
UNIVERSITY OF CALIFORNIA

Los Angeles

Constructions, applications, and implementations of low-density parity-check codes

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical Engineering

by

Christopher R. Jones

2003

c
�

Copyright by

Christopher R. Jones

2003

i

The dissertation of Christopher R. Jones is approved.

Adnan Darwiche

Michael P. Fitz

Richard D. Wesel, Committee Co-Chair

John D. Villasenor, Committee Co-Chair

University of California, Los Angeles

2003

ii

To friends and family

iii

Contents

List of Figures vi

List of Tables x

1 Introduction to Low-Density Parity-Check Coding 1
1.1 A Brief Introduction to Low-Density Parity-Check Codes 5

2 Belief Propogation Decoding via Reduced Complexity Techniques 9
2.1 Derivation of the Full BP Variable and Constraint Node Update Equations 11
2.2 The Approximate-Min*-BP technique 15

2.2.1 Derivation and complexity of the A-Min*-BP technique 17
2.3 Numerical Implementation . 25
2.4 The UCLA LDPC Codec . 27
2.5 Conclusion . 29

3 Parity Check Matrix Construction for Error Floor Reduction 31
3.1 Cycles, stopping sets, codeword sets and edge-expanding sets 34

3.1.1 Cycle-related structures . 35
3.1.2 Cycle-free sets . 40

3.2 EMD and LDPC code design . 44
3.3 Construction of LDPC codes free of small stopping sets 46
3.4 Simulation results and data analysis 53

3.4.1 Block-length 10,000 LDPC codes 54
3.4.2 Shorter block lengths . 56

3.5 Conclusion . 57

4 The Universality of Low-Density Parity-Check Codes in Scalar Fading Chan-
nels 62
4.1 Mutual Information for Periodic Scalar Channels 65
4.2 LDPC Performance on Period-2 Fading Channels 68

iv

4.2.1 Code design for Period-� fading channels 70
4.2.2 Robust Codes Vs. Optimally Matched Codes 76
4.2.3 LDPC Period-2 Performance Compared to that of Serially Con-

catenated Convolutional Codes 78
4.3 Period-� Channels . 80
4.4 LDPC Performance on the Partial-Band Jamming Channel 84
4.5 Conclusion . 89

5 The Universal Operation of LDPC Codes in Vector Fading Channels 91
5.1 Excess Mutual Information as a Measure of Performance 94
5.2 LDPC MI Performance Under MAP Detection on 2 � 2 Channels 97

5.2.1 Gaussian, Constellation Constrained, and Parallel Independent
Decoding Mutual Information 100

5.3 Reducing the Complexity of Iterative Detection and LDPC Decoding . . 105
5.3.1 MAP Detector . 106
5.3.2 MMSE-SIC Detector . 108
5.3.3 MMSE Suppression Detector 111
5.3.4 MMSE-HIC Detector . 113

5.4 Performance Comparison of the Different Detectors 116
5.4.1 MI Performance of Different Detectors on parameterized 2 � 2

Channels . 116
5.4.2 SNR and MI Performance of Different Detectors in Fast Rayleigh

Fading . 119
5.5 Conclusion . 123

Bibliography 127

v

List of Figures

1.1 Matrix and graph descriptions of a (9, 3) code. A length 4 and a length
6 cycle are circumscribed with bold lines. 5

2.1 Partial bi-partite graph drawing that shows messages involved in the
update of outgoing constraint message ����� ��� 12

2.2 Partial bi-partite graph drawing that shows messages involved in the
update of outgoing variable message �

� ������ 13
2.3 A-Min*-BP decoding compared to Full-BP decoding for four different

rate 1/2 LDPC codes. Length 10k irregular max left degree 20, length
1k irregular max left degree 9, length 8k regular (3,6), length 1k regu-
lar (3,6). The proposed algorithm incurs negligible performance loss.
Note that rate 1/2 BPSK constrained capacity is 0.18 dB (�
�����). All
simulations were performed with the same initial random seed. 18

2.4 Non-linear function (�������) at the core of proposed algorithm and sin-
gle / double line approximations to the function that can easily be im-
plemented in combinatorial logic. 21

2.5 (a) BER Vs. 	�
������ , for different fixed numbers of iterations. (b) BER
vs Iterations, for different fixed 	�
����� 28

2.6 Architecture block diagram. 29

3.1 Matrix and graph description of a (9, 3) code. 35
3.2 (a) Extrinsic message (b) Expanding of a graph 37
3.3 Venn diagram showing relationship of ��� , ��� , !� and 	�� 39
3.4 Traditional girth conditioning removes too many cycles. 40
3.5 "$# can be replaced by two degree-2 nodes. 43
3.6 Replace "$# by its cluster in a cycle. 44

vi

3.7 Illustration of an ACE search tree associated with "�� in the example
code of Fig.3.1. � �������	� . Bold lines represent survivor paths. ACE
values are indicated on the interior of circles (variables) or squares
(constraints), except on the lowest level where they are instead de-
scribed with a table. 52

3.8 The Viterbi-like ACE algorithm. � �
������� 53
3.9 Results for (10000, 5000) codes. The BPSK capacity bound at ����
���

is 0.188dB. 60
3.10 Results for (1264, 456) codes.

The BPSK capacity bounds at ����
����� is -0.394dB. 61
3.11 Results for (4000, 2000) codes.

The BPSK capacity bounds at ����
��� is 0.188dB. 61

4.1 (a) Code performance on the �	� ��������� fading channel in terms of
SNR. (b) Code performance on the ��� �!������� fading channel in terms
of Mutual Information. Dashed lines indicate operation of a code op-
timized for the �"�#�!���$�%� channel, solid lines indicate operation of a
code optimized for the �&�'�!���(�)� channel. 67

4.2 Mutual information thresholds of �*�+�!���(�)� and ���+�������%� optimized
codes across �,�-�!������� fading (solid lines). Simulation results at BER
= �.�0/21 for length 15,000 codes realized from the corresponding degree
distributions. 75

4.3 Density evolution initial means (for even/odd positions in a period-2
channel) that provide an aggregate mutual information of 1/3 bit. 77

4.4 The maximum achievable rate for codes optimized for each instance in
a parameterization of the �3�4�!���$��� channel. Mutual information due
to initial means is held at 1/3 bit across the parameterization. 79

4.5 Mutual information and SNR in excess of that required for 1.0 bit per
channel use on 8PSK in �5� ��������� period-2 fading. Plotted points
are operating points of two LDPC codes and a serial turbo code each
of which is modulating 10,000 8PSK symbols per block at BER =
�.�0/26 . Curves left to right indicate excess MI and excess SNR for a
= 7 1.0,0.8,0.6,0.4,0.2,0.0 8 . 81

4.6 Four period-256 Fading Channels. 82
4.7 (a) Code performance on four period-256 fading channels. (b) Code

performance on four period-256 fading channels in terms of MI. 83
4.8 Performance of Rate 1/3 LDPC codes with blocklength 4096 and 15,000

on the partial-band jamming channel compared to a blocklength 4096
turbo product code. 	�
� �:9 vs. ; curves that maintain a constant Gaus-
sian signaling capacity (MI) and BPSK constrained capacity (cMI) of
1/3 of a bit are also displayed. FER = �.� /21 86

vii

4.9 SNR, ; performance of length 4096 and 15000 LDPC codes compared
to SNR, ; levels required to achieve 0.42, 0.4, and 1/3 of a bit of mutual
information. FER = �.�2/21 . 88

5.1 Transmitter structure of an LDPC coded BLAST system. 94
5.2 Excess MI per real dimension vs. SNR gap for 2 � 2 matrix channels,

 � � ��� bits/channel use, ��# � � , for eigenvalue skews (top to bottom)� �'�����
����� �$�
���2���
����� ���
� �����2��� . 95
5.3 Channel mutual information versus channel matrix parameter � and

eigenskew. Gaussian Alphabet, QPSK modulation (net), and PID de-
coding capacities are shown. For each eigenskew, the SNR level that
yields 4/3 bits when � � � (for the Net and PID cases) is used across
the span of considered � values. Note that at � �
	 � � ����	 � � that the
Net capacity is maximized (and nearly equals Gaussian Alpha capac-
ity) and the PID capacity is minimized. When �,� �
��	 �� ��	 (diagonal
channels) Net and PID capacities are immeasurably different for a given
SNR. 102

5.4 Excess mutual information at BER = �.�
/�� as measured against Gassian
signaling, Net QPSK constrained capacity, and PID constrained QPSK
capacity across eigenskew and two distinct values of � 103

5.5 Turbo iterative detection and decoding receiver for an LDPC coded
BLAST system. 106

5.6 Simulation results showing excess MI vs. eigenvalue skew � at BER �
�.�0/�� for different detectors (rate 1/3 length 15,000 � �'�!���)�)� optimized
code modulating QPSK on a 2 � 2 channel). The MAP and MMSE-SIC
detectors perform similarly with worst case channels occurring when� �-� under the �*�
	 � � rotation. The MMSE only detector suffers
the most severe degradation on the � � � , � ��	 � � since feedback
is not employed to suppress the co-channel interference present under
this parameterization. 118

5.7 Performance of LDPC coded BLAST for � ��� MIMO system with
MAP, MMSE-SIC, MMSE-HIC and MMSE suppression detectors. . . . 120

5.8 Performance of LDPC coded BLAST for � �"� MIMO system with
MAP, MMSE-SIC, MMSE-HIC and MMSE suppression detectors. . . . 121

5.9 Performance of LDPC coded BLAST for
�

�
�

MIMO system with
MAP, MMSE-SIC, MMSE-HIC and MMSE suppression detectors. . . . 122

5.10 Performance of LDPC coded BLAST for � ��� MIMO system with
MMSE-SIC, MMSE-HIC and MMSE suppression detectors. 123

viii

5.11 Performance of different detectors across increasing antenna multiplic-
ities in terms of excess mutual information per transmit antenna in
Rayleigh fading. Each excess MI is measured from constrained ergodic
Rayleigh capacity for the given channel. 124

ix

List of Tables

2.1 Complexity comparison for three constraint update techniques. Full-BP
and A-Min*-BP have essentially the same performance. The simplest
technique, Offset-Min-BP, experiences about a 0.1dB loss [7]. Numer-
ical values are shown for a rate 1/2 code with: ��� � � ������� , and
average right degree ��� =8. 23

4.1 Degree distributions optimized using Guassian approximation to den-
sity evolution adapted to periodic fading. Columns labeled ��� ������� �
indicate the distribution resulting from optimization for the period-2
channel where half of all received symbols are erased. Columns la-
beled �&� �����(� � indicate a period-2 code optimized for AWGN. 74

5.1 Degree distributions optimized using Guassian approximation to den-
sity evolution adapted to periodic fading. Columns labeled ��� ������� �
indicate the distribution resulting from optimization for the period-2
channel where half of all received symbols are erased. Columns la-
beled �&� �����(� � indicate a period-2 code optimized for AWGN. 99

5.2 Cost (in flops) of computing the LLRs for different MIMO detectors. . . 117

x

VITA

1995 B.S.E.E. University of California Los Angeles. Magna Cum Laude.

1996 M.S.E.E. University of California Los Angeles.

1997- 2002 VLSI System/ASIC Engineer, Broadcom Corporation

1995 - 1996, 2001 - 2003 Graduate Student Researcher, UCLA Electrical Engineering

2003 Ph.D. in Electrical Engineering, University of California Los Angeles.

PUBLICATIONS

B. Schoner, C. Jones, J. Villasenor, “Issues in wireless video coding using run-time-

reconfigurable FPGAs,” Proceedings IEEE Symposium on FPGAs for Custom Com-

puting Machines, Napa Valley, CA, USA, 19-21 April 1995.

J. Villasenor, R. Jain, B. Belzer, W. Boring, C. Chien, C. Jones, J. Liao, S. Molloy,

S. Nazareth, B. Schoner, J. Short, “Wireless video coding system demonstration,” Pro-

ceedings. DCC ’95 Data Compression Conference, Snowbird, UT, USA.

J. Villasenor, C. Jones, B. Schoner, “Video Communications Using Rapidly Reconfig-

urable Hardware,” IEEE Transactions on Circuits and Systems for Video Technology,

Dec. 1995. p.565-7.

xi

J. Villasenor, B. Schoner, K.N.Chia, C. Zapata, H.J. Kim, C. Jones, S. Lansing, B.

Mangione-Smith, “Configurable computing solutions for Automatic Target Recogni-

tion,” Proceedings IEEE Symposium on FPGAs for Custom Computing Machines,

Napa Valley CA, USA, April 1996.

F. Lu, J. Min, S. Liu, K. Cameron, C. Jones, O. Lee, J. Li, A. Buchwald, S. Jantzi, C.

Ward, K. Choi, J. Searle, H. Samueli, “A single-chip universal burst receiver for cable

modem/digital cable-TV applications,” Custom Integrated Circuits Conference, 2000.

CICC. Proceedings of the IEEE 2000 , 21-24 May 2000 Page(s): 311 -314

K. Lakovic, C. Jones, J. Villasenor, “Investigating Quasi Error Free (QEF) Opera-

tion with Turbo Codes,” Proceedings IEEE International Symposium on Turbo Codes,

Brest, France, Sept 2000.

C. Jones, T. Tian, J. Villasenor, R. Wesel, “Robustness of LDPC Codes on Periodic

Fading Channels,” Proceedings GlobeCom, Taipei, Taiwan, Nov 2002.

T. Tian, C. Jones, R. Wesel, J. Villasenor, “Construction or irregular LDPC codes with

low error floors,” Proceedings ICC, Alaska, USA, May 2003.

C. Jones, A. Matache, T. Tian, J. Villasenor, R. Wesel, “Approximate-Min* Constraint

Node Updating for LDPC Code Decoding,” Proceedings MILCOM 2003, Boston, MA.

C. Jones, E. Vallés, M. Smith, J. Villasenor, “The Universality of LDPC Codes on

xii

Wireless Channels,” Proceedings MILCOM 2003, Boston, MA.

xiii

ABSTRACT OF THE DISSERTATION

Constructions, applications, and implementations of low-density parity-check codes

by

Christopher R. Jones

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2003

Professor Richard D. Wesel, Co-Chair

Professor John D. Villasenor, Co-Chair

The work described in this thesis is related to the application and design of Low-

Density Parity-Check (LDPC) Codes for wireless channels. Advances in code analysis

and dramatic reductions in transistor sizing have promoted LDPC codes to the forefront

of applicable forward error correction technologies. The problem of code construction

has been addressed in this work and we have produced a rate-flexible reduced error floor

LDPC matrix design methodology. En route to the proposal of a construction technique,

the relationships between cycles, stopping sets, and codewords are described. A dis-

cussion of how these structures limit LDPC code performance under message passing

decoding follows. A new metric called extrinsic message degree (EMD) measures cy-

cle connectivity in bipartite graphs. Using an easily computed estimate of EMD, we

propose a Viterbi-like algorithm that selectively avoids cycles and increases minimum

stopping set size, which is closely related to minimum distance. This algorithm yields

xiv

codes with error floors that are orders of magnitude below those of girth-conditioned

codes. The resulting codes have good waterfall-region and error-floor performance over

a wide range of code rates and block sizes.

Another main contribution of the thesis stems from analytic and simulation based

results for LDPC codes on frequency selective channels under othogonal frequency di-

vsion modulation and generalized Gaussian channels. A particular emphasis on the

robustness of the codes in fading environments is made. A-posterior probability and

minimum-mean-square-error successive-interference-cancellation detection techniques,

with several variants of the latter, have been considered. Analysis and simulation of

code performance in parameterized period-2 scalar fading channels, random period-�

fading channels, partial band jamming channels, parameterized 2 � 2 quasi-static multi-

input multi-output channels, and N � N Rayleigh fast fading MIMO channels are re-

ported.

Of course, deployment of LDPC coding techniques requires that attention be paid to

decoder complexity and large scale integration design issues. In steps toward this end,

a high-throughput digital decoder architecture and implementation has been produced.

The implementation includes an algorithmic modification of constraint node update

processing, as well as message passing data path considerations, and has been tested in

a lab prototype using a field programmable gate array device.

xv

Chapter 1

Introduction to Low-Density

Parity-Check Coding

Iterative techniques that permit codes with very long block lengths to be decoded

with a complexity that is nearly linear in the length of the code will enable next gener-

ation communication links to be ‘optimal’ in terms of the throughput they will support

for a given received signal-to-noise ration.

Low-density parity-check (LDPC) codes were proposed by Gallager in the early

1960s [18]. The structure of Gallager’s codes (uniform column and row weight) led

them to be called regular LDPC codes. Gallager provided simulation results for codes

with block lengths on the order of hundreds of bits. However, these codes were too short

for the sphere packing bound to approach Shannon capacity, and the computational

resources for longer random codes were decades away from being broadly accessible.

Following the groundbreaking demonstration by Berrou et al. [4] of the impressive

1

capacity-approaching capability of long random linear (turbo) codes, MacKay [29] re-

established interest in LDPC codes during the mid to late 1990s. Luby et al. [28]

formally showed that properly constructed irregular LDPC codes can approach capac-

ity more closely than regular codes. Richardson, Shokrollahi and Urbanke [36] created

a systematic method called density evolution to analyze and synthesize the degree dis-

tribution in asymptotically large random bipartite graphs under a wide range of channel

realizations.

LDPC codewords are generated through the random linear superposition of basis

vectors that define the code. If the binary Hamming distance between all combinations

of codewords (the distance spectrum) is known, then analytic techniques for describ-

ing the performance of the codes in the presence of noise are available. However, in

the case of LDPC codes (which are random linear codes), the problem of finding the

distance spectrum of the code is intractable. Researchers instead resort to the use of

Monte Carlo simulation in order to characterize the performance of various code con-

structions. Of particular interest is the performance of these codes at high signal to

noise ratios (SNRs) where errors occur very rarely. Thorough characterization of a

code in this region may require simulation of �(� # � � �.� #�� code symbols. Therefore,

throughputs on the order of �.� � code symbols per second are required if the high SNR

performance of a given code is to be resolved within a reasonable amount of time. In

chapter 2 of this dissertation, an implementation that allows high speed Monte Carlo

simulation of Low-Density Parity-Check (LDPC) codes is introduced. In particular,

the belief propagation (BP) algorithm is carefully deconstructed to obtain a form that

is compatible with integer implementation. Additionally, a parallel application of the

2

integer BP algorithm constitutes the high throughput architecture that we present as a

final result.

After the discussion of complexity reduced decoding techniques, chapter 3 turns to

the problem of code (parity matrix) construction. The code construction portion of this

work was performed jointly with Tao Tian, a fellow graduate student in UCLA Elec-

tical Engineering. In this work, the relationships between cycles, stopping sets, and

codewords of the code parity check matrix are described. A discussion of how these

structures limit LDPC code performance under message passing decoding follows. A

new metric called extrinsic message degree (EMD) measures cycle connectivity in bi-

partite graphs. Using an easily computed estimate of EMD, we propose a Viterbi-like

algorithm that selectively avoids cycles and increases the minimum stopping set size,

which is closely related to minimum distance. This algorithm yields codes with error

floors that are orders of magnitude below those of girth-conditioned codes. The result-

ing codes have good waterfall-region and error-floor performance over a wide range of

code rates and block sizes.

With well constructed codes and high speed simulation methods at hand, we turn

our attention to applications of LDPC codes and describe their performance on two dis-

tinct classes of wireless channels. We endeavor throughout chapters 4 and 5 to evidence

the ‘Universality’ or ‘Robustness’ of LDPC codes under widely differing channeliza-

tion scenarios. We confidently enter this limitless sea of channels due to a result from

Root and Varaiya who proved the existence of codes that can communicate reliably over

any member of a set of linear Gaussian channels where the mutual information level of

each member exceeds a given threshold. In these chapters we show that Low-Density

3

Parity-Check (LDPC) codes are such codes and that their performance lies in close

proximity to the Root and Varaiya capacity for a large family of scalar-input fading

channels (chapter 4) and vector-input fading channels (chapter 5). Specifically, the ro-

bustness of LDPC codes in scalar fading channel is demonstrated in chapter 4 through

the consistency of their mutual information performance across periodic fading pro-

files. To aid in the analysis of LDPC codes on these channels, density evolution has

been adapted to the periodic fading case. This tool will be used both to design codes

matched to specific channels and to determine the threshold of existing codes across

parameterizations of periodic fading channels.

In chapter 5, analogous robustness properties are demonstrated on vector-input (ma-

trix/MIMO) linear channels. As a special case, the 2x2 channel is investigated in detail.

It is possible to characterize the mutual information level of any of the 2x2 channels

via a single parameter (the eigenskew of the channel). Eigenskew in conjunction with a

sampling of unitary 2x2 transforms allows us to examine the performance of an LDPC

code across essentially all 2x2 channels. The more general NxN case is examined

for fast Rayleigh fading and code performance is measured against ergodic Rayleigh

capacities in this case. Chapter 5 also presents work, performed jointly with Adina

Matache, that examines the problem of vector detection at a receiver. While the A-

Posterior Probability (APP) detector (also sometimes refered to as the MAP detector)

is known to be optimal from a BER point of view, it’s complexity scales exponentially

with the number of transmit antennas and the spectral efficiency of the chosen modu-

lation. Other detection mechanisms can achieve performance to APP/MAP with less

complexity and several such alternatives are presented.

4

1.1 A Brief Introduction to Low-Density Parity-Check

Codes

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

� 	 �

variable
nodes

constraint
nodes

 +

 +

 +

 +

 +

 +

message
nodes

check
nodes

� �

� � � � � � � � � � � � � � �

� �

�
� �
� �
� �
� �

� �
�
� �
� �
� �
� �

���

�
� �
���
���
���
���
� �
���

(a) (b)

H =

Figure 1.1. Matrix and graph descriptions of a (9, 3) code. A length 4 and a

length 6 cycle are circumscribed with bold lines.

Like turbo codes, LDPC codes belong to the class of codes that are decodable pri-

marily via iterative techniques. The demonstration of capacity approaching perfor-

mance in turbo codes stimulated interest in the improvement of Gallager’s original

LDPC codes to the extent that the performance of these two code types is now com-

parable in AWGN. The highly robust performance of LDPC codes in other types of

channels such as partial-band jamming, quasi-static multi-input multi-ouput (MIMO)

Rayleigh fading, fast MIMO Rayleigh fading, and periodic fading is evidenced in [5]

and [6].

