
UNIVERSITY OF CALIFORNIA

Los Angeles

Optimizing Flash-Based Storage Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical and Computer Engineering

by

Haobo Wang

2018

c© Copyright by

Haobo Wang

2018

ABSTRACT OF THE DISSERTATION

Optimizing Flash-Based Storage Systems

by

Haobo Wang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Richard D. Wesel, Chair

This dissertation proposes mathematical algorithms for improving Flash-based storage

system’s four key performance metrics: lifetime, reliability, latency and throughput.

The first part of the dissertation presents the novel concept of dynamically voltage al-

location (DVA) for Flash memory. Flash memory suffers reduced reliability as the number

of program/erase (P/E) cycles increases, thus has a limited lifetime. DVA scales the write

threshold voltages of Flash memory adaptively, using lower voltages at the beginning of the

lifetime, and gradually increases the scaling to combat the effect of accumulated wear-out

from P/E cycling. The proposed algorithm significantly increases the lifetime of the device.

The second part of the dissertation introduces the novel design of error correction us-

ing incremental redundancy without feedback. Modern storage systems often require high

throughput, high reliability and low latency. Traditional variable-length (VL) codes with

feedback have demonstrated to provide high throughput and reliability. The new design

reinterprets the results for VL codes with feedback using ergodicity, by encoding the incre-

mental redundancy of multiple VL codewords to a common pool of redundancy. The removal

of feedback allows storage systems to benefit from the performance of a feedback scheme with

a feedforward design. The decoder of the new design exploits the low complexity of short-

blocklength decoders and the parallelization structure to reduce latency. The proposed error

correction scheme approaches the throughput of corresponding VL codes with feedback.

ii

Relying on information theory and coding theory, the proposed algorithms provide new

approaches to optimize the Flash-based storage systems.

iii

The dissertation of Haobo Wang is approved.

Adnan Youssef Darwiche

Babak Daneshrad

Lieven Vandenberghe

Richard D. Wesel, Committee Chair

University of California, Los Angeles

2018

iv

To my parents.

v

Table of Contents

1 Overview . 1

2 Using Dynamic Allocation of Write Voltage to Extend Flash Memory Life-

time . 5

2.1 Introduction . 5

2.2 Modeling Channel Parameters & Degradation 9

2.2.1 Channel Model with Additive Components 10

2.2.2 Channel Parameter Degradation Model 15

2.2.3 Models Used in This Chapter . 18

2.3 Dynamic Voltage Allocation with Ideal Channel Information 19

2.4 Channel Parameter Estimation . 26

2.4.1 Channel Parameter Estimation Problem Formation 27

2.4.2 Least Squares Algorithms . 28

2.4.3 Binning Strategy . 31

2.5 Dynamic Voltage Allocation with Model/Channel Mismatch 36

2.5.1 Model 1 . 37

2.5.2 Model 2 . 39

2.6 Comparison of Dynamic Voltage Allocation and Dynamic Threshold Assignment 40

2.7 Dynamic Voltage Allocation when Voltage Placements are Quantized 42

2.8 Complexity Analysis . 44

2.9 Conclusion . 47

vi

2.10 Channel Parameters Used in This Chapter 48

2.11 Acknowledgment . 48

3 Coding with Shared Incremental Redundancy 49

3.1 Introduction . 49

3.2 Architecture . 51

3.3 Generalized Peeling Decoder Analysis . 54

3.3.1 Generalized Peeling Decoder (GPD) 55

3.3.2 Computation of r1(t) a.k.a. r1(x) . 56

3.3.3 Computing Probability of Left Node Failure εFF 60

3.3.4 Throughput of Feedback and Feedback-Free Systems 61

3.3.5 Throughput Loss in the Feedback-Free System 62

3.4 Design Methods . 64

3.4.1 VL Code Design . 64

3.4.2 Design the Inter-Frame Degree Distribution 72

3.4.3 Bipartite Graph Design . 75

3.5 Results . 76

3.5.1 Convolutional VL Code Based System 76

3.5.2 NB-LDPC VL Code based System 80

3.6 Conclusion . 85

3.7 Acknowledgment . 86

References . 87

vii

List of Figures

1.1 Common structure of a P-well Flash memory cell. 2

1.2 NAND Flash memory cell grid. 3

2.1 Estimation-based DVA framework. 7

2.2 Flash read channel PDFs illustrating how the probability density of voltage

thresholds is affected by various noise components. 11

2.3 Spacial relationship between the interfering cells (red) and interfered cells

(green). Flash memory is written wordline by wordline, i.e., wordline i+ 1 is

written after wordline i. For the interference shown above, within a wordline

even cells are written before odd cells. 13

2.4 DVA performance with ideal channel information versus fixed allocation’s per-

formance. (Ground truth channel is Model 2. DVA targets even channel.

Channel parameters are listed in the Sec. 2.10.) 23

2.5 DVA performance with ideal channel information and the performance of the

fixed allocation. (The ground truth channel is Model 2. The writing order

of pages is switched every 100 P/E cycles. Joint DVA is use to adjust both

scaling factors for even and odd cells. Channel parameters are listed in Sec.

2.10.) . 24

2.6 Scaling factors generated by DVA with ideal channel information. (Result

corresponds to Fig. 2.4 and 2.5. Ground truth model is Model 2. Channel

parameters are listed in Sec. 2.10. The starting value of α is 0.37.) 25

viii

2.7 Estimation result versus ground truth for γµr using 10-bin equal-probability

histogram. 30

2.8 Iteration count statistics using Levenberg-Marquardt algorithm. 32

2.9 Squared Euclidean distance between the channel distributions and correspond-

ing histograms (10 bins). 34

2.10 Effective resolution of different histograms (10 bins). 35

2.11 DVA’s performance with multi-modal Gaussian model. (Ground truth model

is Model 1. Channel parameters are listed in Sec. 2.10.) 37

2.12 DVA performance with multi-modal Gaussian model. (The Ground truth

model is Model 2. Channel parameters are listed in Sec. 2.10. The lifetime

of even cells is extended by 70.5% from 2136 P/E cycles to 3642 P/E cycles.

The lifetime of odd cells is extended by 41.6% from 2517 P/E cycles to 3564

P/E cycles. The overall lifetime is extended by 66.9% from 2136 P/E cycles

to 3564 P/E cycles.) . 38

2.13 DTA and DVA’s performance. (Even and odd cells switch positions when

using DVA. The legend follows the format write voltage allocation algorithm

- read voltage allocation algorithm. Comparing the result from DVA - DTA

with Fixed - DTA, The lifetime of even cells is extended by 66.5% from 2282

P/E cycles to 3800 P/E cycles. The lifetime of odd cells is extended by 41.4%

from 2654 P/E cycles to 3754 P/E cycles. The overall lifetime is extended by

64.5% from 2282 P/E cycles to 3754 P/E cycles.) 41

2.14 DVA performance with quantized placements. (Quantization provides 64 pos-

sible locations. Ground truth model is Model 2. Channel parameters are listed

in Sec. 2.10.) . 42

ix

2.15 DVA’s performance with quantized placements. (Quantization provides 128

possible locations. Ground truth model is Model 2. Channel parameters are

listed in Sec. 2.10. The lifetime of even cells is extended by 72.1% from 2136

P/E cycles to 3676 P/E cycles. The lifetime of odd cells is extended by 34.8%

from 2517 P/E cycles to 3393 P/E cycles. The overall lifetime is extended by

58.8% from 2136 P/E cycles to 3393 P/E cycles.) 43

3.1 Inter-frame encoder structure. Wi is a k-bit message, X(i)
0 is a length-`0

vector, and {X(i)
1 , . . . ,X

(i)
4 } and Ij are length-`∆ vectors. 52

3.2 Decoding process of an inter-frame coding system with the inter-frame layer

represented as a bipartite graph. 53

3.3 Example r1(x) from density evolution and equation (3.8) for λ(x) = x3 and

the irregular ρPEG(x) in Section 3.5.2. The VL code characterization PMF

δ = [0.30909, 0.464, 0.1939, 0.02934, 0.00318, 0.00049]. 60

3.4 Probability of failure mechanisms of right nodes for the irregular ρPEG(x) in

Section 3.5.2. 63

3.5 Example right degree distribution ρDE(x) from differential evolution as de-

scribed in Sec. 3.5.2. 74

3.6 Probability of failure versus the number of iterations of the convolutional VL

Code based feedback-free system. 78

3.7 r1(x) versus x for Table 3.5. The curves are generated using equation (3.8).

Circles indicate iteration points determined through density evolution. 79

3.8 Probability of failure versus iterations for ρQR(x) distributions in Table 3.5.

The curves are generated using density evolution. 79

3.9 Probability of failure versus the number of iterations for the designs in Table

3.7 from density evolution and genie-aided simulations. 83

x

3.10 Probability of failure versus the number of iterations for the α = 0.597 1000-

left-node design in Table 3.8 from density evolution, simulations with a genie-

aided decoder and decoders using CRCs. 84

xi

List of Tables

2.1 Converge counts of least square algorithms (over 14 cases). 31

2.2 Computational complexity of read threshold voltage allocation. 45

2.3 Computational complexity of Levenberg-Marquardt algorithm. 45

2.4 Computational complexity of scaling factor adjustment. 46

2.5 Channel parameters used in this chapter. 48

3.1 Performance comparison between the k = 64 1024-state TBCC VL code’s VI

and CI designs. (2 dB BI-AWGN, m = 5, target εFB = 10−3 for the first two

rows, target εFB = 5× 10−4 for the third row) 67

3.2 The first 5 combinations for the first symbol of the rate 0.75 NB-LDPC code. 71

3.3 Performance comparison between theK = 24 NB-LDPC VL code with ACK/NACK

feedback’s VI and CI designs. (2dB BI-AWGN, m = 5, target εFB = 10−3 for

the first two rows, target εFB = 5× 10−4 for the third row) 71

3.4 Performance of the convolutional VL code based feedback-free systems. . . . 77

3.5 Density evolution performance characteristics of quasi-regular ρQR(x) = αx2+

(1−α)x3 for the convolutional VL code based feedback-free system. λ(x) = x3

in all cases. 79

3.6 Density evolution performance characteristics of the highest R(FF)
t (lowest-

βFF) quasi-regular right degree distributions for the convolutional VL code

based feedback-free system. λ(x) = x3 in all cases. 80

xii

3.7 Density evolution performance characterization of quasi-regular ρQR(x) =

αx2 + (1 − α)x3 for the NB-LDPC VL code based feedback-free system.

λ(x) = x3 in all cases. 82

3.8 Right degree distributions of the PEG generated inter-frame bipartite graphs

in Fig. 3.9. 82

3.9 Probability of failure of 1000-left-node α = 0.597 code from Table 3.8 simu-

lated with CRCs. 84

xiii

Acknowledgments

This dissertation summarizes my multi-year research effort as a graduate student at

University of California, Los Angeles (UCLA). This long march would not have been possible

without the support and guidance from my family, friends, colleagues and advisors.

I would like to express my deepest gratitude to my advisor and chairman of my doctoral

committee Prof. Richard D. Wesel. I first met Prof. Wesel as a student attending his chan-

nel coding course. It is through his deep insights and excellent teaching that I discovered

the importance of information theory and coding theory in today’s information technology

landscape. Through his encouragement, I joined his research group to work on important

theoretical challenges that have many practical manifestations. His deep knowledge on a

vast amount of subjects and tireless guidance enabled my transition from a student to a

researcher. From resolving simple logistics issues in the research group, to honing my writ-

ing and presenting skills, to teaching me creative ways to identify and solving theoretical

problems, his efforts made my doctoral tenure not only productive, but also fun. His deep

connections in the industry provided me with opportunities to gain first-hand experience

in solving real engineering problems, which also contributed to my research efforts. As a

researcher, as a teacher, and as a friend, Prof. Wesel demonstrated what an exceptional

advisor should be. I am honored to have the chance to work with him.

I would also like to thank Prof. Dariush Divsalar. I benefited greatly from his immense

experience and insights in both theory and engineering. I am greatly thankful to the rest of

my committee members: Prof. Adnan Youssef Darwiche, Prof. Babak Deneshrad and Prof.

Lieven Vandenberghe, for their contribution in this dissertation and my doctoral tenure.

As a member of UCLA Communications Systems Laboratory (CSL), I learned greatly

from my colleagues in the research group that have worked with me: Dr. Kasra Vakilinia,

Dr. Sudarsan V.S. Ranganathan, Nathan Wong, Alexander M. Baldauf, Christopher K.

Bachelor, Adam Belhouchat, and Ethan Liang. As the senior student in the group for the

xiv

majority of my doctoral tenure, Kasra helped me gain a foothold, and showed to me how to be

an exceptional doctoral student. Working with Nathan has always been productive and fun.

Alexander, Christopher, Adam and Ethan amazed me how much they can achieve through

research as undergraduate students. Especially, I want to thank Sudarsan. Sudarsan and I

joined the group at around the same time. I deeply cherish my discussions and arguments

with him ranging from research problems to politics. His hardworking attitude and passion

towards both research and life will always inspire me in my future endeavors. I also want to

thank my colleagues that I did not get a chance to work with: Dr. Adam Williamson, Dr.

Chung-Yu Lou, Tong Mu, Chris Miller, Gourav Khadge, Will Chuang, Hengjie Wang and

Linfang Wang.

Outside of UCLA, I want to thank Mr. Aldo Cometti at Western Digital. I gained

valuable engineering-problem-solving skills through my internship under the guidance of Mr.

Cometti. I am grateful for all the time and effort he put into my internship.

Most importantly, I want to dedicate this dissertation to my parents. It is your love,

support and great sacrifice that have lifted my life trajectory to this day. I would not have

achieved so much without you.

Finally, I want to thank UCLA for providing the institutional support for my doctoral

tenure. I express great appreciation to UCLA and National Science Foundation for their

financial support.

xv

Vita

2014 Master of Science, Electrical Engineering
University of California, Los Angeles

2015 PhD Candidate, Electrical Engineering
University of California, Los Angeles

Selected Publications

H. Wang, T. Chen, and R. D. Wesel, “Histogram-based Flash channel estimation”, in Pro-
ceedings of 2015 IEEE International Conference on Communications (ICC), London, UK,
June 2015, pp. 283–288.

H. Wang, N. Wong, and R. D. Wesel, “Dynamic voltage allocation with quantized voltage
levels and simplified channel modeling”,in Proceedings of 2015 49th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, November 2015, pp. 834–838.

H. Wang, N. Wong, T. Chen, and R. D. Wesel, “Using dynamic allocation of write voltage
to extend Flash memory lifetime”, IEEE Transactions on Communications, vol. 64, no. 11,
pp. 4474–4486, November 2016.

H. Wang, N. Wong, A. M. Baldauf, C. K. Bachelor, S. V. S. Ranganathan, D. Divsalar
and R. D. Wesel, “An information density approach to analyzing and optimizing incremen-
tal redundancy with feedback”, in Proceedings of 2017 IEEE International Symposium on
Information Theory (ISIT), Aachen, Germany, June 2017, pp. 261–265.

H. Wang, S. V. S. Ranganathan and R. D. Wesel, “Approaching capacity using incremental
redundancy without feedback”, in Proceedings of 2017 IEEE International Symposium on
Information Theory (ISIT), Aachen, Germany, June 2017, pp. 161–165.

H. Wang and R. D. Wesel, “Channel code analysis and design using multiple variable-
length in parallel without feedback”, in Proceedings of 2018 IEEE Global Communications
Conference (GLOBECOM), Abu Dhabi, UAE, December 2018, to be published.

xvi

H. Wang and R. D. Wesel, “Coding with shared incremental redundancy: design methods
and a non-binary LDPC example”, IEEE Transactions on Communications, September 2018,
submitted for publication.

xvii

CHAPTER 1

Overview

A data storage system usually consists of two components: the storage media and its con-

troller. The storage media is the physical device that stores data, such as optical disks,

magnetic disks, and Flash memory cells. The controller is usually the software and hard-

ware implementation of logics that manages the data storage and retrieval process on the

storage media, and provides an interface to store and retrieve data to other systems. This

dissertation proposes two types of algorithms for the controller which improves the perfor-

mance of Flash-based storage systems.

The performance of a storage system is usually measured with four metrics: lifetime,

reliability, latency and throughput. Lifetime is measured as the amount of time from the

point that data is initially stored to the point that the stored data is not be recoverable.

Reliability is measured as the probability that data retrieved from the system is not the

same as the originally stored data. Latency is measured as the amount of time the system

takes from issuing the data retrieval/storage command to the completion of the action.

Throughput is measured as the average amount of data the system can store and retrieve in

an unit amount of time. An ideal storage system should have a long lifetime, a high reliability,

a low latency and a high throughput. However, the fundamental physical characteristics of

the storage media dictates the baseline performance metrics of the storage system. Also,

physical limitations constrain the ability to improve all four metrics simultaneously. So the

controller of practical storage systems need to balance the four metrics, and depending on

1

Control Gate

Oxide Layer

Floating Gate

Oxide LayerSense Amp

Comparator SubstrateBit line
SourceDrain

N+N+

...

P-well

Erase Voltage

Word

line

Figure 1.1: Common structure of a P-well Flash memory cell.

application, strengthen certain performance metrics at a cost of others.

For a Flash-memory-based storage system, the storage media, i.e. the Flash memory

cells, have unique physical characteristics [1, 2, 3, 4]. Fig. 1.1 shows the basic physical

structure of a P-well Flash memory cell. The threshold voltage of a Flash cell is largely

determined by the amount of charge in the floating gate and the device’s intrinsic (charge-

neutral) threshold voltage. Electrons are programmed to and erased from the floating gate

through the oxide layer to control the threshold voltage. This program and erase (P/E)

operation is used to storage data. The threshold voltage level can be obtained by applying

a wordline voltage and reading the sense amplifier output to determine if the threshold

voltage has been surpassed. This process can be modeled as a point-to-point communication

system with a discrete memoryless channel. Due to different types of channel degradation,

the measured value of the threshold voltage often differs from the originally stored threshold

voltage.

The Flash memory cells are arranged in a dense grid in a Flash memory system to form

the basic storage media [1, 3, 4]. Fig. 1.2 shows the cell grid of a typical NAND Flash

memory. Each row of cells are connected to the same wordline, and each column of cells

are connected head-to-toe through the bitline. Program and erase operation on each row

2

Wordline

Bitline

Figure 1.2: NAND Flash memory cell grid.

or column of cells will impact the stored charge in adjacent rows and columns, and cause

additional channel degradation.

In Chapter 2, the concept of dynamically voltage allocation (DVA) is presented as a novel

method to combat Flash memory channel degradation. This chapter first introduces Flash

channel degradation mechanisms and their corresponding models, and provides a technique

to estimate the parameters in the models. From the models it can be concluded that the

reliability of Flash memory suffers as the number of P/E cycles increases, thus has a limited

lifetime. Then the chapter presents the DVA framework which scales the write threshold

voltages of Flash memory adaptively, using lower voltages at the beginning of the lifetime,

and gradually increases the scaling to combat the effect of accumulated degradation from

P/E cycling. Simulation results show that DVA can significantly increase the lifetime of the

system.

Through DVA and other methods, the effect of channel degradation can be greatly miti-

gated. However, certain amount of degradation will still manifest, causing the retrieved data

to contain errors. Error correction code (ECC) is usually used to correct these errors. The

ECC algorithm encodes the data to be stored into codewords which contain redundant infor-

mation, and recovers the stored data using retrieved codewords. The design of the ECC has

significant impact on the lifetime, reliability, latency and throughput of the storage system.

In Chapter 3, the design of error correction using shared incremental redundancy is intro-

3

duced as a novel ECC solution for Flash-based storage systems. Traditional variable-length

(VL) codes with feedback have demonstrated to provide high throughput and reliability. The

new design reinterprets the results for VL codes with feedback using ergodicity, by encod-

ing the incremental redundancy of multiple VL codewords to a common pool of redundancy

[5, 6, 7]. This chapter first introduces the inter-frame coding as the structure of the proposed

design. The parallel structure and low complexity of the component short-blocklength codes

in our encoder and decoder design can help improve latency. Then the chapter provides a

convergence analysis of the proposed generalized peeling decoder for the system. The chapter

also provides design demonstrations employing two different types of VL codes. Simulation

results show that our designs without feedback approach the throughput and error perfor-

mance of the VL codes with feedback, which can lead to improved throughput, lifetime and

reliability.

4

CHAPTER 2

Using Dynamic Allocation of Write Voltage to Extend

Flash Memory Lifetime

2.1 Introduction

Flash memory has been widely employed in both consumer electronic devices and industrial

electronic systems because of its ability to support high-throughput and low-latency mem-

ory access. However, a fundamental issue with Flash technology is that its read channel

experiences significant degradation over time which eventually produces unacceptable reli-

ability. As modern Flash solutions provide more storage capacity in smaller form factors,

the resulting increase of physical cell density and signal constellation density amplifies the

degradation problem.

The degradation can be addressed in different layers in the Flash system. At the device

layer three-dimensional cell structures improve durability [8, 9, 10]. At the system level

channel codes such as Bose-Chaudhuri-Hocquenghem (BCH) codes [11, 12, 13] and more

recently low density parity check (LDPC) codes [14, 15, 16, 17] add redundancy to protect

the stored information. In [18], the authors write to cells with a lower voltage but for a

longer time to cause less damage at the expense of increased write time. The resulting

scheme provides lifetime extension while still guaranteeing a desired write throughput.

