

UNIVERSITY OF CALIFORNIA

Los Angeles

Accelerating Applications through Cross-Layer Co-design

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical Engineering

by

Herwin Chan

2007

 ii

 This dissertation of Herwin Chan is approved.

Eli Yablonovitch

William Kaiser

Glenn Reimann

Richard Wesel, Committee Co-Chair

Ingrid Verbauwhede, Committee Co-Chair

University of California, Los Angeles

2007

 iii

Table of Contents

Introduction... 1

1.1 Examples of Interface Overhead... 3

1.2 Performance Components... 6

1.3 The Cross-Layer Co-design Methodology.. 7

1.4 Dissertation Overview .. 10

Interface Between Physical Domains .. 12

2.1. Optical Networks.. 14

2.2. Uncoordinated Multiple Access Code Design.. 19

2.3. Architectural Design... 26

2.4. Electrical / Optical Interfaces.. 38

2.5. Results... 43

2.6. Conclusions... 47

Hardware / Software Interface Exploration... 49

3.1. Interface Overhead.. 50

3.2. Interface Options... 53

 iv

3.3. Interface Mechanics.. 56

3.4. ASIP Case Study... 58

3.5. Conclusions... 68

Accelerating Control and Communications ... 69

4.1. Common Acceleration Techniques... 70

4.2. System Setup... 72

4.3. Case Studies.. 78

4.4. Related Work .. 86

4.5. Conclusions... 88

Localized Security Interface .. 90

5.1. Functional Isolation .. 91

5.2. Hardware Isolation Motivation... 95

5.3. Agent Based Coprocessor ... 97

5.4. System Case Study.. 104

5.5. Conclusions... 127

System Level Security Interface .. 128

6.1. Computer Security .. 128

6.2. Secure Context Switch.. 134

6.3. Implementation... 138

6.4. Results... 144

6.5. Discussion... 146

 v

6.6. Conclusions... 148

Conclusion ... 150

Bibliography .. 153

 vi

List of Figures

Figure 1-1 TCP protocol implementation (a) with traditional architecture (b) with

optimized architecture... 4

Figure 2-1 High level view of demonstration system.. 17

Figure 2-2 The Z-Channel ... 20

Figure 2-3 Basic sub-graph of the trellis diagram ... 23

Figure 2-4 a) Four paths that start on the same state in two trellis sections. b) Four

paths that arrive to the same state in two trellis sections. Branches are labeled with the

input bits that induce traversal of the branch.. 24

Figure 2-5 Bit error rate of NL-TC codes versus the number of users............................ 26

Figure 2-6 Coding implementation dataflow... 27

Figure 2-7 Trellis encoder architecture.. 28

Figure 2-8 Viterbi decoder architecture... 29

Figure 2-9 Calculation of path metric.. 30

Figure 2-10 Block diagram of sorting network.. 32

Figure 2-11 Indexed write-by-row, read-by-column interleaver 35

Figure 2-12 Electrical / optical system architecture .. 38

Figure 2-13 Demonstration setup: laser sources.. 43

Figure 2-14 Demonstration setup: FPGA's and laser modulators................................. 44

Figure 2-15 Demonstration setup: system monitor and measurement.......................... 45

 vii

Figure 3-1 Coprocessor interface options (a) memory mapped, (b) coprocessor port, (c)

special functional unit ... 53

Figure 3-2 Thread manager architecture.. 59

Figure 3-3 ARM assembly code for the memory mapped yield operation.................... 60

Figure 3-4 ARM assembly code for the coprocessor port yield operation..................... 63

Figure 3-5 MADL code to describe resource usage of new instructions....................... 64

Figure 3-6 MADL code to describe resource usage of new instructions....................... 64

Figure 4-1 Base SOC architecture.. 72

Figure 4-2 Design methodology .. 74

Figure 4-3 Control and dataflow architectures for (a) base architecture (b) traditional

coprocessor architecture (c) datapath accelerated coprocessor architecture..................... 75

Figure 4-4 Reference GCD algorithm.. 79

Figure 4-5 Finite state machine for GCD coprocessor ... 80

Figure 4-6 Reference code for matrix multiplication .. 82

Figure 4-7 Scalable coprocessor architecture.. 83

Figure 5-1 Lack of hardware isolation in current architectures..................................... 94

Figure 5-2 Different system architectures: a) simple coprocessor interface, b) streaming

coprocessor interface, and c) hybrid coprocessor interface.. 98

Figure 5-3 Processor - coprocessor interface protocol .. 100

Figure 5-4 Distributed coprocessor architecture.. 102

Figure 5-5 Co-simulation platform.. 106

Figure 5-6 Pseudocode for AES encryption and decryption 110

 viii

Figure 5-7 Instruction format of the AES coprocessor.. 110

Figure 5-8 Architecture of AES multitasking coprocessor... 112

Figure 5-9 Architecture of the AES agent blocks.. 113

Figure 5-10 Pseudocode for the SHA hash algorithms.. 115

Figure 5-11 Instruction format of the SHA coprocessor .. 117

Figure 5-12 Architecture of SHA multitasking coprocessor .. 118

Figure 5-13 Architecture of the SHA agent blocks ... 119

Figure 6-1 Hierarchical versus multilateral architecture .. 130

Figure 6-2 Attack vectors of malicious software.. 134

Figure 6-3 Addition of thread manager and watchdog timer to the datapath............... 139

Figure 6-4 ARM assembly code for the create() operation .. 141

Figure 6-5 ARM assembly code for the yield() operation.. 143

Figure 6-6 ARM assembly code for the retire() operation .. 143

Figure 6-7 Secure embedded system based on ASIP.. 146

 ix

List of Tables

Table 2-1 Size and speed of transmitter and receiver blocks... 37

Table 2-2 System results.. 46

Table 3-1 Thread manager I/O ports.. 62

Table 3-2 Comparison of execution time for thread management operations............... 66

Table 3-3 Comparison of speed and area of interface options....................................... 67

Table 3-4 Comparison of code size for thread management operations........................ 67

Table 4-1 Execution time for GCD implementation options... 80

Table 4-2 Performance speedup for GCD implementation options................................ 81

Table 4-3 Execution time for matrix multiplication implementation options................. 85

Table 4-4 Performance speedup for matrix multiplication implementation options...... 85

Table 5-1 Commands accepted by coprocessor... 101

Table 5-2 Size of software components... 105

Table 5-3 Commands accepted by the AES coprocessor .. 111

Table 5-4 Comparison of SHA-1 and SHA-256 hash algorithms............................... 115

Table 5-5 Commands accepted by the SHA coprocessor... 117

Table 5-6 Size and speed of modules in the AES coprocessor..................................... 120

Table 5-7 Size and speed of the modules in the SHA-1 coprocessor 121

Table 5-8 Size and speed of the modules in the SHA-256 coprocessor 121

Table 5-9 Comparison of overhead for bursty traffic loads... 122

 x

Table 5-10 Comparison of latency for different number of simultaneous streams in AES

... 123

Table 5-11 Comparison of latency for different number of simultaneous streams in

SHA-1... 124

Table 5-12 Comparison of latency for different number of simultaneous streams in

SHA-256... 124

Table 6-1 Comparison of speed and area of datapath modifications............................. 144

Table 6-2 Comparison of execution time for thread management operations............... 145

 xi

Acknowledgments

I look back and am amazed at how I got to this point. It would have been impossible

without the help of so many people. I would especially like to thank:

Ingrid Verbauwhede

Richard Wesel

Patrick Schaumont

 ... for their support and guidance

The members of

EMSEC (embedded security group)

CSL (communication systems laboratory)

 ... for their camaraderie and collaboration

My family

 ... for their emotional support

Kelly Tierney

 ... for the sunshine

 xii

VITA

1975 Born, Vancouver, Canada

1993-1999 B.A.Sc. in Electrical Engineering (Computer Option)
 University of British Columbia
 Vancouver, Canada

1999-2002 IMEC, vzw
 Leuven, Belgium
 Telecommunications Engineer

2002-2004 M.S. in Electrical Engineering
 University of California, Los Angeles
 Los Angeles, California

2002-2007 Graduate Student Researcher

Electrical Engineering Department
University of California, Los Angeles
Los Angeles, California

PUBLICATIONS AND PRESENTATIONS

Y.K. Lee, H. Chan and I. Verbauwhede , “Design Methodology for Throughput Optimum
Architectures of Hash Algorithms of the MD4-class ," Journal of VLSI Signal
Processing Systems, (accepted).

Y.K. Lee, H. Chan and I. Verbauwhede, "Iteration Bound Analysis and Throughput
Optimum Architecture of SHA-256 (384,512) for Hardware Implementations ,"
The 8th International Workshop in Information Security Applications, August 17-
19, 2007.

H. Chan, M. Griot, A. Vila Casado, R. Wesel, and I. Verbauwhede, "High Speed Channel
Coding Architectures for the Uncoordinated OR Channel," IEEE 17th
INTERNATIONAL CONFERENCE ON Application-specific Systems,

 xiii

Architectures and Processors (ASAP), Steamboat Springs, Colorado, September
2006.

Y.K. Lee, H. Chan and I. Verbauwhede, "Throughput Optimized SHA-1 Architecture
Using Unfolding Transformation," IEEE 17th INTERNATIONAL
CONFERENCE ON Application-specific Systems, Architectures and Processors
(ASAP), pp.354-359, Steamboat Springs, Colorado, September 2006.

M. Griot, A. Vila Casado, W.Y.Weng, H. Chan, J. Basak, R. Wesel, "Trellis Codes with
Low Ones Density for the OR Multiple Access Channel," IEEE International
Symposium on Information Theory (ISIT06), pp.1817-1821, July 2006.

H. Chan, P. Schaumont, and I. Verbauwhede, "Process Isolation for Reconfigurable
Hardware," 2006 International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA06) (Distinguished Paper), pp. 164-170, June
2006.

M. Griot, A. Vila Casado, W.Y. Weng, H. Chan, J. Basak, E. Yablanovitch, I.
Verbauwhede, B. Jalali, R. Wesel, "Interleaver-Division Multiple Access on the
OR Channel," Information Theory and Applications Workshop (Invited Paper),
San Diego, February 2006.

H. Chan, P. Schaumont, and I. Verbauwhede, "A Secure Multithreaded Coprocessor
Interface," 3rd Workshop on Optimizations for DSP and Embedded Systems,
March 2005.

H. Chan, A. Hodjat, J. Shi, R. Wesel, and I. Verbauwhede, "Streaming encryption for a
secure wavelength and time domain hopped optical network," IEEE International
Conference on Information Technology (ITCC 2004), pp. 578-582, April 2004.

H. Chan, A. Hodjat, J. Shi, R. Wesel and I. Verbauwhede, "Streaming Encryption for a
Secure Wavelength and Time Domain Hopped Optical Network", Embedded
Cryptographic Hardware (N. Nedjah and L. Mourelle, editors). Nova Science
Publishers, Chapter 14, pp. 241-251, 2004.

 xiv

ABSTRACT OF THE DISSERTATION

Accelerating Applications through Cross-Layer Co-design

By

Herwin Chan

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2007

Professor Richard Wesel, Co-Chair

Professor Ingrid Verbauwhede, Co-Chair

In embedded system design, an application is usually broken up into independent

blocks so that their implementation can be performed in parallel. The definition of the

interfaces between these blocks ensure that they can be recombined together to produce a

functional system. However, the presence of many interfaces incurs significant overhead

that greatly reduces the performance of a system.

In this dissertation, a cross-layer co-design methodology is presented which

produces high performance embedded systems by concentrating on the reduction of

interface overheads. The main steps in the process include removal of intermediate

 xv

interfaces, optimizing the application algorithm to minimize the use of interfaces, and

finally, accelerating the performance of the interfaces themselves.

In addition to the research contribution of a design methodology, implementations

of a wide range of embedded systems which vary in both size and application domains in

presented. These implementations illustrate both the validity of the methodology and

demonstrate how the process can be applied to systems that span physical domains,

hardware/software domains, and security domains.

 1

Chapter 1

Introduction

In embedded systems, the performance of a single application or function is often

a critical factor to its success. The traditional design process, however, does not reflect

the importance of this design goal. It first focuses on the implementation of a

functionally correct system, then through profiling accelerates the application through

acceleration of its component blocks.

To quickly implement an algorithm, the design is broken up into several different

implementation blocks which allow different designers to work on them independently.

The interface ensures that the different structures are able to interact well with each other

and produce a functional system. Blocks on the same abstraction layer use the interface

to synchronize parallel computations. Interfaces between different levels serve to

abstract lower level structures so that they can be easily used by higher level blocks.

These compositional properties are very useful in the building of functional systems;

however, the interface between each layer of abstraction introduces significant

performance overheads.

 2

Indeed all the different layers of abstraction and different interfaces are very

important in general computing systems that must be highly adaptable and perform many

different functions. In a processor based embedded system, the operating system

provides application software a system call interface to common system services such as

reading and writing to files and outputting data to the screen. Drivers allow software to

access peripherals without having to worry about the details of the underlying signaling

protocol. In communication systems, the media access control (MAC) layer abstracts

away the details of securing a communication channel so that a higher layer block can

transmit its message. However, for embedded systems, the significant interface

overheads between blocks can lead to expensive products or the sacrifice of important

features.

The overhead of an interface is taken up by two main tasks: the packaging and

sending of data and the synchronization between the two communicating components. In

a software system running on UNIX, sockets are commonly used for two processes to

communicate with each other; the synchronization time is taken up by the setup of a

socket connection and communication time is taken up by the time it takes for data to

travel through the established connection. In hardware, synchronization costs are often in

the form of a handshaking protocol and communication speed is limited by the bit-width

of the data ports. In the networking context, synchronization time includes the time it

takes to gain access to the communication channel. In a TDMA system, this is

determined by the time slot allocation algorithm. In an Ethernet system using the

CSMA/CD protocol, this is a function of the current network load.

 3

In this dissertation, a (holistic) cross-layer design methodology is presented which

produces high performance embedded systems by concentrating on the reduction of

interface overheads. In contrast to methods that reduce the time taken in the processing

of a specific interface, the methodology presented also takes into consideration the

removal of intermediate interfaces and the optimization of algorithms to minimize the use

of the remaining interfaces.

This strategy is shown to be applicable to a wide range of embedded systems

which vary in size and application domains. In addition to interfaces between different

abstraction layers, this dissertation focuses on interfaces between different heterogeneous

technologies, components and information types.

1.1 Examples of Interface Overhead

Interface inefficiencies account for a significant percentage of time spent on a

calculation even in embedded systems. In [1], the authors explored performance

optimization of the AES function in the Java cryptographic library. In this exercise, the

Java API must be maintained in order to support legacy software which uses the library.

Compared to the initial software only execution time of 198741 cycles, the hardware

accelerated coprocessor version showed an order of magnitude improvement (19198

cycles). However, on further examination of the results, it was discovered that 18939 of

those cycles were spent just passing data through the Java environment to the coprocessor.

 4

In other words, performance improvements of three orders of magnitude can be achieved

if interface overhead can be eliminated.

The implementation of TCP is an example of a widely used system where the

majority of the time is lost on intermediate interfaces. In [2], a detailed performance

profiling of the Linux-2.4 TCP stack is performed. The architecture of this

implementation is shown in Figure 1-1(a). The results show that actual protocol

processing only accounts for 10-15% of the actual execution time. Techniques such as

zero-copy networking, checksum offloading and interrupt coalescing [3] are popular

techniques and have been shown to double the performance of systems when used in

combination.

These techniques focus on acceleration individual processing steps and do not

remove intermediate interfaces which still make up the majority of execution times.

Figure 1-1 TCP protocol implementation (a) with traditional architecture (b) with
optimized architecture

User mode

Kernel mode

Application App. buffer

User
socket library

Kernel sockets

TCP/IP stack

HW device driver

Network interface hardware

Send
buffer

receive
buffer

User mode

Kernel mode

Application App. buffer

Network interface hardware

HW device driver

TCP/IP stack RDMA

(a) (b)

 5

More than 50% of time is spent in the operating system performing interrupt handling,

context switching, and system calls. More than 30% is spent on copying data from one

memory location to another.

The profiling study implied that TCP performance can be improved by orders of

magnitude if its processing can be consolidated into a single environment (such as

specialized hardware) where the intermediate interfaces can be removed. Removing

interfaces is difficult since the operating system is responsible for sorting and distribution

of packets to the different applications; operating systems are full of internal interfaces.

Remote direct memory access (RDMA) technology provided a solution to this problem in

2000 [4] by introducing a method which allows the sender to specify to the receiver the

memory location to store the data. Thus TCP processing can be accelerated by 1) the

removal of intermediate interfaces and 2) simplification of the application level interface

through RDMA technology. The resulting implementation architecture is shown in

Figure 1-1(b).

The process of TCP offloading echoes the main steps of the cross-layer design

methodology proposed in this dissertation. First, the different parts of the algorithm are

collected into a single implementation domain where intermediate interfaces are removed.

The algorithm itself can then be optimized; optimization may even involve the design and

implementation of a new algorithm that performs the same functionality more efficiently.

Finally the application interface is simplified and optimized by separating the control and

dataflow components.

 6

1.2 Performance Components

To better understand how the algorithm can be optimized under the cross-layer

co-design methodology, the time spend on all applications can be broken up into three

generic performance components and analyzed. The three components are: control,

computation and communications. Each of the design steps presented, focus on the

reduction of the time spend on these components.

The control element determines the manner in which data is transferred between

domains in a system. In a multitasking system, the portions of the operating system that

manages the scheduling of tasks and performs context switches all reduce performance.

In a software context switch, this is made up of the time it takes to save the context

information of the current process and load the context information of the new processes.

In the context of hardware, control overheads include the time spent performing

handshaking between IP blocks, performing bus arbitration and synchronization. In a

larger scale of networks such as TDMA and CDMA, control overheads include tasks

such as clock synchronization, network coordination and media access control.

It is the nature of interfaces to allow data to flow between two different domains.

However, each additional interface must inevitably require some performance overhead

to manage this transfer of data. The removal of intermediate interfaces, therefore, also

removes the control overheads due to each of the interfaces.

The computation element represents the series of operations that must be

performed to produce the desired behavior in a system. The execution time of systems

 7

can be improved through modifications to the algorithms or implementation in different

technologies. In data intensive applications, transformations of the algorithm for better

data locality have been proven to vastly improve performance because unnecessary

memory transfers are eliminated. In the context of interfaces, reducing intermediate

interface boundaries exposes the algorithm to more of these optimization opportunities.

The communications element represents the time it takes to transfer data between

different domains. When intermediate interfaces are removed, the communications

between different domains are also removed. While this in itself can improve

performance, there still exists at least one interface (to the user application) that cannot be

removed. Performance can still be improved by optimizing the algorithm to require less

communications or by acceleration of the communication mechanism.

1.3 The Cross-Layer Co-design Methodology

1.3.1 Minimize Interfaces

Once a task or application has been identified for acceleration, the first step is to

minimize all the intermediate interfaces in the algorithm; the overhead due to interfaces

are reduced if no interfaces exist. While the ideal case is for the application to be

implemented without any interfaces, in most systems there exist some interfaces that are

either impossible to remove or are very difficult to remove.

 8

Interfaces that are impossible to remove include the physical interface, the

application interface, and security interface. All these interfaces must exist since they are

defined by the application itself. In an optical communications system, electronic data in

the system must eventually be transferred in the optical domain. If a task or function is

shared among several applications, then an interface must exist for the applications to

access the accelerated services. In contrast, if data must not be shared among

applications, a security interface must exist to prevent data from being transferred

between two domains.

The interface between proprietary IP blocks in a system is a common example of

an interface that is very difficult to remove. Companies depend on the implementation

details of their design to survive and will not part with this information easily. An

interface can also keep two complex blocks separated. Removing this interface can lead

to a system that is too complex to analyze and optimize.

1.3.2 Optimize Algorithm

Once interfaces have been removed from the design, optimization to the algorithm

itself is performed. Optimization techniques are very domain dependent. Classical

software optimization strategies include transforming the algorithm to reduce the amount

of executed instructions, memory access, and branch instructions. In the hardware

domain, the algorithm can be accelerated by taking advantage of fast circuit technologies,

and application specific architectures that take advantage of specialized functional units,

pipelining, and parallel execution.

 9

With a view towards reduction of interfaces, the optimization of an algorithm

includes the possibility of a using a new algorithm that performs the same functions as

the initial one but more efficiently. A solution obtained through this method, if available,

is inherently easier to accelerate.

1.3.3 Optimize Interfaces

After the previous step, the remaining interfaces in the system are either

impossible to remove or very difficult to remove. They can, however, still be accelerated

to improve application performance.

The acceleration of the interface can be accomplished through implementation of

new technologies. For example, DMA improves the interfaces between memory and a

coprocessor in a SOC system. Widening the bus width of the system also improves

interface performance by allowing larger amounts of data to be transferred each clock

cycle.

A complimentary method of accelerating the interface processing is through the

redefinition of the interface itself. For example, in an interface with a network protocol

stack, header information is usually required by the interface for each packet to be sent.

An improvement would be to only require header information to be given once per

connection (which may span many packets of data).

 10

1.4 Dissertation Overview

Chapter 2 describes the process used to design an optical network and illustrates

how the methodology is used in large systems that span multiple physical domains. The

development of an uncoordinated optical network was motivated by the observation that

coordinated networks incur significant interface overheads in trying to maintain

synchronization. An efficient implementation of such a system can be built by 1)

removal of intermediate interfaces and 2) consolidating the channel code processing to a

single domain. This strategy produced very low overheads between the physical domains

and also enabled the development of fast and efficient channel codes in the hardware

domain.

In the SOC context, hardware implementation of algorithms in coprocessors is a

popular and easy way to improve performance by accelerating the computation element.

Thus it is a good strategy to consolidate as much of the operation in hardware as possible

to reduce intermediate interface overheads. Even with extensive consolidation, there

remains, however, the final interface to the user. In Chapter 3, common processor -

coprocessor interface options were studied to determine their relative merits. The

overhead of the interface is from the combination of the control and communications

elements. In Chapter 4, a methodology to separate these two elements and optimize them

separately is presented.

