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Abstract of the Dissertation

Timing Recovery Using Soft Information Feedback and

Efficiency of Array Codes

by

Esteban Luis Vallés

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2007

Professor John D. Villasenor, Co-Chair

Professor Richard D. Wesel, Co-Chair

The main contribution of the thesis provides techniques for symbol frequency

and phase tracking in a pilotless Low-Density Parity-Check (LDPC) coded trans-

mission over an AWGN channel. In traditional receiver architectures, symbol ac-

quisition and tracking are performed using phase-lock techniques that are indepen-

dent of the channel-code decoding process. In burst reception scenarios, bandwidth

inefficient piloting must often be embedded in a transmission in order to accelerate

acquisition to aid symbol time tracking at low signal-to-noise ratios (SNRs). In this

thesis we show that outputs from the constraint node side of a bi-partite decoding

graph can be used to improve the estimation of symbol frequency and phase. We

focus on the problem of a symbol frequency and/or timing offset between transmit-

ter and receiver and describe a method capable of handling very large offsets with
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complexity that grows linearly with the maximum offset size. Combining informa-

tion from the set of parity-check equations of a LDPC code observations with a

properly calibrated phase locked loop allows successful tracking of a constant time

delay, a frequency offset and a random phase walk.

The problem of carrier-phase estimation in a coded environment is also ad-

dressed. Once again we assume a pilotless scenario where, by feeding back soft

information from an iterative LDPC decoder, the phase information of the carrier

is estimated. The joint problem of symbol-timing estimation in a digital transmis-

sion affected by carrier phase offsets is also analyzed.

We conclude this dissertation by examining the rate efficiency of array codes.

By allowing a slight increase in encoding and decoding complexity, we observed that

the same error correcting properties of these codes can be achieved by Hamming

and Reed-Solomon (RS) codes over GF (q). For single phased burst correction,

non-binary Hamming codes maximize the possible code rate and can be decoded

with similar complexity as array codes. For multiple burst correction, RS codes

offer the same error correcting capability as array codes with a higher code rate.

xiv



Chapter 1

Introduction

A communication system transports information from a data source to a single

or multiple user destination via a communication channel. Most physical communi-

cation channels are analog in nature. The information from the source is generated

in the form of digital bits, which are used to modulate the properties of an analog

carrier waveform. In order to minimize the average symbol-error rate, error cor-

recting codes are commonly used. Fig. 1.1 shows how channel coding techniques

insert redundant data before the modulation is performed to protect the source

information from noisy interference present in the channel. The receiver block per-

forms a mapping of the output of the communication channel back into the digital

domain. This is done by sampling the continuous waveform at instants chosen by

the timing recovery block. The receiver then decodes the demodulated data and

forwards its decisions to the information destination.

In this chapter we briefly explain how the different blocks in Fig. 1.1 work, and

how this dissertation contributes to different aspects of a digital communication

system.

1.1 Digital Communication Systems

Fig. 1.1 shows a block diagram of a typical digital communications system. The

information source, generates information data bits m. These bits are passed to

1



a channel encoder that adds additional redundant symbols to the original bits m.

This allows most of the errors - introduced in the process of modulation, transmis-

sion over a noisy medium and demodulation - to be corrected at the receiver side.

The channel model assumed in this dissertation is an additive white gaussian noise

(AWGN) process with samples that are independent from the source symbols. At

the receiver end, after the timing recovery block produces digital samples from the

received waveform, the channel decoder utilizes the redundant symbols to correct

data-symbol errors present in r. In a classical error correcting codes (ECC) sys-

tem, hard-decision bits from the demodulator are fed into a binary decoder. To

understand this concept, suppose a communication system transmits symbols with

two possible values ±A, that are received with additive noise n. A hard-decision

decoding technique will likely define a threshold ρ, and use a decision rule: Â = A

if r > ρ or Â = −A otherwise. With hard decoding, the only information used

from the received signal is whether it is above or below a certain threshold. In

contrast, soft-decision decoding algorithms use all the available information at the

receiver before making a decision. In the previous example, besides considering

whether the received symbol is above or below a threshold, a soft-metric will also

consider the relative value of the signal compared to ρ. Soft-decision algorithms

achieve a reduction in the required transmitted power per bit, or a lower average

symbol-error rate for a given transmitted power as compared to hard decision al-

gorithms. Soft-decision algorithms are used throughout this dissertation, unless

noted otherwise.

1.2 Error Control Coding

The history of ECC started with the introduction of block coding in the form of

Hamming codes around 1950 [1], at about the same time as the work of Shannon

[2]. In block coding, a binary information sequence is segmented into message

blocks of fixed length. Each message block m consists of k information bits which

can generate a total of 2k distinct messages. The encoder transforms each input

message m into a binary n-tuple c referred to as the codeword of the message.

2



Information
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Modulation
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Figure 1.1: Digital Communications Channel

The set of 2k possible codewords is called a block code. A desirable property for

a block code to posses is linearity, which occurs when the 2k codewords form a

k-dimensional subspace of all n-tuples over the field GF (2). A binary block code

is linear if and only if the modulo-2 sum of any two codewords is also a codeword.

A codeword can thus be represented as the product c = m · G, where G is the

generator matrix that spans the (n, k) linear code C. Note that G can be created

with any k linearly independent codewords of an (n, k) linear code. For any k × n

matrix G there exists an (n − k) × n matrix H with linearly independent rows,

such that any vector in the row space of G is orthogonal to the rows of H . Hence

the code can also be described by the parity-check matrix H such that c ·HT = 0.

We can also write H as,

H =
[

H1 H2

]

, (1.1)

where H1 is an (n − k) × k matrix and H2 is an (n − k) × (n − k) matrix. H2

is constructed to be invertible, so that by row transformation through left multi-

plication with H−1
2 , we can obtain a systematic parity check matrix Hsys that is

range equivalent to H ,

Hsys = H−1
2 H =

[

H−1
2 H1 In−k

]

. (1.2)

3



Augmentation of the transposition of the left hand portion of the systematic parity

check matrix Hsys with Ik yields the systematic generator matrix,

Gsys =
[

Ik
(
H−1

2 H1

)T
]

. (1.3)

The rows of Gsys span the codeword space. It is clear that, GHT = GsysH
T
sys = 0.

It should be noted that even if the original H matrix is sparse (as in the case of

LDPC codes), neither Hsys nor Gsys need to be sparse in general. Gsys is used for

encoding and the sparse parity matrix H is used for iterative decoding.

Any linear code can also be represented using a bi-partite Tanner graph [3].

These graphs have two sets of nodes - a set representing the transmitted bits and

another set representing the constraints that the transmitted bits have to satisfy.

For illustrative purposes consider a (7,4) Hamming code [1]. Its parity-check matrix

is depicted in Fig. 1.2(a) together with its bi-partite graph, shown in Fig. 1.2(b).

In this graph, n variable nodes form the left vertex set are connected to (n − k)

constraint nodes that form the right vertex set. Each variable node in the graph

corresponds to one bit in the codeword, i.e. to one column of H . Each check

node corresponds to a parity-check equation, i.e. one row of H . In the case of

a systematic code, such as the one on Fig. 1.2(a), the first k variable nodes are

message nodes and the last (n − k) are parity nodes. If the entire set of variable

nodes forms a valid codeword, then the exclusive-or performed on each constraint

node will be zero. This can be mathematically expressed by the syndrome equation

s = r · HT where s = 0 ↔ r ∈ C. Iterative decoding algorithms work by passing

messages between variable and constraint nodes, until a solution that satisfies

s = 0 is found. Once this solution is found, the decision bits are forwarded to the

information destination, as shown in Fig. 1.1.

1.2.1 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were proposed by Gallager in the early

1960s [4,5]. A LDPC code is a block code whose matrix H is sparse i.e. the parity-

4
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Figure 1.2: (a) (7,4) Hamming Code. (b) Corresponding Tanner graph. Cycle of
length 4 shown in bold.
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check matrix is primarily populated by zeros. Fig. 1.3 shows a parity-check matrix

of a LDPC code with (n, k) = (1944, 972). For this code, only 7181 out of its

1972 × 972 = 1889568 matrix positions (i.e. 0.37%) are non-zero. The structure

of Gallager’s codes (uniform column and row weight) led them to be called regular

LDPC codes. Gallager provided simulation results for codes with block lengths on

the order of hundreds of bits. However, these codes were too short to approach

Shannon capacity (which is achievable in the limit of infinite block length) [2].

Furthermore, the computational resources to support longer random codes were

decades away from being broadly accessible. Hence the LDPC coding received

little attention from the research community for a period of over 30 years.

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

Variable Nodes

C
on

st
ra

in
t N

od
es

Figure 1.3: Parity check matrix for (n,k)=(1944,972) Irregular LDPC code

Following the ground breaking demonstration by Berrou et al. [6] of the impres-

sive capacity-approaching capability of long random linear (turbo) codes, MacKay

[7, 8] re-established interest in LDPC codes during the mid to late 1990s by pro-

6



viding a diverse set of construction methods for regular codes. Luby et al. [9]

formally showed that properly constructed irregular codes can approach capacity

more closely than regular codes. Richardson, Shokrollahi and Urbanke [10] cre-

ated a systematic method called density evolution to analyze and synthesize degree

distributions in asymptotically large random bipartite graphs under a wide range

of channel realizations. As in the case of turbo codes, LDPC codes belong to the

class of codes that can be efficiently decoded via iterative techniques. The work

presented in the first five chapters of this dissertation exploit different properties

of this type of error correcting codes.

1.2.2 Array codes

Array codes refer to a general class of algebraic error-correcting codes for use in

detecting and correcting error bursts [11, 12, 13]. Each codeword is represented

as a rectangular array. The dimensions of this array vary according to the error

correcting capability of the code. These arrays define codewords in a block code by

reading out the entries in the array in a particular order. However, they can also

be considered as two-dimensional codewords that can be used in applications that

store information in a two-dimensional medium, such as memories or hard drives.

As it will be further explained in Chapter 6, one of the properties of these codes is

that its parity-check equations, represented by constraint nodes, can be performed

using exclusive-OR (XOR) operations over diagonal lines of the array. A binary

parity-check matrix of an array code of length n = 20 is shown in for illustrative

purposes in Fig. 1.4.

1.3 Digital Modulation Techniques

When digital data is transmitted over a band-pass channel, it is necessary to modu-

late the incoming data onto a carrier wave (usually sinusoidal) with fixed frequency

limits imposed by the channel. The modulation process involves switching or key-

ing the amplitude, frequency, or phase of the carrier in accordance with the incom-
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Figure 1.4: Parity check matrix for (n,k)=(20,12) array code.

ing data. Thus there are three basic modulation techniques for the transmission of

digital data; they are known as amplitude-shift keying (ASK), frequency-shift key-

ing (FSK), and phase-shift keying (PSK), which may be viewed as special cases of

amplitude modulation, frequency modulation and phase modulation, respectively.

In this this thesis we will concentrate on PSK modulations.

Modulation is defined as the process by which some characteristic of a carrier is

varied in accordance with a modulating wave [14]. In digital communications, the

modulating wave consists of anM−ary encoded version of the data. Fig. 1.5 shows

three PSK constellations for different values of M. For the carrier signal, we will use

a sinusoidal wave. In our case, the feature used by the modulator to distinguish one

signal from another is a step change in the phase of the carrier. Fig. 1.6 shows how

the phase of a sinusoidal carrier is modulated by a sequence of alternating binary

symbols. To perform demodulation at the receiver, we have the choice of coherent

8
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Figure 1.5: M-PSK constellations, for M={21, 22, 23}

or noncoherent detection. In the case of coherent detection, the receiver requires

the knowledge of the carrier’s phase reference. Since this information is usually

not known a-priori by the receiver, a carrier synchronization algorithm is usually

used in the demodulation process. One of the contributions of this dissertation

involves a carrier phase-recovery circuit that, unlike traditional receivers, utilizes

information from the channel code decoder to aid the synchronization process in a

pilotless environment. In noncoherent detection, knowledge of the carrier’s phase is

not required. The complexity of the receiver is therefore reduced at the expense of

inferior error performance. The coherent reception of digitally modulated signals

require that the receiver is synchronous to the transmitter. To accomplish this we

need two basic modes of synchronization:

1. Carrier Synchronization: knowledge of both the frequency and phase of the

carrier wave.

2. Symbol Synchronization: the receiver has to know the time instants at which

the modulation can change its state so that it can determine when to sample

These two synchronization operations can be coincident or can occur sequen-
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Figure 1.6: B-PSK signal as a function of time (top) and frequency (bottom).

tially one after the other. In order to aid the synchronization process it is also

common to include a pilot signal in the transmission. This signal is known both

at the transmitter and the receiver and is transmitted for supervisory, control,

equalization, synchronization, or reference purposes but carries no information.

We thus see that a multitude of modulation/detection schemes exist, each

scheme offering different advantages. The trade-off space includes the following

design goals:

• Maximum data rate.

• Minimum probability of symbol error.

• Minimum transmitted power.

• Minimum channel bandwidth.
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• Maximum immunity to interfering signals.

• Minimum circuit complexity.

Many of these goals have conflicting requirements so it is the choice of the engineer

to try to select the extent to which each goal will be achieved based on what is

feasible and the requirements of a specific system. This dissertation provides new

techniques that increase the space of what is feasible, providing new choices in the

trade-off space.

1.4 Outline

The rest of the dissertation is organized as follows. Chapter 2 introduces different

soft-decoding iterative algorithms for LDPC codes. A new algorithm that we refer

to as “Approximate Min* Belief Propagation” is presented. In Chapter 3 a pilotless

symbol synchronization algorithm that uses information based on the constraint

nodes of an LDPC code is introduced. This method assumes that perfect carrier

synchronization occurs at the receiver. Chapter 4 presents a pilotless carrier-phase

synchronization circuit, that also uses information from the LDPC decoder, as-

suming that the symbol timing and the carrier frequency are known. In Chapter 5,

the combined problem of carrier-phase and symbol timing synchronization is ad-

dressed. Finally Chapter 6 focuses on maximizing the code rate of array codes. We

propose using Hamming and Reed-Solomon codes for array code applications thus

increasing the code rate at the expense of a slight increase in circuit complexity.

11



Chapter 2

Decoding Methods for LDPC

Codes

In [4,5], Gallager introduced several decoding algorithms for LDPC codes. One

of these algorithms is representable as a special case of the Sum-Product algorithm

that has since been identified for general use in factor graphs [15] and Bayesian

networks [16]. Some forms of the Sum-Product algorithm are better suited for

implementation than others. It is possible to differentiate each potential technique

through the examination of their respective operator sets and word length require-

ments. Given unlimited precision, however, all of these forms yield the same a

posteriori (APP) estimation and we classify them collectively as the group of Full

Belief Propagation (Full-BP) implementations.

Even Full-BP algorithms suffer performance degradation as compared to the

optimum maximum likelihood (ML) decoder for a given code. This is due to the

fact that bipartite graphs representing finite-length codes without singly connected

nodes are inevitably non-tree-like. Cycles in bipartite graphs, such as the one shown

in Fig. 1.2(b), compromise the optimality of Sum-Product decoders. The existence

of cycles implies that the neighbors of a node are not in general conditionally

independent (given the node), therefore Full-BP algorithms produce inaccurate a-

posteriori probabilities. Code conditioning techniques [17] can be used to mitigate

the non-optimalities of iterative decoders. Establishing the true ML performance
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of LDPC codes with length beyond a few hundred bits is generally viewed as an

intractable problem.

Most of the work in this particular field of coding relies on the use of Monte

Carlo simulation to demonstrate code performance in terms of Bit Error Rate

(BER) vs. Signal to Noise Ratio (SNR). At very low SNRs, errors occur often,

and a sufficient statistic can be gathered readily with a workstation. However,

at higher SNRs the situation is different. As SNR is increased the initial rapid

decline of BER flattens somewhat. The knee of this flattening on a plot of BER vs.

SNR indicates the beginning of the error-floor region of the code. Since the BER

level of well conditioned codes lies below 10−8, workstation simulation provides an

inadequate means for finding a statistically sufficient set of error events to make

accurate statements about the error floors of a given code. In this chapter, we

present techniques for integer implementation and high-speed parallel realization

of an LDPC decoder such that a system can be constructed on a FPGA board to

search for error-floor events in time frames that are at least 3 orders of magnitude

faster than simulations provided by workstations.

In the next section we begin by describing the concept of message passing itera-

tive decoding techniques. In section 2.1.2 the core decoding algorithm is presented.

