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Abstract of the Dissertation

An Analytical Packet Error Rate Prediction for

Punctured Convolutional Codes and an

Application to CRC Code Design

by

Chung-Yu Lou

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Babak Daneshrad, Chair

The performance of a packet-based communication system is determined by its

packet error rate (PER) rather than its bit error rate (BER). Although the PER

and the BER are correlated, it is not straightforward to calculate the PER using

its BER due to the bit errors’ correlation brought about by the channel coding.

Therefore, the existing PER predictions are mostly heuristic methods.

The heuristic PER prediction methods, such as exponential effective SNR map-

ping (EESM) and mean mutual information per bit (MMIB), follow two steps: 1)

compute an averaged single metric from the channel coefficients, and 2) use a sim-

ulated curve to map from the single metric to the PER. These methods require

off-line simulations, curve-fitting, and parameter calibrations for every combina-

tion of modulation, code rate, and packet length. These requirements lower their

applicability as modern systems support numerous modes (combinations of the

above) thus needing an impractical number of off-line simulations. In this disser-

tation, we develop an analytical PER prediction method that requires no off-line

simulations but delivers high accuracy for a wide range of transmission schemes

and environments.
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First, we assume that the system uses a uniform random interleaver and treat

the bits’ log-likelihood ratios (LLRs) as i.i.d. random variables. The LLR distribu-

tion is modeled as a mixture of folded normal distributions and approximated by a

mixture of normal distributions. The PER is then calculated using a Gaussian Q-

function approximation and the transfer function of the punctured convolutional

code. Second, we focus on a realistic multiple-input multiple-output (MIMO)

orthogonal frequency-division multiplexing (OFDM) system that uses a repeated-

pattern interleaver. Therefore, the LLRs are dependent and their correlation is

governed by their locations in the packet. In general, there are three types of cor-

relations: a) correlations across subcarriers, b) correlations across spatial streams,

and c) correlations within a subcarrier. All the three types of correlations are es-

sential and their effect is characterized in our PER prediction. The simulation

result shows that the analytical method achieves higher prediction accuracy than

all the existing heuristic methods.

The analytical PER prediction can be applied to the design of cyclic redun-

dancy check (CRC) code, which is used for error detection. We consider a system

employing a CRC code concatenated with a convolutional code. The undetected

error probability of this system can be calculated by two methods: the exclusion

method and the construction method. The exclusion method enumerates the er-

ror patterns of the convolutional code and tests if each of them is detectable. The

construction method reduces complexity significantly by exploiting the equiva-

lence of the undetected error probability to the frame error rate of an equivalent

catastrophic convolutional code. We further propose a design of the CRC code

for a specific convolutional code and codeword length such that the undetected

error probability is minimized. This probability can be minimized when the CRC

code detects the most probable residual error patterns at the output of the Viterbi

decoder. In our example, the designed CRC codes have significant reduction in

undetected error probability compared to the existing CRC codes.
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CHAPTER 1

Introduction

1.1 Background and Literature Review

1.1.1 Analytical Packet Error Rate Prediction

Modern radios are capable of transmitting and receiving in various schemes, which

include the combinations of modulation, channel coding, transmit power. For a

multiple-input multiple-output (MIMO) radio, its schemes even include the se-

lections of antennas and MIMO techniques (beamforming, spatial multiplexing,

or space-time code). Finding the optimal transmission scheme given an environ-

ment under the constraint of certain quality of service (QoS) is called the link

adaptation problem [DCH10, KD10]. One of the solutions to the link adaptation

problem is to find the link performance of each candidate transmission scheme

and then pick the best one. Therefore, accurate link performance prediction plays

an important role in the link adaptation problem.

Another demand of the link performance prediction comes from network-level

simulations. Typically, a network-level simulation involves interactions between a

large number of radios, e.g., mobile terminals, relays, and base stations. It is time

consuming and impractical to include sample-accurate simulation of each trans-

mission pair. This situation necessitates a simple and efficient way to characterize

the link performance of the physical layer (PHY) [BM09].

The link performance of a packet-based communication system is exactly its

packet error rate (PER) (frame error rate — FER, or block error rate — BLER).

1



In this dissertation, we assume that a packet contains only one codeword, and

hence the PER and the codeword error rate are the same. In the case when a

packet consists of multiple codewords, one can assume the codeword errors to be

independent and thus calculate the PER based on the individual codeword error

rates.

Convolutional codes and punctured convolutional codes are used extensively

in wireless communication systems. Unlike turbo codes or low-density parity-

check (LDPC) codes, (punctured) convolutional codes are not block codes. In

other words, (punctured) convolutional codes can work with any length of input

sequences and do not have a block structure. Thus, the PER of (punctured) con-

volutional codes gets scarcely comparable attention to their bit error rate (BER).

The BER of punctured convolutional codes are well-studied[Vit71, CCG79].

Although the PER and the BER are highly correlated, it is not straightforward to

calculate the PER using its BER due to the bit errors’ correlation brought about

by the channel coding. Some papers[TWS08, EWD14] use the BER to calculate

the PER by assuming that the bit errors are independent, but the results are not

accurate.

The PER analysis of convolutional codes can be found in the literature. Hard

decision was often assumed[PT87] but performs worse than soft decision. The

code termination technique[KS05] treated the decoder trellis as a renewal process

but required the bits in a codeword to have the same reliability. In practice,

this requirement is rarely satisfied due to signal-to-noise ratio (SNR) variation

in a codeword and high order quadrature amplitude modulation (QAM). The

limiting before averaging (LBA) technique[ML99] provided an easy solution but

only allowed a limited number of SNR levels in a codeword and binary phase-

shift keying (BPSK). The PER of a convolutional code was also considered in the

performance analysis of bit-interleaved coded modulation (BICM). The BICM

expurgated bound[CTB98], refined from the union bound, only considered the

2



nearest neighbor codeword and assumed that each bit of a codeword belongs to

different modulation symbols. A more general approach in [YZS06] provided an

accurate result but required numerical integration of Gaussian Q-function for each

possible way of error bits to appear in a packet.

Most of the studies on BICM assume a uniform random interleaver or an

infinite-size interleaver, also known as BICM with a single interleaver (BICM-S).

The uniform random interleaver randomly creates a permutation for every trans-

mission, and all permutations are equally probable. If the size of such interleaver

is small (< 1000 bits), the probability of two bits mapped to the same modulation

symbol could be non-negligible. This creates correlation among bits’ log-likelihood

ratios (LLRs). The authors of [MF09] have demonstrated and analyzed this effect

in a QPSK system operating in fading channels. Ideally, if the size of the uni-

form random interleaver is big enough, this interleaver approaches an infinite-size

interleaver, which maps the neighbor encoded bits to distinct modulation sym-

bols and independent channel fades. These properties simplify the analysis of the

performance of such systems.

Recently, a few papers consider BICM with multiple interleavers (BICM-M).

In BICM-M, each of the encoder output has its own infinite-size interleaver, and

the bits from one encoder output must be assigned to a specific significance in the

modulation. For example, a rate-1/2 convolutional encoder has two output bits,

and they must be assigned to the most significant bit and the least significant bit of

16-QAM symbols, respectively. The BER analysis and design of BICM-M systems

in non-fading channels is presented in [AAS10]. Another interleaver setting is

BICM with a trivial interleaver (BICM-T). Similar to BICM-M, the bits from

one encoder output in BICM-T must be assigned to a specific significance in the

modulation. Unlike BICM-M, no interleaver is used in BICM-T. The BER analysis

of BICM-T systems in non-fading channels is presented in [ASA11, MHA14].

The uniform random interleavers or infinite-size interleavers in BICM-S or

3



(a)

(b)

Figure 1.1: The illustrations of a uniform random interleaver (a) and a repeated–

pattern interleaver (b).

BICM-M cannot be realized in a practical system. Consider a practical MIMO or-

thogonal frequency-division multiplexing (OFDM) system, such as Wi-Fi [Sta09].

It uses a fixed-pattern interleaver, which means that the permutation is the same

for all transmissions. Moreover, the interleaver has a finite block size equal to the

number of bits in an OFDM symbol, and thus all OFDM symbols have the same

permutation pattern. We call this type of interleavers as repeated-pattern inter-

leavers. Fig. 1.1 illustrates the difference between a uniform random interleaver

and an repeated-pattern interleaver, where the repeated-pattern interleaver has a

size of four bits.

Although the purpose of the interleaver is to avoid bursty errors of the encoded

bits, a smaller size of bursty errors can still happen to the systems employing a

repeated-pattern interleaver with certain transmission schemes in certain environ-

ments. The analysis of BICM-T [ASA11, MHA14] has similar considerations but is

limited to single-input single-output (SISO) systems in non-fading channels. The

authors of [DCH10] mentioned, “jointly modeling the effects of MIMO process-

ing, OFDM modulation, convolutioal coding, and bit interleaving is challenging,”
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which is what we are presenting in this dissertation.

In addition to analytical approaches, heuristic approaches have been stud-

ied. In order to cope with SNR variation in a codeword, the concept of effec-

tive SNR was proposed in [NR98]. The effective SNR is obtained by properly

averaging all the SNRs so that the system can be essentially viewed as operat-

ing in an additive white Gaussian noise (AWGN) channel at the effective SNR

level and having the same error performance. Recently, several averaged met-

rics have been proposed and known as link quality metric (LQM), channel qual-

ity indicator (CQI), or PHY abstraction. Exponential effective SNR mapping

(EESM)[Eri03] was based on Chernoff bound of Gaussian Q-function. Cumulant

generating function based effective SNR mapping (κESM)[SGL09] was founded

on the cumulant-generating function of the bits’ LLRs. Mutual information ef-

fective SNR mapping (MIESM)[TS03] was calculated through averaged mutual

information. Received bit information rate (RBIR)[WTA06] and mean mutual

information per bit (MMIB)[SZS07] were based on averaged mutual information

at the symbol-level and at the bit-level, respectively. Mean mutual information

per coded bit mapping (MMIBM)[JKW10] improved MMIB by utilizing the vari-

ance of the bit-level mutual information as a correction term. However, since

the relationship between PER and LQM is not straightforward, all LQMs rely on

pre-simulated AWGN curves to map from the LQM to the PER.

In general, the heuristic methods can be described as the following. The post-

processing SNR (PPSNR)[HSP01] values γi of all channel fades or subcarriers

are the input, where i is the index of the channel coefficients. The PPSNRs are

averaged through certain function g(·) and yield a scalar metric

LQM =
1

N

N∑
i=1

g

(
γi

βM,R,L

)
, (1.1)

where N is the total number of channel coefficients, M specifies the modulation

scheme, R specifies the code rate, L represents the information length of the
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Figure 1.2: Simulated PER curves of various transmission schemes in an AWGN

channel. The packet length is L = 1024 bytes.

packet, and βM,R,L is a parameter to be calibrated. Note that different LQMs

have different g(·). For example, the function g(·) of EESM and MIESM are an

exponential function and a mutual information function, respectively. Once the

scalar metric LQM is found, the PER can be obtained through a table lookup

PERM,R,L = fM,R,L(LQM) , (1.2)

where PERM,R,L is the PER of the transmission scheme specified by {M,R,L},
and fM,R,L(·) is the PER curve generated by simulations in an AWGN channel.

For example, Fig. 1.2 shows the PER curves of various transmission schemes as

a function of the effective SNR. Both EESM and MIESM use these curves as the

mapping functions fM,R,L(·). Other methods have different mapping functions that

take their own LQMs as the input. Note that these pre-simulated curves fM,R,L(·)
need to be prepared for all available transmission schemes. Furthermore, the

calibrated parameter βM,R,L is chosen such that it minimizes the mean square error

(MSE) between the predicted PER and the pre-simulated PER for all targeted
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types of fading channels. Hence, a large lookup table and a considerable amount of

pre-simulations are inevitable in order to support systems with numerous modes.

If computing capability allows, an exhaustive simulation is a valid way to pre-

dict the PER. This method is very accurate but has high computation complexity.

It does not require any pre-simulation results in order to predict the PER of a

transmission scheme, but only need to know the implementation of the scheme.

If we were able to predict a BPSK rate-1/2 scheme, we only need to know the

implementation of the code rate equal to 2/3 in order to predict a BPSK rate-2/3

scheme. Another method is to predict the PER from the coded BER with the

assumption of the independence of bit errors. This method is very easy because

the coded BER can be a simple mapping from the uncoded BER [PZR07], but

it has poor accuracy. To support an additional transmission scheme, it might

require some calibrations for the coded BER mapping coefficients, but the mod-

ulation and code rate are independently considered in this method. The LQMs

are slightly more complicated but have a lot better prediction accuracy than the

method relying on the coded BER. However, each transmission scheme is treated

separately and requires its own curve-fitting and parameter calibrations. For ex-

ample, being able to predict a BPSK rate-1/2 scheme does not make it easier to

predict a BPSK rate-2/3 scheme.

Fig. 1.3 summarizes the PER prediction methods mentioned above, where the

cyan arrows show the trend of a good method. We seek an analytical method that

is more accurate than the LQMs and requires affordable computation complexity.

Moreover, we would like the analytical method not to treat each transmission

scheme separately but reuse some intermediate results if two schemes have some

settings in common. For example, the prediction of a BPSK rate-1/2 scheme uses

the same LLR distribution as the prediction of a BPSK rate-2/3 scheme.
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Figure 1.3: The comparison of PER prediction methods in terms of their efficiency

(a) and applicability (b).

1.1.2 Cyclic Redundancy Check Code Design

Error-detecting codes and error-correcting codes work together to guarantee a

reliable link. The inner error-correcting code tries to correct any errors caused by
8



the channel. If the outer error-detecting code detects any residual errors, then the

receiver will declare a failed transmission.

Undetected errors result when an erroneously decoded codeword of the inner

code has a message that is a valid codeword of the outer code. We propose a design

of cyclic redundancy check (CRC) codes for a given feedforward convolutional code

such that the undetected error probability is minimized.

A necessary condition for a good joint design of error-detecting and error-

correcting codes, both using linear block codes, is provided in [KM84]. However,

this condition is based on the minimum distances of the inner and outer codes

and does not consider the detailed code structure.

Most prior work on CRC design ignores the inner code structure by assuming

that the CRC code is essentially operating on a binary symmetric channel (BSC).

We refer to this as the BSC assumption. The BSC assumption does not take

advantage of the fact that the CRC code will only encounter error sequences that

are valid codewords of the inner code.

The undetected error probability of a CRC code under the BSC assumption

was evaluated using the weight enumerator of its dual code in [LBF79]. Fast al-

gorithms to calculate dominant weight spectrum and undetected error probability

of CRC codes under the BSC assumption were presented in [Kaz01, LC05].

In [KC04], Koopman and Chakravarty list all standard and good (under the

BSC assumption) CRC codes with up to 16 parity bits for information lengths

up to 2048 bits. The authors recommend CRC codes given the specific target

redundancy length and information length.

For more than 16 CRC parity bits, it is difficult to search all possibilities and

find the best CRC codes even under the BSC assumption. Some classes of CRC

codes with 24 and 32 bits were investigated under the BSC assumption in [CBH93]

and an exhaustive search for 32-bit CRC codes under the BSC assumption was
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performed later in [Koo02].

Because all of these designs ignore the inner code by assuming a BSC, there

is no guarantee of optimality when these CRC codes are used with a specific

inner code. Therefore, we seek an optimal design of the CRC code for a specific

convolutional code such that the undetected error probability is minimized.

A few papers do consider CRC and convolutional codes together, but do not

consider the undetected error probability. In [SCH07], the CRC code was jointly

decoded with the convolutional code and used to detect the message length with-

out much degradation of its error detection capability. In [GL13], CRC bits were

punctured to reach higher code rates. The authors noticed that bursty bit errors

caused an impact on the performance of the punctured CRC code.

1.2 Summary of Contributions

In Chapter 2, We first present the analytical PER prediction of punctured convo-

lutionally coded systems employing a uniform random interleaver. Similar to the

LQMs, the proposed PER prediction takes the PPSNR as its input. Given the

PPSNR and the modulation scheme, we derive the LLR distribution. Different

from the LLR approximations in [ASF09] called consistent model (CoM) and zero-

crossing model (ZcM), we approximate each piecewise normal probability density

function (PDF) using a single normal PDF such that the tail probability of the

sum of the piecewise normal random variables approximates the tail probability

of the sum of the normal random variables. Having derived the LLR distribution,

we then use the Gaussian Q-function approximation [CDS03] and the transfer

functions of the punctured convolutional code to calculate the sum of pairwise er-

ror probabilities (PEP) and therefore the PER. This analytical method is refined

from[LD12] and delivers higher accuracy by allowing multiple transfer functions

for each punctured convolutional code and a more accurately modeling of the LLR
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distribution for high order QAM. To compute the transfer functions efficiently, we

improved the condensed state diagram [HB89, LK04] of a punctured convolutinal

code to derive the exact transfer functions while keeping the number of states

equal to that of the mother convolutional code. This method is referred to as the

Q-function approximation method.

We also present another PER prediction method based on the saddlepoint ap-

proximation [MFC06]. Different from [KL10], which predicts BER by considering

only the nearest competitive constellation point, we predict PER by taking all

constellation points into account and approximating the LLR using folded normal

distributions [LNN61] for high order QAM instead of normal distributions. This

method is called the saddlepoint approximation method.

The proposed analytical PER prediction methods deliver higher accuracy than

the existing heuristic LQMs while requiring absolutely no curve-fitting or parame-

ter calibrations. In our simulations in Rayleigh fading channels, the best heuristic

method has averaged relative prediction error of 8.07%, while the prediction errors

of the Q-function approximation and the saddlepoint approximation methods are

4.60% and 6.69%, respectively. In the 2x2 frequency selective channel settings,

the averaged MSE of the best heuristic method is 0.0504, while the Q-function

approximation and the saddlepoint approximation methods have MSEs of 0.0264

and 0.0236, respectively.

In Chapter 3, We present the analytical PER prediction for punctured convolu-

tionally coded MIMO OFDM systems employing a repeated-pattern interleaver.

The correlation of LLRs brought about by the interleaver are discussed under

three categories: a) correlation across subcarriers, b) correlation across spatial

streams, and c) correlation within a subcarrier. The location of a bit determines

the effective channel it experiences, and this determines its LLR distribution. If

two bits belong to the same subcarrier but different spatial streams, they may

be influenced by the same noise source but with different weightings. If two bits
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belong to the same subcarrier and the same spatial stream, they may observe

exactly the same noise realization and have highly correlated LLRs. These are all

considered within the framework of the Q-function approximation method. This

method achieves about 10% of the averaged MSE compared to the other meth-

ods, which assume the system is using a uniform random interleaver. Again, the

Q-function approximation method is based on the analysis of the error events and

requires no simulations, curve-fitting, or parameter calibrations.

Motivated by the analytical PER prediction, we apply the concept to the cal-

culation of the undetected error probability of a CRC code concatenated with a

feedforward convolutional code and propose two methods in Chapter 4. The ex-

clusion method enumerates possible error patterns of the inner code and excludes

them one by one if they are detectable. The construction method constructs a new

convolutional code whose error events correspond exactly to the undetectable error

events of the original concatenation of CRC and convolutional codes. Therefore,

the undetected error probability is approximated as the PER of the new convolu-

tional code. The new convolutional code is a catastrophic convolutional code and

its generator polynomial is the product of the CRC generator polynomial and the

original convolutional generator polynomial. With these two methods as tools, we

design CRC codes for the most common 64-state convolutional code for informa-

tion length k = 1024 bits and compare with existing CRC codes, demonstrating

the performance benefits of utilizing the inner code structure. Under this setting,

the new CRC codes provide significant reduction in undetected error probability

compared to the existing CRC codes with the same degrees. With the proposed

design, we are able to save two check bits in most cases while having the same

error detection capability.
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CHAPTER 2

Analytical Packet Error Rate Predictions of

Punctured Convolutional Codes with

Bit-Interleaved Coded Modulation

Existing packet error rate (PER) prediction methods such as exponential effective

SNR mapping (EESM) and mean mutual information per bit (MMIB) require off-

line simulations, curve-fitting, and parameter calibrations for every combination

of modulation, code rate, and packet length. These requirements lower their

applicability as modern systems support numerous modes (combinations of the

above) thus needing an impractical number of offline simulations. We propose two

analytical PER prediction methods for punctured convolutional codes based on

the codes’ transfer functions and the modeling of the log-likelihood ratio (LLR)

distributions. The first method approximates the LLR using a mixture of normal

distributions and relies on the Gaussian Q-function approximation; the second

method models the LLR as a mixture of folded normal distributions and applies

the saddlepoint approximation. Both methods are quite versatile and deliver high

accuracy for arbitrary combinations of modulation schemes, code rates, packet

size, channels, etc. They are equally applicable to a wide range of systems from

single-input single-output (SISO) single carrier to multiple-input multiple-output

(MIMO) orthogonal frequency division multiplexing (OFDM).

This chapter is organized as follows: Section 2.1 provides the system model.

In Section 2.2, we derive the PER of a punctured convolutional code as a function
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Figure 2.1: The block diagram of a system employing punctured convolutional

codes with BICM.

of the pairwise error probabilities (PEP). The two proposed PEP calculations are

described in Section 2.3. In Section 2.4, the numerical verification and comparison

is presented. Finally, we conclude this chapter in Section 2.5.