LDPC codes are commonly represented as a bipartite graph (see Fig. 1.1b). In the

graph, one set of nodes, the variable nodes, correspond to the codeword symbols and

another set, the constraint nodes, represent the constraints that the code places on the

variable nodes in order for them to form a valid codeword. Regular LDPC codes have

5

bipartite graphs in which all nodes of the same type are of the same degree. A common

example is the (3,6) regular LDPC code where all variable nodes have degree 3, and all

constraint nodes have degree 6. The regularity of this code implies that the number of

constraint nodes (which is the same as the number of parity check bits) equals exactly

half the number of variable nodes such that the overall code is rate 1/2.

Mackay [29][30] has provided a diverse set of constructions for regular codes. Gal-

lager [18] first showed that any particular random draw of a code from the (3,6) regular

ensemble will result in a code whose error correcting performance lies asymptotically

(in block length) close to the average performance of the ensemble. However, in the

case of a randomly realized graph and decoding via the belief propagation (BP) algo-

rithm [34][25] this statement is too strong. The reason follows from the well known

fact that the BP algorithm, which is applied iteratively, explicitly assumes that the graph

underlying any particular node is a tree. It hence performs non-optimally when the tree

has shared vertices as will always be the case in random bi-partite graphs of interest.

Practical LDPC codes are realized from an expurgated ensemble where effort is made

to avoid special loop topologies during the construction of the code.

A major breakthrough in irregular LDPC code (having non-uniform column and

row weight) design came with the invention of density evolution by Richardson, Shokrol-

lahi, and Urbanke [36]. The authors showed that it is possible to predict a noise thresh-

old below which a code realized from a given ensemble can be expected to converge to

zero errors with high probability. A code ensemble is most often described via a pair

of polynomials,

6

� ����� � ���	��
�� � � # ��9 � 9 / # � ; ����� � ������
�� � � # ;�9 � 9 / # � (1.1)

The coefficients of � ����� � (; �����) represent the fraction of edges emanating from vari-

ables (constraints) of various degree (in the bi-partite graph describing the code) as

indicated by the powers of the place holding variables
� ����� / # . For instance, the (3,6)

regular code has
� � ����� �$; ������� � ��� � � � 6 � . Furthermore, since � ����� , ; ����� are cumulative

distribution functions (CDFs) � � � � � ; � � � � � always holds. Conversion between

edge and node perspective is useful for defining the rate of the code in terms of a par-

ticular
� � ����� �$; ������� . Let 	 be the total number of edges in the graph, then

�����9 equals

the number of variable nodes with degree � . The rate of the code follows from the well

known definition,

�� � �! " �9 ���9 � � �$# ; �����# � ����� � (1.2)

The parity check matrix % of a linear binary (� ,
�
) systematic code has dimension�

� � �
�

� � . The rows of % comprise the null space of the rows of the code’s
�

� �

generator matrix & . % can be written as,

%4�(' % #)% �+* � (1.3)

where % # is an
�
� � �

�
�
�

matrix and % � is an
�
� � �

�
�
�
� � �

�
matrix. % � is

constructed to be invertible, so by row transformation through left multiplication with% / #� , we obtain a systematic parity check matrix %-,�.�, that is range equivalent to % ,

7

% , .�, � % / #� % � ' % / #� % # ���
/�� * � (1.4)

The left-hand portion of which can be used to define a null basis for the rows of % .

Augmentation of the left-hand portion of the systematic parity check matrix % , .�, with

� � yields the systematic generator matrix,

& , .�, � ' � � � % / #� % #��
	 * � (1.5)

The rows of & , .�, span the codeword space such that &+, .�,�% 	 � & ,�.�,�% 	, .�, � � . It

should be noted that although the original % matrix is sparse, neither % , .�, nor & , .�, is

sparse in general. &+,�.�, is used for encoding and the sparse parity matrix % is used for

iterative decoding. A technique that manipulates % to obtain a nearly lower triangular

form and allows essentially linear time (as opposed to the quadratic time due to a dense& matrix) encoding is available and was proposed by [37].

The matrix and graph descriptions of an
�
� ���
� � � � � code are shown in Fig. 1.1.

Structures known as cycles, that affect decoding performance, are shown by (bold) solid

lines in the figure. Although the relationship of graph topology to code performance

in the case of a specific code is not fully understood, work exists [45] that investigates

the effects of graph structures such as cycles, stopping sets, linear dependencies, and

expanders.

8

Chapter 2

Belief Propogation Decoding via

Reduced Complexity Techniques

In his original work, Gallager introduced several decoding algorithms. One of these

algorithms has since been identified for general use in factor graphs and Bayesian net-

works [34] and is often generically described as Belief Propagation (BP). In the context

of LDPC decoding, messages handled by a belief propagation decoder represent prob-

abilities that a given symbol in a received codeword is either a one or a zero. These

probabilities can be represented absolutely, or more compactly in terms of likelihood

ratios or likelihood differences. The logarithmic operator can also be applied to either

of these scenarios. Due to the complexity of the associated operator sets and wordlength

requirements, the log-likelihood ratio form of the Sum-Product algorithm is the form

that is best suited to VLSI implementation. However, this form still posses significant

processing challenges as it employs a non-linear function that must be represented with

9

a large dynamic range for optimal performance.

We note that even Full-BP algorithms suffer performance degradation as compared

to the optimum ML decoder for a given code. This is due to the fact that bipartite

graphs representing finite-length codes without singly connected nodes are inevitably

non-tree-like. Cycles in bipartite graphs compromise the optimality of belief propa-

gation decoders. The existence of cycles implies that the neighbors of a node are not

in general conditionally independent (given the node), therefore graph separation does

not hold and Pearl’s polytree algorithm [34] (which is analogous to Full-BP decoding)

inaccurately produces graph a-posteriori probabilities. Establishing the true ML per-

formance of LDPC codes with length beyond a few hundred bits is generally viewed

as an intractable problem. However, code conditioning techniques [45] (and chapter

3) can be used to mitigate the non-optimalities of iterative decoders and performance

that approaches the Shannon capacity is achievable even with the presence of these de-

coding non-idealities. In what follows, we develop the Full-BP variable and constraint

node update relations from initial principles. In succeeding sections, the constraint

node update relations are modified to both reduce the quantity and the complexity of

the required operations. We note that the proposed technique achieves both of these

goals without incurring a measureable loss in performance.

10

2.1 Derivation of the Full BP Variable and Constraint

Node Update Equations

At constraint node � # in Fig. 2.1 is,

" � � " �
� "%� � "%�,� � (2.1)

The message we wish to compute is the one that is passed from � # back to " � . This

message can be computed as follows,

��� � ��� ��� � " � �'������#���� �
��� � " � �'��� " � � " �

� "%� � " � ���	��� �
��� � " � � "�� � "%�,�'�
� � �
� � �

� � � � � � � � � � � �
�

� � � � � � �
� � � � � � �

�
��� � � � � �

� � � � � � �
�

� � � � � �

� �� �
�
�

�
9��� � � � � ���

� � � � ��9 �

(2.2)

Messages that flow in the opposite direction adhere to a different update rule. Con-

sider message �
� � ���� is depicted in Fig. 2.2. This message can be computed in the fol-

lowing way,

11

1U

1UA,PA

B

C

D

E

F

G

1

2

3

Figure 2.1. Partial bi-partite graph drawing that shows messages involved in

the update of outgoing constraint message ��� � ��� .

�
� � � �� ��� � " � � �
� � �(��� 1 � �

�
� �

� " � � ��� � �)��� 1 � �
�

� � � �(� � 1 � �
�

� � � " � � ����� �(� � 1 � �
�

� � " � � ��� � �)��� 1 � �
� � � � " � � �
��� �)��� 1 ���

�
� ��� � ��� ��� � ���

� ��� ��� ��� � ��� � � � � ��� � ��� � � � � � ��� ��� �
(2.3)

Where the quantity � � " � �'����� � ��� 1 ���
�

can be found as follows,

� � " � �'����� � ��� 1 ���
� � � � 7 " � �'����� � ��� 8 � 7�" � �'��� � 1 ��� 8

�
� � � " � �'����� � ��� � � � " � � ��� � 1 ��� �
� ��� � � � ��� � � �

(2.4)

However we note that the independence assumption made in the above relation does

12

1U

(U)1A

B

C

D

E

F

G

1

2

3

PA

Figure 2.2. Partial bi-partite graph drawing that shows messages involved in

the update of outgoing variable message �
� ������ .

not hold in general. This is instead an approximate relationship due to cycle structures

in the graph and is the reason for the approximation in the last line of (2.3).

Performing computations directly on probability measures is perfectly accurate, but

not quite acceptable as both the variable and the constraint node operations require

product operations that can be difficult to represent numerically. Instead, a transfor-

mation of the edge messages from the probability domain to the likelihood domain

proceeds as follows. First consider the constraint update operations,

��� � � � � �� �
�
�

�
9��� � � � � �	�

� � � � ��9 � (2.5)

Which was defined previously. The likelihood ratio of this measure follows as,

13

��� � # /�� ��� � �� ��� � � �
�
��� �� ��
	��� � ��� ��� � # / � � � ��
� / �� ��
	��� � ��� ��� � # / � � � �������� ��������� 1� # /�� /�� � / � � � � � � � � / � � � � � # �! �#"%$ �$ �'& �#"%$ $ & �#"($ �$ � & � �#"($ $ & � # � � � �� � � � (2.6)

Then consider the following two definitions,

)�* � � �)�* � � � � � �
� �

� � �,+.- *0/ ����� � � �21 / �43
� � 1 / �43 (2.7)

Which when applied together produce the following relationship,

+�- *0/65 �
�
)�* ���87 � � �91;: =< : �� < : : �

� � 1 : >< : �� < : : � �
� � � � � � � � � � � �� � � � �

� � � � � � � � +�- *0/65 �
�
)�* � � 7 +.- *0/65 �

�
)�* � �?7@ ACB D�����FE���� /21HG
 � �

(2.8)

for the degree-3 case and can be expressed as,

+�- *�/ 5 �
�
)�* ��� 7 � �HI / #�

9 � # +.- *0/ 5 �
�
)�* � 9 7 (2.9)

In general. Going back to the variable node side of the graph, we restate the update

relation,

�
� ��� �� � ����� � � � ��� � �

����� � � ����� � � � � � � ����� � � � � � � ����� � � � (2.10)

Likelyhood ratios applied here produce,

�
� ������ � � � �

� ��� ��
�
� ������

�
� � � ����� ��� � � � � ��� � ��� �

��� � � � ��� � � � � ����� ��� ����� ��� (2.11)

The logarithm of this form for the degree-3 case simply follows as,

14

)�* � � ��� �� �)�* � � � � � �)�* ����� � � (2.12)

and in general,

)�* � � ��� �� �
��� / #�
9 � #)�* � � � 9 (2.13)

2.2 The Approximate-Min*-BP technique

This section is presented in several parts. In the first part, our modified version

of Full-BP is introduced and its performance is contrasted to that of Full-BP. Next,

we provide a discussion of the steps taken in the derivation of this technique. At the

end of this section a complexity comparison between the proposed technique, Full-BP,

and a previously proposed reduced complexity technique [8] is provided. Section 2.3

gives a discussion of finite precision issues and provides performance data for several

quantization schemes. Section 2.4 describes the LDPC codec that has been developed

at UCLA based on the constraint update technique that is presented in the chapter.

Before describing the technique, we introduce notation that will be used in the re-

mainder of the chapter. On the variable node (left-hand) side of the bi-partite graph,

� messages arrive and
�

messages depart. Both of these messages are log-likelihoods

(e.g.
)�* �) as described in the previous section. At the constraint node (right-hand)

side of the graph " messages arrive and � messages depart. All four message types

are actually log-likelihood ratios (LLRs). For instance, a message " arriving at a con-

straint node is actually a shorthand representation for " ��� �
�

�
� " �+� � � �

� " �#� ��� .
15

The constraint node a-posteriori probability, or � � ��� , is defined as the constraint node

message determined by the � � variable messages that arrive at a constraint node of

degree- � � . The notation ��� � � � ��� � "�� denotes the outgoing constraint message de-

termined by all incoming edges with the exception of edge "�� . Message "�� represents

intrinsic information that is left purposefully absent in the extrinsic message compu-

tation ��� � � � ��� � "�� . Our algorithm (called Approximate-Min*-BP, or A-Min*-BP)

updates constraint messages as follows,

initialize

�
" � �	� �
�� *� � #�	 � I � � "�� � � ��� � �����

for k =1 . . . � �

if
� ������ � � �� � ���� � ��� � � � � / # � " � � ��

else:� � ��� � / #
end� � ����� ���! " ��� � I� � ��� �#�� � ��� � � � � ����� ���! " � " � �	� �$��% � ��� � � I�� � #!&(' * � "�� �

where � � is a storage variable, and � ��� � will be defined shortly. Constraint message

16

updates are found by applying the following additional operations on the above quanti-

ties.

���� � �#�	 �FI � � � �	� � & ' * � "�� � & ' * � % � ��� � � � ���
� � �	� � & ' * � " �

�	� � & ' * � % � ��� � � � ����� ���! "
The above constraint node update equations are novel and will be described in fur-

ther detail. Variable node updating in our technique is the same as in the case of Full-BP.

Extrinsic information is similarly described as before via
� � � � � ��� � � � , however the

processing required to achieve these quantities is much simpler,

� � ��� �
���� � � � � � � �� � #�	 ��� � � � ��� � � �.� (2.14)

where � � is the variable node degree.

2.2.1 Derivation and complexity of the A-Min*-BP technique

Derivation of the Approximate-Min*-BP constraint node update begins with the so

called ‘Log-Hyperbolic-Tangent’ definition of BP constraint updating. In the equation

below, sign and magnitude are separable since the sign of LnTanh(x) is determined by

the sign of
�

.

17

0.5 1 1.5 2 2.5 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

B
E

R

N=10k Irr A−Min*−BP
N=10k Irr BP
N=1k Irr A−Min*−BP
N=1k Irr BP
N=8k 3,6 A−Min*−BP
N=8k 3,6 BP
N=1k 3,6 A−Min*−BP
N=1k 3,6 BP

Figure 2.3. A-Min*-BP decoding compared to Full-BP decoding for four dif-

ferent rate 1/2 LDPC codes. Length 10k irregular max left degree

20, length 1k irregular max left degree 9, length 8k regular (3,6),

length 1k regular (3,6). The proposed algorithm incurs negligible

performance loss. Note that rate 1/2 BPSK constrained capacity

is 0.18 dB (�
�����). All simulations were performed with the same

initial random seed.

� � ��� �
� �FI�� � # & ' * � "�� ���)�*������� � � 1 /�� I	
�� �� ���� � <�� " � �
 ��#" � " � �
 ����

� �21 / � I	
�� ��
����
� <�� " � �
 �
�#" � " � �
 � ��

������� � (2.15)

This equation is highly non-linear and warrants substantial simplification before

mapping to hardware. To begin, the above computation can be performed by first con-

sidering the inner recursion in (2.15),

18

� I� � � #)�* 5 � � 1%/�� �
 �
� �21 /�� �
 � 7 � (2.16)

A total of � � table look-ups to the function ���
�
��� �)�* 5 # � � " � �
 �

/ � " � �
 � 7 followed by

� � � � additions complete the computation in (2.16). Furthermore, the linearity of

the inner recursion allows intrinsic variable values to be ‘backed-out’ of the total sum

before � � outer recursions are used to form the ��� extrinsic outputs. To summarize,

computation of all � � extrinsic values (in (2.15)) follow from ��� table look-ups, ��� � �

additions, � � subtractions, and a final � � table look-ups. The cost of computing the

extrinsic sign entails � � � � exclusive-or operations to form the � � � extrinsic sign,

followed by � � incremental exclusive-or operations to back-out the appropriate intrinsic

sign to form each final extrinsic sign.

Variable node computation (2.14) is more straightforward. However, a possible

alternative to (2.14) is given in [7] where it is noted that codes lacking low degree

variable nodes experience little performance loss due to the replacement of
� � with

� � ��� . However, codes that maximize rate for a given noise variance in an AWGN

channel generally have a large fraction of degree-2 and degree-3 variable nodes [36].

Low degree nodes are substantially influenced by any edge input and
� � ��� may differ

significantly from corresponding properly computed extrinsic values. We have found

experimentally that using
� � ��� alone to decode capacity approaching codes degrades

performance by one dB of SNR or more.

We continue toward the definition of an alternative constraint update recursion by

rearranging (2.15) for the ��� � � case,

19

& ' * � " # � & ' * � " � �)�* 5 � � 1 � � � � � � � � �1 � � � � � 1 � � � � 7 �)�* 5 � � 1 � � � � �1 � � � 1 � � 7 � (2.17)

Two applications of the Jacobian logarithmic identity (
)�* � 1 � � 1
 � �
 - � � � � � � �)�* � � � 1 /�� � /
 � �) [14] result in the Min* recursion that is discussed in the rest of the

chapter,

� ��� � � "$# � " � � � &(' * � " # � & ' * � " � � �������

�� * � � "$# �$� � " � � �
�)�* � � � 1%/ � � � � � � � � � � � �
�)�* � � � 1 /�� � � � � /�� � � � � �

�������� � (2.18)

Note that (2.18) is not an approximation. It is easy to show that � � �,� recursions on

� ��� � yield exactly � � ��� in equation (2.15). Furthermore, the function
)�* � � � 1 /�� 3 � �

ranges over
�
� �
� � � ��� � which is substantially more manageable than the range of the

function ��� � ��� , � ����1 �)�* � # � � "
	 ��	# / � "
	 ��	�� � � � ��� � from a numerical representation

point of view. However, the non-linearity of the recursion (2.18) implies that updat-

ing all extrinsic information at a constraint node requires � �
�
� � � � � calls to � ��� � .

This rapidly becomes more complex than the � � � look-up operations (augmented with

� � � ��� additions) required to compute all extrinsic magnitudes based on the form in

(2.15). Again, in this earlier case intrinsic values can be ‘backed-out’ of a single � � �

value to produce extrinsic values.

Instead of using the recursion in (2.18) to implement Full-BP we propose that this

recursion be used to implement an approximate BP algorithm to be referred to as

Approximate-Min*-BP (A-Min*-BP). The algorithm works by computing the proper

extrinsic value for the minimum magnitude (least reliable) incoming constraint edge

20

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y(x) = −0.25|x| + 0.6825 |x| < 2.8

y(x) = −0.375|x| + 0.6825 |x| < 1.0
 = −0.1875|x| + 0.5 1.0 < |x| < 2.625

y(x) = ln(1 + e−|x|)

Figure 2.4. Non-linear function (� ��� �) at the core of proposed algorithm and

single / double line approximations to the function that can easily

be implemented in combinatorial logic.

and assigning the � � ��� magnitude in conjunction with the proper extrinsic sign to all

other edges.

To provide intuition as to why this hybrid algorithm yields good performance, note

first that a constraint node represents a single linear equation and has a known ‘so-

lution’ if no more than one input variable is unknown. Consider the following two

scenarios. First, if a constraint has more than one unreliable input, then all extrinsic

outputs are unreliable. Second, if a constraint has exactly one unreliable input, then

this unknown input can be solved for based on the extrinsic reliability provided by the

‘known’ variables. In this second case all other extrinsic updates are unreliable due

to the contribution of the unreliable input. The approximation in the suggested algo-

rithm assigns less accurate magnitudes to would-be unreliable extrinsics, but for the

least reliable input preserves exactly the extrinsic estimate that would be produced by

21

Full-BP.

We next show that � � ��� always underestimates extrinsics. Here the notation ��� �
represents the extrinsic information that originates at constraint node � and excludes

information from variable node � . Rearrangement of (2.15) (with standard intrin-

sic/extrinsic notation included [9]) yields the following,

�� � � ��� �� �)�* � � ���� ��� � � �
/ � " � ���
	 � �# � � " � � �
	 � �

� � ���� ��� � � �
# / � " � � ��	 � �# � � " � � ��	 � � (2.19)

� �21 / � � ��� �
� � 1 /�� � ��� � � �� �

��� ��� � � � � � � �91%/�� � ��	 � �
� � 1 /�� � �
	 � �

�� 5 � �21%/�� � ��	 �
� � 1 /�� � �
	 � 7 � (2.20)

Note first that the function � ����� � # / � " 	 ��	# � � " 	 ��	 (a product of which comprises the RHS

of (2.20)) ranges over
� �
�(� � and is non-decreasing in the magnitude of

�
. The first

(parenthesized) term on the right-hand side of (2.20) equals the extrinsic value ��� �
under the operator � ��� � , i.e. � � ��� � � . The second term scales this value by the intrinsic

reliability � � "�� � � . Hence, the monotonicity and range of � ����� ensure that �� � � ��� ����
� ��� � � . We provide the inverse function, � / # ����� �)�* # � 3# / 3 , for reference.

Underestimation in A-Min*-BP is curtailed by the fact that the minimum reliabil-

ity � � " � �	� � dominates the overall product that forms � � ��� . This term would have

also been included in the outgoing extrinsic calculations used by Full-BP for all but

the least reliable incoming edge. The outgoing reliability of the minimum incoming

edge incurs no degradation due to underestimation since the proper extrinsic value is

explicitly calculated. Outgoing messages to highly reliable incoming edges suffer lit-

tle from underestimation since their corresponding intrinsic � � "�� � � values are close to

22

Full-BP A-Min*-BP Offset-Min-BP

Table LookUps � � � � � � � 0

Comparisons 0 � � � � � � � �*�

Additions � � � � � 0 � �

XORs � � � � � � � � �"� � � � � �

Tot Table Lookups 80000 35000 0

Tot Comparisons 0 35000 65000

Tot Additions 75000 0 40000

Tot XORs 75000 75000 75000

Tot Ops 230,000 145,000 180,000

Performance Reference No Loss 0.1dB Loss

Table 2.1. Complexity comparison for three constraint update techniques.

Full-BP and A-Min*-BP have essentially the same performance.

The simplest technique, Offset-Min-BP, experiences about a 0.1dB

loss [7]. Numerical values are shown for a rate 1/2 code with:

� � � � �%����� , and average right degree ��� =8.

one. The worst case underestimation occurs when two edges ‘tie’ for the lowest level

of reliability. In this instance the dominant term in (2.20) is squared. An improved

version of A-Min*-BP would calculate exact extrinsics for the two smallest incoming

reliabilities. However, the results in Fig. 2.3, where the algorithm (using floating point

precision) is compared against Full-BP (using floating point precision) for short and

23

medium length regular and irregular codes, indicate that explicit extrinsic calculation

for only the minimum incoming edge is sufficient to yield performance that is essen-

tially indistinguishable from that of Full-BP.