The degradation over time is often modeled as a function of the number of program and

erase (P/E) cycles, so a direct solution is reducing the number of P/E cycles needed. Write-

5

once memory (WOM) codes [19, 20, 21, 22] provide one approach to reduce the number of

P/E cycles required to store information by permitting multiple writes before an erase cycle

is needed. Another way to reduce the number of P/E cycles is rank modulation [23, 24, 25],

which stores information in the cell using the relative value (or ordering) of cell charge levels

rather than the absolute value. Thus a block of cells can be rewritten without erasing by

adding charge to properly re-order the cells.

Several papers have explored dynamically adjusting to the degrading read channel [26,

27, 28]. In [26], read thresholds are progressively adjusted to minimize hard decoding BER or

provide better log-likelihood for soft decoding based on previous reads. In [27, 28], dynamic

threshold assignment (DTA) adjusts the read thresholds to match the shifting and widening

threshold voltage distributions of the read channel, significantly improving bit error rate

(BER) performance.

In contrast to the P/E-cycle-based degradation model, this chapter models the degrada-

tion as a function of the cumulative effect of the charge written and erased from the cell,

which we call the accumulated voltage Vacc. The accumulated voltage model reveals the

opportunity to improve lifetime by minimizing the Vacc required to store a given amount of

information. In particular, this chapter explores dynamically adjusting the target threshold

voltage levels by using lower target write threshold voltage levels at the beginning of the

device lifetime. This approach is called dynamic voltage allocation (DVA) [29, 2, 3, 4]. As

the read channel becomes more degraded, the threshold voltages are gradually increased to

what would be the nominal values in a standard device not employing DVA.

Fig. 2.1 illustrates the basic structure of the DVA approach. Periodically (every 100 P/E

cycles in the figure) multiple reads using different read thresholds produce a histogram of

the threshold voltages of the cells on the page or pages considered. A parameter-based least-

squares channel estimation determines the quality of the read channel from this histogram.

Based on the channel estimation, write threshold voltages are set to be as low as possible

while still ensuring that the read channel has sufficient mutual information to be successfully

6

Histogram Measurement

Least Squares Parameter Estimation

Histogrgg am MeMM asuruu emee enee t

Leaee st Squqq auu resee Pararr memm ter Estimamm tionoo

Channel Parameter Estimation

DVA Scaling Factor Adjustment

E
v

e
ry

 1
0
0

 P
/E

 C
y

c
le

s

Figure 2.1: Estimation-based DVA framework.
decoded.

This chapter systematically explains and demonstrates the concept of DVA, and addresses

several issues to support a practical implementation in the following ways:

1. Providing a comprehensive summary of Flash memory read channel degradation mod-

els;

2. Introducing the histogram-based Flash channel estimation as a method to estimate

channel information in a practical system;

3. Summarizing the DVA algorithm, and analyzing DVA’s performance with perfect chan-

nel information;

4. Analyzing DVA’s performance when both estimation and scale-factor adjustment algo-

rithms are simplified by using a simple Gaussian model to approximate the underlying

(and more complex) ground truth channel;

5. Designing and analyzing DVA specialized to match an even-odd structure for writing

to cells;

7

6. Exploring the improvement obtained by DVA over DTA;

7. Analyzing DVA’s performance when both write and read voltage values are restricted

to a finite set of available voltages;

8. Analyzing DVA’s complexity.

DVA is first explored under the assumption of perfect knowledge of the channel state

as in the paper [29], except with a more complex read channel that includes cell-to-cell

interference and programming errors. This chapter introduces DVA in an idealized setting

and then removes ideal assumptions about channel knowledge and threshold resolution to

conclude with a practical scheme that has performance similar to that of the idealized setting.

Then the performance of DVA is explored when it must gain its channel information

through estimation. All dynamic schemes such as DTA and DVA require some form of

information about the read channel, and different methods can be employed to acquire the

information. For DTA, knowledge of the voltage distribution is needed. In [27], repetitive

read operations are needed at relatively precise voltages to enable a bisection algorithm to

place the read thresholds. In [28], threshold measurements of a certain number of cells are

required.

As shown in Fig. 2.1, our approach to acquire read channel information is to measure a

limited-resolution histogram and interpret this histogram using certain assumptions about

the channel model. In [30], the authors model the Flash read channel as a multi-modal

Gaussian distribution with means and variances as parameters, and demonstrate that least

squares algorithms estimate the means and variances well with histograms having as few as

twelve bins. These estimated parameters are used to set read thresholds according to [31].

This channel estimation is first performed with a perfect channel model. Next, this chap-

ter explores the practical scenario in which the channel model does not perfectly represent

the true channel. This mismatch is both a reflection of the imperfect characterization infor-

mation available about a specific Flash device and the fact that, even with perfect knowledge

8

of the channel model, simpler models might be preferable because they reduce the complexity

of estimation.

Next, we explore how constraining the resolution of write and read thresholds affects per-

formance. We also compare the performance of DVA to DTA and analyze complexity of the

DVA framework. Possible solutions to reduce the cost of implementing DVA are proposed.

Throughout the chapter, Multi-level Cell (MLC) Flash (with four levels) is assumed for all

the models and simulations.

The remainder of this chapter is organized as follows: Sec. 2.2 presents the complete

channel model. Sec. 2.3 introduces DVA using the complete channel model but in the ideal-

ized setting of perfect channel state information. Sec. 2.4 formulates the channel parameter

estimation problem and presents the least squares algorithm and binning strategy used in

this chapter. Sec. 2.5 examines the practical scenario in which channel estimation and DVA

are based on a model that is not perfect but is simpler than the actual channel. Sec. 2.6

compares the performance of DTA and DVA. Sec. 2.7 adds practical constraints on the reso-

lution of the read and write threshold voltages. Sec. 2.8 analyzes the complexity cost of DVA

framework. Sec. 2.9 concludes the discussion. Sec. 2.10 provides the channel parameters used

in this chapter. Sec. 2.11 presents the acknowledgment.

2.2 Modeling Channel Parameters & Degradation

Because the interfaces are proprietary, we are not able to measure data from actual flash

devices. Instead, we use the models introduced in this section to generate the noise that

reflects the behavior of the Flash memory read channel. These models are called ground

truth models, which means that they are used for all simulations. The term "ground truth

model" distinguishes these models from less precise simple Gaussian model (which is called

the channel model assumption) that are used by the channel estimation and DVA algorithms.

Note that all algorithms, regardless of the models they incorporate in their calculations, are

simulated on the ground truth models.

9

The ground truth models are not matched to a particular Flash device, but based on

the academic publications we cite as we present the models. We believe these models reflect

the major channel degradations and provide a reasonable degradation trajectory over the

lifetime of Flash memory. We use these qualitatively correct channel models to show that

DVA can counter the major types of degradation in Flash memory channels. The models in

this section can be replaced with device-specific models to apply DVA to a particular Flash

memory system. In fact, we will show in Sec. 2.5 that DVA does not need a precise channel

model to provide a significant improvement in lifetime.

2.2.1 Channel Model with Additive Components

We formulate a Flash memory read channel model with five additive noise components as

follows:

y = x+ npe + np + nw + nc2c + nr, (2.1)

where voltage x is the intended threshold voltage written to a cell, and y is the measured

threshold voltage. Noise np denotes the programming noise, nw denotes the wear-out noise,

nr denotes the retention noise, nc2c denotes the cell-to-cell interference, and npe denotes the

programming error.

Fig. 2.2 shows an example of voltage distribution probability distribution functions

(PDFs) which demonstrates the additive effect of each noise component. The arrows in the

figure represent delta functions.

Programming Error npe [4, 32]

Programming errors occur when a bit of the lower page is mis-read in preparation for writing

a bit of the upper page to an MLC cell. Essentially, as the bit of the upper page is written,

the error of the first bit is amplified. The programming error is modeled with a probability

mass function (PMF). For an intended level x, channel parameter Px,y = P (Y = y|X = x)

10

Voltage

P
ro

b
ab

il
it

y
 D

en
si

ty

Figure 2.2: Flash read channel PDFs illustrating how the probability density of voltage
thresholds is affected by various noise components.

11

is the conditional probability of actually writing y. For MLC Flash, we have

Px,0 + Px,1 + Px,2 + Px,3 = 1, (2.2)

for each x ∈ {0, 1, 2, 3}. These channel parameters are strongly related to the number of

P/E cycles.

This distortion changes the distribution of stored data. For example, if there is no

other noise component and the original data is uniformly distributed (i.e. each level is

equally likely), programming errors move some writes to higher levels so that the levels are

no longer equally likely. Results in [32] indicate that the impact of programming errors

becomes significant only after a large number of P/E cycles.

Programming Noise np [29, 2, 3, 4, 33, 34]

The programming noise is modeled as a Gaussian noise for each level, and the noise variance

of programmed states is smaller than that of the erased state because the feedback control

loop associated with programming reduces threshold variation. The PDF of the programming

noise is represented as

fnp(np|x = l) =


N (0, σ2

e) if l = 0

N (0, σ2
p) if l > 0

, (2.3)

where σe > σp. Index l represents the level of the intended threshold voltage level. For MLC

Flash, l ∈ {0, 1, 2, 3} where l = 0 indicates the erased state. Standard deviations σe and σp

are the channel parameters for this component, and remain constant throughout the lifetime

of the device.

12

Wordline i

Wordline i+1

(b) Even cell

Vb Vc

VeVd

Va

Wordline i

Wordline i+1

(a) Odd cell

Vb VcVa

Figure 2.3: Spacial relationship between the interfering cells (red) and interfered cells (green).
Flash memory is written wordline by wordline, i.e., wordline i+ 1 is written after wordline i.
For the interference shown above, within a wordline even cells are written before odd cells.

Wear-out Noise nw [29, 2, 3, 4, 35, 36, 37, 38, 39, 40]

The wear-out noise is modeled as a positive-side exponential1 noise for each level, and the

slope of the distribution is characterized by the channel parameter λ. The PDF is

fnw(nw) =


1
λ
e−

nw
λ if nw ≥ 0,

0 if nw < 0.
(2.4)

Parameter λ increases as the device experiences more P/E cycles (or larger Vacc).

Cell-to-cell Interference nc2c [4, 41, 42]

The cell-to-cell interference experienced by a cell is a weighted sum of the voltage increases

in neighboring cells that occur after the cell of interest has been written [43]. Fig. 2.3
1For various device implementations wear-out noise can also be a negative-side exponential or a double-

sided exponential (Laplace) distribution. The DVA and channel estimation techniques we present can be
applied in all these cases.

13

shows the spacial relationships between the interfering cells and the cell of interest for Flash

memories employing the common even-odd structure for writing and for reading. The green

circle indicates the cell of interest, and the red circles indicate the interfering cells. Fig.

2.3(b) shows that even cells, which are written first, suffer interference from the odd cells in

that wordline, which are written after the even cells. As is shown in Fig. 2.3(a), the odd

cells do not suffer any interference from the even cells in the same wordline because the odd

cells are written after the even cells. All the cells in wordline i suffer interference from the

neighboring cells in wordline i+ 1, which is written after wordline i. The threshold voltage

disturbance (increase) of odd cells Vc2c,odd and even cells Vc2c,even caused by this interference

can be modeled as

Vnc2c,odd = γaVa + γbVb + γcVc , (2.5)

Vnc2c,even = Vnc2c,odd + γdVd + γeVe . (2.6)

As shown in Fig. 2.3, Va, Vb, and Vc are voltage increases from the cells in the next wordline.

Vb is from the cell directly above the cell of interest. Va and Vc are voltage increases in cells

diagonally adjacent on the next wordline that are located either upper left (Va) or upper

right (Vc). The voltage increases Vd and Ve are from adjacent cells on the same wordline

that are to the left (Vd) or right (Ve). When these cells are programmed (subsequent to the

programming of the cell of interest), they interfere with the cell of interest according to the

coupling factors (γ’s) between the interfering cells and the cell of interest. The magnitude

of this noise component is thus related to two factors: the values of the voltage increases as

the adjacent cells are written to their intended thresholds and the coupling factors γ.

14

Retention Noise nr [29, 2, 3, 4, 44, 45, 46, 36, 41]

The retention noise is modeled as a Gaussian random variable with PDF

fnr(nr) = 1
σr
√

2π
e
− (nr−µr)2

2σ2
r . (2.7)

Both µr and σ2
r (characterized in detail below in Sec. 2.2.2) are dynamic channel parameters

determined by the number of P/E cycles (or Vacc which will be introduced next), retention

time and intended threshold voltage.

2.2.2 Channel Parameter Degradation Model

This subsection presents a model describing how the parameters describing the additive noise

terms degrade as a function of P/E operations and retention time. From the discussion in

Sec. 2.2.1, this degradation occurs for all the channel parameters except those describing

the programming noise np.

Degradation model due to P/E operations [29, 2, 3, 4]

The degree of damage to a Flash cell’s oxide layer caused by P/E operations is directly

related to the volume of charge traveling through the oxide layer [47]. While the channel

degradation caused by P/E operations is often modeled as a function of the number of P/E

cycles, this model essentially assumes that approximately the same volume of charge travels

through the oxide layer during each P/E cycle. The novel approach of DVA is to realize that

the intended threshold voltages themselves can be varied over time so that less charge travels

through the oxide layer during early P/E cycles when the channel is favorable. Because it

is the charge stored in the floating gate that changes the threshold voltage, the difference

between the intended threshold voltage and the erased state voltage is a good indicator of

the amount of charged transferred. Thus, we define the voltage-based metric Vacc/Vmax to

15

characterize P/E cycling where Vacc denotes the accumulated voltage over P/E cycles

Vacc =
N∑
j=1

(V (j)
p − Ve), (2.8)

and Vmax is the maximum voltage difference between programmed and erased states of a

Flash cell. In (2.8), N is the number of P/E cycles, V (j)
p is the intended threshold in jth

P/E operation, and Ve is the intended threshold voltage of the erased state. Only the

programming process is considered in this model, because program and erase are symmetric

operations from the perspective of the amount of charge passing through the floating gate.

Degradation model for the wear-out noise parameter [39, 40]

P/E cycling operations cause the formation of oxide traps and interface traps in the cells

[36, 35, 38, 37]. In [45] a power law describes how interface trap density depends on P/E

cycle count as follows: Aw · (P/E cycle count)ki , where ki and Aw are constant degradation

parameters determined by the underlying physical properties of the Flash device. Replacing

the P/E cycle count with Vacc/Vmax yields our expression for interface trap density: Aw ·

((Vacc/Vmax)ki . Based on this expression and [39, 40], the wear-out channel parameter λ in

(2.4) has a degradation model that can be formulated as

λ = Cw + Aw ·
(
Vacc
Vmax

)ki
, (2.9)

where Cw is another constant degradation parameters in addition to ki and Aw .

Degradation model for the retention noise parameter [36, 45, 41]

Retention noise models channel degradation in the form a gradual decrease of threshold

voltage. Both trap recovery and electron detrapping contributes to this degradation [44, 45,

46]. In addition to the interface trap density model, [45] suggests that oxide trap density as

well can be modeled by a power of the P/E cycle count. With the Vacc-based characterization

16

of P/E cycling, total trap density can be represented as Ar ·(Vacc/Vmax)ki +Br ·(Vacc/Vmax)ko .

From [36, 45, 41], we define the degradation model for the retention noise channel parameters

µr and σ2
r of (2.4) as [29],

µr = −(V − V0) ln
(

1 + t

t0

) [
Ar

(
Vacc
Vmax

)ki
+Br

(
Vacc
Vmax

)ko]
, (2.10)

σ2
r = 0.1(V − V0) ln

(
1 + t

t0

) [
Ar

(
Vacc
Vmax

)ki
+Br

(
Vacc
Vmax

)ko]2

, (2.11)

where voltage V is the intended threshold voltage, and V0 is the erased state threshold

voltage. Degradation parameters ki, ko, Ar and Br are constants determined by the physical

properties of individual Flash memory product. Parameter t is the retention time and t0 is

its normalization factor. In this chapter, we study Flash read channel characteristics at a

fixed retention target of one year (t = 8760 hours). The techniques presented in this chapter

can, of course, be applied for any target retention time.

Note that often in practical systems the calculations in the equations (2.10) and (2.11)

may not be easy to implement. The formulae can be simplified to

µr = γµr(V − V0), (2.12)

σr = γσr

√
V − V0. (2.13)

Cell-to-cell Interference Parameter Model [42]

In [42], the γ parameters in (2.5) are modeled as random variables with truncated Gaussian

distributions. The authors of [42] mention that the means of interfering cells’ γ’s in the

next wordline to be programmed are also random. We simplify the model by assuming the

means of all the γ’s are constant. In our research, the parameter model provided in [42] is

utilized, and the cell-to-cell interference strength factor is set to s = 0.2 which yields the full

set of cell-to-cell interference parameters given in Sec. 2.10. This setting generates a pair of

even-cell and odd-cell read channels with sufficient difference and reasonable typicality.

17

Programming Error Parameter Degradation Model [32]

We employ the programming error parameter degradation model proposed in [32]. PX,Y has

an exponential relationship with P/E cycle counts.

PX,Y = exp(c1x+ c0) (2.14)

The parameters c1 and c0 are different for each PX,Y , and variable x indicates the normalized

P/E cycle count where the manufacture specified lifetime is used as the normalization factor.

In this chapter, the normalization factor is set to 3000 P/E cycles. The resulting PX,Y

expressions for our model are given in the Sec. 2.10.

2.2.3 Models Used in This Chapter

The results presented in this chapter are software simulation results based on two channel

models that we have constructed based on the literature. Model 1 is the channel model used

in [2], which consists of programming noise, wear-out noise and retention noise. Model 2 is

the complete channel model introduced in Sec. 2.2.1.

Model 1

The channel model in [2] is an exponentially modified Gaussian distribution for each level.

Cell-to-cell interference and programming error are not considered in this model. As a result,

the channel characteristics of even and odd cells are the same. This channel model is still

very similar to the multi-modal Gaussian model.

Model 2

The channel model proposed in Sec. 2.2.1 differentiates the even and odd cell read channels,

and considers the effect of programming error and cell-to-cell interference.

18

2.3 Dynamic Voltage Allocation with Ideal Channel Information

Dynamic Voltage Allocation (DVA) [29] is an algorithm that uses a single scaling factor α

to attenuate the standard threshold voltages used to write to the cells. The DVA algorithm

computes the appropriate scaling factor such that the read channel achieves at least a certain

minimal value of mutual information required to support the rate at which information is

stored (the rate indicated by the channel code). The range between the smallest and largest

intended voltages is scaled so that it expands as the channel becomes more degraded until it

reaches the range that would be employed in a system without DVA. In some Flash devices

it may be possible to increase the range beyond the standard range without DVA, but that

is not a focus of this chapter.

For Flash memory described by Model 1, the mutual information is calculated as the

difference of marginal and conditional differential entropies as follows [48]:

I(X;Y) = h(Y)− h(Y |X) . (2.15)

Random variable Y describes the measured threshold voltage, and X represents the intended

threshold voltage. The probability distribution of Y is the channel distribution fY (y), so

h(Y) = −
ˆ +∞

−∞
fY (y) log (fY (y)) dy . (2.16)

The relevant conditional differential entropy is calculated as

h(Y |X) = −
ˆ +∞

−∞

4∑
i=1

fX,Y (xi, y) log
(
fY |X(y|xi)

)
dy , (2.17)

where the joint distribution is fX,Y (x, y) = fY |X(y|x)PX(x), PX(x) is the probability mass

function of X, and fY |X(y|x) is the conditional PDF of Y when the cell is written to a single

level indicated by x. Let {vi} represent the set of default intended threshold voltages, the

19

intended threshold voltage after scaling is xi = αvi, where α is the scaling factor. As a result,

adjusting the scaling factor will change both h(Y) and h(Y |X).

Because the cell-to-cell interference of a certain cell is a function of the threshold voltages

of its surrounding cells, the Flash channel described by model 2 is a channel with memory.

From [41], equation (2.15) is a lower bound on the actual mutual information because it

treats interference as independent noise. Although equation (2.15) underestimates the mu-

tual information, it is still a valid optimization objective function for DVA when cell-to-cell

interference is treated as noise by the controller. If cell-to-cell interference is cancelled by sig-

nal processing in the controller, then the portion of cell-to-cell interference that is cancelled

should be removed from the modeled noise before computing the mutual information.

As discussed in Sec. 2.2, the channel probability distribution function is determined by

the distributions of the five noise components. In general, the distribution can be calculated

by convolving the five distributions. In [49], a model very similar to the one in Sec. 2.2 is

presented and the analytical channel distribution function is calculated. The expression has

a relatively high complexity. In this chapter, numerical convolution is used to calculate an

approximation of fY |X(y|x). Note that for generating noise used in Monte Carlo simulation

it is not necessary to compute this convolution. Rather, the individual noise terms, each of

which is relatively simple in distribution, can be generated and added to the original signal.