Notation: Boldface letters x represent sets. Vectors and matrices are denoted

by letters with a bar x̄. Random variables are written as italic uppercase letters

X, and their realizations are represented by the corresponding italic lowercase

letters x.

2.1 System Model

Fig. 2.1 illustrates a system employing punctured convolutional codes with bit-

interleaved coded modulation (BICM). In this system, a length-L information

bit sequence, constituting a packet, is fed into a convolutional encoder, and the

coded bit sequence can be punctured to reach a higher code rate. The punc-

tured bit sequence X̄ is then interleaved by a uniform random interleaver, which

generates each possible permutation of the sequence with equal probability. Af-

terward the interleaved bit sequence is modulated using binary phase-shift keying

(BPSK), quadrature phase-shift keying (QPSK), 16-quadrature amplitude modu-

lation (QAM), or 64-QAM with Gray code, and the mapping rule follows [Sta09].

We put no constraint on the antenna configurations; the system can use either

single antenna or multiple antennas with MIMO techniques, e.g. beamforming,
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spatial multiplexing, space-time code. However, we do assume that the post-

processing signal-to-noise ratio (PPSNR)[HSP01], which is defined as the effec-

tive signal-to-noise ratio (SNR) right before the symbol demapper, of each modu-

lated symbol is known and the noise follows an independent zero-mean circularly-

symmetric complex normal distribution. The receiver is equipped with a simplified

soft-demapper[TB02], which is an approximation of the max-log demapper[Vit98]

but requires rather simple computations. Finally, the deinterleaved LLR sequence

Ȳ is depunctured and decoded by a soft decision Viterbi decoder.

Note, because of the uniform random interleaver, the punctured bits are map-

ped to each modulation symbol with equal probability and therefore the PPSNRs

associated to all punctured bits can be treated as identically distributed random

variables. For ease of analysis, we further assume that these PPSNRs are inde-

pendent.

2.2 PER of Punctured Convolutional Codes

In the analysis, we treat the convolutional code encoder and the puncturer as

one combined encoder. This combined encoder is still analyzable using its trellis

diagram with the total number of states increased to the product of the original

number of encoder states and the number of puncture states. For example, a

64-state convolutional code encoder combining with a 3-state puncturer will yield

a 192-state combined encoder.

In a trellis diagram, an error event occurs if the decoded trellis path deviates

from the correct path exactly once and rejoins it exactly once. Let εt,l be the

error event whose deviation starts at the lth state transition (or information bit)

and the deviant trajectory is indexed as t. Let ε̄t,l be the bit sequence generated

by bitwise exclusive-or (XOR) of: (a) the encoder output along the correct trellis

path X̄ with (b) the encoder output along the error trellis path of error event εt,l.
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Figure 2.2: An error event ε1,2 shown in the trellis diagram of a [7, 5]8 convolutional

code with no puncture.

Note that the error trajectory index t can be determined by the bitwise XOR of

the input sequences along the two paths. For example, in Fig. 2.2, the error path

leaves the correct path at the second state transition, so l = 2. If the trajectory

is indexed as t = 1, then ε̄1,2 = [0011101100 · · · ]. For each error event εt,l, define

pairwise error event et,l, which occurs when the received LLR sequence Ȳ is more

likely to follow the error trellis path of X̄ ⊕ ε̄t,l than to follow the correct path of

X̄, where ⊕ is the bitwise XOR operator.

A packet error happens when at least one error event occurs in this packet.

Therefore, the PER expression for a length-L packet is simply given as

PERL = P

⎛
⎝ L⋃

l=1

⋃
t∈TL−l+1

εt,l

⎞
⎠= P

⎛
⎝ L⋃

l=1

⋃
t∈TL−l+1

et,l

⎞
⎠, (2.1)

where the finite set Tl is a collection of indices of the error trellis paths whose

deviant sections contain at most l state transitions. Moreover, because of the time-

invariance of convolutional codes, TL−l+1 actually represents the set of indices of
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error trellis paths starting at the lth information bit in a length-L packet. Assume

that
⋃

t∈TL−l+1
et,l, l = 1, 2, . . . , L are independent and apply the union bound.

Then the PER can be approximated by

PERL ≈ 1−
L∏
l=1

⎡
⎣1− P

⎛
⎝ ⋃

t∈TL−l+1

et,l

⎞
⎠
⎤
⎦ ≤ 1−

L∏
l=1

⎡
⎣1− ∑

t∈TL−l+1

P(et,l)

⎤
⎦. (2.2)

Define the infinite set T as the collection of indices of all error trellis paths without

the length limitation. The relationship between T and Tl is

T1 ⊆ T2 ⊆ · · · ⊆ TL−1 ⊆ TL ⊂ T.

Therefore, by replacing TL−l+1 with T, the upper bound of (2.2) is obtained.

Let M be the number of puncture states. Since convolutional code encoders

are time-invariant and the puncture pattern is applied periodically, ε̄t,l and ε̄t,l+M

have equal Hamming weights for all t and l. Thus the PER of a length-L packet

is approximated by

PERL ≈ 1−
M∏
l=1

[
1−

∑
t∈T

P(et,l)

]L/M

. (2.3)

When no puncturing is applied, we have M = 1, and (2.3) can be written as

PERL ≈ 1−
[
1−

∑
t∈T

P(et)

]L

, (2.4)

where et is the pairwise error event regardless of its starting location. This formula,

first seen in[PT87], was proven as a tight PER upper bound for hard-decision

Viterbi decoding, assuming independent and identically distributed (i.i.d.) bit

errors at the decoder input. For soft-decisions, it was first claimed to be an upper

bound in [KL92]. However, in its proof, the probability of choosing a correct

branch in the decoder trellis should not be lower bounded by 1 −∑
t∈T P(et), so

we claim that (2.4) is only an approximation.

It is worth noting that in low SNR regions, the union bound could make∑
t∈T P(et,l) in (2.3) exceed one. In such cases, we set the summation equal to
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Table 2.1: The scaled in-phase component of a received symbol

Modulation ZI g

BPSK sgn(XI,1)+ nI

√
2g/Es 0.5

QPSK sgn(XI,1)+ nI

√
2g/Es 1

16-QAM sgn(XI,1)[2− sgn(XI,2)]+ nI

√
2g/Es 5

64-QAM sgn(XI,1){4− sgn(XI,2)[2− sgn(XI,3)]}+ nI

√
2g/Es 21

one in order to avoid unreasonable result. Unlike the limiting before averaging

technique in [ML99], this limiting is performed after considering the variation of

the channel in P(et,l).

In the following section, we will focus on calculating the PEP P(et,l) for dif-

ferent modulation schemes and arbitrary fading coefficients.

2.3 PEP Calculation

To calculate the PEP, we need to know the distribution of the LLRs associated

with each error event. For simplicity, let ZI be the in-phase component of one

received QAM symbol scaled by
√

2g/Es , where g is a modulation dependent

scaling factor and Es is the received symbol energy. The expressions of ZI and the

values of g are given in Table 2.1. In this table, the use of Gray code is assumed,

sgn(·) is a function which maps 1 to 1 and 0 to −1, and XI,k denotes the kth bit

of the in-phase component of the symbol, e.g. XI,1 for the most significant bit

(MSB). Furthermore, nI is the in-phase component of the white Gaussian noise,

which has zero mean and variance σ2. Table 2.2 summarizes the results of [TB02]

and gives the in-phase LLRs calculated by the simplified demapper. In Table 2.2,

YI,k is the LLR of XI,k, and Γ = Es

2σ2 is the PPSNR of the symbol. The quadrature

components are processed in a similar manner.

Recall that X̄ is the bit sequence after the puncturer, and Ȳ is the LLR
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Table 2.2: The LLRs of the in-phase component calculated by the simplified

demapper[TB02].

Modulation YI,1 YI,2 YI,3

BPSK −2ZIΓ/g N/A N/A

QPSK −2ZIΓ/g N/A N/A

16-QAM −2ZIΓ/g −2 (− |ZI|+ 2)Γ/g N/A

64-QAM −2ZIΓ/g −2 (− |ZI|+ 4)Γ/g −2
(−∣∣|ZI| − 4

∣∣+ 2
)
Γ
/
g

sequence before the depuncturer. The ith element of Ȳ , ε̄t,l, and X̄ are denoted

by Yi, εt,l,i, and Xi, respectively. Given a modulation scheme, Yi is calculated

according to either of the columns in Table 2.2 with equal probability because of

the uniform random interleaver. With X̄ and Ȳ , we express the PEP P(et,l) as

P(et,l) = P
(
X̄ → X̄ ⊕ ε̄t,l

)
= P

⎛
⎝ ∑

εt,l,i �=0

Yi sgn(Xi)> 0

⎞
⎠. (2.5)

For simplicity, define half of log-error-likelihood ratio (HLELR) of Yi as

Y �
i � Yi sgn(Xi) / 2 . (2.6)

Thus the PEP is now given by

P(et,l) = P

⎛
⎝ ∑

εt,l,i �=0

Y �
i > 0

⎞
⎠= P

(
wt,l∑
j=1

Y �
i(t,l,j) > 0

)
, (2.7)

where wt,l is the Hamming weight of ε̄t,l and the function i(t, l, j) outputs the

location of the jth nonzero bit of ε̄t,l. To calculate this probability, we need to

know the distribution of the HLELR. Consider BPSK and QPSK. Using Table 2.1,

Table 2.2, (2.6), and the fact that the noise is independent of the transmitted bit

Xi, we obtain the conditional distribution

Y �
i |(Γi = γi) ∼ N (−γi/g , γi/g ) ,
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where Γi is the PPSNR of the symbol associated to the ith bit. Note that, this

likelihood ratio expresses how likely it is for the bit to be in error, so its expectation

is always negative.

For higher order QAMs, the HLELR distribution depends on the bit’s sig-

nificance in the modulation symbol and should be discussed separately. If the

realizations of Γ and XI,k for all k are given, the conditional distribution of ZI

is normal, and thus the conditional distribution of the MSB HLELR Y �
I,1 is also

normal. The conditional variance of Y �
I,1 given Γ = γ and XI,k = xI,k for all k is

γ
g
and its conditional expectation is

E
[
Y �
I,1

∣∣Γ = γ,XI,k = xI,k ∀k
]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ/g 16-QAM, xI,2 = 1

−3γ/g 16-QAM, xI,2 = 0

−γ/g 64-QAM, xI,2 = 1, xI,3 = 0

−3γ/g 64-QAM, xI,2 = 1, xI,3 = 1

−5γ/g 64-QAM, xI,2 = 0, xI,3 = 1

−7γ/g 64-QAM, xI,2 = 0, xI,3 = 0

.

To simplify the expression, we introduce another random variable DI,1, which

is governed by XI,2 and XI,3, so that the conditional distribution of Y �
I,1 can be

written as

Y �
I,1

∣∣(DI,1 = dI,1, Γ = γ) ∼ N (−dI,1γ/g , γ/g ) . (2.8)

By letting DI,1 = 1 for BPSK and QPSK, (2.8) can be applied to all modulation

schemes.

During the computation of YI,2 in Table 2.2, we need to take the absolute

value of ZI. Since the conditional distribution of ZI given Γ and XI,k for all k

is normal, its absolute value makes the conditional distributions of YI,2 and Y �
I,2

piecewise normal, or more specifically, folded normal [LNN61]. Consider a normal

distribution with mean μ and variance ρ2 folded at μ − η to its center, where
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η �= 0, i.e. folded to the right if η > 0 and vice versa. We denote this distribution

as FN (μ, ρ2, η). Its probability density function (PDF) is

fFN(x) =
1√
2πρ2

[
e

(x−μ)2

−2ρ2 + e
(x−μ+2η)2

−2ρ2

]
I

(
x

η
>

μ− η

η

)
, (2.9)

where I(·) is the indicator function. The presence of η in the denominator in the

indicator function makes this expression valid for both positive and negative η.

In the case of Y �
I,2, we have μ =

dI,2γ

−g , η =
φI,2γ

g
, and ρ2 = γ

g
, where

(dI,2, φI,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) 16-QAM, xI,2 = 1

(1,−3) 16-QAM, xI,2 = 0

(3, 1) 64-QAM, xI,2 = 1, xI,3 = 0

(1, 3) 64-QAM, xI,2 = 1, xI,3 = 1

(1,−5) 64-QAM, xI,2 = 0, xI,3 = 1

(3,−7) 64-QAM, xI,2 = 0, xI,3 = 0

.

To simplify the expression, two random variablesDI,2 and ΦI,2 are introduced. The

random variable DI,2, whose realization is dI,2, is governed by XI,3; the random

variable ΦI,2, whose realization is φI,2, is governed by XI,2 and XI,3. Therefore, the

conditional distribution of Y �
I,2 can be written as

Y �
I,2

∣∣(DI,2 = dI,2, ΦI,2 = φI,2, Γ = γ) ∼ FN (−dI,2γ/g , γ/g , φI,2γ/g ) . (2.10)

To compute YI,3 for 64-QAM, we need to take the absolute value of ZI twice

as shown in Table 2.2. Because of this, the conditional distribution of Y �
I,3 given

Γ and XI,k for all k is folded normal with three folds. For simplicity, we only

consider the fold closest to its center, i.e. the one with the smallest |η|, because
it has the greatest impact. Therefore, for Y �

I,3, we have μ = γ
−g , η =

φI,3γ

g
, and
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Table 2.3: The possible realization pairs of (DI,k, ΦI,k).

Modulation (dI,1, φI,1) (dI,2, φI,2) (dI,3, φI,3)

BPSK (1,∞) N/A N/A

QPSK (1,∞) N/A N/A

16-QAM (1,∞) , (3,∞) (1, 1) , (1,−3) N/A

64-QAM
(1,∞) , (3,∞) , (3, 1) , (1, 3) , (1, 1) , (1, 1) ,

(5,∞) , (7,∞) (1,−5) , (3,−7) (1, 1) , (1,−3)

ρ2 = γ
g
, where

φI,3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 xI,2 = 1, xI,3 = 0

1 xI,2 = 1, xI,3 = 1

1 xI,2 = 0, xI,3 = 1

−3 xI,2 = 0, xI,3 = 0

.

Similarly, we introduce the random variable ΦI,3, whose realization is φI,3, governed

by XI,2 and XI,3. The conditional distribution is then given by

Y �
I,3

∣∣(ΦI,3 = φI,3, Γ = γ)∼ FN (−γ/g , γ/g , φI,3γ/g ) . (2.11)

To further simplify the expression of HLELRs, we introduce random variables

ΦI,1 and DI,3 so that

Y �
I,k

∣∣(DI,k = dI,k, ΦI,k = φI,k, Γ = γ) ∼ FN (−dI,kγ/g , γ/g , φI,kγ/g ) (2.12)

is valid for all k. Note that a folded normal distribution with its fold at infinity

is actually a normal distribution. The possible realization pairs of (DI,k, ΦI,k) for

all k are listed in Table 2.3. Moreover, since the punctured bits XI,2 and XI,3 in

a QAM symbol are treated as i.i.d. Bernoulli random variables with parameter

0.5, all realization pairs of each modulation are equally probable. Because of the

uniform random interleaver, a punctured bit can be any significant bit in a symbol

with equal probability. Therefore, by introducing random variable pair (Di, Φi),
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which is a mixture of (DI,k, ΦI,k) for all k with equal weights, we can express the

conditional distribution of an HLELR as

Y �
i |(Di = di, Φi = φi, Γi = γi)∼FN

(
diγi
−g

,
γi
g
,
φiγi
g

)
. (2.13)

In the following, we will present two methods to compute the PEP in (2.7) based

on (2.13).

2.3.1 PEP Based on Gaussian Q-Function Approximation

To simplify the computation of the tail probability of the HLELR sum in (2.7), the

folded normal distribution in (2.13) is approximated by a single normal distribu-

tion. Different from the two single normal approximations proposed in [ASF09],

we seek Y ��
i , an approximation of Y �

i , such that

P

⎛
⎜⎝wt,l∑

j=1

Y �
i(t,l,j) > 0

∣∣∣∣∣∣∣
Di = di, Φi = φi,

Γi = γi, i = i(t, l, j′)

⎞
⎟⎠

≈ P

⎛
⎜⎝Y ��

i +

wt,l∑
j=1,j �=j′

Y �
i(t,l,j)>0

∣∣∣∣∣∣∣
Di = di, Φi = φi,

Γi = γi, i = i(t, l, j′)

⎞
⎟⎠.

Although it is possible to obtain the approximation for each wt,l ≥ dfree, where

dfree is the free distance of the punctured convolutional code, we consider the

dominant case wt,l = dfree and apply the approximation to all wt,l ≥ dfree. To be

more specific, Y �
i is approximated by Y ��

i such that

P

⎛
⎜⎝dfree∑

j=1

Y �
i(t,l,j)>0

∣∣∣∣∣∣∣
Di = di, Φi = φi,

Γi = γi, i = i(t, l, j′)

⎞
⎟⎠

≈ P

⎛
⎜⎝Y ��

i +

dfree∑
j=1,j �=j′

Y �
i(t,l,j)>0

∣∣∣∣∣∣∣
Di = di, Φi = φi,

Γi = γi, i = i(t, l, j′)

⎞
⎟⎠, (2.14)

and

Y ��
i |(Di = di, Φi = φi, Γi = γi) ∼ N

(
−
[
di + dadj

(
diγi
−g

,
γi
g
,
φiγi
g

)]
γi
g
,
γi
g

)
. (2.15)
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The adjustment function dadj(·) can be treated as a correction for the folded

normal distribution and is given in Appendix 2.A.

Since Y ��
i(t,l,j) for all j are conditionally independent given X̄ and Γi(t,l,j) for all

j, the conditional distribution of their sum is

wt,l∑
j=1

Y ��
i(t,l,j)

∣∣∣∣∣(D′
j = d′j, Γ

′
j = γ′j, ∀j

)∼N
(
−

wt,l∑
j=1

d′jγ
′
j,

wt,l∑
j=1

γ′j

)
, (2.16)

where we define random variables

D′
j � Di(t,l,j) + dadj

(
Di(t,l,j)Γi(t,l,j)

−g
,
Γi(t,l,j)

g
,
Φi(t,l,j)Γi(t,l,j)

g

)

and Γ ′j � Γi(t,l,j)

/
g . The PEP is now written as

P(et,l) ≈ E

[
P

(
wt,l∑
j=1

Y ��
i(t,l,j) > 0

∣∣∣∣∣D′
j, Γ

′
j , ∀j

)]

= E

⎡
⎣Q

⎛
⎝
√√√√wt,l∑

j=1

Γ ′j

{
D′

j +
(
D′

j − 1
) ∑wt,l

j′=1 D
′
j′Γ

′
j′∑wt,l

j′=1 Γ
′
j′

} ⎞
⎠
⎤
⎦, (2.17)

where the expectation is taken over all conditioned elements, and Q(·) is the tail

probability function of the standard normal distribution, i.e. Gaussian Q-function.

To further simplify the equation, an approximation of the Gaussian Q-function

is needed. Instead of the well-known Chernoff bound, which has only one expo-

nential term, we use the sum of four exponential terms

Q
(√

x
) ≈ 4∑

r=1

αr exp(−βrx), (2.18)

where the coefficients αr and βr are derived according to [CDS03] and listed in

Table 2.4. These numbers are selected to deliver a “close enough” approxima-

tion of the Gaussian Q-function over a wide range of inputs (one can certainly

propose another set of coefficients or a formula with more terms to get a better

approximation). Using (2.18),

wt,l∑
j′=1

D′
j′Γ

′
j′

/
wt,l∑
j′=1

Γ ′j′ ≈ E[D′] ,
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Table 2.4: The coefficients of Gaussian Q-function approximation.

r 1 2 3 4

αr 0.1453 0.1040 0.1047 0.0523

βr 1.6212 0.7986 0.5581 0.5000

and the fact that
(
D′

j, Γ
′
j

)
for all j are i.i.d., we can approximate (2.17) as

P(et,l) ≈
4∑

r=1

αr E
[
e−βrΓ ′{D′+(D′−1)E[D′]}

]wt,l

, (2.19)

where (D′, Γ ′) has the same distribution as
(
D′

j, Γ
′
j

)
without the location infor-

mation. Note that the expectation now is only taken over one pair of random

variables (D′, Γ ′) instead of wt,l pairs.

To calculate the PER, we need to sum all the PEPs starting at the same loca-

tion. This task can be achieved by evaluating the transfer function, which records

the encoder output weight spectrum. However, since the convolutional code en-

coder and the puncturer are combined, the weight spectra at different puncture

states are different. Therefore, M distinct transfer functions are required. Please

see Appendix 2.B for the computation of the transfer functions. Let the transfer

function of the lth puncture state be

Tl(W ) =
∞∑
t=1

Wwt,l . (2.20)

According to (2.19) and (2.20), the sum of the PEPs in (2.3) is then approximated

as

∑
t∈T

P(et,l)≈
4∑

r=1

αrTl(W )
∣∣
W=E[exp(−βrΓ ′{D′+(D′−1)E[D′]})]. (2.21)

Finally, the PER can be computed through (2.3) and (2.21).
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2.3.2 PEP Based on Saddlepoint Approximation

In (2.7), since Y �
i for all i are i.i.d. random variables, we apply the saddlepoint

approximation [MFC06] resulting in the following expression for P(et,l)

P(et,l) ≈ (M(ŝ))wt,l+0.5

ŝ
√
2πwt,l M

′′(ŝ)
, (2.22)

where M(s) is the moment-generating function of the HLELR Y �
i . The first and

second derivatives of M(s) are denoted as M′(s) and M′′(s), respectively. The

saddlepoint ŝ > 0, satisfying M′(ŝ) = 0, exists and is unique [MFC06].