The proposed algorithm is similar to the Offset-Min-BP algorithm of [8] where the

authors introduce a scaling factor to reduce the magnitude of extrinsic estimates pro-

duced by Min-BP. The Min-BP algorithm finds the magnitude of the two least reliable

edges arriving at a given constraint node (which requires � � � � comparisons followed

by an additional � � ��� comparisons). The magnitude of the least reliable edge is as-

signed to all edges except the edge from which the least reliable magnitude came (which

is assigned the second least reliable magnitude). For all outgoing edges, the proper ex-

trinsic sign is calculated. As explained in [9] these outgoing magnitudes overestimate

the proper extrinsic magnitudes because the constraint node update equation follows a

product rule (2.20) where each term lies in the range
� �
�(� � . The Min-BP approximation

omits all but one term in this product. To reduce the overestimation, an offset (or scaling

factor) is introduced to decrease the magnitude of outgoing reliabilities. The authors

in [8] use density evolution to optimize the offset for a given degree distribution and

SNR. The optimization is sensitive to degree sequence selection and also exhibits SNR

sensitivity to a lesser extent. Nevertheless, using optimized parameters, performance

within 0.1 dB of Full-BP performance is possible.

By way of comparison, A-Min*-BP improves performance over Min-BP because

the amount by which � � ��� underestimates a given extrinsic is less than the amount

by which Min-BP overestimates the same extrinsic. Specifically, the former underes-

timates due to the inclusion of one extra term in the constraint node product while the

24

latter overestimates due to the exclusion of all but one term in the product. A direct

comparison to Offset-Min-BP is more difficult. However, a simple observation is that

in comparison to Offset-Min-BP, A-Min*-BP is essentially ‘self-tuning’.

The range and shape of the non-linear portion (� ��� �) of the A-Min*-BP computa-

tion are well approximated using a single, or at most a 2-line, piecewise linear fit, as

shown in Fig. 2.4. All of the fixed precision numerical results to be presented in section

2.3 use the 2-line approximation (as do the floating point results in Fig. 2.3). Hence, the

entire constraint node update is implemented using only shift and add computations, no

look-ups to tables of non-linear function values are actually required.

The cost of constraint node updating for Full-BP (implemented using (2.15)), A-

Min*-BP, and Offset-Min-BP are given in Table 2.1. The latter two algorithms have

similar cost with the exception that ��� ��� table look-up operations in A-Min*-BP are

replaced with � � additions in Offset-Min-BP (for offset adjustment). Note that use of

a table is assumed for the representation of � � � ��� . While � ��� � is well approximated

using a two line piecewise fit employing power of 2 based coefficients. Variable node

updating occurs via (2.14) for all three algorithms.

2.3 Numerical Implementation

Minimum complexity implementation of the A-Min*-BP algorithm necessitates

simulation of finite wordlength effects on edge metric storage (which dominates de-

sign complexity). Quantization selection consists of determining a total number of bits

as well as the distribution of these bits between the integer and fractional parts (I,F) of

25

the numerical representation. The primary objective is minimization of the total num-

ber of bits with the constraint that only a small performance degradation in the waterfall

and error-floor BER regions is incurred. Quantization saturation levels (� ��� � � �) that

are too small cause the decoder to exhibit premature error-floor behavior. We have not

analytically characterized the mechanism by which this occurs. However, the following

provides a rule of thumb for the saturation level,

� ��� � �)�* �
�
� �)�* 5 � � �

�
7 where � � 1 / � ��� �

This allows literal Log-Likelihood Ratio (LLR) representation of error probabilities

that are as small as � . In practice, this rule seems to allow the error-floor to extend to a

level that is about one order of magnitude lower than � .

In the results that follow, simple uniform quantization has been employed, where

the step size is given by �2/ � . To begin, Fig. 2.5 shows that low SNR performance

is less sensitive to quantization than high SNR performance. A small but noticeable

degradation occurs when 2 rather than 3 fractional bits are used to store edge metrics

and 4 integer bits are used in both cases. In summary, 7 bits of precision (Sign, 4 Integer,

2 Fractional) are adequate for the representation of observation and edge metric storage

in association with the considered code.

When power of 2 based quantization is used, the negative and positive satura-

tion levels follow � � � � / # � � � / # � �0/ � � . An alternative approach arbitrarily sets this

range between a maximum and a minimum threshold and sets the step size equal to

26

� � ��� � � � � � �=1 �� 	 � � � � � 9 � , . This approach to quantization is more general than

the previous since the step size is not limited to powers of 2. We have found that in

the low SNR regime, smaller quantization ranges are adequate, but the optimal step

size remains similar to that needed at higher SNRs. Thus, operation at lower SNRs

requires fewer overall bits given the general range approach to quantization. For ex-

ample for 	�
������ � ��� � dB, when
� � � � � �=1�� �.� and a total of 6 bits were used,

no performance degradation was observed. For higher SNR values,
� � � � ����1 �5�.�

was the best choice. This agrees with the results obtained using binary quantization

with
� � ��� � � � � � � � . The performance of this quantizer is described in Fig. 2.5 by

the curve labeled ‘6bit G.R.’ (or 6 bit general range) where in this case the range is

set equal to (-10,10)@1.0dB;(-12,12)@1.2dB;(-16, 16)@1.4dB and a total of 6 bits (1

sign, 5 quant-bits) is used. Hence in this case the general range quantizer is equivalent

to the (1,4,1) power of 2 quantizer at high SNR. At lower SNRs, the best case range

was smaller than (-16,16) such that general range quantization offers an added degree

of freedom in precision allocation that is useful in the context of LDPC decoding.

2.4 The UCLA LDPC Codec

We have implemented the above constraint update technique along with many other

necessary functions in order to create a high throughput Monte Carlo simulation for

arbitrary LDPC codes. The design runs on a VirtexII evaluation board from Nallatech

systems and is interfaced to a PC via a JAVA API. A block diagram is provided in

Fig. 2.6. The Gaussian noise generator developed by the authors in [13] is instantiated

27

0 10 20 30 40 50 60 70 80
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

B
E

R

E
b
/N

o
=1.0 dB

E
b
/N

o
=1.2 dB

E
b
/N

o
=1.4 dB

8bit=(1,4,3)
7bit=(1,4,2)
 6bit G.R
Full Prec.

(a)

1 1.1 1.2 1.3 1.4 1.5 1.6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o
 (dB)

B
E

R

20 Iterations

30 Iterations

70 Iterations

8bit=(1,4,3)
7bit=(1,4,2)
6bit G.R
Full Prec

(b)

Figure 2.5. (a) BER Vs. 	�
����� , for different fixed numbers of iterations. (b)

BER vs Iterations, for different fixed 	�
����� .

next to the decoder so as to avoid a noise generation bottleneck. This block directly im-

pacts the overall value of the system as a Monte Carlo simulator for error-floor testing

as good noise quality at high SNR (tails of the Gaussian) is essential. Since the LDPC

decoding process is iterative and the number of required iterations is non-deterministic,

28

���������	��
��������
������������
�����	��� �"!�#$�%���

&'()
*+,-
./0

123
4452+6-
54/1/+

78-9)-+:0-8;3<</0

=:/02:5>/'/,-
./0

?�@BADC�EGFIH

J HGKL@BF MONPFIF @BFIQ

R EGS ET�@BU�FVKLH
?�@BM�H R HGW ?�@BM�H R HGWT�X J

Figure 2.6. Architecture block diagram.

a flow control buffer can be used to greatly increase the throughput of the overall sys-

tem.

Through the use of JAVA as an soft interface to the board, we have been able to fa-

cilitate the initiation and monitoring of simulations from remote locations. Researchers

around the world have successfully uploaded their own LDPC codes for testing on the

“UCLA Monte Carlo System”.

2.5 Conclusion

A reduced complexity decoding algorithm that suffers little or no performance

loss has been developed and is justified both theoretically and experimentally. Finite

wordlengths have been carefully considered and 6 to 7 bits of precision have been

shown to be adequate for a highly complex (a length 10,000 � � � � 3 � ��� irregular

29

LDPC) code to achieve an error floor that is code rather than implementation limited.

30

Chapter 3

Parity Check Matrix Construction for

Error Floor Reduction

Density evolution determines the performance threshold for infinitely long codes

whose associated bipartite graphs are assumed to follow a tree-like structure. How-

ever, bipartite graphs representing finite-length codes without singly connected nodes

inevitably have cycles and thus are non-tree-like. Cycles in bipartite graphs compro-

mise the optimality of the commonly practiced belief propagation decoding. If cycles

exist, neighbors of a node are not conditionally independent in general, therefore graph

separation is inaccurate and so is Pearl’s polytree algorithm [34] (which defines belief

propagation as a special case). However, not all cycles are equally problematic in prac-

tice. We will argue that the more connected a cycle is to the rest of the graph, the less

difficulty it poses to iterative decoding.

Randomly realized finite-length irregular LDPC codes with block sizes on the order

31

of �.� � [36] approach their density evolution threshold closely (within 0.8dB at BER

� �.�0/ �) at rate � �� , outperforming their regular counterparts [29] by about 0.6dB.

In this work, we repeated the irregular code construction method described in [36] and

extended their simulation to a higher SNR region. In the relatively unconditioned codes,

an error floor was observed at BERs of slightly below �.� / � . In contrast, regular codes

and almost regular codes ([24]) usually enjoy very low error floors, apparently due

to their more uniform Hamming distance between neighboring codewords and higher

minimum distances.

MacKay et al. [29] first reported the tradeoff between the threshold SNR and the

error floor BER for irregular LDPC codes versus regular LDPC codes. A similar trade-

off has been found for turbo codes ([3], [16]). This work presents a design technique

that requires all small cycles to have a minimum degree of connectivity with the rest of

the graph. This technique lowers the error floors of irregular LDPC codes significantly

while only slightly degrading the performance in the waterfall region.

The error floor of an LDPC code under maximum likelihood (ML) decoding de-

pends on the � � 9 � of the code and the multiplicity of � � 9 � error events. However, for

randomly constructed codes, no algorithm is known to check if they have large mini-

mum distances (This problem was proved to be NP-hard [47]).

As a result, the common approach has been to indirectly improve � � 9 � through

code conditioning techniques such as the removal of short cycles (girth conditioning

[31], [2]). Such conditioning is useful also because certain short cycles can cause poor

performance in conjunction with iterative decoding even if they have a large ��� 9 � and

would not be problematic for ML decoding.

32

However, not all short cycles are equally harmful. Standard girth conditioning

severely constrains code structure by removing all cycles shorter than a specified length

even though many of these can do little harm, because they are well-connected with the

rest of the graph. This work uses a technique precludes only cycles that are relatively

isolated from the rest of the graph and thereby are likely contributors to small stopping

sets. Di et al. [12] described stopping sets in the context of erasures. Message passing

decoding fails whenever all the variable nodes in a stopping set are erased. Notably,

erasing all variable nodes in a stopping set does not necessarily force ML decoding to

fail.

For QPSK and BPSK modulation, Euclidean distance and Hamming distance are

linearly related. Thus, it is reasonable to design codes for such modulations to focus on

the Hamming distance spectrum. Minimum Hamming distance (� � 9 �) is well-known

to be related to the number of errors (�) that can be corrected reliably, � � 9 � � � � � � .
Minimum Hamming distance is also known to be linearly related to the number of

erasures (�) that can be corrected, � � 9 � � � � � . As we will show, the minimum

stopping set size is equal to the smallest number of erasures that cannot be corrected

by iterative decoding. Thus it is closely related to the Hamming distance (and hence

Euclidean distance for QPSK and BPSK). Because the weight distribution of stopping

sets is so closely related to the Euclidean distance spectrum, it is clear that LDPC

designs focusing on the weight distribution of stopping sets is appropriate for AWGN

channels as well as the binary erasure channel (BEC).

The focus of this work is on LDPC codes for AWGN channels, but we improve

erasure performance (stopping set size) to indirectly improve AWGN performance. As

33

demonstrated by our simulations, we can reduce error floors in AWGN channels by

generating codes from an expurgated ensemble that has large stopping sets. The result-

ing codes outperform the girth-conditioned irregular codes described in [31] and [2].

The work is organized as follows. Section 3.1 shows the relationship between cycles,

stopping sets, and codewords. Section 3.2 proposes a design metric termed extrinsic

message degree (EMD). Based on the approximate cycle EMD (ACE), section 3.3 de-

scribes a linear-time Viterbi-like algorithm to construct full-rank parity-check matrices

that follow irregular degree distributions but do not have isolated small cycles. This

indirectly forces a large stopping set size. Section 3.4 demonstrates by simulation the

substantial decrease in error floor achieved by ACE-conditioned codes as compared to

girth-conditioned codes.

3.1 Cycles, stopping sets, codeword sets and edge-expanding

sets

The well known matrix and bipartite graph descriptions of a rate 1/3
� �
��� � code are

given in Fig. 3.1. This code will be used in examples throughout the chapter. One

column in the parity-check matrix corresponds to one variable in the bipartite graph.

For convenience, we will use ‘column’ and ‘variable’ interchangeably in this chapter.

The parity-check matrix % is constructed such that its % � portion is invertible, which

guarantees that % is full-rank. For systematic encoding, % # corresponds to information

bits and % � corresponds to parity bits.

34

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

� 	 �

variable
nodes

constraint
nodes

 +

 +

 +

 +

 +

 +

message
nodes

check
nodes

� � � � � � � � � � � � � � � � �
� �
�
� �
� �
� �
� �

� �
�
� �
� �
� �
� �

���
�
� �
���
� �
� �
���
� �
� �

(a) (b)

H =

Figure 3.1. Matrix and graph description of a (9, 3) code.

3.1.1 Cycle-related structures

Definition 1 (Cycle) A cycle of length � � is a set of � variable nodes and � constraint

nodes connected by edges such that a path exists that travels through every node in the

set and connects each node to itself without traversing an edge twice.

Definition 2 (� � Cycle set) A set of variable nodes in a bipartite graph is a ��� set if

(1) it has � elements, and (2) one or more cycles are formed between this set and its

neighboring constraint set. A set of � variable nodes does not form a ��� set only if no

cycles exist between these variables and their constraint neighbors.

Note that the maximum cycle length that is possible in a ��� set is � � . Fig. 3.1 shows

a length-6 cycle ("�� ��� � � " � ��� # � " � ��� 6 � "%�) and a length-4 cycle (" � ��� # � " � ��� 1 � " �).
Variable node set 7 "��.� " � � " � 8 is a � 1 set. Variable node set 7 " � � " 6 � " � 8 is also a � 1 set

35

although " 6 is not contained in the length-4 cycle. Di et al. defined a stopping set as

follows, which we will show to contain cycles shortly.

Definition 3 (� � Stopping set [12]) A variable node set is called an � � set if it has �

elements and all its neighbors are connected to it at least twice.

Variable node set 7 "��)� " � � " � 8 in Fig. 3.1 is an � 1 set because all its neighbors �(� , � # ,
� 1 and � 6 are connected to this set at least twice.

The following lemma shows that stopping sets always contain cycles. The effec-

tiveness of message passing decoding on graphs with cycles depends primarily on how

cycles are clustered to form stopping sets.

Lemma 1 In a bipartite graph without singly connected variable nodes (such as one

generated with a degree distribution given by density evolution), every stopping set

contains cycles.

Proof: A stopping set (variable nodes) and its neighbors (constraint nodes) form

a bipartite graph where one can always leave a node on a different edge than used to

enter that node. Traversing the resulting bipartite graph in this way indefinitely, one

eventually visits a node twice, thus forming a cycle.
�

Lemma 2 In a bipartite graph without singly connected variable nodes, stopping sets

in general are comprised of multiple cycles. The only stopping sets formed by a single

cycle are those that consist of all degree-2 variable nodes.

Proof: A cycle that consists of all degree-2 variable nodes is a stopping set. To prove

the lemma, we only need to show that if a cycle contains variable nodes of degree-3 or

36

more, any stopping sets including this cycle are comprised of multiple cycles. Fig.

3.2(a) shows a cycle of arbitrary length � � (here � � �
� for demonstration). Assume

that one variable node " � in this cycle has degree 3 or higher, " � must be connected

to at least one constraint node out of this cycle (for instance � # in Fig. 3.2(a)). By

the definition of a stopping set, � # must be connected to variable nodes in the stopping

set at least twice. Therefore if ��# is not connected to " # , or " 1 , or " � , the stopping set

must contain at least one more variable node (for instance " 6). The ‘concatenation’ of

constraints and variables on to " 6 may occur across many nodes. However, to form a

stopping set, eventually a new loop must be closed that connects the newest constraint

in the chain to a variable on the chain or in the original cycle. Thus, the stopping set is

comprised of at least two cycles.
�

+

+

+

+ v4

v3

v2 v1

(a) (b)

+

v5

extrinsic component of v2

c1

Figure 3.2. (a) Extrinsic message (b) Expanding of a graph

According to Lemma 2, the general view of stopping sets and cycles is given in

Fig. 3.2(b). Two types of variable nodes comprise a stopping set. Variable nodes of the

37

first type form cycles with other variable nodes; variable nodes of the second type form

binding structures that connect different cycles. It should be noted that both binding

nodes and cycle nodes may have branches that lead to cycles containing variable nodes

not in the current stopping set. Our proposed parity matrix design algorithm ensure that

short cycles contain at least a given minimum number of ‘extrinsic paths’. This leads

to an increase in the minimum size of a stopping set.

Definition 4 (!� Codeword set) A variable node set is called a � set if it is com-

prised of exactly � elements whose columns form a (weight-d) codeword.

Variable nodes set 7 "%�(� " � � " � 8 in Fig. 3.1 is the 1 set corresponding to the code-

word 100010100. A linear code with minimum distance � � 9 � has at least one codeword

with weight � � 9 � and no non-zero codewords with smaller weight. Hence, there is at

least one !� � � 	 set but no !� sets where � � � � 9
�
.

Erasing all the variables in a codeword set is the same as erasing all the non-zero

positions of a binary codeword. Recovery from such an erasure is impossible even

under ML decoding. Thus all codeword sets are stopping sets.

Preventing small stopping sets also prevents small � � 9 � . If a code has � � 9 � , it must

have an ��� � � 	 stopping set. Thus, avoiding all stopping sets � � for ��� � ensures

� � 9 ��� � .

However, small stopping sets do not necessarily represent low distance events. In-

deed, an ML decoder can successfully decode an erased stopping set if a full column-

rank sub-matrix is formed by the columns of the parity check matrix that are indexed by

the stopping set variables. For example, 7 " 1 � " � � " 6 � " � � "��)8 in Fig. 3.1 is a stopping set

38

that may be recovered by ML decoding (in the BEC case, simply solve a linear equation

set). However, an erased stopping set can never be overcome by an iterative decoder.

With additive white Gaussian noise (AWGN), the magnitude of a corrupted signal

can be so small that it can be effectively treated as an erasure. Hence the role of stop-

ping sets can be translated to AWGN scenarios where variables with poor observation

reliability are analogous to erasures. All stopping sets of small size are problematic.

Some cause small distance, and all cause problems for iterative decoding. An obvi-

ous direction to take in order to generate codes well-suited to iterative decoding is to

increase the size of minimum stopping set and reduce its multiplicity. Fig. 3.3 summa-

rizes the relationship between � � , � � , and !� . Here, 	�� is a graph structure that we

will discuss in the next section.

{Cd}

{Sd}

{Wd}

{Ed}

Figure 3.3. Venn diagram showing relationship of ��� , � � , !� and 	�� .

39

3.1.2 Cycle-free sets

At this point, the value of removing small stopping sets is apparent. However, one

might argue that simple girth conditioning accomplishes this because every stopping

set contains cycles. The problem with traditional girth conditioning is that there are so

many cycles. Fig. 3.4 illustrates a cycle in the support tree of variable node "0� of Fig.

3.1. All the levels whose indices are odd numbers consist of constraint nodes and all

the levels whose indices are even numbers consist of variable nodes. A cycle occurs

if two positions in the support tree represent the same node in the bipartite graph (e.g.,

"�� in level-3). To detect cycles of length up to � � in the support tree of "�� , we need to

expand its support tree � levels.

+ +

v0

c0 c5

v2 v4 v8 v1 v6 v7 v8

Level-0

Level-1

Level-2

Figure 3.4. Traditional girth conditioning removes too many cycles.

The number of nodes in the support tree grows exponentially with the number of

levels expanded. To be short-cycle-free, all these nodes have to be different, so the

longest cycle size we can avoid increases only logarithmically with block size (see

[18]). Since the logarithm is a slowly increasing function, girth conditioning of a finite

length LDPC code is severely limited by block length.

40

Girth conditioning is especially problematic when there are high-degree nodes, as

is common with degree distributions produced by density evolution. Recent girth con-

ditioning techniques usually bypass high degree nodes. For example, in [31], the edge-

wise highest variable degree is only 3; in [2], the fraction of the highest degree variables

� � is only 0.025. As a result, girth conditioning was easier to perform. However, the

capacity-approaching capability was sacrificed. High degree nodes are indicated by

density evolution and lead to large stopping sets. The following arguments further dis-

cuss the cycle-related structures for high degree nodes and low degree nodes.

Definition 5 (Cycle-free set) A variable node set is called a cycle-free set if no cycle

exists among its constituent variables.

Theorem 1 A necessary and sufficient condition for a set of degree- � variable nodes

to be a cycle-free set is that this set is linearly independent.

Proof: All sets that are not linearly independent contain codeword sets. Codeword

sets are special stopping sets and stopping sets contain cycles (Lemma 1). For suffi-

ciency, note that the constraint nodes taking part in a cycle among degree-2 nodes are

each shared by exactly two variable nodes. Therefore the binary sum of columns (vari-

ables) taking place in the cycle is the all-zero vector and these columns are linearly

dependent.
�

Corollary 1.1 A maximum of ��� � �'� degree-2 columns of length � � � may be

linearly independent (cycle-free).

Proof: Consider the
�
� � �

�
�
�
� � � �"� � bi-diagonal matrix,

41

���������������������
�

� � ����� �

� �

� � . . .

...
. . .