Our implementation uses a bisection algorithm to find the scaling factor α. The scaling

factor has a range of [0,1], where a scaling factor of 1 corresponds to the maximum allowed

threshold voltage for each level (the levels that would be used by a system not implementing

DVA). There are two modes for the DVA algorithm. In the first mode, DVA makes adjust-

ments based on the current channel distribution, and aligns the mutual information to a

preset threshold that builds in a fixed margin to account for degradation before the scale

factor is adjusted again. In the second mode, DVA makes adjustments based on the predic-

tion of channel conditions in a future time point corresponding to the next DVA scale factor

update. In this mode, if the channel model and channel parameter degradation models are

20

correct, the mutual information at that future time point will be the target value. We use

the first mode in this chapter, because in practice the channel degradation models (especially

the parameters in the models) may not accurately reflect the degradation process for device

from different manufactures or for the same device under different working conditions (e.g.

temperature).

Assuming ideal channel information, which is the exact model and parameters of the

channel, a simulation can be conducted where the DVA algorithm adjusts the scale-factor

every certain number of P/E cycles. In this chapter, DVA functions every 100 P/E cycles

for simplicity. The number of P/E cycles between DVA operations depends on how quickly

the channel is varying and the appropriate interval itself might change over the lifetime of

the device. For example, near the end of life when the channel is degrading rapidly a smaller

interval might be appropriate.

In each iteration of the simulation, the DVA algorithm scales the intended threshold

voltages to increase the channel mutual information to a predefined threshold. Because

perfect knowledge of the channel state is assumed, the performance indicates the theoretical

limit of the algorithm under these ideal conditions. For this ideal simulation we use Model

2, the full channel model presented in Sec. 2.2.

DVA is most effective in extending lifetime when the major channel degradation is caused

by the accumulated effect of charge traveling through the oxide layer of the Flash memory

cells. Retention loss is the major degradation in this case. In this chapter, the retention time

is set to be a year to represent the worst possible channel for which a device is rated. If the

actual retention time exceeds the fixed value, the channel could still provide enough mutual

information depending on the distance between the actual channel mutual information and

the mutual information limit for the channel code. DVA’s performance when the retention

time is 0 is not investigated, as we believe the lifetime extension achieved by DVA will be

limited in this case.

In this chapter, all simulations assume MLC Flash (four levels) with each level used

21

equally likely, and the target mutual information is 1.945 bits per cell for both even and odd

channels. Because raw BER is determined by both the channel condition and the placement

of read threshold voltages, there is no simple way to translate between mutual information

and BER. However, simulation results show that a target of 1.945 bits achieves a raw BER

of 10−2 in Fig. 2.12 using DTA to allocate read thresholds. We note that the raw BER

of 10−2 is shown in [17] to be an operating point for Code 2 in [17] with 6 reads using a

version of mutual-information-based DTA. In any case, the mutual information target can

be adapted easily to whatever mutual information is needed to support a specific channel

code (LDPC, BCH, or other). The target for the DVA algorithm is set to be 1.965 bits to

provide an additional 0.02 bits of margin above the code-based target to allow for channel

degradation before the next DVA update. The retention time is set to be one year. The

default lifetime measured in P/E cycles for the programming error model is set to be 3000

P/E cycles.

The default intended threshold voltages are described by the vector T = [2.8, 5.2, 6.4, 7.86]

[29]. The actual threshold voltages resulting from DVA updates have the form αT , and Fig.

2.6 shows how the scale factor α varies over time. When using fixed voltage allocation, the

scaling factor α is fixed to be 1, so the default intended threshold voltages are used for each

level through the entire lifetime of the device. When using DVA the scaling factor α starts

at a value smaller than 1 and increases as the channel degrades until it reaches the value of

1 which corresponds to the maximum voltage levels supported by the device. The full set of

channel parameters is given in Sec. 2.10.

For Flash memories using the even-odd write structure presented in Sec. 2.2, the even-cell

and odd-cell read channel characteristics are different as even cells are written before odd

cells. The even cells experience more severe cell-to-cell interference and provide less mutual

information under the same intended threshold voltage allocation. One approach to optimize

this type of Flash memory is to have a single DVA optimization process controlled by the

mutual information of the even cells, which face the more severe channel conditions. This

22

0 1000 2000 3000 4000 5000

P/E Cycle

1.9

1.92

1.94

1.96

1.98

2

)ti
b(

n
oita

mr
of

nI
la

ut
u

M

Mutual Information with DVA (Even Cell)

Mutual Information with DVA (Odd Cell)

Mutual Information with Fixed Allocation (Even Cell)

Mutual Information with Fixed Allocation (Odd Cell)

Mutual Information Target

Figure 2.4: DVA performance with ideal channel information versus fixed allocation’s perfor-
mance. (Ground truth channel is Model 2. DVA targets even channel. Channel parameters
are listed in the Sec. 2.10.)

approach guarantees the worst-case performance. Fig. 2.4 shows that with this approach

the DVA algorithm can improve the lifetime of even cells by 65.7% from 2136 P/E cycles to

3540 P/E cycles and odd cells by 53.6% from 2517 P/E cycles to 3867 P/E cycles for the

channel defined by the parameters in Sec. 2.10. Fig. 2.6 shows the scale factor α used for

all cells (the black curve). Note the rapid reduction in the mutual information trajectory

shown in Fig. 2.4 around the end of lifetime. This rapid reduction occurs after the scaling

factor has become one and cannot be further increased as shown in Fig. 2.6.

One problem with the previous approach is that there is a significant performance dif-

ference between the even and odd cells. The intended threshold voltages provide too much

mutual information margin for the odd cells. In fact, Fig. 2.4 shows the odd-cell mutual

information margin increasing over P/E cycles.

This situation is improved by using two separate DVA optimization processes in the

23

0 1000 2000 3000 4000 5000

P/E Cycle

1.9

1.92

1.94

1.96

1.98

2

)ti
b(

n
oita

mr
of

nI
la

ut
u

M

Mutual Information with DVA (Even Cell)

Mutual Information with DVA (Odd Cell)

Mutual Information with Fixed Allocation (Even Cell)

Mutual Information with Fixed Allocation (Odd Cell)

Mutual Information Target

Figure 2.5: DVA performance with ideal channel information and the performance of the
fixed allocation. (The ground truth channel is Model 2. The writing order of pages is
switched every 100 P/E cycles. Joint DVA is use to adjust both scaling factors for even and
odd cells. Channel parameters are listed in Sec. 2.10.)

system, one for the even-cell channel and one for the odd-cell channel. This solution will

remove the excessive mutual information margin of the odd-cell channel, but the performance

difference measured by lifetime will not be narrowed. One fundamental cause of the problem

is that even cells experience more accumulated damage than odd cells.

To address this disparity, we alternate the writing order between even cells and odd cells

every 100 P/E cycles. For example, even cells are written before odd cells from 0 to 99 P/E

cycles, and odd cells are written before even cells from 100 P/E cycles to 199 P/E cycles. In

this way, the two channels can experience similar accumulated damage by switching which

channel receives the more severe cell-to-cell interference periodically. We apply DVA to this

alternating-write-first approach with distinct scaling factors for the even-cell channel and

the odd-cell channel, and use a joint DVA algorithm to adjust the two factors. The mutual

information of the two channels will reach the predefined target together after each iteration.

24

0 1000 2000 3000 4000 5000

P/E Cycle

0.4

0.5

0.6

0.7

0.8

0.9

1

r
otca

F
g
nilac

S

DVA with Write Order Alternation (Even Cell)

DVA with Write Order Alternation (Odd Cell)

DVA Targeting Even Cell Channel (All Cells)

Fixed Voltage Allocation (All Cells)

Figure 2.6: Scaling factors generated by DVA with ideal channel information. (Result corre-
sponds to Fig. 2.4 and 2.5. Ground truth model is Model 2. Channel parameters are listed
in Sec. 2.10. The starting value of α is 0.37.)

This approach equalizes the accumulated voltage Vacc of even-cell and odd-cell channel, and

narrows the difference of the two channels’ characteristics. Fig. 2.5 shows that with this

approach the DVA algorithm can improve the lifetime of even cells by 68.5% from 2136 P/E

cycles to 3600 P/E cycles and odd cells by 40.7% from 2517 P/E cycles to 3542 P/E cycles

for the channel defined by the parameters in Sec. 2.10. Fig. 2.6 shows the scale factor α

used for even and odd cells as the red and blue curves respectively.

If the overall lifetime is defined as the number of P/E cycles until the mutual information

of either channel crosses below the 1.945 bits target, joint DVA with the alternating-write-

first approach extends the lifetime by 65.8% from 2136 P/E cycles to 3542 P/E cycles. It

may seem surprising that the overall lifetime is improved by 65.8% when the lifetime of odd

cells only improves by 40.7%, but the odd cells were lasting longer than the even cells to

begin with so that the overall lifetime improvement is primarily driven by the improvement

25

in the even cell lifetime.

Recall that the single DVA targeting even-cell channel extends the lifetime by 65.7%

from 2136 P/E cycles to 3540 P/E cycles, so that the joint DVA did not improve lifetime

significantly more than the simpler single DVA process for this channel model. When the

strength factor of cell-to-cell interference s increases, the average distortion of the interference

for even-cell and odd-cell channels will rise, and the performance gain brought by the joint

DVA approach will be more significant. For the remainder of this chapter, the joint DVA with

the alternating-write-first approach or its approximations will be used to implement DVA

when the channel model in the simulation is Model 2, which includes cell-to-cell interference.

2.4 Channel Parameter Estimation

In order to dynamically allocate intended thresholds in a real system, the channel character-

istics must be determined dynamically as they evolve. Channel estimation can be achieved

by estimating the channel parameters in a channel model assumption. In [30], the authors

demonstrate that accurate channel estimation can be achieved with limited computational

complexity using multi-modal Gaussian channel model assumption and least squares algo-

rithms.

Using both the channel model and the parameter degradation model, the channel charac-

teristics after a specific number of P/E cycles can be predicted for a specified retention time.

However, the exact channel model and parameter degradation model need to be known in

advance to enable this approach. When considering on-the-fly scenarios, we may also want

to use actual measurements from the working device to determine the channel parameters

without making detailed assumptions about the parameter degradation model or perhaps

even the channel model itself.

In practical scenarios, empirical histograms of the threshold voltage can be measured

with multiple read operations. Combined with the knowledge of the read reference voltages

used in the measurements, the empirical distributions provide enough information about

26

the ground truth channel (voltage) distribution. For a given channel model, this measured

histogram can be used to estimate the model parameters using a least squares algorithm.

This approach does not require the channel parameter degradation model.

In both [2] and [30] , the channel model assumptions are constructed to be as close to the

ground truth model as possible. Later in this chapter, the idea of using the simple multi-

modal Gaussian model assumption, different from the ground truth model, is explored. For

intended threshold voltage xi, i ∈ {1, · · · , 4}, the conditional channel model assumption is

f
(asm)
Y |X (y|xi) = 1

σi
√

2π
e
− (y−xi−µi)

2

2σ2
i , (2.18)

where µi is the bias of the mean and σi is the standard deviation. Each intended threshold

voltage level is treated as equally likely.

2.4.1 Channel Parameter Estimation Problem Formation

The channel parameter estimation is formulated as an optimization problem where a cost

function is to be minimized by estimating the channel parameters. In [2], the channel model

assumption is the same as the ground truth (both are Model 1), so the channel parameters to

be estimated P = [λ, σp, σe, γσr , γµr] are the ones defined in the ground truth model. In Sec.

2.5 and later sections, the channel model assumption is a multi-modal Gaussian distribution,

so the parameters to be estimated are the four biases and standard deviations of the four

levels P = [µ1, µ2, µ3, µ4, σ1, σ2, σ3, σ4].

Regardless of the choice of the ground truth model and channel model assumption. the

cost function is formulated as follows. Define [q0, q1, . . . , qM] as the boundaries of theM bins

where q0 = −∞, and qM = ∞. The expected number of cells in each bin can be computed

as

N̂bin,i =
L∑
k=1

NkP (qi < y < qi+1|xk) , (2.19)

where P (qi < y < qi+1|xk) =
´ qi+1
qi

f
(asm)
Y |X (y|xk) dy denotes the probability of a measured thresh-

27

old falling in the ith bin when the intended threshold is xk according to the channel model

assumption. L = 4 is the number of intended threshold levels, and Nk is the number of

cells in each level for the stored data. The cost function is defined as the normalized square

Euclidean distance between the expected histogram induced by the estimated parameters

and the reference histogram

CM =
M−1∑
i=0

(
Nbin,i − N̂bin,i

N

)2

, (2.20)

where N is the total number of cells measured, and Nbin,i is the ith bin’s cell count in the

reference histogram. The gradient of the cost function is defined as

∇CM(P) = 2 · (JGM (P))T ·GM(P) , (2.21)

where JGM (P) is the Jacobian matrix of the normalized difference vector GM between the

estimated histogram and the measured histogram.

2.4.2 Least Squares Algorithms

Least squares algorithms have been widely used to fit a parameterized model to a data set.

Three algorithms are examined in the following discussion.

Gradient Descent (GD)

GD minimizes the cost function by refining initial estimation of the parameters based on a

linear approximation. In each iteration, the estimation is renewed by a step vector following

the gradient of the cost function.

28

Algorithm 1 Gradient Descent Algorithm
1: Initialize step size β and P = P (0)

2: while ‖P (k+1) −P (k)‖ > η and k < MaxIteration do
3: Compute JGM (P (k)) and GM(P (k))
4: Compute ∇CM(P (k)) = 2 · (JGM (P (k))T ·GM(P (k))
5: P (k+1) = P (k) − β · ∇CM(P (k))
6: k = k + 1
7: end while

Gauss-Newton (GN)

A quadratic model is employed to provide more accurate approximations of the cost function.

The iterative relation can be represented as

P (k+1) = P (k) − (JTGMJGM)−1JTGMG = J+
GM
G , (2.22)

where J+
GM

is the pseudo-inverse of JGM . Gauss-Newton algorithm can then be formulated

as follows:

Algorithm 2 Gauss-Newton Algorithm
1: Initialize P = P (0)

2: while ‖P (k+1) −P (k)‖ > η and k < MaxIteration do
3: Compute JGM (P (k)) and GM(P (k))
4: P (k+1) = P (k) − (JGM (P (k)))+ ·GM(P (k))
5: k = k + 1
6: end while

Levenberg-Marquardt (LM) [50]

By combining GD and GN, LM possesses the advantages of both algorithms. The update

vector δP is calculated by solving (JTGMJGM + β · diag((JGM)TJGM))δP = JTGMG where β

acts as a weight to combine the two algorithms.

In [2], we studied the performance of the three algorithms with the ground truth model

and the channel model assumption both to be Model 1. In this case, the channel parameters

need to be estimated are P = [λ, σp, σe, γσr , γµr] as is defined in Sec. 2.2. Fig. 2.7 compares

29

Algorithm 3 Levenberg-Marquardt Algorithm
1: Initialize β, v,P = P (0) and UpdateF lag = 1
2: while ‖P (k+1) −P (k)‖ > η and k < MaxIteration do
3: if UpdateF lag = 1 then
4: Compute JGM (P (k)) and GM(P (k))
5: end if
6: Solve ((JGM)TJGM + β · diag((JGM)TJGM))δP = (JGM)TGM

7: Compute JGM (P (k)) and GM(P (k))
8: P temporary = P − δP
9: if ∑(err(P))2 >

∑(err(P temporary))2 then
10: UpdateF lag = 1
11: β = β · v
12: P = P temporary

13: else
14: UpdateF lag = 0
15: β = β/v
16: end if
17: k = k + 1
18: end while

0 500 1000 1500 2000 2500 3000 3500 4000

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

P/E Cycle

γ µ
r

Ground Truth

Estimation Result (Gradient Descent)

Estimation Result (Gauss−Newton)

Estimation Result (Levenberg−Marquardt)

Figure 2.7: Estimation result versus ground truth for γµr using 10-bin equal-probability
histogram.

30

Table 2.1: Converge counts of least square algorithms (over 14 cases).

No. of Reads GD GN LM
6 0 1 12
9 0 3 13
12 0 4 11

the estimating results of γµr with the ground truth, where the estimation algorithms employ

10-bin equal-probability histograms (will be defined in Sec. 2.4.3) as input. The simulations

are conducted over 14 different P/E cycle conditions. The LM algorithm performs signifi-

cantly better than GD and GN in terms of both the estimation accuracy and the ability to

adapt to different channel conditions.

This behavior is further demonstrated in Table 2.1, which shows the convergence counts

of the three algorithms over the 14 channels. Every estimated parameter needs to be within

±1% of the ground truth parameter to qualify as a converged result. GD fails in all simulation

cases while reaching the maximum allowed number of iterations in every case. GN provides

good results in certain cases with very few iterations. LM provides high estimation accuracy

over different channel conditions, with some failures when the channel conditions are very

good. Note that in Table 2.1, the 10-bin (9-read) histogram provides the best performance.

This also contribute to the discussion about the binning strategy in the next subsection.

2.4.3 Binning Strategy

In this subsection, different binning strategies are analyzed. We will still focus on the scenario

where both the ground truth model and channel modal assumption are Model 1. As the rest

of the chapter will demonstrate, the results here are also suitable for a multi-model Gaussian

channel assumption when the ground truth are either Model 1 or 2.

Number of Bins

A fairly accurate channel estimation can, of course, be derived from a complete voltage scan

which uses the smallest possible bin width by reading at every available voltage level using

31

50 55 60 65 70 75 80

7−bin Histogram

10−bin Histogram

13−bin Histogram

Iteration Count

Note: Horizontal line segments represents the range of iteration counts; vertical line segment represents the means of iteration

counts; rectangles represents the standard deviation of iteration counts.

Figure 2.8: Iteration count statistics using Levenberg-Marquardt algorithm.

the so-called debug mode. However, the large number of reads required by this process stalls

normal operations. Such a large number of reads is likely not necessary. From the soft

decoding literature [31, 17, 30], a relatively small number of read voltages is sufficient to give

good performance in terms of both decoding and channel estimation.

Furthermore, too many bins in the histogram will cause high computational cost in

each iteration of the least squares algorithms described in Section 2.4.2, and also require

more storage space. Thus a relatively small number of bins can reduce both complexity

and latency. The choice for the number of bins also depends on the channel estimation

algorithm employed. Basic algorithms usually require more detailed channel measurements

than advanced algorithms.

Fig. 2.8 depicts key statistical metrics about the number of iterations when employing

LM with histograms that differ in resolution over the 14 cases in Sec. 2.4.2. 10-bin (9-read)

histograms reduce the number of iterations needed with respect to the results using 7-bin

(6-read) histograms. 13-bin (12-read) histograms do not provide significant reduction in

iteration counts. We conjecture that the 10-bin histogram provides good performance as

it strikes the right balance. If the number of bins is too small, then too many channels

can match the measured histogram so that the optimization cannot get a clear direction.

If the number of bins is too large, the estimation problem is over-constrained, which slows

convergence.

32

From the discussion above and Table 2.1, we conclude that a 10-bin histogram can provide

enough information for accurate estimations of the channel parameters in our model. Thus,

in exploring the performance of the three bin-placement paradigms, we focus on the 10-bin

case.

Bin-Placement Paradigm

We considered three bin-placement paradigms: equal-width, equal-probability, and maxi-

mum mutual information (MMI). Equal-width histograms have bins covering intervals of

equal length except for the semi-infinite bins at the leftmost and rightmost boundaries.

Equal-probability histograms allocate bins having the same probability (i.e. the same num-

ber of occurrences in each bin). MMI word-line voltage placement proposed in [31, 17]

optimizes decoding performance by maximizing the mutual information between the distri-

bution of levels and the histogram bin identified when the cell is read.

As presented in Section 2.4.1, channel parameters are estimated by minimizing the

squared Euclidean distance between the measured histogram acting as the reference and

the histogram induced by the channel model assumption and estimated channel parameters.

To achieve good estimation accuracy, the measured histogram should be as close to the

original channel distribution as possible. To compare bin-placement paradigms, the squared

Euclidean distance between the channel distribution fY (y) and the histogram induced by

f(y) is used as the metric to evaluate the amount of discretization error of a bin-placement

paradigm. This metric DE2 is defined as follows:

DE2 =
M−1∑
i=0

ˆ qi+1

qi

(
fY (y)− Hi

qi+1 − qi

)2

dy , (2.23)

where fY (y) is the ground truth channel distribution, M is the number of bins, and qi, qi+1

represent the left and right boundary of the the ith interval. Hi is the probability of ith bin

induced by fY (y), Hi =
´ qi+1
qi

fY (y)dy, and Hi
qi+1−qi denotes the probability density of the ith

33

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P/E Cycle

S
q

u
a

re
d

 E
u

cl
id

e
a

n
 D

is
ta

n
ce

Equal Width Histogram

MMI Histogram

Equal Probability Histogram

Figure 2.9: Squared Euclidean distance between the channel distributions and corresponding
histograms (10 bins).

bin.

Fig. 2.9 shows DE2 with 10-bin histograms for the three bin-placement paradigms. The

equal-probability bin placement provides a lower DE2 , and hence a better approximation to

the original channel, than the other two strategies over a large span of P/E cycling conditions.