According to (2.13), the moment-generating function of Y �
i is given by

M(s) = E
[
E
(
esY

�
i

∣∣Di, Φi, Γi

)]
= E

[
Q

(
−Φi

|Φi|

√
Γi

g
(s+ Φi)

)
e

Γi
g

(
s2

2
−Dis

)

+ Q

(
−Φi

|Φi|

√
Γi

g
(s− Φi)

)
e

Γi
g

(
s2

2
−(Di+2Φi)s

)]
, (2.23)

where the outer expectation is taken over Di, Φi, and Γi. The presence of |Φi|
guarantees that (2.23) is valid for both positive and negative Φi. Note that the

random variables Di and Φi are highly correlated and should be realized as a pair

given by the whole row of Table 2.3 with equal probability. With (2.23), both

M′(s) and M′′(s) can be derived, and the saddlepoint ŝ can be solved numerically.

In our implementation, we use Newton’s method with initial point s = 1 because

ŝ = 1 is the saddlepoint1 for binary-input output-symmetric channels[KL10], e.g.

BPSK and QPSK with Gray code.

Note that in (2.22), the Hamming weight wt,l appears both in the exponential

term in the numerator as well as the square root in the denominator. This pro-

hibits us from directly using the transfer functions to compute the infinite sum

of PEPs in (2.3). Consequently, we approximate the sum
∑

t∈T P(et,l) using the

1Our saddlepoint for BPSK is ŝ = 1 as opposed to 1
2 in [KL10, MFC06] because the moment-

generating function is for “half” of log-error-likelihood ratio.
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smallest fifteen Hamming weights in the transfer functions [KL10]. The PER is

then computed through (2.3).

2.4 Numerical Result

In this section, we compare our PER prediction methods against the PER obtained

from an end-to-end Monte Carlo simulation. We will first consider a SISO single

carrier system in additive white Gaussian noise (AWGN) and Rayleigh channels,

and then look at a 2x2 MIMO OFDM system in frequency selective channels. For

illustrative purposes, we have chosen the well-known 64-state rate-1/2 (133, 171)8

convolutional code and the corresponding puncture patterns identified in the IEEE

802.11n standard[Sta09]. However, the analysis is independent of this particular

code and can be applied to any other convolutional code and puncture pattern.

The packet length L is set to 1024 bytes.

2.4.1 The Comparison Metric

In order to quantify the accuracy of our PER prediction methods and to compare

it with the prediction accuracy of other methods, we will use the metric shown

below

Δ =
1

s2 − s1

s2∫
s1

∣∣∣∣PERpred.(s)− PERfit(s)

PERfit(s)

∣∣∣∣ ds, (2.24)

where PERpred.(s) is the predicted PER as a function of SNR in decibel and

the function PERfit(s) represents the simulated PER generated by curve-fitting;

moreover, s1 and s2 are SNR values in decibel satisfying PERfit(s1) = 0.15 and

PERfit(s2) = 0.001. To be more specific, the fitted PER function is given by

PERfit(s) =

⎧⎪⎨
⎪⎩
1 ef(s) ≥ 1 or f ′(s) > 0

ef(s) otherwise

, (2.25)
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Figure 2.3: Accuracy of analytical PER prediction for 64-QAM rate-2/3 scheme

with packet length = 1024 bytes in AWGN channels. The relative prediction error

Δ is calculated using (2.24).

where f(s) represents the quadratic fit to the natural logarithm of simulated PER

points in the range 0.01% < PER < 100% and f ′(s) is its first derivative.

Note that in (2.24), the limits of integration are from s1 to s2, corresponding

to the range of PERs from 0.1% to 15%. This is because in general very few,

if any, applications can withstand a PER of 15% or greater. Furthermore, any

PER < 0.1% is almost as good as 0%. A finer look at (2.24) reveals that it is an

averaged relative prediction error for all SNRs in our interest range.

2.4.2 AWGN Channels

The predicted PER of 64-QAM rate-2/3 in an AWGN channel is shown in Fig. 2.3.

The relative prediction errors (2.24) of the saddlepoint approximation and Q-

function approximation methods are 10.84% and 7.36%, respectively, and mainly

due to the prediction errors in the low-SNR region. The reason is that most of
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Table 2.5: Relative prediction errors Δ, in percentage (%), of the saddlepoint

approximation method (left) and the Q-function approximation method (right) in

AWGN channels with packet length = 1024 bytes.

Code Rate 1 / 2 2 / 3 3 / 4 5 / 6

BPSK 8.45, 9.10 10.43, 7.81 8.80, 10.23 7.56, 8.93

QPSK 10.57, 11.20 11.55, 12.26 11.57, 13.01 8.01, 8.38

16-QAM 7.56, 8.25 7.99, 10.10 8.63, 8.36 8.39, 5.46

64-QAM 7.32, 4.33 10.84, 7.36 7.03, 8.72 5.91, 7.57

the assumptions are valid when SNR is high. The relative prediction errors for all

combinations of modulations and code rates can be found in Table 2.5. It shows

that both analytical methods deliver consistently accurate predictions regardless

of the transmission scheme. Note that the heuristic methods are not compared

here because for AWGN channels they all use the fitted PER curves as their

mapping functions. They will be added to our comparative study when looking

at Rayleigh channels and frequency selective channels.

2.4.3 Rayleigh Fading Channels

This section shows the impact of SNR variations brought about by fading. In

this set of simulations, we consider a SISO single-carrier system in a quasi-static

Rayleigh fading channel. The channel remains constant during a symbol transmis-

sion but changes between symbols. Since the bits in a codeword are assumed to be

fully interleaved across the fades, the fading coefficients experienced by the sym-

bols can be treated as i.i.d. random variables. In this study, we calculate the PER

prediction error (2.24) for the proposed methods as well as the following link qual-

ity metrics (LQMs) that appear in the literature: cumulant generating function

based effective SNR mapping (κESM)[SGL09], exponential effective SNR mapping

(EESM)[Eri03], mutual information effective SNR mapping (MIESM)[TS03], and
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mean mutual information per coded bit mapping (MMIBM)[JKW10].

Again, the relative prediction error (2.24) is used to quantify the prediction

accuracy. However, for the fitted PER function PERfit(s) in Rayleigh fading

channels, we use a quadratic function for low-to-mid SNR regions and a linear

function for high SNR regions as opposed to (2.25). This piecewise function is

given by

PERfit(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 ef(s) ≥ 1 or f ′(s) > 0

ef
′(ŝ)(s−ŝ)+f(ŝ) s > ŝ

ef(s) otherwise

, (2.26)

where f(s) is still a quadratic function and ŝ is the optimized boundary point

separating the quadratic fit and the linear fit. The quadratic function f(s) and

the boundary point ŝ are optimized jointly to minimize the mean square error

(MSE) between the natural logarithm of PER points in the range 0.01% < PER <

100%. Note that, at the boundary point ŝ, the fitted PER function (2.26) and its

first derivative are both continuous.

The relative prediction errors of eight transmission schemes are shown in

Fig. 2.4. The heuristic methods might be useful for one scheme but inaccurate

for another. Although κESM has the highest averaged prediction error, it is the

only LQM that does not require any calibrated parameters. The lowest averaged

prediction error among the LQMs is 8.07% while the proposed saddlepoint approx-

imation and Q-function approximation methods have 6.69% and 4.60% averaged

prediction errors, respectively.

2.4.4 2x2 Frequency Selective Channels

Finally, we simulate a 2x2 MIMO OFDM system with a zero-forcing (ZF) MIMO

decoder operating over a frequency selective channel. The OFDM system is

assumed to use a 64-point fast Fourier transform and a subcarrier spacing of
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Figure 2.4: Relative PER prediction error Δ for various transmission schemes

with packet length = 1024 bytes in Rayleigh fading channels. The averaged error

is the linear average of the relative prediction errors of all transmission schemes.

312.5kHz. We create the channels based on the TGn channel model A through

F[Erc04]. For each channel model, ten realizations are generated independently.

For each channel realization, the system is simulated at different SNR levels.

Again, we focus on the results in the range 0.1% < PER < 15%. However, the

concept of PER curves does not exist in this scenario because different channel

realizations can cause different PERs even under the same averaged SNR. Thus,

instead of the relative prediction error (2.24), we calculate the MSE of each method

as

MSE =
1

N

N∑
n=1

|ln (PERpred.,n)− ln (PERsim.,n)|2, (2.27)

where N is the total number of simulation points in the PER range, and PERpred.,n

and PERsim.,n are the predicted and simulated PER values, respectively, for the

nth channel realization.
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Figure 2.5: Accuracy of PER prediction for 64-QAM rate-2/3 scheme with packet

length = 1024 bytes and ZF in 2x2 frequency selective channels generated accord-

ing to TGn channel model C (τrms = 30ns). A vertical set of scattered points

corresponds to one channel realization predicted by different methods. The mean

square error is calculated using (2.27).

In Fig. 2.5, the predicted PER of 64-QAM rate-2/3 scheme operating over

a frequency selective channel having an exponential power-delay-profile and an

rms-delay spread, τrms = 30ns, is illustrated. Only κESM slightly under-estimates

the PER and MMIBM over-estimates the PER; EESM and MIESM tend to over-

estimate when PER is low and under-estimate when PER is high. The two pro-

posed methods stay around the ideal line with MSEs equal to 0.0300 and 0.0268,

respectively. To see the overall accuracy for different transmission schemes under

various frequency selectivity, a clear comparison is shown in Fig. 2.6. Each bar

corresponds to one MSE value of a prediction method for one transmission scheme
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Figure 2.6: Mean square error of PER prediction for various transmission schemes

with packet length = 1024 bytes and ZF in 2x2 frequency selective channels having

an rms-delay spread τrms up to 150ns. The averaged MSE is the linear average of

the MSEs of all transmission schemes.

in all channel models. The accuracy of LQMs varies a lot from one transmission

scheme to another and the lowest averaged MSE among the LQMs is 0.0504 of

MMIBM. The proposed saddlepoint approximation and Q-function approxima-

tion methods deliver consistently high accuracy for all transmission schemes with

averaged MSEs of 0.0236 and 0.0264, respectively.

2.5 Conclusion

In this chapter, we describe two analytical PER prediction methods for punctured

convolutional codes based on the codes’ transfer functions and the modeling of the

distribution of half of log-error-likelihood ratio (HLELR), or essentially LLR. The

Q-function approximation method approximates the HLELR using a mixture of
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normal distributions and relies on the Gaussian Q-function approximation. The

saddlepoint approximation method models the HLELR as a mixture of folded nor-

mal distributions and applies the saddlepoint approximation. Unlike the existing

heuristic methods, the proposed methods require absolutely no curve-fitting or pa-

rameter calibrations. Furthermore, they deliver accurate predictions in AWGN,

Rayleigh fading, frequency selective fading, and MIMO environments. They are

superior to the heuristic methods appearing in the literature.

2.A Approximation of Folded Normal Distribution

In this section, we describe the approximation of a folded normal distribution using

a normal distribution satisfying (2.14). For simplicity, denote
∑dfree

j=1,j �=j′ Y
�
i(t,l,j)

as S. We will first approximate S in (2.14) using a mixture of skew normal

distributions [Azz85], and then fine-tune the adjustment function dadj(·) of Y ��
i in

(2.15) by evaluating the targeted conditional probability (2.14).

From (2.13), Y �
i follows a mixture of folded normal distributions [LNN61].

Furthermore, Y �
i for all i are i.i.d. because of the uniform random interleaver.

Therefore, we are able to evaluate the mean and variance of their sum S based on

the conditional PDF (2.9) and the distribution of PPSNR, and then approximate

S using a normal distribution. However, by plotting the histogram of S in Fig. 2.7,

we observe that the skewness needs to be considered. Thus we try to approxi-

mate S using a skew normal distribution [Azz85], which generalizes the normal

distribution to allow non-zero skewness. We denote the skew normal distribution

as SN (ξ, ω, λ). Its PDF is

fSN(x) =
2

ω
fN

(
x− ξ

ω

) λ(x−ξ)/ω∫
−∞

fN(y) dy, (2.28)

where fN(x) =
1√
2π

exp
(

x2

−2

)
is the standard normal PDF. In Fig. 2.7, although

the skew normal distribution fits much better than the normal distribution, the
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Figure 2.7: The histogram of 106 simulated sums of HLELRs. Each sum contains

nine i.i.d. HLELRs (dfree = 10) of 64-QAM in Rayleigh channel with 15dB av-

eraged PPSNR. The normal distribution matches the mean and variance of the

HLELR sum. The skew normal distribution matches the mean, variance, and

skewness of the HLELR sum. All PDF curves are properly resized to match the

scale of the histogram.

inaccuracy at the tail and the peak is still evident. Thus, similar to approximating

Y �
i using a mixture of folded normal distributions, we try to approximate S using

a mixture of skew normal distributions.

From (2.13), if the realization of (Di, Φi, Γi) is known, the parameters of the

associated folded normal distribution are known, and its conditional mean is cal-

culated as

E[Y �
i |Di = di, Φi = φi, Γi = γi]

=
diγi
−g

+
φiγi
g

⎡
⎣
√

2g

πφ2
i γi

exp

(
φ2
i γi

−2g

)
− 2Q

⎛
⎝
√

φ2
i γi
g

⎞
⎠
⎤
⎦. (2.29)

To model the sum of Y �
i better, the range of (Di, Φi, Γi) is divided into two clusters
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M1 and M2, satisfying

E[Y �
i |(Di, Φi, Γi) ∈ M1] ≤ μ̃ < E[Y �

i |(Di, Φi, Γi) ∈ M2] ,

where μ̃ is the boundary of the two clusters, and the clusters are created by the

expectation-maximization algorithm [Bil97]. In general, the conditional distribu-

tions of Y �
i in a cluster (either M1 or M2) tend to be more concentrated than

the unconditional distribution of Y �
i , and hence their sum is closer to a unimodal

distribution, which will be modeled as a skew normal distribution.

In S, which is the sum of dfree − 1 HLELRs, let random variable H be the

number of HLELRs whose parameters lie in M1, and it is given by

H =

dfree∑
j=1,j �=j′

I
[(
Di(t,l,j), Φi(t,l,j), Γi(t,l,j)

) ∈ M1

]
. (2.30)

Since the parameters (Di, Φi, Γi) for all i are independent, H follows binomial

distribution with parameters dfree − 1 and P((Di, Φi, Γi) ∈ M1). The conditional

mean, variance, and skewness of S given H can be easily computed from the

conditional mean, variance, and skewness of Y �
i given (Di, Φi, Γi) ∈ Mθ, θ ∈ {1, 2}.

We further approximate the conditional distribution of S given H using a skew

normal distribution S|(H = h) ∼ SN (ξh, ωh, λh), where the parameters of the

skew normal distribution are chosen such that its mean, variance, and skewness

match the conditional mean, variance, and skewness of S given H, respectively.

Hence, the unconditioned S is approximated by a mixture of dfree skew normal

distributions. This mixture distribution fits much better than a single normal or

skew normal distribution as illustrated in Fig. 2.7. This approximation is used to

evaluate (2.14) and derive the adjustment function dadj(·) in (2.15).

The PDF of S is approximated as

fS(x) ≈
dfree−1∑
h=0

bhfSN,h(x), (2.31)
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where bh = P(H = h) is the probability mass function (PMF) of the binomial

distribution

bh=

(
dfree−1

h

)
P((Di, Φi, Γi)∈M1)

h P((Di, Φi, Γi)∈M2)
dfree−1−h

and fSN,h (x) is the PDF of SN (ξh, ωh, λh). Let U be the collection of random

variables (Di, Φi, Γi) and u be the collection of its realizations (di, φi, γi) for the

specific i = i(t, l, j′). From (2.13), denote the conditional distribution of Y �
i given

U = u as FN (μ, ρ2, η), so its conditional PDF is exactly fFN(x) given in (2.9),

where μ = diγi
−g , ρ =

√
γi
g
, and η = φiγi

g
. Thus the left-hand side (LHS) of (2.14)

is given by

P(Y �
i + S > 0|U = u) =

∞∫
−∞

fFN(x)

∞∫
−x

fS(y) dy dx. (2.32)

By evaluating the folded normal PDF, (2.32) leads to

∞∫
−∞

1√
2πρ2

e
(x−μ)2

−2ρ2

∞∫
−x

fS(y) dy dx+
|η|
η

∞∫
μ−η

1√
2πρ2

e
(x−μ+η+|η|)2

−2ρ2

∞∫
−x

fS(y) dy dx

−|η|
η

μ−η∫
−∞

1√
2πρ2

e
(x−μ+η−|η|)2

−2ρ2

∞∫
−x

fS(y) dy dx, (2.33)

where the use of |η| makes sure the validity for both positive and negative η. Using

changes of variables, (2.33) is simplified to

∞∫
−∞

fN(x
′)

∞∫
−ρx′−μ

fS(y) dy dx
′ +

|η|
η

−|η|/ρ∫
−∞

fN(x
′′)

∞∫
ρx′′−μ+η+|η|

fS(y) dy dx
′′

−|η|
η

−|η|/ρ∫
−∞

fN(x
′′′)

∞∫
−ρx′′′−μ+η−|η|

fS(y) dy dx
′′′. (2.34)

Moreover, with (2.31), the second and the third terms of (2.34) are given by the

weighted sum of

−|η|/ρ∫
−∞

fN(x)

∞∫
±ρx−μ+η±|η|

fSN,h(y) dy dx
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= 2

−|η|/ρ∫
−∞

fN(x)

∞∫
(±ρx−μ+η±|η|−ξh)/ωh

fN(y
′)

λhy
′∫

−∞

fN(z) dz dy
′dx, (2.35)

where the signs of ρ and |η| depend on whether it represents the second or the

third term of (2.34) and another change of variables is used in (2.35). After

further changes of variables y′′ = −y′± ρ
ωh
x and z′ = z−λhy

′, (2.35) yields twice as

much as the cube volume
{
x < −|η|

ρ
, y′′ < μ−η∓|η|+ξh

ωh
, z′ < 0

}
of a trivariate normal

distribution with zero mean and covariance⎡
⎢⎢⎢⎣

1 ±ρ/ωh 0

±ρ/ωh 1 + (ρ/ωh)
2 λh

0 λh 1 + λ2
h

⎤
⎥⎥⎥⎦ .

Since the method to evaluate the cumulative distribution function of a multivariate

normal distribution is well studied [GB09], the second and the third terms of (2.34)

can be calculated.

In the right-hand side (RHS) of (2.14), define

S ′i � Y ��
i + S +

Γi

g
dadj

(
Diγi
−g

,
Γi

g
,
ΦiΓi

g

)
.

Similar to the conditional distribution of S given H, the conditional distribution

of S ′i given H = h and U = u can be approximated by a skew normal distribution

SN (ξ′h, ω
′
h, λ

′
h). The parameters ξ′h, ω

′
h, and λ′h are chosen such that the mean,

variance, and skewness of the skew normal distribution match the conditional

mean, variance, and skewness of S ′i, respectively. Thus the conditional PDF of S ′i

given U = u is

fS′i(x) ≈
dfree−1∑
h=0

bhfSN,h,i(x),

where fSN,h,i(x) is the PDF of SN (ξ′h, ω
′
h, λ

′
h). Denote Γi

g
dadj

(
Diγi
−g , Γi

g
, ΦiΓi

g

)
as

ζ, and then the RHS of (2.14) can be written as P(S ′i > ζ|U = u). Since the

adjustment ζ is close to zero, this tail probability can be approximated by its
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second-order Taylor series around zero as

∞∫
ζ

fS′i(x)dx ≈
∞∫
0

fS′i(x)dx− fS′i(0)ζ −
d
dx
fS′i(x)

∣∣
x=0

2
ζ2. (2.36)

The zeroth order term of (2.36) approximates the probability

P(Y ��
i + ζ + S > 0|U = u) , (2.37)

where the conditional distribution of Y ��
i +ζ givenU = u is actuallyN

(
diγi
−g ,

γi
g

)
=

N (μ, ρ2). Therefore, the probability in (2.37) is exactly given by the first term of

(2.34). After combining the LHS (2.34) and RHS (2.36) of (2.14), we obtain the

equation
d
dx
fS′i(x)

∣∣
x=0

2
ζ2 + fS′i(0)ζ + J ≈ 0, (2.38)

where J denotes the sum of the second and the third terms of (2.34). The correct

ζ should be the root which is closer to zero, and then the value of the adjustment

function dadj(μ, ρ
2, η) is known. Note that the the adjustment function should has

opposite sign to L and η. In case the real root does not exist due to rounding

errors, use the first-order Taylor series and it leads to ζ = −J
/
fS′i(0).