Regular interfaces are designed to facilitate the efficient transfer of data between

different domains. In contrast, security interfaces are designed to regulate and restrict the

 11

transfer of data. While these two types of interfaces represent conflicting purposes,

Chapter 5 demonstrates how the design methodology can be used to build an efficient

coprocessor that provides isolation services to the application processes that use it. The

strategy of consolidating isolation services in hardware then providing a simple but

restricted interface to user processes is also used to develop a new secure processor

architecture in Chapter 6.

 12

Chapter 2

Interface Between Physical Domains

Optical networks provide the backbone of a large percentage of the internet.

Their main benefit is high throughput and low signal degradation. However, even with

these attractive properties and the consumer’s insatiable demand for more bandwidth and

higher throughputs, the technology that makes up the internet is not used in local area

networks (LAN).

The main reason for this is complexity and inefficiency of traditional optical

networking technologies. WDMA and TDMA systems are able to transmit at near 100%

optical capacities but require many resources to maintain coordination among all the

nodes in the system. In TDMA, all nodes in the system must be synchronized to a base

time and a central control distributes time slots to the nodes in the system.

Such a system incurs considerable costs; even before data is transmitted, a node

must allocate resources to be connected and synchronized with the network. The

overhead includes functions to synchronize all the nodes in the system as well as the

 13

implementation of the central control which monitors the network and arbitrates all

network accesses. For the nodes in the network, overheads for transmitting a message

include requesting of network resources so that messages can be exchanged, waiting for

resource allocation and the partitioning of messages into multiple packets to fit time slot

requirements.

Such complexities increase the interface inefficiency and have contributed to the

unpopularity of optical networks in the local area network domain. Traditional Ethernet

is the protocol of choice in this domain due to its simple interface and uncoordinated

control scheme. Nodes on the network can be added and removed from the network

dynamically without disruption of network communications. In addition, there is no

explicit coordination between the nodes. When a certain node wants to transmit data, it

merely starts to transmit and the protocol determines what to do when a collision occurs.

The price that is paid for the simple interface design is that collisions start to dominate in

highly loaded networks and bandwidth becomes highly degraded as a result [5][6].

It should be noted that though Ethernet technology has been adapted to be used in

high speed and optical networks (standards are being developed up to 100Gbps), the

uncoordinated feature has been removed along the way. The protocol has given up the

CSMA/CD property which is responsible for detecting and dealing with collisions.

The task, therefore, is to develop an uncoordinated optical network scheme which

is able to combine the easy interface properties of traditional Ethernet with the high

bandwidth/throughput properties of optical networks in the LAN context. Such a system

involves system co-design between three separate physical domains (the optical,

 14

electrical, and logical); the design of the two physical interfaces at the boundary of these

domains must be carefully considered.

To build an efficient interface, major processing functions are first consolidated to

a single domain. Because of the complexities of the algorithms required for

uncoordinated access, processing was consolidated to the logical domain; thus, the

electrical and optical systems and the interface between them can be kept simple.

In this chapter, the uncoordinated multiple access problem is explained in detail.

To implement an efficient system, the protocol processing is consolidated in the logical

domain. Once the problem is bound to a single domain, the algorithms were designed

taking into consideration the design parameters of high optical throughput and

architectural limitations. Validation of the methodology and design was performed by

implementing the algorithms on FPGAs and interfacing it to an optical network.

2.1. Optical Networks

Optical communications have been becoming more and more important with the

ever-increasing demands for bandwidth. Fiber optic technology has been demonstrated

for speeds up to hundreds of gigabits per second because of its low loss and low

dispersion over extended bandwidths. These properties of optical technology have been

well utilized to form the backbone of global networks such as the internet and telephone

networks. Communications among the optical transmission stations approach 100%

efficiency (requiring no redundancy for error correction) by means of WDMA and

 15

TDMA techniques. This has been possible at the cost of maintaining coordination

between the different transmitting nodes.

In the local area network domain, optical networks have had limited success.

Though the optical token ring (FDDI) network promises higher bandwidth [7], Ethernet

networks are significantly more popular. This success is due to the ease in which a

network can be set up. Nodes on the network can be added and removed from the

network dynamically without disruption of network communications. In addition, there

is no coordination between the nodes. When a certain node wants to transmit data, it

merely starts to transmit and the protocol determines what to do when a collision occurs.

This need not be the case. In the CANbus network [8], collisions between data

from several transmitters are used to determine the priority of the messages. By

monitoring the aggregate signal of all the transmitters, a transmitter can determine

whether there is a transmitter of higher priority. If this is the case, it would abort its own

transmission. High priority transmissions have higher number of dominant bits (bits

whose value cannot be over-written) in its header; if a dominant bit is detected by a

transmitter that is transmitting a non-dominant bit, then it knows that it is colliding with a

high priority transmission. Though CANbus only allows collisions in the header of a

data transmission to determine priority, it illustrates that data can be transmitted in the

OR channel even when collisions occur.

An OR channel is a channel that behaves like an N-input OR gate, where N is the

number of nodes transmitting simultaneously. Assuming on-off keying, if any node

transmits a '1' data bit, all the receivers will see a '1' bit in the channel. If all nodes

 16

transmit a '0' bit, then the receivers will see a '0' in the channel. In the CANbus network,

the '1' bit is called the dominant bit since its value hides the presence of any '0' bits. A

passive optical star network can also be used as an OR channel. Physically, the dominant

'1' bit is represented by the presence of light and the '0' bit is presented by the absence of

light.

Though there are efforts to implement Ethernet on optical networks, aggregate

throughput performance is fundamentally limited by collision of data [9]. The desirable

properties of Ethernet are demonstrated by marrying the high-bandwidth properties of

optical networks with the flexibility of Ethernet. Collisions are avoided by careful design

of channel codes. The uncoordinated multiple access properties will be provided by a set

of novel channel codes, which guarantee that data can be decoded at optical bit error rates

i.e. BER<10e-9. This bit error rate performance will be maintained even in the presence

of other transmissions (interference). 30% efficiency was achieved by treating the

interference users as noise. Theoretically, up to 70% efficiency can be achieved in such a

channel. In [10] nonlinear turbo codes which provide a BER of 1e-7 at 60% efficiency

has been proposed. However, these codes require block-lengths in the order of thousands,

which increases latency, and require an iterative decoding is much more costly to

implement and cannot achieve optical data rate using current technology.

2.1.1 Demonstrator Design

 17

The process of building a high performance system through multiple

technological domains is described in this chapter for the case of a novel optical network.

The result is a working demonstrator that meets the system requirements and validates

the design approach. To demonstrate uncoordinated multiple access optical networking,

the system comprises of six nodes simultaneously transmitting into an optical channel. A

receiver node takes the aggregate signal and decodes a single user. Figure 2-1 shows the

system block diagram of the system. Each transmitting node is comprised of an FPGA,

which codes the data; a laser, which provides the carrier for the coded data; and a

modulator, which combines the two together and puts the data on the channel.

Figure 2-1 High level view of demonstration system

Tx-2 Tx-6Tx-1 Rx

retime

thresholding

Lightwave
detector

laser modulator

amplifier

laser modulator

amplifier

laser modulator

amplifier

…

Optical coupler

Bit Error Rate
Testing
Error Analysis

High
Speed
Electronic
System

Optical
System

Logical System

 18

Successful transmission and decoding of data from six users on a single optically

coupled network verifies the correct functionality of the design. The channel bit rate of 2

Gbps is divided among the 6 nodes using novel channel coding techniques. This will

give an un-coded useful data bandwidth of 93 Mbps for each node. The channel

bandwidth is guaranteed for each node; in Ethernet technologies, useful bandwidth

experienced by each node are not guaranteed and depends on the traffic characteristics of

the other nodes in the system.

Though the system was built with commercial off the shelf components, the

design involves co-design between several design domains. The decision to implement

the channel codes on a Virtex II Pro FPGA platform allows hardware speeds to be

achieved while maintaining a programmable platform. In addition to this, this platform

allows us to accurately predict the performance and cost of such a network in the future

when ASICs are used. The choice of platform in the logical domain, simplifies the

design of the interfaces in both the electrical and optical domains.

The Virtex II Pro FPGA board contains several high speed serial transceivers.

They were independently measured to be able to support a channel rate of 2 Gbps. The

electrical/optical system was built in order to support this rate.

The main design goal for channel coding is to find the highest rate code that is

able to provide <10e-9 BER. Experience has shown to us that for complex FPGA

designs, useful work take between 5ns to 10ns to compute; this translates to a 100 MHz

to 200 MHz clock. In order to process the 2 Gbps, the coding algorithm will need to

 19

support a parallelization factor of at least 10 to 20. Also because of the large throughput

requirements, powerful iterative coding algorithms may not be used.

2.2. Uncoordinated Multiple Access Code Design

In this section, the optical channel model used in this work and the high-level

system design techniques used to provide uncoordinated multiple access to optical

channels is briefly described. For further details on the theoretical aspects of the

approach presented in this chapter, the reader should look at [11].

A simple communications model that can describe the multiple-user optical

channel with non-coherent combining is the OR multiple access channel (OR-MAC). In

this channel, if all users transmit a zero, then the channel output is a zero. However, if

even one user transmits a one, then the channel output is a one.

Information theory tells us that the maximum sum-rate (the sum of the rates of all

the transmitters in the system) of the OR channel is 1 information bit per received data bit.

For uncoordinated multiple-access, Interleaver-Division Multiple-Access (IDMA)

[12][13] is a promising approach which has been successfully applied to general MACs.

With IDMA, every user has the same channel code, but each user's code bits are

permuted using a unique randomly drawn interleaver. The receiver is assumed to know

the interleaver of the desired users, and performs joint iterative decoding of all the users

data. However, under current technology, this decoding technique produces prohibitively

large designs for optical speeds with today’s technology.

 20

Hence, for a simple uncoordinated access decoder, other users must be treated as

noise. From a single-user perspective, this transforms the OR channel into the Z-Channel

shown in Figure 2-2. In this channel, when a particular user transmits a 1, a 1 is received.

When this user transmits a 0, a 1 can be received with probability equal to the probability

that any of the users transmits a 1.

Treating other users as noise, a channel sum-rate of ln(2)~70% can theoretically

be achieved for any number of users. Thus, while dramatically decreasing the decoding

complexity, only 30% of the channel sum-rate would be lost with the use of capacity

achieving codes.

For the IDMA-based architecture presented above, what is left is to design

appropriate channel codes for the Z-Channel. In order to achieve the maximum

symmetric sum-rate where each user sees a Z-channel, the channel code must produce in

its output a particular average density of ones p1 which depends on the number of users N

as:
N

p opt)2ln(
1 ≈ .

Figure 2-2 The Z-Channel

 21

Linear codes produce an average ones density of 1/2, which would lead to an

unacceptable sum-rate. For example, for 6 users the maximum achievable sum-rate using

linear codes is less than 10%, and for 10 users it is less than 1%. Hence, non-linear codes

that produce the proper ones density are required for this application.

The channel code used in this work is a Non-Linear Trellis Code (NL-TC) code.

This novel code provides the appropriate information rate and density of ones. A Viterbi

decoder allows a simple and fast decoding of NL-TC. A brief description of the design

of these codes is presented in the following subsections.

2.2.1. Directional Hamming Distance

Regular convolutional codes are designed so that the Hamming distance between

codewords is maximized. Hamming distance is the number of bits that differ between the

codewords. This distance is directly associated with the number of errors such a code can

decode. In the Z-Channel, a transmitted 1 will always induce a received 1. Thus, to make

a decoding error, the decoder must see ones in all the bit positions where the incorrect

codeword has ones. This implies that a new definition of distance is required. Let us

define the directional Hamming distance dD(c1,c2) the number of positions at which the

codeword c1 has a 0 and the codeword c2 has a 1. Note that dD(c1,c2) is not necessarily

equal to dD(c2,c1).

Given that the purpose of the design is to maximize this directional distance, the

safest definition of distance between branches would be

di,j = min[dD(ci,cj), dD(cj,ci)] ,

 22

which is the ‘greedy’ branch-wise metric that will be maximized in the design.

By taking the minimum between the two directional distances as the metric to maximize,

we seek to maximize the minimum directional distance dmin between all codewords, albeit

in a greedy fashion.

With this branch-wise metric, codewords with equal Hamming weights produce a

larger dmin than codewords with different Hamming weights, so output values are

assigned to the trellis branches with as similar Hamming weight as possible, preferably

equal.

2.2.2. Non-Linear Trellis Code Design

A conventional feed-forward trellis encoder is used in order to determine the

branches of the trellis, as shown in Figure 2-3. It is a rate-1/n, 2v-state trellis code, with

one input bit per trellis branch. However, instead of using generator polynomials to

compute the output of each branch as is typically done, a non-linear table-lookup directly

assigns the output values.

The trellis code design consists of assigning output values to the branches of the

trellis code. Those outputs have to maintain the desired average density of ones p1. The

goal is to maximize the minimum directional distance dmin using the greedy pair wise

metric.

 23

Figure 2-3 Basic sub-graph of the trellis diagram

The first step in the design is to assign the Hamming weight of each branch

(number of ones), so that the optimal average ones density is satisfied as closely as

possible. What is left is to assign the position of those ones in each of the outputs.

An extension of Ungerboeck's rules [10][11] in the context of the pair wise metric

can be applied. Ungerboeck’s rule [14] is based on the fact that every incorrect codeword,

in its trellis representation, departs from the correct state (split) at some trellis section and

returns to the correct state (merge) at least once. Ungerboeck's rule consists on

maximizing the distance between branches splitting from a state (splits) and branches

merging to a same state (merges).

One can extend Ungerboeck's rule more deeply into the trellis, and maximize not

only the distance between splits, and the distance between merges, but the distance

between the 4 branches coming from a split in the previous trellis section, or the 8

branches coming from a split two sections before, and so on (see Figure 2-4). One can do

the same with the merges moving backwards in the trellis. Notice that by maximizing the

Xv-2 …. X01

Xv-2 …. X00 Xv-2 …. X0 0

Xv-2 …. X0 11

0

1

0

 24

distance between the 8 branches coming from a split two sections before, the distance

between all 4 branches coming from a split a trellis section before and all splits are

maximized as well. The same design strategy is used to maximize the distance between

merges.

Using the above design strategy, three candidate codes were design with coding

rates of 1/17, 1/18, and 1/20. Figure 2-5 shows the candidate codes in a Matlab

simulation of BER versus the number of simultaneous users in the system. The achieved

BER is in the order 1e-5 which is considerably above the target BER 1e-9. However, this

can be solved by using a Reed-Solomon code as an outer-code as will be explained in

Section 2.2.3. The 1/20 code was chosen for the system for practical reasons. Though the

1/17 and 1/18 codes may achieve the required BER, the high speed serial transceiver has

a 20 bit interface and is, therefore, easier to connect with a 1/20 code. The other codes

Figure 2-4 a) Four paths that start on the same state in two trellis sections. b)
Four paths that arrive to the same state in two trellis sections. Branches are labeled

with the input bits that induce traversal of the branch

0

0

01

1

1

1

1

1

1

0

0

(a) (b)

 25

require extra interface hardware to be built and may add to the complexity of the design

and decrease throughput.

2.2.3. Block Code with NL-TC

Optical systems typically deliver a very low BER. In order to maintain this BER,

the rate of the NL-TC channel code would have to be very low. A better solution is

found taking into account the distribution of the erred bits in a transmitted stream after

the NL-TC decoding. Thus, a high rate block code that can correct few symbol errors can

be attached as an outer code, dramatically lowering the BER.

A concatenation of the rate-1/20 NL-TCM code with a (255 bytes, 237 bytes)

Reed-Solomon code has been tested for the 6-user OR-MAC scenario. The rate of this

code is (237/255)×(1/20) = 0.0465. The simulated BER is 2.5e-10. For six users, the

sum-rate is 6×0.0465 = 0.279.

 26

Figure 2-5 Bit error rate of NL-TC codes versus the number of users

2.3. Architectural Design

New and novel codes were designed to meet the high throughput specifications by

the adaptation of simple non-iterative codes. It is, however, the implementation of these

codes in hardware that ultimately determines the actual throughputs achievable by the

system. The coding algorithms were implemented on the Xilinx Virtex II-Pro FPGA

[15]. In particular, a rate-1/20 64-state NL-TC was implemented, intended for 6-user

multiple access to the OR channel. The implementation dataflow block diagram is shown

in Figure 2-6. Data to be transmitted is first encoded with a Reed Solomon block code.

The output bits of this block are encoded with the trellis code and then passed on to the

interleaver. Finally, the resulting bits are sent to the high speed serial transceiver (Rocket

4 5 6 7 8

10
−6

10
−5

10
−4

10
−3

users

B
E

R

NL−TCM 1/17
NL−TCM 1/18
NL−TCM 1/20

 27

I/O) to be sent off-chip. The chosen rate 1/20 trellis code together with IDMA provide

the uncoordinated access properties of the system and are able to bring the bit error rate

(BER) to about 1e-5 for six users. The outer Reed Solomon block code further decreases

the BER to below 1e-9.

All the nodes of the system use the same code, but the IDMA interleavers are

used to ensure that the coded bit patterns do not look the same in the optical channel.

Finally, the Reed-Solomon block code is used to further reduce the BER to less than 1e-9.

In addition to these blocks, synchronization blocks ensure that the received bits are

aligned properly so that decoding can be performed correctly.

During code design, the interference signal was assumed to have a random

Figure 2-6 Coding implementation dataflow

Reed Solomon
(255, 237)

Trellis Code
1/20

intsync

Reed Solomon
(255, 237)

Trellis Code
1/20

int

sync

Bit
align

Large feedback loop
for rx synchronization

Uncoordinated
access

Node
differentiation

Reduce BER
<1e-9

High
Speed
Serial

Transceiver
(Rocket I/O)

 28

uniform distribution; therefore interleavers are used after channel coding to randomize

the position of the code bits. This combination allows us to recover data at a BER of 1e-

5. A Reed Solomon block code is added at the back end to reduce the BER further to 1e-

9. Since the target physical layer is the optical channel, data throughput is the main

design criterion. The Viterbi decoder and interleaver blocks have been identified as the

bottlenecks of the system and novel architectures are developed to mitigate their effects.

2.3.1. Trellis Encoder

To protect data in the OR channel, the NL-TCM code uses 20-bit codewords and

contains 64 states. Figure 2-7 shows the architecture of the trellis encoder. The design of

the encoder consists of a 5 bit shift register used to address memories that outputs two of

the 128 possible codewords. The latest input bit is used to select the desired codeword.

Each clock cycle a new data bit is shifted into the register and a new 20 bit codeword is

produced. Unlike common binary encoders, the designed trellis code has a relatively low

ones density, much less than the usual 50%.

Figure 2-7 Trellis encoder architecture

64 x 20 bit ROM

64 x 20 bit ROM

addr

addr

data

data

20

Output
codeword

Input
data bit

5

 29

2.3.2. Viterbi Decoder

In DSP implementations, the Viterbi decoder focused on the acceleration of a

single branch metric calculation and careful memory management for storing the results.

This means for decoding a single code word, several clock cycles (depending on the

number of states in the trellis code) are needed. Hardware architectures such as those

proposed by Zhu and Benaissa [16] and Guo et al. [17] have focused on area efficient

architectures. For common wireless applications, such as 802.11b and 802.16a, Abdul

Shakoor et al. [18] describe a fast parallel hardware implementation that decodes at

160Mbps on a FPGA.

Figure 2-8 Viterbi decoder architecture

dist

dist
cmp+

sel

dist

dist
cmp+

sel

dist

dist

…

Shf reg

Path Metric

Path

Sorting
Network

Received codeword

Minimum
path
metric

-

 30

For the non-linear trellis code that uses 20-bit codewords and contains 64 states, a

trace back length of 35 is used in the Viterbi decoder. The technique used to design the

decoder is to parallelize and pipeline all operations as much as possible. Care was taken

to find structures where feedback paths are as short as possible. The overall architecture

of the Viterbi decoder is shown in Figure 2-8.

The Viterbi decoder can be divided into several different stages, each of these

stages will be discussed individually in detail:

• calculation of metric

• accumulation and selection of metric

• finding of minimum path

• subtraction of accumulated result

Figure 2-9 Calculation of path metric

input code

input • code or

sum

<

Input
codeword

State
distance

’20’

20 20

20

5

10

10

10

5

 31

Because the Viterbi decoder is being designed for the OR channel, the branch

metric used is different from traditional designs. In an OR channel, it is impossible to

receive a 0 bit when a 1 bit has been transmitted by any of the nodes. Because of this, in

the comparison between the received codeword and branch codeword, if any of the

received bits is 0 when a 1 is expected the branch metric is set to a maximum value of 20.

Errors in which a 1 is received when a 0 is expected are summed together to give the

branch metric in the normal case. The logic used to implement this function is shown in

Figure 2-9. In the 64 state codes, 128 branch metrics are calculated in parallel; the logic

used to calculate this function constitutes one stage in the decoder pipeline.

There are two possible branches that lead to each of the 64 state nodes. The path

with the smallest path metric (which is an accumulation of past branch metrics) is chosen

as the most likely path that was taken to reach the node. Path metric calculation is

performed by adding the path metric of the source nodes to their respective branch

metrics. The two sums are then compared and the path with the lowest metric is selected.

Sixty-four of these calculations are performed in parallel and constitutes a single stage in

the pipeline. Further pipelining of this stage is impossible since the calculation of the

path metric involves a feedback path from previous path metric calculations. Figure 2-9

shows the implementation of this function.

The most likely bit that was transmitted is the bit at the head of the path with the

lowest path metric. At each cycle, 64 path metrics are calculated and their respective

paths are accumulated. A sorting network is used to select the path with the smallest

accumulated metric. A minimum time sorting network based on Batcher’s odd-even

 32

merging algorithm [19] is used. This is a recursive algorithm that sorts a group of

unordered numbers (Figure 2-10) and contains the following three steps:

• Divide the numbers in to two groups

• Sort the two groups of numbers separately

• odd-even merge the two groups of numbers.