The performance difference is especially significant when the device condition is new. This

behavior is also seen with 7 bins.

As a complement to DE2 , effective resolution is a second metric with which to compare

bin placement paradigms. Effective resolution represents the bin count of an ideal non-

redundant histogram that conveys the same amount of distribution shape information as the

histogram under consideration. Because a read at the shared boundary of two zero-height

bins does not provide additional information about the distribution, two adjacent zero-height

bins can be combined as one. Effective resolution is essentially the bin count after combining

adjacent zero-count bins.

Although histogram bin probabilities derived from integration of the channel model over

34

0 1000 2000 3000 4000 5000

7

7.5

8

8.5

9

9.5

10

P/E Cycle

E
ff

e
ct

iv
e

 B
in

 C
o

u
n

t

Equal Width Histogram

MMI Histogram

Equal Probability Histogram

Figure 2.10: Effective resolution of different histograms (10 bins).

the width of bins are nonzero, real measurements from a finite number of cells (e.g. a block)

will often produce zero-count bins if the bin probability is efficiently small. Fig. 2.10 shows

the effective resolution as a function of the number of P/E cycles for the three bin-placement

paradigms. Adjacent bins with induced probability less than 10−4 are combined. The equal-

probability bin-placement paradigm has full resolution throughout the entire P/E cycling

process, while the other paradigms lose resolution in some P/E cycling conditions. This

suggests that the equal-probability bin-placement paradigm has a good tracking capability

over the whole Flash lifetime.

To summarize, when the ground truth model and channel model assumption are both

Model 1, 10-bin equal-probability histogram provides the best performance for channel pa-

rameter estimation. We will extend this result to the rest of the chapter where the channel

model assumption (multi-modal Gaussian distribution) is different from the ground truth

channel.

Because DVA is an iterative process, at every iteration, bin placements are updated based

35

on the channel estimation. The placements will only be optimal for the current channel

condition even if the estimation is perfect. In order to provide more accurate placements

for the next iteration, the placements are scaled by the ratio between the newly calculated

scaling factor and the previous scaling factor used before the DVA process in this iteration.

This approach provides a linear prediction of bin placements for next iteration’s channel

condition, and facilitates the channel estimation process.

2.5 Dynamic Voltage Allocation with Model/Channel Mismatch

When the channel model agrees exactly with the actual channel, channel estimation can pre-

cisely characterize the channel if the estimated channel parameters are accurate. However,

such perfect agreement of the channel model with the actual channel is hard to achieve in

practice because of the many factors involved in shaping the Flash read channel character-

istics. Even if the exact model can be known, the complexity of the model may preclude its

use in channel estimation and DVA because of the associated complexity.

The lack of perfect agreement limits the precision with which the channel can be char-

acterized even with the best-case parameter estimation. However, this problem can be

controlled by selecting a reasonable channel model assumption that focuses on the most sig-

nificant channel characteristics. A good choice can reduce the computational complexity of

channel estimation and DVA while also capturing the essential behavior of the channel.

In [30], the authors investigate a scenario where the channel model assumption matches

the actual channel and the channel model is a relatively simple multi-modal Gaussian dis-

tribution. In [2], we demonstrated the estimation performance where the channel model

matched the actual channel exactly, but the more complex Model 1 of Sec. 2.2.3 was used.

In both cases, high estimation accuracy is achieved. In this section, DVA (and implicitly

estimation) performance using the simple multi-modal Gaussian model as the assumption

and the complex Models 1 and 2 of Sec. 2.2.3 for the actual channel is presented. Thus the

channel parameters that need to be estimated for multi-modal Gaussian distribution are the

36

0 1000 2000 3000 4000 5000

P/E Cycle

1.9

1.92

1.94

1.96

1.98

2

)ti
b(

n
oita

mr
of

nI
la

ut
u

M

Mutual Information with DVA (Matching Assumption)

Mutual Information with DVA (Gaussian Assumption)

Mutual Information with Fixed Allocation

Mutual Information Target

Figure 2.11: DVA’s performance with multi-modal Gaussian model. (Ground truth model
is Model 1. Channel parameters are listed in Sec. 2.10.)

variances and means (or biases of means to be precise) of the distribution regardless of the

numerous parameters used to create the actual channel used in the simulation.

2.5.1 Model 1

Because this ground truth channel model is still very similar to the multi-modal Gaussian

model, DVA can effectively extend Flash memory’s lifetime although the channel model

assumption is different than the ground truth. Fig. 2.11 shows the Monte Carlo simulation

performance of DVA using a multi-modal Gaussian when Model 1 is the ground truth model.

Here the lifetime is extended by 55.9% from 2683 P/E cycles to 4182 P/E cycles.

Note that unlike in Fig. 2.5, the actual mutual informations shown in Fig. 2.11 are

not reset to exactly 1.965 bits after every DVA update. For the "Matching Assumption"

case where the DVA channel model is the actual channel model, the variation in the mutual

information after reset stems entirely from noise in the channel parameter estimation. For

37

0 1000 2000 3000 4000 5000

P/E Cycle

1.9

1.92

1.94

1.96

1.98

2

)ti
b(

n
oita

mr
of

nI
la

ut
u

M

Mutual Information with DVA (Even Cell)

Mutual Information with DVA (Odd Cell)

Mutual Information with Fixed Allocation (Even Cell)

Mutual Information with Fixed Allocation (Odd Cell)

Mutual Information Target

Figure 2.12: DVA performance with multi-modal Gaussian model. (The Ground truth model
is Model 2. Channel parameters are listed in Sec. 2.10. The lifetime of even cells is extended
by 70.5% from 2136 P/E cycles to 3642 P/E cycles. The lifetime of odd cells is extended by
41.6% from 2517 P/E cycles to 3564 P/E cycles. The overall lifetime is extended by 66.9%
from 2136 P/E cycles to 3564 P/E cycles.)

the "Gaussian Assumption" case, there is a large variation, which stems from parameter

estimation error and from the fact that the DVA algorithm chooses the scale factor that

sets the mutual information of the multi-modal Gaussian channel to 1.965 bits, but the

mutual information of the actual channel turns out to be different. In particular, the mutual

information of the actual channel is noticeably less than that of the multi-modal Gaussian

towards the end of the device lifetime as the Gaussian assumption becomes less accurate.

Still, the overall DVA approach is successful because the 0.02 bits of additional margin was

sufficient to overcome the mismatch error.

38

2.5.2 Model 2

For Model 2, the multi-modal Gaussian channel model assumption can only be considered as

a rough approximation, but DVA can still provide a significant performance increase using

this simple model. Fig. 2.12 shows the Monte Carlo simulation performance of DVA using

the multi-modal channel model assumption while generating noise using Model 2. Because

the only channel information available is the measured histograms from even and odd cells,

DVA has to rely on channel estimation. The channel estimation only provides the estimated

means and variances of the multi-modal Gaussian model rather than the parameters in the

actual channel model.

The estimations of even-cell and odd-cell channels provide approximated channel charac-

teristics for the odd and even channels respectively, when the write order is switched. Based

on this observation, the scaling factors of the two channels can be updated based on the chan-

nel estimation of the other channel using DVA. This implementation is an approximation of

the joint DVA approach in Sec. 2.3. The simulation result shows that DVA can extend the

overall lifetime by 66.9% from 2136 P/E cycles to 3564 P/E cycles for this channel.

Here, it is perhaps surprising that the overall lifetime is improved more by DVA employing

the simple Gaussian model than by DVA using the more accurate model and prefect channel

knowledge in Fig. 2.5. The Gaussian model under-estimates the severity of the channel

which causes it to use a smaller value of α that turns out to still provide sufficient mutual

information. This extends lifetime a bit more by reducing the amount of charge written. Of

course we could lower the amount of margin used in the simulation of Fig. 2.5 and also gain

this benefit.

2.6 Comparison of Dynamic Voltage Allocation and Dynamic

39

Threshold Assignment

Both dynamic voltage allocation and dynamic threshold assignment (DTA) [27, 28] track

the degradation of Flash memory channel during its lifetime. DTA allocates appropriate

read threshold voltages under different channel conditions to reduce the asymmetric errors

caused by distribution shifting and widening. DVA allocates appropriate write threshold

voltages under different channel conditions to adjust the mutual information to a sufficient

(but not extravagant) level. DVA depends on the preset target mutual information which

relates to the capability of error correction codes employed. Considering Flash memory as

a M-ary baseband Pulse Amplitude Modulation (MPAM) communication system (4PAM in

this chapter), DTA provides hard decision thresholds closer to the optimal ones than fixed

read thresholds, and DVA adjusts the average symbol power of the constellation to match

channel conditions.

Assume the simplest fixed-read-voltage allocation schemes where hard decision bound-

aries are put in the midpoints between adjacent write threshold voltages, and DTA imple-

mentation from [28], simulations are conducted to compare the performance of DTA alone

and DTA combined with DVA. Fig. 2.13 compares the raw BER (without error correction

code) of reading with a fixed voltage allocation, DTA and DVA. The dash line in the figure

represents the raw BER requirement for the LDPC code in [17] to function properly with soft

information from 6 reads (Fig. 11 in [17]). To accommodate the rapid channel degradation

at the beginning of the lifetime and meet the 10−2 raw BER target, the scaling factor for

both even and odd cells are lower bounded by 0.45.

Because the retention time is fixed to be one year in our simulations and there is no

operation on the cells during this period, the stored voltage values in the cells suffer rela-

tively significant shifts. As a result, fixed read voltage allocation provides very bad BER

performance. With DTA, the read thresholds are able to track the channel degradation, thus

produces BER performance consistent with the channel capacity using fixed write voltage

40

0 1000 2000 3000 4000 5000

P/E Cycle

10
-3

10
-2

10
-1

B
E
R

Fixed - Fixed (Even Cell)

Fixed - Fixed (Odd Cell)

Fixed - DTA (Even Cell)

Fixed - DTA (Odd Cell)

DVA - DTA (Even Cell)

DVA - DTA (Odd Cell)

Figure 2.13: DTA and DVA’s performance. (Even and odd cells switch positions when
using DVA. The legend follows the format write voltage allocation algorithm - read voltage
allocation algorithm. Comparing the result from DVA - DTA with Fixed - DTA, The lifetime
of even cells is extended by 66.5% from 2282 P/E cycles to 3800 P/E cycles. The lifetime
of odd cells is extended by 41.4% from 2654 P/E cycles to 3754 P/E cycles. The overall
lifetime is extended by 64.5% from 2282 P/E cycles to 3754 P/E cycles.)

allocation. DVA allocates write thresholds to maintain a reasonable channel capacity, so a

non-zero low level raw BER appears from the beginning of the device’s lifetime, and it is

expected to be easily corrected by error correction codes. However, this is in contrast to

DTA without DVA, where almost no errors occur in the first 1000 P/E cycles.

To achieve good raw BER performance, DVA requires that DTA-like algorithms are used

in conjunction to provide decision boundaries that adapt to the changing write levels. Even

without DVA, DTA-like algorithms are a practical necessity in order to track the movements

of the channel distribution caused by channel degradations such as retention loss. Fig.

2.13 shows that DVA and DTA combined provide a significant performance improvement

over DTA alone. The results indicate that DVA with DTA can extend the overall lifetime

41

0 1000 2000 3000 4000 5000

P/E Cycle

1.9

1.92

1.94

1.96

1.98

2

)ti
b(

n
oita

mr
of

nI
la

ut
u

M

Mutual Information with DVA (Even Cell)

Mutual Information with DVA (Odd Cell)

Mutual Information with Fixed Allocation (Even Cell)

Mutual Information with Fixed Allocation (Odd Cell)

Mutual Information Target

Figure 2.14: DVA performance with quantized placements. (Quantization provides 64 pos-
sible locations. Ground truth model is Model 2. Channel parameters are listed in Sec.
2.10.)

by 64.5% from 2282 P/E cycles to 3754 P/E cycles for this ground truth channel model

compared with a fixed write-voltage allocation with DTA.

2.7 Dynamic Voltage Allocation when Voltage Placements are

Quantized

In this section, we explore the performance of the DVA framework when voltage placements

are limited to certain locations. In practice, hardware implementations introduce the con-

straint that both the read reference voltages and the intended write threshold voltage levels

can only be set to certain values. This will add an additional constraint to both the intended

threshold voltages and the read reference voltages, which affects DVA performance.

Monte Carlo simulation of DVA under several commonly used voltage quantization sce-

narios (64, 128 and 256-location quantization for the entire available voltage range) are

42

0 1000 2000 3000 4000 5000

P/E Cycle

1.9

1.92

1.94

1.96

1.98

2

)ti
b(

n
oita

mr
of

nI
la

ut
u

M

Mutual Information with DVA (Even Cell)

Mutual Information with DVA (Odd Cell)

Mutual Information with Fixed Allocation (Even Cell)

Mutual Information with Fixed Allocation (Odd Cell)

Mutual Information Target

Figure 2.15: DVA’s performance with quantized placements. (Quantization provides 128
possible locations. Ground truth model is Model 2. Channel parameters are listed in Sec.
2.10. The lifetime of even cells is extended by 72.1% from 2136 P/E cycles to 3676 P/E
cycles. The lifetime of odd cells is extended by 34.8% from 2517 P/E cycles to 3393 P/E
cycles. The overall lifetime is extended by 58.8% from 2136 P/E cycles to 3393 P/E cycles.)

conducted. We assume adjacent potential placement locations are separated by a constant

distance, which corresponds to equal interval sampling over a certain voltage range. The

quantization range is set to be from -1 Volt to 8 Volts. Figs. 2.14 and 2.15 show the mu-

tual information versus P/E cycle curve when limiting the number of possible locations 64

and 128. Quantization with 256 possible locations results a performance very similar to

Fig. 2.12. Quantization with 128 possible locations strikes a nice balance between DVA

performance and the number of placement locations. When using 128-level quantization,

the overall lifetime is extended by 58.8% from 2136 P/E cycles to 3393 P/E cycles.

Notice that the DVA framework often produces mutual information values that are too

high (hence leading to a faster increase in Vacc and faster degradation) when the number of

possible placement locations is constrained to 64. We also observed that under this condition,

43

the quantized read threshold voltage placements also suffered. Even though only nine reads

are performed, with only 64 possible values, two or more would be in the same place. As

a result, the effective resolution of the measured histogram is reduced, and the channel

parameter estimation algorithm becomes less accurate and degrades DVA performance.

2.8 Complexity Analysis

The DVA framework consists of two processes: channel parameter estimation and scaling

factor adjustment. This section considers complexity for the case discussed in Sec. 2.5

where we use a multi-modal Gaussian distribution as the channel model for both channel

parameter estimation and scaling factor adjustment. For the channel parameter estimation

process, there are two steps: read threshold voltage assignment and iterative Levenberg-

Marquardt parameter estimation. The computational complexity of DVA can be analyzed

according to these three primary components: read threshold voltage assignment, iterative

Levenberg-Marquardt parameter estimation, and scaling factor adjustment.

Read threshold voltage assignment is used to provide boundaries for the bins in the

histogram satisfying the equal-probability binning strategy discussed in Sec. 2.4.3. In the

DVA framework, this assignment is calculated using a Gaussian channel model and the

estimated channel parameters (means and variances) from the parameter estimation process

100 P/E cycles ago. Integration of a Gaussian probability distribution function is needed, but

the operation is in essence the evaluation of the Q-function (tail probability of the standard

normal distribution), and can be implemented with a look-up table. The exact position

of each read is calculated using bisection method. Table 2.2 summarizes the number of

additions (ADD), divisions (DIV) and table lookups (LUT) in each iteration, and the number

of iterations required to calculate each read threshold voltage.

The computational complexity of using the Levenberg-Marquardt algorithm based on the

Gaussian channel model assumption to estimate the Flash read channel is carefully analyzed

in [30]. The results are summarized here in Table 2.3. Note that the dN3

3 e term in the table

44

Table 2.2: Computational complexity of read threshold voltage allocation.

No. of ops. per iter. ADD DIV LUT No. of iterations
Boundary 1 (leftmost) 9 4 4 log2

Vr,max−Vr,min
ε

Boundary i, 2 ≤ i ≤ N − 1 9 4 4 log2
Vr,max−Vr,i−1

ε

Note: "ops." is the abbreviation for "operations". "iter." is the abbreviation for "iteration". The number of bins in the histogram
is N . The ith boundary is Vr,i. The maximum and minimum possible read threshold voltage is Vr,max and Vr,min respectively.
The tolerance (error) of the bisection algorithm is ε. ADD, DIV, LUT represent addition, division and table lookup operation
respectively.

Table 2.3: Computational complexity of Levenberg-Marquardt algorithm.

ADD MUL DIV LUT
No. of ops. per iter. 93N + dN3

3 e 89N + dN3

3 e 4N + dN3

3 e 8N

Note: "ops." is the abbreviation for "operations". "iter." is the abbreviation for "iteration". The number of bins in the histogram
is N . The tolerance (error) of the bisection algorithm is ε. ADD, MUL, DIV, LUT represent addition, multiplication, division
and table lookup operation respectively.

comes from the inversion operation of an N × N matrix using the Gauss-Jordan method,

whereN is the number of bins in the measured histogram. Because the Levenberg-Marquardt

algorithm has multiple stopping criteria, the exact number of iterations needed is not a fixed

value for different channel conditions. In our simulations, we observe that the maximum

number of iterations is less than 100.

The scaling factor adjustment process uses a bisection algorithm to search for the smallest

scaling factor that achieves the mutual information target given the estimated means and

variances. Table 2.4(a) summarizes the number of extra additions (ExADD), multiplications

(ExMUL) other than the ones in the mutual information calculation, the number of mutual

information calculations (MI) in each iteration, and the number of iterations required to

calculate the scaling factor. The most computation-heavy operation in this process is the

calculation of the mutual information (MI) of a multi-modal Gaussian distribution, which

involves integration operations. Assuming the Gauss-Hermite quadrature [51] method is used

to approximate the integration, the mutual information calculation needs to be represented

45

Table 2.4: Computational complexity of scaling factor adjustment.

(a) Number of operations per iteration

ExADD ExMUL MI No. of iterations
5 4 1 log2

αmax−αmin
ε

(b) Number of operations per MI

ADD MUL DIV LUT
44n− 1 88n+ 1 42n 8n

Note: The maximum and minimum possible scaling factor are αmax and αmin respectively. The tolerance (error) of the
bisection algorithm is ε. ExADD, ExMUL, MI represent extra addition, extra division in additional to the calculation of mutual
information, and mutual information calculation respectively. The number of sample points used in MI calculation is n. ADD,
MUL, DIV, LUT represent addition, multiplication, division and table lookup operation respectively.

in the form of
∞̂

−∞

e−x
2
f(x)dx , (2.24)

where f(x) is a function. Then the following approximation can be used:

∞̂

−∞

e−x
2
f(x)dx ≈

n∑
i=1

wif(xi) , (2.25)

where xi’s are the roots of the Hermite polynomial Hn(x), wi’s are the weights calculated by

2n−1n!
√
π

n2[Hn−1(xi)]2
, (2.26)

and n is the number of sample points. The accuracy of the approximation increases with n.

Following (2.15-2.17), the new mutual information representation is

I(X, Y) = − 1
4
√
π

4∑
i=1

∞̂

−∞

e−z
2
i log(g(zi))dzi , (2.27)

46

where

g(zi) = 1
4 +

4∑
j=1
j 6=i

σi
4σj

e
z2
i−

(
√

2σizi+xi−xj)2

2σ2
j . (2.28)

Assuming all the weights can be pre-calculated, and log(·), e(·) can be calculated with lookup

tables, the number of operations needed for each MI calculation is shown is Table 2.4(b).

2.9 Conclusion

This chapter introduces a framework to extend Flash memory lifetime by dynamic allocation

of intended threshold voltage levels based on the current mutual information of the Flash

read channel. Analysis and simulation results demonstrate that this framework can provide

significant lifetime extension in practical settings. Simple channel models can be used to

estimate a complex Flash channel, and optimize the voltage placements. Good performance

can be achieved even when the placement of voltages is constrained to 128 possible values.

The frame can be modified to reduce computational complexity while providing comparable

performance to a fully implemented system.

The results in this chapter can be improved by extending the ground truth channel

models to include additional mechanisms for channel degradation in Flash memory and

by using data measured from actual Flash devices. Another direction to further develop

the DVA framework is to explore using raw BER as the optimization target for the DVA

framework.

47

2.10 Channel Parameters Used in This Chapter

Table 2.5: Channel parameters used in this chapter.

Programming Noise [29]
σe 0.35 σp 0.05

Wear-out Noise [29]
Aw 1.8× 10−4 Cw 1.26× 10−3

ki 0.62 —— ——
Retention Noise [29]

Ar 7.0× 10−4 Br 4.76× 10−3

ki 0.62 ko 0.3
t0 1(hour) t 8760

Cell-to-cell Interference [42]
E{γx} 0.1s E{γy} 0.08s
E{γxy} 0.006s s 0.2
wk 0.2E{γk} σk 0.3E{γk}

Programming Error [32]
P0,2 exp(0.87x-11.89) P0,3 exp(1.41x-19.82)
P1,2 exp(1.63x-19.22) P1,3 exp(0.73x-11.67)
P2,3 exp(1.50x-17.69) —— ——

Default intended threshold voltages [29]: [2.8, 5.2, 6.4, 7.86]. Vmax = 16. [29]

2.11 Acknowledgment

The majority of this chapter has been published in [2, 3, 4]. This research is conducted in

collaboration with Nathan Wong, Dr. Tsung-Yi Chen, and Prof. Richard D. Wesel. The

author would like to thank Dr. Tsung-Yi Chen for proposing the idea of DVA in [29]. The

author also would like to thank Nathan Wong for his help in relevant simulations.