We provide an alternative approximation of the adjustment function

dadj

(
μ, ρ2, η

) ≈ 2η

ρ2
Q

( |η|
ρ

)[
2Q

( |η|
ρ

)
−
√

2ρ2

πη2
exp

(−η2

2ρ2

)]
. (2.39)

Compared to obtaining and solving (2.38), this approximation is much easier to

compute, but might not be applicable to all convolutional codes (dfree).

2.B Transfer Functions of Punctured Convolutional Codes

In this section, we present the computation of the transfer functions of punctured

convolutional codes. Although there has been studies on this topic, we have not

yet seen any that allows multiple transfer functions for one code. In the past,

the transfer function included all error events starting at all puncture states, i.e.
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∑M
l=1 Tl(W ), which was only useful to analyze the bit error rate (BER) but not

the PER. Even if one uses its average 1
M

∑M
l=1 Tl(W ) for the PER analysis, this is

still an approximation because the coefficients may not be whole numbers. We will

propose two methods to compute the exact transfer functions. The first method

is straightforward, while the second method is preferred when the number of

puncture states is large. Both proposed methods are based on the same technique,

which is used to find the transfer function of a non-punctured convolutional code

[McE98], but applied to different diagrams.

2.B.1 Extended State Method

When puncturing is applied, we may extend the state space to incorporate the

puncture states [BHP90]. An example of the extended error-state diagram of the

(7, 5)8 convolutional code punctured by the pattern [ 1 1
1 0 ] is shown in Fig. 2.8b,

where the state is denoted by (puncture state, encoder state). The states S0 and

S4 represent the start states of error events beginning at the first and second

puncture states, respectively. Therefore, T1(W ) is obtained by summing all paths

from S0 to S ′0 or S
′
4. The transition among the intermediate states can be written

as ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

S2

S3

S5

S6

S7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0

0 0 0 W 0 1

0 0 0 1 0 W

0 1 0 0 0 0

W 0 W 0 0 0

W 0 W 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

S2

S3

S5

S6

S7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let Āext be the transition matrix, Āext
end = [0,W 2, 0, 0,W, 0] be the transition to the

end states, Āext
begin,1 = [0, 0, 0,W 2, 0, 0]

T
be the transition from S0, and Āext

begin,2 =

[W, 0, 0, 0, 0, 0]T be the transition from S4, where T represents the matrix transpose

and the superscript “ext” labels the matrices created from the extended error-state
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Figure 2.8: The error-state diagram (a) of the (7, 5)8 convolutional code. Its

extended error-state diagram (b) and condensed error-state diagram (c) when

puncture pattern [1, 1; 1, 0] is applied. The exponent of W records the output

Hamming weight of each transition.

diagram. Hence, the transfer functions are given by

T1(W ) = Āext
end

(
Ī6 − Ā

)−1
Āext

begin,1
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and

T2(W ) = Āext
end

(
Ī6 − Ā

)−1
Āext

begin,2,

where Īk is the k × k identity matrix.

In general, consider an N -state convolutional code punctured by an M -state

puncturer. There are M (N − 1) intermediate states and the transfer functions

are given by

Tl(W ) = Āext
end

(
ĪM(N−1) − Āext

)−1
Āext

begin,l, 1 ≤ l ≤ M, (2.40)

where all matrices stem from its extended error-state diagram. However, this

requires a size M (N − 1) × M (N − 1) matrix inversion, which could be com-

putationally intensive. Fortunately, this can be simplified because of the sparse

structure of Āext,

Āext =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0̄ 0̄ · · · 0̄ ĀM

Ā1 0̄ 0̄
... 0̄

0̄ Ā2 0̄
. . . 0̄

0̄ Ā3
. . . 0̄

...
...

. . . . . . 0̄ 0̄

0̄ · · · 0̄ ĀM−1 0̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.41)

where each submatrix is (N − 1)×(N − 1), 0̄ is a zero matrix, and Āl corresponds

to the transition from puncture state l − 1 to puncture state l modulo M for all

l. Let

(
ĪM(N−1) − Āext

)−1
=

⎡
⎢⎢⎢⎢⎢⎢⎣

B̄1,1 B̄1,2 · · · B̄1,M

B̄2,1 B̄2,2 · · · B̄2,M

...
...

. . .
...

B̄M,1 B̄M,2 · · · B̄M,M

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where all B̄i,j are (N − 1) × (N − 1) matrices. Using Gaussian elimination, we
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have B̄i,j = C̄i,j + D̄i,j, where

C̄i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 i < j

ĪN−1 i = j

Āi−1Āi−2 · · · Āj i > j

(2.42)

and

D̄i,j = Āi−1Āi−2 · · · Ā0ĒĀM ĀM−1 · · · Āj. (2.43)

In (2.43), we define Ē �
(
ĪN−1 − ĀM ĀM−1 · · · Ā1

)−1
and Ā0 � ĪN−1. Thus it

only requires an (N − 1)× (N − 1) matrix inversion, which has the same size as

the transfer function calculation of a non-punctured convolutional code and is

independent of the number of puncture states. Furthermore, Ci,j and Di,j for all

i and j have lots of common terms and can be reused to ease the computation.

For example, we can begin with B̄1,M = ĒĀM , and calculate the rest recursively

by following

B̄i+1,j = ĀiB̄i,j + ĪN−1 I(i+ 1 = j) (2.44a)

B̄i,j−1 = B̄i,jĀj−1 + ĪN−1 I(i = j − 1) , (2.44b)

where again I(·) is the indicator function.

Though the recursive algorithm simplifies the computation, it still requires

about M2 matrix multiplications of size (N − 1)× (N − 1). Thus it motivates us

to reduce the number of states.

2.B.2 Condensed State Method

To reduce the number of states, we may combine M state transitions as a big

transition. In this way, if a big transition initiates from puncture state zero,

it will still lead to puncture state zero. Therefore, the number of states does

not increase as puncturing is applied. This idea was found in [HB89], but it

failed to deliver the exact transfer function. The reason is that even though both
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the start and end states of a big transition are not the all-zero state, the path

might have visited encoder state zero, which terminates error events, during the

big transition. As a result, such error events get counted multiple times, and

this explains why the weight spectra in [HB89] is greater or equal to which in

[BHP90]. The same mistake was made in [LK04] even if the exact state diagram

of a punctured convolutional code was proposed.

An example of the condensed error-state diagram of the same punctured con-

volutional code as in the previous subsection is shown in Fig. 2.8c. Each line

corresponds to M = 2 state transitions, and the dashed lines include one tran-

sition inside encoder state zero. Note, although the big transition S2 → S1 is

possible by having [01] as the input, the path will first visit S ′4 in Fig. 2.8b, which

terminates error events, and should not leave encoder state zero in the error-state

diagram. Thus, this big transition should be avoided because these error events

are incorporated in the transition S2 → S ′0. Since the difference between transfer

functions lies in the first transition, we will compute T1(W ) by summing all paths

beginning with transitions S0 → S2 and S0 → S3, and derive T2(W ) by starting

with S0 → S1. The transition among the intermediate states is⎡
⎢⎢⎢⎣
S1

S2

S3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
W 0 W

W W W

W 2 1 W 2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
S1

S2

S3

⎤
⎥⎥⎥⎦ .

Let Ācond be the transition matrix, Ācond
end = [W 2,W 2,W 2] be the transition to the

end state, Ācond
begin,1 = [0,W 3,W 2]

T
be the first transition of T1(W ), and Ācond

begin,2 =

[W, 0, 0]T be the first transition of T2(W ). We have transfer functions

T1(W ) = Ācond
end

(
Ī3 − Ācond

)−1
Ācond

begin,1

T2(W ) = Ācond
end

(
Ī3 − Ācond

)−1
Ācond

begin,2.

In general, for an N -state convolutional code punctured by an M -state punc-
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turer, the transfer functions are given by

Tl(W ) = Ācond
end

(
ĪN−1 − Ācond

)−1
Ācond

begin,l, 1 ≤ l ≤ M, (2.45)

where Ā, Āend, and Ābegin,l for all l are specified according to its condensed error-

state diagram. Note that the relationship between transition matrices Āext and

Ācond is Ācond = ĀM ĀM−1 · · · Ā1, where Āl for all l are given in (2.41). Since

(2.45) only needs one (N − 1)×(N − 1) matrix inversion, it is preferable to (2.40)

especially for a large M .
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CHAPTER 3

Analytical Packet Error Rate Predictions of

Punctured Convolutionally Coded Systems with

a Repeated-Pattern Interleaver

In the previous chapter, we have presented the analytical packet error rate (PER)

prediction methods for punctured convolutionally coded systems with a uniform

random interleaver, where the bits’ log-likelihood ratios (LLRs) are assumed to

be independent and identically distributed (i.i.d.) random variables. In a practi-

cal system, the interleaver usually has a fixed permutation pattern and thus the

assumption is not valid anymore. We consider a multiple-input multiple-output

(MIMO) orthogonal frequency-division multiplexing (OFDM) system employing

a repeated-pattern interleaver, and discuss three types of LLRs’ correlation. The

three types include a) correlation across subcarriers, b) correlation across spatial

streams, and c) correlation within a subcarrier. The simulation result shows that

our analytical method delivers significantly higher accuracy than all the other

existing PER prediction methods. Unlike the heuristic methods, the proposed

analytical method requires no curve-fitting or parameter calibrations.

This chapter is organized as follows: Section 3.1 presents the model of a MIMO

OFDM system employing a repeated-pattern interleaver. Section 3.2 recapitulates

the analytical PER prediction method for systems employing a uniform random

interleaver. Section 3.3 generalizes the analytical PER prediction to the usage of a

repeated-pattern interleaver by considering three types of correlation of LLRs. In
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Figure 3.1: The block diagram of a MIMO OFDM system employing punctured

convolutional codes with BICM.

Section 3.4, the accuracy of the proposed method is compared with other existing

methods. We conclude this chapter in Section 3.5.

Notation: Boldface letters x represent sets. Vectors and matrices are denoted

by letters with a bar x̄. Random variables are written as italic uppercase letters

X, and their realizations are represented by the corresponding italic lowercase

letters x.

3.1 System Model

Fig. 3.1 illustrates a MIMO OFDM system employing a punctured convolutional

code with bit-interleaved coded modulation (BICM). In this system, a length-L

information bit sequence, constituting a packet, is fed into a convolutional encoder,

and the coded bit sequence can be punctured to reach a higher code rate. The

punctured bit sequence X̄ is then interleaved by a repeated-pattern interleaver and

spread over one or more spatial streams. The repeated-pattern interleaver uses a

fixed permutation pattern for each OFDM symbol in a packet, and this pattern

is fixed for all packet transmissions. Note that, depending on the transmission
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scheme (or the number of bits in an OFDM symbol), the permutation pattern

could be different.

Afterward the bit sequence of each spatial stream is modulated using binary

phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-quadrature

amplitude modulation (QAM), or 64-QAM with Gray code, and the mapping rule

follows IEEE 802.11n standard [Sta09].

We assume that the channel coefficients and the noise spectral density N0 are

known. Therefore, the signal-to-noise ratio (SNR) of each modulation symbol at

the receiver input is known. We put no constraint on the antenna configurations;

the system can use either single antenna or multiple antennae with MIMO tech-

niques, e.g., beamforming, spatial multiplexing, and/or space-time code. However,

we do assume that the effective noise after the MIMO decoder is independent of

the transmitted information, i.e., no inter-symbol interference, inter-carrier in-

terference, or interference between spatial streams. With the knowledge of the

channel coefficients, noise spectral density, and the MIMO technique being used,

the post-processing signal-to-noise ratio (PPSNR)[HSP01], which is defined as the

SNR right before the symbol demapper, of each modulation symbol can be calcu-

lated. Note that the noise before the demapper, belonging to the same subcarrier

and OFDM symbol but different spatial streams, could be dependent due to the

MIMO decoder. The receiver is equipped with a simplified soft-demapper[TB02],

which is an approximation of the max-log demapper[Vit98] but requires rather

simple computations. Finally, the deinterleaved LLR sequence Ȳ is depunctured

and decoded by a soft decision Viterbi decoder.

In the rest of the chapter, we will use the system following IEEE 802.11n

standard[Sta09] as an example, including the specified convolutional code, punc-

ture pattern, interleaver, modulation, and OFDM parameters. Regarding the

MIMO technique, we use spatial multiplexing with Ns spatial streams and Ns-

by-Ns antenna configurations. The receiver is equipped with a zero-forcing (ZF)
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MIMO decoder to prevent any interference between spatial streams. Note that,

in spite of the setting of the example, the analysis is applicable to all punctured

convolutionally coded MIMO OFDM systems with a repeated-pattern interleaver.

3.2 Analytical PER Prediction for Systems with a Uni-

form Random Interleaver

In this section, we summarize the results of the analytical PER prediction for

systems with a uniform random interleaver presented in the previous chapter.

They serve as the fundamental building blocks of the analytical PER prediction

for systems with a repeated-pattern interleaver.

The PER of a length-L packet is approximated by

PERL ≈ 1−
L∏
l=1

[
1−

∑
t∈T

P(et,l)

]
, (3.1)

where T is the set of indices of all error events starting at the same location

without limiting the length of the error events, and et,l is the pairwise error event

starting at the lth transition and indexed as t. We define half of log-error-liklihodd

ratio (HLELR) as

Y �
i � Yi sgn(Xi) / 2 , (3.2)

where Yi and Xi are the ith elements of the deinterleaved LLR sequence Ȳ at the

receiver and the punctured bit sequence X̄ at the transmitter, respectively, and

sgn(·) is a function which maps 1 to 1 and 0 to −1. The probability of a pairwise

error event, called the pairwise error probability (PEP), is then given by

P(et,l) = P

(
wt,l∑
j=1

Y �
i(t,l,j) > 0

)
, (3.3)

where wt,l is the Hamming weight of this error event, and the function i(t, l, j)

outputs the location of the jth nonzero bit of the sequence associated with the

pairwise error event et,l.
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Table 3.1: The possible realization pairs of (DI,k, ΦI,k) and the modulation depen-

dent scaling factor g.

Modulation (dI,1, φI,1) (dI,2, φI,2) (dI,3, φI,3) g

BPSK (1,∞) N/A N/A 0.5

QPSK (1,∞) N/A N/A 1

16-QAM (1,∞) , (3,∞) (1, 1) , (1,−3) N/A 5

64-QAM
(1,∞) , (3,∞) , (3, 1) , (1, 3) , (1, 1) , (1, 1) ,

21
(5,∞) , (7,∞) (1,−5) , (3,−7) (1, 1) , (1,−3)

We showed that the conditional distribution of an HLELR given its parameter

pair (Di, Φi) and its PPSNR Γi follows a folded normal distribution

Y �
i |(Di = di, Φi = φi, Γi = γi)∼FN

(
diγi
−g

,
γi
g
,
φiγi
g

)
, (3.4)

where g is a scaling factor depending on the modulation scheme and given in

Table 3.1. The parameter pair (Di, Φi) is a pair of random variables and are

a mixture of random variable pairs (DI,k, ΦI,k) in Table 3.1 for all k with equal

weights.

We further approximate the HLELR Y �
i using a random variable Y ��

i . The

conditional distribution of Y ��
i given the parameter pair (Di, Φi) and its PPSNR

Γi follows a normal distribution

Y ��
i |(Di = di, Φi = φi, Γi = γi) ∼ N

(
−
[
di + dadj

(
diγi
−g

,
γi
g
,
φiγi
g

)]
γi
g
,
γi
g

)
, (3.5)

where the adjustment function dadj(·) is given in Appendix 2.A. For simplicity,

we further define random variables

D′
j � Di(t,l,j) + dadj

(
Di(t,l,j)Γi(t,l,j)

−g
,
Γi(t,l,j)

g
,
Φi(t,l,j)Γi(t,l,j)

g

)

and Γ ′j � Γi(t,l,j)

/
g . Through the Gaussian Q-function approximation[CDS03],

the PEP is then approximated as

P(et,l) ≈
4∑

r=1

αr E
[
e−βrΓ ′{D′+(D′−1)E[D′]}

]wt,l

, (3.6)
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Table 3.2: The coefficients of Gaussian Q-function approximation.

r 1 2 3 4

αr 0.1453 0.1040 0.1047 0.0523

βr 1.6212 0.7986 0.5581 0.5000

where (D′, Γ ′) has the same distribution as
(
D′

j, Γ
′
j

)
without the location informa-

tion. The coefficients αr and βr of Gaussian Q-function approximation is given in

Table 3.2. Finally, the PER of a system employing a uniform random interleaver

can be calculated using (3.1) and (3.6).

3.3 Correlation of LLRs (HLELRs)

For a MIMO OFDM system employing a repeated-pattern interleaver, the LLRs

(or HLELRs) cannot be treated as i.i.d. random variables. The reason is that,

if the location of a bit in an OFDM symbol is known, its significance in a mod-

ulation symbol, the spatial stream and the subcarrier containing this bit, are all

determined by the interleaver. This causes a huge impact on the PEP and can be

demonstrated by the following example.

In the conventional analysis of (punctured) convolutional codes, the PEP

P(et,l) is governed by the Hamming weight wt,l of the error event. This is valid

only when a uniform random interleaver is used or when some specific system

is operating in non-fading channels. To show a counter-example, we simulate

a BPSK rate-1/2 system with one spatial stream (1x1) in TGn channel model

B[Erc04] (having rms-delay spread τrms = 15ns) and record the occurrence of each

error event. Fig. 3.2 shows the simulated occurrence frequency of six error events

having the same Hamming weight in two frequency selective channels at different

SNR levels. Note that the six error events are differentiated by their trajectories t

rather than their starting locations l. If a uniform random interleaver is used, we

51



10
−5

10
0

0

0.2

0.4

0.6

0.8

Simulated PER

R
el

at
iv

e 
O

cc
ur

re
nc

e 
Fr

eq
ue

nc
y

 

 
Event 1, w = 10
Event 2, w = 10
Event 3, w = 10
Event 4, w = 10
Event 5, w = 10
Event 6, w = 10

(a)

10
−5

10
0

0

0.2

0.4

0.6

0.8

Simulated PER

R
el

at
iv

e 
O

cc
ur

re
nc

e 
Fr

eq
ue

nc
y

 

 
Event 1, w = 10
Event 2, w = 10
Event 3, w = 10
Event 4, w = 10
Event 5, w = 10
Event 6, w = 10

(b)

Figure 3.2: The simulated occurrence frequency of six error events of a BPSK

rate-1/2 1x1 OFDM system operating in two frequency selective channels (a) and

(b) with τrms = 15ns.
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shall expect the six error events to have similar occurrence frequency. However,

as we can see, the six error events are not equally probable. Furthermore, the

two most probable error events (event 1 and 3) in the first channel realization are

not likely to occur at all in the second channel realization. This shows that the

occurrence frequency of an error event depends not only on its trajectory in the

trellis diagram but also on the channel realization. Therefore, we should com-

pute the PEP of each error event individually instead of relying on the transfer

function[Vit71] or the weight spectrum of the code. However, it is not possible to

individually deal with infinitely many error events specified by T in (3.1), so we

only consider the error events in the finite set T′, which is a subset of T.

Typically, error events with low Hamming weights are likely to happen. Thus,

let the set T′ include all error events having the smallest four Hamming weights.

For example, the smallest four Hamming weights of the error events of the well-

known 64-state rate-1/2 (133, 171)8 convolutional code are 10, 12, 14, and 16. For

each starting location l, there are 1573 error events whose Hamming weights lie

in this range. Since the PEP of an error event depends on the channel realization,

an error event with a high Hamming weight could still be a dominant error event.

Therefore, T′ needs to contain some of the error events with higher Hamming

weights discussed as below.

In the systems using high order QAM, the significance of bits is assigned by

the interleaver in a round-robin manner; in the systems with multiple spatial

streams, the interleaver maps the bit sequence to the spatial streams in a round-

robin manner as well. These two facts are preferred while designing an interleaver

to prevent bursty errors. However, they create an unintended high-low reliability

pattern periodically applied to the bits. For example, in a 16-QAM system with

the interleaver specified in [Sta09], each bit in an odd position before the inter-

leaver is mapped to the first location of the in-phase or quadrature component.

Hence, this bit is the most significant bit (MSB) and is more reliable. Let the
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period of the high-low reliability pattern be b bits. The value of b ranges from

two to four because the highest order modulation scheme is 64-QAM (three bits

per dimension) and the system allows up to four spatial streams. Although it is

reasonable to set the maximum of b to twelve, the product of three and four, we

set this number to four, the maximum of three and four, in order to reduce the

computation complexity. We assume that low reliability appears once every b bits

and the other bits has high reliability. Under this assumption, the finite set T′

needs to contain all error events satisfying both of the following criteria.

• For each possible high-low reliability pattern, including its period b and the

location of low reliability, we are interested in the error events that have the

smallest five counts of bits with high reliability.

• For each count of bits with high reliability, we are interested in the error

events that have the smallest five counts of bits with bad reliability.