Since it is a recursive algorithm, the basic operation is a sorting of two numbers.

This is implemented with a two input comparator. The odd-even merge procedure which

combines two sets of sorted numbers into a single set is also recursive and based on the

use of two input comparators.

For the sorting of n numbers, the number of comparators grows in)log(2nnO .

The delay through the network is ��
�

�
��
�

� +
2

log1 n
. For the designed system of 64 states, this

translates to 543 comparators with a delay of 21 comparators. However, since there are

Figure 2-10 Block diagram of sorting network

64 numbers
unsorted

64 numbers
sorted

Odd-even merge

1+ceil(log232)

Sort 32 numbers 32
sorted

32
sorted

32
unsorted

32
unsorted

Merge
16

Sort 16

Sort 16

 33

no feedback paths in the sorting algorithm, the architecture can be fully pipelined to

achieve very fast throughputs.

 The minimum path metric is fed back to the Viterbi decoder and subtracted from

all 64 accumulated path metrics. This is to ensure that the register values do not overflow.

The sorting network used to find the minimum path is heavily pipelined, so the value

used is several cycles behind the values that are currently calculated. This delay in the

results translates to larger possible accumulated path metric values which may necessitate

the use of larger operators (like adders); this increases the delay of the calculation.

Therefore, care was taken to pipeline the sorting network only to the degree that is

necessary to avoid unnecessary increases in hardware and possible increases in critical

path delays. The sorting network in the design is pipelined to have 6 cycles of latency.

2.3.3. Interleaver

Interleavers, which permute the order of data bits, are commonly used to

randomize the data stream and improve the performance of error correcting codes.

However, in the designed system, each transmitter uses a unique interleaver pattern. This

pattern is chosen from a set of patterns determined at design time to have good cross

correlation properties. The role of the interleaver in the system is similar to its role in an

IDMA system described by Ping et al. [13]. In that system, interleavers are used to

distinguish nodes in a wireless CDMA system and increase channel capacity. The

interleaver design, therefore, must be flexible enough to accommodate a family of

permutation sequences that work well together. Interleaver design for IDMA has been

 34

examined by Pupeza et al. [20]; however, since the focus of that work has been on

performance efficiency rather than high-speed implementation the results are not

applicable to the design high data rates.

A de-interleaver is used at the receiver to recover the initial sequence. Its

architecture is the same as the interleaver architecture; the permutation sequences,

however, are run in reverse order to recover the original uninterleaved signal.

In theory, the ideal interleaver architecture is one that allows an input data block

of size N to be permuted to any of its N! possible permutations. Conventional interleaver

architectures process the data serially i.e. a single bit at a time. This scheme becomes

increasingly difficult to implement as data rates increase e.g. a 10Mbps channel only

allows 100ps to process each bit. The architecture design, therefore, focuses on parallel

processing to achieve the desired rate. Care was taken, however, to ensure that the

architecture can support enough permutations so that a good set of interleaver patterns

can be found.

One possible method of implementing the interleaver is to consider the input as

20 bit words. The output of the interleaver will be a random ordering of the 20 bit words.

The implementation of this interleaver is both fast and has low complexity. However,

simulations show that this does not provide enough randomness for the channel codes.

 35

To increase randomness without sacrificing speed and complexity, a randomized

write-by-row, read-by-column scheme for the 1600 bit interleaver was adopted. As seen

in Figure 2-11, data can be broken into square blocks of 400 bits. Each of the 20 rows

and columns are indexed. Groups of 20 incoming bits are written to a randomly indexed

row. When the data block is filled, the bits are read out of the block one column at a time

in a random order.

The 400-bit-square block forms the basic unit of the interleaver design. In order

to produce the necessary randomness, four of such blocks were used in the final

implementation. Like the indexing within the blocks, the inputs and outputs of the four

blocks are accessed independently and randomly.

This scheme provides us with enough randomness to operate on the optical

channel. In the interleaver design, 4 square blocks of 400 bits are used, giving us a total

of 80 indexed locations. This corresponds to a design space of (80!)2 > 1e+237 possible

Figure 2-11 Indexed write-by-row, read-by-column interleaver

61 62 80

…

41 42 60

…

21 22 40

…

1 2 20

…

Incoming
bits

Outgoing
bits

Read indices
(80 words)

Write indices
(80 words)

80

61

62

…

60

41

42

…

40

21

22

…

20

1

2

…

…
…

…
…

20 bit horizontal words

… … … … 20 bit
vertical
words

 36

permutation sequences to choose from. For the desired channel rate of 2 Gbps, using the

20-bit word size of the trellis code, the target operating frequency for the interleaver is

100MHz.

Two such memory blocks are used to allow the desired throughput to be

maintained. While the first block is being written to, the second block is being read out.

When the memory block is filled/emptied, the function of the memory blocks is reversed.

This ping-pong arrangement doubles the area of the interleaver.

2.3.4. Reed Solomon Code

When the Trellis decoder block makes an error, the errors usually come in a burst

of a few bits at a time. A Reed Solomon (RS) code is a block code that operates on bytes

at a time. This makes it a very good choice to correct the residual errors and bring the

final BER to below 1e-9. A standard (255,237) RS code was selected.

Since timing is not critical in this block, a standard open source architecture

design from Han [21] was used. The syndromes of the input data block are first

calculated. The results are then used to calculate the error locator polynomial using

Berlekamp's algorithm. The Chien algorithm is used to find the roots of the error locator

polynomial and these roots provide the location of the errors. Finally, the magnitudes of

the errors are captured.

The data rate at the output of the NL-TCM decoder is 100Mbps. Since the Reed

Solomon code operates on data blocks of 255 bytes (2040 bits), the time budget for the

 37

RS decoder is 20.4us. The module runs on a 50MHz clock, and at the worse case the

decoding operation takes 856 cycles (17.1us) to complete.

2.3.5. Implementation Results

The system blocks were implemented on the Virtex II-Pro FPGA from Xilinx.

Table 2-1 summarizes the size various blocks in the design. The critical period is given

for the transmitter and receiver.

Table 2-1 Size and speed of transmitter and receiver blocks

 Area
(slices)

Critical
period (ns)

Transmitter
Reed Solomon encode 189 5.3
NL-TCM encode 34 3.4
Interleaver 3387 7.7
Receiver
Reed Solomon decode 3686 9.0
NL-TCM decode
(Viterbi)

10504 10.3

Interleaver 3387 7.7

The transmitter is implemented on the Virtex II Pro XC2VP20 FPGA which

contains 9,230 slices of logic. Each transmitter design occupies 40% of the available area.

The receiver is a significantly larger design and is implemented on the XC2VP50 which

has a capacity of 23,616 slices. The receiver design occupies 70% of the available area.

 38

2.4. Electrical / Optical Interfaces

Optical systems implementing wavelength division multiplexing (WDM) and

Ultradense WDM with wavelength spacing as small as 0.05 nm (6.25GHz) have been

demonstrated to give a high level of multiplexing [22]. However, such systems require

co-ordination between the different users to make sure that no two users transmit at the

same wavelength. The multiple access scheme proposed in this chapter, however,

requires that there be no coordination. In addition, this scheme is independent of the

center wavelength used for the optical transmission, unlike the requirement of

specifically designed multiplexers / demultiplexers for WDM systems.

The nonlinear trellis codes described and designed here are based on the

assumption that there is incoherent addition of the data from the six channels. In other

words, the transmission of a ‘1’ from any two users cannot result in destructive

Figure 2-12 Electrical / optical system architecture

Tx - 2

Tx -1

PC Amp Mod 1

1x
4

C
ou

pl
er

Laser1

PC Amp Mod 2

Tx - 3

PC Amp Mod 3

Tx - 4

PC Amp Mod 4

Laser2

Laser3

Laser4

Tx - 6

Tx - 5

PC Amp Mod 5Laser5

PC Amp Mod 6Laser6

1x
4

C
ou

pl
er

Unused
port

Tx - 2

Tx -1

PC Amp Mod 1

1x
4

C
ou

pl
er

Laser1

PC Amp Mod 2

Tx - 3

PC Amp Mod 3

Tx - 4

PC Amp Mod 4

Laser2

Laser3

Laser4

Tx - 6

Tx - 5

PC Amp Mod 5Laser5

PC Amp Mod 6Laser6

1x
4

C
ou

pl
er

Unused
port

PIN-PD TIA

Agilent 11982A

Clock from
transmitter end

Ø

D
Flip-
Flop

RF Amp

Adjustable
Threshold

Adjustable
Phase

PIN-PD TIA

Agilent 11982A

Clock from
transmitter end

Ø

D
Flip-
Flop

RF Amp

Adjustable
Threshold

Adjustable
Phase

 39

interference and will always result in a ‘1’ . In contrast, interference from two coherent

sources may result in an output of ‘0’ . In the implementation of the system, different

laser sources were used for each channel, with wavelengths determined independently of

each other. Hence, coupling of any two laser outputs can only give a ‘1’ by constructive

interference and never a ‘0’ .

The electrical/optical system design for the demonstration is shown in Figure 2-12.

Six independent continuous wave lasers, centered at 1550 nm are independently

modulated with data from each user. They are then all coupled together using two optical

couplers and transmitted on a single fiber. On the receiving end, the combined signals

are detected by a photodetector. Since the photodetector detects intensity and hence

effectively acts as a ‘mixer’ of the different signals, care must be taken about the

wavelengths being used for transmitting the data. If two lasers with very closely spaced

wavelengths are used, the output of the photodetector would have components of phase

noise within the bandwidth of the optical receiver. This led us to choose lasers with

wavelength separation of >0.08 nm (10 GHz) since we were using a receiver with a

bandwidth of 10 GHz.

In a practical implementation, an optical phase locked loop (OPLL) can be used to

minimize the phase noise in the system [23] to a level below other noise sources such as

the laser Relative Intensity Noise (RIN) noise [24] or the photodetector shot noise.

Under the conditions of the experiments, the system is limited by the shot noise, the

spectral density of which is given by 2qPtotalηB dBm/Hz where q is the electron charge,

Ptotal is the total average optical power reaching the detector, η and B are the responsivity

 40

and the bandwidth of the detector. The limitations of shot noise are explained in detail by

Saleh and Teich [25]. Efforts have been made to minimize the shot noise level and will

be dealt with in the following section.

2.4.1. Optical Transmitter

The first 3 transmitting lasers come from the 3 channels of a Santec External

Cavity laser (ECL) while DFB lasers from JDSU and Fujitsu are used for the other 3

channels. The current of the DFB lasers is controlled using an ILX Lightwave Controller.

The operating optical powers are to the order of 2-5 mW and at this power, the system is

limited by shot noise. The noise at the “0” level can be minimized by allowing a

negligible amount of light through the system. This can be obtained by appropriately

biasing the optical modulators.

LiNbO3 Mach-Zehnder modulators (MZM) are used as the intensity modulators

which modulate the transmitted light with the electrical signal. These modulators work

on the principle of the electro-optic effect and have been studied in detail by Wooten et al.

[26]. An MZM modulator consists of two identical arms of optical waveguides made of

an electro-optic material such as LiNbO3. The refractive index of this material changes

proportional to the electric field across it. When the signal applied across the electrodes

placed close to the optical waveguides of the modulator changes, the corresponding

refractive index variation causes a change in the phase of the optical signal through it.

The change in phase is converted to intensity modulation by the interference of the

optical signals from the two arms of the MZM. The refractive index change of the

 41

electro-optic material is dependent on the polarization of the light. Hence polarization

controllers (PC) are placed in the optical path before being input into them. Correct

polarization is ensured by adjusting it to give maximum optical power at the output of the

MZM modulators.

Two 4 x 1 optical couplers are used to combine the 6 optical channels into a

single channel for transmission. Due to the reversible nature of the couplers, each optical

channel sees a loss of 6 dB every time it goes through a coupler. All the transmitters are

asynchronous with each other.

As mentioned above, the shot noise level of the system is proportional to the

average optical power. There may or may not be direct control of the optical output

power from the laser itself. Provided the output powers of the lasers are at a minimum,

the output power of the MZM can be adjusted by the DC bias applied across the

modulator electrodes. In order to minimize the noise, the preferable DC bias should be

set close to the minimum output power of the MZM such that the shot noise level is

below the thermal noise level of the system. The trade-off at this bias point is that the

signal is largely distorted due to the nonlinear characteristics of the transfer function of

the MZM at lower DC bias levels [27]. A DC bias is finally set at a point which strikes a

balance between the noise level (signal-to-noise ratio) and the nonlinearity and is found

by optimizing the bias level until the best BER for any given user is achieved.

 42

2.4.2. Optical Receiver

Two 4x1 couplers combine the optical signals of the six users together. The

combined channels are transmitted through a single optical fiber to the receiver end. An

HP 11982A lightwave converter, which consist of a p-i-n photodetector (PIN-PD)

followed by a Transimpedance Amplifier (TIA), is used to convert the light into an

electrical RF signal. The detected RF signal is a result of the data from all the 6 users

added together i.e. the sum of the optical powers transmitted by each user. However,

since this output is a sum of incoherent data, it follows the properties of an OR channel

and transmits a “0” only when all the users transmit a 0. Since the HP 11982A has no

limiting characteristics, the amplitude of the output is proportional to the number of users

transmitting a “1” .

A D flip-flop following the lightwave converter is used to convert this multilevel

signal into a binary signal. The D flip-flop samples the input data at every positive edge

of the clock fed into it. The clock is followed by an adjustable RF phase delay line which

changes the relative phase between the clock and the signal. This allows the receiver to

be synchronized with any desired user. An adjustable threshold is provided to the D flip-

flop and the multi-level photodetected output is converted into a binary signal depending

on its value relative to the threshold. Thus, the D flip-flop performs the function of

retiming and regeneration. The output binary signal is designed to have voltage levels

that are recognizable by the FPGA receiver.

 43

2.5. Results

Pictures of the demonstration setup are shown in the following figures. Figure

2-13 shows the laser sources; a mixture of ECL and DFB type lasers is used. Figure 2-14

shows how two of the FPGA transmitters are connected to the optical network. The light

travels from left to right and passes through the polarization controllers (A) to the optical

modulators (B). The modulation signal is provided by the FPGA (C). Figure 2-15 shows

the computer used to display the bit error rate and the oscilloscope to look at the raw

received waveform.

Figure 2-13 Demonstration setup: laser sources

Laser4 Laser5 Laser6Laser3Laser2Laser1

DFB LasersECL Lasers

 44

Figure 2-16(a) shows the raw received waveform for the case of four

simultaneous transmitters. After the thresholder and D flip flop circuit, the result is

shown in Figure 2-16(b). This is the waveform that is given to the receiver FPGA to

decode.

Figure 2-14 Demonstration setup: FPGA's and laser modulators

A
B

C

 45

Testing of the system proceeded in the following manner. The desired user

transmits a constant pattern in which the receiver FPGA is able to detect. This channel is

activated first, and the threshold and sampling moment is adjusted to the correct point.

Each of the other FPGA transmitters is set to transmit random coded data. This

interference is added to the optical channel one at a time so that the threshold and

sampling time may be manually adjusted. This proceeds until all six transmitters are

simultaneously transmitting on the optical channel. The result of this is presented in

Table 2-2.

Figure 2-15 Demonstration setup: system monitor and measurement

 46

Thresholding should also be performed automatically in a real system. In this

case, the receiving node can adjust the threshold by measurement of the ones density of

the received signal. When all nodes are transmitting, a ones density of 0.5 is expected

and a feedback loop can be designed to track this.

Table 2-2 System results

Channel
rate

1.2 Gbps * 6 = 7.2 Gbps

Data rate 60 Mbps * 6 = 3.6 Gbps
Users Bits

tested
Errors
found

Measured
BER

1 1.5e11 0 < 6.4e-12
2 4.6e10 0 < 2.2e-11
3 1.2e9 0 < 8.3e-10

0 5 10 15 20 25

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (nsec)

Levels

0

3

4

Before (Monitor)

1 A
m

pl
itu

de
 (

V
)

Time (nsec)

After (DOUT)

2

threshold

Figure 2-16 Four user case of receive signal threshold and retiming

 47

Due to interfacing problems with the Rocket I/O transceiver, only a system with 3

users at a channel bit rate of 1.2 Gbps was demonstrated. This performance degradation

can be attributed to two main factors:

1. the noise of the lasers used

2. the clock and data recovery circuit in the FPGA

As more users are added into the network, the noise floor begins to rise. This

decreases the signal to noise ratio of the desired user and contributes to the higher bit

error rate.

The high speed serial interface of the Virtex II Pro is a hard IP placed on the

FPGA programmable fabric and is therefore not itself programmable. It is designed to

receive data with a high degree of transitions. Since the received signal (aggregate of all

transmitters) cannot be guaranteed to conform to this specification, there are instances

where errors are caused by failure of the clock and data recovery circuit of the high speed

serial interface. We are currently working to bypass this circuit on the FPGA so that the

incoming data can be clocked with an externally supplied clock

2.6. Conclusions

In this chapter, a high performance design was achieved by first simplifying the

interfaces between the physical domains. Processing functions were, therefore,

concentrated in the logical domain and novel algorithms (channels codes) were

developed and implemented to ensure an uncoordinated system with guaranteed

 48

bandwidth is achieved. Using commercial off the shelf components, an operational

optical network with high data bandwidth was demonstrated where each user is able to

transmit at a channel rate of 1.2 Gbps with a BER of less than 1e-9. To accomplish this

goal, the channel codes where co-designed together with the architectural implementation.

The optical system was specially designed to be able to interface with the digital

hardware. It is only with the close cooperation of these three parts throughout the design

and implementation steps that the system is able to function.

This design process was validated through the building of an optical network

demonstrator that is able to support 3 simultaneous users transmitting at a guaranteed 1.2

Gbps on a single wavelength.

 49

Chapter 3

Hardware / Software Interface Exploration

The previous chapter discusses how to design efficient interfaces between

different physical domains. While they can both be considered part of the same logical

domain (their functionality is fundamentally bounded by the properties of logic gates),

there is also much research on the interface between hardware and software.

The logical domains of hardware and software have different properties. The

main benefit of software is its flexibility and portability; it can be developed remotely and

mistakes can be corrected afterwards. Its performance is, however, limited by the

processor’s instruction set architecture and serial execution. Hardware has much higher

performance because specialized circuits can be developed to perform specific operations

and parallel computation is possible. The drawback is extra design effort and the

increased cost of manufacturing.

To produce a design that meets performance and cost requirements, a standard

design process has emerged in industry. First, the software is executed on the target

 50

processor and profiled. The sections of code which are shown to be the major bottleneck

are then selected to be implemented in hardware as a coprocessor. These accelerators are

often connected to the processor through a peripheral bus.

The design focus, therefore, is for performance to be improved through the

acceleration of individual computations; a cross-layer approach that considers interfaces

has largely been ignored. However, it has been shown that for many applications, the

time it takes to pass through the interface takes up a greater amount of time than the

calculation itself. Therefore, significant additional performance gains can be achieved by

the selections of the appropriate interface technology and optimizing algorithms for it.

In this chapter, a novel system used to analyze and explore the effects of different

interface options is presented. The choice of interface impacts both the software (through

the software drivers need to communicate with the coprocessor) and the hardware

(through the extra logic needed to communicate with the processor). The novel

contribution of the system described is that it is able to jointly analyze the cost of both

these components, so that an efficient interface can be selected.

3.1. Interface Overhead

System performance can be improved by implementing in hardware the operation

taking the most time to calculate. Hardware coprocessors enable multiple operations to

be computed in parallel and can also speed up those operations with specialized logic.

However, while system performance improves significantly over pure software systems,

 51

in some applications, the time spent in using the coprocessor accelerator is taken up by

the interface; the actual computation on the coprocessor is minimal. Though the addition

of a coprocessor provides better performance, additional system performances can be

obtained by using the appropriate interface technology to communicate with the

coprocessor. In addition, while performance is important in the design of a system, it is

not the only factor that is considered in real world design decisions. The choice of

interface technology is decided not only on the final system performance but also on

factors such as portability of design, application requirements, and development tools

support.

GEZEL is a powerful design tool used for both simulation and implementation of

complex heterogeneous computing systems. Its main features include the ability to

interconnect and simulate IP cores from disparate sources and also the ability to describe

in FSMD form its own coprocessor logics. This has led to many successful designs that

range in scale from large NOC and SOC systems to small RFID systems.

Interface in this context refers to the way in which a processor is able to

communicate with either a specialized coprocessor or another processor in the system. In

traditional design, the processors’ instruction set simulator (ISS) are connected to other

processing elements within a simulation environment. The GEZEL [28] system supports

both clock cycle accurate simulation and also has RTL code generation facilities.

In this chapter, the way in which GEZEL is used to support different interface

options is presented. In particular, the way in which it can be used to build and simulate

the special functional unit interface which enables the building of ASIPs is described. A

 52

comparison of the design process for each type of interface is illustrated using the

example of the coprocessor for thread management.

3.1.1. Related Work

SystemC [29] and SpecC [30] are system level modeling (SLM) languages that

also support interconnection of heterogeneous processing elements. While they support

descriptions of custom logic that can generate RTL, the same language is also used to

describe behaviors at higher levels of abstraction (these descriptions are not

synthesizable). Because of this, the interconnection of ISS and custom logic is also not

straightforward and design teams manually translate the SLM description system into

Verilog/VHDL. GEZEL provides an IP block construct to connect the ISS to the GEZEL

development environment and all behaviors written in GEZEL are able to be

automatically converted to synthesizable RTL by default.

The SLM languages are designed for high level design exploration while GEZEL

is focused on design and exploration of systems at the implementation level. The

Tensilica design environment [31][32] works at a similar level by providing a platform

where the designer can modify processor hardware in order to accelerate an application.

While this provides the designer with a full set of tools to specify new instructions and

functional units, the system only allows customization of its own proprietary Xtensa

processor and assumes a special functional unit interface. In contrast, GEZEL allows for

easy exploration of different interface options and can be easily adapted to be used with

any ISS through its simple IP block interface. Because of this, GEZEL provides a

 53

uniform environment that can be used to design small systems, such as those used in

smartcards, as well as complicated SOC systems.