This algorithm is a carefully optimized and a reduced-complexity version of the so-

called Belief Propagation (BP) algorithm [16]. We note that the BP algorithm for

LDPC decoding has been mapped to hardware in [18]. However, the authors of [18]

did little to directly reduce the complexity of the decoding computations. This

chapter develops a lower complexity (shift-and-add) decoding technique. While

the new technique (even in the limit of infinite precision) does not implement BP

decoding exactly, it suffers little or no performance loss in comparison to the BP

decoder. Section 2.2 gives a discussion of finite precision issues and provides per-

formance data for several quantization schemes. Section 2.3 describes the LDPC

codec that has been developed at UCLA based on the constraint update technique

of this chapter. Concluding remarks are made in section 2.4.
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2.1 Message Passing Decoding

Let x be the transmitted signal corresponding to a binary codeword c using BPSK

modulation: x = 2c − 1. Let y be the received signal equal to the sum of x and

channel noise. A message passing decoder tries to solve for the value of x based

on the knowledge of y. There are many ways to describe a soft-decision message

passing algorithm. The one used in this dissertation exchanges log-likelihood ratios

(LLRs) of the available information. The iterative decoding algorithms described

in this work are commonly known as flooding algorithms, and behave as follows.

We define as u a message incident on a variable node,

u = ln

(
p (x = 0|Y )

p (x = 1|Y )

)

, (2.1)

and v as the incident message on a check node,

v = ln

(
p (x′ = 0|Y ′)

p (x′ = 1|Y ′)

)

, (2.2)

where primes in x′ and y′ are used to differentiate between left and right-going

messages. At time zero, every variable node has an associated received message

u0
i . Messages are exchanged between nodes along the edges of the graph in discrete

time steps. First, each variable node sends a message to each connected check node

taking values in some message alphabet, as we will discuss in section 2.1.1. Each

check node processes the messages it receives and sends back, to each neighboring

variable node, a new message. Each variable node now processes the new messages

it received together with its associated received value from the channel to produce

new messages which it then sends to its neighboring check nodes. For every time

step, a cycle or iteration of message passing proceeds with check nodes processing

and transmitting messages followed by the variable nodes processing and transmit-

ting messages. An important condition on the processing is that a message sent

from a node along an adjacent edge may not depend on the message previously

received along the same edge . This guarantees that only extrinsic information is

passed along. This is known to be an important property of good message-passing
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decoders [19].

2.1.1 Belief Propagation Algorithm

Belief propagation, is an iterative algorithm for computing marginals of functions

on a graphical model commonly used in computer science and information theory

problems. Judea Pearl in [16] developed a message-passing scheme that updates

the probability distributions for each node in a graph in response to observations

of one or more variables. This algorithm is provably efficient on trees but has

also demonstrated empirical success in numerous applications applications such as

LDPC codes that are not tree-like due to the presence of cycles.

Constraint Update Equations

For illustrative purposes, assume a constraint node of degree dc = 4 like the one

shown in Fig. 2.1(a). The constraint node equation for c1 can be written as:

v1 + v2 + v3 + v4 = 0. (2.3)

Note that the indices i for the incoming messages vi correspond to the incoming

edge number. In the above equation message v4 corresponds to a message sent

from variable node n5 to constraint node c1.

The outgoing message U3 going towards n3 is defined as follows:

pU3 = pn3,c1 = P (n3 = 1, c1|Y )

= P (v3 = 1, v1 + v2 + v3 + v4 = 0|Y )

= P (v1 + v2 + v4 = 1|Y )

= p1(1 − p2)(1 − p4) + (1 − p1)(p2)(1 − p4)+

(1 − p1)(1 − p2)p4 + (p1p2p4)

=
1

2
− 1

2

∏

i∈{1,2,4}
(1 − pi)

(2.4)

where probabilities are labeled pto,from, pedge and pi = p(vi = 1) .
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In practice, message passing algorithms do not use probability measures since

product operations performed on probabilities are not easily represented. An initial

attempt to solving this numerical method consists in replacing probabilities by

likelihood ratios. Consider an even simpler example than (2.4) that will help us to

derive the general update equations. Let us assume dc = 3 ⇒ v1 + v2 + v3 = 0.

For a check-node of this type the likelihood ratio of this probability measure going

from c1 to n1 is:

λU1 = λn1,c1 =
(1 − pn1,c1)

(pn1,c1)
=

1

2
+

1

2

∏

i∈{2,3}
(1 − pi)

1

2
− 1

2

∏

i∈{2,3}
(1 − pi)

=
1 − p2 − p3 + 2(p2p3)

p2 + p3 − 2(p2p3)

=

1 +

(
1 − p2

p2

)(
1 − p3

p3

)

(
1 − p2

p2

)

+

(
1 − p3

p3

)

=
1 + λ2λ3

λ2 + λ3

.

(2.5)

The last step before obtaining the message passing equations for the sum-product

algorithm combines the logarithm of the likelihood equation (2.5) ln(λU1) with the

exponential representation of the hyperbolic tangent

tanh(α) =
1 − e−2α

1 + e−2α
. (2.6)

When (2.5) and (2.6) are combined together we obtain:

tanh

(
1

2
ln(λU1)

)

=
1 − e

λ2 + λ3

1 + λ2λ3

1 + e

λ2 + λ3

1 + λ2λ3

=
(1 − λ2)(1 − λ3)

(1 + λ2)(1 + λ3)
= tanh(

1

2
λ2) tanh(

1

2
λ3).

(2.7)

The general equation for a constraint node of degree dc is therefore:
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tanh

(
1

2
lnλUj

)

=

dc∏

i=1,i6=j
tanh

(
1

2
lnλvi

)

. (2.8)

Variable Update Equations

We now consider a message going from a variable node of degree dv = 3, going

along the edge that connects the variable node n1 with check node c2, as shown in

Fig. 2.1(b).

pV2 = pc2,n1 = P (n1 = 1|u0, u1, u3, Y ) =
P (n1 = 1, u0, u1, u3, Y )

P (u0, u1, u3, Y )

=
P (n1 = 1, u0, u1, u3, Y )

P (n1 = 1, u0, u1, u3, Y ) + P (n1 = 0, u0, u1, u3, Y )

≈ P (n1=1,u0,Y )P (n1=1,u1,Y )P (n1=1,u3,Y )
P (n1=1,u0,Y )P (n1=1,u1,Y )P (n1=1,u3,Y )+(1−P (n1=1,u0,Y ))(1−P (n1=1,u1,Y ))(1−P (n1=1,u3,Y ))

The last approximation is due to the fact that the independence assumption does

not hold for graphs with cycles. Likelihood ratios applied here yield:

λV2 = λc2,n1

=
1 − pc2,n1

pc2,n1

≈ (1 − P (n1 = 1, u0, Y ))(1 − P (n1 = 1, u1, Y ))(1 − P (n1 = 1, u3, Y ))

P (n1 = 1, u0, Y )P (n1 = 1, u1, Y )P (n1 = 1, u3, Y )

= λu0λu2λu3

Clearly the generic log-likelihood (LLR) generic equation is:

ln
(
λVj

)
=

dv∑

i=1,i6=j
ln (λui

). (2.9)

In the following sections the term messages will refer, unless noted otherwise, to

LLRs.
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Figure 2.1: Messages generated at constraint and variable nodes

2.1.2 Approximate-Min* BP decoding

In this section alternative technique for processing constraint node updates is

presented that is suitable for hardware implementation of LDPC decoding. The

method is stated and is then followed by a description of the steps taken to achieve

its derivation.

We begin on the variable node (left hand) side of the bi-partite graph. Here, u

messages arrive and V messages depart. At the constraint node (right hand) side

of the graph v messages arrive and U messages depart. All four message types are

LLRs such as (2.1) and (2.2).

For a given check node of degree dc, there are dc variable node messages (vj’s)

arriving to it. The notation UAPP denotes a constraint node outgoing message de-

termined by all arriving variable messages (and is defined to be the constraint node

a-posteriori probability). The notation UAPP\vj denotes the outgoing constraint

message determined by all incoming edges with the exception of edge vj . Note that

message vj represents intrinsic information that is left purposefully absent in the
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extrinsic message UAPP\vj .

Algorithm 1 Approximate Min* B.P

1: Initialize

{

vmin = min
j=1..dc

(|vj|) , δ0 = ∞
}

2: for k = 1 · · ·dc do
3: if k 6= min then
4: δk =

∣
∣ΛBP ∗

(
δk−1, vk

)∣
∣

5: else
6: δk = δk−1

7: end if
8: end for
9: δAPP\vmin = δdc

10: δAPP =
∣
∣ΛBP ∗

(
δAPP\vmin, vmin

)∣
∣

11: σAPP =
dc∏

j=1

sgn(vj)

On the constraint side of the graph, perform on each node, the computations

described in Algorithm 1. Constraint message updates then follow from,

Uj
j={1..dc}\min

= sgn(vj) sgn(σAPP )δAPP

Umin = sgn(vmin) sgn(σAPP )δAPP\vmin

(2.10)

where δk is a storage variable, and ΛBP ∗

will be defined shortly.

From 2.9 we observe that variable node updating follows a linear process and

is well suited to hardware adaptation in its unaltered form,

V APP =

dv∑

j=0

uj Vj
j=1..dv

= V APP − uj. (2.11)

where dv is the variable node degree.

Derivation of the Approximate-BP constraint node update begins with the

so called ‘Log-Hyperbolic-Tangent’ definition of BP constraint updating. In the
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equation below, sign and magnitude are separable since the sign of LnTanh(x) is

determined by the sign of x.

UAPP =

[
dc∏

j=1

sgn(vj)

]

ln










1 + e

−
dcP

j=1
ln

0B�1 + e−|vj |

1 − e−|vj |

1CA
1 − e

−
dcP

j=1
ln

0B�1 + e−|vj |

1 − e−|vj |

1CA









(2.12)

This equation is highly non-linear and requires substantial simplification before

mapping to hardware. To begin, the above computation can be performed by first

considering the inner recursion in (2.12),

dc∑

j=1

ln

(
1 + e−|vj |

1 − e−|vj |

)

. (2.13)

A total of dc table look-ups to the function ΛlnBP = ln

(
1 + e−|vj |

1 − e−|vj |

)

followed

by dc−1 additions complete the computation in (2.13). Furthermore, the linearity

of the inner recursion allows intrinsic variable values to be ‘backed-out’ of the

total sum before dc outer recursions are used to form the dc extrinsic outputs. To

summarize, computation of all dc extrinsic values (in (2.12)) follow from dc table

look-ups, dc − 1 additions, dc subtractions, and a final dc table look-ups. The cost

of computing the extrinsic sign entails dc − 1 exclusive-or operations to form the

APP extrinsic sign, followed by dc incremental exclusive-or operations to back-out

the appropriate intrinsic sign to form each final extrinsic sign.

Variable node computation (2.11) is more straightforward. However, a possible

alternative to (2.11) is given in [20] where it is noted that codes lacking low degree

variable nodes experience little performance loss due to the replacement of Vj with

V APP . However, codes that maximize rate for a given noise variance in an AWGN

channel generally have a large fraction of degree-2 and degree-3 variable nodes [10].

Low degree nodes are substantially influenced by any edge input and V APP may

differ significantly from corresponding properly computed extrinsic values. We

have found experimentally that using V APP alone to decode capacity approaching
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codes degrades performance by one dB of SNR or more.

We continue toward the definition of an alternative constraint update recursion

by rearranging (2.12) for the dc = 2 case,

sgn(v1)sgn(v2) ln

(
1 + e|v1|+|v2|

e|v1| + e|v2|

)

= ln

(
1 + ev1+v2

ev1 + ev2

)

. (2.14)

Two applications of the Jacobian logarithmic identity (ln(ea+eb) = max (a, b)+

ln
(
1 + e−|a−b|)) [21] result in the Min* recursion that is discussed in the rest of the

chapter,

ΛBP ∗

(v1, v2) = sgn(v1)sgn(v2)







min (|v1| , |v2|)
+ ln

(
1 + e−(|v1|+|v2|)

)

− ln
(
1 + e−||v1|−|v2||

)






. (2.15)

Note that (2.15) is not an approximation. It is easy to show that dc − 1 recur-

sions on ΛBP ∗

yield exactly UAPP in equation (2.12). Furthermore, the function

ln
(
1 + e−|x|) ranges over (ln(2), 0) which is substantially more manageable than

the range of the function ΛLnBP , Range

(

ln

(
1 + e−|x|

1 − e−|x|

))

= (∞, 0) from a nu-

merical representation point of view. However, the non-linearity of the recursion

(2.15) implies that updating all extrinsic information at a constraint node requires

dc (dc − 1) calls to ΛBP ∗

. This rapidly becomes more complex than the 2dc look-up

operations (augmented with 2dc − 1 additions) required to compute all extrinsic

magnitudes based on the form in (2.12). Again, in this earlier case intrinsic values

can be ‘backed-out’ of a single APP value to produce extrinsic values.

Instead of using the recursion in (2.15) to implement Full-BP we propose that

this recursion be used to implement an approximate BP algorithm to be referred

to as Approximate-Min*-BP (A-Min*-BP). The algorithm works by computing

the proper extrinsic value for the minimum magnitude (least reliable) incoming

constraint edge and assigning the UAPP magnitude in conjunction with the proper

extrinsic sign to all other edges.

To provide intuition as to why this hybrid algorithm yields good performance,

note first that a constraint node represents a single linear equation and has a known
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‘solution’ if no more than one input variable is unknown. Consider the following

two scenarios. First, if a constraint has more than one unreliable input, then all

extrinsic outputs are unreliable. Second, if a constraint has exactly one unreliable

input, then this unknown input can be solved for based on the extrinsic reliability

provided by the ‘known’ variables. In this second case all other extrinsic updates

are unreliable due to the contribution of the unreliable input. The approximation

in the suggested algorithm assigns less accurate magnitudes to would-be unreliable

extrinsics, but for the least reliable input preserves exactly the extrinsic estimate

that would be produced by Full-BP.

We next show that UAPP always underestimates extrinsics. Here the notation

Umn represents the extrinsic information that originates at constraint node m and

excludes information from variable node n. Rearrangement of (2.12) (with standard
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Full-BP A-Min*-BP Offset-Min-BP
Table LookUps 2dc dc − 1 0
Comparisons 0 dc − 1 2dc − 3

Additions 2dc − 1 0 dc
XORs 2dc − 1 2dc − 1 2dc − 1

Tot Table Lookups 80000 35000 0
Tot Comparisons 0 35000 65000

Tot Additions 75000 0 40000
Tot XORs 75000 75000 75000
Tot Ops 230,000 145,000 180,000

Performance Reference NoLoss 0.1dB Loss

Table 2.1: Complexity comparison for three constraint update techniques. Full-BP
and A-Min*-BP have essentially the same performance. The simplest technique,
Offset-Min-BP, experiences about a 0.1dB loss [20]. Numerical values are shown
for a rate 1/2 code with: n− k = 5000, and average right degree dc=8.

intrinsic/extrinsic notation included [22]) yields the following,

∣
∣UAPP

∣
∣ = ln

1 +
∏

n′∈N(m)

1 − e−|vmn′ |

1 + e−|vmn′ |

1 − ∏

n′∈N(m)

1 − e−|vmn′ |

1 + e−|vmn′ |

(2.16)

1 − e−|UAPP |
1 + e−|UAPP | =




∏

n′∈N(m)\n

1 − e−|vmn′ |

1 + e−|vmn′ |





(
1 − e−|vmn|

1 + e−|vmn|

)

. (2.17)

Note first that the function g(x) =
1 − e−|x|

1 + e−|x| (a product of which comprises the

right hand side of (2.17)) ranges over (0, 1) and is non-decreasing in the magnitude

of x. The first (parenthesized) term on the right hand side of (2.17) equals the

extrinsic value Umn under the operator g(·), i.e. g(Umn). The second term scales

this value by the intrinsic reliability g(vmn). Hence, the monotonicity and range

of g(x) ensure that
∣
∣UAPP

∣
∣ < |Umn|. We provide the inverse function, g−1(x) =

ln
1 + x

1 − x
, for reference.

Underestimation in A-Min*-BP is curtailed by the fact that the minimum re-

liability g(vmin) dominates the overall product that forms UAPP . This term would
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have also been included in the outgoing extrinsic calculations used by Full-BP for

all but the least reliable incoming edge. The outgoing reliability of the minimum

incoming edge incurs no degradation due to underestimation since the proper ex-

trinsic value is explicitly calculated. Outgoing messages to highly reliable incoming

edges suffer little from underestimation since their corresponding intrinsic g(vmn)

values are close to one. The worst case underestimation occurs when two edges

‘tie’ for the lowest level of reliability. In this instance the dominant term in (2.17)

is squared. An improved version of A-Min*-BP would calculate exact extrinsics

for the two smallest incoming reliabilities. However, the results in Fig.2.2, where

the algorithm (using floating point precision) is compared against Full-BP (using

floating point precision) for short and medium length regular and irregular codes,

indicate that explicit extrinsic calculation for only the minimum incoming edge

is sufficient to yield performance that is essentially indistinguishable from that of

Full-BP.

The proposed algorithm is similar to the Offset-Min-BP algorithm of [20] where

the authors introduce a scaling factor to reduce the magnitude of extrinsic esti-

mates produced by Min-BP. The Min-BP algorithm finds the magnitude of the

two least reliable edges arriving at a given constraint node. The magnitude of the

least reliable edge is assigned to all edges except the edge from which the least

reliable magnitude came (which is assigned the second least reliable magnitude).