In consideration of accuracy, we prefer T′ to include as many error events as

possible. However, the more error events are included, the higher complexity the

method has. The way we pick the finite set T′ achieves a good balance between

accuracy and complexity in our computation environment. Note that, the output

Hamming weight depends on the puncture state where the error event is initiated.

Hence, the set T′ should be calculated for each puncture state and is denoted as

T′l for 1 ≤ l ≤ M , where M is the number of puncture states. If l > M , then

T′l = T′(l−1 mod M)+1.

Since the interleaver uses the same permutation pattern for all OFDM symbols,

the error events having the same trajectory but starting from different OFDM

symbols could possibly experience the same interleaving and have the same PEP.

Thus, the PER expression in (3.1) can be simplified to

PERL ≈ 1−
L̂∏
l=1

⎡
⎣1−∑

t∈T′l

P(et,l)

⎤
⎦

L/L̂

, (3.7)
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where L̂ is the period of the puncturer and the interleaver in terms of the number

of information bits. It is given by

L̂ = lcm(LOFDM, Lpunc.)
M

Lpunc.

, (3.8)

where lcm(·) calculates the least common multiple, LOFDM is the number of bits

in an OFDM symbol, Lpunc. is the total number of puncturer output bits of a

puncture period, and M is the number of puncture states equal to the total

number of information bits of a puncture period. In the following, we will present

the calculation of the PEP in (3.3) using the HLELRs with the consideration of

their correlation.

The correlation of bits’ HLELRs can be separated into three categories ac-

cording to the locations of the bits: a) the bits come from different subcarriers

(correlation across subcarriers), b) the bits come from the same subcarrier but

from different spatial streams (correlation across spatial streams), and c) the bits

come from the same subcarrier and the same spatial stream (correlation within a

subcarrier).

3.3.1 Correlation across Subcarriers

To demonstrate the impact of correlation across subcarriers, we consider a BPSK

rate-1/2 system with one spatial stream operating in TGn channel model B (τrms =

15ns). Table 3.3 shows the permutation of the interleaver. The bits are filled

in along the rows and taken out along the columns. The order of the interleaver

output determines the subcarrier where a bit goes. For example, the first bit goes

to the first subcarrier, the fourteenth bit goes to the second subcarrier, and the

second bit goes to the fifth subcarrier. In this table, the highlighted locations are

the bits associated with a specific error event. It is clear that nine out of ten bits

associated with this error event are mapped to subcarriers close to each other.

These subcarriers may have similar channel gains because of the coherence band-
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Table 3.3: The interleaving of a BPSK system with one spatial stream. The

highlighted locations are the bits associated with a specific error event.

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 59 50 51 52
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Figure 3.3: The frequency response of a frequency selective channel with τrms =

15ns.

width. Fig. 3.3 illustrates the frequency response of a specific channel realization

with τrms = 15ns. We observe that the error event whose bits are highlighted in

Table 3.3 is more likely to happen than most of the other error events having the

same Hamming weight. The reason is that most of the bits associated with this

error event are experiencing the fade of the channel and hence have low PPSNRs.

To model this effect, we need to treat the PPSNRs Γi in (3.4) and (3.5) as deter-

ministic numbers instead of random variables. Furthermore, since the significance

of a bit is fixed even in a high order QAM system, the parameter pair (Di, Φi)

is either (DI,1, ΦI,1), (DI,2, ΦI,2), or (DI,3, ΦI,3), depending on the bit’s significance.

However, (Di, Φi) is still a pair of random variables in general and governed by

the transmitted constellation point. For example, according to Table 3.1, if a bit

is the least significant bit (LSB) of a 16-QAM symbol, its parameter pair (Di, Φi)
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is either (1, 1) or (1,−3) with equal probability. Thus, similar to (3.5), the condi-

tional distribution of Y ��
i given only the parameter pair (Di, Φi) follows a normal

distribution

Y ��
i |(Di = di, Φi = φi) ∼ N

(
−
[
di + dadj

(
diΓi

−g
,
Γi

g
,
φiΓi

g

)]
Γi

g
,
Γi

g

)
(3.9)

because Γi is deterministic.

Since the HLELR Y �
i is approximated by Y ��

i , the PEP in (3.3) is approximated

as

P(et,l) ≈ P

(
wt,l∑
j=1

Y ��
i(t,l,j) > 0

)
. (3.10)

Using the Gaussian Q-function approximation[CDS03], we approximate the PEP

as

P(et,l) ≈
4∑

r=1

αr E

[
exp

(
wt,l∑
j=1

−βrΓ
′
j

{
D′

j +
(
D′

j − 1
)
E [D′]

})]
, (3.11)

where the parameters αr and βr are listed in Table 3.2, and the outer expectation

is taken over all D′
j.

To show the importance of the consideration of correlation across subcarriers,

we simulate the above BPSK rate-1/2 system with one spatial stream in several

frequency selective channels generated from TGn channel model B (τrms = 15ns).

We then compare the PER predictions from (3.11), which takes into account the

correlation across subcarriers, with the PER predictions from (3.6), which assumes

a uniform random interleaver while the simulated system uses a repeated-pattern

interleaver. The metric we use to compare the prediction methods is the mean

square error (MSE) defined as

MSE =
1

N

N∑
n=1

|ln (PERpred.,n)− ln (PERsim.,n)|2, (3.12)

where N is the total number of simulation points, and PERpred.,n and PERsim.,n

are the predicted and simulated PER values, respectively, for the nth channel

realization.
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Figure 3.4: Accuracy of PER prediction for BPSK rate-1/2 scheme with packet

length = 1024 bytes in 1x1 frequency selective channels generated according to

TGn channel model B (τrms = 15ns). A vertical set of scattered points corresponds

to one channel realization. The mean square error is calculated by (3.12).

In Fig. 3.4, the method that assumes a uniform random interleaver tends

to over-estimate the PER in some of the channel realizations and has an MSE of

0.7079. To the contrary, the method that takes into account the correlation across

subcarriers has very high accuracy and its MSE is only 0.0091. Therefore, it is

important to consider the correlation across subcarriers while predicting the PER.

Since the simulated system is a BPSK system with one spatial stream, there is no

correlation across spatial streams or correlation within a subcarrier discussed in

the following subsections.

3.3.2 Correlation across Spatial Streams

The correlation across spatial streams comes from two or more bits mapped to

the same subcarrier but different spatial streams. Consider a 2x2 system with

two spatial streams and a ZF MIMO decoder at the receiver. Let the noise of a

subcarrier at the two antennas be N1 and N2. Also, let ui,j be the coefficient of the

58



ZF MIMO decoder for the ith spatial stream and the jth antenna. The effective

noise of the two spatial streams after the MIMO decoder is given by⎡
⎣N̂1

N̂2

⎤
⎦ =

⎡
⎣u1,1 u1,2

u2,1 u2,2

⎤
⎦
⎡
⎣N1

N2

⎤
⎦ .

Although N1 and N2 are independent zero-mean circularly-symmetric complex

normal random variables, N̂1 and N̂2 are correlated in general. Assume an HLELR

is a linear operation of the corresponding received modulation symbol. Two

HLELRs will be correlated because their noise components are correlated.

Since the variance of N1 and N2 on each dimension is N0/2, the variance of

N̂1 and N̂2 on each dimension is
(|u1,1|2 + |u1,2|2

)
N0/2 and

(|u2,1|2 + |u2,2|2
)
N0/2,

respectively. If two of the bits associated with an error event come from the two

modulation symbols affected by N̂1 and N̂2 respectively, then the sum of their

effective noise, which occurs in the sum of their HLELRs, has variance of

(|C1u1,1 + C2u2,1|2 + |C1u1,2 + C2u2,2|2
)
N0/2 . (3.13)

For i ∈ {1, 2}, the random variable Ci ∈ {1,−1} if the bit from the ith spatial

stream belongs to the in-phase component, and Ci ∈
{√−1,−√−1

}
otherwise.

The sign of Ci, determining if the noise is combined constructively or destruc-

tively, is governed by the transmitted bit being 0 or 1, so the two possibilities are

equally probable. If the HLELRs are treated as independent random variables,

the variance of the sum of the effective noise is

(|u1,1|2 + |u2,1|2 + |u1,2|2 + |u2,2|2
)
N0/2 . (3.14)

Compared to (3.13), this value is under-estimated by

[�(C1u1,1C
∗
2u
∗
2,1

)
+ �(C1u1,2C

∗
2u
∗
2,2

)]
N0, (3.15)

where �(·) returns the real part of the complex number and the superscript “∗”

is the complex conjugate operator.
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To characterize the effect of the correlation across spatial streams, we should

modify the PEP in (3.11) by including a correction term of the variance. Pre-

viously, we approximated the conditional distribution of the sum of HLELRs

given the transmitted sequence as a normal distribution. Now its mean is still∑wt,l

j=1 D
′
jΓ

′
j but its variance becomes

∑wt,l

j=1 Γ
′
j +

∑F
f=1 Wf , where F is the total

number of subcarriers and Wf is the additional variance, such as (3.15), caused

by the correlation across spatial streams in the f th subcarrier and associated with

the pairwise error event et,l. Let wt,l,f be the number of bits that are associated

with the pairwise error event et,l and belong to the f th subcarrier. If only one or

no bits in the f th subcarrier are associated with this error event, i.e., wt,l,f < 2,

then Wf = 0. When wt,l,f ≥ 2, Wf is given by

Wf =

NR∑
j=1

⎛
⎝
∣∣∣∣∣
wt,l,f∑
i=1

C ′iu
′
i,j

∣∣∣∣∣
2

−
wt,l,f∑
i=1

∣∣u′i,j∣∣2
⎞
⎠N0

2
, (3.16)

where NR is the number of receive antennas. The random variables C ′i is similar to

Ci defined above but the subscript represents the index of the bit in this subcarrier

instead of the index of the spatial stream. Similarly, the coefficient u′i,j is the

coefficient of the ZF MIMO decoder for the ith bit in this subcarrier and the jth

receive antenna.

With the knowledge of the mean and variance, we can calculate the PEP as

P(et,l) ≈ E

⎡
⎣Q

⎛
⎝
√√√√wt,l∑

j=1

Γ ′j
{
D′

j +
(
D′

j − 1
)
E[D′]

}−
F∑

f=1

Wf E[D′]

⎞
⎠
⎤
⎦ , (3.17)

where the outer expectation is taken over all
(
D′

j,Wf

)
. Note that D′

j and Wf

are both governed by the transmitted bit sequence. Applying the Gaussian Q-

function approximation to (3.17) yields the PEP. The PER is then calculated by

(3.7).

To illustrate the importance of the consideration of correlation across spatial

streams, we simulate a BPSK rate-5/6 system with three spatial streams in several
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Table 3.4: The interleaving of a BPSK system with one spatial stream. The

highlighted locations are the bits associated with a specific error event.

1 4 7 10 13 16 19 22 25 28 31 34 37

1st 40 43 46 49 52 55 58 61 64 67 70 73 76

Str. 79 82 85 88 91 94 97 100 103 106 109 112 115

118 121 124 127 130 133 136 139 142 145 148 151 154

95 98 101 104 107 110 113 116 80 83 86 89 92

2nd 134 137 140 143 146 149 152 155 119 122 125 128 131

Str. 20 23 26 29 32 35 38 2 5 8 11 14 17

59 62 65 68 71 74 77 41 44 47 50 53 56

126 129 132 135 138 141 144 147 150 153 156 120 123

3rd 12 15 18 21 24 27 30 33 36 39 3 6 9

Str. 51 54 57 60 63 66 69 72 75 78 42 45 48

90 93 96 99 102 105 108 111 114 117 81 84 87

flat fading channels generated from TGn channel model A (τrms = 0ns). We then

compare the PER prediction that considers the correlation across subcarriers and

spatial streams through (3.17) with the PER prediction that only considers the

correlation across subcarriers through (3.11) but assumes independent HLELRs.

The permutation of the interleaver is shown in Table 3.4, where the highlighted

locations are the bits associated with a specific error event. For this error event,

the total four associated bits belong to only two subcarriers from two spatial

streams. Hence, the correlation across spatial streams could possibly cause a

huge impact on the PEP of this error event. If the channel realization happens

to make Wf a big number, we shall expect to see a big prediction error for the

method that assumes independent HLELRs.

In Fig. 3.5, the method that assumes independent HLELRs has predicted

PERs far below the simulated PERs in some of the channel realizations and its
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Figure 3.5: Accuracy of PER prediction for BPSK rate-5/6 scheme with packet

length = 1024 bytes in 3x3 flat fading channels generated according to TGn chan-

nel model A (τrms = 0ns). A vertical set of scattered points corresponds to one

channel realization. The mean square error is calculated by (3.12).

MSE is 1.0978. Note that, this method does consider the correlation across sub-

carriers, which accounts for PPSNR differences among spatial streams. The MSE

of the method that takes into account the correlation across spatial streams is

0.1061. Thus, considering the correlation across spatial streams is crucial in the

PER prediction. Although the proposed method performs a lot better than the

method that assumes independent HLELRs, there is still room for improvement

in certain channels. Since the simulated system uses BPSK modulation, there is

no correlation within a subcarrier discussed in the next subsection.

3.3.3 Correlation within a Subcarrier

The correlation within a subcarrier comes from two or more bits mapped to the

same subcarrier and the same spatial stream. These bits will experience the same

channel gain. Moreover, if two bits belong to the same in-phase component or

quadrature component, they will observe exactly the same noise. Therefore, when

we calculate the sum of their HLELRs, the sum of their noise could be doubled
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or totally canceled.

For example, consider the two bits, XI,1 and XI,2, of the in-phase component

of a 16-QAM symbol. Let ZI be the scaled in-phase component of the received

symbol and it is given by

ZI = sgn(XI,1) [2− sgn(XI,2)] +NI

√
2g/Es ,

where NI is the in-phase component of the noise, g is a modulation dependent

scaling factor given in Table 3.1, and Es is the received symbol energy. According

to the simplified demapper[TB02], the LLRs of the MSB and the LSB are⎧⎪⎨
⎪⎩
YI,1 = −2ZIΓ/g

YI,2 = −2 (− |ZI|+ 2)Γ/g

,

where Γ is the PPSNR or this symbol. Assume that (XI,1, XI,2) = (0, 0) is trans-

mitted. Based on (3.2), the corresponding HLELRs are⎧⎪⎨
⎪⎩
Y �
I,1 =

(
−3 +NI

√
2g/Es

)
Γ
/
g

Y �
I,2 =

(
−
∣∣∣−3 +NI

√
2g/Es

∣∣∣+ 2
)
Γ
/
g

.

Depending on the realization of the noise, the sum of their HLELRs is

Y �
I,1 + Y �

I,2 =

⎧⎪⎨
⎪⎩
(
−4 + 2NI

√
2g/Es

)
Γ
/
g if− 3 +NI

√
2g/Es ≤ 0

2Γ/g otherwise

.

The noise is doubled in the first case, and it is totally canceled in the second

case when the realization of the noise is a relatively big positive number, which

is not likely to happen in a high SNR region. The distribution of their sum is a

normal distribution with one tail replaced with a point mass of probability. We

can also treat this distribution as a piecewise normal distribution while one of the

segment has zero variance. The same result can be obtained if (XI,1, XI,2) = (1, 1).

Under the same setting, assume that (XI,1, XI,2) = (0, 1) is sent. The sum of their
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HLELRs is

Y �
I,1 + Y �

I,2 =

⎧⎪⎨
⎪⎩
−2Γ/g if− 1 +NI

√
2g/Es ≤ 0(

−4 + 2NI

√
2g/Es

)
Γ
/
g otherwise

.

Similarly, the noise is doubled in one case and totally canceled in the other case.

However, the case where the noise is totally canceled is more likely to happen

now. The distribution of their sum is a point mass of probability with one tail of

a normal distribution. The same result can be obtained if (XI,1, XI,2) = (1, 0).

The above is an example of a 16-QAM symbol. Similar results can be obtained

in a 64-QAM symbol. Hence, the conditional distribution of the sum of their

HLELRs, given the transmitted constellation, follows piecewise normal distribu-

tion in general. This distribution can be approximated as a normal distribution

using the method described in Section 2.B.

To characterize the effect of the correlation within a subcarrier, we shall group

the HLELRs which belong to the same in-phase or quadrature component of a

subcarrier and a spatial stream, and compute the distribution of their sum. Let

νt,l be the total number of such groups in the bits associated with the pairwise

error event et,l. Note that νt,l depends on not only the error event but also the

interleaver. For the kth group of the pairwise error event et,l, we approximate the

conditional distribution of the sum of their HLELRs, given the transmitted con-

stellation, using a normal distribution with adjusted mean given in Appendix 2.A.

The variance and mean of this normal distribution are Γ �
k and D�

kΓ
�
k , respectively,

where D�
k and Γ �

k are both random variables governed by the transmitted constel-

lation.

Therefore, with the Gaussian Q-function approximation, the PEP that in-

cludes all three types of correlation is given by

P(et,l) ≈
4∑

r=1

αr E

[
exp

{
− βr

( ∑
j∈wt,l

Γ ′j
{
D′

j +
(
D′

j − 1
)
E[D′]

}−
F∑

f=1

Wf E[D
′]
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Table 3.5: Half of the interleaving of a 16-QAM system with one spatial stream.

The highlighted locations are the bits associated with a specific error event.

I1 1 15 3 17 5 19 7 21 9 23 11 25 13

I2 14 2 16 4 18 6 20 8 22 10 24 12 26

Q1 27 41 29 43 31 45 33 47 35 49 37 51 39

Q2 40 28 42 30 44 32 46 34 48 36 50 38 52

I1 53 67 55 69 57 71 59 73 61 75 63 77 65

I2 66 54 68 56 70 58 72 60 74 62 76 64 78

Q1 79 93 81 95 83 97 85 99 87 101 89 103 91

Q2 92 80 94 82 96 84 98 86 100 88 102 90 104

+

νt,l∑
k=1

Γ �
k {D�

k + (D�
k − 1) E[D′]}

)}]
, (3.18)

where wt,l is the set containing the indices of the bits that are associated with the

pairwise error event et,l but do not belong to any of the νt,l groups. Note that,

the outer expectation is taken over all the random variables (D′
j,Wf , Γ

�
k , and D�

k),

which are all governed by the transmitted bit sequence. Finally, the PER can be

calculated using (3.7) and (3.18).

To show the importance of the consideration of correlation within a subcar-

rier, we simulate a 16-QAM rate-1/2 system with one spatial stream in several

flat fading channels generated from TGn channel model A (τrms = 0ns). We then

compare the PER prediction that considers all three types of correlation through

(3.18) with the PER prediction that only considers the correlation across subcar-

riers through (3.11) but assumes the HLELRs are independent. Note that, since

the simulated system has only one spatial stream, the correlation across spatial

streams does not exist. The permutation of the interleaver is shown in Table 3.5,

where the highlighted locations are the bits associated with a specific error event.

In this error event, there are three associated bit pairs satisfying that each of them
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Figure 3.6: Accuracy of PER prediction for 16-QAM rate-1/2 scheme with packet

length = 1024 bytes in 1x1 flat fading channels generated according to TGn chan-

nel model A (τrms = 0ns). A vertical set of scattered points corresponds to one

channel realization. The mean square error is calculated by (3.12).

belongs to the in-phase component of a subcarrier. Hence, the PEP of this error

event is greatly impacted by the correlation within a subcarrier.

In Fig. 3.6, the method that assumes independent HLELRs has an MSE of

0.4343. Although this method does consider the correlation across subcarriers,

which includes the significance of each bit in a 16-QAM symbol, the lack of mod-

eling the correlation within a subcarrier makes it over-estimate the PERs in all

of the channel realizations. The prediction results of the method that considers

all three types of correlation are scattered around the ideal line and its MSE is

0.0148. This huge improvement is achieved by solely considering the correlation

within a subcarrier.
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3.4 Numerical Result

In this section, we compare the proposed PER prediction method with the exist-

ing methods by looking at their accuracy in various transmission schemes. The

MSE between the predicted PERs and the simulated PERs is the performance

metric and calculated using (3.12). The averaged MSE is the linear average of

the MSEs of all transmission schemes and can be seen as an overall metric. The

simulated MIMO OFDM system follows the IEEE 802.11n standard[Sta09] with

packet length set to 1024 bytes. The simulated frequency selective channels are

generated based on the TGn channel model A through F[Erc04], which has an

rms-delay spread τrms up to 150ns.

In addition to the proposed analytical method referred to as the Q-function

approximation method, there are five other PER prediction methods mentioned

in this section. The saddlepoint approximation method is an analytical approach

discussed in Section 2.3.2. This method relies on the saddlepoint approximation

[MFC06] to calculate the tail probability of the sum of i.i.d. random variables.

Thus, this method works well for systems with a uniform random interleaver,

where the HLELRs are i.i.d. random variables, but not a repeated-pattern inter-

leaver.