3.2. Interface Options

The three interface options that are examined are shown in Figure 3-1. They vary

on the degree of integration with the processor core. The following sections examine in

more detail the properties of each of the interfaces and how they have been used.

3.2.1. Memory Mapped Interface

The memory mapped interface is the simplest and most flexible interface. Using

this interface, software can access external systems by writing and reading data from

specific memory locations. The architecture is shown in Figure 3-1(a). For example, in a

thermostat application, software will read a value from a dedicated memory location to

obtain the current temperature and write to another memory location to program the

heater setting.

Figure 3-1 Coprocessor interface options (a) memory mapped, (b)
coprocessor port, (c) special functional unit

memory co
processor

Processor
core

memory

co
processor

Processor
core

Processor
core

coprocessor

memory

(a) (b) (c)

 54

Much more complicated systems can be built using this interface. One example is

the building of a NOC system [33] which connects several independent processors

together. The software running on each of the processors communicate with one another

through simple network routers described in GEZEL and interfaced through specific

memory addresses.

The main benefit of the memory mapped interface is its ease of use and portability.

Since most processors have memory systems, software written need only be written once

to be able to run on most processors. Also, since reads and writes are treated as memory

accesses, data dependency and hazard handling remains unchanged across platforms.

Conversely, it is also the properties inherited from memory access that gives the biggest

disadvantage; it has the same latency as memory access and performance further

degrades when there is contention on the bus. In the ARM processor, the access time has

been measured to be 12 clock cycles. For applications that require complex interactions

or large data transfers, this option may prove to be too inefficient.

3.2.2. Coprocessor Port Interface

In the coprocessor port interface, coprocessor access is removed from the memory

bus and connected directly to the processor (See Figure 3-1(b)). Communication is more

efficient in this case since there are no addresses to decode and no wait cycles necessary

to wait for slow memory response times.

The GEZEL system can easily interface with these special coprocessor ports. In

the ARM core, two such ports are available for use. Their use was demonstrated in the

 55

design of crypto-accelerators in [34] and communication delays have been measured to

be 7 clock cycles in this system. This special type of port is not only reserved for high

performance processors; some microcontrollers also provide this feature. The 8-bit 8051

processor is very popular in small systems such as smart cards and RFID. The use of this

port in [35] accelerated the 83-bit HECC algorithm by more than a factor of 200.

Though communications is much faster, there are some costs in terms of both

software code portability and flexibility. Access to each of these ports differs according

to processor platform; they are accessed through special instructions and protocols so

software must be rewritten in order to run on different systems. In addition, the number

of these ports for a given processor is limited, therefore, only a limited number of

coprocessors can be connected this way.

3.2.3. Special Functional Unit Interface

The decoupled nature of the processor-coprocessor dynamic in the above interface

options implicitly requires communication overheads. In ASIP design, the datapath of

the processor itself is modified to support increased functionality (See Figure 3-1(c)).

Since the functional unit has direct access to the processor register file, communication

costs can be minimized.

GEZEL is able to support ASIP design through the use of the special functional

unit (SFU) interface. Through this interface, GEZEL can be used to describe the datapath

of special instructions that are added to the processor.

 56

In addition to faster communications, system performance can also be greatly

increased with specialized processing. The traditional method of acceleration is to use

special hardware to speed up complex calculations on a data set. If communications is

not too great, memory mapped interfaces and coprocessor port interfaces can be used to

obtain acceptable performance. The SFU interface is also able to perform the same tasks

but with increased speed due to reduced communications. However, the SFU interface

also allows the integration of processing that can affect the control flow of software. By

having access to the program counter in the processor core, SFU has the additional ability

to jump to any memory location – this is a functionality that is impossible with the other

interface options.

While there are many potential benefits in using the interface, software written on

such a platform is not portable. ASIP’s contain very specialized instructions that operate

on specific registers; therefore, special simulators and compilers must be used for the

specific development platform.

3.3. Interface Mechanics

Interface between the ISS and the development environment is accomplished

through the IP block modules. IP blocks are written in C++ to allow for the description

on behaviors that cannot be described by the GEZEL language. In the context of a SOC,

they are used to describe the different interfaces between the ISS and the special datapath

logic.

 57

For the memory mapped and coprocessor interfaces, there is already kernel

support in the design environment. Memory mapped IP blocks intercept memory reads

and writes and directs them to the GEZEL environment where logic can be described to

operate on the data. Coprocessor IP blocks simulate a buffered coprocessor interface.

Reads and writes to the coprocessor port are buffered in the queues of these blocks and

made accessible to the design environment.

For ASIP design, minor modifications to the design environment must be made.

In the design, Simit-ARM [36] is used as the ISS, and a special IP block is described to

interface with the special functional unit port of the ISS. When special machine

instructions are called, the IP block is triggered and passes the appropriate register values

to the design environment where the logic of the functional unit is described. The results

are passed through to the same IP block so that it can be stored in the processor’s register

file.

Because the logic of the SFU may take several cycles, the ISS itself must be

modified to take this into account. In most simulators, this will involve modifications to

the sections of code that are responsible for instruction scheduling and resource

reservations. The ISS must know exactly when an operation is complete so that

subsequent dependent instructions do not get scheduled before the results are available.

In addition, certain resources (e.g. registers) may be used by the functional unit and

cannot be used by subsequent instructions; the ISS must be modified to prevent these data

hazards from occurring.

 58

The ASIP design is done using the Simit-ARM cycle true simulator. The

simulator itself is described in a processor architecture language called MADL [59]

which allows designers to easily specify the resources used up by each instruction at each

stage of the pipeline. Once the architecture is described, the description can be used to

automatically generate an ISS that is able to handle interactions with the new instructions

and their corresponding functional units.

3.4. ASIP Case Study

To demonstrate the performance and design process of the three different

interface options described, the design of a special logic block for thread management is

explored. The purpose of this coprocessor is to enable acceleration of the context switch

operations in embedded multitasking systems.

The thread manager is responsible for keeping track of all the running processes

in the system. It does this by maintaining a queue of all the processes in the system.

Processes in the system are uniquely identified by the values in the stack pointer (SP) and

program counter (PC) registers.

 59

Three thread management commands are used to access the thread manager and

form the primitives needed for context switch.

• The create command takes the current register values of SP and PC and stores them

in the queue of the thread manager.

• The yield instruction takes the SP and PC register values and replaces them with new

ones.

• The retire instruction invokes a context switch by replacing the SP and PC with new

values from the next process.

In the experiments, the thread manager is interfaced with the ARM processor

using the three interface options. The Simit-ARM simulator was used in conjunction

with GEZEL to provide cycle accurate simulation. In addition to comparing the final

results, the design process is illustrated in detail so that methodology complexity can be

compared.

3.4.1. Memory Mapped Interface

The thread manager acts like a special storage element in the system; it stores the

PC and SP of all the processes and returns the values for the next process during a

Figure 3-2 Thread manager architecture

Thread
manager

PC/SP queue
Old PC

Old SP

Command

New PC

New SP

 60

context switch. However, under the memory mapped interface, it cannot be responsible

for the context switch operation itself. It is the responsibility of the software to supply

the current values of PC and SP to the coprocessor to store and to also ensure that the

new values of PC and SP are properly stored into the corresponding registers. Though

both performance and software size is reduced by the addition of the memory mapped

thread manager, these interface tasks add overhead to the actual thread management tasks.

Figure 3-3 shows the software interface code used to implement the yield

instruction and illustrates the software overhead associated with the memory mapped

interface. Line 6 moves the base address of the coprocessor to r0. After the PC and SP

are loaded to the coprocessor, Lines 9-15 perform the handshaking protocol. The new PC

and SP values are not loaded into the registers until lines 16 and 17. The write operation

Figure 3-3 ARM assembly code for the memory
mapped yield operation

 stmfd sp!, {r0-r12, r14} 1
 mov r0, #0 2
. . . (clear all registers) 3
 mov r12, #0 4
 mov r14, #0 5
 mov r0, #-2147483648 6
 str pc, [r0] 7
 str sp, [r0,#4] 8
 mov r1, #1 9
 str r1, [r0, #8] 10
 str r1, [r0,#20] 11
.LOOP: 12
 ldr r1, [r0,#24] 13
 cmp r1, #0 14
 beq .LOOP 15
 ldr sp, [r0,#16] 16
 ldr pc, [r0,#12] 17
 mov r1, #0 18
 str r1, [r0,#20] 19
 ldmfd sp!, {r0-r12, r14} 20

 61

on line 11 signals to the thread manager that a command is available to be processed. It

is paired with the read in line 13 which signals that the command is complete. These two

operations represent the overhead due to handshaking.

The memory mapped interface also introduces extra hardware in the coprocessor.

To facilitate the handshaking protocol, additional ports must be added to signal the

availability of a new command and also the completion of a command. Table 3-1 shows

the ports used by the thread manager coprocessor. Each of these ports must be buffered

by registers. The need for additional registers and a more complex state machine to

implement the handshaking protocol contributes to the hardware overhead associated

with the memory mapped interface.

3.4.2. Coprocessor Interface

The Microblaze FSL interface on the ARM processor is used to illustrate the

thread manager performance in a coprocessor port. The FSL is a dedicated coprocessor

interface driven by a simple one way handshaking protocol. The link is buffered by

dedicated queues which allow concurrent execution of both the ARM processor and the

thread manager.

From the processor side, a write port is available for sending data to the

coprocessor. A status port indicates whether data is available on the read port.

Compared to the memory mapped interface, data is written to a single coprocessor port;

no explicit write command is necessary to signal the coprocessor that a new command is

available. However, there remains a ‘acknowledge’ read port that is polled to determine

 62

when the thread management task is completed. This one way handshaking reduces the

overheads experience in the memory mapped interface.

Table 3-1 Thread manager I/O ports

Port Port
Type

Access
address

Old PC Input 0x80000000
Old SP Input 0x80000004
Command Input 0x80000008
Request Input 0x8000000C
New PC Output 0x80000010
New SP Output 0x80000014
Acknowledge Output 0x80000018

Figure 3-4 shows the assembly code used to implement the yield instruction. Line

6 defines the location of the write port. Lines 7-10 load the instruction, PC, and SP to the

processor; no extra str instruction is necessary to signal the coprocessor of a new

command. Lines 11-14 poll the status port for the new values. When data is available,

the values of SP and PC are taken from a single read port and stored in their respective

registers.

 63

The FSL coprocessor interface adds only minor hardware overhead. Extra logic

is necessary to implement the handshaking protocol. No extra hardware, however, is

necessary for buffering the incoming commands and parameters. This is because the

buffered coprocessor interface already provides this service and is included in the size of

the processor.

3.4.3. Special Functional Unit Interface

The special SFU instruction in the ARM processor is used to access the thread

manager. It access values directly from the processors register file; it reads values from

three registers (SP, PC, Rn) and writes to two registers (SP, PC). All instructions are

completed in a single cycle.

Since the ISA is modified to take advantage of the new functional unit, the

additional tasks in the processor pipeline must also be specified. The MADL code

Figure 3-4 ARM assembly code for the
coprocessor port yield operation

 stmfd sp!, {r0-r12, r14} 1
 mov r0, #0 2
. . . (clear all registers) 3
 mov r12, #0 4
 mov r14, #0 5
 mov r0, #-2147483648 6
 mov r1, #1 7
 str r1, [r0] 8
 str sp, [r0] 9
 str pc, [r0] 10
.LOOP: 11
 ldr r1, [r0,#8] 12
 cmp r1, #0 13
 beq .LOOP 14
 ldr sp, [r0,#4] 15
 ldr pc, [r0,#4] 16
 ldmfd sp!, {r0-r12, r14} 17

 64

fragment in Figure 3-5 shows how the new instructions are specified in the processor

architecture.

The code specifies the resources needed for the new instructions in the buffer (BF)

and write back (WB) stages. In the BF stage, the registers that are needed for the

operation are specified (lines 5-6) and then sent to the external functional unit (line 7).

The result registers are also specified here (line 8) so that data hazards can be avoided. In

the WB state, values are gathered from the external functional unit (line 13) and assigned

to the destination registers (line 14). Note that the destination registers are the same as

Figure 3-5 MADL code to describe resource usage of new
instructions

Figure 3-6 MADL code to describe resource usage
of new instructions

// BUFFER STAGE 1
e_ex_bf_sfu: { 2

// reg 13 corresponds to SP 3
// reg 15 corresponds to PC 4
v_rm=*mRF[13], v_rs=*mRF[15], 5
v_rn=*mRF[rn], 6

 *mSF3x2[0]= (v_rm, v_rs, v_rn), 7
 dst2=mRF[13], dst3=mRF[15] 8
}; 9
 10
// WRITE BACK STAGE 11
e_bf_wb_sfu: { 12

(tmp1, tmp2, tmp3) = *mSF3x2[0], 13
 *dst2 = tmp1, *dst3 = tmp2, 14
 !dst2, !dst3, 15
 !dst_buffer, !dst2_buffer 16
}; 17

stmfd sp!, {r0-r12, r14} 1
mov r0, #0 2
. . . (clear all registers) 3
mov r12, #0 4
mov r14, #0 5
yield 6
ldmfd sp!, {r0-r12, r14} 7

 65

those reserved in the previous pipeline stage.

The modified ISS is connected to the GEZEL development environment through

a specially programmed IP block which is triggered only when the SFU instruction is

invoked. Through the IP block, the thread manager, which is described in GEZEL, is

able to operate directly on the values of the register file. Because of this, there is no

interface overhead; performance increases and the software size is reduced. Figure 3-6

shows the assembly coded used to implement the yield instruction. After the register file

is stored in the stack and the values are cleared (lines 1-5), the SFU yield instruction is

called (line 6). SP and PC values are replaced directly by the thread manager in a single

cycle and the register values of the new thread are then popped from the stack in line 7.

There is no overhead taken up by the reading and writing of data and parameters to ports

or memory locations nor is there any overhead taken by handshaking. Because these

operations are no longer necessary, context switches are completed more quickly and

require less software.

Using the SFU interface, the thread manager is now part of the processor’s

pipelines. Because of this, the unit must buffer the input data (i.e. the PC and SP values)

in registers. While no extra logic is added for handshaking, the registers do add extra

hardware that is not associated with the actual data processing operation and can be

considered a form of overhead.

 66

3.4.4. Results

Table 3-2 shows the performance results of the case study when compared with

an unmodified ARM processor. In the multitasking system, yield is used for the actual

context switch and is therefore invoked most often. Based on the performance of the

yield instruction, the memory mapped interface solution is 2.4 times faster than the

equivalent software routine. In contrast, the ASIP solution is 3 times faster (25% faster

than the memory mapped interface version).

Table 3-2 Comparison of execution time for thread management operations

Module SW
(cycles)

Mem
(cycles)

Copr
(cycles)

ASIP
(cycles)

Create 743 463 459 448
Retire 348 66 61 48
Yield 191 80 71 61

In all the above examples, the thread manager is able to execute the instructions in

a single clock cycle. The difference in performance is due to the time taken for

handshaking, communications of data and parameters, and the moving of values to the SP

and PC registers. The memory mapped interface is characterized by slow handshaking

and slow communications due to the use of the peripheral bus. The coprocessor interface

benefits from faster handshaking and fast communications due to direct connection to the

processor. Both the memory mapped interface and coprocessor interface incur overheads

due to the moving of values to the SP and PC.

The SFU interface is not affected by any of these factors as the thread manager is

located directly in the processor datapath and therefore has the highest performance.

There are no handshaking or communication costs since the PC and SP are taken directly

 67

from the register file. The output of the thread manager is also written directly to the

register file.

Table 3-3 Comparison of speed and area of interface options

Module Size (Kgates) Critical path
(ns)

N-ARM7TM 50 17
ASIP 1.7 7.6
Coprocessor 1.0 7.5
Memory
mapped

3.3 7.6

To examine the relative size of the thread manager, the GEZEL description was

converted into VHDL. This code was then synthesized using Synopsis. The TSMC

0.18um CMOS standard cell library with conservative wire load model was used. Table

3-3 shows the results. The results were compared to the synthesized N_ARM7TM design

from [37]. The additional memory needed for the memory depends on the maximum

number threads that the system is designed to support; each additional thread requires 64

bits of storage. Not including the two port memory of the thread queue, the thread

management unit only takes 2% of the total ARM processor area. When the different

interface options are compared, the memory mapped interface has the largest size due to

the extra registers necessary in both the input and output ports. The implementation

using the coprocessor port is the smallest since there is no extra registers required within

the coprocessor as buffering is included in the interface port.

Table 3-4 Comparison of code size for thread management operations

Implementation Size (bytes)
Quickthreads (SW) 1330
ASIP 252

 68

Coprocessor 352
Memory mapped 404

In the implementations explored, the thread management functionality

implementation is moved from software to hardware. Table 3-4 shows the relative

software size for the different interface options when compared with the Quickthreads

[57], a simple and portable threads toolkit. When compared with a purely software

implementation, all the coprocessor options reduced the software size by more than 3x.

The remaining software overheads reflect the instructions necessary to transfer data to

and from the coprocessor and perform handshaking.

3.5. Conclusions

The GEZEL design environment provides an environment that allows easy

exploration of a wide variety of interface options. The cost of each interface option can

be evaluated in both software and hardware. While the memory mapped interface and

coprocessor port interface has been well used in previous designs, they may still under

perform in certain applications. The special functional unit interface allows the designer

access to the core of a processor so that coprocessor functions can be directly integrated

into the processor datapath. Hardware integrated context switching is one such

application that benefits from the special functional unit interface. In this chapter, the

detailed design of how the SFU interface is used in the GEZEL environment is described.

The resulting architecture improves context switching performance by a factor of 3 while

only increasing processor core area by 2% when compared with software solutions.

 69

Chapter 4

Accelerating Control and Communications

In the previous chapter, we showed that the SFU interface outperforms other

popular interfaces in system on chip (SOC) design. This is because by integrating

specialized processing directly into the processor datapath, the time it takes to transmit

control and data to the specialized hardware is greatly reduced.

Though very effective, in many embedded system designs, such intimate access to

a processor is not available and ASIP designs are not possible. Thus improvements to

traditional interface options are restricted to the use of architectural components external

to the main processor.

From chapter 3, it is noted that the interface overhead is composed of the time it

takes to transmit control information and the time it takes to transmit the actual operands.

The handling of each of these interface elements have different requirements so interfaces

can be made more efficient if the elements are separated and their functions accelerated

 70

individually. In this chapter, the process of how this can be achieved is described and

illustrated with implementation case studies.

4.1. Common Acceleration Techniques

Over the last decade, many important techniques have been developed to improve

the performance of embedded systems. Chief among them is the DTSE software

technique [38], acceleration of functions in hardware, and direct memory access (DMA)

techniques [39]. However, there have not yet been studies that explore how all these

techniques can be quickly explored and implemented in a design.

Data intensive calculations are often communications bound. That is, the time it

takes to transport operands to a processing unit and store the results back to memory

takes a significant percentage of the total time. Thus to improve the performance of

embedded systems, techniques to reduce the amount of communications is as important

as techniques to accelerate the actual computation.

The software strategy involves the transformation of an algorithm to minimize the

time it takes to run. This can be done through minimizing the number and complexity of

instructions (computation) needed to perform a calculation and also through minimizing

the memory accesses (communications). The latter technique is well studied by [40] and

has been proven to be very successful.

The traditional hardware approach accelerates the slow part of the algorithm in

hardware by designing a coprocessor. Specialized hardware has the ability to perform

complex operations quickly through the design of specialized circuits. In addition,

 71

multiple calculations can be performed in parallel, further reducing the time it takes to

perform a computation. Compared to software techniques, this strategy is only able to

accelerate the computation part of the algorithm.

The two above design steps have become industry standard. However, further

performance gains can be achieved through more efficient allocation of data streams to

the coprocessor. The communications part of the algorithm can be accelerated through

DMA techniques. These are implemented by special hardware components in the

computer architecture which transfers data directly from the memory to the hardware

coprocessor. While the technology is not new, its integration into the design of

accelerators in SOCs has not been explored.

Each of the above techniques can individually significantly increase system

performance. However, enhanced performance increases above the sum individual

improvements can be observed when several techniques are employed together.

In this chapter, a development environment which allows the exploration of the

interactions among these three techniques is developed. We find that while memory

access minimization techniques greatly enhance software performance, it also enables

efficient data transfers in hardware. Thus significant performance improvements above

the sum of the individual improvements can be obtained when the techniques are used

together. Using the case studies of GCD calculation and complex matrix multiplication,

we show that performance exploration can be performed quickly and lead to designs that

increase performance by over two orders of magnitude over base system.

 72

4.2. System Setup

4.2.1. System Architecture

To explore the effects of the various hardware and software optimization

techniques on real SOC implementations, we required a hardware programmable

platform. The XUP Virtex-II FPGA development platform [41] from Xilinx was chosen

due to its wide selection of IP and mature design environment. At the heart of the board

is the XC2VP30 FPGA [15] which contains hard IP’s such as PowerPC processor, Block

RAMs, and 18x18 multipliers. These hard IP can be interconnected through

configuration of the FPGA fabric. The easy reconfiguration properties of the FPGA

make it a good platform to study different processing architectures and their effect on

performance.

Figure 4-1 Base SOC architecture

PPC
32-bit

300 MHz

DDR memory
controller

coprocessor
DMA

controller

Local bus (100 MHz)

XC2VP30 Xilinx FPGA

 73

Figure 4-1 shows the base architecture of our processing system. In the base

architecture, the algorithms are implemented on the 32-bit PowerPC 405 processor core

running a 300MHz. Software is stored on off-chip DDR RAM through a 64-bit interface.

Due to the double data rate operation, the RAM can provide the FPGA with 128 bits of

data per FPGA clock cycle.

The PowerPC is interfaced with the external memory and the general FPGA

fabric through the processor local bus (a 64 bit bus running at 100 MHz). It is through

this bus that hardware accelerators and memory access accelerators can be interfaced to

the main processor.

4.2.2. Design Environment

A series of design tools are used to enable quick exploration of design alternatives

and easy implementation of the designs onto the FPGA platform. Figure 4-2 shows an

overview of the proposed design methodology.

