the partition 7.

3. Consider the m-partitioned matrix

Fl,l) Fl,?a e Fl,n
F , F , e F n

F=| > (4.42)
_Fn,I: Fn,2a e Fn,n_

where F;; € C?*? represents a linear mapping from Cy to C;. Write F =
[Fikle. F is called m-invertebrate if F;; = 0, ¢ = 1,...,n. For a given
operator norm n-tuple ¢, let [%(F) = {€ = [Eixlr, Eii = 0,]|€]ls = || Fllo}
be the collection of m-invertebrate matrices whose ¢-induced operator norms
are equal to the operator norm |||y = supyecnd;jy=1 [|Fullg of F. Also

let Iy (F) = NpI'%€% (F).

4. Given F = [F;l., define the n x n comparison matric M?® = [Mg’,q] by

|, = SUD,, ec, pq(ag)=1 Po(FpaZa)-
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5. For any matrix V, let u(V) denote the spectral radius (largest magnitude
of the eigenvalues) of V. The largest eigenvalue of the positive semidefinite

matrix VVTis (u(V))2

The spectral conjecture [44] states that supger, (7 p(€) = infyea, [|E]|g for a
given partition 7 and a m-invertebrate F. Varga [44] went on to prove a stronger

statement:

Theorem 7 (Spectral conjecture)

sup p(€) = inf ||€]ly = inf [M?(F)|s 4.43
S €)= inf el = inf IMYCP)] (1.49
where || - || s the mazimum absolute row sum.

Corollary 7.1 Let £ = [E; |, be m-invertebrate. Then,

/J'maz(g) S max Z Smaz(Ei,k)a (444)
k#1

where Smae denotes the largest singular value (Table 4.1).

Proof 7 Note that £ € T, therefore (4.43) implies p(€) < ||M?(€)||eo for any
norm n-tuple ¢ = (¢, ..., ¢n). Let ¢; be the Ly norm norm on C;. Then M, =

SUD,, afls=1 |EikZl|2 = Smaz(Eik) and the desired result follows.
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CHAPTER 5

A low-complexity approach to sequential

multihypothesis detection

5.1 Introduction

Model selection and experiment design are essential to any hypothesis testing
problem. For some problems, such as the transmission of one of a finite number
of signals over a noisy channel whose parameters are known at the receiver, model
selection is often trivial. However, in other cases there will be uncertainty about
the model itself. In radar detection, the spectral characteristics of the interference
and the target power spectra are often unknown [1]. In sonar detection, inaccu-
rate characterization of the randomly fluctuating underwater channels results in
uncertain models [24]. In environments with man-made interference, Gaussian
assumptions in the estimation of signal parameters may result in significant per-
formance degradation ([13], [42]). The issue of source and model mismatch also
arises in classification [37], source coding [2], and decoding [3]. In addition to
the limitations in modeling, the measurement of observables is often subject to
unmodeled distortion, such as unmodeled noise and calibration errors. In such
cases, none of the hypotheses in the model reflects the true distribution from
which the observables are drawn. The first goal of this paper is to describe the

performance limits of hypothesis testing when the experiment model is inaccu-
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rate. To this end, the first part of the paper presents an upper bound on the
best exponent with which the decision error probability under any hypothesis H;
decreases in the asymptote of small decision error probabilities in the possible

presence of modeling errors.

Historically, the common starting point to address the problem of model un-
certainty has been to incorporate the allowed deviations from the correct model
by forming composite hypotheses, where each hypothesis is a neighborhood ([38],
[47]) of a distribution. For two hypotheses, Huber [38] formulated a least fa-
vorable pair of distributions under various Bayesian and minimax constraints
for likelihood-ratio tests. Hoeffding ([62], [63]) derived lower bounds on the ex-
pected sample size of a sequential test of binary composite hypotheses for which
the decision error probabilities under both hypotheses are bounded above by
predetermined numbers. For M-ary simple hypotheses, Simons [21] obtained
lower bounds on the average sample size of a test when the observed data fits
an (M + 1)st hypothesis, however, there is no interpretation of the error prob-
ability under the new distribution. Other works related to hypothesis testing
under model inaccuracy have concentrated on formulating the asymptotic (large
sample-size) -distribution of the likelihood-ratio under an incorrect model [45],
[32]. More recently, Baum and Veeravalli [11] raised the question of how their
asymptotically optimum M-ary sequential probability ratio test (MSPRT) would

perform under an incorrect model.

The first part of our analysis focuses on a scenario in which the experimenter
is allowed to prune a subset of the original set of hypotheses based on the data
observed so far. An example of hypothesis pruning is reduced-complexity decod-
ing of trellis codes ([16], [25]). Section 5.3 introduces a two-step decision rule

that applies the asymptotically optimum M-ary sequential probability ratio test
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(MSPRT) to a subset of the original set of hypotheses after a pruning step. The
pruning step, providing the complexity reduction for the remainder of the test,
has the risk of rejecting the correct hypothesis in which case the final decision is
delivered by a mismatched MSPRT. These issues found the bases of Section 5.4
and Section 5.5. Upon concluding, Section 5.3 summarizes the main results of

the paper.

In order to analyze the feasibility of rejecting hypotheses, Section 5.4 intro-
duces weak sequential decisions that as to what the correct state of the nature
is mot, rather than what it is based on threshold rules on the vector of posterior
probabilities. Drawing a parallel to the sequential probability ratio tests, this
section derives the asymptotic stopping-times and upper bounds to error proba-
bilities for weak decisions. The results apply to the first part of the two-step test
of Section 5.3.

Section 5.5 focuses on the MSPRT under incorrect models, a precalculated
contingency in the proposed two-step test, also responding the authors’ [11] con-
cluding remarks. Under mild model mismatch, this section also derives a rela-
tionship between the decision error probabilities and the stopping-times of any
sequential test in the asymptote of small decision error probabilities, based on

Fano’s inequality.

5.2 Sequential Tests: Previous Research

For binary hypothesis testing, Wald’s [4] sequential probability ratio test (SPRT)
has been known to be optimal [5] in the sense that it has the smallest expected
sample size under either of the hypotheses, among all tests (sequential and non-

sequential) for which the decision error probabilities do not exceed some pre-
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defined values. The SPRT stops and delivers a decision whenever one of the
posterior probabilities exceeds a threshold. The SPRT typically requires two to
three times fewer observations on the average as compared to a fixed sample-size

test operating at the same decision error probability levels.

A direct generalization of the binary SPRT to the case of multiple (M > 3)
hypotheses does not guarantee optimality in the same sense as the binary case.
In fact, the existence of an M-ary sequential test which minimizes the expected
sample size under each of the hypotheses for given levels of decision error prob-
abilities, has not been proven [59]. Nevertheless, the simplicity of the structure
of the SPRT has inspired researchers to propose various M-ary sequential tests
based on likelihood threshold rules (for example, [35],[29],[20],[11]). Aside from
this structural simplification, the performance analysis have been facilitated by
the use of an asmyptotic setting in which the decision error probabilities are
forced to zero, either explicitly (e.g., [59]) or by allowing the experimentation

cost per sample to go to zero in a Bayesian setting (e.g., [29], [11]).

5.3 Reduced-complexity tests based on pruning hypothe-

Ses

Let {X;,t € N} be an observed sequence of identically distributed random vari-
ables with probability density function f, in a probability space (2, F,P). Con-
sider M simple hypotheses

where all f; are are defined with respect to the same P. Let M denote the the set
of indices {0, ..., M —1}. The nature selects index u with probability =,. For n >

1, let F;,, denote the o-algebra generated by the first n observations. A sequential
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test is a pair (IV,4) where N is an {F,}-stopping time and (X3, ..., Xn) € M
is Fy measurable decision rule. We will use P;, E; to denote probability and

expectation conditioned on u = 4. E will be shorthand for ), m;E;.

For a fixed error performance, the computational complexity of identifying
the correct hypothesis often grows in proportion to M [11], which results from
the contribution of each hypothesis to a decision metric update. To alleviate this
complexity, the experimenter may choose to to prune the set of hypotheses based

on the observed data.