For all outgoing edges, the proper extrinsic sign is calculated. As explained in [22]

these outgoing magnitudes overestimate the proper extrinsic magnitudes because

the constraint node update equation follows a product rule (2.17) where each term

lies in the range (0, 1). The Min-BP approximation omits all but one term in this

product. To reduce the overestimation, an offset (or scaling factor) is introduced

to decrease the magnitude of outgoing reliabilities. The authors in [23] use density

evolution to optimize the offset for a given degree distribution and SNR. The opti-

mization is sensitive to degree sequence selection and also exhibits SNR sensitivity

to a lesser extent. Nevertheless, using optimized parameters, performance within

0.1 dB of Full-BP performance is possible.

By way of comparison, A-Min*-BP improves performance over Min-BP be-
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cause the amount by which UAPP underestimates a given extrinsic is less than the

amount by which Min-BP overestimates the same extrinsic. Specifically, the for-

mer underestimates due to the inclusion of one extra term in the constraint node

product while the latter overestimates due to the exclusion of all but one term

in the product. A direct comparison to Offset-Min-BP is more difficult. How-

ever, a simple observation is that in comparison to Offset-Min-BP, A-Min*-BP is

essentially ‘self-tuning’.

The range and shape of the non-linear portion (ΛBP ∗

) of the A-Min*-BP com-

putation are well approximated using a single, or at most a 2-line, piecewise linear

fit, as shown in Fig. 2.3. All of the fixed precision numerical results to be pre-

sented in section 2.2 use the 2-line approximation (as do the floating point results

in Fig. 2.2). Hence, the entire constraint node update is implemented using only

shift and add computations, no look-ups to tables of non-linear function values are

actually required.

The cost of constraint node updating for Full-BP (implemented using (2.12)),

A-Min*-BP, and Offset-Min-BP are given in Table 2.1. The latter two algorithms

have similar cost with the exception that dc − 1 table look-up operations in A-

Min*-BP are replaced with dc additions in Offset-Min-BP (for offset adjustment).

Note that use of a table is assumed for the representation of ΛLnBP . While ΛBP ∗

is well approximated using a two line piecewise fit employing power of 2 based

coefficients. Variable node updating occurs via (2.11) for all three algorithms.

2.2 Numerical Implementation

Minimum complexity implementation of the A-Min*-BP algorithm necessitates

simulation of finite word length effects on edge metric storage (which dominates

design complexity). Quantization selection consists of determining a total number

of bits as well as the distribution of these bits between the integer and fractional

parts (I,F) of the numerical representation. The primary objective is minimiza-

tion of the total number of bits with the constraint that only a small performance

degradation in the waterfall and error-floor BER regions is incurred. Quantization
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saturation levels (Sat = 2I) that are too small cause the decoder to exhibit prema-

ture error-floor behavior. We have not analytically characterized the mechanism

by which this occurs. However, the following provides a rule of thumb for the

saturation level,

Sat = − ln (p) ≈ ln

(
1 − p

p

)

where p = e−Sat.

This allows literal Log-Likelihood Ratio (LLR) representation of error probabilities

that are as small as p. In practice, this rule seems to allow the error-floor to extend

to a level that is about one order of magnitude lower than p.

In the results that follow, simple uniform quantization has been employed,

where the step size is given by 2−F . To begin, Fig. 2.4(a) shows that low SNR

performance is less sensitive to quantization than high SNR performance. A small

but noticeable degradation occurs when 2 rather than 3 fractional bits are used to

store edge metrics and 4 integer bits are used in both cases. In summary, 7 bits

of precision (Sign, 4 Integer, 2 Fractional) are adequate for the representation of

observation and edge metric storage in association with the considered code.

When power of 2 based quantization is used, the negative and positive satura-

tion levels follow [−2I−1, 2I−1 − 2−F ]. An alternative approach arbitrarily sets this

range between a maximum and a minimum threshold and sets the step size equal

to s = 2 ∗MaxRange/2TotalBits. This approach to quantization is more general

than the previous since the step size is not limited to powers of 2. We have found

that in the low SNR regime, smaller quantization ranges are adequate, but the

optimal step size remains similar to that needed at higher SNRs. Thus, opera-

tion at lower SNRs requires fewer overall bits given the general range approach to

quantization. For example for Eb/No = 1.0dB, when MaxRange = 10 and a total

of 6 bits were used, no performance degradation was observed. For higher SNR

values, MaxRange = 16 was the best choice. This agrees with the results obtained

28



using binary quantization with (I, F ) = (4, 2). The performance of this quantizer

is described in Fig.2.4(a) by the curve labeled ‘6bit G.R.’ (or 6 bit general range)

where in this case the range is set equal to (-10,10)@1.0dB;(-12,12)@1.2dB;(-16,

16)@1.4dB and a total of 6 bits (1 sign, 5 quant-bits) is used. Hence in this case

the general range quantizer is equivalent to the (1,4,1) power of 2 quantizer at

high SNR. At lower SNRs, the best case range was smaller than (-16,16) such that

general range quantization offers an added degree of freedom in precision allocation

that is useful in the context of LDPC decoding.

2.3 LDPC Codec FPGA Implementation

We have implemented the above constraint update technique along with many

other necessary functions in order to create a high throughput Monte Carlo simula-

tion for arbitrary LDPC codes. The design runs on a Xilinx Virtex-II XC2V4000-6

FPGA evaluation board from Nallatech systems running at 133 MHz and is in-

terfaced to a PC via a JAVA API. A block diagram is provided in Fig.2.5. The

Gaussian noise generator developed by the authors in [24] is instantiated next to

the decoder so as to avoid a noise generation bottleneck that exists when noise

is generated in the PC and passed to the decoder. This block directly impacts

the overall value of the system as a Monte Carlo simulator for error-floor testing

as good noise quality at high SNR (tails of the Gaussian) is essential. Since the

LDPC decoding process is iterative and the number of required iterations is non-

deterministic, a flow control buffer can be used to greatly increase the throughput

of the overall system. When compared to typical workstation throughputs of 10

- 20 kbps, Table 2.2 shows that even a single (non-parallel) slice decoder yields a

20x - 40x throughput improvement.

Through the use of JAVA as an soft interface to the board, we have been able

to facilitate the initiation and monitoring of simulations from remote locations.

Researchers around the world are able to upload their own LDPC codes for testing

on the “UCLA Monte Carlo System”.
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Iterations Length 1000 Irregular LDPC Length 800 Irregular LDPC
1 2.19 [Mbps] 2.20 [Mbps]
5 665 [Kbps] 684 [Kbps]
10 355 [Kbps] 367 [Kbps]
15 243 [Kbps] 252 [Kbps]
20 184 [Kbps] 191 [Kbps]

Table 2.2: FPGA Decoding Rates for Rate 1/2 LDPC codes
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Figure 2.5: Architecture block diagram.

2.4 Summary

A reduced complexity decoding algorithm that suffers little or no performance loss

has been developed and is justified both theoretically and experimentally. Finite

word lengths have been carefully considered and 6 to 7 bits of precision have been

shown to be adequate for a highly complex (a length 10,000 dlmax = 20 irregular

LDPC) code to achieve an error floor that is code rather than implementation

limited.
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Chapter 3

Iterative Pilotless Timing

Recovery via LDPC Code

Constraint Feedback

In traditional receiver architectures, symbol acquisition and tracking are per-

formed using phase lock techniques that are independent of the channel code de-

coding process. In burst reception scenarios, bandwidth inefficient piloting must

often be embedded in a transmission in order to accelerate acquisition and or to

aid symbol time tracking at low signal-to-noise ratios. In this chapter we show

that outputs from the constraint node side of a bi-partite decoding graph can be

used to direct estimation of symbol frequency and phase in a pilotless LDPC coded

transmission. We focus on the problem of a baseband symbol frequency and/or

time offset between transmitter and receiver and describe a method capable of

handling very large offsets with complexity that grows linearly with offset size.

Relatively large timing offsets may occur in receivers that need to determine baud

rates autonomously while finer offsets are often due to crystal oscillator mismatches

and Doppler-induced frequency shifts. Combining the constraint node observations

with a properly calibrated phase locked loop allows successful tracking of a constant

time delay, a frequency offset and a random phase walk.
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3.1 Overview

Recent advances in iteratively decoded channel codes such as LDPC codes make

it possible to operate at capacity-approaching SNRs [4]. This in turn places more

stringent requirements on the timing recovery portions of receivers, which must

successfully acquire and track symbols at these lower SNRs. Acquisition and track-

ing have traditionally been performed upstream of, and independently of, channel

decoding, and typically utilize a phase locked loop (PLL). However, the LDPC

decoding process provides information that can be fed back to the timing recovery

circuit to enable significantly improved performance relative to a system in which

no such feedback is present. This chapter describes the use of information from

constraint nodes of LDPC decoders for symbol synchronization, allowing operation

at very low SNRs where other timing synchronization methods typically fail. In

this chapter we also assume perfect carrier information and therefore work with

a baseband model. Joint timing and carrier parameter estimation is addressed in

Chapter 5.

LDPC codes are commonly represented using a bipartite graph containing two

sets of nodes. In the graph corresponding to an (n, k) code, the n variable nodes

correspond to the codeword symbols and the n− k constraint nodes represent the

constraints that the code places on the variable nodes in order for them to form a

valid codeword. The decoding procedure involves iterative computation of values

associated with these nodes, as described in Chapter 2. A constraint node rep-

resents a parity-check equation using a set of variable nodes as inputs. A valid

decoded codeword is obtained if all parity-check equations are satisfied. After each

iteration, the metrics associated with each constraint node can be evaluated to

determine the status of the associated parity check. Normally, this information is

utilized only within the LDPC decoding process to assess the convergence behavior

of the iterative processing. However, we show here that it has value in the timing

recovery process as well. The number and nature of satisfied constraint node equa-

tions provides a measure not only of code convergence but also of the underlying

accuracy of the timing estimates used in acquiring the sampled data input to the
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LDPC decoder.

The basic idea of coupling LDPC decoding with timing recovery has been ex-

plored in the past. For example, Barry et al. [25] and Liu et al. [26] have de-

scribed modifying a decision-directed Mueller-Müller timing error detector (M&M

TED) [27] by using feedback from decoded LDPC or turbo information to produce

better timing estimations. This approach gives significantly improved performance

over a system in which the data provided to the TED is derived directly from chan-

nel observations, before any iterative decoding is done. Sun and Valenti [28] inves-

tigate the use of multiple SNR estimators coupled with a Turbo decoder. Their

BER performances are very close to the perfect timing case, but their model is

able to track constant time delays only.

The previous work in this area has focused on the use of output codewords

produced as the iterations progress. By contrast, we exploit the information avail-

able from the metrics computed for the constraint nodes of an LDPC code during

the decoding process. In addition, we use a waveform model that more directly

captures the distortions induced by relative transmitter/receiver motion and other

receiver-side timing errors. The proposed solution is suitable not only for wired

communications where the transmitter and receiver are at fixed positions. It is

also suitable for mobile scenarios where relative motion exists between the trans-

mitter and receiver. This occurs in a wide range of applications including deep

space and satellite communications as well as general terrestrial mobile wireless

environments.

The rest of this chapter is organized as follows. In Section 3.2 we describe

the transmitter and timing offset model. In Section 3.3 the receiver architecture

is presented. Simulation results are presented in Section 3.4. Finally concluding

remarks are made in Section 3.5.
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Figure 3.1: Baseband transmitter and channel model. The waveform is constructed
as a series of superimposed root raised cosine pulses, after which noise is added
and timing offsets are introduced.

3.2 Baseband Transmitter and

Timing Offset Model

On the transmitter side, message symbols mi are fed into the LDPC encoder as

shown in Fig. 3.2. Note that the modulation and demodulation blocks from Fig. 1.1

have been removed and a baseband model is assumed, due to a perfect carrier

information assumption. For a (n, k) LDPC code, for every k input bits the encoder

generates a codeword of n bits. We consider a BPSK signal comprised of a series

of n root raised-cosine pulses hRRC(t), transmitted at integer multiples of a symbol

interval T and scaled by di, where di ∈ {±1} is the BPSK modulated value of the

ith symbol,

x(t) =

n−1∑

i=0

dihRRC (t− iT ). (3.1)

In a system with no timing errors, x(t) would be sampled at the receiver at

multiples of a sampling interval Ts. This produces a sampled received sequence

r[k] = x(kTs) + n(kTs), where n(kTs) is AWGN noise introduced by the channel.

The root-raised cosine pulses that form x(t) are designed to have zero crossings

at multiples of T . Therefore when no timing distortion occurs in the channel, the

received waveform is ISI-free when sampled at multiples of the symbol interval as

depicted in Fig. 3.2. When timing errors are present, the assumed time reference

for the kth sample at the receiver differs from the corresponding time reference at

the transmitter according to some function τ [k], giving the value of the kthsample

r[k] = x(kTs + τ [k]) + n(kTs). Substituting in (3.1) gives,
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r[k] =
n−1∑

i=0

dihRRC (kTs + τ [k] − iT ) + n(kTs). (3.2)

We consider the following timing error modalities.

3.2.1 Constant time offset

All pulses are affected by the same constant delay with respect to their ideal

sampling time:

τ [k] = D. (3.3)

3.2.2 Random walk

This models an accumulation process where the timing error at each sampling

instant is given by the previous error further perturbed according to a zero mean

Gaussian random variable with variance σ2
d, denoted N (0, σ2

d):

τ [k] = τ [k − 1] + N (0, σ2
d)Ts. (3.4)

3.2.3 Constant frequency offset

Constant frequency offset can occur when there is a mismatch between the trans-

mitter and receiver clock crystals or when there is a constant Doppler shift. A

frequency offset FPPM measured in parts per million, assuming an initial timing

offset of zero for the first symbol, is described by:

τ [k] = τ [k − 1] +
FPPM
106

Ts. (3.5)
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3.2.4 Generalized Doppler shift

The Doppler effect causes apparent change in the frequency of an electromag-

netic wave due to relative movement between the transmitter and the receiver.

A constant relative motion leads to a constant frequency offset, with the effect

described in (3.5) above. However, we consider the more general case in which

the relative velocity of the transmitter and receiver can vary with time. The in-

stantaneous Doppler frequency shift fd is a function of the symbol frequency 1/T ,

relative velocity v between the transmitter and receiver, and the speed of light c;

i.e. fd = v/(c T ). Mapping this into an appropriate perturbation τ [k] of the sam-

pling time for the kth sample requires properly computing the cumulative impact

of the velocity history.

The approach of mapping timing errors into perturbations of the sampling

times at the receiver is slightly different from that commonly used in previous

treatments of this subject. For example, in [25, 29, 30], timing errors are modelled

as perturbations of the symbol (as opposed to sample) times of the individual

pulses, leading to a waveform of the form,

x(t) =

n−1∑

i=0

di hRRC (t+ τi − iT ) , (3.6)

where τi is the timing error associated with the ith symbol. However, applying

differing timing shifts to individual pulses and then superimposing the shifted

pulses gives rise to inter-symbol interference (ISI). Thus, while such a model may

be appropriate for a system in which a principal source of timing error is symbol

clock jitter at the transmitter, it is not well suited for the present work, which

assumes a correctly constructed ISI-free waveform at the transmitter, and aims

to model perturbations induced by the relative motion between the receiver and

transmitter as well as other receiver-side timing estimation errors. Therefore, here

we use a perturbation model where timing distortion is introduced on a sample-

wise basis on the superimposed waveform x(t) instead of on a symbol-wise basis

prior to superimposing the pulses to construct the waveform. This difference is
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Figure 3.3: Eye diagram shows ISI for both perturbation models.

illustrated in Fig. 3.3 which shows eye diagrams for the two approaches in a noise-

free environment. Fig. 3.3(a) shows the eye diagram resulting from a perturbation

of the symbol times in accordance with (3.6). In this particular example, 200

symbols are used. The perturbation τi is based on a random walk with a symbol-

to-symbol standard deviation of 1% of the symbol period T . Fig. 3.3(b) shows

the eye diagram when the model of (3.2) is applied (assuming zero noise), again

using 200 symbols with an equivalent symbol-to-symbol random walk standard

deviation, implemented sample by sample, of 1% of T .

Fig. 3.4 illustrates the relationship between the timing error model and an asso-

ciated waveform. Fig. 3.4(a) shows an example frequency perturbation profile. In

this example, the frequency offset between transmitter and receiver is initially zero,

it then reaches a positive constant value, and finally falls again to zero. Fig. 3.4(b)

shows an ideal waveform comprised of the sum of 3 raised-cosine functions, prior

to the application of any timing perturbations. Note, however, that sample posi-

tions have been distributed in accordance to the τ [k] sequence determined by the

perturbation profile. The portions of the waveform transmitted during periods of

higher frequency offset appear compressed as viewed by the receiver. As shown

in Fig. 3.4(c), the receiver is not aware of the timing distortion and samples the

received waveform at evenly spaced intervals resulting in an overall compressed
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3.3 Receiver Model

Fig. 3.5 illustrates the receiver architecture which exploits feedback from the LDPC

decoder to manage timing errors due to constant time delay, frequency offset and

random walk. The received waveform is initially sampled at a intervals of Ts

and stored into a buffer. Ts is chosen to be sufficiently small to avoid any aliasing.