The reset of the methods are all heuristic approaches. They are cumulant gen-

erating function based effective SNR mapping (κESM)[SGL09], exponential ef-

fective SNR mapping (EESM)[Eri03], mutual information effective SNR mapping

(MIESM)[TS03], and mean mutual information per coded bit mapping (MMIBM)

[JKW10]. They average the PPSNRs through certain functions with calibrated

parameters to get a single metric that is capable of representing the quality of the

link. Then, a look-up table generated by simulations in additive white-Gaussian

noise (AWGN) channels is used to map from the single metric to the PER. Note

that the calibrated parameter and look-up table should be prepared for each trans-
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Saddlepoint
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Figure 3.7: Mean square error of PER prediction for various transmission schemes

with one spatial stream and packet length = 1024 bytes in 1x1 frequency selective

channels having an rms-delay spread τrms up to 150ns. The averaged MSE is the

linear average of the MSEs of all transmission schemes.

mission scheme, which is the combination of modulation scheme, code rate, and

number of spatial streams.

Fig. 3.7 shows the accuracy of the PER prediction methods for systems with

one spatial stream. In this case, the correlation across spatial streams does not

exist but the other two types of correlation may exist. The saddlepoint approx-

imation method assumes a uniform random interleaver and has a relatively high

averaged MSE of 2.5693. The heuristic methods have moderate averaged MSEs

ranging from 0.5426 to 1.2711. The averaged MSE of the Q-function approxima-

tion method is 0.0644, which is much more accurate than all the other methods.

Note that none of the transmission schemes predicted by the Q-function approx-

imation method has an MSE higher than 0.2.
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Figure 3.8: Mean square error of PER prediction for various transmission schemes

with two spatial streams, packet length = 1024 bytes, and ZF in 2x2 frequency

selective channels having an rms-delay spread τrms up to 150ns. The averaged

MSE is the linear average of the MSEs of all transmission schemes.

Fig. 3.8 illustrates the accuracy of the PER prediction methods for systems

with two spatial streams. Under this setting, all three types of correlation may

exist. The Q-function approximation method has an averaged MSE of 0.0451 and

outperforms all the other methods. Similar trends can be seen in Fig. 3.9 and

Fig. 3.10, which show the accuracy of the PER prediction methods for systems

with three spatial streams and four spatial streams, respectively. In general, the

Q-function approximation method has about 10% of the averaged MSE of the

best existing method.

In Fig. 3.10, we observe that the Q-function approximation method has rela-

tively high MSEs for two transmission schemes, compared to the other schemes.

This could origin from the fact that the interleavers of these two schemes create
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Figure 3.9: Mean square error of PER prediction for various transmission schemes

with three spatial streams, packet length = 1024 bytes, and ZF in 3x3 frequency

selective channels having an rms-delay spread τrms up to 150ns. The averaged

MSE is the linear average of the MSEs of all transmission schemes.

certain HLELR correlation that has not been properly characterized yet. Never-

theless, these MSEs are still much smaller than the MSEs of these two schemes

predicted by the other existing methods.

In the heuristic methods, κESM has no calibrated parameters, EESM and

MIESM use one calibrated parameter each, and MMIBM requires two calibrated

parameters. This explains why κESM performs worst and MMIBM is the best

among the heuristic methods.

In the previous chapter, we have seen that the heuristic methods have com-

parable accuracy with the Q-function approximation method for the systems em-

ploying a uniform random interleaver. However, the Q-function approximation

method is far more accurate than the heuristic methods for the systems using
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Figure 3.10: Mean square error of PER prediction for various transmission schemes

with four spatial streams, packet length = 1024 bytes, and ZF in 4x4 frequency

selective channels having an rms-delay spread τrms up to 150ns. The averaged

MSE is the linear average of the MSEs of all transmission schemes.

a repeated-pattern interleaver. One of the reasons is that the heuristic methods

only use the distribution of the PPSNRs but not the order (locations) of them in a

frequency selective channel. Another reason is that the heuristic methods rely on

the simulated PERs in the AWGN channel to map from the single metric to the

PER. However, in the AWGN channel, the correlation across subcarriers cannot

be seen because when all subcarriers have the same channel gain, their order does

not matter.

3.5 Conclusion

In this chapter, we describe an accurate analytical PER prediction method for

punctured convolutionally coded MIMO OFDM systems with a repeated-pattern
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interleaver. We begin with the Q-function approximation method for systems

with a uniform random interleaver, and generalize it to be capable of predicting

the PERs of systems with a repeated-pattern interleaver. The HLELRs of such

systems are not i.i.d. random variables but have correlation brought about by

the interleaver. This correlation can be divided into three categories: a) cor-

relation across subcarriers, b) correlation across subcarriers, and c) correlation

within a subcarrier. With the consideration of the three types of correlation, the

Q-function approximation method delivers high prediction accuracy for all combi-

nations of modulation scheme, code rate, and number of spatial streams in a wide

range of MIMO frequency selective channels. Furthermore, the proposed method

outperforms all the other existing PER prediction methods and its averaged MSE

is about 10% of the averaged MSE of the best existing method.
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CHAPTER 4

Convolutional-Code Specific CRC Code Design

to Minimize the Probability of Undetected Error

Cyclic redundancy check (CRC) codes check if a codeword is correctly received.

This chapter presents an algorithm to design CRC codes that are optimized for

the code-specific error behavior of a specified feedforward convolutional code. The

algorithm utilizes two distinct approaches to computing undetected error proba-

bility of a CRC code used with a specific convolutional code. The first approach

enumerates the error patterns of the convolutional code and tests if each of them

is detectable. The second approach reduces complexity significantly by exploiting

the equivalence of the undetected error probability to the frame error rate of an

equivalent catastrophic convolutional code. The error events of the equivalent

convolutional code are exactly the undetectable errors for the original concatena-

tion of CRC and convolutional codes. This simplifies the computation because

error patterns do not need to be individually checked for detectability. As an ex-

ample, we optimize CRC codes for a commonly used 64-state convolutional code

for information length k=1024 demonstrating significant reduction in undetected

error probability compared to the existing CRC codes with the same degrees. For

a fixed target undetected error probability, the optimized CRC codes typically

require two fewer bits.

This chapter is organized as follows: Section 4.1 provides the system model.

Section 4.2 presents the exclusion and construction methods for computing the

undetected error probability of a CRC code concatenated with an inner convolu-
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Figure 4.1: Block diagram of a system employing CRC and convolutional codes.

tional code. Section 4.3 describes how these two methods can be used to design

a CRC code to minimize the undetected error probability for a specific feedfor-

ward convolutional code and information length. Section 4.4 applies this design

approach to the most common 64-state convolutional code for information length

k = 1024. Section 4.5 concludes this chapter.

4.1 System Model

Fig. 4.1 shows the block diagram of our system model employing a CRC code con-

catenated with a convolutional code in an additive white Gaussian noise (AWGN)

channel. The k-bit information sequence is expressed as a binary polynomial f(x)

of degree smaller than or equal to k− 1, and determined by the information bits:

the first bit determines the coefficient of xk−1, the second bit determines the co-

efficient of xk−2, and so on. At the CRC encoder output, m parity bits, which

are determined by the remainder r(x) of xmf(x) divided by the degree-m CRC

generator polynomial p(x), are appended to the information sequence. Thus the

n = k+m-bit sequence described by xmf(x)+ r(x) is divisible by p(x) producing

the k-bit quotient q(x) and a remainder of zero. The CRC-encoded sequence can

also be expressed as q(x)p(x). Thus q(x) has a one-to-one relationship with f(x).

Note that q(x)p(x) is the result of processing the sequence xmq(x) (q(x) and m

trailing zeros) by the CRC encoder circuit described by p(x).

The transmitter uses a feedforward, terminated, rate- 1
N

convolutional code
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having ν memories with generator polynomial c(x) = [c1(x), c2(x), · · · , cN(x)].
The output q(x)p(x)c(x) of the convolutional encoder is sent to the AWGN chan-

nel using quadrature phase-shift keying (QPSK) modulation.

Because the CRC bits are added at the end of the sequence, the highest degree

term of f(x) is the bit that is first in time and first to enter the convolutional en-

coder. Consistent with this convention and in contrast to common representations,

the highest degree terms of c(x) represent the most recent encoder input bits.

Thus a convolution encoder with the generator G(D) = [1+D3+D4, 1+D+D2]

will have c(x) = [x4 + x+ 1, x4 + x3 + x2].

The demodulated symbols are fed into a soft Viterbi decoder. The CRC de-

coder checks the n-bit sequence resulting from Viterbi decoding. An undetected

error occurs when the receiver declares error-free decoding when the Viterbi de-

coder identified an incorrect codeword.

For a system employing a tail-biting convolutional code, it is discussed at the

end of Section 4.2.1.3.

4.2 Undetected Error Probability Analysis

Let e(x) be the polynomial of error bits in the Viterbi-decoded message so that

the decoded n-bit sequence followed by ν zeros (for termination) is expressed as

q(x)p(x)xν + e(x). If e(x) �= 0 is divisible by p(x), then this error is undetectable

by the CRC decoder. This section presents two methods, the exclusion method

and the construction method, to calculate the probability that a non-zero error

e(x) occurs that is undetectable.

This work focuses on the dominant error events of the convolutional code so

that the analysis and the designed CRC codes are both most effective at high

SNRs where overall behavior is well-characterized by these dominant events.
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4.2.1 Exclusion Method

The exclusion method enumerates the possible error patterns of the convolutional

code and excludes the patterns detectable by the CRC code. The probability of

the unexcluded error patterns is the undetected error probability. The exclusion

method filters out part of the distance spectrum of the convolutional code through

a divisibility test to create the distance spectrum of the undetectable errors of the

concatenated code.

4.2.1.1 Undetectable Single Error

An error event occurs when the decoded trellis path leaves the encoded trellis

path once and rejoins it once. Let ed,i(x) be the ith polynomial of message error

bits that leads to a codeword distance d from the transmitted codeword. This

error event has length ld,i. Note that in this chapter, the term “distance” always

refers to the convolutional code output Hamming distance.

If the received data frame contains only one error event, then the polynomial of

message error bits can be expressed as e(x) = xged,i(x), where g ∈ [0, n+ ν − ld,i].

Note that the first (highest power) term of ed,i(x) is xld,i−1 and the last (lowest

power) term is xν because every error event starts with a one and ends with a

one followed by ν consecutive zeros. If ed,i(x) is divisible by p(x), this error event,

including all of its offsets g, will be undetectable.

The probability of having such an error is bounded by

PUD,1 ≤
∞∑

d=dfree

ad∑
i=1

I(p(x) |ed,i(x))max {0, n+ ν − ld,i + 1}P(d) , (4.1)

where dfree is the free distance of the convolutional code, ad is the number of error

events with output distance d, the indicator function I(·) returns one when ed,i(x)

is divisible by p(x) and zero otherwise, and P(d) is the pairwise error probability

of an error event with distance d. The subscript “1” in PUD,1 means that this
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probability only includes undetectable errors that are single error events. We call

this type of error an undetectable single error.

For a QPSK system operated in an AWGN channel, P(d) can be computed

using the tail probability function of standard normal distribution, i.e. Gaussian

Q-function, as [VO09]

P(d) = Q
(√

2dγ
)
≤ Q

(√
2dfreeγ

)
e−(d−dfree)γ, (4.2)

where γ = Es/N0 is the signal-to-noise ratio (SNR) of a QPSK symbol, and Es

and N0/2 denote the received symbol energy and one-dimensional noise variance,

respectively. Note that the accuracy of (4.2) comes in part from a knowledge of

dfree. A useful Q-function approximation when knowledge of dfree is not available

is presented in [LD12].

To compute PUD,1 each error event ed,i must first identified as either divisible

by p(x) or not. One approach is to truncate (4.1) at d̃ to get an approximation, in

which case all error events with distance d ≤ d̃ can be stored and this set of error

events can be tested for divisibility by the CRC polynomial p(x). The choice of

d̃ is based on the computational and storage capacity available to implement an

efficient search such as [CJ89]. The required memory size to store the error events

is proportional to
∑d̃

d=dfree

∑ad
i=1 ld,i.

The approximation of (4.1) can be quite tight if the probability of the terms

with d > d̃ is negligible. However, assuming that all error events with d > d̃ are

undetectable provides

PUD,1 ≤
∞∑

d=d̃+1

n ad P(d)

+
d̃∑

d=dfree

ad∑
i=1

{P(d) I(p(x) | ed,i(x))max {0, n+ ν − ld,i + 1}}, (4.3)

where ld,i for d > d̃ is replaced with ν + 1 because the shortest error event has

length ν + 1. Note that (4.3) can be computed because the error pattern ed,i is
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only required for d ≤ d̃, and the distance spectrum ad for d > d̃ provided by the

transfer function [Vit71] can be used for the first term of (4.3) as in the frame

error rate (FER) bounds of [ML99].

In addition to the undetectable single error events discussed above, an un-

detectable error could consist of two or more error events, even though each of

the error events itself is detectable. We will first discuss the case with two error

events, and then generalize it to multiple error events.

4.2.1.2 Undetectable Double Error

A double error involves two error events ed1,i1(x) and ed2,i2(x) with respective

lengths ld1,i1 and ld2,i2 . To simplify notation, for u ∈ {1, 2} let eu(x) and lu refer

to edu,iu(x) and ldu,iu , respectively. In a data frame with two error events, the

polynomial of error bits in the message can be expressed as e(x) = xg1+g2+l2e1(x)+

xg2e2(x), where the exponents of two x’s tell the locations of the two error events.

Furthermore, g1 ≥ 0 represents the interval of symbols (gap) between two error

events and satisfies g1 + g2 + l1 + l2 ≤ n+ ν. If xg1+l2e1(x) + e2(x) is divisible by

p(x), the error is an undetectable double error. Its length is l1 + l2 + g1 and its

offset is g2.

An upper bound of the probability of an undetectable double error occurring

in the codeword is given by

PUD,2 ≤
∞∑

d1=dfree

∞∑
d2=dfree

ad1∑
i1=1

ad2∑
i2=1

n+ν−l1−l2∑
g1=0

P(d1 + d2)

· I(p(x) | xg1+l2e1(x) + e2(x)
)
(n+ ν − l1 − l2 − g1 + 1) . (4.4)

The distance of the double error event is simply the sum of the individual distances

because the error events are completely separated as shown in Fig. 4.2. Two error

events that overlap are simply a longer single error event, which was treated in

Section 4.2.1.1.
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Figure 4.2: An illustration of two error events.

Computation of (4.4) exactly is problematic because it requires infinite search

depth. Replacing the l1 and l2 of large-distance terms in (4.4) with ν + 1 yields a

more computation-friendly upper bound similar to (4.3) as follows:

PUD,2 ≤
∑

(d1,d2)∈Dd̃,2

ad1∑
i1=1

ad2∑
i2=1

n+ν−l1−l2∑
g1=0

P(d1 + d2) I
(
p(x) | xg1+l2e1(x) + e2(x)

)
· (n+ ν − l1 − l2 − g1 + 1)

+
∑

(d1,d2)/∈Dd̃,2

1

2
(n− ν) (n− ν − 1)ad1ad2 P(d1 + d2) , (4.5)

where Dd̃,2 =
{
(d1, d2)

∣∣∣d1, d2 ≥ dfree, d1 + d2 ≤ d̃
}
.

Because computational complexity limits the single error event distance we

can search, it is feasible to replace d̃ in Dd̃,2 with d̃+dfree. This is not particularly

helpful because we have already assumed errors with distance d > d̃ are negligible

or undetectable during the calculation of undetectable single errors. We can also

replace all l1 and l2 in (4.5) with ν + 1 and provide another upper bound which

does not require any length information.

As described in Appendix 4.A, the number of g1 values at which to check

the divisibility of xg1+l2e1(x) + e2(x) by p(x) can be significantly reduced from

n+ ν − l1 − l2 + 1.

4.2.1.3 Total Undetected Error Probability

In general, s error events could possibly form an undetectable s-tuple error,

whether each of them is detectable or not. The error bits in the message can
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be expressed as

e(x) =
s∑

u=1

(
s∏

v=u+1

xgv+lv

)
xgueu(x). (4.6)

This combined error will be undetectable if e(x) is divisible by p(x). Therefore, the

probability of undetectable s-tuple errors PUD,s can be approximated or bounded

in the same way as (4.5). For simpler notation, define sets

Dd̃,s =

{
(d1, · · · , ds)

∣∣∣∣∣du ≥ dfree ∀u,
s∑

u=1

du ≤ d̃

}

Is = {(i1, · · · , is) |iu ∈ [1, adu ] ∀u ∈ [1, s]}

Gs =

{
(g1, · · · , gs)

∣∣∣∣∣gu ≥ 0 ∀u,
s∑

u=1

gu ≤ n+ ν −
s+1∑
u=1

lu

}
.

Note that Gs is determined by all du and iu, and Is is determined by all du.

Since an undetectable error may consist of any number of error events, the

probability of having an undetectable error in the codeword PUD is upper bounded

by
∑∞

s=1 PUD,s. Using the computation-friendly bound of each term such as (4.3)

and (4.5), we obtain

PUD ≤
∞∑
s=1

P>d̃,s +
∑

d1∈Dd̃,1

{
P(d1)

∑
i1∈I1

I(p(x) | e1(x))max {0, n+ ν − l1 + 1}
}

+
∞∑
s=2

⎧⎨
⎩

∑
(d1,··· ,ds)∈Dd̃,s

∑
(i1,··· ,is)∈Is

∑
(g1,··· ,gs−1)∈Gs−1

I(p(x) | e(x))

·
(
n+ ν −

s∑
u=1

lu −
s−1∑
u=1

gu + 1

)
P

(
s∑

u=1

du

)}
, (4.7)

where the composition of e(x) depends on the number of error events s as in (4.6)

and P>d̃,s is the sum of probability of all s-tuple errors whose distances are greater

than d̃.

The probability sum of all large-distance s-tuple errors is

P>d̃,s =
∑

(d1,··· ,ds)/∈Dd̃,s

(
n+ ν − sν

s

)( s∏
u=1

adu

)
P

(
s∑

u=1

du

)
, (4.8)
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where the combinatorial number represents the number of ways to have s length-

(ν + 1) error events in a length-(n+ ν) sequence. Using (4.2) P>d̃,1 can be upper

bounded by

P>d̃,1 ≤ Q
(√

2dfreeγ
)
edfreeγ

⎧⎨
⎩P̄−

∑
d1∈Dd̃,1

n ad1e
−d1γ

⎫⎬
⎭ , (4.9)

where P̄ is defined as P̄ � nT(D,L)|D=e−γ,L=1 using the transfer function [Vit71]

T(D,L) =
∞∑

d=dfree

ad∑
i=1

DdLld,i , (4.10)

where the exponents of D and L indicate the output Hamming distances and

lengths of the error events, respectively. Therefore, the sum of P>d̃,s terms can be

upper bounded by

∞∑
s=1

P>d̃,s ≤
∞∑
s=1

∑
(d1,··· ,ds)/∈Dd̃,s

ns

s!

(
s∏

u=1

adu

)
P

(
s∑

u=1

du

)

≤ Q
(√

2dfreeγ
)
edfreeγ

∞∑
s=1

⎧⎨
⎩ns

s!

∑
(d1,··· ,ds)/∈Dd̃,s

(
s∏

u=1

adue
−duγ

)⎫⎬
⎭ (4.10a)

= Q
(√

2dfreeγ
)
edfreeγ

∞∑
s=1

⎧⎨
⎩ 1

s!
P̄
s − ns

s!

∑
(d1,··· ,ds)∈Dd̃,s

(
s∏

u=1

adue
−duγ

)⎫⎬
⎭ (4.10b)

= Q
(√

2dfreeγ
)
edfreeγ

⎧⎨
⎩eP̄ − 1−

∞∑
s=1

ns

s!

∑
(d1,··· ,ds)∈Dd̃,s

(
s∏

u=1

adue
−duγ

)⎫⎬
⎭ . (4.10c)

The bound of Gaussian Q-function (4.2) is used in (4.10a), and the transfer func-

tion is used to evaluate the sum of all s-tuple errors in (4.10b). Using (4.7) and

(4.10c), a bound of PUD can be calculated. In fact, when an undetectable error

occurs in a codeword, the receiver may still detect an error if a detectable error

happens somewhere else in the codeword. Therefore, PUD, which is the proba-

bility of having an undetectable error in the codeword, is an upper bound of the

undetected error probability. When channel error rate is low, having a detected

error occur along with the undetected error is a rare event so that our bound will

be tight.
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If we were to consider a tail-biting convolutional code, only a minor modifica-

tion is required. Although there are no terminating bits, the number of locations

to start an error event is still n. Moreover, the number of available offsets of an

undetectable error is n, which is independent of its length. Therefore, to obtain

a bound for the undetected error probability, we just need to let the lengths of

all undetectable errors be one and ν = 0, and the derivation from (4.7) to (4.10c)

will be valid.

Due to the limitation of searchable depth d̃ of error events, the exclusion

method is only useful when undetectable errors with distances d ≤ d̃ dominate.

However, this requirement could be violated by a powerful CRC code that de-

tects the short-distance errors. The next subsection introduces the construction

method, which allows the search depth to increase to distance d̂ > d̃.

4.2.2 Construction Method

The construction method utilizes the fact that all undetectable errors at the CRC

decoder input are multiples of the CRC generator p(x). This method constructs

an equivalent convolutional encoder ceq(x) = p(x)c(x) to isolate these errors. The

set of non-zero codewords of ceq(x) is exactly the set of erroneous codewords (given

an all-zeros transmission) that lead to undetectable errors for the concatenation

of the CRC generator polynomial and the original convolutional encoder. Thus

the probability of undetectable error is exactly the FER of ceq(x).