For a sequential decision rule with stopping-time 7', let M;, t > 1 be the
number of active hypotheses (ones contributing to decision metric computation)
at time £. The computational effort of a sequential decision rule v may be defined

to be the total number of active hypotheses until the end of the test:

o, = [ZT: Mt] (5.2)

For the M-ary sequential probability ratio test (MSPRT) [11], M; = M for
t=1,...,T, therefore ®ygprr = MT. For k € M, let p%k) denote the conditional

probability that u = k given the first n observations:

o) = Ji(x")
" Yem fix)’

where x" = (1, ...,%,). The sequential tests of concern operate on the vector of

(5.3)

posterior probabilities

D, = (pszo), ...,pglM_l)) . (5.4)

In order to assess the feasibility of complexity reduction we are first interested in
identifying as quickly as possible (based on observed data) a subset of r indices

that is likely to contain the correct index with high probability.
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5.3.1 A two-step sequential decision rule: Rejection of unlikely hy-

potheses

Consider a two-step sequential decision rule which eliminates a high-probability
r-subset, renormalizes the probability vector, and applies an MPSRT on the
remaining M — r hypotheses to deliver the final decision. The first step has
the risk of rejecting the correct hypothesis, in which case the second part of the
decision rule is an MSPRT under an incorrect model, which will be studied in

Section 5.5.
Step 1: Define
L.(a) = min {n >1: Zp,(f) < a(1+ a)™" for some r-subset R} . (5.5)
keR
Let R* be the set of indices that are rejected (those belonging to the smallest r
entries in pr, (4))-

R = {jeM:p{, <a} (5.6)

~

M = M-R" (5.7)

Renormalize the surviving posterior probabilities: For j € M,

50 = rifi(x")
b Des MAxT)

where for j € M, ;= T5/ D ient -

(5.8)

Step 2: MPSRT with parameter vector b = (b;),c v on {ﬁg), Jj€ M} with

optional truncation:

_log(by)
nj

€)

U = argmaxpy . (5.10)
jEM

N(b) = min {n € [Lr(a), } 135 e M 39 > b,(1 +b,-)—1}(5.9)
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There are three important criteria that jointly determine the performance of
this two-step design in comparison to existing tests, such as the MSPRT: The
average decision error probability, P,, the average computational effort ®, and
the average (final) stopping-time, EN. A reduction in computational effort may
not be so desirable if the number of samples is increased significantly compared
to the MSPRT at the same decision error probability. The design parameters
are the number 7 of hypotheses rejected, rejection parameter a, and the MSPRT
parameters {b;}, along with the optional truncation parameter . The two-step
test will have
M-1

5
mf?xbk <a (5.12)

r <

(5.11)

so that upon error-free pruning, the second stage will behave as an MSPRT on

the set of surviving hypotheses with modified prior probabilities: Suppose u = j.

<3

(3n < Le(a) 39 > (1+b;)7) (5.13)

—
5]
~

< P {In<Li(a)d Y P <bi(1+1b)
keM—{j}

P, (Eln <Ly(a),R>[Rl=r, Y p¥ <a(l+ a)_1>

kER

INZ

—

c

I (5.14)

~

where (a) follows from the fact that ), P =1, (b) follows from (5.11) and
(5.12), and finally (c) follows from the definition of M. Then it follows that N is

the first time one of the estimated posterior probabilities p¢’ exceeds 1/(1 + b;).
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5.3.2 Decision Errors

The two-step rule can fail in two ways: The correct hypothesis may be rejected
at the first setp, or the correct hypothesis survives the first step, but is not the
eventual MSPRT decision:

Suppose H; is the correct hypothesis. The probability that H; is falsely

rejected in the first step was bounded as (refer to the equation):

P,(j € R*) < 7% (5.15)
J

The second part of the error probability is bounded by the error probability
of the embedded MSPRT on indices M:

™

Pia#jjeM) < b Y, = (5.16)
keM—j 7
Tk
= b — 5.17
’ Z Ty ( )
kEM—j
b
T
therefore
P, < 4h, (5.19)
j

For equally likely hypotheses, (5.18) can be tightened as P;(u # j,5 € M) <
(M —r —1)b;, yielding P, ; < Ma + (M —r — 1)b;.

1. Section 5.4 describes the number of samples necessary to reject a certain
hypothesis with a given reliability via the likelihood ratios. The analysis
develops to determine the asymptotics of the first time L, (a) that the com-
bined likelihood of an r-subset of hypotheses falls below a. In particular, it
is shown that

—log(a)

a.s.-P;
LT (a) —)J D(fj, f[j]Mfr) as a—0 (520)
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where {D(f}, fijln)}mem is an ascending order of {D(f;, fm)}me-

2. Under the separability assumptions (5.11), (5.12), with probability at least
1 — a/m; under Hj, the stopping-time N is the first n > 1 such that ﬁ(nk)
exceeds (1 + bg)~* for some k € M, and the theory of Baum and Veeravalli
[11] applies. However, with probability at most a/7; under H;, the sec-
ond part of the test is an MSPRT under an incorrect model. Section 5.5
examines the behavior of the mismatched MSPRT. It is shown that

_log b‘7 a.s.—IP’j
N(b) —

D(f;, fij)  as ml?xbk —0.. (5.21)

However, with probability at most a/7;, the MPSRT stage is under an
incorrect model in which case the final-stopping time may not be finite,
especially if the KL distances are arithmetic. Section 5.5 develops the
theory of MSPRT's under model mismatch. The results are specialized to
the two-step test. In any case the truncation at ¢ = —log(b;)/n; with
n; = D(f;, fij,)) + € may be used.

3. The asymptotically optimum MSPRT offers an average complexity of

P; —log(m; P. ;)
®usprr) < M - — 2 (5.22)
(ISP D(f5, finn)
whereas the average complexity of the two two-step test is bounded above
as
Py —log(b; -1
o 2 (M — r)—1080) og(a) (5.23)

< T .
D(fj; fun) DU fitnees)
where P, ; < Ma + (M — r)max; b; for equally likely hypotheses.

Example 1 Consider the detection of one of eight PSK points in additive white

Gaussian noise:

2rk
Hy:s=exp (]%) (5.24)
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The observables are Xy = s + Z;, where {Z;} are iid samples of complex zero-
mean Gaussian noise with Var(Re Zy) = Var(Im Z;) = 1. The detection problem
is symmetric in all hypotheses. The MSPRT(a) with ay = 0.011 achieves P, ) =
0.001, £ =0,...,7. with B, N = 45. The average computational effort of this test
is B, ® = 360. At the same P,y level, the two-step design with a = 0.006, b =
0.0055 prunes r = 3 hypotheses after an average of Ky Ly = 6.8 observations. The
average final stopping-time (with no truncation) experiences an increase Ex N =
50.2; with an overall average computational effort of B, ® = 237.4, a thirty-five
percent saving over the effort of MSPRT.

This simple experiment demonstrates that pruning hypotheses can lead do sig-
nificant savings in computational effort with reasonable increase in final-stopping
time. In the following, we analyze the risk of pruning hypotheses with simple
likelihood-ratio rules. As in [11], we will assume the existence of positive num-
bers D(f;, fi) such that

LX)
n o8 7

gy D(fj, ;) as n—o0 (5.25)

and also that the family

{l 1ng} (5.26)

is uniformly integrable under P; for any 1, j.
5.4 Rejecting hypotheses by weak decisions

5.4.1 Stopping times for weak decisions

Probability ratio tests deliver decisions as to what the true hypothesis is based

on whether the ratio of a linear combination of likelihoods of exceeds a predeter-
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mined threshold. Analogously, a weak decision could be delivered against those

hypotheses with likelihoods small compared to those of others.
Consider the first time that a posterior probability becomes smaller than a,
a positive parameter less than 1. Define, for each k£ € M, the stopping times

L®(a) =inf {n >1:pP <a(l+a)7'}. (5.27)

The following lemma establishes the asymptotics of L*)(a) under various distri-

butions.
Lemma 4 Fork,j € M, k # 7,

L®)(a) = oo a.s.-P; as a — 0, (5.28)
L®) () 1

%
—loga — D(fj, fx)

Moreover, L®¥)(a) — 0o a.5.-P} asa — 0.

a.s.-P; as a — 0. (5.29)

Proof 8 The proof follows the techniques of [11]. To prove the first statement,

write

Ik =
fi(Xy) 1 M
< ZPj (max Zlog Xi 210g (iﬁ:ﬂ))
I#k

+(M - 1)P, (l%Zl"g ) 2 s (M)) (530)
- T t=1

As a — 0, every term in the right-hand side of (5.30) converges to zero.
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To prove the second statement,we observe that

L®(a) = inf {n : (¥ > —log(a)/n} (5.31)
where
1 1- 7(1k) a.s.-P;
¢® = ” log(ig —" D(fj, fr) as n — oo. (5.32)
Dn

Since L*¥)(a) 0 as a — 0, Cga)(a) it D(fj, fx) as a — 0. Also, by

definition,

—log(a)

k

—log(a)
k
CL(’“)(a)—l < 7,(k) (a) — 1

therefore the desired result follows from taking limsup and liminfs.
The last statement follows from the fact that for | # k,

0 > L., X"
X anog fiulX™)

— —D(fk, fl) < 0. (533)
|

Now consider the first time any of the posterior probabilities falls below a.