The interpolator computes interpolants at intervals of Ti using linear interpolation,

which are then used for the matched filtering process. In this work, we use Ti = T̂ /2

and Ts = T̂ /4, where T̂ is the receiver’s assumption of the transmitter symbol

period T̂ (i.e. the symbol period that would be seen by the receiver in the absence

of any timing perturbations).
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Loop 1 in Fig. 3.5 is first executed to recover constant time delays and fre-

quency errors. By using the number of satisfied constraints feedback from the

LDPC decoder, the phase estimator and the frequency estimator provide increas-

ingly accurate estimates of the phase and frequency errors. The phase estimator

provides the interpolator (after the matched filter) with a time offset, which is used

to correct the constant time delay. The frequency estimator provides a frequency

control word which is resampled at a rate of 1/Ts and fed to the numerically con-

trolled oscillator (NCO). This frequency adjustment loop is based on Gardner’s

timing processor model [31, 32], which ensures that the interpolator samples the

incoming signal at the frequency specified by the control word. The NCO se-

lects the desired base-point xr[kTs], while the “compute fractional interval” block

computes the appropriate fractional interval between xr[kTs] and xr[(k + 1)Ts].

Matched filtering is performed by the means of an FIR filter followed by another

interpolation step which corrects any remaining phase offset as determined by the

time delay estimator. These interpolants (one per period T̂ ) are supplied to the

LDPC decoder where the number of satisfied constraints is computed. Note that

it is important to have the matched filter inside the loop, since for the case of

tracking frequency offsets, it is important to supply the matched filter with the

“frequency corrected” samples to maximize its noise filtering performance.

After phase and frequency errors have been compensated in loop 1, loop 2 is

utilized to handle random walks and perform conventional LDPC decoding at the

same time. It can also correct residual phase and frequency errors remaining after

loop 1. A conventional first-order PLL-based circuit with a Mueller-Müller timing

error detector (M&M TED) is used. The M&M TED is decision-directed detector,

which requires knowledge of the transmitted symbols. Since our M&M TED is not

run in trained mode (where the transmitted symbols are known by the receiver),

we drive it with the symbols decoded by the LDPC decoder, analogous to the

approach used in the recent work of Barry et al. [25].
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3.3.1 Tracking time delays and frequency offsets

A PLL-based circuit can be effective for tracking small time delays and frequency

offsets, but is generally insufficient to track large time delays and frequency offsets,

as it will be shown in Section 3.4. In addition, PLLs can suffer from instability

problems when the loop gains are not properly calibrated. We address this by

utilizing the satisfied-constraint feedback from conventional LDPC decoders. In

this case the methods for tracking time delays and frequency offsets follow essen-

tially the same principle, we describe the approach in detail for the frequency offset

tracking case.

Fig. 3.6 shows the average percentage of satisfied constraints as a function of

frequency estimation errors for different SNRs (Eb/N0) and numbers of LDPC it-

erations. The (n, k) = (1944, 972) irregular LDPC code proposed for the IEEE

802.11n standard is used throughout this work [33]. As one would expect, higher

SNRs, more LDPC iterations, and smaller estimation errors lead to a higher per-

centage of satisfied constraints. More interestingly, the figure indicates the rate

of falloff as the estimation error increases, and shows that the best frequency er-

ror discrimination occurs for errors within approximately 200 ppm (i.e. 0.02%).

This information is used in determining the step size to use in the frequency offset

search. Fig. 3.6 also indicates the benefits (in increasing the percentage of satisfied

constraints) of increasing the number of iterations.

Instead of simply sweeping frequencies over the expected frequency offset range,

we employ a windowed search method. We present two iterative methods with

different convergence properties. The first method is explained in Algorithm 2.

For each “search iteration”, multiple LDPC decoding iterations are performed

for each candidate frequency error at evenly spaced steps in the window. For

the first search iteration, the frequency offset estimate giving the most satisfied

constraints is found. The search window is recentered to this frequency offset,

and then the search window and the step size are reduced by a factor of c1 and c2,

respectively, and the next search iteration is performed. The ComputeObs function

performs the following tasks: it first drives the NCO with the control word for the
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Figure 3.6: Percentage of satisfied constraints as a function of frequency estimation
error. Curves for 2, 4, and 6 LDPC iterations are shown for Eb/N0 of 1 and 2 dB.
An average of 500 trials are used for each data point.

frequency estimate, then performs interpolation on the incoming waveform, and

then conducts matched filtering followed by a second interpolation step to extract

the symbols z[iT ]. These symbols are fed to the LDPC decoder where the number

of satisfied constraints are computed.

There are seven key parameters: The number of search iterations, the number

of LDPC iterations per estimate, the minimum and maximum frequency error,

the initial step size, and the reduction factors c1 and c2. When c1 is large, the

search window shrinks at a fast rate, but this increases the risk of causing the

true frequency error to fall outside the search window. This can occur because

while Fig. 3.6 shows the average percentage of satisfied constraints, for any specific

realization the percentage may not fall monotonically with increasing frequency

error. Shrinking the search window less aggressively gives more opportunity to

leverage the average behavior as opposed to the behavior exhibited by a particular

realization. Similar computation/accuracy tradeoffs exist with the choice of c2. We
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Algorithm 2 Frequency Search: Method A

1: // Parameters: SearchIter,LdpcIter,MinFreq,MaxFreq,Step,c1 ,c2
2: WindowSize = MaxFreq-MinFreq
3: CenterFreq = (MinFreq+MaxFreq)/2
4: BestConst = 0
5: for i=0 to SearchIter-1 do
6: NoEstimates = ⌈(WindowSize/Step+1)⌉
7: for j=0 to NoEstimates-1 do
8: Estimate = CenterFreq+Step*(j-(NoEstimates-1))

9: ~Z = ComputeObs(Estimate)

10: SatConst = LdpcDecoder(~Z,LdpcIter)
11: if SatConst>BestConst then
12: Bestconst = SatConst
13: BestEstimate = Estimate
14: end if
15: end for
16: WindowSize = WindowSize/c1
17: Step = Step/c2
18: CenterFreq = BestEstimate
19: end for

have found c1 = 2 and c2 = 2 to be effective, meaning that the window size and

the step size are halved after each search iteration.

Fig. 3.7 explores the relationship between the number of search iterations,

LDPC iterations per estimate, and the accuracy of the resulting frequency esti-

mation. The figure shows diminishing returns after three search iterations. It also

shows that using four LDPC iterations generally gives little added benefit over

three iterations. Thus, we utilize three LDPC iterations per estimate and perform

a total of three search iterations. With this choice of parameters, the frequency

estimate is accurate to within 40 ppm.

An alternative algorithm (Algorithm 3) uses only one “Search Iteration” by

using a smaller step size. After computing the number of satisfied constraints for

the different hypothesis, an interpolation function based on the shape of Fig. 3.6

produces a more accurate estimation.

With regard to computational complexity, the total number of ComputeObs

function calls is given by the product of the number of search iterations and the
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Algorithm 3 Frequency Search: Method B

1: // Parameters: LdpcIter,MinFreq,MaxFreq,Step
2: WindowSize = MaxFreq-MinFreq
3: CenterFreq = (MinFreq+MaxFreq)/2
4: BestConst = 0
5: NoEstimates = ⌈(WindowSize/Step+1)⌉
6: for j=0 to NoEstimates-1 do
7: Estimate = CenterFreq+Step*(j-(NoEstimates-1))

8: ~Z = ComputeObs(Estimate)

9: SatConst = LdpcDecoder(~Z,LdpcIter)
10: if SatConst>BestConst then
11: Bestconst = SatConst
12: BestEstimate = Estimate
13: end if
14: end for
15: Computer Interpolated offset

number of candidate frequency errors explored per search (SearchIter × NoEsti-

mates). The total number of LDPC decoding iterations is given by the product

of the number of ComputeObs calls and the number of LDPC iterations per esti-

mate (SearchIter × NoEstimates × LdpcIter). For example, for a frequency offset

search window from −2000 ppm to 2000 ppm, initial step size of 400 ppm, and

three LDPC iterations at each frequency estimate, the first proposed algorithm

requires a total of 3 · 4000/400 + 1 = 33 ComputeObs calls and 33 · 3 = 99 LDPC

decoding iterations. On the other hand, the second proposed algorithm will use

a step size of 250 ppm with three LDPC iterations per estimate, yielding a total

of 3 · 4000/250 + 1 = 51 iterations that on average are within 70 ppm of the real

offset value. The choice of a particular method depends on the constraint of the

particular application. The first method is preferred for applications that require

great precision, whereas the later is preferred for scenarios where the available

computing resources are limited.

The accuracy and the computational burden are independent of the actual value

of the frequency error as long as it is contained within the initial search window.

Moreover, the complexity grows linearly with the frequency offset. An additional
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Figure 3.7: Relationship between the number of search iterations and the number
of LDPC iterations per frequency estimate on the frequency estimation error. An
initial step size of 400 ppm is used. An average of 500 trials using randomly selected
frequency offsets over ±2000 ppm are used for each data point.

advantage of this approach is that there is no PLL in this stage of the processing,

hence there are no loop gains that need to be calibrated.

Time delays can be tracked in the same manner. Based on experiments anal-

ogous to those used for frequency offsets, we chose a step size of 0.2T , one search

iteration, and three LDPC iterations per estimate. Again, c1 and c2 are chosen to

be two. At the cost of increased computational complexity it is also possible to

track waveforms where both time delays and frequency offsets are present. For this

case, Algorithm 4.2 is slightly modified where time delay tracking is in the outer

loop and the frequency offset tracking is in the inner loop.

3.3.2 Tracking random walks

Random walks are tracked with a first-order PLL-based circuit utilizing the LDPC

decoded symbols to aid the error estimation. The M&M TED generates an estimate
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of the timing error according to,

u[i] = s[i]d̂[i− 1] − s[i− 1]d̂[i], (3.7)

where s[i] is the symbol from the interpolator and d̂[i] is the decoded symbol from

the LDPC decoder. In practice, u[i] is noisy and needs to be attenuated via a loop

filter. We employ a first-order loop filter with an estimate updated according to,

c[i] = c[i− 1] +Kp× u[i], (3.8)

where Kp is the proportional gain and u[i] is the output of the M&M TED.

3.4 Experimental Results

For all experiments, we perform root raised-cosine pulse shaping with a roll-off

factor of 0.3, and use a 12-tap FIR filter for matched filtering. The loop gain of

loop 2 is fixed to Kp = 0.001. Fig. 3.8 shows the effects of frequency offsets and

random walks on the bit error rate (BER) for the case when no timing recovery

is applied. It illustrates that the BER penalty of timing errors can be quite high,

especially for higher values of Eb/N0. Hence, it is crucial to keep the timing error

as low as possible. As noted earlier in association with Fig. 3.7 in Section 3.3.1 the

method we present is able to track the frequency to within 40 ppm. Fig. 3.8 shows

that tracking to that accuracy will preserve nearly all of the BER performance.

Fig 3.9 shows the BER and frame error rate (FER) performance. The “perfect

timing” curves show the bounding BER and FER performance that would be

obtained if the receiver was given perfect knowledge of the timing offsets. The

other curves, in order of decreasing performance relative to the ideal case, show

the performance of “Loop 1 + Loop 2” (i.e. the approach described in Section 3.3

and shown in Fig. 3.5), the case where only Loop 1 is used, and the case where

only a PLL is used, for two different frequency offset values. “Loop 1 + Loop 2”

is better than loop 1 alone because, as noted previously, loop 2 is able to correct
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Figure 3.8: Effects of frequency offsets and random walks on the BER when no
timing recovery is applied. Curves for three different values of Eb/N0 are shown.
The figure shows that frequency tracking accuracy should be below about 50 ppm
to avoid signicant loss of BER performance.

residual frequency errors remaining after loop 1. Note that the performance of the

iterative PLL-only technique is severely degraded with a 500 ppm offset.

Fig. 3.10 shows the BER/FER performance for different timing offset models.

For constant time delays and frequency offsets, the receiver is able to get within

0.1 ∼ 0.2 dB of the ideal (i.e. perfect timing) code performance. The curve for the

random walk gets farther away from the ideal case with increasing SNR. For the

case when time delays, frequency offsets and random walks are present at the same

time, the performance is within 0.1 dB of the random walk only case, suggesting

that random walk is the dominant source of error.

3.5 Summary

A two-stage pilotless symbol timing recovery architecture is proposed where the

first stage corrects large-scale time delays and frequency offsets and the second
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stage tracks random walks and corrects residual time and frequency offsets. In

the first stage, constraint node feedback from the LDPC decoder is employed in a

search algorithm based on successively narrower windows to find the correct time

delay and/or frequency offset. In the second stage, a PLL-based loop is employed

where decoded symbols from the LDPC decoder are used to aid a timing error

detector. Simulation results show performance within 0.1 ∼ 0.2 dB of the ideal

(i.e. perfect timing knowledge at the receiver) code performance, and within 0.1

dB of the random walk only case, when time delays, frequency offsets and random

walks are present at the same time.
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Chapter 4

Carrier Phase-Synchronization via

LDPC Code Feedback

This chapter addresses the carrier-phase estimation problem under the low SNR

conditions often encountered in turbo- and LDPC-coded applications. In [34] a

decision directed carrier synchronization (DDCS) circuit that uses soft information

from an iterative LDPC decoder was presented for BPSK and QPSK constellations.

In this work we present a method that is able to handle arbitrary constellations.

Loop SNR equations are derived and the performance for different constellations

is shown. An extension of the DDCS algorithm is described that uses a search and

tracking method based on measuring the number of satisfied check equations at

the constraint node side of the decoder and is able to track arbitrary carrier phase.

4.1 Introduction

In recent years there has been increasing interest in highly efficient error-correction

codes such as turbo codes and low density parity check (LDPC) codes [4,9]. These

codes approach the Shannon channel capacity of the system and operate at very

low symbol signal-to-noise ratios (SNRs) thus requiring carrier synchronization

schemes that can track the carrier at these SNRs.

A significant research effort is underway in the area of joint decoding and carrier
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phase estimation. As described by Noels et al. [35], two somewhat distinct groups

of joint decoding and synchronization algorithms have evolved. The first of these

approach the problem by modifying iterative detection/decoding algorithms and/or

graphs to include parameter estimation. A partial list of such work includes [36,

37, 38, 39, 40, 41, 42, 43].

Of particular interest has been the work of Colavolpe et al. [43] where phase-

tracking processing nodes were introduced in the iterative decoding graph. Dauwels

et al. also investigated [40] specially adapted message-passing update rules. Howard

et al. [41] proposed a pilotless modulation technique for turbo-coded differential

8PSK modulation which uses 35 iterations to compensate a π/8 phase offset at

Eb/No = 4.5 dB. We also note the work of Nuriyev [39] on adapting density evolu-

tion to evaluate the performance of joint carrier-phase estimation in a pilot-assisted

environment.

The second group of algorithms passes messages between an independent phase

estimation block and an essentially unmodified iterative decoder. The resulting

architectures are often said to employ turbo synchronization [35]. Algorithms of

this type can can be found in [44, 45, 46, 47, 48].

The technique in this chapter falls into this second category and has the poten-

tially attractive feature that little modification is required with either the iterative

decoder or the carrier recovery block (which consists primarily of a phase-locked

loop (PLL)) [32]. Specifically, the work leverages the fact that LDPC symbol es-

timates can ‘wipe-off’ modulated symbols in a decision-directed carrier recovery

loop to enhance the carrier information such that a classic residual carrier PLL is

able to provide increasingly accurate phase estimates over LDPC iterations. The

method incurs a latency penalty (by way of increased iterations) as carrier phase is

acquired. However, complexity in terms of system description and area (in the case

of a real-time implementation) remains similar to that of state of the art residual

carrier recovery techniques currently used, for example, in NASA’s deep-space net-

work. Moreover, the proposed architecture can be used in conjunction with other

types of phase tracking loops in order to track residual carrier-phase errors at the

decoding stage.

52



The authors in [44] propose a related approach but have described a phase

estimate based on the instantaneous average of an entire block of received symbols.

Additionally, Lottici and Luise [46] have developed a blind recovery technique for

QAM receivers. The work in this chapter is also based on blind, or pilotless,

operation and we motivate this in part by recalling a result from Anastasopoulos

[36] who showed pilotless techniques to be more efficient at lower SNRs where pilot

insertion loss is considerable.

The rest of this chapter is organized as follows. The next section provides a de-

tailed description of the decision-directed carrier synchronization (DDCS) method.