Fig. 4.3 shows an example of how ceq(x) is constructed from c(x) and p(x),

where q′(x) with m+ ν trailing zeros is the input that generates the undetectable

erroneous codeword. The input/output behavior of ceq(x) is exactly the same as

the concatenation of p(x) and c(x). For p(x) with m memory elements and c(x)

with ν memory elements, ceq(x) has m+ν memory elements. At a given time, the

state of the original encoder c(x) can be inferred from the state of ceq(x) because
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Figure 4.3: An example of CRC code, original convolutional code, and equivalent

convolutional code.

the state of ceq(x) contains the last m + ν inputs to p(x) which are sufficient to

compute the last ν outputs of p(x), which exactly comprise the state of c(x).

4.2.2.1 States of the Equivalent Encoder

Define the all-zero state SZ to be the state where all memory elements of the

equivalent encoder are zero. When the equivalent encoder is in SZ, then the

original encoder is also in its zero state. Avoiding trivial cases by assuming that

the xm−1 and x0 coefficients of p(x) are 1, there are 2m−1 equivalent encoder states

in addition to SZ that correspond to the all-zero state of the original encoder. To

see this, consider the top diagram in Fig. 4.3 in which the equivalent encoder state

is shown as the state of the CRC encoder extended with ν additional memories.

Note that whatever state the equivalent encoder is in, there is a sequence of ν bits

that will produce ν zeros at the output of the CRC encoder that will drive the

original encoder state to zero. The specific set of ν bits is a function of the m-bits

of state in the CRC encoder. Thus for any m-bits pattern there is a corresponding

(m+ν)-bit state of the equivalent encoder that corresponds to the original encoder

being in the zero state.
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Table 4.1: An example of state types with p(x) = x2 + x+ 1 and ν = 2.

State Equivalent Code Original Code

Time Type State Input State Input

0 SZ 0000 1 00 1

1 SN 0001 1 01 0

2 SN 0011 0 10 0

3 SD 0110 1 00 0

4 SD 1101 0 00 1

5 SN 1010 0 01 1

6 SN 0100 0 11 0

7 SN 1000 0 10 0

8 SZ 0000 00

We call the 2m − 1 non-zero equivalent encoder states for which the original

encoder state is zero detectable-zero states, forming a set SD, because they corre-

spond to the termination of a detectable error event in the original encoder. The

remaining 2m+ν−2m states of the equivalent code are called non-zero states, form-

ing a set SN, because the corresponding states of the original code are not zero.

To terminate an error event in the original encoder, the trellis of the equivalent

code transitions from a state in SN to SZ or to a state in SD. If the transition

is to SD the cumulative errors are detectable because the portion of q′(x)p(x) till

this moment is not divisible by p(x). If the transition is to SD, the cumulative

errors are detectable because the portion of q′(x)p(x) till this moment is divisible

by p(x).

Table 4.1 shows an example using the set-up shown in Fig. 4.3 with p(x) =

x2+x+1, q′(x) = x3+x2+1, and ν = 2. The original encoder c(x) does not need

to be specified for the results in Table 4.1 because any feedforward encoder will

produce the same state sequence. The zero state of the original code is visited at
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time 0, 3, 4, and 8. At time 0, the state begins from SZ. At time 3, the first c(x)

error event ends. This error event is detectable if the codeword ends at time 3

because the input to the original code, i.e. x2, is not divisible by p(x) . The state

remains in SD at time 4. At time 5 a second c(x) error event begins. At time 8,

the ceq(x) state returns to SZ, which is not only the end of the second c(x) error

event but also the end of an undetectable double error.

Note that ceq(x) is catastrophic because its generator polynomials have a

common factor p(x). The catastrophic behavior is expressed through the zero

distance loops that occur as the equivalent encoder traverses a sequence of states

in SD while the original convolutional encoder stays in the zero state. Thus time

spent in SD between c(x) error events can lengthen an undetectable error without

increasing its distance.

4.2.2.2 Error Events in the Equivalent Encoder

Since the all-zero codeword is assumed to be sent, the correct path remains in SZ

forever. An error event in the equivalent encoder occurs if the trellis path leaves

SZ and returns SZ without any visits to SZ in between. We will classify these

error events according to the number of times it enters SD from SN during the

deviation. If a trellis path enters SD from SN s − 1 times, then it is classified as

an undetectable s-tuple error. In an undetectable s-tuple error, there are exactly

s segments of consecutive transitions between states in SN, which correspond to

s error events of the original encoder. These segments are separated by segments

of consecutive transitions between states in SD.

Fig. 4.4 illustrates an undetectable triple error in a system with ν = 2 and

m = 2. The three error events of the original code are separated by visits to SD.

The path can leave SD right after entering it as shown between the first and the

second error events; the path can also stay in SD for a while and then leave SD
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SZ

SN

SD

Figure 4.4: A trellis diagram of an equivalent convolutional code with ν = 2 and

m = 2 having an undetectable triple error. The states are reordered such that the

all-zero state is at the top and the detectable-zero states are at the bottom.

from a state different from where it enters SD as shown between the second and

the third error events. Note that SZ is never directly connected to any state of

SD.

The probability of undetectable single errors is bounded in a similar way as

(4.3) by

PUD,1 ≤ P>d̂,1 +
∑

d∈Dd̂,1

aZZd∑
i=1

max
{
0, n+ ν − lZZd,i + 1

}
P(d), (4.11)

where aZZd is the number of error events with distance d starting from SZ and

ending at SZ while never traversing a state in SD. The length lZZd,i is the length of

the ith error event counted in aZZd . Note that this expression requires the distance

spectrum aZZd and length spectrum lZZd,i for d ∈
[
dfree, d̂

]
obtained using computer

search.

Unlike (4.3), (4.11) does not need to check the divisibility of error events.

Hence, there is no need to store the error patterns anymore but only their distances
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and lengths. Consequently the search depth d̂ can go beyond d̃.

In fact, it is possible to release the search depth limitation d̂ and calculate aZZd

and lZZd,i through an altered transfer function. Since the trellis path is not allowed to

enter SD, the altered transfer function can be computed using a modified transition

matrix whose rows and columns of SD are deleted. However, there are 2m+ν−2m+1

remaining states after the deletion and the size of the modified transition matrix

could still be huge. Therefore, this alternative method is only applicable to the

cases with small m+ ν.

The probability of an undetectable double error is determined by the distances

of its two error events, where the first leaves SZ and enters a state in SD while the

second leaves a state in SD and enters SZ. The length of this undetectable double

error depends on not only the lengths of the two error events but also the spacing

between them, i.e. the number of intervening state transitions within SD. In

the example shown in Fig. 4.4, we observe that the spacing between error events

could be any non-negative integer as long as the double error does not exceed the

codeword length.

Since states in SD correspond to the all-zero state of the original code, one

can prove that each of them can lead to a state in SD with a proper input bit

which generates a zero at the original convolutional encoder input. For example,

consider a degree-2 primitive polynomial p(x) = x2 + x + 1 and ν = 2. We have

SD = {(0110), (1101), (1011)}, and the states in SD lead to one another. However,

for certain p(x), it may not be able to traverse all states in SD without leaving

SD. For example, consider a degree-2 non-primitive polynomial p(x) = x2+1 and

ν = 2. We have SD = {(0101), (1010), (1111)}. The first two states lead to each

other but the third state only leads to itself if the transition is not allowed to leave

SD.

Let SD
i be the ith state in SD, where i ∈ [1, 2m − 1]. Define Δi as the subset

of SD composed of all states connected with SD
i with all intermediate states in
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SD. Let δi,j ≤ |Δi| be the number of hops required to go from SD
i to SD

j without

leaving SD for i ∈ [1, 2m − 1] and SD
j ∈ Δi, where δi,j = 0 if i = j. The sets Δi

and Δj are identical if SD
j ∈ Δi, and the distinct Δi’s form a partition of SD.

Appendix 4.B shows that Δi and the x-cyclotomic coset modulo p(x) discussed in

Appendix 4.A are equivalent. Thus, all sets Δi are identical if p(x) is a primitive

polynomial.

Similar to (4.5), the probability of undetectable double errors can be bounded

by

PUD,2 ≤ P>d̂,2 +
∑

(d1,d2)∈Dd̂,2

P(d1 + d2)

·
2m−1∑
φ=1

∑
SDψ∈Δφ

aZD,φ
d1∑
i1=1

aDZ,ψ
d2∑
i2=1

⌊
n+r−lmin

|Δφ|
⌋

∑
t1=0

(
n+ ν − lmin− |Δφ| t1 + 1

)
, (4.12)

where

lmin = lZD,φ
d1,i1

+ lDZ,ψ
d2,i2

+ δφ,ψ (4.13)

is the shortest possible length of the undetectable double error specified by the

combination of indices (d1, d2, φ, ψ, i1, i2).

In (4.12), φ is the index of the state at which the trellis enters SD at the end of

the first error event, and ψ is the index of the state at which the trellis leaves SD

at the beginning of the second error event. The number of error events starting at

SZ and ending at SD
φ with distance d1 is a

ZD,φ
d1

, and the i1
th error event of them has

length lZD,φ
d1,i1

, where both numbers are obtained by computer search. The variables

aDZ,ψ
d2

and lDZ,ψ
d2,i2

are defined in a similar way while the error event starts in SD
ψ and

ends in SZ. Furthermore, t1 specifies the number of cycles the trellis stays in Δφ

and its upper limit makes sure that the total length of the undetectable double

error does not exceed n + ν, the number of trellis stages in the codeword. As in

(4.5) P>d̂,2 can often be neglected because terms with d1 + d2 > d̂ have negligible

probability.
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Although the number and lengths of error events connecting SZ and states in

SD are obtained by computer searches, the required search depth is only d̂− dfree.

Moreover, aZD,φ
d1

and lZD,φ
d1,i1

for all φ can be found while searching for aZZd and lZZd,i

because these two types of error events both start from SZ. Regarding aDZ,ψ
d2

and

lDZ,ψ
d2,i2

, the associated error events start from 2m − 1 different states and can be

found through 2m − 1 separated searches. Nevertheless, since these error events

end at SZ, only one backward search is necessary to capture all of them. In the

backward search, bits in shift registers move backward. One can simply treat x

as x−1 in polynomial representations and apply the same search algorithm.

An easier way to search for error events ending at SZ is to utilize the search

result of error events starting from SZ. See Appendix 4.C for detail.

4.2.2.3 Undetected Error Probability

An undetectable s-tuple error is composed of several parts: one error event from

SZ to a state in SD, s − 1 paths inside SD, s − 2 error events from a state in SD

to a state in SD with visits to SN in between, and one error event from a state

in SD to SZ. Let φu and ψu be the indices of the start and end states of the uth

transitions in SD, respectively. Also, let the number of error events started at

SD
ψu−1

and ended at SD
φu

with distance du be a
DD,ψu−1,φu

du
and the length of the iu

th

error event of them be l
DD,ψu−1,φu

du,iu
, where both numbers are obtained by computer

search. Although we need to perform 2m − 1 separated searches to obtain all

a
DD,ψu−1,φu

du
and l

DD,ψu−1,φu

du,iu
, a search depth of d̂− (s− 1) dfree is sufficient. Similar

to the search for error events ending at SZ, there is an easier approach presented

in Appendix 4.C.

To simplify the notation, define the following sets:

Φs = {(φ1, · · · , φs)|φu ∈ [1, 2m − 1] ∀u ∈ [1, s]}
Ψs = {(ψ1, · · · , ψs)|ψu ∈ Δφu ∀u ∈ [1, s]}
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I′s =
{
(i1, · · · , is)

∣∣∣i1 ∈ [
1, aZD,φ1

d1

]
, is ∈

[
1, a

DZ,ψs−1

ds

]
,

iu ∈
[
1, a

DD,ψu−1,φu

du

]
∀u ∈ [2, s− 1]

}
Ts =

{
(t1, · · · , ts)

∣∣∣∣∣tu ≥ 0 ∀u ∈ [1, s] ,
s∑

u=1

|Δφu | tu ≤ n+ r − lmin
s+1

}
,

where lmin
s is the shortest possible length of the undetectable s-tuple error specified

in a similar way as (4.13) and given by

lmin
s = lZD,φ1

d1,i1
+

s−1∑
u=2

l
DD,ψu−1,φu

du,iu
+ l

DZ,ψs−1

ds,is
+

s−1∑
u=1

δφu,ψu . (4.14)

Similar to (4.7), the probability of having an undetectable error is now bounded

by

PUD ≤
∞∑
s=1

P>d̂,s +
∑

d1∈Dd̂,1

aZZd1∑
i=1

max
{
0, n+ν−lZZd1,i+1

}
P(d1)

+
∞∑
s=2

∑
(d1,··· ,ds)∈Dd̂,s

P

(
s∑

u=1

du

) ∑
(φ1,··· ,φs−1)∈Φs−1

∑
(ψ1,··· ,ψs−1)∈Ψs−1∑

(i1,··· ,is)∈I′s

∑
(t1,··· ,ts−1)∈Ts−1

(
n+ν−lmin

s −
s−1∑
u=1

|Δφu | tu+1

)
. (4.15)

The first term is the probability sum of all large-distance errors, which are assumed

to be undetectable, and can be calculated using (4.10c). By letting P>d̂,s = 0, we

obtain an approximation. By letting all lZZ, lZD, lDD, and lDZ equal to ν + 1, we

obtain a looser bound which does not require any length information. These two

techniques are applicable to every PUD,s, including (4.11) and (4.12).

The main benefit of the construction method is that it is often able to search

deeper than the exclusion method because the output pattern is not required.

However, the required memory size scales with the number of states 2m+ν rather

than 2ν so this approach can encounter difficulty in analyzing high-order CRC

codes. In contrast, the error events searched in the exclusion method belong to the

original convolutional code, whose number of states is just 2ν and is independent

of the degree of the CRC code. As explained in Section 4.3, we found it useful
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Figure 4.5: A comparison of the simulated undetected error probability with the

simulated frame error rate of the equivalent code and the analyses from the ex-

clusion and construction methods. The system is equipped with the CRC code

p(x) = x3+x+1 and the convolutional code (23, 35)8. The CRC codeword length

is n = 1024 bits.

to draw on both approaches as we searched for optimal CRC polynomials for a

specific convolutional code.

Fig. 4.5 compares the simulated undetected error probability to the bounds

produced by the exclusion and construction methods. We consider the CRC

code p(x) = x3 + x + 1 concatenated with the memory size ν = 4 convolutional

code with generator polynomial (23, 35)8 in octal and dfree = 7. The information

length is k = 1021 bits and thus the CRC codeword length is n = 1024 bits. The

FER of this original convolutional code is plotted as a reference. The equivalent

catastrophic convolutional code is (255, 317)8 and its FER is also simulated.
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We can see from Fig. 4.5 that the undetected error probability is upper bounded

by the FER of the equivalent code, which equals PUD, the probability of having

an undetectable error in the CRC codeword, and this bound gets tighter as SNR

increases. The equivalent code FER is above the probability of undetected error

because it is possible that a frame has both an undetectable error event and a

detectable error event, which causes a frame error in the equivalent code but does

not cause an undetected error in the concatenated CRC and convolutional codes.

The upper bounds of PUD are computed using the exclusion method (4.7) and

construction method (4.15). In our calculation, the search depth limit of the

exclusion method is d̃ = 14, and d̂ = 20 is the depth limit for the construction

method. Since dfree = 7, only undetectable single and double errors are considered.

The probability sum of all large-distance terms given by (4.10c) are plotted to

verify that they are negligible, except for the exclusion method at SNR below

0.75 dB. Although the construction method used a deeper search, it is still quite

close to the exclusion method even in the low SNR region. It can be seen that these

analysis methods deliver accurate bounds at high SNR for both the undetected

error probability and the FER of the catastrophic code.

4.3 Search Procedure for Optimal CRC Codes

In this section, we will present an efficient way to find the optimal degree-m CRC

code for a targeted convolutional code and information length k. Note that the

performance of a CRC code depends on the information length [KC04]. A CRC

code may be powerful for short sequences but have numerous undetectable long

errors that are produced by a specific convolutional code.

Since xm and x0 terms are both one, there are 2m−1 candidates of degree-m

CRC generator polynomials p(x). In principle, either the exclusion method or the

construction method can produce the undetected error probability for each candi-
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Figure 4.6: The work flow of keeping the CRC polynomials with the fewest unde-

tectable errors with distance d.

date allowing selection of the best p(x). However, this process is time-consuming

if m is large. Both exclusion and construction methods need to compute the dis-

tance spectrum of undetectable errors up to some distance d. We can reduce the

computation time by skipping the distance spectrum searches of suboptimal CRC

codes.

When the FER is low, the undetectable error rate of a CRC code is dominated

by the undetectable errors with the smallest distance. Let the smallest distance

of the undetectable errors be dmin. We can evaluate a CRC-convolutional con-

catenated code by its distance spectrum at around dmin. To be more precise, a

polynomial should be removed from the candidate list if it has a smaller dmin than

the others or if it has more undetectable errors associated to the same dmin. In a

convolutional code, since the number of error events ad grows exponentially as the

associated distance d increases, the cost to find all undetectable errors grows ex-

ponentially as well. Hence, the CRC code search starts with d = dfree and updates

the candidate list by keeping only the CRC generator polynomials with the fewest

undetectable errors. Next, repeat the procedure with the next higher d until only

one polynomial remains in the list. The routine of filtering the CRC polynomials

at distance d can be performed by following the work flow in Fig. 4.6, where ãd

is the number of distance-d undetectable errors of the current CRC-convolutional

concatenated code with certain information length, and ãmin
d is the smallest num-

ber of undetectable errors that has been found and have distance d. The initial
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value of ãmin
d should be set to infinity for all d.

When d < 2dfree, only single errors are possible. The exclusion method can

count the number of undetectable single errors of each candidate when d ≤ d̃.

We can perform a computer search for error events of the original code and check

the divisibility of each of them. Note that if an error event is found to be un-

detectable, all of its possible offsets in the codeword should be counted. Since

all candidates check the same set of error events, only one computer search with

multiple divisibility checks (one for each CRC code) is sufficient. In contrast, us-

ing the construction method requires construction of equivalent encoders for each

candidate separately. Hence, for the initial values of d near dfree, checking the

divisibility via the exclusion method is preferred. Of course, once d > d̃, search-

ing for undetectable single errors of the equivalent codes as in the construction

method is the only approach.

When d ≥ 2dfree, undetectable double errors need to be considered in addition

to single errors. The divisibility test should be applied to all combinations of error

event patterns e1(x), e2(x), and their gaps g1. Even if the concept of cyclotomic

cosets discussed in Appendix 4.A is utilized, we still need to construct all cyclo-

tomic cosets through about 2m divisions and also check if each of the remainder

of e2(x) divided by p(x) is in the same cyclotomic coset as the remainder of e1(x)

divided by p(x).

Alternatively, undetectable double errors can be directly created using the

construction method. In the construction method, the error events connecting

SZ and states in SD with distances between dfree and d − dfree are found through

computer searches. In fact, these events can be generated using the detectable

error events of the original code previously found by exclusion if d − dfree ≤ d̃.

For example, since the detectable error pattern e1(x) is known, the corresponding

error event in the equivalent encoder trellis starts from SZ and traverses the trellis

with the input sequence given by the quotient of xme1(x) divided by p(x). The
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state SD
φ , where it ends, is thus determined by the last m + ν input bits, and its

length lZD,φ
d1,i1

has already been provided by the degree of e1(x).

For error events starting from states in SD and ending in SZ with pattern

e2(x) previously obtained by exclusion, traverse the trellis in reverse from SZ with

the input sequence given by the quotient of xm+ν+l′e2(x
−1) divided by xmp(x−1),

where l′ = lDZ,ψ
d2,i2

− 1 is the degree of e2(x). Note that x
l′e2(x

−1) and xmp(x−1) are

the reverse bit-order polynomial representations of e2(x) and p(x), respectively.

The state SD
ψ where the error event begins is determined by the last m+ ν input

bits in reverse order.

An easier way to determine SD
ψ , requiring no additional polynomial divisions,

is presented in Appendix 4.C. Thus, to count the number of undetectable double

errors, creating them directly as in the construction method is preferred.

According to the discussion at the end of Appendix 4.A, dmin is not likely to

be much greater than 2dfree when information length k is long enough. In other

words, the CRC code search algorithm is usually finished before reaching 3dfree

and does not need to count the number of undetectable triple errors.

4.4 CRC Design Example for ν = 6, k = 1024

As an example we present the best CRC codes of degree m ≤ 16 specifically for

the popular memory size ν = 6 convolutional code with generator polynomial

(133, 171)8 with information length k = 1024 bits. Note that the proposed design

method is applicable to all convolutional codes and information lengths, and not

limited to the choices used for this example. The corresponding undetected error

probability is also calculated and compared with existing CRC codes.