 74

The design exploration is performed using the Gezel design environment [28]

which enables cycle true hardware/software co-simulation. As with its use in the

previous chapter, the software and hardware components can be quickly co-simulated and

verified without register transfer level simulations required. Accurate system

performance estimations can be used at this level to evaluate different design options. In

contrast with the use of Gezel for simulation, in this chapter, it is also used to provide a

easy path to implementation. Both the software and hardware descriptions that runs in

the simulation environment can be directly inserted into the base XPS computing

platform.

Implementation of the final design is performed using the Xilinx XPS design

environment [42] which is able to generate the generic system architecture. This includes

components such as system buses and peripherals which are connected to the PowerPC

processor on-chip. The custom hardware designed in the Gezel environment is

automatically converted to VHDL, enclosed in hardware wrappers, and integrated into

Figure 4-2 Design methodology

Reference
C Algorithm

Optimized
C Algorithm

Driver C
Algorithm

GEZEL
Coprocessor

VHDLPPC Binary

XUP Board / FPGA implementation

Instruction set
simulator

Gezel
cycle-true

co-simulator

XPS system
synthesis tool

 75

the system architecture. The resulting SOC (including the custom hardware) can then be

synthesized and written onto the FPGA.

The software portion of the design is implemented in standard C and can therefore

be easily cross-compiled to the PowerPC processor. The interface with the custom

hardware is similar to the one provided by the Gezel environment so the driver code need

not be radically modified.

In addition to custom hardware accelerators which accelerate computation time,

hardware blocks can also be used to accelerate the dataflow element of the system.

Direct memory access (DMA) blocks are an example of such specialized hardware that

can be added to the design at this stage to further accelerate the system performance.

4.2.3. Optimizations

Each of the optimizations discussed in this subsection infers a particular control

and dataflow architecture. The relevant architectures are shown in Figure 4-3.

Figure 4-3 Control and dataflow architectures for (a) base architecture
(b) traditional coprocessor architecture (c) datapath accelerated

coprocessor architecture

PPC MEM

PPC MEM

Coproc

PPC MEM

CoprocDMA

(a) (b) (c)

Control flow

Data flow

 76

Software optimizations imply a basic computer architecture (Figure 4-3(a)) where

the processor is connected to external memory through a bus. Both dataflow and control

information is transported along this single bus. Improvements in this architecture can

focus on accelerating the algorithm or reducing the amount of data that travels between

the processor and external memory.

In addition, data access patterns can be optimized to take advantage of the

properties of the local bus. Data transfers between the processor and external memory

can be optimized by changing the software data access pattern. In our platform, the time

it takes to access 128 bits of data is the same as the time it takes to access 32 or 64 bits.

Therefore, software written for this platform should try to access memory in 128-bit

blocks. In addition, linear accesses provide the greatest throughput to the DDR RAM.

Each DDR access requires a 1 cycle latency for the command, 2-3 cycles to access the

location, followed by the actual data transfer. By utilizing sequential memory locations,

the data can be transferred in bursts and therefore minimize the command and access

latencies.

Custom hardware can be used to accelerate calculations to a much higher degree

than software techniques. This is because hardware can be designed especially for

complex calculations and can also be easily parallelized. The technique is well used and

has become an industry standard for embedded systems. Though the computation task is

greatly accelerated in the resulting architecture (Figure 4-3(b)), the time it takes to

transport data is increased. This is because data between the memory and coprocessor

 77

must pass through the PPC; compared to a software only solution, the amount of

communications is doubled.

To accelerate the communications part of a computation, a DMA block can be

used (Figure 4-3(c)). This block allows data to flow directly between the coprocessor

and external memory. Thus the dataflow time is improved by both the reduction and

acceleration of data transfers

Direct memory access (DMA) is a hardware solution to accelerate data transfers.

In software data transfers, memory accesses to a hardware coprocessor must travel

through the PowerPC processor. A DMA unit accelerates the process by allowing blocks

of data to be transferred directly to the coprocessor in a burst. Thus performance

improves due to two main factors. One, instead of each data item hitting the bus twice,

each item is only transferred once. Two, the DMA controller is able to take advantage of

both bus and DDR RAM burst access.

Our design environment allows easy exploration of all these design alternatives.

The integration of DMA technology to the evaluation process greatly enhances the design

choices and enables additional performance gains. In the following case studies, we

show that the use of DMA technology not only improves performance when used alone

but its benefits are further enhanced by software optimization techniques.

 78

4.3. Case Studies

To compare the benefits of the proposed methodology on different types of design

we study the design to two case studies. The case studies illustrate the degree of

improvements that is achievable for specific algorithms.

4.3.1. Greatest Common Divisor

Euclid's binary greatest common divisor (GCD) algorithm is a well used

algorithm known to be simple and fast to implement. Its software description is shown in

Figure 4-4. The function takes in two numbers and results in a single number which is

the GCD of the two operands.

In the reference software implementation of this algorithm, a while loop

successively reduces the two operands until one reaches zero. In each cycle of the loop,

the least significant bit (LSB) of the operands is examined and shift and/or subtraction

operations are performed depending on the result.

 79

This is a very sequential algorithm and software implementation is limited by

control instructions (i.e. compare and branch instructions). At the algorithmic level, there

has been some work to reduce the asymptotic complexity of the algorithm [43]. More

practically, software optimizations focusing on loop unrolling techniques have show

performance improvements of more than a factor of two [44].

Figure 4-4 Reference GCD algorithm

unsigned int gcd(unsigned int u, unsigned int v)
{
 int shift;

 if (u == 0 || v == 0)
 return u | v;

 for (shift = 0; ((u | v) & 1) == 0; ++shift) {
 u >>= 1;
 v >>= 1;
 }

 while ((u & 1) == 0)
 u >>= 1;

 do {
 while ((v & 1) == 0) /* Loop X */
 v >>= 1;

 if (u <= v) {
 v -= u;
 } else {
 int diff = u - v;
 u = v;
 v = diff;
 }
 v >>= 1;
 } while (v != 0);

 return u << shift;
}

 80

A hardware implementation of the binary GCD algorithm is an easy way to

improve performance because complex control operations can be performed very

efficiently in hardware. Figure 4-5 shows the state machine description of the GCD

coprocessor. Compared to the software version where several compare and branch

operations are required in each loop iteration, the hardware implementation is able to

perform each iteration in a single clock cycle.

Once the control overhead is reduced through the use of a coprocessor, the time it

takes to transfer operands from memory and store the results back to memory becomes

the major bottleneck. A DMA unit is added to the architecture to accelerate memory

accesses. The execution times of the systems produced at each step of the design is

shown in Table 4-1 for operands of various sizes. Table 4-2 shows the speed up in each

case.

Table 4-1 Execution time for GCD implementation options

microsec 32 64 128 256

Figure 4-5 Finite state machine for GCD coprocessor

fsm euclid_ctl(euclid) {
 initial s0;
 state s1, s2;

 @s0 (init) -> s1;

 @s1 if (done) then (complete) -> s2;
 else if (m[0]&n[0]) then (reduce, outidle) -> s1;
 else if (m[0]&~n[0]) then (shiftn, outidle) -> s1;
 else if (~m[0]&n[0]) then (shiftm, outidle) -> s1;
 else (shiftn, shiftm, shiftf, outidle) -> s1;

 @s2 (outidle) -> s2;
}

 81

SW 503.7 1136.08 2104.46 3615.08
FIFO 83.72 160.26 312.88 618.62
DMA 46.3 83.18 157.14 304.84

Table 4-2 Performance speedup for GCD implementation options

speedup 32 64 128 256
SW 1.00 1.00 1.00 1.00
FIFO 6.02 7.09 6.73 5.84
DMA 10.88 13.66 13.39 11.86

On average, the hardware implementation of the algorithm shows a speedup of a

factor of 6. In the software implementation, each loop iteration has at minimum, 4

comparison instructions and 2 branch instructions; this suggests that most of the

improvements are due to the efficient control structures in hardware. Addition of the

DMA unit further improves performance by a factor of two. This number is directly

related to the number of times that data is transferred in the bus. Since this operation

does not involve the transfer of large amounts of data, burst mode has not been activated

and larger speedups are not realized.

4.3.2. Complex Matrix Multiplication

In the second case study, an algorithm that involves more complex calculations

and larger data transfers is selected. The complex matrix multiplication operation is

chosen and the software code is shown in Figure 4-6. The algorithm multiplies two NxN

matrices to produce the answer matrix. The software reference algorithm is comprised of

three nested loops to access the matrix array elements. Note that the multiplication

 82

operation is complex and is actually composed of 4 multiplication operations and 2

addition operations.

This case study promises large potential for performance improvements. In the

calculation portion, the complex multiplication operation can be computed efficiently in

hardware. In addition, the computation of elements of the answer matrix is inherently

independent of each other so a high degree of parallelization is possible. Large data sizes,

especially in cases where N is large, can be greatly accelerated through DMA since burst

mode can be taken advantage of.

To make use of efficient memory access, a matrix multiplication algorithm was

devised to linearly scan through the RAM and perform 32 complex multiplications per

cycle. The algorithm begins by sending eight blocks of A values (a block is 4 elements)

to the coprocessor. The eight blocks are from subsequent rows in A. Next, a block from B

is sent to the coprocessor. The four incoming B elements are multiplied by the first

element in each row of the A, and each of the 32 partial C products is accumulated. After

a full row of B has been processed, the next active elements in A are the eight elements in

Figure 4-6 Reference code for matrix multiplication

void mmmKernel(Number* A, Number* B, Number* C, int N)
{
 int i, j, k;
 for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)
 for (k = 0; k < N; k++)
 C[i*N+j] = C[i*N+j] + A[i*N+k]*B[k*N+j] ;
}

 83

the subsequent columns. The process of sliding over B’s rows, and A’s columns is

continued until the entire B matrix has been traversed. At this point, the complete product

for the first 8xN elements of C has been computed and can be written back to RAM. The

algorithm then repeats itself computing eight rows of C at a time until all of the C results

have been calculated.

With the plan to perform linear scans through the RAM, 4 elements at a time

(128-bits), the design also attempted to optimize the use of the FPGA’s hard IP resources.

The Virtex-II XC2VP30 provides 136, 18-bit x 18-bit multipliers in the FPGA fabric,

along with 136, 18Kb SelectRAM blocks. To utilize these fast discrete resources, the

design performed 32 complex multiplies and accumulates per cycle. Since a single

complex multiplication requires four multiplications and 2 addition/subtractions, a total

of 128 multiplications, and 64 addition/subtractions were performed per cycle. In

addition, one accumulate was needed for each of the 32 real and imaginary components,

Figure 4-7 Scalable coprocessor architecture

A(3) A(2) A(1) A(0) MAC unit
A(3) A(2) A(1) A(0) MAC unit

Coproc
controller

Load A

Shift A

Row[0]

Load B

Output C

A(3) A(2) A(1) A(0) MAC unitA

…

Row[15]

N-reg
Data
input

Data
output

 84

resulting in another 64 addition / subtractions each cycle. Therefore, the final design

utilizes 128 out of the 136 multipliers and performs 128 addition/ subtractions per cycle.

An interesting characteristic of our software algorithm is that the algorithm leads

to a loosely coupled and scalable coprocessor architecture. The coprocessor has an input

FIFO, output FIFO and single register called N-Reg. The controlling processor writes the

dimension of the matrices into N-Reg. For a given coprocessor configuration, N-Reg is

the only control parameter that needs to be set at runtime. Based off the single N-Reg

parameter, the coprocessor’s entire control FSM is determined. Therefore, in addition to a

simple runtime configuration, the coprocessor’s control logic is captured by a low-

overhead FSM. The coprocessor’s architecture also allows the designer to configure

parameters optimal for their specific system. For example, Figure 4-7 displays a

coprocessor with a single MAC row. To implement a coprocessor that computes eight

rows in parallel, a single design parameter is set to add the additional computational

capacity. In addition to computational capacity, the internal datapath width to the “Aunit”

and “MAC Unit” is configurable as well. In fact, a design was tested and verified with a

configuration of (Aunit = 8x4, MAC = 8x4) and (Aunit = 16x4, MAC = 16x2) within

minutes of each other. Therefore, the coprocessor architecture can scale to utilize a

system’s available resources.

Following the above design process, three different systems were implemented.

The first is a software only system that improves performances by optimizing memory

access patterns. The resulting transformed algorithm is then implemented as a

coprocessor. Further gains are achieved when a DMA controller is used to directly

 85

supply the data elements from memory. The execution times of the scenarios are shown

in Table 4-3. The corresponding speedup compared to the reference software is shown in

Table 4-4.

Table 4-3 Execution time for matrix multiplication implementation options

microsec 128 256 512 1024
SW 250736 3015457 45354321 362205433

OPT SW 169596 1414189 14411677 114796740

COPROC 30450 212524 1574459 12060870

DMA 5975 40248 165489 210370

Table 4-4 Performance speedup for matrix multiplication implementation options

speedup 128 256 512 1024
SW 1 1 1 1

OPT SW 1.5 2.1 3.1 3.2

COPROC 8.2 14.2 28.8 30.0

DMA 42.0 74.9 274.1 1721.8

From the results, software optimizations to reduce memory accesses provided

modest speedup to the system. For N=1024, the software technique is able to improve

performance by 3x; this suggests that data transfers are the dominant performance

bottleneck as N gets large. For small matrices, the coprocessor implementation added an

additional 3x improvement and the DMA implementation added an additional 3x

improvement above that. In contrast, for large matrix sizes, the measured improvements

is 10x and 50x respectively. This result shows that though software optimization

 86

techniques may bring only modest speedup, its combination with hardware techniques

can realize performance increases of more than three orders of magnitude.

4.4. Related Work

The methodology presented in this chapter shows how high performance systems

can be produced in hardware / software co-design techniques are also used to optimize

control and dataflow components of a computation. This idea has already been taken

advantage of in the family of stream processors [46].

The graphics processing unit (GPU) is the best know type of stream processor and

is a good example of the performances that can be achieved when the control and

dataflow elements are separated and optimized separately. The generic GPU architecture

consists of a deep pipeline designed to process an input data stream. Software written for

the GPU runs on a specialized processor core designed to supply parameters to each of

the pipeline stages. Dataflow is optimized because data passes directly from one

processing unit to the next. Control is optimized by the use of a processor core specially

design to only provide parameters to the processing units.

The Cell processor [47] is an example of a more programmable design that

explicitly optimized control and datapath elements separately. The processor consists of

one PPE connected to 8 SPUs through an internal high speed bus. The SPU processors

are optimized for arithmetic calculations and programmed by the PPE. Each of the 8 SPE

 87

also contains a Memory Flow Controller that allows the data to be passed directly from

one SPU to another. This enables the PPE to specify how data flows between the SPUs.

In recent benchmarks [48], the Cell processor was able to achieve 60x speedup on

the 256x256 matrix multiplication operation when the reference code is optimized for

computation and communications for a single SPU. The SPU is considerably more

powerful than the PPC405 processor used in our case studies, so it is no surprise that it

also outperforms our design. However, when all SPU cores are used, the benchmarks

show a 8x performance increase. This shows that through good dataflow designs,

communication overheads can be minimized.

The resulting performance demonstrated is impressive and validates the efficacy

of this approach. However, besides the high cost, there are several reasons why the cell

processor is not suitable for embedded systems in general.

1. The SPU while optimized for arithmetic functions is still restricted by the ISA and

sequential processing paradigm of processors.

2. The heterogeneous cores in the Cell processor create complications in the porting

of algorithms. Taking advantage of control and dataflow optimizations for the

architecture often requires a complete redesign of algorithms and software.

From a certain point of view, to realize high performance gains, the algorithm

must be molded to fit the architecture.

In contrast to the design approach of stream processors, we present a design

methodology which allows explicit optimization of the control and datapath of an

 88

embedded system. In contrast to designing a system based on the Cell processor, our

process is based on the system-on-chip (SOC) design approach. Thus, like the design of

the GPU, a system can be built to fit the specific application. Unlike the GPU design,

however, the degree of programmability in the control and datapath elements may be

specified. The GPU has a fixed dataflow and control limited to the specification of

computational parameters. The Cell processor enables both the dataflow and control

element to be programmable, though SPUs restrict the granularity of optimizations.

Our methodology provides a unified tool and environment where all these

elements can be explored. The design flow also enables a quick path to implementation

which is important to embedded systems where design time is an important factor.

4.5. Conclusions

It is clear that there are many techniques both in the hardware and software

domains that can be used to improve the performance of embedded systems. Three of the

most popular are: reduction of memory accesses in software, acceleration of functions

using coprocessors, and acceleration of memory accesses direct memory access (DMA)

units. They are popular in industry because they follow a simple design methodology

while producing large performance improvements.

However, there has been little study on the effects of these methods when used in

combination. In this chapter, we introduce a design environment which is able to explore

the interactions of these design techniques (which extend through hardware / software

 89

boundaries). Through the use of two case studies, we show that for some applications,

the performance gains from the combination of these techniques are more than linear.

The GCD case study shows that an order of magnitude performance increase can be had

by accelerating a computation in coprocessor hardware and then accelerating the

communications with a DMA module. However, in the matrix multiplier case study we

show that if the algorithm is first transformed to minimize data transfers, the performance

gains achieved by implementation of the new algorithm is greatly multiplied. Results

show performance improvement of up to three orders of magnitude in certain cases.

The design environment also flows easily into an implementation. The smooth

design flow can be attributed to our design environment which is able to guide the design

of the system architecture so that it is optimized for the application. This is in contrast to

stream processors where the application must be modified to fit the architecture. Faster

design times are a significant advantage for an embedded system design since they are

very sensitive to time to market. A system that is able to realize high performance while

minimizing design time is attractive. Our design environment enables the easy

exploration of proven techniques to achieve high performance and a framework to

quickly realize the resulting system.

In traditional design, the computing architecture is first defined and software is

then developed to be optimized for it. Our design environment, in contrast, uses

hardware / software co-design techniques to encourage the design of a computing

architecture that is optimized for the specific application.

 90

Chapter 5

Localized Security Interface

In this chapter, the interface between logical entities (processes) which share a

common processor is examined. Multitasking computing systems have become main

stream even in the field of embedded systems. With the ability to run multiple

applications on a single platform, comes the real concern that some of these applications

may be malicious.

The interface between different tasks in a system is a purely logical one but is also

different in purpose than the interfaces discussed so far in this dissertation. The

interfaces discussed so far divide up the system horizontally and are designed so that data

can travel easily through. In contrast, security boundaries divide up the system vertically

and are designed so that data cannot travel through them. The boundary is vertical

because, though there is much sharing of resources between the different applications

running on a single system, data from one application must not be accessible by another

 91

process. To prevent loss or corruption of data and software, the interface between

processes must be strengthened.

Though the purpose of the two types of interfaces may, at first glance, appear to

be conflicting, the cross-layer co-design methodology can still be used. In this chapter,

the way in which this can be accomplished is presented through the design of a multi-

threaded coprocessor architecture. In the design, a shared security function is first

identified. The isolation and access control layers are then collapsed into a single

hardware domain where they are optimized together with the crypto-algorithm. The

resulting designs exhibit both high performance and high security.

5.1. Functional Isolation

Security for multitasking systems focus on the implementation of two main goals:

resource access control and resource isolation. Resource access control is the assignment

of usage permissions for system resources or functions to processes in the system.

Classic security systems design focus mainly on this task; this is usually done by explicit

assignment of access rights to each running process and controlling the interaction

between them and various system resources (such as files, IPC, and the network stack).

Resource isolation tries to ensure that data from one process is not able to leak to another

process. Historically, this feature is the responsibility of the operating system and has

been implemented without assuming the presence of a malicious process in the system.

 92

In a perfect system, a malicious process can be perfectly identified and its access

to system resources appropriately restricted. In such a scenario, the task of isolation is

not important since the malicious process does not even have access to the resource. The

contributors of the Trusted Computing Group [64] focus on this idea by building

processors supported by a complex trust infrastructure to ensure that only trusted

software is allowed to be installed or executed in the system. Though well promoted by

industry, the effectiveness of such an approach is debatable [51][52].

In a real system, it is very easy for a malicious program to gain access [65]. In

such a situation, it is important that the process is not able to crash the system or, more

importantly, steal and/or use information from other resources in the system. Therefore,

in the absence of perfect access control, this chapter focuses on the implementation of a

system with stronger process isolation properties; malicious programs may run, but they

cannot interfere with other processes.

Process isolation is not a new idea. One of the earliest implementations is the

Unix process which was designed to prevent several users of a mainframe computer from

interfering with each other. Since it was not designed with security in mind, malicious

users have exploited the weak isolation. Though there are many OS security patches

released, new security holes are discovered daily. It has been argued that this is due to

the monolithic nature of traditional OS’s and the large amount of code that is allowed to

run in kernel mode [55].

 93

5.1.1 Related Work

From its early days, process isolation has been thought of as a software problem

in the domain of operating systems. In [55], Tanenbaum argues convincingly that a

secure operating system should be exclusively composed of a set of interactive processes

(microkernels). This method forces a certain degree of isolation between the different

processes responsible for the various operating system functions. Due to this isolation, a

security breach in one of the processes does not necessarily mean a compromise to the

whole system. In addition, partitioning of the OS functions allows the designer to

minimize the amount of code that is allowed to run in kernel mode.

A popular software solution to isolation is the virtual machine. Virtual machines

[50] allow several operating systems to run on a single processor; isolation is enforced by

a virtual machine monitor which restricts communication between the different operating

systems (in fact, one operating system is not even aware of the existence of another).

Mixed hardware/software solutions include processor architectural features that

try to protect against common known attacks. The ARM Trustzone [61] processors have

an additional security mode which allows trusted software to access additional secure

registers and memory management units. In the age of inexpensive silicon, SOC designs

are able to dedicate a whole processor to run untrusted software [62]. In the CELL

processor [63], each of the eight Synergistic Processor Elements (SPE) can be configured

as a secure processing vault which ensures that the application running on it is isolated.