We derive the tracking performance of the PLL in terms of its mean-square phase

error when operating in the linear (high loop SNR) region as is typical. In Section

4.3 we illustrate a digital baseband implementation that achieves the same perfor-

mance as the piecewise constant analog model considered in Section 4.2. Results

for different modulations are presented in Section 4.4. Finally, Section 4.5 gives

conclusions.

4.2 Tracking Performance

On the transmitter side, we consider a baseband signal comprised of root raised-

cosine pulses p(t) = hRRC(t), transmitted at multiples of a symbol interval Ts:

M(t) = mI(t) + jmQ(t) =

( ∞∑

k=−∞
dIkp (t− kTs)

)

+ j

( ∞∑

k=−∞
dQk

p (t− kTs)

)

.

Multiplication by a sinusoidal carrier signal yields the transmitted waveform:

YT (t) = M(t)e(jωct)

= yTI
(t) + jyTQ

(t)

= (mI cos(ωct) −mQ sin(ωct)) + j (mI sin(ωct) +mQ cos(ωct)) ,

(4.1)
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where ωc is the carrier frequency. A constant envelope modulation with {dIk, dQk
} ∈

{

±
√
P
2

}

(P is the carrier power) is initially assumed, although the proposed carrier

recovery method works for any type of constellation as described in Section 4.4. In

the transmission process, the signal in (4.1) is rotated by an angle θc and affected

by a bandpass AWGN process:

N(t) = (nI(t) + jnQ(t)) ej(ωct+θc),

where nI(t) and nQ(t) have single-sided noise power spectral density (PSD) equal

to N0.

( ; )RI cy t θ

PLL

( ; )cz t φ

Detected
I&Q Data

-π/2

ˆ ( )Qm t

( ; )RQ cy t θ

ˆ ( )Im t

−
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-Demodulator

-Decoder
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ˆRI Qy m

ˆRQ Qy m
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Figure 4.1: Analog receiver using soft-decision feedback.

Accurately estimating θc is the goal of carrier synchronization. A sample analog

receiver, shown in Fig. 4.1, will be referred to in deriving the proposed carrier

synchronization method. An alternative baseband implementation of this receiver

is detailed in Section 4.3. At the receiver, consider an input modulation of the
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form:

YR(t) = (M +N) e(jωct+θc) = yRI
(t) + jyRQ

(t)

= (mI + nI) cos(wct+ θc) − (mQ + nQ) sin(wct+ θc)

+ j ((mQ + nQ) cos(wct+ θc) + (mI + nI) sin(wct+ θc)) ,

(4.2)

where the time reference (t) has been dropped from the symbol vectors M and N

(and their components) for ease of notation.

The next step is to delay the input by the decoder delay ∆ and to remove the

modulation present in (4.2) to produce a signal consisting of a pure tone. This

signal can then be tracked by a digital PLL in order to generate an estimate of the

carrier phase θ̂c. To illustrate the concept behind the DDCS algorithm, consider

a very simple example where five BPSK symbols consisting of alternating 1’s and

-1’s affected by symbol-wise noise (note that the amplitude of each pulse not the

transmitted value of unity) are transmitted as shown in Fig. 4.2(a). Modulation

is removed by multiplying the received waveform by soft-estimated symbols from

the LDPC decoder. The resulting unmodulated frequency spectrum, shown in

Fig. 4.2(b), clearly begins to show the presence of a carrier. Note that this occurs

regardless of the fact that some soft estimations of the symbols may still be in-

correct and have an incorrect sign. Since the information feedback consists of soft

information, the incorrect information has in general low reliability. Fig. 4.2(c)

shows the frequency spectrum obtained after the decoder has converged to the

correct sent codeword. The strong tone that appears at the carrier frequency can

now be tracked by a PLL.

In this work, two different techniques for removing the modulation informa-

tion present in the received waveform have been examined. These two alternatives

differ in the information feedback vector used to remove the modulation in the car-

rier. Both techniques use a soft symbol estimate M̂(t) = m̂I(t) + jm̂Q(t) produced

by the LDPC decoder to remove the modulation information. The first proposed

technique uses the complex conjugate (CC) of the estimated symbol, M̂∗(t), as

feedback. The second proposed technique normalizes the symbol estimates to as-
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(a) Received Symbols + Noise
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(b) DDCS Waveform: Initial Iterations
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(c) DDCS Waveform: Final Iterations

Figure 4.2: DDCS BPSK Example. (a) Received Symbols(R = [1;−1; 1;−1; 1]) +
Noise is assumed. (b) DDCS waveform after a small number of iterations. Exam-
ple shows that the decoder makes an error on the estimated value of the second
symbol. (c) DDCS waveform near convergence. Figure assumes that the LDPC
decoder has correctly estimated the received symbols R.
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sure unit amplitude,
M̂∗(t)

||M̂∗(t)|| . The intuition behind these two choices is that when

using CC feedback, both the magnitude and phase of the feedback vector are feed

back to the carrier recovery circuit. On the other hand when the normalized com-

plex conjugate (NCC) is used as a metric, only the phase of the estimated symbol is

sent from the decoder to the DDCS circuit. The choice of the modulation removal

technique depends on the signal constellation chosen for transmission and on the

range of possible values that the carrier recovery circuit is intended to track. As

will be described in Section 4.4, our experiments show that for constant envelope

modulations such as MPSK both methods yield similar performance although in

some cases where the carrier phase offset is significant, the NCC technique out-

performs the CC method in terms of frame error rate (FER) performance. For

non-constant envelope modulations such as 16QAM and APSK, the results of our

simulations show that using the NCC as a metric is a better choice, especially for

cases with large carrier offsets. There are many other possible alternatives that can

be implemented by manipulating the LDPC output symbol estimates in different

ways. This choice will depend on the modulation used and should be carefully

designed jointly with the loop gains present in the PLL in order to minimize FER.

4.2.1 Complex Conjugate (CC) Feedback

This technique uses the complex conjugate of the estimated symbol output from

the LDPC decoder, M̂∗(t), to remove the modulation information present in (4.2):

U(t) = YR(t)M̂∗(t) = YR(t)

(

M∗(t) +
Ns(t)

γ

)

(4.3)

where

Ns =

∞∑

k=−∞
(nsIk + jnsQk)p (t− kTs)

models the decoder symbol-estimation error and γ is the LDPC decoder a-posteriori

signal amplitude. Both nsIk and nsIk are i.i.d. zero mean Gaussian random vari-

ables with variance σ2. By observing the symbol-estimation noise term
Ns(t)

γ
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we can see how M̂(t) → M(t) as the LDPC decoder iterations increase and the

reliability of the a-posteriori values increase,

uI(t) = (mIm̂I +mQm̂Q) cos(ωct+ θc) + (mIm̂Q −mQm̂I) sin(ωct+ θc)

+ (nIm̂I + nQm̂Q) cos(ωct+ θc) + (nIm̂Q − nQm̂I) sin(ωct+ θc)

= (αs + αn) cos(ωct+ θc) + (βs + βn) sin(ωct+ θc),

(4.4)

uQ(t) = (mIm̂I +mQm̂Q)
︸ ︷︷ ︸

αs

sin(ωct+ θc) − (mIm̂Q −mQm̂I)
︸ ︷︷ ︸

βs

cos(ωct+ θc)

+ (nIm̂I + nQm̂Q)
︸ ︷︷ ︸

αn

sin(ωct+ θc) − (nIm̂Q − nQm̂I)
︸ ︷︷ ︸

βn

cos(ωct+ θc)

= (αs + αn) sin(ωct+ θc) − (βs + βn) cos(ωct+ θc).

(4.5)

The signals above are then input to a PLL whose voltage-controlled oscillator

(VCO) output can be expressed as

rvco(t, θ̂c) = sin(ωct+ θ̂c).

Multiplying uI(t) and uQ(t) by rvco(t, θ̂c) and rvco(t, θ̂c − π/2) = cos(ωct+ θ̂c) and

combining the results of these products yields,

z(t, φc) = uQ(t) cos(ωct+ θ̂c) − uI(t) sin(ωct+ θ̂c)

=

(
αs + αn

2

)[

sin(2ωct+ θ̂c + θc) + sin(φc)
]

−
(
βs + βn

2

)[

cos(2ωct+ θ̂c + θc) + cos(φc)
]

−
(
αs + αn

2

)[

sin(2ωct+ θ̂c + θc) − sin(φc)
]

−
(
βs + βn

2

)[

− cos(2ωct+ θ̂c + θc) + cos(φc)
]

= αs sin(φc) + (αn sin(φc) − (βs + βn) cos(φc))
︸ ︷︷ ︸

v(t,φc)

(4.6)

where φc = θc − θ̂c. Note that no low-pass filter is required in (4.6) since the
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frequency components at 2ωc have opposite signs and cancel each other.

Next we pass z(t) through a matched filter to produce for the kth interval

(k + 1)Ts ≤ t ≤ (k + 2)Ts,
1

ek =

∫ (k+1)

k

z(t, φc)dt

= (dIk + nIk)

(

dIk +
nsIk
γ

)

︸ ︷︷ ︸

d̂Ik

sin(φc) + (dQk
+ nQk

)

(

dQk
+
nsQk

γ

)

︸ ︷︷ ︸

d̂Qk

sin(φc)

− (dIk + nIk)

(

dQk
+
nsQk

γ

)

cos(φc) + (dQk
+ nQk

)

(

dIk +
nsIk
γ

)

cos(φc)

= (d2
Ik

+ d2
Qk

) sin(φc) + v(k, φc)

= P sin(φc) + v(k, φc),

(4.7)

where

v(k, φc) =

(

nIk d̂Ik +
dIknsIk
γ

+ nQk
d̂Qk

+ dQk

nsQk

γ

)

sin(φc)

−
(

(dIk + nIk)d̂Qk
+ (dQk

+ nQk
)d̂Ik

)

cos(φc),

nIk =

∫ (k+1)

k

nI(t)dt,

nQk
=

∫ (k+1)

k

nQ(t)dt,

(4.8)

are zero mean Gaussian noise RVs with variance σn
2 = No/2. Clearly from the

above, the slope of the S−curve [49], Kg, for constant envelope modulations is

given by Kg = P .

We now compute the autocorrelation function of v(k, φc) (treated as a piecewise

continuous process v(t, φc)) from which we shall obtain the equivalent noise PSD

affecting the loop. For operation in the neighborhood of φc = 0, it is reasonable to

1 Without loss in generality, we herein ignore the decoder delay ∆ and assume Ts=1 and a
unit energy pulse.
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consider only the autocorrelation function of v(k, 0):

v(k, 0) = (dQk
+ nQk

)d̂Ik − (dIk + nIk)d̂Qk

= (dQk
+ nQk

)

(

dIk +
nsIk
γ

)

− (dIk + nIk)

(

dQk
+
nsQk

γ

)

= (dQk
d̂Ik − dIk d̂Qk

)
︸ ︷︷ ︸

−βsk

+ (nQk
d̂Ik − nIk d̂Qk

)
︸ ︷︷ ︸

−βnk

= −(βsk
+ βnk

).

Assuming that the real and imaginary components of Ns(t) are independent and

the noise samples are independent from symbol interval to symbol interval, then

the autocorrelation is triangular,

Rv(τ) = E {v(t, 0)v(t+ τ, 0)} =







σ2
v

(

1 − |τ |
Ts

)

|τ | ≤ Ts

0 otherwise

with
σ2
v = E {v2(k, 0)}

= E
{

(dQk
d̂Ik − dIk d̂Qk

)2
}

+ E
{

(nQk
d̂Ik − nIk d̂Qk

)2
}

+ 2E
{

(dQk
d̂Ik − dIk d̂Qk

)(nQk
d̂Ik − nIk d̂Qk

)
}

.

(4.9)

The cross-term in (4.9) is zero, and the two remaining terms can be written as:

E
{

(dQk
d̂Ik − dIk d̂Qk

)2
}

= E

{(

dQk

(

dIk +
nsIk
γ

)

− dIk

(

dQk
+
nsQk

γ

))2
}

= E{d2
Qk
}
(

E{d2
Ik
} +

σ2

γ2

)

+ E{d2
Ik
}
(

E{d2
Qk
} +

σ2

γ2

)

− 2E
{
d2
Ik
d2
Qk

}

=
σ2

γ2

(
E{d2

Ik
} + E{d2

Qk
}
)

= 2Pσ2/γ2

(4.10)
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and

E
{

(nQk
d̂Ik − nIk d̂Qk

)2
}

= E

{

n2
Qk

(

dIk +
nsIk

γ

)2
}

+ E

{

n2
Ik

(

dQk
+

nsQk

γ

)2
}

− 2E
{

nIknQk
d̂Ik d̂Qk

}

= σ2
n

(

E{d2
Ik
} +

σ2

γ2

)

+ σ2
n

(

E{d2
Qk
} +

σ2

γ2

)

= 2σ2
n

σ2

γ2
+ σ2

n

(
E{d2

Ik
} + E{d2

Qk
}
)

= 2σ2
n

(

P + σ2

γ2

)

(4.11)

where E{n2
Ik
} = E{n2

Qk
} = σ2

n = No
2

, E{d2
Ik

+ d2
Qk
} = P and E{ns2

Ik
} =

E{ns2
Qk
} = σ2. Combining (4.10) and (4.11) yields:

σ2
v = 2σ2

n

(

P +

(

1 + P
σ2
n

)

σ2

γ2

)

. (4.12)
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Figure 4.3: Digital circuit for baseband implementation.

The equivalent single-sided noise PSD, Ne, can be written as:

Ne = 2

∫ −∞

−∞
Rv(τ, 0)dτ = N0

(

P +

(

1 +
P

σ2
n

)
σ2

γ2

)

.
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Finally, the mean-square phase error in the loop is given by:

σ2
φc

=
NeBL

K2
g

=
N0BL

P 2

(

1 +

(
1

P
+

1

σ2
n

)
σ2

γ2

)

∆
=

1

ρSL
, (4.13)

where BL is the noise bandwidth, ρ = P/(N0BL) is the loop SNR in a conventional

PLL and

SDDCSL

∆
=

(
1

P
+

(
1

P 2
+

1

σ2
n

)
σ2

γ2

)−1

, (4.14)

is the degradation of the loop SNR analogous to the “squaring loss” in a con-

ventional Costas loop (CL). The quantity γ2/σ2 represents the decoder soft SNR

estimate. As the iteration proceeds, the estimated data SNR increases and likewise

the squaring loss decreases (i.e., SDDCSL → P ). By comparison, for a Costas loop,

the expression for the squaring loss is given by

SCL
∆
= (1 + 1/(2Rd))

−1 ,

Rd = P/N0,
(4.15)

and thus remains fixed, independent of the iteration process, for a given symbol

SNR [49].

To numerically evaluate the performance in (4.14), one needs to quantify the

functional dependence of the decoder soft-estimate of the data SNR and the input

symbol SNR. Under the assumptions in which (4.15) and (4.14) were derived,

for the SNR regime where the DDCS circuit operates, the expected gain in SL

is approximately 4 dB. However when both circuits were simulated at low SNR

scenarios we experienced a gain of around 12dB in SL. This behavior is shown in

Fig. 4.4 for a system that uses BPSK modulation with θc = π/4. Fig. 4.4 compares

the LSNR performance for both loops under using a rate-1/2 irregular LDPC code

of length n = 1944 with BPSK modulation and θc = π/4. One of the reasons

why the gap in performance between both circuits is larger than predicted is that

in our simulations the DDCS system channel observations are updated on every

iteration. After the DDCS loop processes a block of n symbols, an average of the

carrier phase θ̂c is used to de-rotate the received channel observation vector. The
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Figure 4.4: Comparison of Loop SNR for a BPSK system with θc = π/4 using the
DDCS circuit and a Costas loop.

LDPC decoder performs a variable and check-node update before starting a new

DDCS loop-iteration. On the other hand, the CL is independent of the decoder

decisions and uses the same channel information every time it runs. This implies

that for the CL case, the horizontal axis of Fig. 4.4 in fact represents the number

of times that each block (of size n) is processed by the loop. For example, after

10 loop updates, the DDCS circuit has processed S = 10n different symbols, while

the CL overprocessed the same S = n symbols 10 times.

For the DDCS circuit, steady state is reached after 10 iterations (10 × 1944 =

19440 total symbols processed). The CL converges to its steady state operation

after overprocessing each block of 1944 symbols approximately 20 times. The speed

of convergence is highly dependent of the gains of the loop-filter shown in Fig. 4.3.