� �

� �

� ����� � �

����������������������
�

�
/�� / #

�
/�� � (3.1)

This matrix forms a rank � � � � � basis of degree-2 columns each with dimension

� � � . Any possible degree-2 column of dimension � � � can be formed via a linear

combination of columns in the above basis.
�

Corollary 1.1 may also be considered a version of the Singleton bound where the

restriction to degree-2 columns lowers the best possible � � 9 � from � � � to � � � �"� .

Theorem 2 In an (� ,
�

) code free of degree-1 variables, a cycle-free variable node set

" # � " �)�(� � � � " , must satisfy ,9 � # � ��9 � � � � � � � �"� , where ��9 is the degree of " 9 .

Proof: A degree- � variable node whose constraints are 7 � # � � �(�)� � � � � �(8 can be con-

ceptually replaced by a cluster of � �"� degree-2 nodes whose constraints are 7 � # � � �)8 ,
7 � �(� � 1 8 , ..., 7 � � / # � � �(8 respectively. As an example, Fig. 3.5 shows how variable node

" # in Fig. 3.1 may be replaced by a cluster of two degree-2 nodes.

Because the indices of the constraints in a cluster are ordered, any cycle involving

the degree- � node is equivalent to a cycle involving some of the degree-2 nodes in the

cluster replacing the original node. Fig. 3.6 shows an example. Replace every variable

42

5

4

3

2

1

0

...

...

...

...

...

...

1

1

0

0

1

0

c

c

c

c

c

c

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

)c ,(c)c ,(c
1

1

0

0

0

0

0

1

0

0

1

0

5441

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	

�

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	

�

variable
node v1:

cluster of
degree-2
nodes:

Figure 3.5. "$# can be replaced by two degree-2 nodes.

in the set with its equivalent cluster. According to Corollary 1.1, at most � � � � � of

these resulting degree-2 nodes can form a cycle-free set. Thus the theorem is proved.
�

Corollary 2.1 In an (� ,
�

) code free of degree-1 variables, no set of variable nodes

whose cardinality is larger than � � � � � can be cycle-free.

Proof: Equality in the inequality of Theorem 2 is achieved with � � � � � indepen-

dent degree-2 variable nodes. Fewer variable nodes are allowed if some have higher

degree.
�

Lemma 2 and Theorem 1 show that for degree-2 variable nodes, cycles, stopping

sets and codeword sets are equivalent. These structures are distinct for higher degree

nodes following the Venn diagram of Fig. 3.3. Theorem 2 shows that higher degree

nodes may be considered as the superposition of two or more degree-2 nodes, and they

tend to form cycles more easily. As a result, girth conditioning on high degree nodes

is more difficult than on low degree nodes. However, cycles involving higher degree

nodes are actually less problematic because they have higher EMD, as will be explained

in the next section.

43

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
 �

�
 �

�
 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
 �

�
 ���

�

�

�

�

�

�

�
 ���

�
 ���

�

�

�

�

�

�

�
 ���

(a)
 (b)

Figure 3.6. Replace "$# by its cluster in a cycle.

3.2 EMD and LDPC code design

Our goal is to ensure that all stopping sets have at least some minimum number of

variable nodes. However, no polynomial-time algorithm is known that removes small

stopping sets explicitly, and our attempts to directly control stopping set sizes were too

complex even to prevent very small stopping sets in a reasonable amount of time. As

an alternative, we design an algorithm that conditions the graph so that small cycles all

have an edge expanding property that prevents them from being part of a small stopping

set. First, we define the notion of an edge expander as presented in [12].

Definition 6 ((,
) edge expander [12]) Let � be any subset of left nodes (variable

nodes). Define 	 � � � to be the number of edges connected to � and � �
�
�

to be the

number of neighbors of � . An (,
) edge expander of an (� ,
�

) code is a graph that

has � �
�
� �
 	 �

�
�

for all subsets with 	 �
�
� ��	 � .

44

Methods that realize regular graphs with good edge expanding properties were pro-

posed by Margulis in [32]. However, a construction that can simultaneously satisfy a

given edge expanding property as well as a given irregular degree distribution has yet

to be proposed. We are interested in the special case of
�
	 �(� �� � edge expanders.

Definition 7 (�� Edge-expanding set with parameter
*� � ��) A set of � variable

nodes is called an 	�� set if one-half of the number of edges emanating from it is less

than the number of neighbors to which these edges connect.

Neighbors (constraints) of an 	�� set are connected to the set less than twice on

average, therefore at least one neighbor exists that is singly connected to this 	 � set.

Thus, as shown in Fig. 3.3, the set of � � sets and the set of 	�� sets are disjoint. For

a given value of � , increasing the number of 	�� sets decreases the number of possible

� � sets. Hence, conditioning for good edge expansion indirectly reduces the number of

small stopping sets.

Lemma 2 shows that stopping sets are comprised of linked cycles. An efficient way

to suppress small stopping sets is to improve the edge expanding properties of cycles

in an irregular LDPC code. From the discussion of 	�� sets, we know that constraint

nodes singly connected to a variable node set provide good edge expansion because

these constraint nodes ensure useful message flows. Our algorithm achieves this by

focusing on a parameter of variable node sets that we call the extrinsic message degree

(EMD).

Definition 8 (Extrinsic message degree) An extrinsic constraint node of a variable

node set is a constraint node that is singly connected to this set. The extrinsic message

45

degree (EMD) of a variable node set is the number of extrinsic constraint nodes of this

variable node set.

As was previously described, the high-SNR performance of an iteratively decoded

LDPC code is limited by the size of the smallest stopping set in the code. The EMD of

a stopping set is zero. A set of variable nodes with large EMD will require additional

concatenation of nodes to become a stopping set. We propose a conditioning algorithm

that ensures all cycles less than a given length have an EMD greater than a given value.

This technique statistically increases the smallest stopping set size. It also increases

� � 9 � because codeword sets are special cases of stopping sets.

The algorithm that follows ignores large cycles. In the context of EMD, this is

justified for two reasons. First, large cycles necessarily contain many variable nodes.

Second, they tend toward high EMD by virtue of a level of graph connectivity that

statistically surpasses that of small cycles. We thus target the elimination of small

cycles with low EMD and claim (via the arguments of previous sections) that these

structures are significant contributors to errors at high SNR.

3.3 Construction of LDPC codes free of small stopping

sets

First consider the EMD of a generic cycle. If there are no variable nodes in a cycle

that share common constraint nodes outside of the cycle, then the EMD of this cycle

is 9 � ��9 � � � , where ��9 is the degree of the � ��� variable in this cycle. Otherwise, the

46

EMD is reduced through constraint node sharing. To provide a calculable EMD metric,

we neglect constraint node sharing and define an approximate cycle EMD.

Definition 9 (Approximate cycle EMD (ACE)) The ACE of a length � � cycle is 9 � ��9 � � � ,
where ��9 is the degree of the � ��� variable in this cycle. We also say that the ACE of a

degree- � variable node is � � � and the ACE of any constraint node is 0.

ACE is an upper bound on EMD. The code conditioning algorithm to be proposed

next is based on ACE instead of EMD. This approximation is reasonable since in this

algorithm, all cycles shorter than a given length (including those formed through con-

straint node sharing) will be required to meet the ACE criteria. An LDPC code has

property (�$�
��� , � �����), if all the cycles whose length is � � �
��� or less have ACE values

of at least � ����� .
In our codes information bits come before parity bits (see Fig. 3.1). We assign

column nodes such that degree decreases monotonically (i.e., � 9 � � � if � � �
). Be-

cause high degree nodes converge faster, this arrangement provides more protection to

information bits than to parity bits. The algorithm is as follows:

47

for (� � � �"� ; � � � ; � � �)

begin

redo:

Randomly generate "%9 according to deg. distr.;

if � � �
(i.e., " 9 is a parity bit)

begin

Gaussian Elimination (GE) on % � ;

if " 9��!� � � � � " �9 � # � " �9 � � �(� � � � " �� / #
�

goto redo;

else

" �9�� the residue of " 9 after GE;

end

ACE detection for " 9 ;
if � ��	 � � ����� for a cycle of length � �$����� or less

goto redo;

end

The Gaussian elimination process ultimately guarantees that the H matrix has full

rank by ensuring that the � � � columns of % � will be linearly independent. For degree-

2 variable nodes, independence entails freedom from cycles so that all degree-2 parity

check nodes will be cycle-free. A caveat is that if Gaussian elimination is used in

conjunction with a degree distribution that yields more than � � � degree-2 nodes, then

at least one of the � � � parity check variables should have odd number degree (this

48

can be achieved by column swapping). This follows immediately from Corollary 1.1.

The ACE detection method can be equivalently depicted in two ways. The first one,

based on support trees, is directly related to the graph structure. The second one, based

on trellises, is oriented for algorithm implementation.

The tree depiction of ACE detection (� �����,� �) is given in Fig. 3.7. Here, variable

and constraint node labels refer literally to those of the example code in Fig. 3.1 and

the support tree that extends four levels below root node "�� is portrayed. We define � �

to be the ACE of a path between root node "�� and an arbitrary node � � (it can be either

a variable node or a constraint node). Recall also that � ��	 � � � � � � 1 ��� 1 1 � � � � � � if

� � is a variable, and � ��	 � � � � � � if � � is a constraint.

49

ACE Detection of "%�

� � � � for all variables and constraints;

��� � � ��	 � " � � ; Activate "%� for level-0;

for (� � � ; � � � ����� ; � � �
)

begin

for any active node � , in level-(� � �)

begin

Find its children set � � � � , � ;
for every child � � � � � � � , �
begin

� � � � � � �
�
� , � � � ��	 � � � � ;

if
�

� � � � � � � � � ����	 � " � � � � ��	 � � � ��� � � ����� 1

exit with failure;

elseif � � � � � �
� �

Deactivate � � in level- � ;

else

� � � � � � � � ;
end

end

end

exit with success;

�
Note that if �����	��
������������������������� �!���"��#$�%�&�('*) , this is the ACE of a cycle involving #+� .

50

To explain the above algorithm, we need to recognize that a node should propagate

descendants (be active) only if the path leading to this node has the lowest ACE value

that any path to this node has had thus far. Therefore linear cost is achieved instead

of an exponential cost. Initially all the path ACEs can be set to � (which means

‘unvisited’). Note that cycles occur when a node is revisited, is simultaneously visited,

or both. A cycle ACE equals the sum of the previously lowest path ACE to a node

and the current path ACE to the node minus the doubly counted root and child ACE.

When a cycle is formed by connecting two distinct paths from "�� to � � we have cycle

� ��	 � � � � � � � � � � ����	 � " � � � � ��	 � � � � , where � � � � � and � � are the ACEs of the

two paths from "%� to � � . Handling multiple simultaneous arrivals to the same node is a

trivial extension where ACE minimization is performed sequentially across all arrivals.

In the example shown in Fig. 3.7, bold lines at each level describe the current set of

active paths. In this example ‘ties’ are assigned the path whose parent has the lowest

index. For instance the path ("�� - � 6 - " # - � #) with � ��	 �#� survives while, ("�� - � 6 - " � -
� #), (" � - � � - " � - � #), (" � - � � - " � - � #) each also having ����		�	� , perish. For an example of

pruning occurring due to cycle detection on differing levels of the tree, observe that the

path ("%� - � � - " � - � 6) with � ��		� � does not survive since � 6 was visited at Level-1 and

was accordingly assigned ����	 � � .
Fig. 3.8 provides a trellis depiction of the previous discussion (with two more stages

added). A trellis instead of a full support tree is adequate for ACE detection because the

ACE minimization is performed sequentially and only the minimum ACE needs to be

stored. Again, a path ACE is stored for every variable node and every constraint node.

An active path is a path that connects the root variable node and any other node with

51

0 1 2 3 4 5 6 7 8
1 1 1 1 020 1 1ACE

1 54 6 3 58 1 256 36 7 1 235 10 671

5

4 1 3 4 5 4 1 3

456 2358 1 22 45 3 4 7 3 4 6 0 1 23 5

1 76 8842

0

0

1 3 0 4

42

1

V

0

1 1 0 1

1000111010111

1 1 1

0 0

V V

C

C

V VV VVVV

C

V

C C C C C C C C C C CC

V V

Figure 3.7. Illustration of an ACE search tree associated with "�� in the exam-

ple code of Fig.3.1. � �
������� . Bold lines represent survivor paths.

ACE values are indicated on the interior of circles (variables) or

squares (constraints), except on the lowest level where they are in-

stead described with a table.

the lowest ACE value up to the current step. Active paths are marked by solid lines in

Fig. 3.8. An active node is a node that connects to an active path at the current step.

Viterbi tree pruning yields a complexity at each root that is upper bounded by

� ����� � � �
�
� ��� � where � is the highest degree of any node in the graph, because

the support tree is expanded � ����� levels, for each level we have to consider at most

� nodes, and every node has at most � � � children. As shown in Fig. 3.8, relatively

few nodes at a level are active, thus the actual computational burden is reasonable, even

for block size on the order of �.��6 bits. The storage space needed is on the order of

� � �
� � �

�
because only the current trellis level has to be saved. To further improve

run-time, any active node with path ACE � �
� � ����� can be deactivated because all

the paths stemming from this node have an ACE value of at least �$����� . As a special

52

v0

v1

v2

v3

v4

v5

v6

v7

v8

c0

c1

c2

c3

c4

c5

0 0

0

1

1

0

1

1

0

1

0

1

0

1

0

0

1

1

1

1

2

1

0

1

0

1

1

0

0

1

0

1

1

1

1

2

1

0

1

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 3.8. The Viterbi-like ACE algorithm. � ����� ���

application of this argument, the user may generate columns for all variable nodes with

degree � �
��� � � or higher without checking the ACE (since all descendants will have

a path ACE of at least � �����).
Note that cycle detection can be implicitly performed in the above algorithm. Un-

visited variables are initialized to � � � � . When a variable is first visited, � � is assigned

a finite value. Upon subsequent visits to the same variable, ill-conditioned cycle detec-

tion is alarmed if the condition
�

� � � � � �
� � � � ��	 � " � � � ����	 � � � ��� � � ����� is not

satisfied.

3.4 Simulation results and data analysis

We present results for LDPC codes with three different block lengths.

53

3.4.1 Block-length 10,000 LDPC codes

We used the ACE algorithm to construct (10000, 5000) codes that have the irregular

degree distribution given in [36] with maximum variable node degree � �&� �%� . The

encoded bits were sent through a binary-input AWGN channel. For each corrupted

codeword, a maximum of 200 iterations were performed. Each simulation was stopped

when 80 block errors were detected. The BER results and in one case the word (block)

error rate (WER) results are plotted in Fig. 3.9.

A (� ����� , � �
���) code in Fig. 3.9 means that in this code, all cycles of length up

to � � ����� have ACE of at least � ����� . Higher � ����� values ensure better properties

for the conditioned cycles and higher � �
��� values ensure that conditioning occurs for

longer cycles. There is a tradeoff between � ����� and � ����� : increasing one param-

eter inevitably makes the other parameter more difficult to implement. For � ����� �
�.�
�)�.�
� �
� � � and � , the highest � ����� values that we could achieve were � ���
� � � � , and �

respectively. If all degree-2 variables are parity bits (which is possible if there are fewer

than � � � of them), then the full-rankness of the parity matrix guarantees that no cycles

will exist between degree-2 variables (see Theorem 1). In this case we can construct

(� , 1) codes since all cycles of any length must include nodes of at least degree-3 (and

hence have ACE of at least 1). Such codes have the lowest level of conditioning that

we consider and we use codes constructed in this manner to contrast the performance

of stronger (�$�
��� , � �
���) conditioning levels.

As a benchmark, Richardson and Urbanke’s �.�� -bit code [36] (referred to here as

the RU code) is included in Fig. 3.9(a). This RU code was constructed with the con-

54

straint that “all the degree-two nodes were made loop-free”. Unfortunately, simulation

results below BER �.�2/ � are unavailable for the RU code. The (� , 1) code shown

in this chapter has a similar level of conditioning as the RU code and exhibit compa-

rable performance. The (� , 1) code ensures linear independence among parity bits

which include all degree-two nodes and some degree-three nodes. The error-floor BER

of the (� , 1) code is around �.� / � . Pure length-4 cycle removal improves BER by

half an order in magnitude over the (� , 1) code at highest SNR, and adversely affects

convergence. However, proper selection of � ����� and � �
��� suppresses error floors

significantly more. For example, the pure ACE conditioning code (9, 4) achieves ap-

proximately BER = �.� /�� , three orders of magnitude below the (� , 1) code.

Fig. 3.9(b) compares several ACE parameter sets with or without explicit length-4

cycle removal. Note that the lowest error floor was achieved at � �����,��� and � ����� � �

with no explicit removal of short cycles. As explained before, traditional girth con-

ditioning treats all short cycles equally, thus making the removal of longer but still

harmful cycles more difficult. On the contrary, the ACE algorithm effectively removes

low-ACE cycles, while leaving shorter cycles intact, if they have a high ACE. By doing

this, participation of high degree variables in cycles is encouraged. In fact, removing

all length-4 cycles hinders the performance of the ACE algorithm.

We observe that there is a small penalty in the capacity-approaching capability of

our low-error-floor codes. With more conditioning at this block size, the low-SNR

performance of the code is slightly degraded, possibly due to a decrease in the random-

ness of the code structure. This tradeoff between error floor and low-SNR performance

is a well-known characteristic of iteratively decoded codes ([29][3][16]). Scheme (9,

55

4) is approximately 0.07dB away from the RU code at low SNR. However, even with

this mild penalty these codes remain superior to regular codes in terms of their capacity-

approaching performance. For example, we tested MacKay’s (9972, 3, 6) regular LDPC

code described in [29]. Although no error floors were detected for this code, it achieves

����� � �.� /26 at � �, � ��� � dB, more than 0.6dB worse than our (9, 4) code. Thus the

combination of density evolution optimized degree distributions and ACE construction

achieves good performance over a wide SNR operating range.

3.4.2 Shorter block lengths

To compare with other techniques at block lengths around 1000, we choose Mao’s

(1268, 456) code described in [31] as a benchmark. Fig. 3.10 compares the perfor-

mance of the ACE-conditioned (1264, 456) code with that of Mao’s (1268, 456) code

(results drawn from [31]).

It should be noted that degree distributions play an important role in conditioning

schemes. With the low maximum variable degree (� � �+�) distribution proposed in

[31], both the girth conditioning and the ACE conditioning are easy to perform. How-

ever, the ACE-conditioned code (� , 3) is 0.2 dB better in BER at the high SNR region.

If the density-evolution optimized distribution with � � �	� � is imposed, the girth con-

ditioning technique becomes more difficult due to the higher fraction of high degree

nodes. However, the ACE algorithm still works well, outperforming Mao’s code by

0.3dB, with no detectable error floors above � 	 �� �.��/�� .
We have also designed two ACE-conditioned (4000, 2000) codes to compare with

56

Arnold’s (4000, 2000)(� �:� �) code described in [2] (results drawn from [2], see Fig.

3.11). The degree distributions of the proposed code are Arnold’s � � � � degree distri-

bution and the � � �'� � degree distribution produced by density evolution.

As we can see from Fig. 3.11, by choosing Arnold’s degree distribution, the ACE-

conditioned code (� , 6)2 achieves convergence 0.4dB worse than Arnold’s code. This

may result from the fact that the ACE algorithm is based on random generation and

Arnold’s progressive edge-growth technique successfully puts more structure in codes.

We did not find error floors for the (� , 6) code above BER � �.� / � . By choosing the

density-evolution optimized distribution with � � � � � , the ACE-conditioned code (9,

4) achieves a threshold SNR 0.1dB better than that of Arnold’s code.

In summary, Arnold’s code is better than the ACE-conditioned code for Arnold’s

� � � � degree distribution, but that degree distribution is suboptimal. ACE conditioning

of the density evolution degree distribution produces the best performance.

3.5 Conclusion

We have discussed the relationship between several graph structures that affect error

floors and have introduced the ACE algorithm to construct irregular LDPC codes that

have a specific ACE property for short cycles while maintaining the density-evolution

prescribed degree distribution. Our simulation results show an improvement in the

error floor region of irregular LDPC codes by several orders of magnitude in BER over

alternative construction techniques.
���������
) is achieved by extending the trellis until all the notes in the rightmost level are inactive

57

Graphs with lower maximum left degree can achieve higher girth conditioning num-

bers than graphs with higher maximum left degree. Following this mechanism, [31] and

[2] demonstrate that error floor reduction can be affected through girth-only condition-

ing if the degree distribution restricts the highest permissible variable node degree to be

a relatively small number (e.g., � ��� �). The absence of high degree nodes, however,

leads to threshold degradation. This is particularly true with codes of rate below 0.4

where density evolution has shown a significant fraction of high degree (e.g., � � � � �)

nodes imperative if threshold is to approach Shannon capacity under iterative decoding.

In contrast to this, Ryan [54] advocates elimination of low degree nodes from the

distribution. The irregular LDPC code in [2] also picked a distribution free of degree-

2 variables. Though not explicitly described in [54] and [2], removal of low degree

nodes from a distribution will raise overall graph EMD since low degree nodes can

not substantially increase the EMD of any given cycle. Either rate or threshold is ad-

versely affected by removing low-degree nodes since density evolution results indicate

that a small fraction of low degree nodes can significantly raise code rate, while only

marginally degrading threshold.

Density evolution assumes an infinite block length. Identifying optimal degree dis-

tributions for short block lengths remains an open area for research. This work assumes

that asymptotically optimal degree distributions provide a good starting point for de-

signing codes with short block lengths. Removal of low degree nodes from the distribu-

tion followed by girth-only conditioned graph construction by [54] is in fact implicity

aligned with the proposed EMD graph construction. However, the ACE condition-

ing approach achieves similar error floors without resorting to removal of low degree

58

nodes, which are known to play a role in rate maximization for a given threshold in the

asymptotic case.

59

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.4 0.6 0.8 1 1.2
Eb / No (dB)

B
E

R
 o

r
W

E
R

RU BER

(, 1) BER

(, 1) w/o length-4 cycles BER

(9, 4) BER

(9, 4) WER

∞

∞

(a)

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
Eb / No (dB)

B
E

R

(10, 3)

(9, 4)

(6, 7)

(10, 3) w/o length-4 cycles

(9, 4) w/o length-4 cycles

(6, 7) w/o length-4 cycles

(b)

Figure 3.9. Results for (10000, 5000) codes. The BPSK capacity bound at �

�
��� is 0.188dB.