48

CHAPTER 3

Coding with Shared Incremental Redundancy

3.1 Introduction

Feedback communication using incremental redundancy (IR), such as IR-hybrid automatic

repeat request (HARQ) or Type-II HARQ [52, 53], is widely used in deployed systems to

increase throughput and provide high reliability [54, 55, 56]. While the use of IR with

feedback has long been known to improve the error exponent of communication systems

[57, 58], Polyanskiy et al. [59] showed that systems with feedback can achieve near-capacity

throughput with significantly shorter average blocklengths than systems without feedback.

Recent papers [60, 61] provide examples of variable-length (VL) error correction codes that

can be used with a few rounds of feedback to exceed the random-coding lower bounds of

[59] and approach capacity with average codeword lengths smaller than 500 bits. Separately,

Zeineddine and Mansour [62] introduced inter-frame coding, which uses numerous VL codes

in parallel and without feedback to address varying channel-state conditions in broadcast

wireless communication.

This chapter introduces coding with shared IR in a point-to-point communication system

[5, 6, 7], which builds on the inter-frame coding of [62]. The system described in this chapter

does not benefit from feedback directly in the form of requesting IR from a transmitter.

The IR of multiple codewords are compressed by the inter-frame code into a common pool

of redundancy that is transmitted through the channel. At the receiver, the received shared

49

IR delivers varying numbers of IR increments locally to each VL decoder according to their

need without the participation of the transmitter. In other words, the “feedback” process as

is defined in a feedback communication system only happens inside the receiver. The system

provides a method to design a code with very long block length, which can approach capacity

essentially by using numerous short-blocklength encoders and decoders. In our systems, the

inter-frame decoder employs a peeling process, which has been applied in a similar way for

multiple access channels [63, 64, 65, 66].

Thus, the proposed system can approach capacity without feedback but with a complexity

comparable to decoding VL codes with feedback. Much of the calculation at the encoder

and decoder can be distributed to a large number of parallel VL encoders and decoders

for the individual VL codes, and the VL codes have short average blocklengths. Only a

relatively small number of bit-by-bit exclusive-ors (XOR, ⊕) required to implement the

inter-frame code are performed outside of the parallel encoders at the transmitter. Similarly,

the peeling decoder that provides incremental redundancy to VL decoders at the receiver has

a complexity that is low relative to the complexity of the parallel VL decoders themselves.

Flash-based storage systems is a point-to-point communication system, and usually re-

quire codes with very long blocklength. Traditional code designs for Flash such as Bose-

Chaudhuri-Hocquenghem (BCH) codes [11, 12, 13] and low density parity check (LDPC)

codes [14, 15, 16, 17] provide very good error correction capabilities, but suffer from high

complexity at long blocklength. Coding with shared IR provides another long blocklength

code design that has high throughput, good error correction performance, and a parallel

system structure that reduces the complexity in practical system implementations.

This chapter presents our design concept, provides design examples and performance

analysis in the following ways:

1. Summarizing of the system structure of coding with shared IR;

2. Analyzing the convergence property of the generalized peeling decoder (GPD) which

retrieves IR for individual VL codewords from the shared IR;

50

3. Introducing a general inter-frame coding design method based on differential evolution;

4. Introducing a decoder-analysis-inspired inter-frame coding design method that has a

low design complexity;

5. Presenting system designs using convolutional VL code as the base code, and analyzing

their performance;

6. Presenting system designs using non-binary low density parity check (NB-LDPC) with

binary IR as the base VL code, and analyzing their performance.

In this chapter, we design and analyze the proposed system on the 2dB binary-input

additive white Gaussian noise channel (BI-AWGN) as an example. The design methods

presented in this chapter are not restricted to specific channel conditions and can be directly

applied to other channels.

The chapter is organized as follows: Sec. 3.2 presents the overall architecture based

on the inter-frame coding technique of [62]. Sec. 3.3 provides a framework with which to

analyze the convergence of a generalized peeling decoder (GPD). Sec. 3.4 describes our

convolutional VL code and the bit-by-bit VL design for the NB-LDPC code, and presents a

differential evolution and quasi-regular design methods for the inter-frame bipartite graph.

Sec. 3.5 presents the performance analysis of system design examples with the convolutional

VL code and with the NB-LDPC VL code. Sec. 3.6 concludes the chapter. Sec. 3.7 presents

the acknowledgment.

3.2 Architecture

Inter-frame coding [62] allows a set of parallel VL codewords to match their rates to the to

the observed channel distortion without the use of feedback. All frames share a common

pool of redundancy comprised of linear combinations of increments, each from a different

frame, that enable rate-matching for each frame though a peeling decoder.

51

Transmitted
Symbols: X

(1)
0 X

(2)
0 · · · X

(nc)
0 I1 I2 · · · · · · Ini

`∆

Variable-length
Code Output: X

(1)
0 X

(1)
1 X

(1)
2 X

(1)
3 X

(1)
4 X

(2)
0 X

(2)
1 X

(2)
2 X

(2)
3 X

(2)
4 · · · X

(nc)
0 X

(nc)
1 X

(nc)
2 X

(nc)
3 X

(nc)
4

`0 `∆

I1 = X
(1)
2 ⊕X

(2)
2 ⊕X

(nc)
1

Variable-length
Code Input: W

(1) W (2)

k

· · · W (nc)

VL Code
Layer

Inter-frame
Layer

Figure 3.1: Inter-frame encoder structure. Wi is a k-bit message, X(i)
0 is a length-`0 vector,

and {X(i)
1 , . . . ,X

(i)
4 } and Ij are length-`∆ vectors.

Two layers comprise the inter-frame coding system: the VL code layer and the inter-frame

layer. Fig. 3.1 shows how input messages are transformed into transmitted symbols. The

VL code layer has nc VL encoders in parallel. Each VL encoder receives as input a message

Wi of length k symbols and produces as output an initial transmissionX(i)
0 having length `0

symbols, and a series of m−1 increments1 {X(i)
1 , . . . ,X

(i)
m−1} each having length `∆ symbols.

In Fig. 3.1, there are m = 5 total outputs per VL encoder, an initial transmission and four

increments.

The inter-frame layer produces the common pool of incremental redundancy for trans-

mission by linearly combining (bit-by-bit XOR) increments X(i)
j where 1 ≤ j ≤ m − 1 and

no two increments with the same value of i, i.e., from the same VL encoder, are involved in

the same linear combination. Every increment X(i)
j for 1 ≤ i ≤ nc and 1 ≤ j ≤ m − 1 is

involved in exactly one linear combination.

The inter-frame coding architecture generates a single long-blocklength super-codeword

that encodes all nc messagesWi. This super-codeword includes the initial transmissionsX(i)
0

for each VL encoder and the linear combinations Ij that comprise the common incremental

redundancy. The ni transmitted increments I1, · · · , Ini form the common pool of incremental

redundancy.

Following the definition of a bipartite graph in [67], if we consider each VL codeword as

a left node, and each combined increment as a right node, a bipartite graph can describe the

inter-frame layer. Because both the initial transmission X(i)
0 ’s and the linear combination of

1In [62] the VL encoders can have a varying number of increments, even approaching an infinite number
according to the analytically constructed degree distributions. In this chapter we assume that a practical
system will have a fixed number (m− 1) of increments produced by each VL encoder.

52

X
(1)
0 +N (1)

0

X
(2)
0 +N (2)

0

·
·
·

X
(nc)
0 +N (nc)

0

I1 +N1

I2 +N2

·
·
·

Ini +Nni

Left Nodes
(VL Decoders)

Right Nodes
(Linearly Combined Increments)

(a) Initialization: Each left node receives an initial
transmission X(i)

0 distorted by channel noise N (i)
0 .

Each right node receives a distorted linear combina-
tion of increments Ii +Ni.

X
(1)
0 +N (1)

0

X
(2)
0 +N (2)

0

·
·
·

X
(nc)
0 +N (nc)

0

(I1 +N1)⊕X(1)
2

(I2 +N2)⊕X(1)
4

·
·
·

Ini +Nni

X
(1)
2

X
(1)
4

X
(2)
3 +N2

X
(nc)
2 +Nni

(b) Iteration 1: One the left side, the first (bottom)
node decodes successfully with onlyX(1)

0 +N (1)
0 , and

provides its increments X(1)
2 ,X

(1)
4 to incident right

nodes. The other left nodes failed to decode. On
the right side, the first (bottom) node removes X(1)

2
from I1 +N1, and becomes a degree-two node (I1 +
N1) ⊕X(1)

2 . The second right node removes X(1)
4 ,

and provides an increment with noise X(2)
3 +N2 to

the second left node. The nth
i (top) right node, as a

degree-1 right node, directly providesX(nc)
2 +Nni

to
the nth

c (top) left node. In each iteration, all nodes
that provide increments to other nodes are removed
along with their incident edges.

X
(1)
0 +N (1)

0

X
(2)
0 +N (2)

0 X
(2)
3 +N2

·
·
·

X
(nc)
0 +N (nc)

0 X
(nc)
2 +Nni

(I1 +N1)⊕X(1)
2 ⊕X(2)

2

(I2 +N2)⊕X(1)
4

·
·
·

Ini +Nni

X
(2)
2

X
(nc)
1 +N1

(c) Iteration 2: On the left side, the second node
extends its cumulative codeword withX(2)

3 +N2 re-
ceived in the first iteration and decodes successfully.
It provides X(2)

2 to the first right node. The nth
c

left node extends its codeword with X(nc)
2 + Nni

and still fails to decode. On the right side, the first
node removes X(2)

2 from its linear combination and
provides X(nc)

1 +N1 to the nth
c left node.

X
(1)
0 +N (1)

0

X
(2)
0 + N

(2)
0 X

(2)
3 +N2

·
·
·

X
(nc)
0 + N

(nc)
0 X

(nc)
2 +NniX

(nc)
1 +N1

(I1 +N1)⊕X(1)
2 ⊕X(2)

2

(I2 +N2)⊕X(1)
4

·
·
·

Ini +Nni

(d) Iteration 3: the nth
c left node extends its cu-

mulative codeword with X(nc)
1 + N1, and decodes

successfully.

Figure 3.2: Decoding process of an inter-frame coding system with the inter-frame layer
represented as a bipartite graph.

increments Ii’s are transmitted through the channel, the inter-frame layer is also functionally

similar to a low-density generator matrix (LDGM) code [68].

The decoder has a corresponding two-layer structure including a VL decoding layer and

an inter-frame decoding layer, which is essentially a peeling decoder for the LDGM code.

Fig. 3.2 shows a bipartite graph representation of the decoding process corresponding to

the encoder in Fig. 3.1. The left nodes in the bipartite graph describe the VL code layer,

where each node corresponds to a VL decoder. The right nodes describe the inter-frame

layer, where each node corresponds to a linear combination Ij.

53

In Fig. 3.2, red identifies a codeword or increment for which decoding has not yet

succeeded and green identifies a successful decoding. The left nodes are initially populated

with the noisy initial transmissions X(i)
0 +N (i)

0 as the VL decoder inputs. The right nodes

are initialized with the received linear combinations Ii + Ni. In each iteration, the left

nodes try decoding with their available inputs, and some will succeed. The VL decoders

that succeed generate their remaining increments X(i)
j and provide them to the neighboring

right nodes. Each right node cancels the provided increments from Ii +Ni through XOR

operations. When a right node is able to cancel all but one of its increments, it provides the

last remaining incrementX(i)
j with noise to the ith VL decoder, providing a longer cumulative

received codeword for that VL decoder to process.

3.3 Generalized Peeling Decoder Analysis

Inter-frame decoding is an iterative peeling process. After left nodes have been decoded or

right nodes have provided an increment, the nodes and their incident edges are removed. A

message in the inter-frame graph is a vector of `∆ reliability values, i.e., an increment having

length `∆ symbols, whereas messages in standard LDPC/LDGM graphs are scalar values.

Following the definition in [67], define the left edge degree distribution polynomial as

λ(x) = ∑dL
i=1 λix

i−1. Coefficient λi is the fraction of left-degree-i edges among all edges, and

dL is the maximum left edge degree. Similarly, define the right edge degree distribution

as ρ(x) = ∑dR
i=1 ρix

i−1, where dR is the maximum right degree, and ρi is the fraction of

right degree i edges. Note that ρ(x) can be expressed as an inner product of a coefficient

vector ρ(coeff) and vector of indeterminant powers [1, x, x2, . . .]. For compact notation, we

will describe ρ(x) by providing ρ(coeff).

Success hinges on whether the inter-frame layer can provide each VL decoder with all of

the increments it needs. This section provides an analytical framework to determine when

the inter-frame layer will be successful in this mission by analyzing the evolution of the

number of "available increments" as represented by the variable r1. While our equation for

54

r1 matches results in [67, 69, 62], our derivation follows directly from probability arguments

rather than differential equations or a tree-based approach.

The overall inter-frame coding architecture can, at best, allow a VL decoder to per-

form as if it receives increments as a result of acknowledgment/negative acknowledgment

(ACK/NACK) feedback. That feedback performance can be characterized by a probability

mass function (PMF) δ = [δ0, δ1, · · · , δm]. Here, δ0 is the probability of correctly decoding the

VL codeword with only the initial transmission X(i)
0 . The probabilities δj, j = 1, · · · ,m− 1

correspond to the VL decoder succeeding for the first time after adding X(i)
j to the cumu-

lative received codeword. The probability δm corresponds to failure to recover the message

even after receiving all m transmissions, i.e., all m− 1 increments.

3.3.1 Generalized Peeling Decoder (GPD)

In contrast to the standard peeling decoder in which any received increment removes the

incident left node and all its edges, whether the GPD removes a left node and its edges

depends on the current state s of the left node. Each left node in the bipartite graph

has initial state s0 ∈ {0, · · · ,m} with probability δs0 , where s0 represents the number of

increments required by the VL decoder to successfully decode for the first time. The PMF δ

is induced by the specific channel, i.e., a specific signal to noise ratio for an AWGN channel,

and represents the stochastic behavior of a VL decoder on that channel. Note that when

the initial left node state is s0 = m and there are only m − 1 increments possible, the VL

decoder is doomed to fail.

The standard peeling decoder on the binary erasure channel with erasure probability p

is a special case of the GPD with m = 2 and δ = [1− p, p, 0].

Define the original bipartite graph of the inter-frame layer (e.g. Fig. 3.2a) as graph B

with nc left nodes, ni right nodes, ratio β = ni/nc of right nodes to left nodes, and E edges.

Let G0 be the graph that results from removing left nodes with initial state s0 = 0 and

their incident edges. G0 is the graph in Fig. 3.2b that results from removing the left node

55

X
(1)
0 +N (1)

0 and its two edges X(1)
2 and X(1)

4 .

Define Qt be the randomly chosen tth right-degree-one edge (available increment) used

to lower the state of a left node. Looking at Fig. 3.2b, Q1, which is the first edge removed,

could be either of the edges X(2)
3 +N2 or X(nc)

2 +Nni . Qt is called interchangeably an edge

or an increment, because it is both.

If the state of a left node decreases to zero, i.e., the corresponding VL decoder succeeds,

it is removed along with its remaining incident edges in Gt−1 to produce Gt. For example, if

Q1 isX(nc)
2 +Nni in Fig. 3.2b, then G1 is the result of removing the right node Ini +Nni and

its single incident edgeX(nc)
2 +Nni . The left node incident to the removed edgeX(nc)

2 +Nni

would have been removed along with all of its remaining incident edges if the VL decoder

had succeeded with the additional increment X(nc)
2 +Nni , but that did not happen in this

example.

3.3.2 Computation of r1(t) a.k.a. r1(x)

The peeling process can continue only as long as the next Qt can be found. The fraction

r1(t) of edges in Gt that are incident to a degree-one right node measures the availability of

edges to serve as the next Qt. This fraction is computed using E, the number of edges in the

original graph B, as the denominator. Thus r1(t) can be understood to be the probability

that an edge selected at random from B is incident to a degree-one right node in Gt.

Define x(t) or simply x as the probability that a randomly selected edge in the original

graph B is not in the set Q1, · · · , Qt. The re-use of the symbol x, which is also the indeter-

minate of the degree distribution polynomials is intentional, as will become clear. We will

interchangeably refer to the probability r1(t) as r1(x). These representations are equivalent

because x is a bijective function of t and the probability x completely characterizes the state

of the random graph Gt as it affects the value of r1. For this reason, we will sometimes use

x and t interchangeably in the following discussion. In order to derive r1(x), the following

intermediary probabilities are needed:

56

• pl(x): This is probability that a randomly selected edge in B satisfies the event that it

is incident to a left node with state s > 0 with Q1, · · · , Qt provided as increments to

the other edges connecting to that left node.

• pr(x): This is probability that a randomly selected edge in B satisfies the event that

it is incident to a right node with none of its other edges remaining after Q1, · · · , Qt

have been provided as increments to the left nodes in G0.

Computing pl(x)

To calculate pl(x), we first need to calculate pl(x|i, s0), where i is the initial left degree of

the randomly selected edge from B, and s0 is the initial state of its incident left node. If

s0 > i − 1, pl(x|i, s0) = 1 because the VL decoder will never receive enough increments to

decode. If s0 = i− 1, pl(x|i, s0) = 1− (1− x)s0 . If s0 < i− 1,

pl(x|i, s0) =
s0−1∑
j=0

i− 1

j

 (1− x)jxi−1−j . (3.1)

Combine the three scenarios,

pl(x|i, s0) =
min(s0,i)−1∑

j=0

i− 1

j

 (1− x)jxi−1−j , (3.2)

for s0 > 0 and pl(x|i, s0) = 0 when s0 = 0.

Summing over all possible combinations for an edge in B of initial state s0 (with proba-

bility δs0) and initial left degree i (with probability λi),

pl(x) =
m∑

s0=1
δs0

dL∑
i=1

λi

min(s0,i)−1∑
j=0

i− 1

j

 (1− x)jxi−1−j. (3.3)

57

For a given (i, j) pair in (3.3), the term

i− 1

j

 (1− x)jxi−1−j

is shared by all the s0 > j. Defining γj = ∑m
s0=j+1 δs0 ,

pl(x) =
dL∑
i=1

λi

min(m,i)−1∑
j=0

γj

i− 1

j

 (1− x)jxi−1−j . (3.4)

When the left degree is always dL where dL < m (typically dL = m−1), ∑dL
i=1 λi = λL = 1

and min(m, i) = dL. So

pl(x) =
dL−1∑
j=0

γj

i− 1

j

 (1− x)jxi−1−j . (3.5)

Computing pr(x)

To calculate pr(x), we first consider pr(x|i), where i is the initial right degree of the randomly

selected edge. For a specified edge, define the “right neighboring edges” of an edge as the

other edges connected to its incident right node. An edge can be right-degree-one only when

all of its right neighboring edges in the original graph B have been removed because they

are incident to a left node with s = 0. For each such right neighboring edge, the probability

that the left node has s = 0 is 1−pl(x). Thus the probability that all i−1 right neighboring

edges have left nodes corresponding to a VL decoder that has already successfully decoded

is pr(x|i) = (1− pl(x))i−1. Summing over all possible initial right degrees, we have

pr(x) =
dR∑
i=1

ρi(1− pl(x))i−1 = ρ((1− pl(x)) . (3.6)

58

Computing r∗1(x) and r1(x)

Define r∗1(x) as the probability that a randomly selected edge in B satisfies both the event

that defines pl(x) and the event that defines pr(x). For a sufficiently large graph, the events

defining pl(x) and pr(x) are independent. Using the independence of these two events,

r∗1(x) = pl(x)pr(x) = pl(x)ρ(1− pl(x)).

There exist edges that satisfy the definition of r∗1(x) but are not available to be used

as an increment because they have already been used as an increment. To compute the

probability r1(x) that an edge is available as an increment, the probability r∗1(x) needs to

be reduced by the probability that an edge that satisfies the definition of r∗1(x) is already

in the set Qt = {Q1, · · · , Qt}. Note that the edges in Qt automatically satisfy the event

that defines pr(x). However, some edges in Qt will not satisfy the event that defines pl(x).

The event that an edge is in Qt, which has probability 1− x, is independent of whether the

edge satisfies the event that defines pl(x). Thus, the probability that an edge satisfies the

definition of r∗1(x) and is also in Qt is pl(x)(1− x).

Thus the final probability r1(x) that a randomly selected edge in B has not been removed

after t iterations and is available as an increment is

r1(x) = r∗1(x)− pl(x)(1− x) (3.7)

= pl(x) [ρ(1− pl(x))− (1− x)] . (3.8)

Fig. 3.3 shows an example r1(x) computed according to the analysis above. Also shown

(as red circles) are
(
x, r1(x)

)
points found at each density evolution iteration. Each density

evolution iteration (or equivalently GPD iteration) supplies all available increments to the

left nodes and then removes all the left nodes that achieve s = 0 and their incident edges.