Define,

L(@) = inf{n>1:minp® < a(l+a)™
(a) in {n_ min p; <a(l+a)

— in L)
min L% (a), (5.34)

.8.-P;
so that for any j, L(a) == oo as a — 0, and

L(a) aﬂj 1

—log(a) maxzem—{j} D(fj, fr) (5.35)

For a fixed small threshold, the time it takes to deliver a weak decision is inversely

proportional to the KL distance from the true distribution to the farthest one.
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For strong (MSPRT) decisions, the decision time is inversely proportional to the

KL distance from the true distribution to the nearest one [11].

It is also possible to reject a subset of the original set of hypotheses at once.

Let R be a proper subset of M. Define

L?(a) = min {n : Zpg“) <a(l+ a)_l} . (5.36)

kER

We have the following lemma.

Lemma 5 Ifj ¢ R, asa — 0,

LR(G) a.s.-P; 1
—log(a) T minger D(fj, fx) (5:37)
If j € R, then L*(a) % 50 as a — 0.
Proof 9 Fizje M, j ¢ R. First,
m;fi(=") > (1+a)! 5.38
T fi(&") + D per e Se(@") T (1+a) (5:38)
> ker ThSe(2") -1
7 HRE) + S mefelan) T
D ker ThIk(@") 1
7 > iem mfi(z") <all+a)
& Y pP
kER
therefore
R , . i fi(x") _1}
L™ (a) < min {n >1: @)+ Yo T e (@) > (1+a) (5.39)

where the right hand-side is an MSPRT stopping time whose asymptotics is in-
versely proportional to the minimum KL distance from f; to the nearest fi,, where
k € R. Therefore, as a — 0

LR(CL) a.s.<-]P’j 1
—log(a) — minger D(f}, fx)

(5.40)
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Also, for any k € R, L®(a) > L% (a) and therefore L*(a) > maxzer L*¥) (a):

L*(a) L®(a)
—log(a) ker — log(a) (5.41)
a.s.-P; 1
> max DU o (5.42)
- ! (5.43)

minger D(fj, fi)
using (5.35). The second statement follows from tha fact that if j € R, then

L*(a) > LY(a).

This leads to first time when the combined posterior probability of any r of
the M hypotheses falls below a predetermined level. Recall (Section 5.3):

L.(a) = min {n >1: pr < a(1+ a)™" for some r-subset R} . (5.44)

kER

Theorem 8 For any j € M, and any r < M,

Lr(a) a.s.-P; . -
—log(a) — D(f.77f[.7]M—'r) (545)
where
D(f, fin) < Dy, fij12) < - < DS, fijlas) (5.46)
is an ascending order of {D(f;, fx), k € M —{j}}.
Proof 10 The proof follows from the fact that
_ : R
L.(a) = Rcﬂ:ﬂ?ﬂ:rl/ (a) (5.47)

by using Lemma 5.

In the special case of r = M — 1, Ly 1(a) is exactly the the first time one of

posterior probabilities exceeds (1 + a)~', i.e. an MSPRT final stopping time:

LM_l((J,)

a.s.-IP;
Tlogla) D(fj, fij1.)-

(5.48)
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5.4.2 Error probability associated with a weak decision

Consider the weak decision-rule (L, v)

L(a) = min{n >1: minp® 14a)t
(a) min{n > 1: minp,” <a(l+a)"}
vie) = {keM:p® (X)) <ala+1)"1}
which stops as soon as the posterior probability of one of the hypotheses falls
below a(1 + a) !, and rejects the corresponding hypothesis.

Under H;, the weak decision rule makes an error is H; is among the rejected.

It is easily verified that

mB;(v(a) = ) < 7= > mBk(v = j) (5.49)
therefore
Pij(v(a) = j) < a/m;. (5.50)

Also, summing over j on both sides of (5.49) yields,

a

P=P — ) <
rob(v(a) = u) < T+a

(5.51)

where w is the correct state.

For the first step of the two-step test of Section 5.3, the above steps apply:

Pi(j e R) < — (5.52)
Ty
a
P,; = Prob R < . 5.53
1= Prob(u € R) < 1~ (5.53)

5.5 Mismatched M-ary sequential probability ratio tests

When the correct hypothesis is mistakenly rejected, the second stage of the two-

step reduced-complexity test introduced in Section 5.3 is a mismatched MSPRT.
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For perfect models, the asymptotical optimality of the MSPRT with respect to
the average sample size was first established by [11]. Dragalin, Tartakovsky and
Veeravalli [59] strengthened this result by showing that the optimality is true
for any moment of the sample-size. The authors asked how the MSPRT would

perform under incorrect models in [11].

5.5.1 MSPRT under model mismatch

Definition 1 (MSPRT [11]) For j € M, let
N9(a;) =inf{n:p¥ > (1 +a;)"'}. (5.54)
For the model (5.1), the M-ary sequential probability ratio test

'YMPSRT(a) = (N, fl,) (555)
with parameters a = (ag, @1, ..., ap-1), 0 < aj <1 has

N =min ND(q;)). @ = 2 5.56
min NY(a;), @ = argmaxpy (5.56)

Now assume that when the nature selects index u = 0, the true probability
density function of the observables is fo, such that

Log 220 **%0  & ey S0, (5.57)

n o8 (X

and the model mismatch is mild enough that

D(fo, fo) < I,gigD(J;o,fk), (5.58)

i.e., the true density resembles the hypothesized density for © = 0 more than any
other model hypothesized density in the KL sense. Following the steps of Lemma
5.1 of [11], one can show that

a.s.-Pz

Nj(a;) —° 00 as P,g—0 (5.59)
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Figure 5.1: The average path of the posterior probability vector for the first 75
steps, averaged over 250 experiments, when X; ~ ®(ji1,0.5), g3 = 6 = —0.05.

The average path is longer compared to the no-mismatch case.
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Figure 5.2: The average path of the posterior probability vector for the first 75

steps, averaged over 250 experiments, when X; ~ ®(j1,0.5), fi; = —0.22.
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where P,o =Pz (4 # 0).

With these above assumptions, the following theorem presents the behavior
of the stopping-time and the error probability of the MSPRT in the asymptote
of small decision error probability. Part (a) of the theorem is related to the

final-stopping time of the two-step test described in Section 5.3.

Theorem 9 Consider the family of M-ary sequential probability ratio tests
'YMPSRT(G) = (N7 ’&) (560)

with parameters a = (ag, ay,...,ap—1), 0 < a; < 1, VI. Under the assumptions of

Section 5.3,

(a)

—logay . ~ .
A BN ety DU fi) = Dldo, o), (5.61)
(b)
]jminfM >1-— . D(JiOafO) _ . (5.62)
R0 —logag minge 0y D(for /1) — D(fos fo)

Proof 11 The proof is presented in Section 5.6.

Example 2 (Three Gaussians) Let ¢(m, s?) be the density corresponding to
the Gaussian distribution with mean m and variance s>. Consider the MSPRT(a)

based on the three-hypotheses model
Hi Zf:QS(/j,Z',U?), Z:051,2

where pg = —0.6, . =0, pg = 0.3 and 0? = 0.5. The KL distances between the

densities are

D61 %), 6(,0%) = L2 5E (5.6
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Figure 5.3: The barycentric coordinate system for three hypotheses. The poste-
rior probabilities are represented as distances from a point inside the equilateral

triangle to each of the three sides.
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Table 5.1:  Stopping-time under mismatch: H, : f = ¢(-0.3,0.5),
Hy : f = ¢(0,05), Hy : f = ¢(0.6,0.5) where ¢(m, s?) is a Gaussian density,
mean 7, variance s2. The true distribution is f; = ¢(6,0.5). For all the cases

below f; is closest to f; = ¢(0,0.5) in the KL sense. MSPRT(a) with a; = 0.001.