A second order filter with transfer function H(z) = (Kp + Kiz
−1)/(1 − z−1) was

used for both circuits with gains [Kp, Ki] = [8.85.10−4,−8.75.10−4] for the CL and

[Kp, Ki] = [8.91.10−5,−8.75.10−5] for the DDCS circuit. Both phase estimators

were unbiased, however the second moment of φc was larger for the CL case than

for the DDCS circuit causing the variance of φc to be larger for the CL case.
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4.2.2 Normalized Complex Conjugate (NCC) Feedback

An alternative technique to remove the modulation information present in (4.2)

normalizes the complex conjugate of the estimated symbol output from the LDPC

decoder to unit amplitude,

U(t) = YR(t)
M̂∗(t)

||M̂(t)||
. (4.16)

By analyzing the squaring loss equation corresponding to this method, we can

see that a factor of ||M̂(t)|| will now divide (4.4),(4.5) and (4.6). Let sIk and sQk

be the sign of d̂Ik and d̂Qk
. The error signal in (4.7) can now be written as:

ek =

∫ (k+1)

k

z(t, φc)dt

= (dIk + nIk)

(

sIk +
nsIk
γ

)

sin(φc) + (dQk
+ nQk

)

(

sQk
+
nsQk

γ

)

sin(φc)

− (dIk + nIk)

(

sQk
+
nsQk

γ

)

cos(φc) + (dQk
+ nQk

)

(

sIk +
nsIk
γ

)

cos(φc)

=
√
P sin(φc) + vN (k, φc).

(4.17)

where nIk , nQk
and vN(k, φc) are defined as in (4.8). By comparing (4.7) and (4.17)

it is clear that the term proportional to carrier phase error is simply scaled by a

factor of
√
P . In addition, the noise affecting the loop has also been affected by the

normalization since, as shown in Fig. 4.5, the estimation vectors used for feedback

are now constrained to the unit circle. Simulation results shown in Section 4.4,

show a small gain in FER performance is obtained when using the NCC metric, in

particular for cases that exhibit a large carrier phase offsets.

4.3 A Baseband Digital Implementation

The circuit in Fig. 4.3, shows a practical implementation of the carrier recovery

loop presented in the previous section. The first difference with the block diagram

in Fig. 4.1 is that demodulation (conversion to baseband) of the input signal (4.2)
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Figure 4.5: Vector diagrams of different feedback metrics. (a) Shows the case when
using a complex conjugate metric, while (b) shows the case where the feedback
metric has been normalized to unit amplitude.
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is done with the carrier phase error still present, using the I and Q reference signals

(arbitrarily assuming them to have zero phase relative to the received signal):

xI(t; θc) = yRI
cos(ωct) + yRQ

sin(ωct)

= (mI + nI) cos(θc) − (mQ + nQ) sin(θc),

xQ(t; θc) = −yRI
sin(ωct) + yRQ

cos(ωct)

= (mI + nI) sin(θc) + (mQ + nQ) cos(θc).

The demodulated signals are then passed through matched root raised-cosine

filters,

vIk = (dIk + nIk) cos(θc) − (dQk
+ nQk

) sin(θc),

vQk
= (dIk + nIk) sin(θc) + (dQk

+ nQk
) cos(θc),

(4.18)

with nIk and nQk
as in (4.8). Next we multiply vIk and vQk

by the symbol estimate

provided by the LDPC decoder. From this point forward (4.3) is used to remove

the modulation from the received signal, unless specified otherwise. The discrete

version of (4.6) is obtained by combining (4.18) with (4.3), Uk = VkM̂
∗
k . The real

and imaginary components of Uk can be written as:

uIk = vIk d̂Ik + vQk
d̂Qk

= (dIk d̂Ik + dQk
d̂Qk

) cos(θc) + (dIk d̂Qk
− dQk

d̂Ik) sin(θc)

+ (nIk d̂Ik + nQk
d̂Qk

) cos(θc) + (nIk d̂Qk
− nQk

d̂Ik) sin(θc)

= (αsk
+ αnk

) cos(θc) + (βsk
+ βnk

) sin(θc)

(4.19)

uQk
= vQk

d̂Ik − vIk d̂Qk

= (dIk d̂Ik + dQk
d̂Qk

) sin(θc) − (dIk d̂Qk
− dQk

d̂Ik) cos(θc)

+ (nIk d̂Ik + nQk
d̂Qk

) sin(θc) − (nIk d̂Qk
− nQk

d̂Ik) cos(θc)

= (αsk
+ αnk

) sin(θc) − (βsk
+ βnk

) cos(θc)

(4.20)

which are the baseband equivalents of (4.4) and (4.5). These signals are input to

a digital PLL whose number-controlled oscillator (NCO) produces an estimate of

the carrier phase denoted by θ̂c. Combining uIk and uQk
with wck = cos(θ̂c) and
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wsk = sin(θ̂c), provides the baseband error signal:

ek(φc) = uQk
cos(θ̂c) − uIk sin(θ̂c)

= (αs + αn) sin(φc) − (βs + βn) cos(φc)

= (d2
Ik

+ d2
Qk

) sin(φc) + v(k, φc),

(4.21)

where as before φc = θc− θ̂c denotes the phase error in the loop. Comparing (4.21)

with (4.6) we see that they are identical and thus the performance of the digital

PLL would also be described by (4.13) together with (4.14).

4.4 Iterative Processing and Numerical Results

We have evaluated the performance of the all-digital baseband approach described

in Section 4.3 via joint decoding with a rate-1/2 (1944, 972) irregular LDPC code

developed in [33]. In Figs. 4.6 - 4.9, we can see the FER performance for the two

proposed methods for modulation removal. The NCC technique that removes sym-

bol modulation by using the unit vector M∗

||M̂(t)|| as a feedback metric outperforms

the CC technique specially for cases the cases non-constant envelope constellations

such as 16QAM. For the constant envelope constellations, the gap in performance

between NCC and CC is reduced, although NCC seems to have a significant ad-

vantage for scenarios with a strong carrier phase offset. Overall the metric that

normalizes the feedback vector seems to be the better choice in terms of FER

performance.

Let ψ be the rotational invariance angle of the constellation. For the constel-

lations considered in this work we have ψBPSK = π, ψQPSK = ψ16QAM = π/2,

ψ8PSK = π/4. Let γc be the maximum carrier phase rotation that the system can

handle without severely degrading the FER performance. From our experimental

results shown in Figs. 4.6 - 4.9 we observe that γc ≈ 0.45π for BPSK, γc ≈ 0.19π

for QPSK, γc ≈ 0.15π for 16QAM and γc ≈ 0.10π for 8PSK. In all these cases

γc <
ψ

2
.

Slightly perturbing the constellations to increase the rotational invariance ψ
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Figure 4.6: BPSK Performance.
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Figure 4.7: QPSK Performance.
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Figure 4.10: APSK constellations that enable tracking of larger phase offsets.
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increases the maximum phase tracking angle. This perturbation produces am-

plitude phase-shift keying (APSK) modulations like such as the ones shown in

Fig. 4.10. The APSK constellations considered in this work have a rotational in-

variance ψ = π. The corresponding FER performances are shown in Fig. 4.11(a)

for the 2+2-APSK case and in Fig. 4.11(b) for the 4+4-APSK. The overall energy

of the constellation was preserved by equally increasing and decreasing the power

of the different constellation points. For the 4+4-APSK case, the outer points were

moved from the unit circle to r1 = 1.128 and r2 = 0.738. A similar technique was

used for the 2+2-APSK case using r1 = 1.1832 and r2 = 0.774. A comparison

between two MPSK constellations and the corresponding APSK constellations is

shown in Fig. 4.12. For 2+2-APSK, we conclude that the maximum phase rotation

that can now be tracked increase can be slightly increased from 0.19π to 0.23π at

the expense of a significant FER degradation for scenarios with lower carrier phase

noise. However for the 4+4-APSK case, the proposed modification in the constel-

lation points doubled the maximum phase rotation angle from 0.10π to around

0.19π without degrading the cases of lower carrier phase noise.

While it is always desirable to increase γc when possible, the overall phase

tracking ability of the system is not limited the value of γc. Depending on the type

of modulation used, techniques that use the DDCS algorithm can be implemented

to track all possible values of θc ∈ {−π, π}. One method for tracking offsets in

{−π, π} of a BPSK modulation was introduced in [34]. The decoder procedure

begins by measuring the average power across a single codeblock of the signals vIk

and vQk
. If the sine component (vQk

) has average power greater than the cosine

component (vIk), then these two components are swapped. This procedure may

leave (or induce) a remaining error of π radians. To resolve this ambiguity we run a

single PLL pass followed by several (up to 4) LDPC iterations. The orientation that

produces the maximum number of satisfied odd-degree check equations is selected

and the decoding procedure is re-initialized 2. Similar techniques are proposed

in [44, 45]. For higher order modulations, a search method can be implemented

2Even degree checks remain satisfied under a rotation of all inputs by π.
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Figure 4.11: FER Performance of APSK constellations that enable tracking of
larger phase offsets.
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based on the window search method for symbol timing recovery presented in [50,51].

The carrier phase spectrum is divided into fractions of size γc. The search space will

therefore consist of the intervals {[0, γc), [γc, 2γc), . . . , [2π − γc, 2π)}. The received

waveform is pre-rotated to fall into each potential interval before beginning the

DDCS estimation. A small number of LDPC iterations can be performed for each

potential interval and the one with the highest number of satisfied constraints

is chosen to start the final DDCS estimation. The utility of this metric as a

feedback mechanism is illustrated in Fig. 4.13, which shows the average percentage

of satisfied constraints as a function of the absolute value of the carrier phase

estimation error for different SNRs (Eb/N0) and numbers of LDPC iterations. For

example, in order to estimate the carrier phase offset for a QPSK system step

size of γc = 0.2π is chosen. A small number of iterations is performed in the
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intervals {[0, 0.2π), [0.2π, 0.4π), . . . , [1.8π, 2π)}. Three iterations are performed for

each hypotheses which gives a total of 30 iterations to reduce the phase uncertainty

to |θc| < γc.
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Figure 4.13: Percentage of satisfied constraints as a function of frequency estima-
tion error. Curves for 2, 3, 4, and 5 LDPC iterations are shown for Eb/N0 of 1.25
and 1.75 dB.

4.5 Conclusion

We have demonstrated a means for improving the carrier synchronization func-

tion for iteratively decoded MPSK using information derived from the decoder

(decision-directed) to remove the modulation prior to the carrier tracking opera-

tion. The motivation for doing this is to overcome the penalty in noisy reference
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loss attributed to the large squaring loss at low SNRs that is characteristic of the

traditional MPSK carrier sync loops such as the Costas-type loop. In contrast with

the decision-directed carrier synchronization loop with hard decision feedback as

proposed in [49] and [52], the scheme described in this work makes use of soft

decision information and does not require estimating the decoder error probability.

This occurs as a consequence of the assumption here of a fixed carrier synchroniza-

tion structure, i.e., a PLL, whose design does not change with knowledge obtained

from the decoder. While in the soft decision feedback case considered here such a

structure would only be asymptotically optimum (in the MAP motivation sense) at

high SNR, it nevertheless provides a simple yet performance-efficient carrier syn-

chronization loop in SNR regions of interest for coded applications. The proposed

architecture can be used in conjunction with other types of phase tracking loops

in order to track residual carrier-phase errors at the decoding stage.

4.6 Future Work and Open Problems

A close look at Fig. 4.11(b) and Fig. 4.8 shows that 4+4-APSK outperforms 8PSK

for all values of θc, even for θc = 0o. For the scenarios where θc is large this effect

is due to the 4+4-APSK constellation having a larger value of ψ than the 8PSK

case. On the other hand, for lower values of θc, where the carrier phase-estimation

circuit does not play a fundamental role, we cannot explain the difference in per-

formance with certainty. One possible explanation to this phenomena would be

that the constrained capacity [8] of the 4+4-APSK constellation was greater than

the 8PSK case at rate 1
2
. If this was the case, the 4+4-APSK constellation would

require less SNR than its 8PSK counterpart. However, simulations performed us-

ing [53] show that for a code rate of 1
2
, 4+4-APSK requires an Eb/No = 0.03 dB

greater than the 8PSK constellation. Fig. 4.14 and Fig. 4.15 show a graph of

constrained capacity vs. SNR. Another possibility is that when iteratively decod-

ing an LDPC code, it may be useful to have some of the incoming symbols with

a stronger reliability (even if this implies reducing the energy of some symbols).

The decoder could then use the reliable(i.e. with larger energy) information to
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compensate for the unreliable symbols located on the inner circle of the APSK

constellation. In fact, the left degree distribution for the LDPC code used is

{α2 ≈ 0.47, α3 ≈ 0.36, α9 ≈ 0.15, α10 ≈ 0.02}, so density evolution [10] also tells us

that not all bits should be equally protected. However the proof of this conjecture

remains an open problem.
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Chapter 5

Joint Carrier and Timing

Synchronization of BPSK

via LDPC Code Feedback

In traditional receiver architectures, symbol acquisition and tracking are per-

formed using phase lock techniques that are independent of the channel-code de-

coding process. In Chapter 3, feedback from the constraint-node side of a bi-partite

graph is used to estimate symbol frequency and timing offset in a baseband pilot-

less transmission. In Chapter 4, soft information feedback from an LDPC decoder

is used to recover carrier phase information under the assumption of perfect symbol

timing. In this chapter we address the problem of joint carrier-phase and symbol

timing recovery, specifically for the case of BPSK modulations. The theory and

results presented can be easily extended to bi-dimensional modulations. The pro-

posed system is able to perform within 0.2 ∼ 0.3 [dB] of the genie aided BPSK

code performance with perfect knowledge of carrier phase and symbol timing.

The rest of this chapter is organized as follows. The next section provides a

detailed description of the transmitter and receiver models and gives an overview of

the joint parameter estimation process. In Section 5.2, the circuit for symbol timing

estimation is introduced. A digital implementation of the carrier synchronization

circuit is illustrated in Section 5.3. Section 5.4 presents numerical results derived
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from a simulation of the BPSK scheme with a particular LDPC code. Finally,

Section 5.5 documents our conclusions.

5.1 Transmitter and Receiver Models

On the transmitter side, we consider a baseband signal comprised of N root raised-

cosine pulses hRRC(t), transmitted at multiples of a symbol interval T and scaled

di ∈ {±1}: m(t) =
N−1∑

i=0

dihRRC (t− iT .). Multiplication by a sinusoidal carrier

signal yields the transmitted waveform:

yTx(t) =
√

2Pm(t). sin (wct) , (5.1)

where P is the signal power.

When symbol timing errors are present, the assumed time reference for the

kth sample at the receiver rk differs from the corresponding time reference at the

transmitter rk = m(kTs + τk). The timing error modalities considered in this work

combine constant time offsets (τk = D), random walks (τk = τk−1+N (0, σ2
d)Ts) and

constant frequency offsets (τk = τk−1 + FPPM

106 Ts) where Ts is the sampling period

and the frequency offset FPPM is measured in parts per million. The received

waveform can be modeled as:

yRx(t) =
√

2Pr(t). sin (wct+ θc) + n(t) (5.2)

where

r(t) =
N−1∑

i=0

dihRRC (t+ τ(t) − iT ),

n(t) =
√

2 [Nc(t)cos(wct+ θc) −Ns(t)sin(wct+ θc)]

θc is the carrier phase and n(t) is a bandpass AWGN process.

The decoding circuit is shown in Fig.5.1. The input signal yRx(t) is converted to
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baseband and low-pass filtered to remove frequencies at 2wc which yields:

xs(t) =
√
Pm(t)sin(θc) +Nc(t)cos(θc) −Ns(t)sin(θc)

xc(t) =
√
Pm(t)cos(θc) −Nc(t)sin(θc) −Ns(t)cos(θc)

(5.3)

The In-phase/Quadrature (I&Q) signal components in (5.3) are then sampled

and matched filtered resulting in two digital signals:

zsk =
√
PTsdksin(θc) +Nckcos(θc) −Nsksin(θc)

zck =
√
PTsdkcos(θc) −Ncksin(θc) −Nskcos(θc)

in the interval kTs ≤ t ≤ (k + 1)Ts.

The “symbol timing” recovery process described in Section 5.2 is now initialized.

After the symbol-timing block corrects time delays, random walks and sampling

frequency errors, parameter information is interchanged in an iterative fashion

with the “carrier synchronization” block described in Section 5.3 to complete the

parameter estimation process.

5.2 Symbol Timing Recovery

In Fig. 5.2 we illustrate the receiver architecture which exploits feedback from

the LDPC decoder to manage timing errors. The received waveform is initially

sampled at intervals of Ts and stored into a buffer. The interpolator computes

interpolants at intervals of Ti using linear interpolation, which are then used for

the matched filtering process [31]. In this work, we use Ti = T̂ /2 and Ts = T̂ /4,

where T̂ is the receiver-side assumption of the transmitter symbol period T̂ (i.e.

the symbol period that would be seen by the receiver in the absence of any timing

perturbations).

The timing recovery circuit from Fig. 5.2 consists of two loops. Loop 1 is first

executed to iteratively recover constant time phase and symbol-frequency offsets.

The phase error estimator provides the interpolator (after the matched filter) with a

time offset, which is used to correct the constant time delay. The symbol-frequency
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estimator provides a frequency control word which is resampled at a rate of 1/Ts

and fed to the numerically controlled oscillator (NCO).