At the beginning of the decoding process, x = 1 because there is no edge in the set Qt =

{Q1, · · · , Qt}. As more edges are removed from the graph, x decreases monotonically towards

0. As x monotonically decreases, r1(x) initially decreases, but may also increase.

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.02

0

0.02

0.04

0.06

r 1(x
)

r
1

equation

Density evolution

Figure 3.3: Example r1(x) from density evolution and equation (3.8) for λ(x) = x3 and the
irregular ρPEG(x) in Section 3.5.2. The VL code characterization PMF δ = [0.30909, 0.464,
0.1939, 0.02934, 0.00318, 0.00049].

3.3.3 Computing Probability of Left Node Failure εFF

In this subsection we explore the probability εFF that a left node is not recovered in the

feedback-free (FF) system implemented by a GPD operating on the inter-frame code.

When r1(x) = 0, no right-degree-one edges are left, and the peeling process stops. Define

x(ε) as the first point, i.e., largest x value less than 1, where r1(x) = 0. We can use x(ε) to

predict the probability of recovery failure εFF . For a standard peeling decoder on the erasure

channel, if x(ε) = 0, then all left nodes are successfully recovered. In contrast, for the GPD

any left node with s0 = m cannot be recovered if the maximum left degree is dL = m − 1.

Thus, for the GPD even if x(ε) = 0, εFF > 0. Indeed, when x(ε) = 0, εFF = δm. This assumes

that every left node that receives its s0 increments is recovered correctly. In Sec. 3.5.2, we

will consider undetected errors which lead to a small increase in εFF .

Using x(ε), the calculation of εFF is similar to that of pl(x). The difference is that for εFF

the probability of failure describes the final state of the left nodes, so all edges incident to a

left node are considered instead of all but one.

Consider a left node with initial state s0 and degree i. If s0 > i, the node can never

be recovered. Thus εFF (i, s0) = 1. If s0 ≤ i, the node will fail to decode only if fewer

than s0 edges are removed whenx = x(ε), the end of the peeling process. Thus, εFF (i, s0) =

60

∑s0−1
j=0

i
j

 (1− x(ε))jx(ε)i−j. Combining these two cases, we have

εFF (i, s0) =
min(s0−1,i)∑

j=0

i
j

 (1− x(ε))jx(ε)i−j . (3.9)

Consider all the initial left degrees and initial states s0, the probability of failure is

εFF =
m∑

s0=1
δs0

dL∑
i=1

Λi

min(s0−1,i)∑
j=0

i
j

 (1− x(ε))jx(ε)i−j (3.10)

where Λi = λi∑dL
j=1 λi/i

is the left node degree probability.

3.3.4 Throughput of Feedback and Feedback-Free Systems

The throughput of the feedback-free system is closely linked to the throughput of the asso-

ciated feedback system that uses a VL code with ACK/NACK feedback. The throughput of

the baseline feedback system is

R
(FB)
t = k(1− εFB)

`0 + βFB`∆
, (3.11)

where `0 is the length of the initial transmission, `∆ is the length of the increments, βFB =∑m−1
i=1 iδi+(m−1)δm is the average number of increments the feedback system requests from

the receiver, k is the number of message symbols, and εFB is the failure probability of the

feedback system.

The feedback-free throughput R(FF)
t is computed as

R
(FF)
t = k(1− εFF)

`0 + βFF `∆
, (3.12)

where βFF = ni/nc is the average number of right nodes per left node, and εFF is the

61

feedback-free failure probability.

3.3.5 Throughput Loss in the Feedback-Free System

The feedback and feedback-free systems share the same VL code design, so both throughput

calculations have the same k, `0, and `∆. The feedback-free system is designed to have

similar failure performance as the feedback system, so εFB ≈ εFF and both of these values

are small. The main difference between the throughput of the two systems is determined by

the difference between βFF and βFB.

This difference between βFF and βFB can be understood by studying the ways in which

right nodes fail to provide increments in the feedback-free system. Three mechanisms in the

decoding process prevent a linear combination of increments (right node) from providing a

useful increment to a VL decoder (left node):

1. The degree of the right node of interest (RNOI) never decreases below two.

2. The degree of the RNOI decreases from two-or-more to zero in a single GPD iteration.

3. The degree of the RNOI achieves the value of one during a GPD iteration, but other

increments supplied in the same GPD iteration achieve s = 0 for left node that this

RNOI could assist.

The first mechanism prevents the RNOI from providing an increment to any incident left

node. Both the second and the third mechanisms are scenarios where the RNOI is unable

to help because it is superfluous. Define probabilities η1, η2 and η3 as the probabilities that

a randomly selected right node satisfies each of the mechanisms listed above respectively.

The probability that a right node does not provide a useful increment to a left node is

η = η1 + η2 + η3.

Recall that βFF = ni/nc is the average number of right nodes (combined increments)

per left node (VL decoder). Consider that βFF is the number of right nodes divided by the

number of left nodes in the original graph which has E edges. The number of right nodes

62

2 3 4 5 6 7 8 9 10
Initial right node degree

10-5

10-4

10-3

10-2

10-1

100

P
ro

b.
 o

f
fa

il
ur

e
m

ec
ha

ni
sm

1

2

2 3 4 5 6 7 8 9 10
Initial right node degree

0.1

0.15

0.2

0.25

P
ro

b.
 o

f
fa

il
ur

e
m

ec
ha

ni
sm

2

1
+

2

Figure 3.4: Probability of failure mechanisms of right nodes for the irregular ρPEG(x) in
Section 3.5.2.

is E/aR, where aR is the average right node degree. The degree of each left node is exactly

dL = m− 1 to guarantee that all VL decoders have the possibility to receive the maximum

number of increments. Thus the number of left nodes is E/dL. As a result, βFF = dL/aR.

For any left and right degree distributions, the inter-frame code must provide the left

nodes with at least the number of increments they need in a feedback system. Thus βFF ≥

βFB or dL/aR ≥ βFB which implies an upper bound on the average right degree: aR ≤

dL/βFB. Considering that the number of useful right nodes is E(1 − η)/aR, aR can be

approximated using dL, βFB and the probability η as follows:

aR ≈
dL(1− η)
βFB

. (3.13)

Fig. 3.4 shows the fraction of right nodes of each possible degree that suffer from the

first two failure mechanisms for the irregular ρPEG(x) in Section 3.5.2 according to density

63

evolution analysis. The plot shows that η2 is two or more orders of magnitude smaller than

η1 for this degree distribution. This same behavior was seen for a different irregular ρPEG(x),

designed for a different VL code, in Sec. 3.5.1. [6] The probability of the third mechanism

is difficult to quantify, but should be extremely small for codes with good throughput.

As shown in Fig. 3.4, both high and low degree right degrees are undesirable because their

degrees are more likely to decrease directly from two or more to zero in a single iteration.

This observation leads to a simplified design method in Sec. 3.4.2, where the right degree

distribution is quasi-regular.

3.4 Design Methods

The design of the inter-frame system involves three steps. The first step is to design a VL

code. The second step is to design a degree distributions ρ(x) and λ(x) for the inter-frame

code. The third step is to use the degree distribution to construct the bipartite graph for

the inter-frame code.

3.4.1 VL Code Design

The VL code design process contains two parts. The first part is to specify a VL code and its

feedback mechanism. The second part is to determine the parameters of the VL code: the

maximum number of increments m−1, the initial transmission length `0, and the increment

size `∆.

For the inter-frame system to have low complexity and high throughput, the ideal VL

code should have short average block and a throughput approaching capacity when analyzed

in a feedback system. We will introduce two types of VL codes in the following discussion.

The first is a 1024-state tail-biting convolutional code (TBCC) using ACK/NACK feedback

from reliability output Viterbi algorithm (ROVA) [60]. The second is a (N = 32, K = 24)

rate 0.75 NB-LDPC code on Galois field GF (256) described in [70] with binary IR.

64

Since at the receiver the shared IR connects to the VL decoders directly through a bipar-

tite graph, VL codes with ACK/NACK-based feedback mechanism can be directly applied

in the inter-frame system. If the feedback mechanism of the VL code of choice requires

more informative receiver-to-transmitter feedback, adaption is required. The discussion be-

low provides an example where a full noiseless feedback scheme for NB-LDPC is converted

to an ACK/NACK scheme.

Regardless of the type of VL code used, the design process for m, `0 and `∆ remains

the same. The emphasis of this chapter is on an architecture that allows short-blocklength

VL codewords decoded in parallel without feedback (with a GPD connecting the paral-

lel codewords) to approach the performance of any individual VL code implemented with

ACK/NACK feedback. As we show below, the proposed system closely approaches the in-

dividual VL code’s performance with feedback. As even better short-blocklength VL codes

with feedback are identified, the performance of the proposed architecture will improve cor-

respondingly.

A practical VL code has an initial rate (its highest rate) and a series of lower rates

obtained by transmitting successive increments of additional redundancy. The lowest rate

must guarantee a VL decoding failure probability below the desired target probability of

decoding failure in a feedback system. In this chapter, the target probability of failure for

the feedback-free system is εFF = 10−3. As a result, the target failure probability at the

lowest rate when designing the VL codes should be upper-bounded by 10−3. This lowest

rate translates to a maximum allowed blocklength.

Given the maximum allowed blocklength, there is a trade-off between throughput and

complexity. This trade-off involves the maximum number of increments and the transmission

lengths (for the initial transmission and the increments). Increasing the maximum number of

increments increases complexity. However, it also improves throughput by decreasing the in-

dividual transmission lengths, which reduces the number of unneeded symbols of incremental

redundancy that are transmitted.

65

In the context of the feedback-free system using a GPD, a large maximum number of

increments induces high left and right node degrees in the bipartite graph. In this chapter,

we limit the maximum number of increments to 4 (m = 5) in part to control complexity. As

we will see, this small value of m still yields good performance, i.e., an R(FF)
t close to R(FB)

t .

With the maximum number of increments fixed, the increment sizes and the length of the

initial transmission `0 need to be optimized. In our system design, all the increments have

the same length `∆, so there are only two parameters, `0 and `∆, that need to be determined.

This optimization is conducted in two steps. First, VL codewords are simulated on the target

channel (2dB BI-AWGN in this chapter) with ACK/NACK feedback and bit-by-bit IR. The

decoding status at each instantaneous blocklength for each codeword is recorded. Second,

the decoding status data is used to calculate the empirical probability of decoding for the

first time at each possible transmission length. Using this characterization, `0 and `∆ are

optimized to maximize the throughput R(FB)
t of the feedback system.

Convolutional VL Code

Convolutional codes are widely used in feedback communication. We choose the k = 64

1024-state TBCC using ACK/NACK feedback from ROVA in [60] as the first VL code

design for the inter-frame system. This design uses a rate 1/3 mother code to encode 64

bits of information into a 192-bit codeword. The IR bits are generated by pseudo-random

puncturing.

Table 3.1 shows a comparison between the best variable-size increment (VI) and constant-

size increment (CI) system designs for the 1024-state TBCC of [60] with k = 64 information

bits and m = 5. From Table 3.1, the best CI design achieves 99% of the R(FB)
t of the VI

designs, indicating that the CI requirement does not significantly affect performance. To

accommodate for the failure mechanisms discussed in Sec. 3.3.5, a more stringent target

εFB = 5 × 10−4 is needed. As a result, the increment size is increased by one to 16 for

the CI system used in our simulations in Sec. 3.5.1, identified as “Actual” in Table 3.1.

66

Table 3.1: Performance comparison between the k = 64 1024-state TBCC VL code’s VI
and CI designs. (2 dB BI-AWGN, m = 5, target εFB = 10−3 for the first two rows, target
εFB = 5× 10−4 for the third row)

Transmission Lengths Rate Failure
`0, . . . , `4 (bits) R

(FB)
t Rate δ(5)

VI ES 107, 9, 10, 13, 29 0.528756 9.4× 10−4

CI Best 107, 15, 15, 15, 15 0.522791 9.3× 10−4

Actual 108, 16, 16, 16, 16 0.520843 5× 10−4

Note: ES presents exhaustive search.

This CI design still achieves 98.5% of the R(FB)
t of the VI designs, and 81.1% of capacity

on the 2dB BI-AWGN channel, with an average blocklength of 122 bits. The corresponding

δ = [0.33304, 0.44860, 0.18225, 0.03159, 0.00402, 0.00050]. The increment sizes of 15 or

16 considered here to combat dispersion are significantly smaller than those in [62] (on the

order of 550 symbols) used to combat fading.

NB-LDPC VL Code

NB-LDPC VL codes have been demonstrated to achieve high throughput with short average

blocklength [70, 61]. Our second VL code design is based on the (N = 32, K = 24) rate 0.75

NB-LDPC code on Galois field GF (256) in [70]. The base code encodes 24 8-bit symbols

into a 32-byte codeword. As shown in Table 3.3, this VL code with the actual CI lengths

(third row) used in simulations in Sec. 3.5.2 achieves R(FB)
t = 0.570534 bits per transmission

using m = 5 incremental transmissions, which is 88.9% of capacity on the 2dB BI-AWGN

channel with an average blocklength of 336 bits.

Below we describe how binary feedback mechanism is designed for the NB-LDPC VL

code and how `0 and `∆ are selected.

1) Design the feedback scheme for the NB-LDPC VL code:

This chapter uses the approach of [70, 61] to provide bit-by-bit incremental redundancy

to the NB-LDPC code. This VL scheme differs from the traditional IR scheme where a

67

low-rate mother code is designed and incremental bits are punctured from the low-rate code

to form higher rate codes. The NB-LDPC VL code design starts with a high-rate code, and

generates incremental bits from the symbols of the base codeword. These incremental bits

are not symbols in any non-binary code; they simply provide additional reliability about

previously transmitted symbols.

On the BI-AWGN channel, each non-binary code symbol is converted to a binary rep-

resentation [g1, g2, · · · , gp] of length p, where p = 8 in our design, and transmitted through

the channel using binary phase shift keying (BPSK). We use the primitive polynomial

F (x) = x8 + x4 + x3 + x2 + 1 for the conversion. The decoder receives each symbol as

a noise-distorted sequence [y1, y2, · · · , yp]. To characterize the reliability of each symbol, the

decoder first calculates the log-likelihood ratio (LLR) of each received bit yi,

LLRyi = log P (gi = 1|yi)
P (gi = 0|yi)

, i = 1, 2, · · · , p , (3.14)

where P (gi = 1|yi) is the posterior probability that gi = 1 given that the observed symbol

at the receiver is yi. Since each symbol has 2p possible values, its reliability is described by

a length-(2p − 1) vector LLR(sym) of LLRs. Each entry in the vector is the LLR between a

candidate non-zero Galois value and 0. For example, the first entry of vector is the LLR of

“1”,

LLR
(sym)
1 = log P (g1, · · · , gp = 00 · · · 1|y1, · · · , yp)

P (g1, · · · , gp = 00 · · · 0|y1, · · · , yp)
. (3.15)

Consider the XOR of certain bits of a symbol. For example, g1⊕g5⊕gp. The log-likelihood

ratio of this combination of a received symbol can be calculated as

LLRg1⊕g5⊕gp = log P (g1 ⊕ g5 ⊕ gp = 1|y1, y5, yp)
P (g1 ⊕ g5 ⊕ gp = 0|y1, y5, yp)

. (3.16)

For the Galois field GF (2p), there are 2p−1 possible combinations for each symbol, including

the singletons g1, g2, · · · , gp. Considering an l-bit combination, there are 2l−1 l-bit patterns

68

for which the XOR produces a zero and 2l−1 l-bit patterns for which the XOR produces

a one. For example, when g1 ⊕ g5 ⊕ gp = 1, [g1, g5, gp] can be any pattern in the set

{001, 010, 100, 111}.

Now we consider the LLR associated with a combination, e.g. g1⊕ g5⊕ gp, based on the

observation of the original transmitted symbol at the receiver. Let y represent [y1, y5, yp],

and g represent [g1, g5, gp],

LLRg1⊕g5⊕gp = log P (g ∈ {001, 010, 100, 111}|y)
P (g ∈ {000, 011, 101, 110}|y) (3.17)

= log
(

P (001|y) + P (010|y) + P (100|y) + P (111|y)
P (011|y) + P (110|y) + P (101|y) + P (000|y)

)
. (3.18)

For each component probability

P (g1, g5, gp|y1, y5, yp) = P (g1|y1)P (g5|y5)P (gp|yp).

Initially, the NB-LDPC decoder will try to decode without any IR. If the decoding fails,

then IR is provided using XOR combinations as described above.

1a) Binary IR with full noiseless feedback: Consider the case where the transmitter has

the luxury of full noiseless feedback and provides IR one bit at a time. If decoding fails, the

receiver computes the LLRs of all the (2p−1)×N possible combinations, i.e., all combinations

for each received symbol. Then the receiver identifies the least reliable combination (as well

as the corresponding symbol) and requests the transmission of that XOR combination for

that symbol. The transmitter then sends the XOR of the designated bits as a single bit g∗

of IR.

The receiver uses the received IR bit y∗ to augment the LLR vector of the identified

symbol. Let x represent a possible p-bit pattern for the symbol associated with the XOR

combination. Let X0 be the set of such bit patterns for which the designated combination

of bits produces a zero and X1 be the set of such bit patterns for which the designated

combination of bits produces a one. For x ∈ X0, the LLR is not affected by the IR bit g∗

69

because the value of the XOR is the same for the numerator and denominator of the LLR.

For any x ∈ X1, the LLR of x is augmented using the LLR of the IR bit g∗ as follows:

LLR(sym)
x,new = LLR

(sym)
x,old + LLRg∗ . (3.19)

The NB-LDPC decoder tries to decode again with the updated symbol LLR vector

LLR(sym)
new . If the decoding fails, e.g., according to a syndrome failure, cyclic redundancy

check code (CRC) failure, or a genie, the receiver needs additional IR. To identify the new

IR bit, the receiver updates the LLRs of combinations based on the updated LLR vector.

To update the LLR of a combination, the posterior probability of a specific binary pattern

of a combination is calculated from the posterior probabilities of candidates of the symbol.

For the example IR combination g∗ = g1 ⊕ g5 ⊕ gp, let y represent the original observations

and the IR bit: y = [y1, y2, · · · , yp, y∗],

P (g1g5gp = 101|y1y5ypy∗) =
∑

x:g1g5gp=101
P (x|y) (3.20)

The probability P (x|y) above can be derived directly from the LLR vector of the symbol.

After augmenting the LLRs of the combinations of the previously identified symbol. The

receiver requests the newly identified least reliable combination. This process repeats until

the decoding succeeds.

1b) Binary IR for `∆ increments for inter-frame coding: The process discussed above

requires full feedback from the decoder identifying the specific bit of IR to be sent. We

can modify the process to remove the specific bit identification, and effectively construct a

VL NB-LDPC code with ACK/NACK feedback. The intuition is for the transmitter and

the receiver to use an ordered list of the symbols and combinations that need additional

redundancy based on the expectation of bit reliabilities.

To design the sequence of IR transmissions, the order of symbols and the bit combinations

for each symbol need to be determined as follows:

70

Table 3.2: The first 5 combinations for the first symbol of the rate 0.75 NB-LDPC code.

Priority g1 g2 g3 g4 g5 g6 g7 g8
1 • • • • • • • •
2 • • • •
3 • • • •
4 • • • •
5 • • • •

Note: Dots represent the corresponding bit is in the combination.

Table 3.3: Performance comparison between the K = 24 NB-LDPC VL code with
ACK/NACK feedback’s VI and CI designs. (2dB BI-AWGN, m = 5, target εFB = 10−3

for the first two rows, target εFB = 5× 10−4 for the third row)

Transmission Lengths Rate Failure
`0, . . . , `4 (bits) R

(FB)
t Rate δ(5)

VI ES 296, 24, 22, 28, 65 0.578042 9.9× 10−4

CI Best 297, 34, 34, 34, 34 0.572789 10−3

Actual 302, 36, 36, 36, 36 0.570534 4.9× 10−4

Note: ES presents exhaustive search.

1. Since the BI-AWGN channel is memoryless and there is no preference for symbol

ordering a priori, one bit of IR is sent for each symbol using the natural order of the

symbols. This same ordering is used for subsequent bits of IR.

2. The combination of bits for each IR bit for each symbol is determined through simula-

tion by finding the least reliable combination given the received symbols and previously

received IR bits.

Table 3.2 shows the first 5 combinations of the first symbol generated for the rate 0.75

NB-LDPC code. An interesting observation is that the combination of all bits is always the

least reliable for all the symbols. Combinations of 4 to 5 bits usually follow.

2) Design `0 and `∆ of the NB-LDPC VL code

Table 3.3 compares the performance of the designed constant-increment (CI) VL code

with a design using variable-increment (VI) sizes, which can be considered a performance

upper bound. The transmission lengths in the second row optimize the throughput of the

71

VL code while achieving εFB = 10−3. A failure occurs only when the VL decoder does not

produce the correct codeword, as determined by a genie.