Table 4.2 and Table 4.3 show the standard CRC codes listed in [KC04] and

the best CRC codes found by the search procedure in Section 4.3. For degrees

with no standard codes, those recommended by Koopman and Chakravarty in
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Table 4.2: Degree-3 to degree-9 standard CRC codes, CRC codes recommended

by Koopman and Chakravarty [KC04], and best CRC codes for convolutional code

(133, 171)8 with information length k = 1024 bits.

Gen. Undetectable Single Distance Spectrum aZZd

Name Poly. d 10 12 14 16 18 20 22

K&C-3 0x5 1 5 19 170 941 5050 29290

Best-3 0x7 0 7 24 169 879 5111 29363

CRC-4 0xF 1 2 11 79 464 2504 14719

Best-4 0xD 0 1 17 91 462 2537 14674

CRC-5 0x15 1 2 9 52 267 1378 8005

Best-5 0x11 0 0 4 52 230 1257 7275

CRC-6 0x21 0 1 4 21 124 572 3659

Best-6 0x29 0 0 1 22 124 641 3650

CRC-7 0x48 0 0 1 14 55 298 1877

Best-7 0x47 0 0 0 7 70 322 1867

CRC-8 0xEA 0 0 0 4 36 174 871

Best-8 0x89 0 0 0 1 29 177 938

K&C-9 0x167 0 0 0 4 13 73 477

Best-9 0x177 0 0 0 0 14 104 437

Original Distance Spectrum ad 11 38 193 1331 7275 40406 234969

[KC04] are listed and called K&C. The notation of generator polynomials is in

hexadecimal as used in [KC04]. For example, CRC-8 has generator polynomial

x8+x7+x6+x4+x2+1 expressed as 0xEA, where the most and least significant

bits represent the coefficients of x8 and x1 terms, respectively. The coefficient of

x0 term is always one and thus omitted.

Table 4.2 and Table 4.3 also give the distance spectrum of undetectable single

errors aZZd of each CRC code up to d = 22. The distance spectrum of the original
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Table 4.3: Degree-10 to degree-16 standard CRC codes, CRC codes recommended

by Koopman and Chakravarty [KC04], and best CRC codes for convolutional code

(133, 171)8 with information length k = 1024 bits.

Gen. Undetectable Single Distance Spectrum aZZd

Name Poly. d 10 12 14 16 18 20 22

CRC-10 0x319 0 0 0 1 8 41 239

Best-10 0x314 0 0 0 0 3 49 223

CRC-11 0x5C2 0 0 0 0 7 17 107

Best-11 0x507 0 0 0 0 0 24 113

CRC-12 0xC07 0 0 0 0 3 12 48

Best-12 0xA10 0 0 0 0 0 4 66

K&C-13 0x102A 0 0 0 0 1 7 36

Best-13 0x1E0F 0 0 0 0 0 1 29

K&C-14 0x21E8 0 0 0 0 1 2 15

Best-14 0x314E 0 0 0 0 0 0 11

K&C-15 0x4976 0 0 0 0 1 1 6

Best-15 0x604C 0 0 0 0 0 0 3

CRC-16 0xA001 0 0 0 0 0 1 3

Best-16 0x8E61 0 0 0 0 0 0 1

Original Distance Spectrum ad 11 38 193 1331 7275 40406 234969

convolutional code ad is given as a reference. Note that, since this convolutional

code has dfree = 10, a smaller aZZ20 or aZZ22 does not mean fewer undetectable errors

at distance d = 20 or 22. Undetectable double errors should also be counted for

d ≥ 20 to judge a candidate.

During the search for the best CRC codes with degrees m ≤ 11, only single

errors need to be considered because one candidate will outperform all the others

before looking at d = 20. Although the best degree-11 CRC code has dmin = 20,
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all the other candidates have dmin < 20 and are eliminated before the end of the

d = 18 round. Since the lengths of single errors ld,i for d < 20, ranging from 7 to

43, are much shorter than n + ν, a candidate that has fewer types of dominant

undetectable error events will have fewer dominant undetectable errors in total.

In other words, when undetectable single errors dominate and information length

k is long enough, the best CRC code should possess the smallest aZZd .

When dmin ≥ 2dfree, the dominant undetectable errors include double errors.

In this case, a smaller aZZd does not mean a better code because it only considers

single errors. For example, the degree-16 polynomials 0xF8F1 and 0x8E61 both

have dmin = 22. The former has aZZ22 = 0 while the latter has aZZ22 = 1. However,

at d = 22, the former has so many (2860) undetectable double errors that the

number is greater than the total count of undetectable single and double errors

(1011 + 1424) of the latter, when the information length is k = 1024 bits.

Furthermore, if two candidates have the same aZZdmin
, the information length k

can impact the choice of the best CRC code. For example, the degree-16 poly-

nomials 0x90DB and 0x8E61 both have dmin = 22 and aZZ22 = 1. 0x90DB has

one length-44 dominant undetectable single error, but the longest error of 0x8E61

is length 36. Thus 0x90DB has eight less undetectable single errors at d = 22

than the polynomial 0x8E61, 0x90DB is not better at this specific information

length (k = 1024) because it has more dominant undetectable double errors: at

d = 22, 0x90DB has 1505 undetectable double errors containing eight combina-

tions of e1(x) and e2(x) with combined lengths ranging from 694 to 1023 while

0x8E61 has 1424 undetectable double errors comprising only three combinations

with relatively shorter lengths ranging from 405 to 754. Of course, other longer

undetectable double errors, whose lengths are greater than n+ν, are not counted.

However, when the information length is shorter than 1010 bits, the polynomial

0x90DB has smaller total count of undetectable errors at d = 22 and is preferred.

In Fig. 4.7, the bounds of undetected error probability of the existing and
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Figure 4.7: The undetected error probability of the existing and best CRC codes

for convolutional code (133, 171)8 with information length k = 1024 bits computed

using the construction method.

best CRC codes are shown. For clarity, only even degrees of the CRC codes are

displayed. The upper bound of the original convolutional code FER without any

CRC code, calculated using transfer function techniques [LD12], is plotted as a

reference. In our calculation, the search depth limit of the exclusion method is

d̃ = 22 and not enough for high degree CRC codes. Therefore, the construction

method (4.15) was used with d̂ = 28.

The probability sum of all large-distance terms calculated using (4.10c) is

also plotted to illustrate that the large-distance terms really are negligible even

assuming they are all undetectable, except for the best degree-16 CRC code at

SNR below 7 dB and some other codes at SNR below 6 dB. Note that since

the operation eP̄ − 1 in (4.10c) causes non-negligible rounding errors in the high
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Figure 4.8: The undetected error probability of the existing and best CRC codes

for convolutional code (133, 171)8 with information length k = 1024 bits at SNR

= 8 dB.

SNR region, it was approximated by the first ten terms, which results a similar

expression as (4.10b) but only carried out for 1 ≤ s ≤ 10.

Since d̂ < 3dfree, it is not necessary to evaluate triple or higher order errors

under this truncation. It is clearly seen from the figure that the best degree-m

CRC codes found by our procedure outperform the existing degree-m codes for all

m. Furthermore, their performance is either better than or similar to the existing

degree-(m + 2) code except for m = 6. In other words, the proposed design can

typically save 2 check bits while keeping the same error detection capability.

We can compare the error detection capability of all codes at a fixed SNR. If

we draw a vertical line at SNR = 8 dB on Fig. 4.7, the intersections can be plotted

along with the associated CRC lengths m in Fig. 4.8. The largest reduction of

undetected error probability is about five orders of magnitude at m = 5 where the

existing CRC code has an undetected error probability of 1.008 × 10−12 and the

newly designed CRC code has an undetected error probability of 1.360 × 10−17.

Note that these numbers are calculated at 8 dB SNR, and the reduction gets more

significant as SNR increases.
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Figure 4.9: The required CRC lengths for the existing and best CRC codes for

convolutional code (133, 171)8 with information length k = 1024 bits to achieve

undetected error probability below 10−25.

Since the existing CRC codes are not tailored to the convolutional code, a

higher degree code does not necessarily have a better performance. We observe

that there are three almost horizontal region for the existing CRCs with degrees

m ranging from 3 to 5, from 8 to 9, and from 13 to 15. The reason is that the

codes in each region have similar number of dominant undetectable errors as can

be seen in Table 4.2 and Table 4.3. In contrast, the CRC codes designed using

our procedure show steady improvement as the degree increases.

The existing and best CRC codes can also be compared in terms of the required

CRC length to achieve certain undetected error probability. Assume our target is

to reach undetected error probability below 10−25. This can be shown by drawing

a horizontal line at the target probability level on Fig. 4.7 and plotting the CRC

lengths associated to the crossed points as a function of SNR as in Fig. 4.9. For

most of the SNR levels, the best CRC codes requires two fewer check bits than the

existing CRC codes to achieve the same error detection capability. At SNR around

10.5 dB, the best CRC code requires three fewer check bits than the existing CRC

code. Since the existing code required six check bits, this is a 50% reduction.
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4.5 Conclusion

A good CRC code in a convolutionally coded system should minimize the un-

detected error probability. To calculate this probability, two methods based on

distance spectrum are proposed. The exclusion method starts with all possible

single and multiple error patterns of the convolutional code and excludes them

one by one by testing if they are detectable. In the construction method, unde-

tectable errors are mapped to error events of an equivalent convolutional code,

which is the combination of the CRC code and the original convolutional code.

The computer search for error events in the construction method does not need

to record the error patterns and thus can go deeper than the search in the ex-

clusion method. However, the construction method could encounter difficulties

while dealing with high-degree CRC codes. Moreover, the construction method

is generally applicable to the performance analysis of catastrophic convolutional

codes.

We also propose a search procedure to identify the best CRC codes for a

specified convolutional encoder and information length. A candidate CRC code is

excluded if it has more low-distance undetectable errors. Therefore, the best CRC

polynomial is guaranteed to have the fewest dominant undetectable errors and

minimizes the probability of undetected error when SNR is high enough. When

undetectable double errors dominate, the choice of the best CRC polynomial is

more dependent on the information length. In an example application of the

design procedure for the popular 64-state convolutional code with information

length k = 1024, new CRC codes provided significant reduction in undetected

error probability compared to the existing CRC codes with the same degrees.

With the proposed design, we are able to save two check bits in most cases while

having the same error detection capability.
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4.A Efficient Search for Undetectable Double Errors

In (4.4) and (4.5), the indicator function is evaluated for every g1 given e1(x) and

e2(x). However, there is a more efficient way to check the divisibility and can save

a lot of computation time when n+ ν is large.

The remainder of any polynomial in GF(2)[x] divided by p(x) forms a quo-

tient ring GF(2)[x]/p(x). Two polynomials mapped to the same element of the

quotient ring are called congruent. If xg1+l2e1(x) is congruent to e2(x) modulo

p(x), then their combination forms an undetectable double error. To characterize

the remainder of xg1+l2e1(x) modulo p(x), we apply the concept of cyclotomic

coset[Lin04], which is originally defined for integers, to polynomials. For polyno-

mials in GF(2)[x], define x-cyclotomic coset modulo p(x) containing e(x) as

Ce(x) =
{
xhe(x) (mod p(x))

∣∣h = 0, 1, · · ·} , (4.16)

which includes the remainder of all possible offsets of e(x) divided by p(x). One

can verify that two cyclotomic cosets are either identical or disjoint, so all of

the distinct x-cyclotomic cosets modulo p(x) form a partition of quotient ring

GF(2)[x]/p(x). For example, consider a degree-2 primitive polynomial p(x) =

x2 + x + 1, and we have C0 = {0} and C1 = {1, x, x+ 1} forming a partition

of GF(2)[x]/p(x); consider a degree-2 non-primitive polynomial p(x) = x2 + 1,

and we have C0 = {0}, C1 = {1, x}, and Cx+1 = {x+ 1} forming a partition

of GF(2)[x]/p(x). In both cases, C0 is trivial since it only contains the “zero”

element. In the primitive case, C1 is the only non-trivial cyclotomic coset and its

cardinality is |C1| = |GF(2)[x]/p(x)| − 1 = 2m − 1. In the non-primitive case,

there are multiple non-trivial cyclotomic cosets and their sizes are smaller than

2m − 1. In fact, there is only one unique non-trivial cyclotomic coset if p(x) is a

primitive polynomial.

It is obvious that if e1(x) and e2(x) belong to different cyclotomic cosets, there

is no way to have a g1 that makes xg1+l2e1(x) congruent to e2(x) modulo p(x). In
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other words, it is unnecessary to check whether any g1 creates an undetectable

double error with the specific e1(x) and e2(x). If e1(x) and e2(x) belong to the

same cyclotomic coset Ce1(x), only one proper g1 ∈ [
0,
∣∣Ce1(x)

∣∣− 1
]
can make

xg1+l2e1(x)+e2(x) divisible by p(x). Denote this particular g1 as g
′
1. Once we find

g′1, all possible g1 that create undetectable double errors are just g1 = g′1+u
∣∣Ce1(x)

∣∣
for non-negative integer u satisfying g1 + l1 + l2 ≤ n+ ν.

Note that when e1(x) = e2(x), they will belong to the same cyclotomic coset

no matter what CRC generator polynomial p(x) is. That is to say, no CRC code

is able to detect such double error if these two error events have a proper gap

g1. Fortunately, the smallest proper gap is g′1 = −l2
(
mod

∣∣Ce1(x)

∣∣) so the total

length of the undetectable double error is
∣∣Ce1(x)

∣∣+ l1. Hence, when n+ν is small

enough, such double error will never occur. On the other hand, when n + ν is

large, dmin, which is the shortest distance of the undetectable errors, will be upper

bounded by 2dfree.

4.B The Relationship between Δi and Ce(x)

Define the state of the equivalent code at time n−g as q′g(x), which is a polynomial

with maximum degree m + ν − 1 representing consecutive m + ν bits from the

xg+m+ν−1 term to the xg term in xmq′(x) for g ∈ [−ν, n]. The corresponding state

of the original code is given by the coefficients of the terms from xm+ν−1 to xm

in polynomial q′g(x)p(x). Let q′g,u and pu be the coefficients of xu in q′g(x) and

p(x), respectively. Then the coefficient of xu for u ∈ [m,m+ ν − 1] in q′g(x)p(x)

is given by
m∑
v=0

q′g,u−v pv. (4.17)

If the state of the original code is known and q′g,v is known for v ∈ [ν,m+ ν − 1],

q′g,ν−1 can be solved through (4.17) when u = m+ν−1 because pm = 1. Moreover,

the rest of q′g,v for v = ν − 2, · · · , 1, 0 can be solved one by one in the same way.
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Assume that the all-zero codeword is sent, i.e. q(x) = 0, and the trellis path

enters a detectable-zero state SD
i at time n− g. Also, let e(x) be a polynomial of

degree smaller than or equal to n − g − 1 representing the length-(n − g) input

sequence of the original convolutional encoder from the beginning to time n− g,

and it is given by the coefficients from the xn−1 term to the xg term in q′(x)p(x).

Since the state at time n− g is SD
i , e(x) must be non-divisible by p(x).

The remainder of e(x) divided by p(x) is given by

e(x) (mod p(x)) =
m−1∑
u=0

xu

m∑
v=u+1

q′g,m+u−vpv, (4.18)

which is totally governed by q′g(x), or SD
i . If the remainder is known, the bits

q′g,v for v ∈ [0,m− 1] can be solved uniquely through back substitution for u =

m − 1,m − 2, · · · , 0 because pm = 1. Furthermore, the whole polynomial q′g(x),

or SD
i , can be solved by letting (4.17) equal to zero for u = m + ν − 1,m +

ν − 2, · · · ,m because the state of the original code is just ν zeros. Hence, the

remainder of e(x) divided by p(x) determines a detectable-zero state SD
i , and

vice versa. Furthermore, each of the 2m − 1 non-zero elements in GF(2)[x]/p(x)

corresponds to a unique state in SD.

To find all states in Δi, we can specify q′g−h,0, the input bit to the equivalent

encoder at time n− g+h, for h = 1, 2, · · · such that the input bits to the original

convolutional encoder after time n− g are all zeros and thus the following states

are in SD. By doing so, we know that the polynomials q′g−h(x) will represent the

states in Δi. This procedure is finished when certain q′g−h(x) represents S
D
i again.

During this procedure, the corresponding input sequence to the original encoder

from the beginning to time n− g+h is simply xhe(x) because the input bits after

time n− g are all zeros. By the definition given in (4.16), the remainder of xhe(x)

divided by p(x) is an element of Ce(x). In addition, we know that this remainder

corresponds to a state in Δi. Therefore, Δi and Ce(x) contain the same elements

but just represented in different forms.

105



4.C An Easier Search for Error Events Not Starting from

SZ

In the construction method, we need to search for single error events starting from

a state in SD and ending at SZ or a state in SD in order to construct undetectable

multiple errors. Performing computer searches for all of them is definitely an

approach, but we could possibly save a huge amount of computation by utilizing

the search result of single error events starting from SZ. Since these searches all

target on error events of the original code but just have different initial states, one

search result has already provided enough information to characterize these error

events. Therefore, with the knowledge of the relationship between these initial

states, one search result is applicable to the others.

Let q′′j (x) be a polynomial of degree smaller than or equal to m + ν − 1 rep-

resenting the state SD
j , and q′′0(x) = 0 represent SZ. Assume that a known single

error event with length l starts from SZ and ends at the state represented by q′′φ(x).

Note that this error event could be either detectable or undetectable. If this error

event starts from a detectable-zero state SD
ψ instead of SZ, its length is unchanged

and we just need to know where it ends.

We can treat the error pattern at the convolutional encoder as an input to a

discrete time system and q′(x) as its output. Since this system is linear, the end

state, given by a subsequence of q′(x), is determined by the superposition of the

zero state response and the zero input response. Apparently, q′′φ(x) is the zero

state response because it is the result when the error event starts at SZ. The zero

input response is governed by its initial state SD
ψ . Let SD

θ be the end state of a

length-l trellis path starting from SD
ψ while keeping the error pattern all zeros. We

can find θ because it satisfies SD
θ ∈ Δψ and δψ,θ = l (mod |Δψ|). Hence, the end

state of the error event starting from SD
ψ is represented by q′′φ(x) + q′′θ (x).

If we want to find the initial state SD
ψ such that the detectable single error event
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ends at SZ, the same idea can still be applied. Since the end state is SZ, the zero

state and zero input responses should cancel each other, i.e. θ = φ. Therefore, we

can find ψ because it satisfies SD
ψ ∈ Δφ and δφ,ψ = −l (mod |Δφ|).
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CHAPTER 5

Conclusion

In the first part of the dissertation, we describe two analytical PER prediction

methods for punctured convolutional codes with a uniform random interleaver.

The analytical methods are based on the codes’ transfer functions and the model-

ing of the distribution of half of log-error-likelihood ratio (HLELR), or essentially

LLR. The Q-function approximation method approximates the HLELR using a

mixture of normal distributions and relies on the Gaussian Q-function approxi-

mation. The saddlepoint approximation method models the HLELR as a mixture

of folded normal distributions and applies the saddlepoint approximation. Unlike

the heuristic methods, the proposed methods require absolutely no curve-fitting or

parameter calibrations. Furthermore, compared to the existing heuristic methods,

they deliver more accurate predictions for SISO systems in AWGN and Rayleigh

fading channels, as well as MIMO OFDM systems in frequency selective fading

channels.

We then generalize the result of the analytical PER prediction for systems with

a uniform random interleaver to systems with a repeated-pattern interleaver. In

a punctured convolutionally coded MIMO OFDM system employing a repeated-

pattern interleaver, the LLRs are no longer i.i.d. random variables. The distribu-

tion of a bit’s LLR depends on its location in the packet. Furthermore, two LLRs

can be highly correlated if they belong to the same subcarrier, whether they come

from the same spatial stream or not. With the consideration of LLRs’ correlation,

the proposed Q-function approximation method significantly outperforms all the
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other methods.

In the second part of the dissertation starting in Chapter 4, we consider a sys-

tem employing a CRC code concatenated with a convolutional code. To calculate

the undetected error probability of this system, two methods based on distance

spectrum are proposed. The exclusion method starts with all possible single and

multiple error patterns of the convolutional code and excludes them one by one

by testing if they are detectable. In the construction method, undetectable er-

rors are mapped to error events of an equivalent convolutional code, which is the

combination of the CRC code and the original convolutional code. The computer

search for error events in the construction method does not need to record the

error patterns and thus can go deeper than the search in the exclusion method.

However, the construction method could encounter difficulties while dealing with

high-degree CRC codes. Moreover, the construction method is generally applica-

ble to the performance analysis of catastrophic convolutional codes.

We also propose a search procedure to identify the best CRC codes for a

specified convolutional encoder and information length. A candidate CRC code is

excluded if it has more low-distance undetectable errors. Therefore, the best CRC

polynomial is guaranteed to have the fewest dominant undetectable errors and

minimizes the probability of undetected error when SNR is high enough. When

undetectable double errors dominate, the choice of the best CRC polynomial is

more dependent on the information length. In an example application of the

design procedure for the popular 64-state convolutional code with information

length k = 1024, new CRC codes provided significant reduction in undetected

error probability compared to the existing CRC codes with the same degrees.

With the proposed design, we are able to save two check bits in most cases while

having the same error detection capability.
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