60

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Eb / No (dB)

B
E

R
 o

r
W

E
R

Mao(dv = 3) BER
ACE(, 3) (dv = 3) BER
ACE(9, 4) (dv = 14) BER
Mao(dv = 3) WER
ACE(, 3) (dv = 3) WER
ACE(9, 4) (dv = 14) WER

∞

∞

Figure 3.10. Results for (1264, 456) codes.

The BPSK capacity bounds at ����
����� is -0.394dB.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Eb / No (dB)

B
E

R
 o

r
W

E
R

Arnold(dv = 8) BER
ACE(, 6) (dv = 8) BER
ACE(9, 4) (dv = 15) BER
Arnold(dv = 8) WER
ACE(, 6) (dv = 8) WER
ACE(9, 4) (dv = 15) WER

∞

∞

Figure 3.11. Results for (4000, 2000) codes.

The BPSK capacity bounds at ����
��� is 0.188dB.

61

Chapter 4

The Universality of Low-Density

Parity-Check Codes in Scalar Fading

Channels

Channel coding techniques that approach capacity for a large set of channel realiza-

tions, without specializing the transmission to the channel, are clearly desirable from

complexity and system usability points of view. In the discussion that follows, a sin-

gle code that can communicate reliably near the capacity of many different channels

will be called “universal”. A proof of the existence of codes that exhibit this property

was provided by Root and Variaya in [39]. Root and Variaya’s proof considered the

compound channel that occurs when the actual channel is unknown to both transmitter

and receiver but belongs to a set of possible channels known to both. Specifically, they

proved that a single code exists that can communicate reliably over all channels � in

62

the set � at rates arbitrarily close to the compound channel capacity given by,

� � � � � � *��� ���
� � � � ��� � (4.1)

Where
� � � � is the mutual information induced by the transmitted power spectrum on

the channel � . For a given desired rate , one might choose the set of channels � �

7 � � � � � � � 8 , such that the mutual information of every channel in the set is above

the transmitted rate. In this way, Root and Varaiya’s theorem says that “universal” or

“robust” codes exist that support rate over every channel where any code (with the

specified transmit power spectrum) exists that supports this rate.

This chapter and the next provide an examination of carefully constructed LDPC

codes in order to determine the degree to which they realize the promise of universal

operation. The performance of these codes under two distinct types of channels, peri-

odic fading channels and partial-band jamming channels, will be characterized. Each

channel type is useful in its own way for describing the robustness properties of Low-

Density Parity-Check (LDPC) codes.

To begin, period-� fading channels have at time � input
� 9 and output �%9 � � � 9 ��� � � � � 9 �

� 9 , where � 9 is additive white Gaussian noise (AWGN) with variance � � �� per di-

mension. The � -element vector �'� � �2� � # �(�)� � �(/ # � consists of complex scalars,

which could be the subchannel gains of an Orthogonal Frequency Division Modulation

(OFDM) system with � subcarriers. Nearly complete characterization of the perfor-

mance of LDPC codes on channels with small � can be carried out experimentally and

analytically through exhaustive parameterization of the fading vector � . Analytic char-

63

acterization will be provided via the periodic channel extension of Chung’s Gaussian

approximation [11] to density evolution. Robust operation in channels with longer pe-

riods is more difficult to completely characterize, though we do provide several specific

examples. To further demonstrate the robustness with greater generality, we turn to the

partial-band jamming channel.

The partial-band jamming channel occurs when a fraction of transmitted code sym-

bols have a relatively poor signal-to-noise ratio (SNR) at the receiver (and are hence

jammed) and another fraction experience a relatively good received SNR. It is usually

the case that the selection of received signals that incur jamming versus those that do

not is random (in adherence to the pre-determined proportions). Simulations performed

such that jamming locations are varied from one codeword to the next provide a means

for testing a large set of long period fading channels and of measuring the average fad-

ing performance of a code on this set. Good average performance over the set of chan-

nels is a necessary, but not sufficient, condition for the code to perform well on every

channel individually as the Root and Varaiya result would predict. However, complete

characterization of every partial-band jamming channel was beyond our computational

ability.

Work on the design and characterization of universal channel codes has been con-

ducted by Wesel et al. across several code paradigms for numerous channels. Initially,

trellis codes for periodic fading channels were developed in [51][52][53]. Designs (for

periodic channels) of universal serially concatenated turbo codes and LDPC codes (the

first appearance of the present work) were performed in [23] and [6]. Universal con-

structions of space-time time trellis codes and diagonally layered space-time systems

64

were presented in [22] and [33]. Finally, the robustness of LDPC codes in the general-

ized Gaussian (multi-input multi-output) channel has been presented in [5].

The next section provides mutual information definitions for the periodic fading

channel. Section 4.2 discusses the design and operation of LDPC codes for the period-2

channel in detail. To demonstrate that robust performance is not limited to the period-2

channel, section 4.3 provides performance results for an LDPC code on four period-

256 channels. A test of average performance on long periodic channels is made in

section 4.4 using the partial-band jamming channel. Finally, conclusions from this

work are drawn in section 4.5.

4.1 Mutual Information for Periodic Scalar Channels

The mutual information of the channel � �'� � � � , where scale factor � is known

at the receiver, can be expressed as,

� ����� � � � � � � ����� � � � � ����� � � � � � � ����� � � � � � (4.2)

where
�

and � are independent (scalar) RVs.
� ����� � � � � � 	�� � � ����� � � � � � � � is the

expectation that defines the average mutual information of this channel if � is varying

at the receiver. If, however, � is a deterministic constant (�#� �) then the mutual

information can be computed directly,

� ����� � � � � � � � ������� � �
�
� � � ��� � �

�
�
� �

� �
�
� � (4.3)

65

The extension of this result to periodic fading follows for a particular instance of

the � -element vector � ,

� � � � � �
�

�(/ #�
9 � � � ��� 9 ��� 9 � �

��9
� � (4.4)

which can also be used to define the capacity of a frequency selective fading channel

in the context of OFDM modulation where � indexes the subcarriers. If both
� 9 and �

are Gaussian and each
� 9 has the same average power, 	 ��� � � � � 	 3 , then the average

mutual information over period � is,

� � � � � �
�

�./ #�
9 � �)�� ' � �

� � � ��9�� � 	 3
� % � � � (4.5)

The constant power constraint causes the mutual information in (4.5) to be less than

the water-filling capacity that can be achieved if the transmitter knows � . Nevertheless,

Shannon’s basic noisy coding theorem ensures that for each � there is a code with fixed

symbol power 	 3 and rate that achieves reliable communication with arbitrarily

close to
� � � � . For example, � parallel Gaussian alphabet codes could be designed with

the � th code assigned rate 9 �)�� ' � � � � � � � � � � ���� � . This solution is unattractive as it

requires transmitter and receiver to coordinate code selection depending on � and, of

course, has tremendous complexity for large � .

In this work we turn to the broader result of Root and Varaiya [39] who proved

that a single code exists that can communicate reliably at rates arbitrarily close to the

compound channel capacity given by (4.1). While Shannon stated that for each chan-

nel there exists a code that provides reliable communication for that channel, Root and

66

−5 −4 −3 −2 −1 0 1 2

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

[1,1.0]
[1,0.8]
[1,0.6]
[1,0.4]
[1,0.2]
[1,0.0]
[1,1] Opt Code
[1,0] Opt Code

(a)

0.3 0.32 0.34 0.36 0.38 0.4

10
−4

10
−3

10
−2

10
−1

10
0

BPSK Constrained MI

B
E

R

[1,1.0]
[1,0.8]
[1,0.6]
[1,0.4]
[1,0.2]
[1,0.0]
[1,1] Opt Code
[1,0] Opt Code
Rate 1/3 Cap

(b)

Figure 4.1. (a) Code performance on the ��� �����	��

fading channel in terms

of SNR. (b) Code performance on the ��� �������

fading channel

in terms of Mutual Information. Dashed lines indicate operation

of a code optimized for the ��� �����	��

channel, solid lines indicate

operation of a code optimized for the ��� ��������

channel.

67

Varaiya showed that for a given set of channels (collectively this set forms the com-

pound channel) there is a code that provides reliable communication on all channels

within this set. In the succeeding sections, simulation and density evolution results will

show that a single LDPC code can perform with less than 0.1 bits of excess mutual

information (per real signaling dimension) for compound channels where the cardinal-

ity of the channel set is large. Excess mutual information is defined as the capacity

margin between the channel MI where the desired error probability is achieved and the

information transmission rate R. We use excess mutual information as a performance

measure throughout the remainder of the chapter as it provides as mechanism by which

to directly compare channels that require dramatically different SNRs in order to sup-

port communication with a given code.

4.2 LDPC Performance on Period-2 Fading Channels

Two rate 1/3 LDPC codes are used for the simulations in Fig. 4.1. Each has�
� � � � =(15000, 5000) and were realized from the degree distributions of Table 4.1.

These degree distributions were found by constraining periodic density evolution for the

� � �!���(�)� (e.g. Gaussian) and � � ������� � (e.g. Gaussian with 50% erasure) channels and

using an linear program (LP) solver to find the respective minimum threshold rate 1/3

codes with maximum left degree 15. As a benchmark, rate-1/3 BPSK constrained ca-

pacity is � � � � dB (;3 �����). The codes were conditioned using the Approximate Cycle

EMD (ACE) technique developed in [44], where EMD stands for extrinsic message de-

gree. This graph construction technique is particularly attractive for use in conjunction

68

with density evolution as it places no constraints on the underlying degree distribution

of the code. The ACE technique is based on the idea of maximizing the multiplicity of

“extrinsic” edges (meaning edges that do not participate in the cycle) that are connected

to all cycles in the graph shorter than a given length. Such a construction improves the

stopping set distribution in the graph (increases the mean stopping set size). Briefly,

the reason for this is that stopping sets can be shown to be formed by closed clusters

of cycles (e.g. cycles that are completely interconnected). Ensuring that each cycle

(shorter than a given length) has at least a minimum number of external connections

increases the average number of nodes required to form a closed cycle set. The codes

used in this chapter have ACE parameters � ����� �'� � and � �����,� � .
Figure 4.1 describes the performance of these codes in the period-2 channel with

� �	� �0� � # � , where �0� �5� and � # � � (signaling is via BPSK modulation). Fig. 4.1(a)

clearly shows that a decrease in � requires an increase in 	 3 ����� (3 ����� describes the

signal to noise ratio before channel scaling by �) to maintain constant BER. The plot

versus SNR, however, does not provide an absolute view of the respective performance

on each of the channels. Meaning, we might gather that performance on the �	�

�����(�)� channel is about 0.7dB away (at BER = �.�
/21) from binary-input additive white

Gaussian noise (BI-AWGN) capacity, however we can less easily determine if the code

is performing as well on say the � � �������
��� � channel.

To form an absolute basis for comparison Fig. 4.1(b) plots the BER versus mutual

information using (4.4) in the context of BPSK constrained signaling. The SNR of each

plotted point in Fig. 4.1(a) has a corresponding mutual information (under the BPSK

and periodic channel constraints), which yields the plot of BER versus mutual informa-

69

tion given in Fig. 4.1(b). From this point of view, the robustness of the code to period-2

fading is apparent. When each of the five channels provides mutual information of at

least 0.4 bits (i.e. 0.067 bits above the transmitted rate of 1/3) the codes communicate

at or below BER= �.�2/21 . Furthermore, the performance variation of both codes, on all

channels, is less than 0.02 bits of mutual information. We say then, that these two

codes are universal codes for period-2 fading since their mutual information require-

ment is essentially constant against channel variation. In the next section we discuss

the difference between these two codes in terms of design and asymptotic threshold

performance.

4.2.1 Code design for Period-� fading channels

To design a rate 1/3 code specifically for the � � �������%� channel, Chung’s Gaussian

approximation to density evolution is adapted to period-� fading channels and then used

with �,� � . Following the assumption in [11] that the output of an individual variable

or check node is Gaussian we proceed by expanding the argument to account for a

known periodic fading vector � .

At iteration � , degree- � variable nodes have their mean values, � � � 9 , updated in

correspondence to the periodic initial means given by � �
 � � � �
� � and the means of

messages arriving from constraint nodes (� �),
� � � �� � 9 � � � ��� �
 � � � � � � � � �!/ #��� � � � 7 �
�(�(�(� � � �"��8 (4.6)

Randomly selected edges emanating from variable nodes adhere to the following Gaus-

70

sian mixture density,

� � � �� � �./ #� � � � ����
9 � �

��9
�
�

� � � � �� � 9 � � � � � � � � �� � 9 � � � (4.7)

Where the outer summation mixes over the periodic fading vector and the inner sum-

mation mixes over the variable node edge-wise degree distribution. Following the

constraint-node-update rule +.- *0/ � �
� � �

� I / #�
9 � # +�- *0/ � �

� � we are interested in the ex-

pectation,

	&� +�- *0/ "
�
� �
� � �

��� +.- *0/
�
�
� � � �3 � �

�
��� +.- *0/

�
�

� �(/ #� � � � � ��
9 � �

� 9
�
�

� � � � �� � 9 � � � � � � � � �� � 9 � � � � � �
� �

�

�(/ #� � � � ��# � � � � � � � � �� � # � � ��� �

����� � �
�

�(/ #� � � � ����� � � � � � � � � �� � � � � � ���
� � � �

�

�(/ #� � � � � ��
9 � �

��9 � � � � � �� � 9 � � ���
(4.8)

Where the function � ����� (originally defined in [11]) equals � � 		� +�- *0/ � ��
 if � is

distributed as � ��� � � ��� (variance is fixed to � � due to the symmetry condition).

Again from the constraint-node-updated rule, the expectation of a degree-
�

con-

straint node obeys,

	
�
+�- *0/ �

�
� ���
� � 	 ' +.- *0/ " � � �� * � / # (4.9)

which can be re-written as,

71

� � � � � � � ���� � � � �
� � �

�

�./ #� � � � ����
9 � �

��9 � � � � � �� � 9 � � ��� � � / #
(4.10)

and finally yields,

� � � ���� � � � / # �� � � �
� � �

�

�(/ #� � � � � ��
9 � �

��9 � � � � � �� � 9 � � ��� � � / # �� � (4.11)

To complete the recursion, find the average mean value emanating from a constraint

node via the average of the resulting Gaussian mixture which is given by,

� � � �� � ����
� � �

; � � � � ���� �
�

����
� � �

; � � / # �� � � �
� � �

�

�(/ #� � � � � ��
9 � �

��9 � � � � � �� � 9 � � ��� � � / # �� (4.12)

substitution of terms in (4.6) for � � � �� � 9 � � �
gives a complete update recursion for � � � ��

from � � �!/ #��� .

The above recursion is linear in ; instead of � . An equivalent derivation that begins

on the constraint rather than variable node side of the graph produces an update equation

that is linear in � and can be employed as a constraint in a linear program that seeks to

find a rate maximizing � given a set of initial means � � . In this form, � � � �� is replaced

by �
�
� � and it can be shown that � � � �� � � iff �

�
� ��� � .

�
�
� � � #� � � 9 � �

� 9 �./ # � � � � 5 � �
 � � � � � � � � � � �
; � � / #

�
� � � � � �

�
��/ #�� � � / # 7

�
�
� � �

��� 9 � �
��9 �(/ # � � � #� � 9 � � �
 � � � �!/ #�� � (4.13)

72

The notation
� 9 is used as shorthand to represent the basis formed via the parameteri-

zation of � � � � and �
� ��� � #� � � � � �
 � , we state the LP formally as follows,

Min
�
� ��9 � �

& � + �
� � � � �

� � ��� �
�
� ��� 9 � �

��9 �(/ # � � � #� � 9 � � �
 � � �
� � � �

#� � � � � �
 �
(4.14)

To obtain a code of a given rate (say 1/3) for the period-2 channel, an outer loop can be

added to the optimization where bi-section on the initial means (the odd mean is fixed

to zero due to the channel fade) is performed until the rate maximizing
� � �$; � pair has

rate 1/3. The columns in Table 4.1 labeled ‘ �!�����%� ’ are the result of the optimization

procedure when it is applied to the ��� �������%� channel. Optimization results for the

� � �!���(�)� channel are also provided in the table.

Figure 4.2 provides asymptotic threshold results for the � � �!���(�)� and � � ������� �

optimized codes across � � ��������� period-2 fading. As expected, the thresholds of

each of these codes is best on the channel for which it was designed and worst on the

opposite channel. The simulated performance of these two codes (dashed curves) across

this parameterization is also provided in the figure (for BER = �.�
/21). The simulated

gap in the performance of the two codes on the �&�'�!�����%� channel follows closely from

the gap predicted by density evolution (i.e. the � � �����(�)� code requires approximately

0.01 bits more MI, or about 0.25 dB more SNR, to achieve the same BER on the ���

73

� � 9 [1,1] � 9 [1,0] ;�9 [1,1] ;�9 [1,0]

2 0.328189 0.354954 - -

4 0.245943 0.249982 - -

5 0.082931 0.065503 0.3000 0.5000

6 - - 0.7000 0.5000

15 0.342935 0.329558 - -

Table 4.1. Degree distributions optimized using Guassian approximation to

density evolution adapted to periodic fading. Columns labeled

��� ������� � indicate the distribution resulting from optimization for

the period-2 channel where half of all received symbols are erased.

Columns labeled � � �����(�)� indicate a period-2 code optimized for

AWGN.

74

0 0.2 0.4 0.6 0.8 1
0.34

0.35

0.36

0.37

0.38

0.39

0.4

M
I (

bi
ts

)

Parameter a in channel a = [1,a]

[1,1] Opt Code
[1,0] Opt Code
Threshold
Simulation

Figure 4.2. Mutual information thresholds of �	� �����(�)� and � � �!�����%� op-

timized codes across � � �!���$��� fading (solid lines). Simulation

results at BER = �.� /21 for length 15,000 codes realized from the

corresponding degree distributions.

�������%� channel). However, as the channel becomes increasingly “white” the simulated

performance of the � � �������%� optimized code does not become worse than that of the

� � �!���(�)� optimized code.

We note this result as interesting since the degree distribution for the � �'�!���$�%� code

actually violates Chung’s “stability” criterion for degree-2 nodes at SNRs for which it

is operating at low BER on the � � �!���(�)� channel. Said another way, threshold ex-

amination of the ��� ������� � code on the ��� �����(�)� channel yields constraint violations

(� �
��� 9 � �
��9 �(/ # � � � #� � 9 � � �
 � � �) near � � � (the stability region) at SNRs for which simu-

lated operation yields reliable communication. The region near �:��� corresponds to a

75

point within the iterative decoding process where messages have achieved a high mean

value and hence a low probability of error. For this reason, we hypothesize that code

performance is less coupled to asymptotic predictions near � ��� than in other regions

(�
� �). Note also that the primary difference between the �*�+�������%� and ��� �����(�)�

optimized code degree distributions is the higher proportion of degree-2 nodes in the

� � �!�����%� code. The fact that this code’s actual performance on the AWGN (� � �����(� �)

is better than that of the � � �!���(�)� optimized code indicates that a higher proportion

of degree-2 nodes than is indicated by density evolution should be assigned. Again,

the stability criteria limits the number of degree-2 nodes due to violating constraints

near � � � during optimization of the ��� �����(�)� code. These empirical data seem to

indicate that better codes can be found (at least for block lengths of 15,000 and below)

through relaxation of the stability constraint. Such a relaxation is easily implemented,

for instance, by raising the low end of the range for parameter � from � to 	 . Where 	

is a positive constant.

4.2.2 Robust Codes Vs. Optimally Matched Codes

If it is possible to design a code for the �"� �����(� � and �"� �������%� channels, then

the same is certainly true of all intermediate channels in �3� ��������� . Such an exercise

is useful to help measure the “cost” of robustness. Said another way, how much better

would the performance of the system that customized the code to the channel be than

the system that uses a single code for all channels.

The initial means for the even and odd phases of the �&� �!���$��� channel such that all

76

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Parameter a in a = [1,a] channel

D
en

si
ty

 E
vo

lu
tio

n
In

iti
al

 M
ea

ns

m
a

0
=1

m
a

1
=a

Figure 4.3. Density evolution initial means (for even/odd positions in a period-

2 channel) that provide an aggregate mutual information of 1/3

bit.

channels across the parameter � have mutual information equal to 1/3 bits are shown

Fig. 4.3. The means in Fig. 4.3 seed the periodic density evolution algorithm and a

series of LPs are solved to find the rate maximizing degree sequence for each param-

eterization of the channel. Specifically, for a sequence of concentrated right degrees,

whose average degree is decreasing, (concentrated right degree sequences were proven

to be optimal in [11]) the rate maximizing left degree sequence was found via solution

of an LP.

The rate maximization problem is convex in the parameterization of (concentrated)

right degree. Therefore the concentrated ; distribution that yields the overall rate max-

imizing � in fact yields a globally optimal
� � �$; � pair. The achievable rates, according

77

to density evolution, on each of the ten fading channels (for left and right maximum

degree constraints of 15) are given by the lower curve in Fig. 4.4. Note that the maxi-

mum possible rate achievable is 1/3 (due to the input MI constraint). The rate variation

between the highest achievable rate (on the � � �����(� � channel) and the lowest rate (on

the �3� �!�����%� channel) equals 0.007 bits. Such a result makes clear the fact that LD-

PCCs can be designed (if the period-2 channel is known in advance) so that essentially

equivalent operation on each of the channels is possible. However, we compare the

“flatness” of this result with the equally impressive asymptotic result of Fig. 4.2 where

the ��� �!���$�%� optimized code has a threshold variation across ���-��������� fading of ap-

proximately 0.008 bits. These density evolution results indicate that within the LDPC

paradigm there is essentially no cost associated with the use of a single “universal” code

versus a series of channel-specific codes in the context of the period-2 fading channel.

4.2.3 LDPC Period-2 Performance Compared to that of Serially

Concatenated Convolutional Codes

LDPC represents one of several well known realizations of random linear codes

with manageable decoding complexity. Parallel and serially concatenated convolutional

codes also exhibit capacity approaching performance under AWGN channel conditions.

Work similar to that in the present discussion, but that instead considers serial turbo

codes, has been conducted in [23]. In the sections that follow we compare LDPC

and serial turbo code performance under the period-2 and period-256 channelization

scenarios.