6 | EaN)gw | P | ()| DU fo) = DU )
0.01 77.4 1.38 x 1073 0.089 0.096
0.005 79.6 1.38 x 1073 0.087 0.093
0 82.0 1.46 x 1073 0.084 0.090
-0.005 84.5 1.56 x 1073 0.082 0.087
-0.01 87.2 1.77 x 1073 0.079 0.084
-0.02 93.4 2.43 x 1073 0.074 0.078
-0.05 1186 | 8.72x 1073 0.058 0.060

Figure 5.1 shows the average path of the posterior probability vector for the first
75 steps, averaged over 250 experiments, when X; ~ ¢(ji1,0.5), fi; = 6 = —0.05
as well as when X; ~ ¢(u1,0.5) in the probability simplex, where the posterior
probability of each hypothesis is represented as the perpendicular distance from
the edge of the triangle facing the vertex with the hypothesis label (Figure 5.3).
Under the mean mismatch ji; = —0.05, the average path is tilted toward the
vertex Hy, indicating that the true probability density function f1 is close to fo
that the model (f;) indicates.

Table 5.1 shows the stopping time of an MSPRT(ag, a1, as) with ag = a; =
as = 0.001 when the distribution of the observables has a density ¢(d,0?), for

various values of mean mismatch §.
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5.5.2 Performance limits

Fano’s inequality provides a lower bound on the average probability of decision

error when distinguishing between multiple hypotheses. Fano’s inequality implies:
H, (P,) + P.logy (M — 1) > H (u|X") (5.64)

where H (-) is the Shannon entropy and Hs(p) = —plog(p) — (1 — p) log(1 —p) is
the binary entropy function. Theorem 10 presents a limit on the performance of
hypothesis testing by relating the expected sample sizes to decision error proba-
bilities in the asymptote of small decision error probabilities. The proof, detailed

in Appendix, uses Fano’s inequality (5.64).

Theorem 10 Let (N, @) be a sequential test such that N — oo almost surely
under any hypothesis as P, — 0. Then, for any given ¢ > 0 and small enough
Pe)

M—1
M (mmD fis i) + ) E;N > —log P, — . (5.65)

j=0

Corollary 10.1 For any sequential test (N, u) such that N — 0o a.s. under any
hypothesis as P, — 0,

—log P,
li D :
lf.fi%p EN = jreMis (Fs: f)- (5.66)

For the MSPRT with (possible) model mismatch {f;,j € M},

.. —logP 7
h]rj?_l)lgf N >]kEMk¢] D(f;, fs) — 2D(f;, f;)- (5.67)
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5.6 Proof of the error exponents theorems

Lemma 6 {X, € F,,n € N} be an identically distributed sequence of random
variables with probability density function f;. Let f; be another probability density
function defined with respect to the same dominating measure. T be an {F,}-
stopping time with B, T < oco. For b > 0,

(o =07) =

Proof 12 Since ET < oo,

P (G =)
Br-cBs () 277 =)

by using Markov’s inequality [41].

Proof 13 (Proof of Theorem 9) (a) Noting that

1 —1
Ny(ap) = min {n S logro(X™) > (7)1g do } , (5.68)

and that as n — oo

~logn(x™) " win DUf ) - D(fo f) (5.69)

we have

—log agy

Jim. No(an) zxgng(fo,fl) — D(fo,fo)  a.s.-Pj,. (5.70)

Since Ni(ag) — oo as P, — 0, we have

. —logao . ~ ~ ~
1_1):90 N@) - Igél(l)lD(fO,fl) — D(fo, fo) a.5.-Pj. (5.71)
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The proof of Theorem 5.1 of [11] is valid under an incorrect model as long as

D(fo, ;) — D(fo, fo) > 0,Vj # 0 the sequence
{-(1/N)log(ao), a — 0} (5.72)

is uniformly integrable under Py,, and therefore a.s.-convergence implies conver-

gence in the mean:

. —logay . - _
B Gy = i Do f) = Do o) (5.73)

(b) Let dp = mingg D(fo,fl) and D§ = min;y D(fo,fl). By part (a) of the

theorem (a.s.-convergence and uniform integrability) we have

—logag
P: (|1 . 74
f"(‘N(DS—(SO) ‘>e)—>0 as ag — 0 (5.74)

By the same reasons,

1 fo(x™)
P (‘ Vo, log &) 1l>e|] =0 as ag — 0. (5.75)
Consequently, for small enough ay,
fo(xX™M) 5
P;: | |log=——= — (—loga > € 5.76
1 fo(XN) —logag €
= P; 1 — .
F ( Noo B f(x™) T N(Ds —6)| ~ 5N (5.77)
1 fN()(.XN) €
< P; 1 -1 > —=
= Th ( Noo B hx™ |7 20N
—log ag €
P: || -1 >—— )
1 (| vy~ > o) (>78)
< € (5.79)
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Therefore, for given € > 0 and small enough ay,

fXY)
Feo=Fs (Z o o) 2% 1)

1£0

fi(xX™) _apt wo)

< E P > :
10 fo fo(XN) M m

(
= Y'p, (log ;é();z)) +log jﬁzgig > —logag +log (Mﬂ—ir))
(

(
fl(XN) 6() o
on 7 ey ~ o8 (75 ) 2 ~lowen 10 (572 )

IA
N
o0

140
+e€
fl(XN) DS — 250 7T0/(M — 1)

< 5 - > — — 7
< opy (e 20 > (e (tosn) +tog (2L

1#£0 0

+e€

M __S0_ 1-— __%0

< 3 ag) B 4 Me= (M — 1)~ 2(ag)" %% + Me

70 M0 o

that yields

—log P, > (1- do n const. .
—logag Dy — 4y —logag

The following lemmas are used to prove Theorem 10 of Section 5.5. For

k,j€{0,...,M —1}, let

— ™ A

_ 1 L firx")
o)’ - . (5.80)

Tk
(x log 7% 4+ 1

Tk (Xn)
1=0,l#£k

Lemma 7 Under the assumptions of Section 5.3, for any k, j,

— 108 (re(X™)) “ min D(J;, ) = DU(f5 ) (581)

as P, — 0.

130



Proof 14 Fiz j. Since N = oo a.s.-P; as P, — 0,

_%10g (re(x™)) :——log (Zexp — Ny (X )))
Ik

where

W o= Ly LEY) 1LY
pa(XT) = glos T+ g loe emy ~ W 8 % oM

— D(fj,fl) _D(f]afk)

a.s.-P; as P, — 0.

Lemma 8 For any j,

Jim 7, (xM) =0 as-P;. (5.82)
Proof 15 Follows from Lemma A.2, by the fact that
1 .
— 108 (r;(X™)) = min D(f;, f)) > 0 (5.83)
and that N — oo a.s.-P;, as P, — 0.
Theorem 11 For any given € > 0 and small enough P,,
M-1
> o <rlr;£1n D(f;, f)) + e> E;N > —log P, —e. (5.84)
. ]
7=0
Proof 16
M-1
H(ulx")=E (Z —Pr(u=1iX")log Pr(u= i|XN)>
i=0

where Pr(u = i|X"N) is the posterior probability of u = i given that X~ is ob-

served. Recognizing that

mifi (X) 5.85
ZMOIWJfJ (XN) (>:85)

1

= (1+rnx")", i=0,..,M-1,

Pr(u = i|X")
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we have

) E(:: logl(i 4;7(“)({-’]5;))) (5.86)
) ngj f‘jzzllogl(i tz}({fj))) (5.87)
_ ]:W]-Ej 1‘21 gl(i tz}({?}g;))) (5.88)
. z:leEj 1og1(1+ tjzifj”) (5.89)