 94

5.1.2 Functional Process Isolation

Guaranteeing process isolation to a whole system is a daunting task. However, in

most systems certain functions or resources can be identified as needing more protection

than others. In general computing, the keyboard or the disk drive may be a major source

of information leak. In embedded computing, isolation is particularly important in the

calculation of security primitives and protocols. The French company, Trusted Logic, in

its TL Security Model Architecture [53] for mobiles has used this idea to build a small

and secure security kernel. Isolation properties are very strong within the kernel, while

other functions are left to a standard operating system.

Software systems are also vulnerable to cache attacks as describe by [69] and

successfully demonstrated by [67] on the AES algorithm and [68] on the RSA algorithm.

The attacks involve a malicious process observing the pattern of cache misses in the

system in order to obtain the secret key. While there have been some cache designs [66]

that claim to be resistant to such attacks, such solutions are not widely available to

Figure 5-1 Lack of hardware isolation in current
architectures

CPU MEM
Crypto
coprocessor

task1 task2 task3

OS
No HW
isolation

SW
isolation

 95

common processors. Coprocessors are a better solution since they can be easily added to

the peripheral bus of most processors and access to them does not pass through the

memory subsystem. However, such coprocessors must still be carefully designed to

ensure that information does not leak between independent processes through the

coprocessor. As Figure 5-1 shows, even though a secure operating system may provide

isolation services, the coprocessor still can leak information between independent

processes through the coprocessor registers.

In this chapter, the use of coprocessors for process isolation is motivated.

Compared with traditional isolation techniques that are defined in terms of fixed

processors and fixed architectures, the major difference with the proposed coprocessor

centric approach is that isolation can be provided to arbitrary architectures. In addition to

higher performance, a well designed interface can guarantee isolation during computation.

5.2. Hardware Isolation Motivation

In order for a hardware based approach to be valid, the proposed system must

realize properties that significantly improve current process isolation schemes. The main

benefits of hardware are the potential of increased security and better performance. We

propose a secure coprocessor design that will provide strong process isolation properties.

Like the TL Security Model Architecture, the coprocessor will provide a specific function

or service for the various processes in the system. The following examples of a

coprocessor that provides an encryption service illustrate how coprocessor architectures

are currently not capable of providing these properties. In the examples, a processor is

 96

making use of a coprocessor that provides encryption and decryption services to multiple

processes.

5.2.1 Security Examples

One possible attack can occur at the moment that a process has just used the

coprocessor to encrypt a command to a remote server. A malicious process may then use

the same coprocessor without reprogramming the settings to send its own data to the

remote server, essentially spoofing the identity for the first process.

In a related attack, the malicious process can partially reprogram the coprocessor

by just changing modes from encryption to decryption. The previous encoded output can

then be reinserted into the coprocessor to reveal the unencrypted message.

With current coprocessors, this can be prevented by having the tasks reset the

coprocessor after each operation. However, this solution imposes additional overhead,

because it increases the period within which the coprocessor interface will remain locked

by a single task. Moreover, it leaves the responsibility of security on the design of the

operating system. Operating systems themselves are very complicated software

structures.

5.2.2 Performance Examples

Assume that a single coprocessor encrypts two channels of streaming data. Each

channel has a different mode of operation and different keys. The streaming data is time

sensitive and must have its delay bounded by a certain value. For a traditional interface,

this would mean that the operating system would have to manage the context switching

 97

between these two tasks. The overhead due to software context switching and repeated

interactions with the coprocessor is a limitation on the total throughput of the system.

A system with many processes having bursty data illustrates an extreme example

of context switching. This situation is not unusual in a VPN server, which handles large

number of secure interactive sessions.

The coprocessor can be designed to store the contexts (process specific data such

as the key and mode of operation) of the processes in the coprocessor. This means that

for streaming applications, the bandwidth of the encryption core is shared among the

active tasks with no time lost to context switching. For extremely bursty traffic, the

context information is already stored in the coprocessor; therefore, overheads associated

with processor-coprocessor interactions are minimized.

5.3. Agent Based Coprocessor

To show how process isolation can be implemented, a coprocessor based scheme

is proposed that is able to provide significant benefits in security and performance. In the

following subsections, a general system architecture where the coprocessor exists is first

defined. Then a protocol for communication with the coprocessor is defined before the

actual architecture of the coprocessor itself is presented.

 98

5.3.1 System Architecture

Figure 5-2 shows three possible system architectures for a coprocessor and its

communications with a CPU. The dashed lines represent the flow of data and the solid

lines represent the flow of control signals. In Figure 5-2 (a), the coprocessor directly

connects to the microprocessor. This means that both data and control signals must pass

through the microprocessor, making this the main bottleneck. In the second architecture

(Figure 5-2(b)), the coprocessor connects directly to a streaming interface that will supply

the data. With this architecture, the microprocessor only deals with control of the

coprocessor and interactions proceed on a block-by-block basis rather than a word-by-

word basis.

Figure 5-2 Different system architectures: a) simple coprocessor
interface, b) streaming coprocessor interface, and c) hybrid coprocessor

interface

memory

uproc

Dsp/
mem

memory

uproc

enc Net/
mem

dsp enc

memory

uproc

Dsp/
mem

enc Net/
mem

(a) (b) (c)

 99

The most significant source of communications overhead is the transfer of context

information. In an encryption application, context is the process specific data such as the

control state, the secret key, the mode of operation, and initial values. The transfer of this

information for each process not only reduces system efficiency, but also increases the

risk of data interception.

Figure 5-2(a) may seem to incur a large overhead but has the benefit of a more

traditional architecture and is more appropriate for interactive type applications such as a

telnet session. Figure 5-2(b) is more appropriate for processing of continuous streaming

data or large data blocks. The proposed design must to be compatible with either of these

common architectures. An example of how this is accomplished in shown in Figure

5-2(c).

5.3.2 Interface Protocol

The security example shows how information can leak between two processes in

the system in ways that are not obvious. To ensure process isolation, a method to

physically keep all context information between the running processes separate must be

derived. In addition, a mechanism is needed to bind the software process with the

hardware context such that it can not be accessed by unauthorized processes. To

accomplish these two tasks, an interface protocol was developed.

 100

The coprocessor interface communicates with the main processor and distributes

work to the agents. Using the interface protocol, a software process is able to set up a job

by sending parameters to the coprocessor. This context is stored in the coprocessor until

the software process terminates the job.

Figure 5-3 shows the basic interface between the coprocessor and the processor.

After sending the parameters necessary for a particular operation, the coprocessor will

confirm receipt by issuing a unique random number. This number will be used by the

software application in the future to issue commands to the coprocessor for the specific

channel. This unique ID number makes it difficult for other software processes (in

charge of a different data stream) from accessing another’s job parameters or internal

registers.

From the point of view of a software process running on the main processor, the

use of the ID numbers is invisible and is managed by the API drivers. When a process is

created, a memory location is allocated to store the ID number. The API setup function

will store the ID number at this location when a channel is created. In subsequent API

Figure 5-3 Processor - coprocessor interface
protocol

Set up context

Return unique
random ID number

Use ID number to
issue commands

Close context
(end of job)

Processor Coprocessor

 101

function calls, the number will be used to communicate with the coprocessor. Using this

API, the software process does not have access to the ID number and cannot give this

number to another process; this means that the link between a software process and its

hardware agent is tightly coupled. Table 5-1 shows the five types of commands that may

be available.

Table 5-1 Commands accepted by coprocessor

Command Description
Agent setup Reserve/configure an agent for a

calculation
Agent check Check to see if previous

calculation has been completed
Agent release Clear a certain context from the

coprocessor
Agent single Perform a single preset

calculation
Agent continuous Perform a series of preset

calculations taking data directly
from memory

Immediate Perform a single calculation

A malicious process can try to access a context by trying to guess a valid ID

number. The processor interface mitigates the effectiveness of such an attack by not

revealing any information about whether an ID number is valid or not. When the agent

check, agent release and agent continuous commands is given with an non-existing ID

number, the coprocessor will always respond with DONE. For the Agent single and

Immediate commands, a random number is returned. This gives the attacker no

indication of the validity of the guessed ID number.

 102

5.3.3 Distributed Architecture

While the interface protocol ensures the correct binding between software

processes and the hardware tasks, the coprocessor architecture ensures that the context

information is kept physically separated. In addition, the architecture has a large

influence on the speed in which the functions are performed.

The architecture of the proposed coprocessor is shown in Figure 5-4 and is

composed of the following main parts:

• processing unit

• agents

• data interface

• processor interface

Figure 5-4 Distributed coprocessor architecture

Agent
1

Agent
n

Processor interface

…

Processing unit

Access control

Read
Mem
ctrl

Write
Mem
ctrl

 103

The coprocessor processing unit contains the core logic needed to perform a

specialized task. In traditional, coprocessor design, engineers have concentrated on this

part to accelerate calculations. It is often large and complex; therefore, it is important

that it can be used efficiently.

The agents are composed of a state machine and registers to store the context for a

particular channel. It is responsible for ensuring that a function is performed correctly on

a particular data block or stream in a particular context. In general, agents cycle through

the following operations:

• fetch data from input port,

• perform operations on data using the datapath,

• write results to output port.

Because multiple agents exist in a single coprocessor access control logic must be

used to access the datapath and interface ports. In general, the addition of agents to a

coprocessor incurs very little area overhead due to its simple control operations.

The modular architecture also provides an easy and flexible design platform. The

interface protocol serves to isolate the requests made by the main processor from the

active components performing the computation. This allows the number of agents and

processing units to vary independent of application software. This results in smaller and

more portable software (multiple versions for each dynamic configuration is no longer

necessary).

The coprocessor can be configured by specification of the number of agent blocks

and associated processing units. The two parameters, the number of agents and the

 104

number of processing units, affect the performance of the system differently. The

number of agent blocks determines the number of simultaneous processes that may be

handled. The number of processing units determines the maximum throughput which the

system can support. For an efficient system, these two parameters are determined based

on the required throughput and latency of the processes.

The agents and processing units all operate independently from each other. The

agents are isolated from the main processor through the processor interface block. The

processing units are isolated from the agents through the access control block.

5.4. System Case Study

To demonstrate and study the characteristics of a system that uses the proposed

secure coprocessor architecture, a secure web-server application was developed. The

server uses the AES algorithm to individually encrypt data from each of its

communication channels. The hash algorithms, SHA1 and SHA-256 are also

implemented as coprocessors. Hash algorithms are widely used in message

authentication (MAC) which ensures that messages have not been modified during

transmission. The objective is not only to evaluate the benefits of the proposed secure

coprocessor architecture, but also to evaluate the design tools and procedures needed to

implement a secure coprocessor based system.

 105

5.4.1 Secure Web Server Application

A secure web server application was implemented to demonstrate how a real

system interacts with the proposed security coprocessor. The application performs the

following tasks: When a client establishes a connection with the server, a key and

encryption mode of operation is negotiated. Data is then encrypted and sent to the client.

Several clients can be handled simultaneously and a process is created to manage each

connection.

During the testing of the system, several connections are made to the server, each

spawning its own process. Each of these processes independently registers its security

context with the secure coprocessor. When several files are transferred, the coprocessor

is able to handle several encryption/decryption jobs simultaneously and without leakage

of information. The footprint of the different software components is shown in Table 5-2.

Table 5-2 Size of software components

Server Application 2,794 bytes
SW AES (for system w/o
coprocessor)

33,536 bytes

Coprocessor interface drivers 2,928 bytes
Quickthreads library 1,868 bytes
Multithreaded TCP/IP
communications stack

106,957 bytes

System calls 4,508 bytes
TOTAL 152,591 bytes

From the system point of view, the size of the software can be reduced by 20% if

a coprocessor is used to perform AES encryption. This shows that for many applications,

it is possible to both reduce cost and increase performance and security.

 106

5.4.2 Distributed Architecture

To build and evaluate the application, a proprietary development environment

was used. The development environment enables co-simulation of the hardware and

software components of the design as well as interactions with real network traffic. The

following subsections describe the different components that make up this design

environment.

5.4.2.1 Co-simulation Platform

The GEZEL language was used to implement the coprocessor. GEZEL is a

system design language proven very effective in the design of coprocessors [28]. In

addition to easy co-simulation software processes and hardware coprocessors, in this

chapter GEZEL has been extended to allow interactions with a real networking

Figure 5-5 Co-simulation platform

Linux Development Platform

Threads Library

GEZEL simulation environment

SimIT
ARM simulator

AES
coprocessor

swPosix Network
Interface

TCP/IP stack

Applications (possibly malicious)

SHA
coprocessor

 107

environment. Thus using this platform, cycle true behavior of the system can be analyzed

while allowing the system to be able to interact with the environment.

Figure 5-5 shows the co-simulation platform used to verify and examine the

coprocessor design. The coprocessor was written in GEZEL and co-simulated with

application software running on the SimIT-ARM [59] cycle-true instruction set simulator.

The software system was cross compiled and loaded onto the SimIt-ARM

simulator and co-simulation was performed with the coprocessor in the GEZEL

environment. To allow connections with clients outside of the simulation environment,

the simulator was modified to support the POSIX select(), open(), and close() system

calls. Client processes can then connect to the simulation through the TAP/TUN drivers

[60]. These drivers help implement a virtual network device. This setup allows us to

have external client processes connect to the server that is running in a co-simulation

environment.

After verification of the design, the GEZEL tool was used to generate

synthesizable VHDL. The Synplicity synthesis tools used this generated code to produce

the area and speed measurements for the design.

5.4.2.2 Coprocessor Interface Drivers
Communications between a software process and the coprocessor takes place

directly through the memory-mapped interface. Since context isolation is provided by

the coprocessor, it is not necessary for the OS to provide special access control services

to manage its use.

 108

Commands to the coprocessor are written directly to its registers, a process that

takes about 11 clock cycles per 32-bit word. This limits the maximum data throughput

between the processor and coprocessor.

5.4.2.3 Threads Library
A full operating system is not necessary to demonstrate the benefits of the secure

interface solution in a multitasking system. However, a threads library is necessary. A

compact threads library was developed supporting a subset of the pthreads API. It was

developed using QuickThreads [57], a simple and portable threads toolkit.

To illustrate a multitasking system, only the basic functions of thread initialization

and context switching were implemented. The context switch flavor used is not

preemptive. In the current design, a context switch occurs when a process releases a

system lock.

5.4.2.4 Protocol Stack
The TCP/IP protocol stack is a suite of networking protocols necessary to

communicate with the internet. The implementation of this is based on the lightweight

internet protocol (lwip-0.7.1) code [58].

The stack is implemented for a multithreaded system. Each thread is in charge of

a particular protocol or interface. Communications between the different network

protocol threads is accomplished by a mailbox message passing system. Though the

library supports all the features of an internet stack, the demonstration system built uses

only a subset of this.

In the example implementation, networking functions are implemented with only

two threads. At the lowest layer, an Ethernet interface is implemented to manage the

 109

basic input and output functions from the system to the network. The TCP/IP thread

processes the packets and manages all the opening, closing and maintenance of

connections. Applications can communicate with this stack through a sockets-like

interface.

5.4.3 AES Coprocessor Architecture

The AES coprocessor was implemented according to the principles explained in

Section 5.3. Using GEZEL, the coprocessor is described and linked with the SimIt-ARM

simulator. It is in this environment that verification and study of the properties of the

coprocessor was performed.

5.4.3.1 AES Algorithm
The AES cipher is a block cipher [49], which means that encryption and

decryption operate only on fix blocks of data. In the implementation case study, 128 bit

is the block size.

The algorithm consists of five main operators: AddRoundKey, SubBytes,

ShiftRows, MixColumns, and KeyExpansion. The inverse of these operators are used for

decryption. Figure 5-6 shows the how these operators are used to perform encryption and

decryption.

Encryption Decryption
AddRoundKey
For round = 1 to 9

SubBytes
ShiftRows
MixColumns
AddRoundKey

SubBytes

AddRoundKey
For round = 1 to 9

InvShiftRows
InvSubBytes
AddRoundKey
InvMixColumns

InvShiftRows

 110

ShiftRows
AddRoundKey

InvSubBytes
AddRoundKey

Figure 5-6 Pseudocode for AES encryption and decryption

In both encryption and decryption algorithms, there is a FOR loop that runs

through four of these steps. Hardware is efficiently realized by implementing only this

group of operations (a single round) into hardware. The same hardware can then be used

several times to perform a single encryption or decryption operation.

5.4.3.2 Interface Protocol
The microprocessor connects to the coprocessor through a memory-mapped

interface. The interface protocol uses an instruction set designed to minimize the amount

of communications necessary. Figure 5-7 shows the format of the instructions the

coprocessor receives. Depending on the type of command, zero or more of the optional

fields are used.

Figure 5-7 Instruction format of the AES coprocessor

Cmd (3) Mode(4) ID number (24)

Read address (32)
Write address (32)

Block size (10)

Key (128)

Data (128)

Initial vector or
Counter value (128)

Optional
Instruction
fields

 111

The normal use of the protocol proceeds in the following manner: A process

sends a command to the coprocessor to reserve some resources for future calculations. If

resources are available, the coprocessor grants the request by returning a random and

unique ID number. Future commands will use this ID number to reference the

cryptographic context in which calculations occur. At the end of a process' life, the

processor gives the command to the coprocessor to release the reserved resources.

The protocol also allows using the coprocessor without the reservation of

resources. In this case, the coprocessor will return the result upon the completion of the

calculation.

Table 5-3 shows the five types of commands that are available and the amount of

communications needed to complete them. The commands correspond directly to the

generic commands of Table 5-1.

Table 5-3 Commands accepted by the AES coprocessor

Command Return value 32-bit words transferred
(rd+wr)

Agent setup ID number or FALSE 9+1
Agent check DONE or FALSE 1+1
Agent release DONE or FALSE 1+1
Agent single AES result or FALSE 5+4
Agent
continuous

DONE or FALSE 4+1

Immediate AES result or FALSE 13+4

5.4.3.3 AES Coprocessor Architecture

Figure 5-8 shows the main logical blocks in the coprocessor. The processor

interface block accepts instructions from the microprocessor through a memory-mapped

interface. This block will then assign the work to one of the agent blocks. The agent

 112

blocks are dedicated controllers that are able to perform AES encryption and decryption

in any mode of operation. The agent blocks each have enough registers to store the state

of the calculation. The AES core performs the actual calculations. In the implementation

example, this is a purely combinational block, which performs a single round of

encryption or decryption; eleven rounds are necessary to perform a single AES

calculation.

 There are several agents in the coprocessor managing multiple AES cores (each

responsible for calculating a single round). The number of these elements changes

depending on the throughput and latency requirements of the system. A round robin

scheduling algorithm is used to ensure fair access to the AES cores. Memory read and

write access control blocks are available to support the streaming or block processing

architecture of Figure 5-2(b). For easy integration with popular architectures, all

interfaces are 32-bit buses.

Figure 5-8 Architecture of AES multitasking
coprocessor

Agent
1

Agent
n

Processor interface

…

AES round
core 1

AES access control

Read
Mem

Access
control

Write
Mem

Access
Control

…
AES round

core m

 113

Both encryption and decryption support the following modes of operation:

electronic codebook (ECB), cipher block chaining (CBC), cipher feedback (CFB), output

feedback (OFB), and counter (CTR). Such flexibility enables support of a wide variety

of popular security protocols including IPSec, SSH, and SSL/TLS.

5.4.3.4 Agent Blocks
The architecture of the agent block is shown in Figure 5-9. These blocks are

responsible for managing calculations for a single process. The task given to an agent

may be to encrypt a large data file. In this case, the agent block retrieves the data from

memory, performs multiple AES calculations, and then writes the encrypted data back to

memory. Because there is a tight coupling between a software process and its agent,

many agent blocks exist within the multitasking coprocessor.

Figure 5-9 Architecture of the AES agent blocks

Mode
data

Intermediate data
key

Round key
Round number

Initial vector/counter
Read address
Write address

Block size

req

req

req

req

ack

ack

ack

ack

Data from
memory

Data from
AES

Data from
processor interface

FSM
Registers (722 bits)

read
ctrl

write
ctrl

AES
ctrl

processor interface
ctrl

 114

The agent consists of a small finite state machine with a collection of registers to

remember the state of AES calculations.

The values stored in the registers add up to 722 bits of data and contribute to over

60% of the area of this block. In designs where many agents are required, area can be

saved by using an AES core that performs a full AES calculation; intermediate data

storage (which accounts for 30% of the total registers) will not be required in the agent.

The result is a larger AES core and a system with slightly longer latencies. Instead of

registers, a RAM module for each of the agents can also achieve a more area efficient but

lower performance design.

5.4.3.5 Access Control
Access control blocks regulate admission to the AES core and the external

memory blocks by the agents. Each of these blocks implements a round robin priority

scheduler. This means that the priority of the agents to use the resources rotates each

clock cycle. This ensures fairness among the agents competing to use the resources and

guarantees that all calculations experience the same delays.

In the implementation, a generic and purely combinatorial AES core was

implemented. The purpose was to compare the size of the multitasking processor with

the size of a typical single round AES core.

5.4.4 SHA Coprocessor Architecture

In secure communications, encryption algorithms such as AES ensure that

messages are kept private during transmission. Hash algorithms, in contrast, are used to

ensure that the messages are not altered during transmission. The popular SHA-1 and

 115

SHA-256 hash algorithms was implemented using the multithreaded coprocessor

framework. Both algorithms are able to handle a maximum message size of 264 bits and

operate on 512 bit block sizes. Because of this, the effect of algorithmic properties on the

coprocessor architecture can be studied.

5.4.4.1 SHA Hash Algorithm

SHA-1 SHA-256
Pad message to multiple of 512 bits
Split message into N 512-bit blocks
For message block = 1 to N

For iteration = 1 to 80
Do SHA-1 operation

Accumulate intermediate hash
Return final 160-bit hash value

Pad Message to multiple of 512 bits
Split message into N 512-bit blocks
For message block = 1 to N

For iteration = 1 to 64
Do SHA-256 operation

Accumulate intermediate hash
Return final 256-bit hash value

Figure 5-10 Pseudocode for the SHA hash algorithms

The SHA family of hash algorithms follows a common control structure but differ

in the operations performed. Figure 5-10 shows the pseudo code for the SHA-1 and

SHA-256 hash algorithms. The message to be hashed is first padded so that its size is a

multiple of the block size. In the examples, the block size is 512 bits, so zeros must be

added to the end of the message to extend the message size to nx512 bits. Multiple

iterations of the hash algorithm are performed on each of the message blocks in message

order. This operation creates an intermediate hash value that is used to compute the

intermediate hash value of the next message block.