Both the constant time delays and sampling frequency offset estimation processes

use information from the iterative channel decoder based on the percentage of sat-

isfied LDPC constraints. The utility of this metric as a feedback mechanism is

illustrated for the case of symbol-frequency offsets in Fig. 5.3, which shows the

average percentage of satisfied constraints as a function of frequency estimation

error for different SNRs (Eb/N0) and numbers of LDPC iterations. A similar

plot, with similar tradeoffs, can be constructed for the relationship between the

constant time delay estimation error and satisfied LDPC constraints. More inter-

estingly, Fig. 5.3 indicates the rate of falloff as the estimation error increases, and

shows that the best frequency error discrimination occurs for errors within approx-

imately 200 ppm. This information is used in determining the step size to use

in the frequency offset search. Fig. 5.3 also indicates the costs (in computations)

and benefits (in increasing the percentage of satisfied constraints) of increasing the

number of iterations.

In [51] phase and symbol-frequency estimates are generated in an iterative

fashion using a window search method. An initial window and step size are chosen

and a fixed number of LDPC iterations are performed at each hypothesis point. For

example, in order to estimate a symbol-frequency offset of ±2000 ppm (i.e. ±0.2%)

an initial step size of 400 ppm is used with three decoder iterations for each offset

hypothesis. The window is then re-centered to the point with the highest number

of satisfied constraints. The window step size is reduced by half to 200 ppm and

three LDPC iterations are performed again for each new point. The process is

repeated a third time with a resolution of 100 ppm. For this example, the method

in [51] utilizes a total of 11[points]×3[windows]×3[Iter. per point] = 99[iterations]

to correct an offset of ±2000 ppm. In this work, in order to correct the same

sampling frequency offset, a fixed step size of 250 ppm, with 3 LDPC iterations

per point, was used. Instead of re-computing the window center and size, an

interpolation technique generates the final frequency estimate based on the points

with the highest percentage of satisfied constraints. This allows a reduction of the
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total number of iterations (16[points] × 3[Iter. per point] = 48[iterations] ) by a

factor of two. As long as the frequency offset is contained within the initial search

window, the algorithm will converge with an accuracy that increases with increasing

SNR. The complexity of this method grows linearly with the width of the range

of frequency offsets contained in the initial search window. It is possible to track

waveforms where both time delays and symbol-frequency offsets are present at the

cost of quadratic computational complexity. A two-dimensional search strategy

can be employed where for a given time delay candidate, the satisfied constraints

of all frequency offset candidates are computed.

After large-scale phase and frequency errors have been identified in loop 1,

loop 2 is used to handle random walks, correct residual time delay and sampling

frequency errors, and to perform the remaining LDPC decoding. A conventional

first-order PLL-based circuit with a decision-directed Mueller-Müller timing error
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detector (M&M TED) [27] is used in loop 2. After every LDPC iteration, the M&M

TED is provided with the symbols decoded by the LDPC decoder, analogous to

the approach used in the recent work of Barry et al. [25].

At this point, an updated version of the signals zc and zs is sent to the carrier-

phase recovery loop to produce a new estimate θ̂c. This information is then fed

to the LDPC decoder to continue with the iterative parameter recovery process.

From this point forward, every update from the carrier-phase estimation loop is

followed by an update from “loop 2” in the symbol-timing circuit in an iterative

fashion.

5.3 Carrier Phase Synchronization

The carrier recovery circuit for BPSK modulation used in this work is the data-

aided circuit originally proposed in [34]. This circuit converts the received modu-

lated carrier to an unmodulated carrier (pure tone) before applying it to a phase-

tracking loop. This is done by multiplying zck and zsk by the normalized soft

decision feedback sample ŷk = dk + n̂k/γ, where as before over a given iteration n̂k

are modeled as i.i.d. zero mean Gaussian RVs with variance σ2. This is equivalent

to the complex conjugate (CC) feedback method presented in Chapter 4. The

result of this multiplication removes the modulation and produces:

usk = zskŷk =
√
PTssin(θc)

+[(dk + n̂k/γ)(Nckcos(θc) −Nsksin(θc))

+n̂k/γ
√
PTsdksin(θc)]

=
√
PTssin(θc) + vsk,

uck = zckŷk =
√
PTscos(θc)

+[(dk + n̂k/γ)(−Ncksin(θc) −Nskcos(θc))

+n̂k/γ
√
PTsdkcos(θc)]

=
√
PTscos(θc) + vck,

which is then input to a digital PLL whose number-controlled oscillator (NCO)
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produces an estimate of the carrier phase denoted by θ̂ck. Multiplying uck and

usk by wsk = sin(θ̂ck) and wck = cos(θ̂ck), respectively, and then differencing the

results of these products provides the error signal:

ek = uskwck − uckwsk

=
√
PTssin(φck) + vskcos(θ̂ck) − vcksin(θ̂ck)

where as before φck = θck − θ̂ck denotes the phase error in the loop.

5.3.1 Loop SNR Performance

The performance of carrier-phase synchronization loops is commonly expressed

as a function of the “loop SNR” (LSNR). For a PLL based system, this can be

expressed as:

LPLLSNR =
1

σ2
φc

= ρPLL =
Pc

NoBL

(5.4)

where Pc is the carrier power, No is the noise PSD and BL is the loop bandwidth

[32].

The degradation of this performance in the case of BPSK is represented by a

quantity called the “squaring loss”, which is a measure of the degradation of the

receiver signal-to-noise (SNR) ratio and is associated with the mean-squared phase

error of the loop. At low symbol SNR, the squaring loss of an I&Q loop, such as

the Costas loop, can be severe enough to prevent tracking:

LCostasSNR =
1

σ2
φc

= ρC .SLC
=

Pt
NoBL

(

1 +
1

2Rd

)−1

(5.5)

where Pt is the total transmitted power, No is the noise PSD, BL is the loop

bandwidth and Rd is data SNR at the input of the receiver. Note that (5.5) is

independent of the iteration process.

If the data sequence and its timing parameters were completely known, then a

BPSK signal could be converted to a pure tone simply by multiplying the BPSK

signal by the data waveform. One could then track the unmodulated carrier with
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improved performance by use of a PLL, which from (5.4) we see that it does not

exhibit squaring loss. Short of complete knowledge of the data waveform and in

the presence of noise, the best approximation of a pure tone could be obtained by

feeding back an estimate of the data waveform corresponding to tentative decisions

on the data symbols.

Although initially available data-waveform estimates (ŷk) are generally of low

quality, they can be used to initiate the carrier synchronization process by reduc-

ing the number of data transitions at the input. Once phase lock is achieved, the

improved phase estimates can be fed back to the data detector, yielding improved

symbol estimates for feedback, and thereby achieving even better phase tracking.

This iterative process eventually leads to virtual elimination of squaring loss, so

that the performance of the system approaches that of a phase-locked loop oper-

ating on an unmodulated carrier signal. For the proposed system we have that:

LSNR =
PT
NoBL

(

1 +
σ2

γ2

)−1

=
PT
NoBL

(

1 +
2

γ

)−1

(5.6)

where γ2/σ2 represents the decoder soft-estimate of the data SNR, and the last

equality follows from the “symmetry condition” [54] for LDPC and turbo codes. In

(5.6) we can see that as the iteration proceeds, the estimated data SNR increases

and likewise the squaring loss decreases and approaches unity. By comparison, for a

Costas loop, the expression for the squaring loss in (5.5) remains fixed, independent

of the iteration process, for a given symbol SNR.

5.4 Numerical Results

We have evaluated the performance of the all-digital BPSK baseband approach,

assuming perfect knowledge of the carrier frequency and simulating the signals

in (5.3). Joint parameter estimation and decoding was performed using a rate-

1/2 (1944, 972) irregular LDPC code developed in [33] and currently in the IEEE

802.11n standard. After a complex rotation to resolve phase ambiguity (discussed

below), the signals zc and zs are multiplied by the decoder output ŷ to form uc
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and us. As described in previous sections and shown in [34], if the PLL input

has a small fraction of total modulated symbols in a block successfully removed,

then it can begin to produce a reasonable phase estimate, even at relatively low

SNRs. We have found that the estimation/decoding process can be successfully

started by assigning ŷ = zs (Subsequent iterations derive ŷ from the decoder).

After this assignment, the PLL in the carrier synchronization loop operates once

across all symbols in a codeword. LDPC decoder log-likelihood ratio inputs are

then produced by combining the updated PLL phase estimates with zc and zs

Qk = 2
σ2

llr

(zskwck + zckwsk)

= 2
σ2

llr

(√
PTsdkcos(φc) −Ncksin(φc) −Nskcos(φc)

)

where

σ2
llr = PT 2

s /(2Es/No).

An “extrinsic” LLR feedback mechanism was employed in which prior LDPC

inputs are subtracted from current outputs before new inputs (from the most recent

PLL update) are added. Also, state information in the decoder (in particular the

most recent extrinsic information arriving from check-nodes) is preserved between

LDPC-to-PLL-to-LDPC iterates. Each new carrier phase estimate is immediately

followed by an update from loop 2 in Fig.5.2.

We conclude this section by noting that phase ambiguity (for offsets greater

than ±π/2 can be resolved by first measuring the average power across a single

codeblock of the signals zc and zs. If the sine component (zs) has average power

greater than the cosine component (zc), then these two components are swapped.

This procedure may leave (or induce) a remaining error of π radians. To resolve

this ambiguity we run a single PLL pass followed by several (up to 4) LDPC

iterations. The orientation that produces the maximum number of satisfied odd-

degree check equations is selected and the decoding procedure is reinitialized 1.

Similar techniques are proposed in [45, 44].

Results in Fig.5.4 for a carrier phase offset φ = θ− θ̂ = π/4, a symbol-frequency

1Even degree checks remain satisfied under a rotation of all inputs by π.
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offset of ±2000ppm, a time delay of ±0.5T and a random walk of σd/T = 0.5%

show a degradation of 0.2 ∼ 0.3 [dB] from the code performance where carrier

phase and symbol timing are known perfectly.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R
 / 

F
E

R

Eb \ No

20it [000] φ=0

50it [000] φ=0

20it [111] φ=π/4

50it [111] φ=π/4

20it [110] φ=π/4

50it [110] φ=π/4

20it [001] φ=π/4

50it [001] φ=π/4

Figure 5.4: BER(solid)/FER(dashed) performance. Legend format [XYZ] indi-
cates the presence/absence of: (X=1)→Symbol-frequency offset, (Y=1)→Time
delay, (Z=1)→Random walk. In all cases φ = π/4.

90



5.5 Summary

We have demonstrated a means for improving the symbol timing and carrier-phase

estimation for iterative decoded BPSK using information derived from the decoder

extrinsics. For carrier synchronization, the signal modulation is removed prior

to the carrier tracking operation. The motivation for doing this is to overcome

the penalty in noisy reference loss attributed to the large squaring loss at low

SNRs that is characteristic of the traditional BPSK carrier sync loops such as

the Costas-type loop. The scheme described in this chapter makes use of soft

decision extrinsic information and does not require estimating the decoder error

probability. A pilotless symbol timing recovery architecture for tracking time delay,

frequency offsets and random walks using LDPC feedback was also presented. The

complexity of this window search method reduces by half the number of iterations

needed in [51]. Performance within 0.2 ∼ 0.3 [dB] of the ideal code performance

can be achieved for large time delays, frequency timing offsets and any carrier

phase offset.
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Chapter 6

Hamming and Reed Solomon

codes as Rate-Efficient Array

Codes for Burst Error Correction

Array codes are error-correcting codes of very low complexity that were ini-

tially used for burst error and burst erasure correction in Redundant Arrays of

Inexpensive Disks (RAID) architectures and storage applications. Their algebraic

structure is analogous to Reed Solomon (RS) codes with symbols defined over Ga-

lois rings rather than Galois fields. This allows very desirable properties like simple

encoding and decoding but decreases the rate. For single phased burst correction,

non-binary Hamming codes maximize the possible code rate and can be decoded

with similar complexity as array codes. For multiple-burst correction, RS codes

offer the same error correcting capability as array codes with a higher code rate. In

this chapter we propose using Hamming and RS codes for array code applications

thus increasing the code rate at the expense of a slight increase in complexity.

6.1 Introduction

Burst error correcting codes are used in many fields such as multi-track storage,

satellite communications and disk arrays. Array codes [13, 55, 56], Fire codes [57,
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58] and Reed-Solomon codes [59, 58] are well-known codes that have good burst-

error-correcting capabilities. The main advantage of using array codes for burst

correction is that the encoding and decoding only requires the use of simple bit

manipulation such as bit shifting, reducing the overall complexity [11]. Therefore

when the implementation complexity is an issue and hardware efficient encoders

and decoders are needed, array codes are an attractive option.

In this chapter we show that Hamming codes and RS codes can be used for the

same applications as array codes, achieving a higher rate with a similar decoding

algorithm at the expense of a slightly higher encoding and decoding complexity.

The increase in rate is significant for short code lengths and decreases as the rate of

the code approaches unity. For the case of single burst correction, an error burst of

length 6 requires an array code with [n; k] = [42, 30] and a code rate of R = 0.714.

The same burst can be corrected with a [n; k] = [390, 378] Hamming code with

R = 0.969 thus obtaining a rate increase of 35.7%. As n increases, and the code

rate approaches one, the gain in rate decreases. To correct a burst of length 22,

the gain in code rate decreases to 9.51%. In the case of multiple burst correction,

for two bursts of length 6 the gain in rate is 118.75% and for bursts of length 22

the rate gain falls to 21%.

In the next section an introduction to array codes is presented. Array codes

are compared with Hamming and RS codes in Section 6.3. The encoding and

decoding algorithms are presented in Section 6.4. Concluding remarks are made

in Section 6.5.

6.2 Array codes

Array codes refer to a general class of algebraic error-correcting codes for use in

detecting and correcting error bursts [11, 12, 13]. Each codeword is represented

as a rectangular array. The dimensions of this array vary according to the error

correcting capability of the code. However, in every case the array dimensions are

m×m where m is a prime number. In this work when referring to an “array code”

we assume a code with the structure of [11] as opposed to [12]. We assume, for
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illustrative purposes, that each column in the array represents a disk. In RAID-3

or RAID-4 type of architectures [60,61], a number of disks (columns in the array)

carry data and one or more disks (columns) carry parity information.

To allow a simple algebraic description, the mth row of the array is set to zero

by design [11]. This row carries no information and is commonly described in

the literature as the “imaginary row”. The effective dimension of the array codes

considered is therefore (m − 1) ×m. Error correcting codes are defined in terms

of the total number of information bits k, and the codeword length n. The parity-

check matrix H of a block code has dimensions (n−k)×n. For an array code both

n and k are uniquely determined by m. An array code that corrects e bursts has

n = (m−1)(m), k = (m−1)(m−2e) and rate R = k/n = (m−2e)/m. Fig. 6.1(a)

illustrates a rectangular array for the case of m = 5 and e = 1. For this example,

single burst correction requires that the first three columns of the array carry data

information and the last two parity information.

Two different types of error bursts can be corrected using array codes. The

first case consists of correcting bursts of length L ≤ (m− 1) that occur within one

column of the array. This type of error is called a phased error burst [58] since

the burst cannot spread across columns of the array. From the disk array point

of view, this is equivalent to having errors on a single disk of the array. Array

codes can correct all error bursts of this type [11]. The second type of burst is a

non-phased error burst. In this case the only constraint is that the length of the

burst is L ≤ (m− 1). As its name indicates, errors can start on one column (disk)

of the array and propagate to a neighboring column (disk).

A syndrome-decoding analysis provides insight into the efficiency of array codes.

In the event of a phased error burst, the resulting syndrome vector s = r · HT is

unique and contains all the available information of the error event. Fig. 6.1 shows

the parity-check matrix for an array code with the structure from [11] where block

columns consist of an identity matrix Im−1 on top of another (m − 1) × (m − 1)

sub-matrix. Phased bursts excite only one block column in the parity check matrix.

The syndrome s may therefore be decomposed into the first m−1 bits s[1 : m−1],

which are exactly the error burst and the remaining m − 1 bits s[m : 2(m − 1)],
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m Columnsm Columns

m-1 

Rows

(a) Array

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

H

� �� �� �� �� �� �
= � �� �� �� �� �� �� �

00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 04 14 24 34a a a a a a a a a a a a a a a a a a a a

(b) Parity-check matrix

Figure 6.1: (a) Array code for m = 5. The grey shaded row is the “Imaginary
row”. (b) Corresponding parity-check matrix.

which must be used to identify the position of the burst. In this way, the array

code facilitates correction of any single phased burst.

A binary block code generates 2n−k distinct syndromes. This implies that at

most 2n−k = 22(m−1) distinct error events (including the “no-error” error event)

can be corrected. However, for array codes there are only m · (2(m−1)) phased

errors possible. Hence the algebraic structure of array codes although beneficial

from a practical point view, does not use all possible syndromes given its code

dimensions for phased burst correction. These extra syndromes facilitate correc-

tion of some, but not all, non-phased bursts. Correcting non-phased bursts was
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not a requirement for the RAID application for which array codes were originally

designed.