By Lemma A.2, for ¢ > 0 and small enough P,, there erists F' € Fy such that
mPj(F) >1—e€ and

exp (—=N(D(f;, fyn,) + ©))
<r(xM) < exp(=N(D(fj, fyp) —€) onF. (5.90)

We have

log(1+ ) 3, 3
_ .Y 91
e =r 27“ + o(r°) (5.91)

therefore for small enough P,,

E, <10g1(1+4;j2(:§;v))> > <1°g1(1+22((1§;v)); F) (5.92)
> E; (ry(X")—¢F) (5.93)

> E; (rj(XV);F) —e (5.94)

> E](exp —N(D(f;, fiin) + €)); F) — € (5.95)

> E; (exp(=N(D(f;, fij,) +€))) —2¢  (5.96)

(5.97)

v

exp (- (D(fj, fin) +€) ]EjN) — 2¢
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yielding

M-—1
H (ulxV) > Tjex D(fj, fy1,) + €) E;N) — 2¢ (5.98)
= M-1
> exp ( Z 7 (D(f;, fin) + €) E; N) (5.99)
7=0

Now, for small enough P,,

Pe(—log(Fe) + 1+ logy(M — 1))

= —F,log(P,) — (1 = P.)(—P.) + P.log,(M — 1)

> Hy(P,) + P,logy(M — 1) (5.100)

> H(u|x™) (5.101)

> exp ( Z m; (D(fy, fin) +€) By N) (5.102)
j=0

where (5.100) follows from the fact that P, > —(1 — P,)log(1 — P,) for small

enough P, and (5.101) follows from Fano’s inequality. Operating with log(-) on
both sides and dividing by log(P,) < 0,

<
L

log (— log(P. . -1
- og ( ogl(()g;e—l— const.) < (log(P.)) 7 (D(f;, fij.) + €)E; N. (5.103)

J

Il
)

Since —log P, — o as P, — 0, we have, for small enough P,,

M-1

1t e < (~log(P) ™" 32 mi(D(fy. fig) + OB N, (5.104)

J=0

and the proof is complete. M
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CHAPTER 6

A robust trellis coded-modulation solution for

powerline communications

Powerline communications is a promising technology for next generation home-
networking that promises to deliver high-rate, high-quality multiple simultane-
ous home entertainment streams and other digital content throughout the home
using the powerline channel. The physical layer communication technology is
rate-adaptive orthogonal frequency division multiplexing (OFDM), matching the
transmit signal to the channel conditions that exist between the source and des-

tination nodes.

In its ideal form, the OFDM medium is a collection of parallel (available for si-
multaneous use), non-interfering (ICI-free), independent, flat, stationary, additive
white Gaussian noise (AWGN) channels with different channel gains. The carrier
gains of a typical powerline communication channel is stationary for a duration
that is much longer than the symbol duration for a megabyte-per-second com-
munication scenario, therefore the transmitter side has access to reliable channel
state information. The powerline communication channel, however, suffers from
intermittent phase errors and ambiguities caused by the interference from many

devices operating along the power line.

In this chapter we study an efficient forward error-correction coding strat-

egy for powerline channels with periodic phase errors. A coding strategy that

134



can deliver the Avalanche data transmission goals is rate-adaptive trellis-coded
modulation across tones. Trellis codes have low-latency, simple decoding and are
amenable for rate adaptation. Trellis-coded modulation (TCM) was introduced
in [22]. A rate-nonadaptive trellis~coded OFDM was proposed for the European
(wireless) digital audio broadcasting (DAB) standard [58].

6.1 Structure of trellis-coded modulation across tones

An OFDM symbol of duration 7" may be regarded as a vector of () available tones
or subcarriers, received with no intercarrier interference (ICI) and no intersymb ol
interference (ISI) under ideal channel conditions. A subset of the available tones
provides the bandwidth for data transmission for a specific home entertainment

application. Some tones are possibly reserved for channel estimation.

For uncoded transmission, the placement of modulation symbols over the
available tones has no bearing on the performance as long as rate assignment
over the tones is the same- since there is no memory in the modulation. How-
ever, coding introduces memory and the placement of symbols from a codeword
sequence plays an important role in decoding delay and error performance if the
channel is time-varying. At the heart of the envisioned TCM encoder is a fixed
core TCM which consists of a rate-2/3 systematic feedback convolutional encoder
driving an 8PSK constellation with natural labeling. Two information bits b; and
b, cause a state transition and the convolutional encoder outputs a nonsystematic

coded bit by. The three bit label byb;by describes the angle 27 (4by + by + bg) /8.

This core TCM delivers the minimum-rate transmission, 2 bits/symbol. For
higher rates, uncoded bits are used to expand the basic constellation through

set partitioning. Figure 6.1 illustrates the proposed TCM phase encoder. The
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Figure 6.1: Trellis-coded modulation across OFDM tones.

exact structure of the TCM is shaped by many factors, including the nature of
the variation of the channel transfer function, the accuracy and complexity of

channel estimation, the need to minimize decoding delay.

6.2 Differential phase modulations: Uncoded performance

The phase components of the proposed coded streams are signaled differentially
to avoid the need for locked carrier acquisition circuits, thereby simplifying the
receiver design. The basic idea behind differential phase signaling is the cumu-

lative encoding of the information-bearing phase [34]. For MPSK modulations,
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the transmitted signal z ,at discrete symbol instant £ , has the form
2y = ) Dz 6 (6.1)

where ¢, is the uncoded phase at time t.

A discrete-time additive white Gaussian noise (AWGN) channel with an un-

known channel carrier phase # can be represented as
yr = &%z + mp (6.2)

where £ is the discrete time index and ny is the equivalent complex valued i.i.d.
AWGN sample at time k. The carrier phase is assumed to be constant and
uniformly distributed over L symbols over which differential detection may be
performed. The simplest case of differential detection is using L = 2 consecutive

symbols. For decision on the uncoded phase ¢,, the differential detector compares
ykyz_l = eI 4 (ejekxk + nk) n};_l + (e‘jek*1x2_1 + nk,l) N (6.3)

to candidate exp(j¢) values. Once the differential detection is performed, the
equivalent additive noise does not have Gaussian statistics. Moreover, it is cor-
related across samples and not accounting for this correlation results in a perfor-
mance penalty: Uncoded 4DPSK requires 2.2 dB and uncoded 8DPSK requires
2.5 dB more to achieve BER = 1le-5 than their coherent counterparts. Noise-

predictive filtering may gain a typical of 0.5-1 dB.

It is possible to involve as many symbols in the differential detector as there
are in a period of constant channel phase. In fact, for a general N-sequence
over which the phase is constant, the maximum-likelihood (ML) test for uncoded
phases is given by

. . o 2
(gbl, vy QSN) = T8 min Z ‘ymy}; — I i 9| (6.4)

1y s®N
1y 1<m<n<n
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This decision consists of joint metrics from all pairs of received symbols in the
observation intervals. There are N(N — 1)/2 such pairs. As the observation
interval (V) grows, the performance of the non-coherent N-symbol differential
detector approaches that of a coherent detector with perfect knowledge of the

phase, i.e., the differential detector learns the channel phase.

6.3 Trellis-coded differential phase modulations

Trellis-coding for differential phase modulations usually takes the form of a stan-
dard PSK-TCM concatenated with a cumulative phase encoder. Since memory is
introduced in the phase modulation, codeword maximum-likelihood metrics are

not additive over trellis branches, standard Viterbi decoding is suboptimal.

There are two main approaches to decoding a trellis-coded DPSK sequence:
Trellis-based decoding and tree-based decoding [57]. Trellis-based decoding relies
on the Viterbi algorithm to prune the set of hypothesized paths, either with an
additive-suboptimal path metric or with a non-additive suboptimal metric. Tree-
based algorithms use the optimum metric for an exhaustive or sparse search of
the tree of hypothesized paths. The complex nature of the stack operations (such
as sorting and backtracking) makes the tree-based algorithms better candidates
for values of N higher than the constraint length of the TCM. For such values
of N (e.g., N=10, 20), the simplicity of Viterbi pruning is clearly outweighed by
the number of survivor paths retained per state. Trellis-based schemes are more
suited to small values of N, typically up to 5. For this reason, a trellis-based

low-delay decoding approach is proposed for the receiver.