Table 5-4 Comparison of SHA-1 and SHA-256 hash algorithms

 Message
size (bits)

Block size
(bits)

Hash size
(bits)

Security
(bits)

SHA-1 <264 512 160 80
SHA-256 <264 512 256 128

 116

The difference in the two SHA algorithms is summarized Table 5-4. The SHA1

algorithm performs 80 iterations for each message block and produces hash values of 160

bits. The SHA-256 algorithm performs 64 iterations and produces a hash value of 256

bits. Though it performs less iteration, the operations are more complex and the resulting

hash value is considered more secure.

The implemented hardware core for the SHA coprocessors performs the

operations found in the inner loop of the algorithm. Thus, the core is used 80 times for

SHA-1 and 64 times for SHA-256 for each message block.

5.4.4.2 Interface Protocol
The microprocessor connects to the coprocessor using the memory mapped

interface. Figure 5-11 shows the format of the instructions the SHA coprocessor is able

to receive. Since both the SHA-1 and SHA256 algorithms take the same input, the

instruction format can be reused in both cases. The optional parameter fields are used to

specify the message to be hash. For messages coming from the processor, the Data field

is used. For messages coming directly from memory, three Read Address and Message

size registers are used.

The normal use of the protocol proceeds in the following manner: a process sends

a command to the coprocessor to reserve an agent to perform a future hash operation. If

an agent is available, the coprocessor reserves it and returns a random and unique ID

number. The process will use this ID number to communicate the location of the

messages to be hashed.

 117

The SHA hash function has only a single mode of operation, so commands to the

agent mainly involve specifying the contents of the message to be hash and/or the

location in which it is located. When the calculate hash command is given, the agent will

correctly pad the message and return the final has value to the process through the

memory mapped interface. At this point the job is complete and the process gives the

command to release the reserved resources.

Table 5-5 Commands accepted by the SHA coprocessor

Command Description Return value 32-bit words
transferred
(rd+wr)

Agent setup Reserve and configure
an agent for SHA
calculation

ID number or
FALSE

1+1

Agent check Check to see if previous
calculation has been
completed

DONE or FALSE 1+1

Agent release Clear a certain context
from the coprocessor

DONE or FALSE 1+1

Agent single Add a new work to the
message block

AES result or
FALSE

1+1

Agent
continuous

Add a block of words
to the message block
from data taken directly
from memory

DONE or FALSE 3+1

Get hash Pad the current AES result or 1+5 (SHA-1)

Figure 5-11 Instruction format of the SHA
coprocessor

Cmd (3) ID number (24)

Read address (32)
Message size (32)

Data (32)
Optional
parameters

 118

message block and
generate hash value

FALSE 1+8 (SHA-256)

Table 5-5 shows the 6 types of command that are available and the

communications needed to complete them. Note that the SHA-256 has larger overhead

due to the larger hash size.

5.4.4.3 SHA Coprocessor Architecture
Figure 5-12 shows the main logical blocks in the coprocessor. The processor

interface block accepts instructions through a memory mapped interface and assigns

work to the agent blocks. The agent blocks each have its own set of registers to store the

intermediate state of hash operations. SHA core performs contains the logic that

performs the actual operations. In the implementation, the core performs a single

iteration of the SHA algorithm. In SHA-1, the core is invoked 80 times for each message

block while in SHA-256 it is invoked only 64 times.

5.4.4.4 Agent Blocks

Figure 5-12 Architecture of SHA multitasking coprocessor

Agent
1

Agent
n

Processor interface

…

SHA round
core 1

SHA access control

Read
Mem

Access
control

…
SHA round

core m

 119

The architecture of the agent blocks are shown in Figure 5-13. Each block is

responsible for calculating the hash value of a single message for a single process. To

hash a large message, the agent is able to retrieve the data from memory, correctly pad

and partition the message blocks and perform the hash functions. The final hash value is

returned to the process through the memory mapped interface. There is a one to one

relationship between a message to be hashed an the agent that performs the hash.

Because of this, a software process may have multiple agents under its control and many

agents exist within the multitasking coprocessor to service these jobs.

The agent consists of a collection of registers that store the message block to be

hashed and the intermediate hash values. Additional registers are used to store the

current state of the calculation such as location of message and size of message. As with

the AES coprocessor, a RAM module can significantly reduce the size of the agents.

Figure 5-13 Architecture of the SHA agent blocks

Message block
Intermediate hash
Working registers

Round number
Word count

Read address
Message size

Data from
memory

Data from
SHA core

Data from
processor interface

FSM
Registers:
967 bits for SHA-1
1159 bits for SHA-256

read
ctrl

SHA
ctrl

processor interface
ctrl

 120

5.4.5 System Performance

The coprocessor designs were implemented and tested in the system design

environment. The following sections analyze the resulting performance and cost of the

system.

5.4.5.1 Design Size and Speed
 To examine the relative size of each of the modules in the design, the design was

synthesized for the Virtex-II Pro FPGA using Synplicity. Table 5-6 shows the results for

the AES coprocessor.

Table 5-6 Size and speed of modules in the AES coprocessor

Module Slices Critical path
(ns)

AES core 3037 --
AES access controller 132 2.9
Agent (each unit) 1065 7.6
Read memory access
controller

186 6.2

Write memory access
controller

12 1.9

Microprocessor interface 623 5.8

The AES core takes three times more area than the agents. This suggests that for

a system that uses many contexts, system performance can be inexpensively increased by

the addition of more agents (instead of the addition of more cores). Compared to the

addition of a separate coprocessor or AES core, the resulting area/performance ratio is

lower.

The results for the SHA coprocessors are shown in Table 5-7 and Table 5-8

respectively.

 121

Table 5-7 Size and speed of the modules in the SHA-1 coprocessor

Module Slices Critical path (ns)
SHA1 core 262 --
SHA1 access controller 86 2.0
Agent (each unit) 1090 6.7
Read memory access
controller

58 1.8

Microprocessor interface 277 6.1

Table 5-8 Size and speed of the modules in the SHA-256 coprocessor

Module Slices Critical path (ns)
SHA256 core 269 --
SHA256 access controller 178 1.7
Agent (each unit) 1627 8.7
Read memory access
controller

58 1.8

Microprocessor interface 294 5.3

The logic of the SHA hash algorithms is low in complexity and therefore the core

takes much less area than the agents used to control it. The size of the agents is mainly

due to the large number of registers needed to store a message block and the intermediate

states of computation. In a traditional coprocessor design, these registers will be included

in the size of the coprocessor core. In addition, the traditional design cannot make any

claims of better security.

5.4.5.2 Coprocessor Efficiency
In internet applications such as SSL and SSH, encryption and hashing are both

performed on the same data packet: encryption to protect the privacy of the

communication, and hashing to protect the integrity of the message. Because of this, the

same metrics are used to measure the performance of the AES function and the SHA hash

functions.

 122

In order to show the benefits of the coprocessor design at the system level,

performance analysis was conducted using real world data. Studies such as [54] shows

that 90% of internet traffic is under 1Kbytes. In the test scenario, a packet size of

1Kbytes is assumed. Using this assumption, the time it takes to process each of these

packets can then be measured. Table 5-9 shows the results of the comparison.

Table 5-9 Comparison of overhead for bursty traffic loads

 Context switch
(cycles)

AES calc
(cycles)

Total Time
(cycles)

Efficiency

Proposed 54 504 558 90 %
Traditional 194 504 698 72 %

This result shows that the proposed interface can handle 25% more 1Kbyte

packets as the traditional coprocessor interface. This gap widens as the packet size

decreases. The efficiency improvement is due to the storage of context in the agents;

when a context switch occurs, this information need not be retransferred to the

coprocessor. However, the actual AES core is still not running at full capacity. This

suggests that further improvements are possible in the instruction set design of this type

of coprocessor. Future versions should further optimize the design to increase the

capacity for the bursty traffic model.

In the AES comparison (Table 5-9), the percent utilization of the processing core

is compared between the proposed architecture and that of the traditional one. Both are

assumed to have a similar DMA function for accessing data directly from memory. The

proposed architecture showed significantly higher efficiency since context information

 123

such as secret keys, initial vectors, and modes of operation are kept in the coprocessor

and do not need to be transferred at each context switch.

The SHA version of the coprocessor does not have this advantage. This is

because hash functions do not need any initial parameters to operate. When compared to

traditional architectures, both architectures require the transmission of the address

locations where the data is located. In addition, the SHA hash algorithms have high

utilization of the core – 80 iterations for SHA-1 and 64 iterations for SHA-256.

Efficiency is therefore fixed at near 100% for both implementations.

5.4.5.3 Coprocessor Latency
The coprocessor is also able to encrypt several continuous data streams. This

traffic pattern is common for multimedia type applications. Latency is often important in

teleconferencing applications and they exhibit this type of traffic pattern. Table 5-10

shows how the latency changes as the coprocessor processes multiple data streams.

Table 5-10 Comparison of latency for different number of simultaneous streams in AES

Number of
simultaneous streams

Proposed
interface latency
(clock cycles)

Traditional interface
latency (clock cycles)

1 22 12
2 28 400
3 36 594
4 48 788

For a single stream, the traditional approach outperforms the proposed interface

approach. However, for multiple data streams the multitasking coprocessor is able to

scale much more gradually. In the multhreaded interface, context switching is performed

 124

in hardware at the AES round level. Consequently, the latency increases much more

gradually.

This effect becomes much more serious for traditional interfaces when

implemented in a network that processes both bursty packets and continuous streams.

The high frequency of bursts can severely degrade the latency of the stream processes.

Note that agents are hardware objects designed to make efficient use of the

computational resource, in this case, the computation of one AES round. The overall

throughput of the system, however, is limited by the AES core. For systems requiring

increased throughput, multiple cores must be created.

Table 5-11 Comparison of latency for different number of simultaneous streams in SHA-1

Number of
simultaneous streams

Proposed interface
latency (clock cycles)

Traditional interface
latency (clock cycles)

1 113 113
2 160 226
3 240 339
4 320 452

Table 5-12 Comparison of latency for different number of simultaneous streams in SHA-256

Number of
simultaneous streams

Proposed interface
latency (clock cycles)

Traditional interface
latency (clock cycles)

1 97 97
2 128 194
3 192 291
4 256 388

Hashing is usually used in conjunction with encryption/decryption to ensure that

the transmitted message has not been modified. Because both operations must be

performed on the transmitted or received message, latency of the operation is a very

relevant metric. One of the main advantages of the proposed architecture is the fast

 125

hardware context switching that the coprocessor can perform independent of the main

processor. Table 5-11 shows the comparison for SHA-1 algorithm and Table 5-12 shows

the comparison for the SHA-256 algorithm. The new architecture shows latency

improvements of 29% for SHA-1 and 34% for SHA256.

In the traditional interface, for each additional data stream the additional latency

experienced is made up of the time it takes to transfer the new context and the time it

takes to hash one hash message block. In contrast, in the proposed interface, the

additional data stream only experiences the latency due to the calculation since context

information is already stored in the coprocessor. For a coprocessor that contains only a

single core, the additional latency for each data stream in the traditional coprocessor is

113 (23+80) cycles for SHA1 and 97 (33+64) for SHA2. The proposed interface

experiences only 80 cycles and 64 cycles respectively. Further performance

improvements to both systems can be obtained by the addition of a second core in the

processor -- above two simultaneous streams, the additional latency due to calculation

latency is halved (40 cycles for SHA1 and 32 cycles for SHA2).

5.4.6 Design Methodology

The implementation examples of the AES and SHA coprocessors show that there

exist applications that can benefit from the addition of a secure coprocessor. The

proposed coprocessor architecture can improve security in all multitasking systems, but

the cost of that security greatly depends on the algorithm which it implements. A large

and complex core which is shared by multiple small agents is the best case scenario since

 126

it demonstrates both increased performance and increased security with minimum

overhead when compared with traditional coprocessor architectures.

Agents store the state of the computation in registers and they constitute the

majority of the agent's area. From an implementation point of view, it would be

beneficial to select (if possible) the algorithm that will give greatest amount of security

while minimizing the size of the intermediate state.

 Because of these costs, the proposed solution may not be appropriate for all

systems and the designer should understand when it is needed. Applications that require

many different communication channels or require a well used shared security functions

can benefit the most from the proposed architecture.

In terms of efficiency of the coprocessor core, improvements can be made for

functions that are highly programmable and require initial values or keys. In this respect,

the coprocessor is suitable for encryption and decryption algorithms in general.

In terms of latency of multiple data streams, the proposed architecture will always

outperform traditional architectures since context switches can be set up to run

independent of the controlling processor. The rate in which the latency grows increases

depending on the number of iterations required to processes one message block. For the

AES algorithm, this works out to be a maximum of 12 cycles per additional data stream.

For the SHA algorithms this works out to be 80 cycles for SHA-1 and 64 cycles for SHA-

256.

 127

5.5. Conclusions

Embedded systems are becoming more and more complex. Because of this the

opportunities for compromising a system and the information in which it is processing is

constantly increasing. Process isolation is one important component in the design

process.

In terms of interface design, it is clear that secure systems have less complex

driver software code running in kernel mode; this minimizes the chance that kernel code

contains a security leak. In addition, though kernel mode provides some measure of

protection to kernel processes, they remain vulnerable to software cache attacks and

protection does not extend to external hardware such as coprocessor in the system.

Because of this, the new coprocessor architecture provides process isolation protection

with minimal software drivers. The functionality of the different security layers are

combined in the coprocessor. Optimizations performed at this level produce an interface

that is both efficient and secure. The idea is demonstrated and verified by building a

secure web server which takes advantage of a secure AES coprocessor. Implementations

of secure SHA coprocessors further validate the design approach.

 128

Chapter 6

System Level Security Interface

In the previous chapter, the concept of a security interface was introduced. The

design process, however, closely follows the traditional process (identify an operation

and accelerating it through hardware). The security concern becomes an extra design

parameter that must be considered during the optimization stage.

In this chapter, the cross-layer design process as it relates to the computing system

as a whole is examined. In other words, we examine the design of an interface that

provides isolation to all applications at all points of execution. To optimize this feature,

the architecture of the processor itself must be reconsidered.

6.1. Computer Security

Computer architectures today are not adequate in providing security to the

software programs that use it. At the base of all current systems is the concept of

 129

hierarchical security modes i.e. the core of the system is protected by layers of services

with each layer further away from the hardware having more and more restrictions placed

on its rights. At the very top of this stack sits the user software processes, which has the

fewest rights of all the layers. This approach to designing secure systems is inherently

more difficult to protect since it is usually the user processes that contain the secrets to

protect.

The solution to this problem is to build a system that depends on a multilateral

security model. In other words, a system must be built such that no single process has

full system privileges and all processes are protected from each other. This concept of

isolation must be extended all the way down to hardware such that there is no possibility

of software subversion.

An ASIP design with additional instructions that implement a secure atomic

context switch achieves this goal. A thread manager that sits in the processor’s datapath

manages the execution of all processes in the system and directly modifies the control

flow to ensure secure context switching. The design presented represents only an

incremental change to a general embedded processor but provides security features that

fundamentally are not provided by current systems.

6.1.1 Multilateral Security

A multilateral security model distributes system rights among the processes in the

system. All processes in the system will have its rights limited and none will have full

system privileges. Without a concentration of power, malicious process will not have an

 130

obvious target to attack. In addition, trusted user processes will not have to trust software

layers below it to protect its own secrets.

Figure 6-1 shows the difference between hierarchical and multilateral security

architectures. In the hierarchical model, the software scheduler manages user processes

and has full access to their memory space. Thus, the scheduler provides an obvious and

easy target for a malicious process to attack. In a multilateral system, the scheduler is a

process that cannot access the memory space of other processes in the system. A

malicious process does not have a target that gives full access so subverting the system

becomes more difficult.

In this chapter, a novel ASIP design is presented that can be easily integrated into

embedded systems to support a multilateral security architecture. It accomplishes this by

implementing a thread manager right within the datapath of the processor. Thread

management instructions are integrated into the instruction set architecture (ISA) and

operate directly on the processor’s registers.

Though the security goals are unique, modification of the processor to support

control flow is not unheard of. An interrupt is often handled with an automatic jump to

the interrupt vector table together with an exchange of shadow registers. In digital signal

Figure 6-1 Hierarchical versus multilateral architecture

Hardware

Scheduler

Hardware

Scheduler

 131

processors, the repeat instruction and zero-overhead looping was added so that a

particular section of code can be looped a fixed number of times without the overhead of

branch instructions. Most control instructions added to ISA are purely to improve

performance. While performance improvement is demonstrated in the ASIP design, the

main motivation is to design a processor that supports secure systems.

Secure thread management is the base of any secure multilateral system. In order

to enforce the unique and specific privileges of each process, the system must know

which process is running at all times. In the proposed system, this responsibility is on the

thread manager which is integrated into the processor’s datapath. This ASIP solution

provides system properties that are difficult to obtain with other architectures. These

include:

• Guaranteed context switching

• Native thread management

• Strong identification of processes

• Hardware based isolation

• More distributed operating system

6.1.2 Current Security Architectures

In modern computing systems, security is built on the concept of hierarchical

security modes. Even in the smallest embedded system, it is common to find processors

supporting a supervisor/kernel mode and user mode. The kernel mode is usually

occupied by the operating system (OS) which has all the rights in the system i.e. it has

 132

full access to all memory locations and can execute any instruction. In contrast, the user

process has only limited access to memory and instructions.

To provide increased security, processors began to support more layers of security

(4 layers is common in modern systems). Though many OS’s still only make use of the

traditional two layers, microkernel operating systems [55] took advantage of the extra

layers by splitting up the monolithic OS into many different communicating processes

occupying the three lower levels. The most well know microkernel OS is Minix 3 from

Tanenbaum [71]. The most critical tasks such as interrupt handlers, schedulers, and

timers ran in the lowest layer (ring 0). Recently, virtualization technologies have become

popular as a solution to security [72]. It also adds another layer of software below the

operating system. This layer, the virtual machine monitor (VMM) or hypervisor, is a thin

software layer which reproduces the interface of the hardware so that multiple OS’s can

run on top of a single processor platform.

Virtualization technologies have become popular partly due to the claim of

increased security through isolation. In fact, the popular x86 processor (a notoriously

difficult processor for virtualization) is being redesigned by both Intel and AMD to better

support isolation services. In the embedded space, the Denali project from the University

of Washington [73], have attempted to build a VMM that is small and scalable for web

server applications. Companies like VirtualLogix [74] and Trango [75] are already

offering very small VMMs that are able to provide isolation services. However, though

isolation is provided, it is not clear how strong it is when exposed to a determined

malicious process.

 133

Though with increasing difficulty, attacks on each of these systems exist and

follow a general pattern. A malicious process enters the system and attacks the operating

system to gain access to kernel mode. Once this is accomplished, it has full system

privileges and can attack other processes in the system. Attacks include stealing secret

information (keyloggers), subverting program execution (hijack), denial of service, etc.

In standard monolithic systems, gaining control of the OS is relatively easy –

there are many interfaces with the user process and only one of the API’s need be

compromised to gain access to kernel mode. For microkernel type operating systems,

several successive attacks need to be made at each level before the kernel mode is

reached. This becomes a more difficult task, but is by no means impossible. Virtual

machines provide yet another level of protection such that malicious attacks can be

contained to a single OS instance. However, newer Malware is able to detect the

presence of the VMM and mount attacks on them as well [76].

In the latest technology, a malicious virtual machine can be inserted below the

VMM. This attack was revealed, in concept, by University of Michigan in the SubVirt

project [77]. Not long afterwards, two real attacks on commercial systems were

demonstrated at the Blackhat conference. The Blue Pill attack demonstrated such an

attack on Windows Vista running on an AMD Pacifica processor [78]. The Vitriol

rootkit-based attack was demonstrated on the Intel-VT processor running MacOS X [79].

 134

Figure 6-2 shows two different attack vectors. The traditional attack has the

malicious process attack the OS to gain access to a user process. The new attack gains

access to user processes by installing a malicious VMM running in the processor’s kernel

mode. Though the methods differ, there are two main commonalities to be noted:

In an hierarchical security architecture, all attacks are focused on attacking the

software running in kernel mode

The ultimate target of the malicious attacks are other user processes, either to steal

information or to subvert its normal execution.

6.2. Secure Context Switch

The secure context switch is the basis for a strong hardware supported multilateral

computing system. It is able to ensure that processes are isolated from one another. In

the proposed system, in order to precisely define the secure context switch, the attack

model is first analyzed to determine what information is important to protect. Then

Figure 6-2 Attack vectors of malicious software

OS

U ser
Proc

U ser
Proc

VM M

Virtua l M achine RootkitO perating S ystem

U ser
Proc

M al
Proc

 135

operational primitives and rules are derived so that context switches can occur without

compromising this secret data.

6.2.1 Attack Model

Though there is a myriad of attacks that a malicious process can perform in a

system, their objectives can be summarized into three main types:

1. stealing secret information from another process

2. corruption or insertion of malicious information in another process

3. insertion of malicious execution code into another process

The stealing of secret keys is the most obvious attack that can be made. When

secret information is compromised, a malicious process can gain access to bank accounts,

medical records, and other personal and sensitive information. This type of attack must

be prevented to maintain the property of privacy.

A malicious process is able to trick another process into operating on malicious

information either by manipulation of pointers to data structures or by insertion of new

parameters into another’s stack. In such an attack a malicious process can trick a process

into decrypting a secret message that it does not have the key to. Alternately, if a

banking application is attacked, a malicious message (such as: ‘ transfer all funds to

account X’) can be inserted and then processed by an unprotected process.