78

0 0.2 0.4 0.6 0.8 1
0.3

0.31

0.32

0.33

0.34

Parameter a in channel a = [1,a]

R
at

e

Achievable Rates (according to GDE)
Absolute Maximum Rate (1/3 bit)

Figure 4.4. The maximum achievable rate for codes optimized for each in-

stance in a parameterization of the � � �!���$��� channel. Mutual

information due to initial means is held at 1/3 bit across the pa-

rameterization.

Figure 4.5 simultaneously plots excess MI and excess SNR for six different channel

parameterizations under an 8PSK modulation constraint. Each of the lines emanating

from the origin (one for each of the six channels) represents an absolute MI level of 1.0

bits on the abscissa (at origin) and on the ordinate (at origin) the absolute SNR level

required to produce 1.0 bits of MI on the given channel. Points on the plot away from

the origin measure MIs and SNRs in excess of capacity achieving levels. The differing

slopes for each of these channels reveals why we have insisted on plotting performance

versus MI throughout this chapter. Specifically, excess SNR (or SNR gap to capacity)

varies with channel selection.

79

Also plotted in Fig. 4.5 is the performance of � � �����(�)� and �3� �!���$�%� optimized

length 30,000, rate 1/3, LDPC codes on these six channels using Gray-labeled 8PSK

modulation (therefore 10,000 total channel symbols). The performance of a rate 1/3

length 10,000 serial turbo code optimized for period-2 fading in [23] is also provided.

It is important not to neglect scale in these plots. For instance the difference in the

mutual performance of the �&� �!�����%� optimized LDPC code across the channels is less

than 0.05 bits. The serial turbo code exhibits a consistent excess SNR requirement that

is striking, but has a variation in excess MI of 0.1 bits. The wider variation in excess

MI of the serial turbo code comes from its exceptionally good performance on channels

with low � values. The serial turbo code is strictly better than the � � �����(�)� optimized

LDPC code and is very competitive with the �&� ������� � optimized LDPC code.

As demonstrated in Figs. 4.1 and 4.2, length 15,000 LDPC codes under binary

modulation (utilizing the same degree distributions as the length 30k codes of Fig. 4.5)

exhibit an excess MI variation per real dimension (across the six period-2 channels) of

less than 0.02 bits. A similar variation in excess MI per real dimension is observed with

8PSK modulation and block length 30,000.

4.3 Period-� Channels

To demonstrate that the code’s robust operation in periodic fading is not limited to

channels with small period � , consider the four period-256 channels in Fig. 4.6. These

fading profiles were generated by realizing channels with 4, 8, and 16 multi-path com-

ponents in the time domain. The time channels were randomly generated with each tap

80

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

0.05

0.1

0.15

0.2

0.25

∆ SNR (dB)
∆

M
I (

B
its

)
P

er
 C

om
pl

ex
 D

im
en

si
on

(1,1) Opt LDPC
(1,0) Opt LDPC
Serial Turbo

a=1

a=0

Figure 4.5. Mutual information and SNR in excess of that required for 1.0 bit

per channel use on 8PSK in � � ��������� period-2 fading. Plotted

points are operating points of two LDPC codes and a serial turbo

code each of which is modulating 10,000 8PSK symbols per block

at BER = �.�2/26 . Curves left to right indicate excess MI and excess

SNR for a = 7 1.0,0.8,0.6,0.4,0.2,0.0 8

magnitude and phase being a realization of a Rayleigh random variable. Exponential

interarrival times between taps were assumed and an exponentially decaying envelope

was imposed on the randomly realized taps. The 256-point fast-fourier-transform (FFT)

of each of these channels was taken and the magnitude of the resulting FFT coefficients

(OFDM subcarrier gains) are shown for each channel in the plot. Channel (d), is iden-

tical to channel (c), with the exception of the erasure of an arbitrarily selected block of

125 consecutive subcarriers.

The performance of the rate-1/3 blocklength 15,000 � � �����(�)� optimized LDPC

code on these channels using QPSK modulation, where even(odd) code bits are mapped

81

0 50 100 150 200 250
0

1

2
a

0 50 100 150 200 250
0

1

2
b

0 50 100 150 200 250
0

1

2
c

0 50 100 150 200 250
0

1

2
d

SubChannel

M
ag

 a
i

Figure 4.6. Four period-256 Fading Channels.

to I(Q) components, is given in Fig. 4.7(a). As a manifestation of the law of large num-

bers on the random subcarrier mutual informations [10], the QPSK constrained mutual

information for these three channels is very similar. This explains the proximity of the

three BER vs. SNR curves. Because of severe erasure distortion, channel (d) requires

much more SNR for a given BER than the other channels to achieve the same level

of mutual information. However, Fig. 4.7(b) shows that from the mutual information

point of view the code works virtually as well on channel (d) as on channels (a,b,c).

At first glance, it may seem surprising that the code can communicate with 125 of

the 256 subcarriers completely erased. However, the supremum of erasure rates for this

code on the BEC channel,

��� � & ��� � � � � � � � � � � � � � � ��; � � � �
��/ #

��� � �
� � � � �
has � � � �
� �
�.� . Note that � � is an asymptotic measure that can only be achieved in the

82

−2 −1 0 1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

BER Vs. Ex/No Period 256 Puncturing

Ex/No (dB)

B
E

R

4 taps
8 taps
16 taps
16 taps 125 erased

(a)

0.66 0.7 0.75 0.8 0.85 0.9 0.95 1
10

−6

10
−5

10
−4

10
−3

10
−2

BER Vs. MI for Period 256 Channels

Per Channel QPSK Constrained MI

B
E

R

4 taps
8 taps
16 taps
16 taps 125 erased

(b)

Figure 4.7. (a) Code performance on four period-256 fading channels. (b)

Code performance on four period-256 fading channels in terms of

MI.

limit of infinite block length. For the length 15,000 code used in this simulation (the

���+�����(� � optimized code), � � � �
��� � was found via simulation. Thus the minimum

capacity of the QPSK BEC channel on which this code can be expected to communicate

reliably is given by � � � � � � � � � ��� � � �
���� . The high SNR (erasure) capacity of

83

channel (d) is equal to � � � � � ����� ������ ��� � ��� � � bits. Therefore, it is reasonable

to expect that the code can operate on this channel when 	 3 � ��� is large. However,

we emphasize the more remarkable result that the difference in mutual information

required for the code to operate on each of these four very different period-256 channels

is less than 0.025 bits.

As described in [50], the serial turbo code can perform well on channels (a),(b),

and (c) in Fig. 4.6 through the use of a random channel interleaver, but fails to provide

reliable communication at any SNR on channel (d) (the %50 erasure channel) unless the

interleaver is “matched” to the channel. To date we know of no coding methodology,

other than LDPC, that can communicate robustly (meaning without the augmentation

of a matched channel interleaver) on channels such as (d).

4.4 LDPC Performance on the Partial-Band Jamming

Channel

The partial-band jamming channel model used in the results that follow is that same

as the one previously described in [35] and [20]. We limit our discussion to the case of

coherently detected BPSK modulation under a frequency hopped scenario in which a

fraction ; of the available channels are jammed. All of the channels experience ad-

ditive thermal noise due to the receiver front end. The SNR of this noise is fixed

to 	�
������ � ��� dB so as to be consistent with results in [35]. Channels that are

jammed, however, also incur the addition of band-limited white Gaussian noise with

84

power spectral density ; / # � � over a fraction ; of the band. The total jamming noise

power ; � ;�/ # � � � � � � � ; � � is equal to � � , but is independent of ; . Bit energy to in-

terference ratio, 	�
���� � is the most common measure of performance on this channel.

Perfect channel state information has been assumed for the LDPC results that will be

presented. This implies that very low values of 	�
���� � tend to make jammed channels

look like erasures as the log-likelihood ratios computed from channel observations are

inversely scaled by the noise variance in a given subchannel. On the other hand, as ;

is increased to unity (where all subchannels are jammed), the channel begins to appear

much like a standard AWGN channel.

Fig. 4.8 provides simulation results for two rate 1/3 LDPC codes. Both are real-

ized from the degree sequence of the � � �������%� optimized code described in Table

4.1. The first code has length 4096 and the second length 15,000. The performance

of a length 4096 turbo product code with comparable rate [35] is also provided. An

important parameter for code performance on the partial-band jamming channel is the

so-called dwell interval. This quantity describes the number of successive code sym-

bols that will be transmitted on a given sub-channel before the modulation is hopped

to another sub-channel. For sake of comparison with results in [35] we have fixed the

dwell interval to 32 for the length 4096 code and to 30 for the length 15000 code. We

have also made the assumption that channels are “framed” around single code words.

This implies that for the length 4096 code there are 128 subchannels and � ; ��� ��� of

these will be jammed. There are 500 subchannels per frame for the length 15000 code.

The distribution of jammed subchannels is realized uniformly and independently from

one codeword transmission to the next. This technique is meant to yield an average

85

0 0.2 0.4 0.6 0.8 1
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

ρ

E
b/N

i

TPC N=4096
LDPC N=4096
LDPC N=15000
BPSK MI = 0.33 bits
Gauss MI = 0.33 bits

Figure 4.8. Performance of Rate 1/3 LDPC codes with blocklength 4096 and

15,000 on the partial-band jamming channel compared to a block-

length 4096 turbo product code. 	�
�� �:9 vs. ; curves that maintain a

constant Gaussian signaling capacity (MI) and BPSK constrained

capacity (cMI) of 1/3 of a bit are also displayed. FER = �.�
/21
for the three simulated curves.

jamming result for a given code across a parameterization of ; and 	
����� .
Constant mutual information (MI) curves for the partial-band jamming channel are

also included in Fig. 4.8. To compute these curves consider the MI level in partial-band

jamming,

� � � ; � � � �,�� � � � � �3; � � � � � ��� � � (4.15)

where � �,�� defines the symbol signal to noise ratio in the jammed subchannels

and � �, ��� defines the symbol signal to noise ratios in the non-jammed subchan-

86

nels. In the case of Gaussian signaling,
� ����� �) � ' � � � � ���

, and for the BPSK con-

strained case
� �����

is evaluated via numerical integration. In the partial-band jamming

simulations performed for this chapter, � � ��� is held fixed at a level which corre-

sponds to 	�
����� � ��� dB. In the unconstrained case the term
) � ' � � � � � �, � � � is

therefore a constant (�) which can be determined via solution to the equation � �) � ' � � � � � 	�
 ����� � , which is �*� �
� ��� bits (for 	�
�� ��� � �%� dB). In the BPSK con-

strained case
� �

��� � �
� � �, � � � saturates to � � � bit at this high SNR.

We are interested in values of
� ; � � �, � � that yield constant levels of mutual infor-

mation. We therefore fix the MI to some constant level, say � ��� of a bit. If we also fix ; ,

it is possible to uniquely determine � � � (analytically for unconstrained and via table

lookup for the BPSK constrained case). The resulting � � � can then be converted to

	�
��� � via the following relations,

� �,��:� 	 ,���" � ��� �
�#" � ���� � � #

� ���
�	�

	�

� � �

� � ��
;0 5 � � � � ��

� � �
� �

7 �
(4.16)

A large discrepancy can be observed between the BPSK-constrained and Gaussian-

signaling mutual information curves in Fig. 4.8. This is due primarily to the fact that

the non-jammed subchannels provide far more mutual information (9.96 bits) than can

be provided by BPSK modulation, which in turn implies that with Gaussian signaling,

just a small fraction of the subchannels need to be non-jammed for the expected mutual

information in the channel to reach ����� of a bit. We note that a system that achieves an

average spectral efficiency of � ��� of a bit, and that approaches the unconstrained Gaus-

87

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

−14

−12

−10

−8

−6

−4

ρ

S
N

R
J

LDPC N=15000
LDPC N=4096
BPSK MI = 0.42 bits
BPSK MI = 0.40 bits
BPSK MI = 0.33 bits

Figure 4.9. SNR, ; performance of length 4096 and 15000 LDPC codes com-

pared to SNR, ; levels required to achieve 0.42, 0.4, and 1/3 of a bit

of mutual information. FER = �.� /21

sian capacity, can be achieved by simultaneously increasing modulation cardinality and

decreasing code rate. For instance a rate 1/6 code driving QPSK can be expected to

perform better than the rate 1/3 BPSK system.

The curves in Fig. 4.8 represent systems with rate- � ��� or contours of constant mu-

tual information of 1/3 of a bit. Fig. 4.9 plots different constant mutual information

curves in terms of an absolute � �, � ordinate. This avoids comparing 	�
���� � terms

that differ only because of different rate (since
� �� � � � �,�� � �.�)�� ' # � � ;0 �).

When the partial-band jamming channel provides 0.4 bits of mutual information,

the length 15,000 LDPC code (the �,� � � ���%� optimized code) operates with an FER =

�.� /21 at all but the lowest values of ; . The same can be stated for the length 4096 code

88

when the channel supports 0.42 bits of mutual information. Restating this result, the

length 15000 code provides reliable communication when the excess MI in the channel

is
� � � � � � � � � ��� , or roughly 0.067 bits. We note that the performance of the coded

system on parameterizations of the channel that correspond to “erased” cases (; values

near the erasure capacity of the code) are slightly inferior to the performance observed

in an AWGN (;�� �) parameterization. The closeness with which the simulated per-

formance tracks constant contours of mutual information in the figure provides clear

empirical evidence of code robustness across an extremely broad range of channels.

Finally, we note that the MI level (e.g. 0.4 bits) required for reliable communication in

this channel is comparable to the levels required by the period-2 and period-256 fading

channels.

4.5 Conclusion

In this work, we have taken a mutual information, rather than an SNR, approach to

measuring code performance over periodic Gaussian and partial-band jamming chan-

nels. Root and Varaiya showed that a single code exists that can communicate reliably

on all of the channels in a given set provided that the rate of the code is less than the

smallest mutual information of all channels in the set. It has been shown for a quantized

spread of all period-2 channels and for several arbitrarily selected period-256 channels

that LDPC codes are an incarnation of Root and Varaiya’s promise of “universal” codes.

We have also described and used periodic density evolution to design codes matched to

channels and to determine the thresholds of existing codes across parameterizations of

89

the � �4��������� channel. Root and Varaiya’s theorem applies to any particular instance

of the partial-band jamming channel. However, we have averaged the performance of

a given code across many thousands of instances of the PBJ channel in order to test the

universality of the codes across a large sampling of channels. While it is true that the

performance of the codes on some particular PBJ channel may have been poor (and this

event went undetected due to the averaging process), we have nevertheless shown that

the average excess mutual information requirements of the codes on this channel are

very similar to those of the codes on the periodic fading channels.

90

Chapter 5

The Universal Operation of LDPC

Codes in Vector Fading Channels

A compound channel occurs when the actual channel is unknown to both transmitter

and receiver but belongs to a set of possible channels known to both. Root and Varaiya’s

compound channel theorem [39] applied to the linear Gaussian vector channel,

� ����� ��� ���
	 ��� � �:�� � � � (5.1)

indicates that for a given rate and input distribution there exists a single code that

can achieve reliable information transmission at rate on every channel � for which

the input distribution induces a mutual information (MI) higher than . The immedi-

ate implication of this result is that good error performance on one particular channel

does not have to come at the expense of significant performance degradation on others.

Codes that have consistently good proximity to capacity (to the extent their blocklength

and decoding complexity permit) over a class of vector-input channels will be referred

91

to in this chapter (and the last) as universal codes. Since the linear Gaussian vector

channels are commonly called space-time channels today, we will call to such codes

universal space-time codes.

The capacity promise of multiple-input multiple-output (MIMO) systems in rich

scattering environments [15] makes the existence and use of universal codes of practical

interest. In [53] Wesel et. al constructed universal trellis codes for periodic erasure

channels. The universal property of LDPC codes in the context of periodic fading

channels was described by Jones et. al in [6]. In [21][22] Köse and Wesel found by

exhaustive search universal space-time trellis codes for the 2 � 2 linear Gaussian vector

channel.

In this chapter we demonstrate that LDPC codes are universal over a class of matrix

channels by showing that bit-multiplexed LDPC coding on the MIMO channel yields

essentially constant per dimension excess mutual information performance (around �
� �

bits per real dimension) for all the channels that we examine. For a matrix channel, the

excess mutual information per dimension is defined as the capacity margin between the

operational channel MI per transmit antenna and the information transmission rate per

transmit antenna.

Iterative-detection-and-decoding methods for MIMO systems that are based on the

turbo decoding principle are often referred to as Turbo-BLAST [40] [41][46]. Sev-

eral techniques for low-complexity, high-performance iterative detection and decoding

receivers are available in the literature. In [40] and [41] the authors introduce a sub-

optimal receiver based on a minimum-mean square-error (MMSE) soft interference

cancellation detector. In [43] a “list” sphere decoder is used to iteratively detect and

92

decode either simple convolutional or more powerful turbo codes. In [1] the authors

present an iterative-greedy demodulation-decoding technique for turbo codes based on

a greedy detection method for multiuser communications. More recently in [27] the

authors present a low-density parity-check (LDPC) coded MIMO OFDM system using

either the optimal soft maximum a posteriori (MAP) demodulator or the low complex-

ity minimum-mean square-error soft interference cancellation (MMSE-SIC) demodu-

lator. The results reported in [27] show that a system based on the MMSE-SIC detector

suffers a performance degradation in comparison to a system based on the MAP detec-

tor. In our work however, we have observed very little difference in the performance of

these two detection schemes for systems with a small number of transmit and receive

antennas.

We demonstrate LDPC code robustness on the 2 � 2 MIMO channel via exhaustive

parameterization. We then introduce and discuss the complexity of various detection

techniques. In particular, we consider the soft MAP detector, the MMSE-SIC detector,

and we introduce a simple MMSE suppression detector and a minimum-mean square-

error hard decision interference cancellation (MMSE-HIC) detector. We compare the

performance and complexity of these schemes and find that the very low complexity

MMSE suppression and MMSE-HIC detectors have only a small degradation in perfor-

mance (less than �
��� dB) on fast fading Rayleigh channels. In the final section of the

chapter we will show that the excess mutual information requirement for a given code,

on a per real-dimension basis, is independent of system configuration (2 � 2, 3 � 3, 4 � 4,

8 � 8) in Rayleigh fast fading.

93

Info

 Encoder

 LDPC Coded

BitsBits

QPSK

Modulator

Coded

Symbols
 S/P

Figure 5.1. Transmitter structure of an LDPC coded BLAST system.

5.1 Excess Mutual Information as a Measure of Perfor-

mance

The system model under consideration is an LDPC-coded MIMO system with � 	
transmitter antennas and � � receiver antennas, signaling through frequency-nonselective

fading. The transmitter structure is illustrated in Fig. 5.1. The information data is first

encoded by an LDPC code, modulated by a complex constellation with ��� I possible

signal points and unit average energy, and then distributed among the � 	 antennas. Let

� be an � 	 �*� vector of transmitted symbols with components
� # � � �.�(�(�)� � � � � and �

an � � �3� vector of received signals with components � # � � �)�(�(�(� � � � � , related by

� � ��� ���
(5.2)

where � � � � # � � �(�(� � � � � is the � � � � 	 complex channel matrix known perfectly

to the receiver, and
�

is a vector of independent zero-mean, complex Gaussian noise

entries with variance % � � �:� �� per real component. We assume that the average

signal-to-noise ratio (SNR) at each receiver antenna, denoted by ; , is independent of

the number of transmitter antennas � 	 .

94

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

SNR gap, dB

E
xc

es
s

M
I /

 R
ea

l D
im

κ=0.0
κ=0.125
κ=0.25
κ=0.5
κ=0.75
κ=1.0

Figure 5.2. Excess MI per real dimension vs. SNR gap for 2 � 2 matrix chan-

nels, � � ��� bits/channel use, ��# � � , for eigenvalue skews (top

to bottom) � �'����� � ���2���
��� ���
����� ��� � ����� ��� .

We note that mutual information associated with the channel model in (5.2) identi-

fies the fundamental information-carrying potential of the channel for a specific input

distribution which in this work will be a uniform power distribution over a finite con-

stellation that is modulating each antenna element. A universal code should provide

performance that is consistent in terms of required excess mutual information. The

common way to plot BER performance is versus channel signal-to-noise ratio (SNR).

Since MI on the additive white Gaussian noise (AWGN) channel is a monotonic (and

almost linear) function of SNR in dB,
� �

Gauss �) � ' � � � � SNR
�
, this representation

is essentially equivalent to plotting BER against MI. For a fixed transmission rate ,

SNR gap is defined as the difference between the � �, required to achieve the desired

95

BER and the � � at which the channel capacity in (5.3) is equal to bits per channel

use. However, when assessing the performance of a code over a variety of linear Gaus-

sian channels, considering SNR performance or SNR gap is problematic because the

monotonic relationship between SNR in dB and MI is different for different channel

eigenvalue skews.

To better understand the previous statement, consider a 2 � 2 linear Gaussian vec-

tor channel � and its MI under the assumption of uniform power distribution and a

Gaussian signaling alphabet across antennas,

� � � � � �) � ' � 5 � � � �,
� � # 7 5 � � � �

� � ��7
�) � ' � 5 � � � �,

� � # 7 5 � � � �
�

� ��# 7 � (5.3)

Where ��# and � � are the eigenvalues of � ��� , � � � � � ��# is the eigenvalue skew and ;

is the average SNR per receive antenna.

Fig. 5.2 illustrates the excess MI per real dimension as a function of the SNR gap

in dB for � � ��� bits/channel use and different eigenvalue skews � . Note that the

excess MI curves are approximately linear functions of the SNR gap in dB, however

the slope depends on the eigenvalue spread (eigenskew) of the channel. In other words,

a constant level of excess MI is achieved by differing excess SNR levels (depending on

the eigenskew of the channel). The MI available in the channel is the absolute measure

for performance, while an excess SNR measure depends both on the MI level and the

specific channel realization (eigenskew).

96

5.2 LDPC MI Performance Under MAP Detection on

2 � 2 Channels

In this section the performance of two different Rate 1/3 length-15,000 bit-multiplexed

LDPC codes modulating QPSK (for a net rate of 4/3 bits per transmission) on param-

eterized 2 � 2 MIMO channels will be described. The Maximum A Posteriori (MAP)

detector will be used throughout this section and the reader is referred to section 5.3 for

a complete description of the operation of this and other detection techniques.