We assume a systematic encoder for the array codes in which the k data bits are

grouped in m−2e columns and the 2e(m−1) parity bits are grouped together in 2e

columns. By viewing the columns as symbols in a Galois ring, array codes can be

interpreted as cyclic codes over the polynomial ring Rm = GF (2)/(xm−1) [55,56].

This structure gives the code many desirable properties like algebraic decoding and

a low-density structure [4, 55, 62]. However, as we mentioned earlier, it prevents

the code from using all possible syndromes for phased-error correction causing a

reduction in code rate. Hamming and RS codes have a similar algebraic structure

to array codes with the difference that symbols are defined over a Galois field. The

algebraic manipulations typically required to decode this type of code have higher

complexity than the ones used for array-code decoding. On the other hand, the

use of codes defined over a Galois field permits a larger fraction of the possible

syndrome values to be used for correcting phased bursts, causing an overall rate

growth.

Raphaeli pointed out in [63] that although array codes cannot correct all non-

phased bursts, the probability of finding a burst that cannot be corrected decreases

with the code length. This is possible by making use of “extra” syndromes. Cor-

recting non-phased error bursts might be beneficial. However, if the specific pur-

pose of the code is to correct only phased error bursts, the non-phased correction

capability introduces a needless reduction in rate. Fig. 6.2 shows the difference

between the number of phased errors and the possible syndromes that can be

generated from the parity-check matrix as a function of m. As m increases the

difference between the number of elements in the ring and in the field grows expo-

nentially. This explains the results in [63] where it was noted that the probability

of finding uncorrectable non-phased error bursts decreases with the code length.

The following sections present a decoding method for Hamming and RS codes

based on array code decoding that allows these rate-efficient codes to be used at

the expense of a slight increase in decoder complexity [64].
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Figure 6.2: Comparison of maximum phased errors and total possible syndromes.

6.3 Hamming and RS codes for burst correction

Hamming codes were the first major class of linear binary codes designed for error

correction [1]. The parameters for the family of binary Hamming codes are typically

expressed as a function of a single integer mh ≥ 2, not necessarily prime. A Ham-

ming code on GF (2) has code length n = 2mh−1, message length k = 2mh−1−mh,

redundancy n−k = mh and error correcting capability t = 1 bit. The parity-check

matrices for binary Hamming codes has each nonzero binary mh−tuples appear-

ing once as a column. The same approach is used to construct q−ary non-binary

Hamming codes. There are exactly (qmh − 1) distinct nonzero q−ary mh−tuples,

but not all pairs of these mh−tuples are linearly independent. For each q−ary

mh−tuple there are (q − 1) distinct nonzero mh−tuples that are multiples of that

mh−tuple, pairs of which are clearly dependent. The q−ary Hamming code parity-

check matrix H is constructed by selecting exactly one mh−tuple from each set

of multiples. This can be done by selecting as columns of H all distinct q−ary
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mh−tuples for which the uppermost nonzero element is 1. The parity-check ma-

trix thus has n = (qmh − 1)/(q − 1) columns and defines a q−ary Hamming code

with k = (qmh −1)/(q−1)−mh and error-correcting capability t = 1 symbol of mh

bits. Out of all possible Hamming codes defined over a Galois field, we consider

the ones with mh = n− k = 2 and GF (q = 2m−1) since they have the same block

structure as array codes with identity sub-matrices on the top row. This results in

a [n; k] = [2m−1 + 1; 2m−1 + 1] Hamming code where every symbol has m− 1 bits.

Consider the case of m = 5 as an example to compare the properties of array

codes with Hamming codes. For this example the field where the Hamming code

is defined is GF (q = 2(m−1) = 16). In GF (16), every nonzero element has a

multiplicative order that divides 15. An element may have order 1, 3, 5, or 15. An

element with order 15 is primitive. We can construct GF (16) with the primitive

polynomial p(z) = z4 + z + 1, and the primitive element α as a root of this

polynomial. The elements of GF (16) can be found in Table 6.1. With I as the

(m − 1) × (m − 1) = 4 × 4 identity matrix, the binary parity check matrix for a

Hamming code defined on GF (16) is

Element Polynomial in α Vαi

α = α =
[

0 0 1 0
]

α2 = α2 =
[

0 1 0 0
]

α3 = α3 =
[

1 0 0 0
]

α4 = α + 1 =
[

0 0 1 1
]

α5 = α2 α =
[

0 1 1 0
]

α6 = α3 + α2 =
[

1 1 0 0
]

α7 = α3 + α + 1 =
[

1 0 1 1
]

α8 = α2 + 1 =
[

0 1 0 1
]

α9 = α3 + α =
[

1 0 1 0
]

α10 = α2 + α + 1 =
[

0 1 1 1
]

α11 = α3 + α2 + α =
[

1 1 1 0
]

α12 = α3 + α2 + α + 1 =
[

1 1 1 1
]

α13 = α3 + α2 + 1 =
[

1 1 0 1
]

α14 = α3 + 1 =
[

1 0 0 1
]

α15 = 1 =
[

0 0 0 1
]

Table 6.1: Representation of elements of GF (16). Vαi indicates the binary vector
representation of the element αi
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HHamm =

[

0 I I I · · · I

I 0 α α2 · · · α2(m−1)−1 = α15

]

α =










0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0










. (6.1)

An array code with the same burst-correction properties has the following binary

parity check matrix:

HA =

[

I I · · · I

β̄ β̄2 · · · β̄m−1 = β̄4

]

. (6.2)

Since array codes are defined using an all-zero row in the m×m array that carries

no information, β̄i consists of the first m− 1 rows and columns of

βi =













0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0













i

⇒ β̄ =










0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0










. (6.3)

In the case of array codes, βi is equivalent to cyclically shifting the elements of β i-

times to the left. This yields sub-matrices β̄ with a low-density structure that have

a maximum of 1 one per column and per row. This is not the case of Hamming codes

where the αi sub-matrices are non-structured. Note that although the Hamming

code has two additional block columns that form a I2(m−1) identity, this construc-

tion still allows a decoding algorithm which is very similar to the one used for array

codes. The rate of a Hamming Code code is RHamming = (2m−1 − 1) / (2m−1 + 1).

The increase in rate compared to original array codes is shown in Fig. 6.3. As

was mentioned in Section 6.1, there is a great increase in code rate for short code

lengths but the gain is reduced as the code length grows. It is important to note

that while this technique increases the rate of the code, the density of errors per
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block that can be corrected decreases. The maximum length of a correctable er-

ror burst remains constant L ≤ m − 1, but the codeword length increases from

m(m− 1) to (2m−1 + 1)(m− 1). For a disk array application, this implies that we

could add more data disks for a given number of parity disks.

The RS codes are a well-known family of multiple-error correction [58,65]. RS

codes over GF (q) are defined by a (d− 1) × n check matrix:

HRS =










I αb α2b · · · α(n−1)b

I αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

... · · · ...

I αb+d−2 α2(b+d−2) · · · α(n−1)(b+d−2)










. (6.4)

The design parameters are α which is an element of GF (q) of order n, b is any

integer (0 ≤ b < n) and d is an integer (2 ≤ d ≤ n). If α is a primitive element of

GF (q), then we can use a RS code of length n = q − 1 that is maximum distance

separable (MDS) and since it achieves the Singleton bound has the maximum

possible rate for its dimensions. For double burst correction, the choice b = 0,

d = 2e + 1 defines a RS code with the same structure of an array code but with

a significant higher rate. An array code that corrects e error bursts with e ≥ 2

has a parity-check matrix that can generate 22e(m−1) syndromes. Array codes use

only

(

m

e

)

(2m−1) syndromes while RS codes use

(

2m−1 − 1

e

)

2(m−1). The rate

of a [n, k] = [2(m−1) − 1, 2(m−1) − 1 − 2e] RS code that corrects e error bursts is

RRS = (2m−1 − 2e) / (2m−1). Fig. 6.3 shows that if a RS code is used to correct a

burst of length 6 the gain in rate is 118.75% and for bursts of length 22 the rate

gain falls to 21%. Although this code does not achieve the Hamming bound, it

offers a significant increase in code rate and, as we show in the next section, it

can use a similar decoding algorithm to the one used for array codes. This method

remains simple only for short code lengths. However other decoding algorithms like

Berlekamp-Massey or Euclid’s algorithm [59] may be more appropriate for longer

block lengths or when the number of bursts that need to be corrected is greater

than 2.
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Figure 6.3: Comparison of code rates of array codes with Hamming and RS codes.

6.4 Encoding and Decoding Algorithms

6.4.1 Single-burst correcting codes

For the array codes in [11], parity bits on the last two columns of the array are

computed such that a horizontal and diagonal-parity equations are satisfied. These

equations are as follows:

• Horizontal Parity:

m−1∑

j=0

ai,j = 0 0 ≤ i ≤ (m− 2), (6.5)

• Diagonal Parity:

m−1∑

l=0

a〈j−l〉m,l = 0 0 ≤ j ≤ (m− 2). (6.6)
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where 〈k〉n denotes k modulo n. We can see from the equations above that

horizontal-parity bits and diagonal-parity bits are not independent. The encoding

operation begins by encoding bits along a diagonal of the array that does not in-

volve any horizontal-parity bits that have not yet been determined. For example,

for the array depicted in 6.1(a) start with j = 2 for the diagonal-parity equation

a2,0 +a1,1 +a0,2 +a4,3 +a3,4 = 0 and compute a3,4. Note that the use of the “imagi-

nary row” allows a4,3 = 0 to be in the equation, preventing and indexing problem.

Once a3,4 has been determined, compute the horizontal-parity equation for i = 3

and determine a3,3. The process continues now with the diagonal equation with

i = 1 and goes on until all parity bits are determined.

Let us compute the number of XOR operations required to determine the parity

bits in an array code. There are (m−1) horizontal and (m−1) diagonal parity bits

and each calculation requires (m−2) XOR’s. Therefore 2(m−1)(m−2) XOR’s are

required for encoding array codes that correct bursts of length L ≤ (m − 1). Let

us introduce some notation that will be useful to describe the encoding complexity

of Hamming codes. Let the codeword c = [v p1 p2] be a concatenation of the

information vector v of length q−1 = 2m−1−1 symbols and two parity symbols p1

and p2, where each symbol has m− 1 bits. The parity-check matrix HHamm of the

Hamming codes that we consider, can be divided into the following sub-matrices:

HHamm =

[

H1 I 0

H2 0 I

]

. (6.7)

The sub-matrices H1 and H2 can be further divided into q−1 square sub-matrices

of size m − 1. The sub-matrices of H1 are identity matrices Im−1 and the sub-

matrices of H2 are the αi, square sub-matrices mentioned in the previous section.

In order to compute the parity symbol p1 = v.HT
1 , a total of k − 1 symbol XOR’s

which corresponds to (2(m−1) − 2)(m − 1) XOR bit operations are required. The

second parity symbol p2 = v.HT
2 , requires for

(
2(m−1) − 2

)
(m − 1)2/2 bit XOR’s.

This implies that a Hamming code that uses 2(m− 1) parity bits requires a total

of
(
2(m−1) − 2

)
(m2 − 1)/2 bit XOR operations.
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The Hamming and array codes considered have the same burst correction ca-

pacity but different code lengths. In order to compare the number of operations

required to encode these codes, we use as a reference the number of information

bits used in a Hamming code that corrects bursts of length L ≤ (m − 1). This is

equivalent to fixing the number of disk units used for storage of parity information

in a disk array. Given two redundant disks with (m − 1) bits each, a Hamming

code defined over GF (q = 2(m−1)) can use these disks to protect 2(m−1) − 1 infor-

mation disks. To protect the same number of information using an array code,
(
2(m−1) − 1

)
/ (m− 2) arrays of size (m− 1)×m are needed. The total number of

bit XOR’s required to encode this number of array codes is 2(m− 1)
(
2(m−1) − 1

)
.

The increase in XOR operations for Hamming codes is approximately equal to

(m+ 1)/4.

For example if m = 17, we can use a [n; k] = [1048592; 1048560] Hamming

code, with 32 parity bits and a rate of nearly 1. To encode the same number of

bits using an array code, we need 4369 array codes of rate 0.88 that use a total of

4369·32 = 139808 parity bits. To encode the 4369 array codes 4369·480 = 2097120

bit XOR’s are needed. The corresponding Hamming code uses 9436896 bit XOR’s

which represents an increase of complexity by a factor of 4.5. This increase in

encoding computation is a result of generating the bits corresponding to symbol

p2, since the computation complexity required for p1 is the same for both codes.

At the decoder, the error burst appears on the first m−1 bits of the syndrome.

The position of the burst is derived by using the last m− 1 bits of the syndrome.

Since any of the n received symbols may be in error, the decoding complexity is

of order O (2m−1). Algorithm 3 is actually an extension of the algorithm presented

in [11] for the general case when the bottom half of the parity-check matrix has the

structure mentioned above for Hamming codes. The bit shifts that array codes use

to derive the error position are replaced by XOR operations required for binary

vector multiplication. On each step of the decoding algorithm (m − 2)(m − 1)

XOR’s are needed to generate the vector v̄ used to determine the error position.

On each iteration, for the sample case of m = 17, 240 XOR’s are needed to obtain

v̄. Array codes use a shift register to create v̄. The error position is equal to the
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number of cyclic shifts i required so that Shift(v̄, i) = s(m : 2(m− 1)).

Algorithm 4 Hamming Code: Error Correcting Algorithm

1: s = r ·HT

2: if s 6= ~0 then
3: if s (1 : m− 1) = ~0 then
4: Position=1;
5: else if s (m− 1 : 2(m− 1)) = ~0 then
6: Position=2;
7: else
8: for i= 1 to 2m−1 − 3 do
9: if (s (1 : m− 1) · αi) = s(m : 2(m− 1) then

10: Position=i+2;
11: Break ⇒(Solution Found)
12: end if
13: end for
14: end if
15: end if

6.4.2 Multiple burst-correcting codes

For multiple burst-correcting array codes the number of parity bits is 2e(m − 1).

Similar to the single burst-correcting case (m−2) bit XOR’s are required to encode

each bit, requiring a total of 2e(m− 1)(m− 2) XOR’s for a length n = (m− 1)m

code. RS codes can be encoded with a complexity that is linear with the code

length. A systematic generator matrix can be derived from HRS . A structure for

this matrix cannot be easily expressed as a function of αi preventing us from doing a

detailed complexity comparison with array codes as we did in the previous section.

However, we can see that the analysis is similar to the single burst-correcting case,

with an increase in XOR operations for the RS encoding that is due to loosing the

low-density property that array codes have.

The extension of the previous single burst-error-decoding algorithm for the case

of e error bursts has complexity order O (ne). On each step there are between 2e

and 4e matrix multiplications of binary vectors of length (m−1). This complexity

can be acceptable for short code lengths and double error correction. For cases of
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higher complexity the algorithm becomes comparable to an exhaustive search and

other well known algorithms like Berlekamp-Massey [11, 58] are a better option

since decoding complexity does not depend on the code length. This increasing

complexity problem also occurs for multiple burst-correcting array codes. As in the

case of Hamming codes, both RS and array codes have the same order of decoding

complexity. Algorithm 4 for double burst correction is shown below. It begins

by diving the received syndrome into four vectors s = [s0 · · · s3] that are equal to

different combinations of combinations of the error bursts: sk =
(
e0α

k·i + e1α
k·j)

where i and j are the two error positions. For every combination of error positions,

the algorithms solves for e0 and e1 using two equations and later verifies if the

solution holds for all remaining equations. The index p can be found using the

primitive polynomial of the Galois field where the RS code is defined.

Algorithm 5 RSCode: Double Error-Correcting Algorithm

1: s = r ·HT

2: for k= 0 to 2e do
3: sk = s (k(m− 1) + 1 : (k + 1)(m− 1)) ;
4: end for
5: for i= 0 to 2m−1 − 1 do
6: for j= 0 to 2m−1 − 1 do
7: Find p such that: αp = αi + αj

8: ê0 = (s0α
j + s1)α

(2m−1−1−p)

9: ê1 = (s0α
i + s1)α

(2m−1−1−p)

10: if (s2 = (ê0α
2i + ê1α

2j) and s3 = (ê0α
3i + ê1α

3j)) then
11: Break ⇒(Solution Found)
12: end if
13: end for
14: end for

6.5 Summary

The most rate-efficient codes that meet the single burst-error correction capability

of array codes are Hamming codes. These codes can correct all phased single error

bursts of length L ≤ (m− 1). For the case of multiple burst-error corrections RS
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codes are the more rate-efficient than an array code with the same error correction

properties. Furthermore, both Hamming and RS codes have an encoding and

decoding complexity comparable to array codes. The decoding procedures is an

extension of the algorithm used to decode array codes where bit shifts are replaced

by binary vector multiplications. Still this is more complex than what the original

array codes require. For very short code lengths the gain in rate obtained is

significant, but as the code length increases and the code rate approaches one, the

rate increase is reduced.
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