For N-symbol differential detection of a k bits/symbol trellis, the Viterbi

decoder considers for each state, k¥ ~! merging paths and uses a metric that is a
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Figure 6.2: N = 3 decoding for a 4-state DPSK-TCM.

linear combination of joint metrics

R 2
‘ymyfz — el iz

(6.5)

where m and n belong to any two symbols from the past N symbols. The full

metric for an N-symbol update includes all N(N — 1)/2 such terms:

. —m 2
S [ - T (6.6)
1<m<n<n
With the full N-symbol metric, a k& bits/symbol trellis with S states requires
1 N(N -1)
— LN .4 6.7
k(N —1) ( 2 (6.7)

individual metric computations. Figure 6.2 illustrates the trellis update of a 4-
state code in the case of an N=3-symbol differential detection. Each of the four

merging paths is updated with a metric of the form

2
+

2
+

2
y2k+1y;k_1_$2k+lx2k . (6.8)

y2ky;k_1 — Tog

2 _ 1
0 = Yok+1Ys, — T2k+1

The 2-bits/symbol 8PSK TCMs of Ungerboeck [22] are selected as a baseline
to asses the complexity-performance trade-off of multisymbol differential detec-

tion. Figure 6.3 displays the BER performance of TCMs with S=64, 16 and 8
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state encoders with N=2, N=2 and 3, and N=4 symbol differential detection,
respectively. Units of decoding complexity are indicated in parentheses. The
pair (S=64, N=2) offers the best trade-off among the candidates. The 16-state
TCM with N=2 differential decoding outperforms uncoded 4DPSK by 1dB at
BER=10"3, and by 1.5 dB at BER=10"*.

6.4 Performance under channel-phase tracking errors

A second set of considerations on the design of the trellis code arises from the fact
that the stationary assumption of channel transfer function is not true in practice.
Consequently, channel gain estimation is not error-free. Of most importance to

the TCM-based modem design is the phase of the channel.

Standard coherent trellis coded modulations are known to be more sensitive
to phase errors as compared to their uncoded counterparts of the same rate as
a result of the constellation expansion leading to a smaller angular separation.
Experimental measurements indicate that the transfer function of powerline sub-
channels is subject to periodic state change, resulting from a superposition of
multiple periodic behaviors with period 120 Hz, corresponding to several hun-
dred OFDM symbols. Although channel gain amplitude changes are tracked
easily and accurately, such is not the case for the phase, especially on a symbol-
by-symbol basis. A channel amplitude change is almost certainly accompanied

by a channel phase change.

The simplest model for the periodic behavior in the phase of the channel is
a phase change, for a single symbol, every T'=260 symbols, which is expected to
degrade performance when overlooked at the receiver. The most severe phase

change for a set-partitioned PSK-TCM is a phase reversal since cosets of such a
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Figure 6.3: Bit error rate performance of 2 bits per symbol 16 and 64-state
DPSK-TCMs for N = 2,3 and N = 3-symbol differential detection, respectively.
For reference, bit error rate performances of coherent and differential uncoded

4PSK are provided.
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code have 180 degrees phase symmetry.

Apart from the periodic change of transfer function behavior, the phase of
the channel has small fluctuations (typically 5-10 degrees) on a per symbol basis.
In our simulations, these fluctuations are modeled as independent phase shifts

drawn from a uniform distribution of a predetermined maximum magnitude.

Figure 6.4 displays the performance degradation in 2 bits/symbol trellis-coded
and uncoded differential modulations when subjected to a phase change every 260
symbols. Both the coded and uncoded schemes experiences an error floor, the
former at BER = 1072, and the latter around BER=1/T = 3.8 x 1073, both
of which are too high for practical purposes. The performance degradation for
uncoded 4DPSK scheme is simply due to two unreliable symbols produced by
differential detection every 260 symbols. For the coded TCM scheme, Figure
6.5 shows an error event that is due solely to the channel phase reversal that is

unaccounted for.

A channel phase reversal produces two consecutive phase-difference rever-
sals when differential-detection is used. With unit energy PSK constellations,

a phase-delta reversal is a squared-Euclidean distance shift of d> = 4. Conse-

2

quently, if the minimum squared Euclidean distance of the code, dZ;,, is less
than 2d? = 8, the code may exhibit high error floor under differential detection.
No 2 bits/symbol standard 8PSK TCM with 64-states (or less) has a minimum
squared-distance greater than 8. With lowering the rate of transmission on the
phase to 1 bit/symbol one can achieve greater minimum Euclidean distances
thereby avoiding an error floor, however, the coding gain is entirely wiped out

(Figure 8).
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Figure 6.4: 16-state trellis coded and uncoded 2 bits per symbol DPSKs under

periodic phase reversals (PPRs) with period 260 symbols.
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channel phase reversal

codeword sequence: 000
differentially encoded: 000
received: 040

differentially detected: 044

d([044],[000])=8
d([022],[262])=6

Figure 6.5: An error caused by the channel phase reversal. Even in the absence
of receiver noise, the phase reversal causes an incorrect sequence appear closer to

the received word.
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6.4.1 Erasures Decoding

The sensitivity of trellis-coded phase modulations to sustained carrier-phase off-
sets has been their major drawback [22]. Similar performance degradation is
experienced even with periodic phase errors with a period large compared to the
constraint length of the code. However, the knowledge of the location of inter-
mittent phase errors may help restore coded performance when erasures decoding

is employed.

When the decoder is provided with information that a set of received symbols
is unreliable, it may choose to declare an erasure, that is, simply ignore those
received values when detecting a codeword. Necessary conditions to maintain

coded performance when using erasures-decoding are:

e The erased rate of the encoder stays strictly less than 1/1. For example, the
2 bits/symbol 8PSK TCM that is being considered cannot deliver coded
performance under erasures more often than (and including) one erasure
every three symbols. In other words, if one out of three symbols is erased,
then the decoder has 34+3+4-0=6 bits to rely on for 2+2+2=6 bits, which is

uncoded transmission.

e The set of erased symbols does not wipe out a constraint length of the code.
If as many symbols as the constraint length of the code are erased, those
symbols cannot be recovered reliably. The symbol error rate performance
will be above K/2T where K is the constraint length of the code and T is
the period of the K-erasures. Such a symbol error-rate is readily available

by uncoded modulations under the same erasures pattern.
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Figure 6.6: Performance of 32-state 2 bits/symbol 8DPSK-TCM under periodic
phase reversals of period 260 symbols. Erasures decoding with and without in-

terleaving on the traceback symbols.
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Figure 6.7: Trellis-coded interleaved differential MPSK (MDPSK) and its decod-
ing.

6.4.2 Symbol interleaving

With N=2 differential decoding, a channel phase error of magnitude A¢ affects
two consecutive symbols, producing angular mismatch of (—A¢, A¢). Before an
erasures-decoding at the receiver, interleaving may help to separate these consec-
utive phase difference errors (Figure 6.7). Figure 6.6 displays the performance
of the 32-state 2 bits/symbol 8DPSK TCM under periodic phase reversals of
period 260 symbols and with different strategies to mitigate the performance
degradation. The interleaver for this application is chosen to have maximal cir-
cular spread for its blocklength. The circular spread of the interleaver is defined
to be the smallest separation between adjacent points when interleaved, where
adjacency is defined on a circle. Let m denote the interleaving permutation on

integer indices between 0 and N — 1 (inclusive). The circular spread is defined
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as:
circular spread = max {|7 (i) — 7((i + 1)modN)|} (6.9)
A hand-crafted maximal circular-spread (6) interleaver of length N=26 is

7 10,18,9,24,17,11,22,13,21,1,7, 16, (6.10)

8,19,0,6,23,2,15,5,12,3,14,20,4
with the corresponding deinterleaver

1t 14,9,17,21,24,19, 15,10, 12,2,0,5, 20, (6.11)

7,22,18,11,4,1,13,23,8,6,16,3

It should be noted that the interleaver (6.11) and the deinterleaver (6.12) cannot

be interchanged. The deinterleaver (6.12) has circular spread of only 2.