Each of the 2 � 2 channels will be characterized by three parameters: two rotation

parameters and the ratio of the eigenvalues in the system (or eigenskew). The value of

such a parameterized assessment is that ‘worst’ and ‘best’ case channels can be iden-

tified found since channel matrix averaging, which occurs in both fast and quasi-static

Rayleigh fading experiments, is explicitly avoided. Furthermore, ‘flatness’ of the ex-

cess mutual information measure versus channel skew becomes a criteria for comparing

the degree of robustness possessed by a given code. Again, in our terminology, a code

is universal if reliable communication (for instance BER = �(��/26) occurs at the same

(small) excess mutual information level across all channels. Of course, the absolute

SNR required to achieve a given mutual information level will vary with the degree of

fading imposed by the channel matrix. A description of the channel sampling problem

is given as follows,

� �
�
� #

��
� � �
� � �

� �
�

��
� �

� & � � � & � * � � � 1 ���
� & � * � � � 1%/ ��� �

� & � � �
� �
� (5.4)

97

where � � � � �� # is the eigenvalue skew of the Hermitian matrix � � � , � � � � ��	 �� � ,
and � � � �
� � 	 � . In this chapter we sample the above matrix via the parameters � �

7 �
��� � ����� ���
����� ��� ��� �$�
� ��� �(��8 , � � 7 �
��	 � � 8 and � � 7 	 � � ����	 � � 8 . Performance on

each channel in this sampling is measured by the mutual information in excess of the

transmission rate of
� ��� bits/channel-use required to achieve a BER of �(� /26 . Note

that the product of a diagonal eigenmatrix and a complex Givens rotation does not

parameterize every 2 � 2 matrix, but does parameterize every interesting 2 � 2 matrix.

Meaning that all % matrices not described by (5.4) are in fact isomorphs (with respect

to the receive array) of a matrix that is described by (5.4).

Before discussing the performance across these channels we draw an analogy to

periodic fading SISO channels. Note that a period-2 SISO fading channel, � � �
� � � ����� ��� � � � � � , with fading vector � �'� � ��# � � � �$� is equivalent to a diagonal (� � �)

2 � 2 matrix fading channel (but requires two channel uses to relay the same informa-

tion). Following the work in [19], we are able to optimize LDPC degree distributions

for period-� fading via an adaptation of the Gaussian approximation to density evolu-

tion. In specific, at iteration � , degree � variable nodes have their mean values updated in

correspondence to the periodic initial means given by � �
 � � � �
� � (where � � are known

fading gains) and the means of messages arriving from check nodes (� �),
� � � �� � 9 � � � � � �
 � � � � � � � � ��/ #��� � � � 7 � �(�(�(� � � � ��80� (5.5)

Randomly selected edges emanating from variable nodes adhere to the following Gaus-

sian mixture density,

98

� � 9 [1,1] � 9 [1,0] ;�9 [1,1] ;�9 [1,0]

2 0.27603 0.354954 - -

3 0.11195 - - -

4 0.17229 0.249982 - -

5 0.01712 0.065503 - 0.5000

6 - - 1.0 0.5000

15 0.42261 0.329558 - -

Table 5.1. Degree distributions optimized using Guassian approximation to

density evolution adapted to periodic fading. Columns labeled

��� ������� � indicate the distribution resulting from optimization for

the period-2 channel where half of all received symbols are erased.

Columns labeled � � �����(�)� indicate a period-2 code optimized for

AWGN.

� � � �� � �(/ #� � � � � ��
9 � �

��9
�
	 � � � � �� � 9 � � � � � � � � �� � 9 � � � (5.6)

Using this kernel, codes optimized for � � �����(� � and � � �!���$�%� period-2 fading

channels were designed and tested across the parameterization of 2 � 2 channels. The

resulting degree distributions are given in Table 5.1.

99

5.2.1 Gaussian, Constellation Constrained, and Parallel Indepen-

dent Decoding Mutual Information

We next describe the mutual information measures that can be considered when

converting an SNR/BER point in a given simulation to an MI/BER point. Of course,

we have already stated that the mutual information between transmitter and receiver

using a Gaussian codebook follows
) � ' � � � � � � �

� ��# � � � � � � �
� � � � and is independent

of Givens rotation parameters.

In general, however, two other capacity measures are relevant to a system that mod-

ulates an LDPC code directly onto a channel and these measures do depend on the

channel rotation. The first is the modulation constrained channel capacity
� � � ��% ��� �

and the second is the Parallel Independent Decoding (PID) capacity [48]. The opera-

tional capacity of the LDPC coded system is bounded between these two capacities,

� � � ��% � � � �

��� � I / #�
9 � � � � � ��% ���
�� � ��
�� �(� � � � ��
�� " � � ��
�� < � �(� � � � ��
 � ��� I " � � �

� � � I / #�
9 � � � � � ��% ���
�� � (5.7)

Proof that operating capacity of the system is lower bounded by
��� � I / # 9 � � � � � ��% ���
�� � is

given as an appendix. This is the mutual information that is available in a system with-

out feedback between the decoder and detector. In the case of Gray labeling on a SISO

channel, the inequalities in (5.7) are sharp (practically speaking) and the operational

capacities of bit multiplexed LDPC systems are congruent with constrained channel

100

capacity. If system design dictates that the operational capacity be equal to constrained

channel capacity, then a hybrid approach can be used which modulates separate LDPC

codewords onto Gray labeled constellations at each transmit antenna [26]. The receiver

then performs multi-stage decoding where each decoder uses all channel observation

vectors in conjunction with soft or hard information from the other decoders in order to

determine the set of modulated codewords. The operational capacity of such a system

does not provably equal channel capacity, but for the case of Gray labeled modula-

tion it was shown in [26] to be negligibly smaller. For the 2 � 2 parameterized system,

Guassian input alphabet, constrained (net capacity), and PID capacities are given in

Fig. 5.3.

In the figure, for each eigenskew, the SNR level that yields 4/3 bits when �5�

� (for the Net and PID cases) is used across the span of considered � values. This

particular � was chosen because � � 7 �
��	 �� ��	 8 all yield diagonal channels for which

the Net and PID capacities are immeasurably different at any given SNR. Channels with

��� 	 � � ����	 � � maximize Net (constrained) capacity. In fact, with these channels we

observe that the Net capacity approaches the Gaussian alphabet capacity closely (which

is reasonable given the relatively low rate loading of the QPSK constellations). Finally

note that as � approaches unity, the Net and PID mutual informations do not vary with

parameter � .

The robustness results for the ��� �!���$�%� optimized code are given in Fig. 5.4. Fol-

lowing the legend, the first three curves measure excess mutual information in terms

of difference between the rate of the code (4/3 bits) and the mutual information that is

supplied between a transmitter and receiver (assuming a Gaussian codebook) at SNRs

101

0 pi/4 pi/2 3pi/4 pi
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

φ, (rad)

M
A

P
 o

pe
ra

tio
na

l M
ut

ua
l I

nf
or

m
at

io
n

(B
its

)

κ = 0
κ = 0.125
κ = 0.25
κ = 0.5
κ = 0.75
κ = 1.0
QPSK PID MI
QPSK Net MI
Gauss Alpha MI

Figure 5.3. Channel mutual information versus channel matrix parameter

� and eigenskew. Gaussian Alphabet, QPSK modulation (net),

and PID decoding capacities are shown. For each eigenskew, the

SNR level that yields 4/3 bits when � �#� (for the Net and PID

cases) is used across the span of considered � values. Note that

at � � 	 � � ����	 � � that the Net capacity is maximized (and nearly

equals Gaussian Alpha capacity) and the PID capacity is mini-

mized. When � � �
��	 �� ��	 (diagonal channels) Net and PID ca-

pacities are immeasurably different for a given SNR.

102

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Skew (λ
2
/λ

1
)

T
ot

al
 E

xc
es

s
M

ut
ua

l I
nf

or
m

at
io

n
(B

its
)

φ = 0 Excess to Gauss MI FdBk On
φ = π/4 Excess to Gauss MI FdBk On
φ = π/4 Excess to Gauss MI FdBk Off
φ = π/4 Excess to PID Constrained MI FdBk On
φ = π/4 Excess to Net Constrained MI FdBk On
φ = 0 Excess to PID Constrained MI FdBk On
φ = 0 Excess to Net Constrained MI FdBk On

Figure 5.4. Excess mutual information at BER = �.� /�� as measured against

Gassian signaling, Net QPSK constrained capacity, and PID con-

strained QPSK capacity across eigenskew and two distinct values

of � .

103

that are sufficient to achieve a decoded BER rate of �.� /�� . The worst case channel

clearly occurs when � � 	 � � . For this channel, results with and without feedback

between the decoder and detector show that using feedback yields more than a 0.2 bit

improvement. The next two curves show the excess mutual information on the worst

case channel (� � 	 � �) when mutual information is determined as PID constrained

MI or Net constrained MI. Recall the PID constrained MI provides a lower bound on

operational mutual information and Net constrained MI is an upper bound. Referring to

Fig. 5.3 Net and PID MI are the same on the � � 	 � � channel when � �'� and differ by

about 0.325 bits when � � � . However, the mutual informations for the � � � channel

in Fig. 5.3 where computed using and SNR of 5.3 dB. The SNR had to be increased

to 7.8 dB before the code would operate on this channel at a BER of �.� /�� . At this

SNR, the Net constrained mutual information provided by the � � 	 � � , � � � channel

is 2.0 bits, while the PID constrained MI is 1.42 bits. This explains the 0.58 bit de-

crease in performance when measuring against Net constrained versus PID constrained

capacity. The two final curves on the plot measure the performance of the code on the

�,� � channel across eigenskew. The flatness of both the Net and the PID constrained

curves is indicative of the congruence of these two mutual information measures at all

eigenskews when � � � (Fig. 5.3).

We note that code performance very closely tracks available operating mutual in-

formation. Specifically, ‘worst-case’ channels yield performance that is not as good as

‘best-case’ channels because the operational PID constrained capacity on these chan-

nels is reduced. The last two curves in Fig. 5.4 show that when operational PID con-

strained capacity equals Net constrained capacity (� � �) that total excess mutual

104

information remains constant as � varies between zero and one. Therefore, the code

itself is robust to channel variation. The detection process, however, is the root cause

of the performance degradation observed in the other cases.

5.3 Reducing the Complexity of Iterative Detection and

LDPC Decoding

In this section we describe the basic principles of Turbo-BLAST, focusing on the

different soft MIMO detectors. In Turbo-BLAST, an iterative detection and decoding

receiver is used to approach the maximum-likelihood (ML) performance of joint MIMO

detection and LDPC decoding. Fig. 5.5 gives a flowchart of the turbo iterative receiver

structure. In this structure, the soft MIMO detector incorporates extrinsic information

provided by the LDPC decoder, and the LDPC decoder incorporates soft information

provided by the MIMO detector. Extrinsic information between the detector and de-

coder is then exchanged in an iterative fashion until an LDPC codeword is found or

a maximum number of iterations is performed. With LDPC codes, convergence to a

codeword is easy to detect since we need only verify that the parity checks are satisfied.

The message-passing (also known as belief-propagation) decoding algorithm used to

decode the LDPC code is described in detail in [38].

In the following we provide an overview of the soft MAP MIMO detector and the

MMSE-SIC detector, and introduce two reduced-complexity detectors, an MMSE sup-

pression detector and an MMSE hard decision interference cancellation detector. We

105

LDPCSoft
Hard

Decisions
L

L

 Detector Decoder

C

D

Figure 5.5. Turbo iterative detection and decoding receiver for an LDPC

coded BLAST system.

examine the complexity of each scheme and select specific parameters for modulation

cardinality and transmit-receive antenna multiplicity to facilitate a numerical compari-

son of complexity.

5.3.1 MAP Detector

In the soft MAP detector, the received vector � is de-mapped by a log-likelihood ra-

tio (LLR) calculation for each bit included in the transmit vector � (� 	
� � of them). The

extrinsic information provided by the MAP detector is the difference of the soft-input

and soft-output LLR values on the coded bits. For the � th code bit
� 9 (� � ���(�(�(� � � 	 � �)

of the transmit vector � , the extrinsic LLR value of the estimated bit is computed as

���
� � 9 � �) � ' � � � 9 � � �
� � �

� � � 9 � �:�
� � � �)�� ' � � � 9 � � � �
� � � 9 � � � �

�) � ' � ��� < �� � � � � � � � � � � � ��� " �� � � � � � � � � � � � � � � � 9 � (5.8)

where � � � � 9 � is the extrinsic information of the bit
� 9 computed by the LDPC decoder

in the previous turbo iteration (� � � � 9 � � � at the first iteration) and
� � #9 is the set of

106

�
� � � � / # vector hypotheses � having

� 9 � � � , (
� / #9 is similarly defined). Based on the

extrinsic LLR of the code bits provided by the LDPC decoder and assuming the bits

within � are statistically independent of one another, the a priori probability � � � � can

be written as

� � � � � � � � I�� � # � � � � � � � � � I�� � # � � ��� � � � � ��� ��� � � � � � ���
 / # (5.9)

where ��� ��� corresponds to the value (
� ��� � �) of the

�
th bit in the vector � .

In the above LLR value calculation, the likelihood function � � � � � � is specified by

the multi-dimensional Gaussian pdf

� � � � � � � �� ��	 % � � � � � � � 5 � �� % �

� � � � � � � 7 � (5.10)

Note that for the LLR value calculation, only the term in the exponent is relevant; the

constant factor outside the exponent can be dropped.

Since the cardinality of the vector sets
� � #9 and

� / #9 in (5.8) equals �
�
� � I / # , the

complexity of the soft MAP detector is exponential in the number of transmitter an-

tennas and the number of bits per constellation symbol. At each iteration, the MAP

detector has to compute the LLRs for � 	
� � bits in each transmit symbol vector. With

an equal number of transmit and receive antennas, � 	 � � � � � , evaluating (5.8)

involves the following steps:

for � � � to �
�
� I

1) Compute the a priori probability � � � � in (5.9): � � � � flops.

end

107

for � � � to � � �

2) Compute the LLR value in (5.8): � � �
�
� I flops.

end

In the above we do not consider the computation of the likelihood function � � � � � � .
This is precomputed for all �

�
� I hypotheses at the beginning of the iterative process

and has a cost of � � � � � � flops per vector hypothesis. We define a flop as a single

addition, subtraction, multiplication or division between two complex numbers. Table

lookups to
� � � and

) � ' functions are not included in this complexity analysis. Then, the

(approximate) cost of the MAP detector per turbo iteration is
� � � � � � � � � � I flops and

the initial cost of precomputing the likelihood functions for all hypotheses is
� � � � �

� � ��� � � � I flops.

5.3.2 MMSE-SIC Detector

The suboptimal demodulator based on a minimum-mean square-error soft-interference

cancellation criterion is described in detail in [41] and [27]. Below we give a short re-

view and comment on its complexity.

The MMSE-SIC detector first forms soft estimates of the symbols transmitted from

the
�
th antenna (

� � ���(�(�)�)� �) as

�� � � � 3���� � � ����� (5.11)

where
�

is the complex constellation set and

� ����� � � I�

� � # ��� � � � � � � � � � � � � � � � � / #�� � I � � ��� � / # (5.12)

108

where
�
� � � indicates the value of the � th bit of symbol

�
.

Then, for the
�

th antenna, the soft interference from the other � 	 ��� antennas is

canceled to obtain

� � � � �
� ��� � # � ���� � �� � � � � � � � � � � ��� � # � ���� � ��� � � �� � � � � � � � (5.13)

A detection estimate � � of the transmitted symbol on the
�

th antenna is obtained by

applying a linear MMSE filter � � to � � ,
� � ��� �� � � �

�
� ��

� � � � � � � ��� � # � ���� � � � �� � � � ��� � � �� � � � � �� � (5.14)

where � represents the conjugate transpose operator. The filter � � is chosen to minimize

the mean-square error between the transmit symbol
� � and the filter output � � and is

given by

� � � 5 � 	; � � � ��� � � � 7 / # � � (5.15)

where the covariance matrix �
	 is

� � � diag 70� � � �� #�� � �(�(�)� �(� � � �� � / #�� � �(���(� � � �� � � #�� � �(�(�(� �(� � � �� � � � � 80� (5.16)

Observe that in (5.14), the first term represents the desired term, the second term is

residual interference from the other transmitter antennas and the last term is a phase ro-

tated noise term. As noted in [49], we can make the following Gaussian approximation

for the MMSE filter output � �
� � ��	 ��� � �$� �� � (5.17)

where the variance � �� is given by

� �� � � ��� ��
� � � (5.18)

109

Then, the extrinsic log-likelihood ratio computed by the MMSE-SIC detector for the

� th bit (� �'���)�(�(� � � �) of the symbol
� � transmitted by the

�
th antenna (

� � ���(�(�(� � �)

is

� �
� � � � / #�� � I � � � �) � ' � � � � � / #�� � I � � � � �
� � � �

� � � � � / #�� � I � � � �:�
� � � � �) � ' � � � � � / #�� � I � � � � � �
� � � � � / #�� � I � � � �:� �

�) � ' 3�� � < �� � � � � � ��� � ����� 3���� " �� � � � � � ��� � ����� � � � � � � � / #�� � I � � � (5.19)

where
� � #
� is the set of � � I / # hypotheses

�
for which the � th bit is

� � (
� / #� is similarly

defined). In the above calculation of the extrinsic LLR value, the a priori probability

� ����� is given by (5.12) and the likelihood function � � � � � ��� is approximated by

� � � � � ��� � �
	 � ��

� � � 5 � �� �� � � � � � � � 7 � (5.20)

Note that the MMSE-SIC detector has a lower complexity than the MAP detector.

This can be seen from (5.19) where the extrinsic LLR is computed from the scalar out-

put � � of the MMSE filter, in contrast with (5.8) where the extrinsic LLR is computed

from the received vector � . With an equal number of transmit and receive antennas,

� 	 � � � � � , evaluating (5.19) involves the following steps:

for
� � � to �

for � � � to � � I
1) Compute the a priori probability � ����� in (5.12): � � � flops.

end

2) Evaluate the soft estimate in (5.11): � � � � I flops.

3) Cancel the soft estimates in (5.13): � � � flops.

4) Evaluate the matrix � �
� � �" � � � � � � � � : � � 1 � � � � � � flops.

110

5) Solve � � � � � � for � � : � 1 ��� flops using Choleski factorization [17].

6) Compute the detection estimate � � : � � flops.

for � � � to
� �

7) Compute the LLR value in (5.19): � � � � I flops.

end

end

Then, the (approximate) computational complexity of the MMSE-SIC detector is � � � �%� �

� � 1 � � � � � � � � � � ��� � � I � � � � ��� � � I flops per turbo iteration.

5.3.3 MMSE Suppression Detector

While the MMSE-SIC detector reduces the complexity of computing the extrinsic

LLR values from exponential to polynomial in the number of transmit antennas, it still

has the undesirable cost of re-evaluating the MMSE filter � � and updating � � with

each turbo iteration, as these depend on the soft estimates from the LDPC decoder

in the previous iteration. A simple linear MMSE suppression filter can significantly

reduce the complexity of the soft MIMO detector and incurs only a small performance

degradation as compared to MMSE-SIC.

In this case the MMSE suppression filter is evaluated only once, at the beginning

of the turbo iterative process, and applied to the received vector � to obtain a detection

estimate for the
�

th antenna,

� � ��� �� � � (5.21)

111

No interference cancellation is performed and the linear MMSE filter � � is chosen to

suppress the co-antenna interference,

� � � 5 � 	; � � � � � � 7 / # � � � (5.22)

As before, we make the Gaussian approximation of the soft MMSE filter output � � ,
with the variance � �� as in equation (5.18), where � � is replaced by the new MMSE

filter. The extrinsic LLR values are computed exactly as in the case of the MMSE-SIC

detector using (5.19). Assuming � 	 � � � � � , evaluating the LLR values involves the

following steps:

for
� � � to �

for � � � to � � I
1) Compute the a priori probability � ����� in (5.12): � � � flops.

end

for � � � to
� �

2) Compute the LLR value in (5.19): � � � � I flops.

end

end

Then, the complexity per turbo iteration is
� � � � � � � � � I flops. Moreover, the initial

cost of evaluating the MMSE suppression filters � � and the detection estimates � � is

� � � ��� � � � � flops. Note that the MMSE suppression detector reduces the complex-

ity per turbo iteration from �
�
� � � (for the MMSE-SIC detector) to �

�
�
�
. Of course,

the overall complexity for the MMSE suppression scheme remains �
�
� � � because of

112

required initial processing. However, a more flexible allocation of computational re-

sources becomes possible given the need to solve a system of equations to determine

� � only once rather than on a per iteration basis.

5.3.4 MMSE-HIC Detector

Here we introduce another reduced complexity detector based on the simple MMSE

filter with hard decision interference cancellations. The main idea is to improve the per-

formance of the MMSE suppression detector by canceling hard decision estimates of

the interfering symbols while also maintaining the reduced computational complexity.

At the beginning of the iterative process, cancellations are not possible since no relia-

bility information is yet available from the decoder. Therefore, in the first iteration, we

use the MMSE suppression filter � � from (5.22) in the same manner as above to obtain

the detection estimate � � for the
�
th antenna. However, in subsequent iterations, as soft

information from the decoder becomes available, hard decision estimates on the LDPC

code bits
� 9 (� � ���)�(�(�)� � 	 � �) can be obtained from

�� 9 � sign � ��� � � 9 � � � � � � 9 � � (5.23)

and a hard decision estimate on the
�
th antenna symbol can be formed as

�� � � � �
�� � � / #�� � I � # �� � � / #�� � I � � �(�)�

�� � � I (5.24)

where
�

is a function that maps an input bit vector to a complex constellation point.

Assuming these hard decision symbol estimates are correct, their cancellation would

provide a better detection estimate for the antenna of interest. More specifically, for

113

the
�
th transmit antenna, the hard decision estimates of the other � 	 � � interfering

antennas can be canceled to obtain

� � � � �
� ��� � # � ���� � �� � � � (5.25)

and the new detection estimate � � can be obtained by maximum-ratio-combining,

� � �
� �� � �� � � � � �

� �" � (5.26)

Observe that the assumption of correct hard decisions does not hold very well es-

pecially in the early stages of the iterative process. In order to avoid error propagation

due to incorrect hard decisions, it is very important that cancellations be performed

only when the reliability of the canceled symbols is high according to some cancella-

tion criterion. We experimented with different criteria for interference cancellation and

found that the following two methods give the best results:

� Average of LLRs

With this criterion, first the following average is computed and then compared to

a predetermined threshold value

� � � �
� 	
� �

� � � I�
9 � # � � � � � 9 � � ��� � � (5.27)

The threshold
� � is found experimentally as the threshold that yields the best

bit-error rate (BER) performance. Observe that a too low threshold value would

introduce undesirable error propagation due to incorrect cancellations, while a

too high threshold value would give the same performance as the MMSE sup-

pression detector since no cancellations are performed in this case.