The actual system will have a higher failure rate because of the failure mechanisms

discussed in Section 3.3.5 as well as undetected errors and the resulting error propagation

that will occur in a real system where decoding failures are detected by CRC. We designed

the VL code in the third row to achieve a more stringent requirement of εFB = 5× 10−4 in

the genie-aided scenario so that we can achieve εFF = 10−3 in the final implementation. For

the third row of Table 3.3, δ = [0.30909, 0.464, 0.1939, 0.02934, 0.00318, 0.00049] on the

2dB BI-AWGN channel.

3.4.2 Design the Inter-Frame Degree Distribution

We studied two design approaches for the inter-frame degree distribution: using the differen-

tial evolution algorithm to design the degree distribution directly, and using the quasi-regular

degree distribution formation with optimization by enumeration.

Differential Evolution Algorithm

Differential evolution is an iterative approach to designing degree distributions for linear

block codes described by low-density incidence matrices (either LDPC or LDGM)[71, 72].

In our designs, the left node degree dL, the maximum right node degree dR, and the target

probability of failure are predefined as the constraints of the optimization. The average

number of increments per left node β is gradually decreased, so that throughput of the

design is increased, until the designed degree distribution’s probability of failure exceeds the

target value.

There are dL+dR variables from the right and left degree distribution, dL+dR−3 of which

need to be optimized. Define the parameter vector to be p = {λ2, . . . , λdL−1, ρ2, . . . , ρdR}.

Each iteration has a generation number G. Consider vector p as a point in the feasibility

space with dimension dL + dR − 3.

72

For G = 0, an initial population of NP points is generated using the hit-and-run sampler

[73]. Each point in the generation has an associated x(ε) that can be found from r1(x). The

corresponding probability of failure εFF can be predicted using (3.10), or through density

evolution. The following steps are applied on the generation G population to form generation

G+ 1:

Step 1: Mutation. Intermediate points vi,G+1 for i ∈ {0, · · · , NP − 1} are produced using

vi,G+1 = pbest,G + 0.5 · (pr1,G − pr2,G + pr3,G − pr4,G) , (3.21)

where the point pbest,G has the lowest εFF in generation G, and r1, r2, r3 and r4 are randomly

chosen from {0, · · · , NP − 1} without repetition. If vi,G+1 is out of the feasibility space, this

step is repeated until a feasible point is produced.

Step 2: Recombination. Candidate generation G + 1 points ui,G+1 are generated from

vi,G+1 using the following procedure for each element j = 0, 1, · · · , dL + dR − 4:

uj,i,G+1 =


vj,i,G+1 if Uj ≤ PCR or j = K(i),

pj,i,G otherwise.
(3.22)

where Uj for each j is drawn uniformly from the unit interval [0, 1]. K(i) for each i is

randomly chosen from {0, · · · , NP −1}, and PCR is the crossover probability. In this chapter

PCR = 1 so that uj,i,G+1 = vj,i,G+1 for all j.

Step 3: Selection. In this step, the actual points of generation G+1 are chosen. For each

index i, either ui,G+1 or pi,G is selected, depending on which point has the lower probability

of failure εFF . During these iterations it may be that neither ui,G+1 nor pi,G has a probability

of failure εFF below the target. However, if both points’ probabilities of failure are below

the target, the point requiring the lower number of iterations is selected.

After G reaches a specified value, we consider the point with the lowest probability of

failure. If this probability is below the target failure rate ε, this point is saved as a possible

73

1 2 3 4 5 6 7 8 9 10
Right degree

0

0.2

0.4

0.6

P
ro
ba
bi
li
ty

Figure 3.5: Example right degree distribution ρDE(x) from differential evolution as described
in Sec. 3.5.2.

final solution, and the process is restarted with a slightly decreased β. If this probability is

higher than the target failure rate ε, then the process is terminated and the previous solution

is considered the final answer. In this chapter, the maximum left node degree is dL = 4. The

maximum right node degree is dR = 10. We choose the population size NP = 500 and the

maximum number of generations to be 50.

In our experiments the degree distributions generated with differential evolution had two

characteristics:

• The left degree distributions have λdL ≈ 1. Only degree-dL left nodes are allowed in

practice.

• Two adjacent degrees of right nodes have all but an insignificant amount of the prob-

ability.

Fig. 3.5 illustrates the second characteristic, depicting the right degree distribution obtained

by one of our differential evolution designs. The first characteristic can be easily understood

as each left node requires the capability to receive the maximum number of increments

from the right nodes. The second characteristic closely relates to the discussion in Section

3.3.5, where both high and low degree right nodes suffer from an increased probability that

they cannot be used by a left node to decode. From these observations, we proposes the

quasi-regular degree distribution formation.

74

Quasi-regular Design

The quasi-regular distribution formation is defined as follows:

• All the left nodes’ degrees are fixed at dL = m− 1,

• The right degree distribution is quasi-regular, with nonzero probability restricted to

two or three adjacent integers determined by the range of β to be explored.

Any optimization algorithm can be employed to determine the optimum values in the de-

gree distribution. Because there are only two or three parameters to be optimized, we use

exhaustive search to find the results.

The quasi-regular approach is significantly less complex than differential evolution while

producing the same or slightly better performance in our experiments. While differential

evolution with an unlimited number of iterations and more degrees of freedom should always

produce performance at least as good as a more constrained exhaustive search, our simula-

tions were limited to 50 iterations of differential evolution, and all the results were observed

to approximate the quasi-regular distribution.

3.4.3 Bipartite Graph Design

We use the progressive edge growth (PEG) algorithm of Hu et al. [74] to construct the

inter-frame code bipartite graph from the degree distribution to maximize girth. Girth is

important for the GPD; if a set of left nodes has each left node connecting to the same

set of right nodes, then the peeling process can reach a bottleneck. In other words, the

neighborhood of any right node should grow quickly with path length to enable the GDP to

avoid bottlenecks, i.e., maintain a large value of r1(x) for as long as possible.

The bipartite graph generated by the PEG algorithm is slightly different from the asymp-

totic graph described by the degree distributions. The difference is more pronounced when

the number of left nodes is limited. Results in Sec. 3.5 show that the difference does not

significantly degrade the performance of the designs.

75

Because left degree distributions designed in this chapter are regular, the role of left and

right nodes as described in [74] are swapped in our PEG implementation.

3.5 Results

In this section, we present the details of the feedback-free systems we designed and the cor-

responding simulation results. We focus on the two factors that determine the performance

of the system: the throughput R(FF)
t and the probability of failure of the codewords εFF .

The design and simulations are conducted on a 2dB BI-AWGN channel which has a capacity

of 0.642149 bits per transmission. With the channel condition fixed, we seek an R
(FF)
t of

the designed feedback-free system that approaches the R(FB)
t of the reference VL code with

feedback, while also guaranteeing the probability of failure εFF ≤ 10−3.

3.5.1 Convolutional VL Code Based System

R
(FF)
t for the inter-frame design is upper-bounded by R(FB)

t of the VL codes that form the

foundation of the system. As is shown in Table 3.1, the convolutional VL code with noise-

less ACK/NACK feedback and variable-increment sizes, achieves a throughput of R(FB)
t =

0.528756 bits per transmission. We will compare our feedback-free designs against this

VL code with feedback. From Table 3.1, the convolutional VL code we use to construct the

feedback-free system has initial transmission length `0 = 108 bits and increment size `∆ = 16

bits.

Design using regular bipartite graph

As a reference, we begin with a regular inter-frame bipartite graph design, without using

differential evolution or quasi-regular degree distributions. The intended bipartite graph

has only degree-4 left nodes and degree-3 right nodes. We use PEG to generate the actual

bipartite graph with 100000 left nodes. The resulting graph has a left degree distribution

76

Table 3.4: Performance of the convolutional VL code based feedback-free systems.

R
(FF)
t εFF % Capacity % R

(FB)
t

Regular 0.494503 6.69× 10−4 77.0% 93.5%
Irregular 0.510182 8.98× 10−4 79.4% 96.5%

Note: “% Capacity” is the percentage R(FF)
t is of the channel capacity. “% R

(FB)
t ” is the percentage R(FF)

t is of R(FB)
t of the

best feedback system (the first row in Table 3.1).

λPEG(x) = x3 and a right degree distribution ρ(coeff)
PEG = {0, 0.0001, 0.9999}. The ratio βFF ≈

1.33334 The rate of the overall feedback-free system R
(FF)
t = 0.494503 bits per transmission.

The simulated failure probability is εFF = 6.691× 10−4.

Design using differential evolution

Using differential evolution, our highest-rate irregular bipartite graph’ left degree distribu-

tion is λDE(x) = x3, and right degree distribution is ρ(coeff)
DE = {2.73614 × 10−3, 2.36956 ×

10−2, 0.445366, 0.213356, 0.188564, 2.68009× 10−2, 4.89986× 10−2, 1.21422× 10−3, 1.77664×

10−2, 3.15029× 10−2}.

The actual bipartite graph with 100000 left nodes has λPEG(x) = x3 and ρ
(coeff)
PEG =

{2.6575×10−3, 2.4735×10−2,0.4420125, 0.21653, 0.1872125, 2.8155×10−2, 4.84225×10−2, 1.46×

10−3, 1.9215 × 10−2, 2.96 × 10−2}. The corresponding βFF = 1.08330. The rate of the

feedback-free system R
(FF)
t = 0.510182 bits per transmission. The failure probability εFF =

8.979× 10−4.

Table 3.4 compares the results with the best feedback system under the same constraints.

The irregular feedback-free system achieves more than 95% of the best R(FB)
t for m = 5. We

also calculated the exact density evolution for both the regular and irregular code. Fig. 3.6

compares the density evolution prediction of the probability of failure at each iteration with

the simulation result. The regular code’s result is very closely approximated by the density

evolution. The simulation result of the irregular code is also close to density evolution, and

the prediction of the asymptotic probability of failure matches with the simulation result in

77

0 5 10 15 20 25 30
Number of Iterations

10-3

10-2

10-1

100

Pr
ob

ab
ili

ty
 o

f
fa

ilu
re

FF

Density evolution (regular code)
Simulation (regular code)
Density evolution (irregular code)
Simulation (irregular code)

Figure 3.6: Probability of failure versus the number of iterations of the convolutional VL
Code based feedback-free system.

both cases.

Design using quasi-regular degree distributions

The simulation results of the regular and irregular systems above shows that the performance

of feedback-free systems with large enough bipartite graphs closely follows the asymptotic

prediction from density evolution. In this section, we will use density evolution and the

analysis in Sec. 3.3 to explore the highest possible throughput using quasi-regular degree

distribution, assuming infinite large bipartite graphs. We will show later in the chapter that

limiting the size of the bipartite graph will not significantly degrade the throughput and

failure probability performance of the feedback-free system.

We first used a quasi-regular right degree distribution of ρQR(x) = αx2+(1−α)x3 (degree

3 and 4) to explore βFF values in between these two points, where α is a design parameter.

For each row, we fix the maximum number of iterations, and search for the smallest value of

α that achieves a probability of failure that is less than εFF = 1× 10−3 according to density

evolution. As shown in Table 3.5 and Figs. 3.7 and 3.8 these distributions did quite well.

78

Table 3.5: Density evolution performance characteristics of quasi-regular ρQR(x) = αx2 +
(1− α)x3 for the convolutional VL code based feedback-free system. λ(x) = x3 in all cases.

α aR βFF R
(FF)
t No. iter. % R

(FB)
t εFF

1 3 1.33333 0.494495 15 93.5% 7.09×10−4

0.531 3.39847 1.17700 0.504210 20 95.4% 7.82×10−4

0.244 3.69914 1.08133 0.510342 30 96.5% 8.35×10−4

0.168 3.78788 1.05600 0.511991 40 96.8% 8.50×10−4

0.139 3.82287 1.04633 0.512623 50 96.9% 8.56×10−4

0.108 3.86100 1.03600 0.513299 100 97.1% 8.63×10−4

Note: “No. iter.” is the number of iterations for the GPD to achieve the listed εFF . “% R
(FB)
t ” is the percentage R(FF)

t is of

R
(FB)
t of the best feedback system (the first row in Table 3.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

-0.02

0

0.02

0.04

0.06

0.08

r 1(x
)

15 iterations
20 iterations
30 iterations
40 iterations
50 iterations
100 iterations

Figure 3.7: r1(x) versus x for Table 3.5. The curves are generated using equation (3.8).
Circles indicate iteration points determined through density evolution.

100 101 102

Iteration

10-3

10-2

10-1

100

P
ro

ba
bi

li
ty

 o
f

fa
il

ur
e

F
F

15 iterations
20 iterations
30 iterations
40 iterations
50 iterations
100 iterations

Figure 3.8: Probability of failure versus iterations for ρQR(x) distributions in Table 3.5. The
curves are generated using density evolution.

79

Table 3.6: Density evolution performance characteristics of the highest R(FF)
t (lowest-βFF)

quasi-regular right degree distributions for the convolutional VL code based feedback-free
system. λ(x) = x3 in all cases.

ρQR(x) aR βFF R
(FF)
t iter. % R

(FB)
t εFF

0.0998x2 + 0.9002x3 3.87122 1.03327 0.513478 1648 97.1% 8.65×10−4

0.409x2 + 0.052x3 + 0.539x4 3.88903 1.02853 0.513765 3748 97.2% 9.16×10−4

Note: “iter.” is the number of iterations for the GPD to achieve the listed εFF . “% R
(FB)
t ” is the percentage R(FF)

t is of R(FB)
t

of the best feedback system (the first row in Table 3.1).

For example, the α = 0.244 distribution outperformed both the irregular distribution from

differential evolution. If more iterations are possible, over 97% of R(FB)
t can be achieved by

α = 0.108 with 100 iterations.

We explored even more iterations and three consecutive degrees, as shown in Table 3.6,

but even with thousands of iterations, negligible improvement over the 97.1% of R(FB)
t

achieved by α = 0.108 was seen. In Table 3.5 and the second row of Table 3.6, the pre-

cision of degree distribution coefficients is 0.001. And in the first row of Table 3.6, the

precision is 0.0001.

To summarize, our feedback-free system based on convolution VL code can achieve 97.2%

of the R(FB)
t of the reference convolution VL code with feedback, and 80% of the 2dB BI-

AWGN channel capacity, while guaranteeing a failure probability below 10−3 with 3748 GPD

iterations. More practical designs with reasonable numbers of GPD iterations require a small

sacrifice of the throughput.

3.5.2 NB-LDPC VL Code based System

As is shown in Table 3.3, our best NB-LDPC VL code with variable increment sizes and

noiseless ACK/NACK feedback, achieves a throughput of R(FB)
t = 0.578042 bits per trans-

mission. This is the upper bound of the throughput achievable with the NB-LDPC VL code

based feedback-free system. From Table 3.3, the NB-LDPC VL code in the following designs

has the initial transmission length `0 = 302 bits and the increment size `∆ = 36 bits. We will

80

explore limiting the number of left nodes in the inter-frame bipartite graph in the following

designs.

Performance with a genie

In this subsection, we compare the simulated performance of the inter-frame degree distribu-

tion designs using differential evolution and quasi-regular formation, assuming the decoding

process only succeeds when the correct codeword is produced, as determined by a genie. In

the next subsection we will replace the genie with a cyclic redundancy check (CRC) code for

error detection to study the loss due to imperfect error detection.

1) Design using differential evolution:

The design for the inter-frame bipartite graph utilizes differential evolution, which yielded

λ(x) = x3 and ρ(coeff)
DE = [3.22862× 10−4, 1.19006× 10−3, 0.601297, 0.385985, 2.03269× 10−3,

2.76451 × 10−3, 1.91570 × 10−3, 1.97568 × 10−3, 1.28470 × 10−3, 1.23207 × 10−3]. Fig.

3.5 depicts the right degree distribution. Based on density evolution, this pair of degree

distributions achieves εFF = 6.58× 10−4. The throughput of this design is R(FF)
t = 0.555961

bits per transmission.

We used PEG to generate an actual inter-frame bipartite graph with 1000 left nodes

that approximates the differential evolution degree distribution. The actual irregular degree

distributions of the bipartite graph are λ(x) = x3 and ρ(coeff)
PEG = [0.00175, 0.0085, 0.57525,

0.392, 0.0125, 0.0015, 0.00175, 0.002, 0.00225, 0.0025]. The corresponding βFF = 1.198.

Simulation with the genie shows that the failure rate is εFF = 6.25× 10−4. The throughput

of this design is R(FF)
t = 0.555968 bits per transmission, achieving 96.2% of the R(FB)

t of the

NB-LDPC VL code with ACK/NACK feedback. Limiting the number of left nodes to 1000

does not significantly impact the performance in this case.

2) Designs using quasi-regular degree distributions:

For this design, we fix λ(x) = x3 and ρQR(x) = αx2 + (1 − α)x3, where α is the design

parameter. Table 3.7 shows several designs with various α values. For each row, we fix the

81

Table 3.7: Density evolution performance characterization of quasi-regular ρQR(x) = αx2 +
(1− α)x3 for the NB-LDPC VL code based feedback-free system. λ(x) = x3 in all cases.

α aR βFF R
(FF)
t No. Iter. % R

(FB)
t εFF

0.597 3.33611 1.19900 0.555892 20 96.2% 6.55×10−4

0.341 3.59174 1.11367 0.560870 30 97.0% 6.82×10−4

0.273 3.66636 1.09100 0.562206 40 97.3% 6.90×10−4

0.246 3.69686 1.08200 0.562739 50 97.4% 6.93×10−4

0.217 3.73018 1.07233 0.563312 100 97.5% 6.97×10−4

Note: “No. iter.” is the number of iterations for the GPD to achieve the listed εFF . “% R
(FB)
t ” is the percentage R(FF)

t is of
R

(FB)
t of the best feedback system (the first row in Table 3.3).

Table 3.8: Right degree distributions of the PEG generated inter-frame bipartite graphs in
Fig. 3.9.

α No. Left Nodes ρ2 ρ3 ρ4 ρ5
0.597 1000 0.0035 0.59025 0.4 0.00625
0.597 2000 0.00275 0.591375 0.4015 0.004375
0.341 10000 0.0016 0.342225 0.6463 0.009875
0.341 20000 0.00055 0.3411 0.65535 0.003

Note: ρi = 0 if not listed.

maximum number of iterations, and identify the smallest value of α (with a precision of

0.001) that achieves a probability of failure which is less than εFF = 7 × 10−4 according to

density evolution.

We used PEG to generate actual bipartite graphs for the first two designs in Table 3.7

with different numbers of left nodes, resulting in the right degree distributions shown in

Table 3.8. They approximate the ideal degree indicated by α.

Fig. 3.9 shows probability of failure εFF of the PEG-generated codes in Table 3.8 accord-

ing to simulation. Also shown is εFF for the ideal quasi-regular distributions defined by the

associated α. Real codes with a finite number of left nodes have a higher failure probability

εFF than predicted by density evolution. Similarly, codes with a limited number of left nodes

require more iterations to converge than predicted by density evolution. For example, the

design for α = 0.597 with 1000 left nodes requires 25 iterations to achieve εFF = 7.32×10−4,

while density evolution (or r1(x) analysis) predicts the failure probability to be 6.55× 10−4

82

0 5 10 15 20 25 30 35 40
Number of iterations

10-3

10-2

10-1

100

P
ro

ba
bi

li
ty

 o
f

fa
il

ur
e

F
F

Density evolution (=0.597)
Simulation with genie (=0.597, 1000 left nodes)
Simulation with genie (=0.597, 2000 left nodes)
Density evolution (=0.341)
Simulation with genie (=0.341, 10,000 left nodes)
Simulation with genie (=0.341, 20,000 left nodes)

Figure 3.9: Probability of failure versus the number of iterations for the designs in Table 3.7
from density evolution and genie-aided simulations.

at 20 iterations. Codes with a slightly higher percentage of R(FB)
t can require many more

left nodes to achieve the predicted performance. In Fig. 3.9, the α = 0.597 design achieves

96% of R(FB)
t and requires 2000 left nodes to achieve asymptotic εFF . The α = 0.391 design

achieves 97% of R(FB)
t but requires 20000 left nodes to achieve asymptotic εFF .

Performance with CRC

We also designed and simulated systems using cyclic redundancy check (CRC) to detect

decoding success instead of a genie. With low probability, the CRC decoder can fail to

detect an incorrect codeword causing an undetected frame error [75]. In our system, the

undetected errors cause the VL decoders to incorrectly declare decoding success, and pass

incorrect increments to the right nodes causing error propagation.

The design of the VL codes already provides the margin needed to mitigate this issue by

targeting a design failure rate at 5× 10−4 < 10−3 (the third row in Table 3.3). Additionally,

83

15 20 25 30
Number of iterations

10-3

10-2

P
ro

ba
bi

li
ty

 o
f

fa
il

ur
e

F
F

Density evolution (=0.597)
Simulation with genie (=0.597, 1000 left nodes)
Simulation with CRC-7 0x09 (=0.597, 1000 left nodes)
Simulation with CRC-8 0xD5 (=0.597, 1000 left nodes)

Figure 3.10: Probability of failure versus the number of iterations for the α = 0.597 1000-
left-node design in Table 3.8 from density evolution, simulations with a genie-aided decoder
and decoders using CRCs.

Table 3.9: Probability of failure of 1000-left-node α = 0.597 code from Table 3.8 simulated
with CRCs.