6.5 High-rate transmission using M-DAPSK constellations

For rates higher than 2 bits/symbol, not all information bits will be encoded on
the phase dimension. The amplitude dimension of the MDPSK constellations is
available for information transmission. The simplest 3 bits/symbol solution that
builds on the 2 bits/symbol phase-coded system uses an uncoded ring-identifier
bit. The 2x8DAPSK constellation is illustrated in Figure 6.8. The rate-2/3
8DSPK TCM selects angle byb1by and the uncoded bit by selects the ring. The
parameter A € (0, 1) controls the tradeoff between error protection for the coded
bits (b1be) and that for the uncoded (bs3) bit. Larger values of A3 provide more
protection for the uncoded bit and less protection for the coded bits. For the
BER range of 107* to 1073, A\ = 0.83 is approximately optimum in delivering the

smallest average BER.
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Figure 6.8: Unit energy 16-DAPSK constellation using two 8DPSK rings.

Figure 6.9 displays the BER performance of the 3 bits/symbol scheme that
uses a 16-state and a 64-state encoder in comparison to uncoded 8DPSK as well
as coherent 8PSK. The use of an uncoded dimension results in no coding gain.
The desirable coherent-phase performance is 2 dB away. This simple experiment
taught us the fact that amplitude dimension should be coded as well as the
phase dimension to realize coding gain for transmission of rate higher than 2

bits/symbol.

The set-partitioning of the two-ring composite constellation depends on the
relative magnitudes of the distance between the two rings and the distance be-
tween inner PSK points. For A\? > 3/4, the set-partitioning SP-I (Figure 6.10
does yield an uncoded ring bit, since the each of the final cosets consists of one
point from the outer ring and one point from the inner ring. Note that SP-I is a
valid set-partitioning that would produce a coding gain even with simple trellises
using coherent phase modulation. However, differential phase encoding costs an
immediate 1-2 dB. Moreover, this set-partitioning is correct for high values of
A, i.e. constellations that favor the amplitude dimension over the phase. For
A = 0.83, SP-I is not optimal. For \?> < 3/4, the uncoded bit produced by the

set-partitioning is not the amplitude bit; it is by, which selects the half-plane on
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Figure 6.9: The performance of TCM + 16DAPSK with an uncoded amplitude
bit.
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Figure 6.10: Set-partitioning of the two-ring 16DAPSK constellation for

A > /3/4 = 0.866.
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Figure 6.11: Set-partitioning of the two-ring 16DAPSK constellation for

A < /3/4 = 0.866.

152



0110
0111

® 0100‘ ‘0010
0101 @ o

0001

oo ee.
o © 7o
O

b, b,b, by

Figure 6.12: Set-partitioning (SP-II) labeling of the 16DAPSK constellation: b;

is uncoded.

both circles. Figure 6.11 displays SP-1I, the correct set-partitioning to be used
for lower values of . Despite the fact that this would produce a more balanced
coded and uncoded bit protection, the coded bits map a nonstandard 8-point
constellation (Figure 6.12 that is not amenable to differential phase modulation.
Having exhausted the scenarios based on joint optimal coding of amplitude and
phase dimensions, we focus our attention to a separate-encoder approach for am-
plitude dimension. This approach is most attractive for its promise to develop

the design independently of the already existing phase-dimension transmission.

6.5.1 Separate coding for amplitude and phase dimensions

The already existing phase-code provides integer rate transmission with two
coded bits, and more with the standard set-partitioning around the circle. The
amplitude lives on the positive real axis, therefore it may be encoded via standard
PAM codes [22] that have one bit per symbol constellation expansion. This leads

to, for example, using 8 different rings for 2 bits/7" on the amplitude. With such
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Figure 6.13: 2 bits/27 amplitude tranmission using an 8point constellation over

two symbols.

an expansion, the amplitude dimension gets very crowded very soon. Moreover,
the amplitude code, being decoupled from any contingent phase errors, is more
robust. We propose a half-a-bit-per-symbol expansion via one bit expansion over

two symbols.

6.5.1.1 Coding the amplitude dimension over two symbol intervals

The concept of multiple-symbol coding is best explained through an example.
With 1 bit/T of expansion (redundancy), 1 bits/T" can be transmitted using 2
bits i.e. 4 different amplitudes. Instead, we propose to encode 2 bits over two
symbols (which is the same rate) using 1bit/2T expansion, i.e. 8 different pairs

of amplitude levels over two symbol intervals.

Figure 6.13 shows the constellation for amplitude pairs over two consecutive
symbol intervals. The A-trellis encoder takes two information bits, f,f;, makes

a state-transition and outputs three bits, f5f; fo, say 110. Based on the mapping
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Figure 6.14: The 32-point constellation for 4 bits/27" transmission on the

A-dimension.

given in Figure 6.13, the radius of the current PSK symbol is scaled by d + a,
and that of the next PSK symbol is scaled by d + 2a. The transmission rate on
the A dimension is 2bits/2T, equivalently 1bit/T.

The 2 bits/2T transmission on the A-dimension is accomplished via 2-symbol
trellis coding on the 8-point constellation given in Figure 6.13. For unit sym-
bol energy (E;) in the transmission, the parameters a and d for this 8-point

constellation have to obey

8d* + 14ad + 11a® — 8 = 0. (6.12)

For R = 3 bits/T overall transmission rate and target average BER of 5 x
10™*, the parameters (a, d) = (0.445,0.548) have been found to be approximately
optimal. For R = 4 bits/T, the A dimension still transmits 2 bits/27". For this
rate, the choice (a,d) = (0.282,0.729) is approximately optimal at target average
BER of 5 x 107

The 4 bits/2T transmission on the A-dimension is carried out by 2-symbol
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Figure 6.15: The 128-point constellation for 6 bits/27 transmission on the

A-dimension.

trellis coding on the 32-point constellation shown in Figure 6.14. The bit labels
are detailed in the Appendix. For unit symbol energy (E;) in the transmission,

the parameters a and d for this 32-point constellation have to obey

d? 4+ 5ad + 8.75a* — 1 = 0. (6.13)

For R = 5 bits/T overall transmission rate, the A-dimension has 4 bits/2T
and the P-dimension has 3 bits/T. For target average BER of 5 x 107, the
parameters (a,d) = (0.242,0.375) have been found to be approximately optimal.
For R = 6 bits/T’, the A dimension still transmits 4 bits/27". For this rate, the
choice (a,d) = (0.174, 0.626) is approximately optimal at target average BER of
5x 1074,

The R= 7 bits/T and R=8 bits/T schemes use 6 bits/2T" transmission on A-
dimension using the 128-point constellation shown in Figure 6.15 over two consec-
utive symbol intervals. For R =7 bits/7T’, the parameters (a,d) = (0.117,0.306)

have been found to be approximately optimal for the target BER. For R = 8
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bits/T', (a,d) = (0.088,0.491) is implemented.

6.5.1.2 Coding the phase dimension

The P-dimension is coded through a core 2 bits/7 8PSK TCM that is differen-
tially signaled. The P-trellis encoder takes two information bits, byb;, makes a
state-transition and outputs three bits, byb1by, which map to the angle (4by +
2b; + by)27 /8 on the circle. For higher rates, uncoded bits are added as the most
significant bits in the natural labeling. For example, 3 bits/T on the P-dimension
is transmitted by the angle ((8bs + 4by + 2b; + by)27/16) (the 16PSK) where b3

is uncoded.

6.5.2 Putting it all together: The multitone operation

The proposed coded-modulation scheme uses two independent encoders, a 32-
state 2 bits/T encoder for the phase dimension, and a 16-state 2 bits/27T encoder
for the amplitude dimension. More bits are added by set partitioning expanded
constellations as discussed before. Based on the standalone performance of indi-
vidual rates, approximate SNR bins are developed for each rate at a target BER
of 5 x 107%. Table 6.1 displays a collection of these SNR bins. With a minimum
rate of 1 bit/T’, the proposed scheme does not signal on tones with SNR less than
7 dB.

The multitone encoding of data starts with the selection of a set of tones that
could support the transmission rate at a given error rate. Table 6.1 serves as a

guideline for achievable rates at BER of order 5 x 107%.

Once the tones are selected, both encoders start running across tones and over

again. The amplitude encoder determines the pair of amplitudes (for two symbol
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Table 6.1: SNR bins for different rates.