114

� Probability of bit vector

With this criterion, the probability of a bit vector is first computed and then com-

pared to a threshold value

� � � � � � # � � �)�(� � � � � I � � � � � I�
9 � # ��� � � � � � � � � � � � 9 � � � � / # ��� � � (5.28)

As before, the threshold
� � is found experimentally to optimize the BER perfor-

mance.

The computational complexity of the MMSE-HIC detector is that of the MMSE

suppression detector plus the additional cost of checking the cancellation criterion every

turbo iteration and performing the hard decision interference cancellation whenever the

criterion is satisfied. Assuming � 	 � � � � � , evaluating the LLR values involves the

following steps:

for
� � � to �

1) Check the cancellation criterion in (5.27): � � � flops.

2) Cancel the hard decision estimates in (5.25): � � � flops.

3) Compute the detection estimate � � in (5.26):
� � flops.

for � � � to � � I
4) Compute the a priori probability � ����� in (5.12): � � � flops.

end

for � � � to
� �

5) Compute the LLR value in (5.19): � � � � I flops.

end

115

end

Then, the worst-case computational complexity (assuming cancellations are performed

every iteration) is
� � � 1 � I flops per turbo iteration. The first

terms in this summation represent the additional complexity over the MMSE suppres-

sion detector. As in that case, there is an initial cost of � � � ��� � � � � flops to evaluate

the MMSE filters and the detection estimates.

In Table 5.2 we give a complexity comparison example based on a flop count for the

MAP, MMSE-SIC, MMSE suppression and MMSE-HIC detectors for � � � antenna

configurations with � � � � � � � , using QPSK modulation. For each detector, we provide

the initial cost (which is the cost of computations that must be done only once for all of

the iterations), the cost per turbo iteration, and the total computational cost assuming

��� iterations.

5.4 Performance Comparison of the Different Detectors

5.4.1 MI Performance of Different Detectors on parameterized 2 � 2

Channels

Points plotted as circles in Fig. 5.6 illustrate the 2 � 2 total excess MI (assuming

Gaussian alphabet signaling) for the � � �����(�)� optimized code of Table 5.1. Again,

per Fig. 5.3, operational mutual information varies more significantly with parameter �

as � approaches zero. This variation is manifested as a performance loss on � � 	 � �

channels and is most severe for the MMSE-Supression detector. This is the simplest of

116

� � � � � � � � �

MAP initial �� � ��� �(� � �.��� �
� ��� � �.� �

MAP per iteration ����� �
� � � � �.��1 � � � � � �.� �

MAP total (30 iterations) � � ��� � �.��1 � ���� � �.�%6 ��� ��� � �.� �

MMSE-SIC initial � � �

MMSE-SIC per iteration �(�
� ��� ��� � �.� 1 ��� ��� � �.� �

MMSE-SIC total (30 iterations)
� ����� � �(� 1 �
� � � � �.� � �
��� � � �.� 6

MMSE suppression initial
� � � � � � � ��� � �(��1

MMSE suppression per iteration � � ����� ���%�

MMSE suppression total (30 iterations) ��� � � � �.��1 � � � � � �.�%1 ����� � � �.� �

MMSE-HIC initial
� � � � � �
����� � �.��1

MMSE-HIC per iteration �.� � ���� ��� ��� � �.��1

MMSE-HIC total (30 iterations) � � ��� � �(��1 ��� ��� � �.� � � � � � � �.� �

Table 5.2. Cost (in flops) of computing the LLRs for different MIMO detectors.

117

the detectors as it does not employ feedback between the decoder and the detector. Note

that the MAP detector with feedback turned off (Fig. 5.4) exhibited a similar, though

less severe, performance loss on the � � � , � � 	 � � channel.

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Skew (λ
2
 / λ

1
)

T
ot

al
 E

xc
es

s
M

I (
B

its
)

MAP
MMSE−SIC
MMSE Sup

Figure 5.6. Simulation results showing excess MI vs. eigenvalue skew � at

BER � �(� /�� for different detectors (rate 1/3 length 15,000 ���

�����(�)� optimized code modulating QPSK on a 2 � 2 channel). The

MAP and MMSE-SIC detectors perform similarly with worst case

channels occurring when � � � under the � � 	 � � rotation. The

MMSE only detector suffers the most severe degradation on the

� � � , � � 	 � � since feedback is not employed to suppress the

co-channel interference present under this parameterization.

118

5.4.2 SNR and MI Performance of Different Detectors in Fast Rayleigh

Fading

In this section we examine the performance of LDPC coded BLAST systems using

the soft MIMO detectors introduced in the previous section. In our study, we assume

that the number of receive antennas is the same as the number of transmit antennas, i.e.

� � � � 	 . The LDPC code used in the simulations is the rate- � ��� , length �.������� code

that was realized from the degree distribution given by the code labeled �3� �!���(�)� in

Table 5.1. The density evolution threshold for this code in AWGN is � � � � � dB. This

degree sequence was found via a linear program that sought the highest rate ensemble

under a given threshold and maximum left and right node degree constraints [11]. In

order to acquire a given rate goal, the density evolution initial mean was adjusted to

achieve the desired rate. The mapping in all our simulations is a Gray-labeled QPSK

constellation. The resulting spectral efficiency is
� ��� bits/channel use.

We assume a fast Rayleigh fading scenario, where the channel matrix is realized

independently from one transmission time to the next. We compare our bit-error rate

results with the theoretical channel capacity limit. Under the fast fading assumption,

the theoretical capacity limit is the ergodic channel capacity given by [42],

� � 	 ')�� ' � det
5 � � � ;

� 	
� � � 7 * (5.29)

where the expectation is over the entries of � .

Figs. 5.7, 5.8, 5.9, and 5.10 show the BER performance versus average SNR per

receiver antenna on � � � , � � � , � �
�
, and � � � fast fading Rayleigh channels. On these

plots we also show the channel capacity at the corresponding transmission bit rate for

119

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

MMSE
MMSE−HIC
MMSE−SIC
MAP
Capacity

Figure 5.7. Performance of LDPC coded BLAST for � � � MIMO system with

MAP, MMSE-SIC, MMSE-HIC and MMSE suppression detec-

tors.

these systems. As expected, the MAP detector yields the best performance, which is �

dB away from the theoretical capacity at BER � �(��/�� on the � � � channel. We note that

the MMSE-SIC detector has essentially the same performance as the MAP detector on

the � � � , � � � , and
�

�
�

systems. For the � � � channel the computational complexity

associated with the MAP detector is prohibitive and this result was not simulated.

Our results differ from the results reported in [27] where a system based on the

MMSE-SIC detector has a performance degradation (less than � dB) compared to a

system based on the MAP detector. We attribute this difference to the fact that in [27]

a detector iteration is performed only after a number of decoder iterations, whereas in

our work every decoder iteration is followed by a detector iteration.

120

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

MMSE
MMSE−HIC
MMSE−SIC
MAP
Capacity

Figure 5.8. Performance of LDPC coded BLAST for � � � MIMO system with

MAP, MMSE-SIC, MMSE-HIC and MMSE suppression detec-

tors.

Moreover, our simulation results show that the very low complexity MMSE sup-

pression detector has a performance loss of only �
��� dB or less. This loss is approxi-

mately cut in half if the MMSE-HIC detector with an optimized cancellation threshold

is used instead. In fact, in the � � � system, the MMSE-HIC detector performance is

very close to the MAP and MMSE-SIC detectors.

Though the majority of this section has focused on a comparison of the performance

of the different detectors in terms of SNR in Rayleigh fast fading we again emphasize

the robustness of the codes as measured in terms of excess mutual information via

Fig. 5.11.

The cases plotted in this figure are contrasted from the exhaustively parameterized

121

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

MMSE
MMSE−HIC
MMSE−SIC
MAP
Capacity

Figure 5.9. Performance of LDPC coded BLAST for
�

�
�

MIMO system with

MAP, MMSE-SIC, MMSE-HIC and MMSE suppression detec-

tors.

2 � 2 case where we were able to determine best and worst case channels. Here, instead,

all channel results are average together in conjunction with the Rayleigh distribution.

Note that under MAP and MMSE-SIC detection, the excess MI per antenna remains

essentially constant, at 0.25 bits, as the number of transmit/receive antennas increases

from 2 to 4. MAP detector results were not computed (due to prohibitive complexity)

for the 8 � 8 case.

122

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

MMSE
MMSE−HIC
MMSE−SIC
Capacity

Figure 5.10. Performance of LDPC coded BLAST for � � � MIMO system with

MMSE-SIC, MMSE-HIC and MMSE suppression detectors.

5.5 Conclusion

In this chapter we have shown that the excess mutual information required to achieve

a bit error rate of �(� /�� on the 2 � 2 channel with a particular LDPC code varies by ap-

proximately 0.5 bits (with a total rate 4/3 code) between the best and worst case channel

when excess MI is measured against Net constrained capacity. However, excess MI is

essentially constant when measured against PID constrained capacity. Code perfor-

mance very closely tracks available operating mutual information. Therefore, LDPC

codes themselves are robust to channel variation. The information loss incurred during

joint PDF marginalization to individual bit PDFs in the detection process is the root

cause of excess mutual information variation with eigenskew.

123

2x2 3x3 4x4 8x8
0.2

0.25

0.3

0.35

0.4

E
xc

es
s

M
I p

er
 A

nt
en

na

Antenna Configuration

MAP
MMSE−SIC
MMSE−HIC
MMSE−Sup

Figure 5.11. Performance of different detectors across increasing antenna

multiplicities in terms of excess mutual information per transmit

antenna in Rayleigh fading. Each excess MI is measured from

constrained ergodic Rayleigh capacity for the given channel.

We have also shown that several variants of LDPC coded BLAST systems with iter-

ative detection and decoding perform roughly � dB from the theoretical capacity of the

Rayleigh MIMO channel. The soft MAP detector is optimal, however the MMSE-SIC

detector exhibits similar performance and has a lower overall computational complex-

ity. The MMSE suppression and MMSE-HIC detectors offer yet lower complexities,

for relatively small performance penalties. As an example, for the
�

�
�

system, con-

sidering the MAP detector as the norm, the total complexity (with ��� iterations) of

the MMSE-SIC detector is � times lower, that of the MMSE-HIC detector is �%� times

124

lower, and that of the MMSE suppression detector is �� times lower. A performance

loss of around �
��� dB is observed for the MMSE suppression detector. This loss is cut

approximately in half by an MMSE-HIC detector using a carefully chosen cancellation

threshold.

Appendix - Operational Mutual Information in Systems

Without Prior Information Feedback

Theorem 3 The mutual information available to an iterative decoder for the case of

a generalized Gaussian channel without feedback between the detector and decoder is

given by

�� ��� ��� � � � � ��� � I / #� � � � � ��� � � � � ��� � � � � (5.30)

where
� � � � � calls out the

�
th bit in the transmit vector

�
which carries a total of � � � �

bits, and
�

,
�

are RVs and � is the given channel matrix.

Proof: Consider the decoding scenario where the instantaneous mutual infor-

mation entering the decoder due to each received vector � � is given by
�� � (here we

re-introduce time index
�

),

�� � �
� � � I / #� � � � ��

 � where

��

 � � � �
� � � � � � ����� � � � �

� � � � � � � � � � � � � ��� � (5.31)

125

Observe that
�� � is the sum of the instantaneous marginalized bit reliability mutual in-

formations. The marginalization step reduces the information entering the decoder

at each receive time
�

from the instantaneous vector-wise joint mutual information,

� � � � � � � � � � � , to the sum of the instantaneous bitwise mutual informations, or
�� � . Ex-

plicitly,
�� � is defined as (for uniform �

� � � � � � ��� ,
�� � �

��� � I / #� � � � ���������
�

 � � � � # � �
� � � � � � � � � � � � � �

)�� ' � � �
� � � � � � � � � � � � � ���

�)�� ' � � � �� �
���������� (5.32)

To complete the proof, observe that the expectation of the instantaneous mutual infor-

mation converges to the ergodic mutual information of the sum of the individual bit

planes in the limit of infinite sample size � ,

�
�

�
/ #�
� � � �� � � � � ����

�

��� � I / #� � � � � ��� � � � � ��� � � � � (5.33)

An exchange in the order of the two outermost summations in (5.33) left-hand-side and

(5.32) respectively yields this asymptotic result. Hence the average given by (5.30) is

the information available to the closed iterative decoder.

126

Bibliography

[1] A. A. AlRustamani, A. Stefanov, and B. R. Vojcic. Turbo-greedy coding for

multiple antenna systems. In Proceedings of ICC, volume 6, pages 1684 –1689,

June 2001.

[2] D. M. Arnold, E. Eleftheriou, and X. Y. Hu. Progressive edge-growth Tanner

graphs. in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, Nov. 2001,

2:995–1001.

[3] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Serial concatenation of

interleaved codes: performance analysis, design, and iterative decoding. IEEE

Trans. Inform. Theory, 44:909–926, May 1998.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-

correcting coding and decoding: Turbo codes. in Proc. IEEE Int. Conf. Commun.,

Geneva, Switzerland, pages 1064–1070, May 1993.

[5] Jones C., Matache A., Tian T., Villasenor J., and Wesel R. D. The universality of

ldpc codes on wireless channels. In Proceedings of MilCom, Oct 2003.

127

[6] Jones C., Tian T., Matache A., Wesel R. D., and Villasenor J. Robustness of ldpc

codes on periodic fading channels. In Proceedings of GlobeCom, Nov 2002.

[7] J. Chen, A. Dholakia, E.Eleftheriou, M. Fossorier, and X.-Y. Hu. Near optimum

reduced-complexity decoding algorithms for LDPC codes. in Proc. IEEE Int.

Sym. Inform. Theory, Lausanne, Switzerland, Jul. 2002.

[8] J. Chen and M. Fossorier. Density evolution for BP-based decoding algorithms

of LDPC codes and their quantized versions. in Proc. IEEE Globecom, Taipei,

Taiwan, Nov. 2002.

[9] J. Chen and M. Fossorier. Near optimum universal belief propagation based de-

coding of LDPC codes. IEEE Trans. on Comm., 50(3), Mar. 2002.

[10] A. Chini. Multi Carrier Modulation in Frequency Selective Channels. PhD thesis,

Carleton Institute for Electrical Engineering, Ottawa, Sept. 1994.

[11] S.Y. Chung, T. Richardson, and R. Urbanke. Analysis of sum-product decoding

of low-density parity-check codes using a gaussian approximation. IEEE Trans.

on Inform. Theory, 47:657–670, Feb 2001.

[12] C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke. Finite length analysis

of low-density parity-check codes on the binary erasure channel. IEEE Trans.

Inform. Theory, 48:1570–1579, June 2002.

[13] L. Dong-U, J. Villasenor, and W. Luk. A hardware Gaussian noise generator for

128

exploring channel code behavior at very low bit error rates. In In proceedings of

FCCM, May 2003.

[14] E.Eleftheriou, T. Mittelholzer, and A. Dholakia. A reduced-complexity decoding

algorithm for low-density parity-check codes. IEE Electron. Letters, 37:102–104,

Jan. 2001.

[15] G. J. Foschini and M. J. Gans. On limits of wireless communications in a fading

environment when using multiple antennas. Wireless Personal Communications,

6:311–335, 1998.

[16] C. Fragouli and R. D. Wesel. Bit vs. symbol interleaving for parallel concatenated

trellis coded modulation. in Proc. IEEE Global Telecommun. Conf., San Antonio,

TX, Nov. 2001, 2:931–935.

[17] G. H. Golub and C. F. van Loan. Matrix Computations. Baltimore, MD: Johns

Hopkins Univ. Press, third edition, 1996.

[18] R.G. Gallager. Low-density parity-check codes. IRE Trans. Inform. Theory, IT-

8:21–28, Jan 1962.

[19] C. Jones, R. Tian, R. Wesel, and J. Villasenor. The Universal Operation of LDPC

Codes in Scalar Fading Channels. In Submission to the IEEE Transactions on

Communications, Oct 2003.

[20] J.H. Kang and W.E. Stark. Turbo codes for coherent fh-ss with partial band inter-

ference. In Proceedings of Military Communications Conference, Nov 1997.

129

[21] ”Köse, C., and R.” Wesel. Universal space-time trellis codes. In Proceedings of

GlobeCom, Nov 2002.

[22] ”Köse, C., and R.” Wesel. Universal space-time trellis codes. IEEE Transactions

on Information Theory, Special Issue on Space-Time Transmission, Reception,

Coding and Signal Design, Nov. 2003.

[23] C. Kose, W.Y. Weng, and R.D. Wesel. Serially concatenated trellis coded modu-

lation for the compound periodic erasures channel. In Proceedings of ICC, May

2003.

[24] Y. Kou, S. Lin, and M. Fossorier. Low-density parity-check codes based on finite

geometries: a rediscovery and new results. IEEE Trans. Inform. Theory, 47:2711–

2736, Nov. 2001.

[25] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor graphs and the sum-

prodcut algorithm. IEEE Trans. on Inform. Theory, 47:498–519, Feb 2001.

[26] L. Lampe, R. Schober, and R. Fischer. Multilevel coding for multiple-antenna

transmission. In Proceedings of 2002 International Symposium on Information

Theory, volume 1, July 2002.

[27] B. Lu, G. Yue, and X. Wang. Performance analysis and design optimization of

LDPC coded MIMO OFDM systems. to appear in EURASIP JASP, 51(11).

[28] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman. Improved

130

low-density parity-check codes using irregular graphs. IEEE Trans. on Inform.

Theory, 47:569–584, Feb 2001.

[29] D.J.C. Mackay. Good error correcting codes bases on very sparse matrices. IEEE

Trans. on Inform. Theory, 45:399–431, Mar 1999.

[30] D.J.C. MacKay, S.T. Wilson, and Davey M.C. Comparison of constructions of

irregular Gallager codes. IEEE Trans. on Comm., 47(10):498–519, October 1999.

[31] Y. Mao and A. H. Banihashemi. A heuristic search for good low-density parity-

check codes at short block lengths. in Proc. IEEE Int. Conf. Commun., Helsinki,

Finland, June 2001.

[32] G. A. Margulis. Explicit construction of graphs without short cycles and low

density codes. Combinatorica, 2(1):71–78, 1982.

[33] A. Matache and R. D. Wesel. Universal Trellis Codes for Diagonally Layered

Space-Time Systems. IEEE Transactions on Signal Processing, Special Issue on

MIMO Wireless, Nov. 2003.

[34] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Francisco, CA, 1998.

[35] M. Pursely and J. Skinner. Decoding strategies for turbo product codes in

frequency-hop wireless communications. In Proceedings of ICC, May 2003.

[36] T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity approaching

131

irregular low density parity check codes. IEEE Trans. on Inform. Theory, 47:618–

637, Feb 2001.

[37] T. Richardson and R. Urbanke. Efficient encoding of low-density parity-check

codes. IEEE Trans. on Inform. Theory, 47:638–656, Feb 2001.

[38] T. Richardson and R. Urbanke. The capacity of low-density parity-check codes

under message passing decoding. IEEE Trans. on Inform. Theory, 47:599–618,

Feb 2001.

[39] W.L. Root and P.P Varaiya. Capacity of classes of Gaussian channels. SIAM J.

Appl. Math, 16(6):1350–1393, November 1968.

[40] M. Sellathurai and S. Haykin. TURBO-BLAST for high speed wireless commu-

nications. In Proceedings of WCNC, volume 1, pages 315–320, Sept 2000.

[41] M. Sellathurai and S. Haykin. Turbo-BLAST for wireless communications: the-

ory and experiments. IEEE Trans. Signal Proc., 50(10):2538–2546, Oct 2002.

[42] I. E. Telatar. Capacity of multi-antenna Gaussian channels. European Trans.

Telecommun., 10(6):585–595, Nov.-Dec. 1999. Available: http://mars.

bell-labs.com/cm/ms/what/mars/papers/proof/.

[43] S. Ten Brink and B. Hochwald. Achieving near-capacity on a multiple-antenna

channel. IEEE Trans. on Comm., 51(3):389–399, Mar. 2003.

[44] Tian T., Jones C., Villasenor J., Wesel R. D. Characterization and selective avoid-

132

ance of cycles in irregular LDPC code construction. Submitted to IEEE Trans. on

Comm., 2002.

[45] Tian T., Jones C., Villasenor J., Wesel R. D. Characterization and selective avoid-

ance of cycles in irregular ldpc codes. In Proceedings of ICC, May 2003.

[46] A. van Zelst, R. van Nee, and G. A. Awater. Turbo-BLAST and its performance.

In Proceedings of VTC, volume 2, pages 1282–1286, May 2001.

[47] A. Vardy. The intractability of computing the minimum distance of a code. IEEE

Trans. Inform. Theory, 43:1757–1766, Nov. 1997.

[48] U. Wachsmann, R. Fischer, and J. Huber. Multi-Level Codes: Theoretical Con-

cepts and Practical Design Rules. IEEE Trans. on Inform. Theory, 45:1361–1391,

May 1999.

[49] X. Wang and H. V. Poor. Iterative (Turbo) soft interference cancellation and de-

coding for coded CDMA . IEEE Trans. on Comm., 47:1046–1061, July 1999.

[50] W.Y. Weng, C. Kose, and R.D. Wesel. Serially concatenated trellis coded modu-

lation for the compound periodic erasures channel - in submission. IEEE Trans.

on Comm.

[51] R. Wesel. Trellis Code Design for Correlated Fading and Achievable Rates for

Tomlinson-Harashima Precoding. PhD thesis, Stanford University, Department

of Electrical Engineering, Palo Alto, Aug. 1996.

133

[52] Wesel, R.D. and Cioffi, J.M. Trellis codes design for periodic interleavers. IEEE

Comm. Letters, 3:103–105, April 1999.

[53] Wesel, R.D. and Liu, X. and Shi, W. Trellis codes for periodic erasures. IEEE

Trans. on Comm., 48:938–947, June 2000.

[54] M. Yang and W. E. Ryan. Lowering the error-rate floors of moderate-length high-

rate irregular LDPC codes. In In proceedings of IEEE Int. Symp. Infor. Theory,

Yokohama, Japan, June 2003.

134