CRC No. Iter. Detected Failure Undetected Error Real εFF
7-bit 0x09 25 7.40×10−4 3.89×10−4 1.13×10−3

8-bit 0xD5 25 7.15×10−4 1.89×10−4 9.04×10−4

Note: “No. iter.” is the number of iterations for the GPD to achieve the listed εFF . Real εFF is the sum of the CRC detected
failure rate and the undetected error rate.

we uses a failure probability target of 7 × 10−4 for the quasi-regular degree distribution

designs, leaving margin for undetected errors.

We examined both a 7-bit and a 8-bit CRC for the α = 0.597 20-iteration design with

1000 left nodes. The 7-bit CRC has a polynomial representation of 0x09 (x7 + x3 + 1), as

defined in standards G.707, G.832 of the International Telecommunication Union (ITU-T)

[76, 77]. The polynomial representation of the 8-bit CRC is 0xD5 (x8 +x7 +x6 +x4 +x2 +1).

This CRC is used in the standard Digital Video Broadcasting - Satellite - Second Generation

(DVB-S2) [78].

Fig. 3.10 shows the probability of failure curves for the simulation using a genie and

the simulations using CRCs. Table 3.9 shows the failure probability of the simulations with

the two CRCs at 25 GPD iterations. The εFF is the failure probability including both the

undetected errors and detected failures. We conclude that the undetected errors which inject

wrong increments into the GPD do not stall the decoding process, and only increase the real

84

failure probability εFF modestly. The undetected error rate of the 7-bit CRC is roughly

two times of that of the 8-bit CRC. As a result, the 8-bit CRC is more desirable for the

inter-frame system in this paper.

For our scenario, the overhead of the CRC causes approximately a 4% throughput re-

duction from the system with a genie, which achieved 96.02% of R(FB)
t . Specifically, with 25

GPD iterations, the real throughput of the inter-frame code with the 7-bit CRC is 0.535371,

which is 92.6% of the feedback throughput R(FB)
t in the first row of Table 3.3. The real

throughput of the inter-frame code with the 8-bit CRC is 0.532598, achieving 92.1% of the

R
(FB)
t .

To summarize, using the inter-frame coding architecture, a practical NB-LDPC VL code

based feedback-free error correction design can achieve 92.1% of the R(FB)
t of the reference

NB-LDPC VL code with feedback, and 82.9% of 2dB BI-AWGN channel capacity, while

guaranteeing a failure probability below 10−3 with 25 GPD iterations.

3.6 Conclusion

A full design and simulation demonstrated that the throughput and probability of failure

(frame error rate) performance of a VL code with ACK/NACK feedback on a point-to-

point channel can be closely approached without feedback by using multiple such VL codes

in parallel with common incremental redundancy shared through inter-frame coding. The

results suggests a constructive proof (for the special case of ACK/NACK feedback) of the

well-known information theoretic result that feedback does not increase capacity of point-

to-point channels. The inter-frame decoding complexity is small so that the overall system’s

complexity is comparable to decoding the component VL codes with ACK/NACK feedback,

and allows the opportunity for massive parallel processing.

The designs can be improved by exploring the applicability of additional VL encoder

architectures, and analyzing the performance on more channel conditions. Further research

can be conducted to identify the limits of the feedback-free system, such as a lower bound

85

on the number of left nodes required and a upper bound of the throughput.

3.7 Acknowledgment

The majority of this chapter has been published or has been submitted for publication in

[5, 6, 7]. This research was conducted in collaboration with Sudarsan V.S. Ranganathan and

Prof. Richard D. Wesel. The author would like to thank Sudarsan V.S. Ranganathan for

providing the PEG design software. The author would also like to thank Fabian Steiner at

Technical University of Munich (TUM) for valuable suggestions and comments.

86

References

[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to Flash memory,”

Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502, Apr. 2003.

[2] H. Wang, T. Chen, and R. D. Wesel, “Histogram-based Flash channel estimation,” in

Proc. 2015 IEEE Int. Conf. Commun. (ICC), 2015, pp. 283–288.

[3] H. Wang, N. Wong, and R. D. Wesel, “Dynamic voltage allocation with quantized

voltage levels and simplified channel modeling,” in 2015 49th Asilomar Conference on

Signals, Systems and Computers, Nov 2015, pp. 834–838.

[4] H. Wang, N. Wong, T. Chen, and R. D. Wesel, “Using dynamic allocation of write

voltage to extend flash memory lifetime,” IEEE Trans. Commun., vol. 64, no. 11, pp.

4474–4486, Nov 2016.

[5] H. Wang, S. V. S. Ranganathan, and R. D. Wesel, “Approaching capacity using incre-

mental redundancy without feedback,” in Proc. 2017 IEEE International Symposium

on Information Theory (ISIT), 2017, pp. 161–165.

[6] H. Wang and R. D. Wesel, “Channel code analysis and design using multiple variable-

length codes in parallel without feedback,” in Proc. 2018 IEEE Global Communications

Conference (GLOBECOM), 2018, to be published.

[7] ——, “Coding with shared incremental redundancy: Design methods and a non-binary

ldpc example,” IEEE Trans. Commun., 2018, submitted for publication.

87

[8] J. Choi and K. S. Seol, “3D approaches for non-volatile memory,” in Proc. 2011 Symp.

VLSI Technology (VLSIT), 2011, pp. 178–179.

[9] K. Park, D. Byeon, and D. Kim, “A world’s first product of three-dimensional vertical

NAND Flash memory and beyond,” presented at 2014 14th Annu. Non-Volatile Memory

Technology Symp. (NVMTS), Jeju Island, ROK, Oct. 27-29, 2014.

[10] J. Im, W. Jeong, D. Kim, S. Nam, D. Shim, M. Choi, H. Yoon, D. Kim, Y. Kim,

H. Park, D. Kwak, S. Park, S. Yoon, W. Hahn, J. Ryu, S. Shim, K. Kang, S. Choi,

J. Ihm, Y. Min, I. Kim, D. Lee, J. Cho, O. Kwon, J. Lee, M. Kim, S. Joo, J. Jang,

S. Hwang, D. Byeon, H. Yang, K. Park, K. Kyung, and J. Choi, “A 128Gb 3b/cell

V-NAND Flash memory with 1Gb/s I/O rate,” in Proc. 2015 IEEE Int. Solid-State

Circuits Conf. (ISSCC) Tech. Dig., 2015, pp. 110–112.

[11] B. Chen, X. Zhang, and Z. Wang, “Error correction for multi-level NAND Flash memory

using Reed-Solomon codes,” in Proc. 2008 IEEE Workshop on Signal Process. Syst.

(SiPS), 2008, pp. 94–99.

[12] S. Cho, D. Kim, J. Choi, and J. Ha, “Block-wise concatenated BCH codes for NAND

Flash memories,” IEEE Trans. Commun., vol. 62, no. 4, pp. 1164–1177, Apr. 2014.

[13] D. Kim and J. Ha, “Quasi-primitive block-wise concatenated BCH codes for NAND

Flash memories,” in Proc. 2014 IEEE Inform. Theory Workshop (ITW), 2014, pp. 611–

615.

[14] Y. Maeda and H. Kaneko, “Error control coding for multilevel cell Flash memories

using nonbinary low-density parity-check codes,” in Proc. 2009 24th IEEE Int. Symp.

on Defect and Fault Tolerance in VLSI Systems (DFT), 2009, pp. 367–375.

[15] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng, “LDPC-in-SSD: Making

advanced error correction codes work effectively in solid state drives,” in Proc. 11th

USENIX Conf. on File and Storage Technologies, 2013, pp. 243–256.

88

[16] F. Zhang, H. D. Pfister, and A. Jiang, “LDPC codes for rank modulation in Flash

memories,” in Proc. 2010 IEEE Int. Symp. on Inform. Theory (ISIT), 2010, pp. 859–

863.

[17] J. Wang, K. Vakilinia, T. Chen, T. Courtade, G. Dong, T. Zhang, H. Shankar, and

R. Wesel, “Enhanced precision through multiple reads for LDPC decoding in Flash

memories,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 880–891, May 2014.

[18] J. Jeong, S. S. Hahn, S. Lee, and J. Kim, “Improving NAND endurance by dynamic

program and erase scaling,” presented at the 5th USENIX Conf. on Hot Topics in

Storage and File Syst., San Jose, CA, Jun 27-28, 2013.

[19] R. L. Rivest and A. Shamir, “How to reuse a "write-once" memory,” Infor. and Control,

vol. 55, no. 1-3, pp. 1–19, Oct. 1982.

[20] A. Jiang, “On the generalization of error-correcting WOM codes,” in Proc. 2007 IEEE

Int. Symp. on Inform. Theory (ISIT), 2007, pp. 1391–1395.

[21] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes for write-once

memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 5985–5999, Sep. 2012.

[22] R. Gabrys and L. Dolecek, “Constructions of nonbinary WOM codes for multilevel Flash

memories,” IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 1905–1919, Apr. 2015.

[23] A. Jiang, M. Schwartz, and J. Bruck, “Error-correcting codes for rank modulation,” in

Proc. 2008 IEEE Int. Symp. Inform. Theory (ISIT), 2008, pp. 1736–1740.

[24] A. Mazumdar, A. Barg, and G. Zemor, “Constructions of rank modulation codes,” IEEE

Trans. Inf. Theory, vol. 59, no. 2, pp. 1018–1029, Feb. 2013.

[25] M. Qin, A. Jiang, and P. H. Siegel, “Parallel programming of rank modulation,” in Proc.

2013 IEEE Int. Symp. Inform. Theory (ISIT), 2013, pp. 719–723.

89

[26] B. Peleato, R. Agarwal, J. M. Cioffi, M. Qin, and P. H. Siegel, “Adaptive read thresholds

for NAND Flash,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3069–3081, Sep. 2015.

[27] H. Zhou, A. Jiang, and J. Bruck, “Error-correcting schemes with dynamic thresholds

in nonvolatile memories,” in Proc. 2011 IEEE Int. Symp. Inform. Theory (ISIT), 2011,

pp. 2143–2147.

[28] F. Sala, R. Gabrys, and L. Dolecek, “Dynamic threshold schemes for multi-level non-

volatile memories,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2624–2634, Jul. 2013.

[29] T. Chen, A. R. Williamson, and R. D. Wesel, “Increasing flash memory lifetime by

dynamic voltage allocation for constant mutual information,” in Proc. 2014 Inform.

Theory and Applicat. Workshop (ITA), Feb. 2014, pp. 1–5.

[30] D. Lee andW. Sung, “Estimation of NAND Flash memory threshold voltage distribution

for optimum soft-decision error correction,” IEEE Trans. Signal Process., vol. 61, no. 2,

pp. 440–449, Jan. 2013.

[31] J. Wang, T. Courtade, H. Shankar, and R. Wesel, “Soft information for LDPC decoding

in Flash: mutual-information optimized quantization,” presented at 2011 IEEE Global

Telecommun. Conf. (GLOBECOM), Houston, TX, Dec. 5-9, 2011.

[32] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of the threshold

voltage distributions of sub-20nm NAND Flash memory,” in Proc. 2014 IEEE Global

Commun. Conf. (GLOBECOM), 2014, pp. 2351–2356.

[33] K. Takeuchi, T. Tanaka, and H. Nakamura, “A double-level-Vth select gate array ar-

chitecture for multilevel NAND Flash memories,” IEEE J. Solid-State Circuits, vol. 31,

no. 4, pp. 602–609, Apr. 1996.

[34] C. Compagnoni, A. Spinelli, R. Gusmeroli, A. Lacaita, S. Beltrami, A. Ghetti, and

A. Visconti, “First evidence for injection statistics accuracy limitations in NAND Flash

90

constant-current Fowler-Nordheim programming,” in Proc. 2007 IEEE Int. Electron

Devices Meeting (IEDM), 2007, pp. 165–168.

[35] P. Olivo, B. Ricco, and E. Sangiorgi, “High-field-induced voltage-dependent oxide

charge,” Appl. Physics Lett., vol. 48, no. 17, pp. 1135–1137, Apr. 1986.

[36] N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade, A. Kurtz, Q. Meng, N. Righos, and

J. Wu, “Flash EEPROM threshold instabilities due to charge trapping during pro-

gram/erase cycling,” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 335–344, Sep.

2004.

[37] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash cell

in program/erase cycling,” in Proc. 1994 IEEE Int. Electron Devices Meeting (IEDM),

1994, pp. 291–294.

[38] S. Yamada, Y. Hiura, T. Yamane, K. Amemiya, Y. Ohshima, and K. Yoshikawa, “Degra-

dation mechanism of Flash EEPROM programming after program/erase cycles,” in

Proc. 1993 IEEE Int. Electron Devices Meeting (IEDM), 1993, pp. 23–26.

[39] K. Fukuda, Y. Shimizu, K. Amemiya, M. Kamoshida, and C. Hu, “Random telegraph

noise in Flash memories - model and technology scaling,” in Proc. 2007 IEEE Int.

Electron Devices Meeting (IEDM), 2007, pp. 169–172.

[40] C. Compagnoni, M. Ghidotti, A. Lacaita, A. Spinelli, and A. Visconti, “Random tele-

graph noise effect on the programmed threshold-voltage distribution of Flash memories,”

IEEE Electron Device Lett., vol. 30, no. 9, pp. 984–986, Sep. 2009.

[41] G. Dong, Y. Pan, N. Xie, C. Varanasi, and T. Zhang, “Estimating information-

theoretical NAND Flash memory storage capacity and its implication to memory system

design space exploration,” IEEE Trans. VLSI Syst., vol. 20, no. 9, pp. 1705–1714, Sep.

2012.

91

[42] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and predistortion to

tolerate cell-to-cell interference in MLC NAND Flash memory,” IEEE Trans. Circuits

Syst. I, vol. 57, no. 10, pp. 2718–2728, Oct. 2010.

[43] J. Lee, S. Hur, and J. Choi, “Effects of floating-gate interference on NAND Flash mem-

ory cell operation,” IEEE Electron Device Lett., vol. 23, no. 5, pp. 264–266, May 2002.

[44] N. Mielke, H. Belgal, A. Fazio, Q. Meng, and N. Righos, “Recovery effects in the

distributed cycling of Flash memories,” in Proc. 2006 42nd Annu. IEEE Int. Reliability

Physics Symp., 2006, pp. 29–35.

[45] H. Yang, H. Kim, S. Park, J. Kim, S. Lee, J. Choi, D. Hwang, C. Kim, M. Park, K. Lee,

Y. Park, J. K. Shin, and J. Kong, “Reliability issues and models of sub-90nm NAND

Flash memory cells,” in Proc. 2006 8th Int. Conf. Solid-State and Integrated Circuit

Technology, 2006, pp. 760–762.

[46] J. Lee, J. Choi, D. Park, and K. Kim, “Data retention characteristics of sub-100 nm

NAND Flash memory cells,” IEEE Electron Device Lett., vol. 24, no. 12, pp. 748–750,

Dec. 2003.

[47] M. Gill and S. Lai, “Flash reliability issues,” in Nonvolatile semiconductor memory

technology: a comprehensive guide to understanding and to using NVSM devices, W. D.

Brown and J. Brewer, Eds. New York, NY: IEEE Press, 1998, ch. 4, sec. 6, pp. 255–281.

[48] T. M. Cover and J. A. Thomas, “Relationship between entropy entropy and mutual

information,” in Elements of Information Theory, 2nd ed. Hoboken, NJ: Wiley-

Interscience, 2006, ch. 2, sec. 4, pp. 20–22.

[49] Q. Xu, P. Gong, T. M. Chen, J. Michael, and S. Li, “Modelling and characterization of

NAND Flash memory channels,” Measurement, vol. 70, pp. 225–231, Jun. 2015.

92

[50] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,”

Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. pp.

431–441, 1963.

[51] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables, 10th ed. Washington, D.C.: U.S. Dept. of

Commerce, 1972, p. 890.

[52] C. Lott, O. Milenkovic, and E. Soljanin, “Hybrid ARQ: Theory, state of the art and

future directions,” in Prof. IEEE Inf. Theory Workshop (ITW), Bergen, Norway, 2007.

[53] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker, “Applications of error control

coding,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2531–2560, Oct. 1998.

[54] A. M. Cipriano, P. Gagneur, G. Vivier, and S. Sezginer, “Overview of ARQ and HARQ

in beyond 3G systems,” in Proc. 2010 IEEE 21st Int. Symp. on Personal, Indoor and

Mobile Radio Communications Workshops, Instanbul, Turkey, 2010.

[55] A. Masaracchia, R. Bruno, A. Passarella, and S. Mangione, “Analysis of MAC-level

throughput in LTE systems with link rate adaptation and HARQ protocols,” in Proc.

2015 IEEE 16th Int. Symp. on A World of Wireless, Mobile and Multimedia Networks

(WoWMoM), Boston, MA, USA, 2015.

[56] E. Cabrera, G. Fang, and R. Vesilo, “Adaptive hybrid ARQ (A-HARQ) for ultra-reliable

communication in 5G,” in Proc. IEEE Vehicular Technology Conf. (VTC Spring), Syd-

ney, NSW, Australia, 2017.

[57] G. Forney, “Exponential error bounds for erasure list and decision feedback schemes,”

IEEE Trans. Inf. Theory, vol. 14, no. 2, pp. 206–220, Mar. 1968.

[58] M. V. Burnashev, “Data transmission over a discrete channel with feedback. random

transmission time,” Problems Inf. Transmission, vol. 12, no. 4, pp. 250–265, 1976.

93

[59] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Feedback in the non-asymptotic regime,”

IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4903–4925, Aug. 2011.

[60] A. R. Williamson, T. Y. Chen, and R. D. Wesel, “Variable-length convolutional coding

for short blocklengths with decision feedback,” IEEE Trans. Commun., vol. 63, no. 7,

pp. 2389–2403, Jul. 2015.

[61] K. Vakilinia, S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel, “Optimizing trans-

mission lengths for limited feedback with nonbinary LDPC examples,” IEEE Trans.

Commun., vol. 64, no. 6, pp. 2245–2257, Jun. 2016.

[62] H. Zeineddine and M. M. Mansour, “Inter-frame coding for broadcast communication,”

IEEE J. Sel. Areas Commun., vol. 34, no. 2, pp. 437–452, Feb. 2016.

[63] E. Casini, R. D. Gaudenzi, and O. D. R. Herrero, “Contention resolution diversity

slotted aloha (crdsa): An enhanced random access schemefor satellite access packet

networks,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1408–1419, April 2007.

[64] G. Liva, “Graph-based analysis and optimization of contention resolution diversity slot-

ted aloha,” IEEE Trans. Commun., vol. 59, no. 2, pp. 477–487, February 2011.

[65] E. Paolini, G. Liva, and M. Chiani, “Coded slotted aloha: A graph-based method for

uncoordinated multiple access,” IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6815–6832,

Dec 2015.

[66] E. Sandgren, A. G. i Amat, and F. Brannstrom, “On frame asynchronous coded slotted

aloha: Asymptotic, finite length, and delay analysis,” IEEE Trans. Commun., vol. 65,

no. 2, pp. 691–704, Feb 2017.

[67] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Efficient erasure

correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 569–584, Feb. 2001.

94

[68] J.-F. Cheng and R. J. Mceliece, “Some high-rate near capacity codecs for the Gaussian

channel,” in Proc. of 34th Allerton Conf. on Commun., Control and Comput., 1996, pp.

494–503.

[69] M. G. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of random processes

via and-or tree evaluation,” in Proc. the Ninth Ann. ACM-SIAM Symp. on Discrete

Algorithms, Philadelphia, PA, USA, 1998, pp. 364–373.

[70] K. Vakilinia, T. Y. Chen, S. V. S. Ranganathan, A. R. Williamson, D. Divsalar, and

R. D. Wesel, “Short-blocklength non-binary ldpc codes with feedback-dependent incre-

mental transmissions,” in Proc. 2014 IEEE International Symposium on Information

Theory (ISIT), 2014, pp. 426–430.

[71] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47,

no. 2, pp. 619–637, Feb 2001.

[72] A. Shokrollahi and R. M. Storn, “Design of efficient erasure codes with differential

evolution,” in Differential Evolution: A Practical Approach to Global Optimization.

Berlin, Germany: Springer, 2005, ch. 7, pp. 413–426.

[73] R. L. Smith, “Efficient monte carlo procedures for generating points uniformly dis-

tributed over bounded regions,” Oper. Res., vol. 32, no. 6, pp. 1296–1308, Nov. 1984.

[74] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-

growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan.

2005.

[75] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial selection

for embedded networks,” in Proc. Int. Conf. on Dependable Systems and Networks,

2004, pp. 145–154.

95

[76] “Network node interface for the synchronous digital hierarchy (SDH),” ITU-T Standard

G.707, 2007.

[77] “Transport of SDH elements on PDH networks - frame and multiplexing structures,”

ITU-T Standard G.832, 1998.

[78] “Digital video broadcasting (DVB); second generation framing structure, channel coding

and modulation systems for broadcasting, interactive services, news gathering and other

broadband satellite applications (DVB-S2),” ETSI Standard EN 302 307, 2014.

96

	haobo_dissertation