SNR [dB.] R
[7.0,10.0) | 1 bit/T
[12.0, 15.0) | 2 bits/T
[15.0, 19.0) | 3 bits/T
[19.0, 23.0) | 4 bits/T
[23.0, 25.5) | 5 bits/T
[25.5, 27.2) | 6 bits/T
[27.2, 30.0) | 7 bits/T
30.0, 33.0) | 8 bits/T
[33.0,36.0) | 9 bits/T’
[36.0, 00) | 10 bits/T

intervals) for all used tones one after another, and over again; whereas the phase
encoder determines the phase on these rings, for all used tones one after another,

and over again, cumulatively along the time dimension for each tone.

It is best to give an example: Consider only two tones, tone; with SNRy =
16 dB tone, with SNRy = 23 dB. Tone-1 supports 3 bits/symbol transmission
whereas tone-2 can signal at 5 bits/symbol. Suppose we are at the start of
the transmission and both encoders are at state zero. Suppose also that the
information sequence to be encoded is all ones, 1111111111, for simplicity. The

amplitude on tone-1 will be encoded as 2 bits/27 and on tone-2 as 4 bits/27".

Starting with tone-1, the encoder takes 2 information bits (11), transits to
state 12 with output label 7 of the 8-point constellation: For the next two symbols,

the amplitudes on tone-0 will be ds + a3 and ds + a3 with proper ds, as.

Tone-2 is next: The encoder takes 2 bits (11) to make a transition from

158



Table 6.2: Phase and amplitude encoding for two tones. Columns represent

symbols in time.

Tone-1 || Agexp(jdo) | Boexp(j(do + b2)) | A2exp(j(po + p2 + b4))
Tone-2 || Aiexp(jo1) | Biexp(j(o1 + ¢3)) | Azexp(j(d1 + ¢35+ ¢5))

state 12 to state 3, and outputs 6 (faf1fo = 110), the constellation label is then
fafsfafifo = 11110 where f,fs = 11 are two more (uncoded) information bits,
since tone-2 transmits 4 bits/2T. For the next two symbols, the amplitudes on
tone-2 will be ds + 3a5 and d5 + 3,5, with proper ds, a5, Back to tone-1, and the

encoder will transit from state 3 to state 13 with output label 13.

On the phase dimension, the initial phase reference for differential signaling
is set to zero. Tone-1 has 2 bits/T on the phase dimension, upon taking two
information bits (11), the encoder transits to state 9 with label 6, which is the
angle 6 x 27 /8 . This is going to be the angle on the first symbol of tone-1. Next
comes tone-2, which will have 3 bits/T (1 uncoded) on the phase: The phase
encoder transits from state 9 to state 31 with label 7 (111), together with b3=1
gives 1111 = 15 on the 16PSK, which is the angle 15 x 27/16 . Back to tone-1,
the encoder transits from state 31 to state 20 with a label 7, and the angle on
the second symbol of tone-1 will therefore be 6 x 27/8 + 7 x 27/8 = 5 x 27/8
(modulo 27), since it is added to the angle from the previous symbol. Now for
tone-2, encoder transits from state 20 to state 3 with output 6 (110), together
with an encoded bit 1 becomes 1110 = 14, and the angle for the second symbol
on the second tone is 15 x 27/16 + 7 X 27/8 = 13 x 27/16 (modulo 27).

Table 6.2 illustrates the two-tone OFDM grid over four symbols. The ampli-
tude encoder outputs the pairs of amplitudes (Ag, By), (A1, B1), (As, Bs), (A3, Bs)

in succession. The phase encoder outputs the phases ¢q, ¢1, ..., ¢7.
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At the receiving end, two Viterbi-decoding operations are performed, one
for the P-trellis, one for the A-trellis. The branch metric for the P-trellis is
the squared-Euclidean distance between the unnormalized differential detector

output and a unit vector with the angle on the branch:
i Tk
6 = |yryy | — eIk . (6.14)

The A-trellis is decoded independently from P-decisions, where the branch
metrics uses the most favorable angles possible for that tone over two consecutive

symbols:
. 2 . 2
62 = min — ety + min — eIty 6.15
A Sed Yok+1 2k+1 Soed Yok 2k ( )

For phase constellations of 8 points and higher, the discrete minimization
over the constellation angles can be approximated by a minimization over the

continuum of angles [0, 27) with virtually no loss in performance:

. 2 ) 2
05 ~ |Yons1 — € Topga | + |yor — 7Pmar] (6.16)

6.5.3 The proposed trellis codes
6.5.3.1 The 16-state A-encoder:

The 16-state basic A-encoder transmits at 2 bits/27 (Table 6.3). Each row
displays the set of four outgoing transitions, each in the form of (new-state,
output-label) corresponding to inputs read from the column bits (fof1). The
encoder is systematic therefore the output label for input (fof1) is (fof1fo) where
fo is the nonsystematic coded bit. For example, with the input 10, the code
transits from state 12 to state 1 and outputs the constellation label 4, which is
100 in binary, and therefore the two consecutive ring radii are (d,d + a) as seen

in Figure 6.13.
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Table 6.3: The 16-state A-trellis encoder.

state fofi
00 01 10 11
0 (0,0) | (2,2) | (7,4) | (5,6)
1 (9,1) | (11, 3) | (14, 5) | (12, 7)
2 (1,0) | (3,2) | (6,4) | (4,6)
3 (8,1) |(10,3) | (15,5) | (13, 7)
4 (2,0) | (0,2) | (5,4) | (7,6)
) (11,1) | (9,3) | (12,5) | (14, 7)
6 (3,0) | (1,2) | (4,4) | (6,6)
7 (10,1) | (8,3) | (13,5) | (15, 7)
8 (4,0) | (6,2) | (3,4) | (1,6)
9 (13, 1) | (15, 3) | (10,5) | (8, 7)
10 || (5,0 | (7,2) | 2,4) | (0,6)
11 (12,1) | (14, 3) | (11,5) | (9, 7)
12 (6,0) | 4,2) | (1,4) | (3,6)
13 (15,1) | (13,3) | (8,5) | (10, 7)
14 (7,0) | (5,2) | (0,4) | (2,6)
15 (14, 1) | (12,3) | (9,5) | (11, 7)

161




For higher rates, uncoded bits are added as most significant positions of the
binary representation in the label. For example, suppose the encoder is currently
at state 7. For R=7 bits/T, the A-dimension will transmit 6 bits/27". If the input
is fsfafsfofi = 10111, then the code transits to state 15 with output fof; fo=111
(7) and the full constellation label is f5fyfsfofi = 101111 (47).

6.5.3.2 The 32-state P-encoder

The P-dimension uses the standard 32-state Ungerboeck 2 bits/T" 8PSK TCM
([22]). The generators in octal form for this encoder is hy = 34, hy = 16, hy = 45.
Higher rates are achieved through uncoded bits that form the most significant

positions on a naturally labeled MPSK.

6.6 Conclusions

This chapter described our efforts and solution towards developing an efficient
coded-modulation solution for OFDM data streams. The proposed solution op-
erates with two separate encoders that encode bits describing the phase and
amplitude, respectively, of multi-ring PSK constellations in a fashion to ensure

balanced error protection.

The observed powerline channel has the most uncertainty in the phase com-
ponent, which could result in phase-estimation errors. The proposed solution is
prepared for this contingency in the best sense that the symbol-interleaved en-
coding and erasures decoding for the phase component can restore performance
under intermittent phase errors, with the receiver only requiring a localization of
phase-errors within two- symbol accuracy. Phase signaling follows a differential

rule to avoid carrier tracking at the receiver.
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The amplitude dimension of the multi-ring constellations is encoded with a
simpler encoder and decoded without any reference to phase decisions. This
property ensures that even in the presence of complete loss of the channel phase,
the amplitude bits can be recovered with no performance loss as long as the
amplitude tracking is correct. This could add some benefit to overall system
performance if the output of the RS block is carefully multiplexed in phase and

amplitude encoders.

For a collection of data streams describing a specific application, the proposed
scheme codes across tones, i.e. both encoder trellises run through the tones and
over again, while the phase mapping follows a two-symbol differential signaling

over time. This ensures a decoding delay of 1 OFDM symbol.

Even with a conservative differential modulation on the phase-component, the
proposed solution achieves coding gains by achieving a faster transmission rate

of 1 bit/symbol/tone over a similar uncoded scheme at the same error rates.
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