A process can be hijacked by another by overwriting the return address of a

function call that is stored in the stack. This allows malicious code to run with access to

 136

all the private data and privileges of the target application. This attack essentially allows

the attacker to steal the identity of another process.

6.2.2 Process Identity

Processes in traditional systems are identified by process ID numbers assigned by

the OS. While the system works well in the absence of malicious processes, these ID

numbers can be easily spoofed. Identification of a process should be based on properties

that cannot be spoofed. The identity of a process at any time can be identified by the

history of what it has done and what it is doing now. To minimize implementation

complexity and cost, the selection of the minimum features that can represent a process’

identity was focused on. The two properties are unique to each process and cannot be

spoofed and can be minimally represented by two register values: the stack pointer (SP)

and the program counter (PC). The SP points to what the process has done in the past

and may hold valuable secrets. The PC points to what it is doing now.

In the system, during a context switch, these two registers are replaced by the

thread manager atomically. A potential malicious attacker has no opportunity to access

these two values from another thread.

6.2.3 Context Switch Primitives

To protect and isolate the identities of all the processes in the system, three basic

thread management primitives were defined. The description of these commands and

how they are implemented is described below:

• Create()

 137

This is the operation that registers a new process with the thread manager. For a

normal system, parameters to this operation include the location of the program to run,

the location of the program stack, and the parameters of the program. A secure system

includes additional information such as the amount of memory needed along with the

types of read or write privileges, amount of memory needed in the secret vault, and

access needed to the coprocessors.

• Yield()

This operation performs the actual context switch operation i.e. it takes the current

process’s context information out of the processor and replaces it with the context

information of the new process. A secure context switch ensures that no data from a

previous context is accessible and also ensures that the two processes cannot have any

direct or indirect interactions with each other during this time.

• Retire()

This operation executes when a process ends. Resources which are assigned are

deallocated. The context information is taken away from the processor and replaced by

the context of the next process. Like yield(), the system must ensure that no data or

interactions can pass between the leaving process and the new one.

6.2.4 Fairness

The proposed computer architecture implies a distributed control structure; the

operating system does not need to be involved in scheduling. Using a cooperative

multithreading model, the processes in the system decide for themselves when to give up

 138

control of the processor. This system works well if all the processes are trusted and ‘ fair’

with its execution time. However, this cannot be assumed in general. A malicious

process may perform a denial of service attack on all the processes in the system by

refusing to call yield. The effectiveness of such an attack is limited by implementing a

limited cooperative multithreading model. In this system, after a context switch, the

process is given a fixed amount of time to perform its calculations. When time expires,

the yield instruction is automatically inserted into the processor.

For malicious processes, this forces them to give up control of the processor to

other user processes – damage is thus limited. Read access to a decrementing hardware

watchdog timer allows friendly processes to see how much time is left in their execution

budget so that they can prepare for a context switch.

6.3. Implementation

Implementation of the ASIP involves the design of both hardware and software

components. Figure 6-3 shows the architecture of the ASIP processor. The thread

manager is added to the datapath. A watchdog timer is added outside the processor core

to enforce time quotas. The ISA is modified to access the new thread management

commands and software drivers have been developed to take advantage of these new

instructions.

 139

6.3.1 Thread Manager

The thread manager is responsible for maintaining a queue of context information

for all the processes in the system. Specifically, for each process in the system the thread

manager stores the program counter (PC), and the stack pointer (SP). During a context

switch the PC and SP registers are pushed into the queue and replaced by new PC and SP

values.

The thread manager is implemented within the processor datapath and accessed

through three processor instructions which correspond to the context switch primitives.

In the system, it is implemented as a FIFO queue using a circular buffer architecture.

Implementation cost is a RAM for storing SP and PC for all the processes in the system,

and two registers that corresponds to read and write pointers. The create instruction

Figure 6-3 Addition of thread manager and watchdog
timer to the datapath

pc

Thread
manager

Register File Datapath

sp

r0

Watchdog
timer

reset
interrupt

Counter
value

 140

stores the current SP and PC into the queue, therefore only the write pointer is

incremented. The yield instruction both stores the old context and provides a new one,

so both the write and read pointers are incremented. The retire instruction only gives

out a new context so only the read pointer is incremented.

The processor instructions to the thread manager do not allow any process to find

the context information of another process. The only time context information is released

is through a context switch. However, since the SP and PC are atomically replaced, a

malicious process has no opportunity to access this information.

6.3.2 Watchdog Timer

The watchdog timer is a decrementing counter used to enforce the maximum time

allowed for each process running on the processor. It is decremented at each clock cycle

and generates an interrupt when the counter reaches zero. The counter is reset by the

thread manager each time a context switch occurs. The interrupt handler contains a

single yield instruction which immediately switches the PC and SP registers; this

forces a context switch to occur.

This forced context switch is very abrupt, and there is a chance that information

can leak through the other registers to the next process. To enable processes the ability to

make cleaner context switches, the watchdog timer counter value can be read through a

memory mapped interface. With this information, a process is able to know how much of

its allotted time is left so that it can initiate its own context switch procedure.

volatile long *time_left;

 141

time_left = (volatile long) 0x80000004;

The forced context switch ensures that malicious threads cannot monopolize the

processor and perform a denial of service attack.

6.3.3 Create ()

The create instruction from the processor’s ISA takes the current register

values of SP and PC and stores them in the queue of the thread manager. Direct usage of

this instruction essentially clones the parent process. To spawn a new process, extra

instructions must be added to distinguish one from another. Note that the implicit

assumption here is that the parent process is not malicious to the child process.

Figure 6-4 shows the ARM assembly commands that are used to create a new

process. Before Create() is called, memory must be allocated for the stack of the new

process and the entry address to the new function must be known.

Figure 6-4 ARM assembly code for the create() operation

Create (child_sp, child_pc)
 mov r0, #0
 mov r1, #1
 mov r4, sp
 mov sp, child_sp
 stmfd sp!, {r0-r12, r14}
 create
 ldmfd sp!, {r0-r12, r14}
 cmp r1, #1
 beq PARENT
 mov lr, pc
 mov pc, child_pc

 142

In the function, before create is called, a flag (r1) is set to indicate the parent

process. The address of the child_sp is then stored in the SP register. All registers are

then pushed onto the new stack and create is called. This is the point where the new

process will start its execution.

After create, the values in the stack are popped and the flag is checked. A set

flag indicates that the current process is the parent. In this case the flag is reset and all

registers are pushed back onto the stack. The original stack pointer (from the parent) is

returned to the SP register and execution continues.

In the case of the child process, the flag has already been modified by the parent

(it executes first) and will be reset. This indicates to the child process that it can now

branch to the process entry function.

6.3.4 Yield ()

The yield instruction takes the SP and PC register values and replaces them

with new ones. Since these two values wholly represent the identity of a process, the new

process is able to run immediately. However, there is a possibility that information leaks

between the two processes through the general purpose registers. A clean context switch

requires extra instructions.

 143

Figure 6-5 shows the ARM assembly commands that can implement a clean

context switch. All the general purpose registers are first pushed into the stack. Then the

values of all the registers are cleared before yield is call. This ensures that the next

process will not be able to gain any extra information through leftover values in the

registers.

6.3.5 Retire ()

Like the yield instruction, retire invokes a context switch by replacing the

SP and PC. In addition to clearing all the registers, the memory allocated to the stack

should be freed as well.

Figure 6-5 ARM assembly code for the yield() operation

Figure 6-6 ARM assembly code for the retire() operation

 stmfd sp!, {r0-r12, r14}
 mov r0, #0
 . . . (clear all registers)
 mov r12, #0
 mov r14, #0
 yield
 ldmfd sp!, {r0-r12, r14}

 mov r0,sp
 bl free
 mov r0, #0
 mov r1, #0
 . . . (clear all registers)
 mov r12, #0
 mov r14, #0

 144

Figure 6-6 show the ARM machine code that is run before a retire is called.

The memory allocated to the stack is first deallocated. All the general purpose registers

are then cleared to zero.

A special case occurs when the current process is the last or only process in the

system. Retire would normally replace the SP and PC with new values from the next

process. If there is no other process in the system, then the PC is set to a special address

in non-writeable memory. This address location contains an infinite loop to a NOP

instruction.

6.4. Results

The GEZEL language was used to implement the ASIP datapath modifications.

GEZEL is a system design language proven very effective in the design and simulation of

domain-specific micro-architectures [28]. It is also a design environment that enables

easy co-simulation between user described logic and a wide variety of intellectual

property.

The thread manager and watchdog timer was written in GEZEL and co-simulated

with software running on the Simit-ARM [36] cycle-true instruction set simulator. After

verification of the design, the GEZEL tool was used to generate synthesizable VHDL.

Synopsys synthesis tools used this generated code to produce the area and speed

measurements for the design.

Table 6-1 Comparison of speed and area of datapath modifications

Module Size (Kgates) Critical path (ns)

 145

N-ARM7TM 50 17
Thread manager 1 7

To examine the relative size of the thread manager, circuit synthesis was

performed using Synopsis. The TSMC 0.18um CMOS standard cell library with

conservative wire load model was used. Table 6-1 shows the results. The results were

compared to the synthesized N_ARM7TM design from [37]. The additional memory

needed for the memory depends on the maximum number threads that the system is

designed to support and requires 64 bits per thread. Not including the two port memory

of the thread queue, the thread management unit only takes 2% of the total ARM

processor area.

Table 6-2 Comparison of execution time for thread management operations

Module SW
(cycles)

ASIP
(cycles)

Create() 743 450
Retire() 348 53
Yield() 191 63
Check_watchdog() --- 27

Test software was run on an ARM simulator to compare the performance between

a software thread manager and the ASIP implementation. Table 6-2 shows the speed

comparison between the purely software based context switch and the native thread

management instructions of the ASIP. The software threads library was developed using

QuickThreads [57], a simple and portable threads toolkit.

 146

In a multitasking system, the yield() command is used most often. The results

show that the ASIP solution is 3 times faster than the equivalent software routine. The

retire() operation is almost 7 times faster. The check_watchdog() function has no

equivalent in software. It is implemented with a memory mapped interface. Reading the

32-bit value from the watchdog time takes only 27 cycles.

6.5. Discussion

By removing hierarchical software layers, isolation of the software processes in

the system becomes the responsibility of the hardware platform. The context switch

defines the border between two processes in the system and must be secured so that the

boundary is not vulnerable to information leaks or malicious attacks. This chapter

Figure 6-7 Secure embedded system based on ASIP

CPU
Thread

manager

Secret
Vault

System Memory

Cache

Memory
rights

manager

Secure
Functions

 147

demonstrates that with minor modifications to a processor core, an ASIP can be built that

will support secure context switching. There are, however, other parts of the system,

such as the memory, where attacks can occur.

While the proposed ASIP processor currently does not support these functions, it

is an integral component a secure system that does. Figure 6-7 shows an example of such

a system.

Connected to the ASIP core are two special modules: the memory rights manager

and the secret vault. The memory rights manager sits between the processor core and the

memory subsystem. It determines which memory locations the processor has access to.

Also, access to sections of memory can be defined as read only, write only, or both read

and write. The secret vault is a small memory that is used to store keys and other

sensitive information that will be used by security coprocessors in the system.

The role of the thread manager in this system is to broadcast to the external

modules the identity of the currently running thread. For the memory subsystem, this

means that each software process can be assigned unique, non-overlapping blocks of

memory. For processes that need to communicate with each other, shared memory

locations can be negotiated. The memory access rights of a software process cannot be

compromised since the process does not have direct access to the memory manager – the

settings are determined by the currently running process.

From the point of view of the processor, the secure vault is a small private write

only memory. The secret vault output is connected directly to external secure

coprocessor units like ECC or AES engines. Since it knows the identity of the currently

 148

running process through the thread manager, access to the secret information from the

different processes in the system can be regulated. Thus the secret keys can only be used

by the corresponding software process. For increased security, once the key is

programmed, even the user process is not able to access its value. This prevents possible

side channels due to insecure programming practices.

Thus the thread manager in the ASIP forms the basis of a strong and secure

system. Similar architectures can be developed to protect access to I/O devices,

networking services, etc.

6.6. Conclusions

There is much interest in adding security to computing systems and the

technologies from general purpose computers are now trickling down to the embedded

domain. Yet, all the technologies are based on hierarchical security architectures.

Processors built using this architecture are focused on protecting operating systems

instead of user processes where the root of trust resides.

The secure context switch is the basis of multilateral security architecture. In this

chapter, an ASIP architecture that supports secure context switch is proposed. The

addition of a thread manager to the datapath cost less than 2% in area of the ARM7

processor. In addition to providing a more secure platform, this addition is also able to

increase the performance of context switch functions by more than 3 times. The

proposed architecture can be used in the future to secure not only the context switch, but

 149

also provide user process centered rights to all the different subsystems external to the

processor core.

 150

Chapter 7

Conclusion

In traditional embedded system design, the application is divided into independent

blocks and implemented separately. Interfaces allow the different components to interact

together to produce a functioning system. While this strategy produces systems that work,

the interfaces between the modules introduce performance overheads. In the design of

embedded systems, performance is often a key design criterion. It is, therefore, important

to have a proven methodology to accelerate applications in embedded systems.

The main contribution of this dissertation is the development of a cross-layer co-

design methodology to accelerate algorithms. It is able to produce high performance

embedded systems and is applicable to applications that vary in size and function. The

process consists of the following three steps:

1. Remove intermediate interfaces to consolidate processing

 151

Intermediate interfaces incur performance overhead and are not functionally

necessary for correct system operation. Removing them reduces interface overhead even

before algorithmic optimizations are performed.

2. Optimize algorithm

Depending on the application domain, there are many optimization techniques

that can be used. The removal of intermediate interfaces exposes more opportunities to

make use of them. Given the existence of interfaces within the design, however,

optimization of the algorithm also includes reducing the use of the interfaces and to

organize the use of the interfaces efficiently.

3. Optimize the interfaces

For the interfaces that still exist in the system, performance can be further

increased by changing the interface mechanism. One such technique for this is the saving

of local context information so that computation parameters need not be repeated

transferred. Another method is to separate the data flow and control flow components of

a calculation; DMA is an implementation example of such a technique.

Because of the broad applicability of the methodology and its novel approach, its

use in design also enables the discovery of new technologies and algorithms. In this

dissertation, significant contributions have also been made in the areas of channel coding,

signal processing architectures, optical networking, system design tools, and security

architectures.

In the first part of the dissertation, the methodology was used to design a new type

of optical network that is able to guarantee high data throughput. Following the co-

 152

design process, two key decisions allowed the achievement of the new and unique design:

(1) the choice of an uncoordinated system immediately removed the complexities of a

media access control module (2) the choice to consolidate all processing in digital

hardware. Thus the methodology enabled the design of new channel codes and the

corresponding high speed hardware structures that implement them. These results

represent significant contributions to the areas of communication channel codes, signal

processing, and optical networks.

The application of the methodology in the domain of system on chip (SOC) is

discussed in the second part of the dissertation. In the domain of SOC, the designer is

often limited by an underlying computer architecture. Assumption of this model places

many restrictions on the interfaces. For example, the system bus bandwidth inherently

restricts the speed in which information can be transferred through it. Using this

methodology, we show how algorithms can be optimized to take advantage of the

interfaces available. The contribution of this part is a set of tools that is able to support

the design methodology from high level exploration stage all the way down to

implementation.

The third part of the dissertation examines how the methodology can be used to

efficiently support greater security in embedded systems. The resulting computer

architecture designs support better security in embedded systems and, in addition,

improve system performance. This result is a significant contribution to the field of

secure computer architectures.

 153

Bibliography

[1] Y. Matsuoka, P. Schaumont, K. Tiri, and I. Verbauwhede, “Java Cryptography on

KVM and its Performance and Security Optimization using HW/SW Co-design

Techniques,” CASES, 2004.

[2] A. P. Foong, T. R. Huff, H. H. Hum, J. P. Patwardhan, and G. J. Regnier, “TCP

Performance Re-Visited,” IEEE 2003.

[3] J.S. Chase, A. J. Gallatin, and K. G. Yocum, “End System Optimizations for

High-Speed TCP,” IEEE Communications Magazine, April 2001.

[4] A. Romanow and S. Bailey, “An Overview of RDMA over IP” , First International

Workshop on Protocols for Fast Long-Distance Networks, 2003.

[5] IEEE 802.3-2005 “Part 3: CSMA/CD access method and physical layer

specifications” , 2005.

[6] IEEE Std 802.3an™-2006 "Amendment 1: Physical Layer and Management

Parameters for 10 Gb/s Operation", Sept. 2006.

[7] F.E. Ross and J.R. Hamstra, “Forging FDDI, IEEE Journal on Selected Areas in

Communications, vol. 11, issue 2, Feb. 1993, pp. 181-190.

 154

[8] R. Bosch, GmbH, CAN specification 2.0 (1991)

[9] D. R. Boggs, J.C. Mogul, and C.A. Kent, “Measured Capacity of an Ethernet:

Myths and Reality,” ACM SIGCOMM ’88 Symposium on Communications

Architectures and Protocols, pp. 222-234.

[10] M. Griot, A. Vila Casado and R. Wesel, “Nonlinear Turbo Codes for Interleaver-

Division Multiple-Access on the OR Channel,” IEEE GlobeCom’06, December

2006.

[11] M. Griot, A. Vila Casado, W.Y. Weng, H. Chan, J. Basak, E. Yablonovitch, I.

Verbauwhede, B. Jalali and R. Wesel, “Trellis Codes with Low Ones Density for

the OR Multiple Access Channel,” IEEE International Symposium on Info.

Theory, July 2006.

[12] L. Ping, K. Y. Wu, and L. Liu, “A Simple, Unified Approach to Nearly Optimal

Multiuser Detection and Space-time Coding,” ITW 2002, India, October 2002.

[13] L. Ping, L. Liu, and W. K. Leung, “A Simple Approach to Near-Optimal

Multiuser Detection: Interleaver-Division Multiple Access,” IEEE Wireless

Communications and Networking Conference, pp. 391-396, 2003.

[14] G. Ungerboeck, “Channel Coding with Multilevel Phase Signals,” IEEE

Transactions on Information Theory, volume 28, pp. 52-67, 1982.

[15] Virtex-II Pro Platform FPGA Handbook (UG012) found at

http://www.xilinx.com/bvdocs/userguides/ug012.pdf

 155

[16] Y. Zhu and M. Benaissa, “A Novel ACS Scheme for Area Efficient Viterbi

Decoders,” Proceedings of the 2003 International Symposium on Circuits and

Systems, May 2003, pp. 264-267.

[17] M. Guo, O. Ahmad, M. Swamy, and C. Wang, “A Low Power Systolic Array

Based Adaptive Viterbi Decoder and its FPGA Implementation,” Proceedings of

the 2003 International Symposium on Circuits and Systems, May 2003, pp. 276-

279.

[18] A. Abdul Shakoor, V. Szwarc, and T. Kwasniewski, “High Speed Viterbi

Decoder for W-LAN and Broadband Applications,” 2nd Annual IEEE Northeast

Workshop on Circuits and Systems, June 2004, pp. 25-28.

[19] D. Knuth, The Art of Computer Programming Vol. 3 Sorting and Searching,

Addison-Wesley, Reading, MA, 1973, pp.229-232.

[20] I. Pupeza, A. Kavcic, and L. Ping, “Efficient Generation of Interleavers for

IDMA,” IEEEE International Conference on Communications, June 2006.

[21] based on code found at http://www.humanistic.org/~hendrik/

[22] T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe and H.

Takahashi, “Over-1000-channel Ultradense WDM transmission with

Supercontinuum Multicarrier Source” , J. Lightwave Tech., Vol. 24, No. 6, pp

2311-2317, June 2006.

[23] A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-Performance Phase Locking

of Wide Linewidth Semiconductor Lasers by Combined Use of Optical Injection

 156

Locking and Optical Phase-Lock Loop”, J. Lightwave Technol. vol. 17, no. 2, pp.

328-342, Feb. 1999.

[24] K. Petermann, Laser Diode Modulation and Noise, Kluwer Academic Publishers,

1988.

[25] B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley & Sons, 1991.

[26] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F.

Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E.

Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic

Communication Systems”, IEEE J. Selected Topics in Quantum Elect., Vol. 6, No

1, pp 69-81, 2000.

[27] E. I. Ackerman and C. H. Cox, “Effect of Pilot tone Based Modulator Bias control

on External Modulation Link Performance”, MWP 2000, pp 121-124, Tu4.6, 11-

13 Sept. 2000. J. Hennessy, D. Patterson, “Computer Architectures: A

quantitative approach, 2nd Edition” Ch. 5.3, MKP Publishers, 2002.

[28] P. Schaumont and I. Verbauwhede, “A Component-based Design Environment

for Electronic System-level Design,” IEEE Design and Test of Computers, special

issue on Electronic System-Level Design, 23(5), pp. 338-347, September-October

2006.

[29] F. Ghenassia (ed), “Transaction Level Modeling with SystemC TLM Concepts

and Applications for Embedded Systems,” Springer, 2005.

 157

[30] D. Gajski et al., “SpecC Specificatin Language and Methodology,” Kluwer

Academic, 2000.

[31] XtensaTM microprocessor. Tensilica Inc. (http://www.tensilica.com).

[32] G. Martin, “Recent Developments in Configurable and Extensible Processors,”

International Conference on Application-specific Systems, Architectures and

Processors, Sept 2006, p. 39-44.

[33] D. Ching, P. Schaumont, and I. Verbauwhede, "Integrated modeling and

generation of a reconfigurable network-on-chip," Int. J. Embedded Systems, Vol.

1, Nos. 3/4, 2005, p. 218-227.

[34] A. Hodjat and I. Verbauwhede, "Interfacing a high speed crypto accelerator to an

embedded CPU," Proc. 38th Asilomar Conference on Signals, Systems, and

Computers, Volume 1, pp. 488-492, November 2004.

[35] A. Hodjat, L. Batina, D. Hwang, I. Verbauwhede, "A Hyperelliptic Curve Cryto

Coprocessor for an 8051 Microcontroller,” IEEE Workshop on Signal Processing

Systems (SIPS 2005), pp.93-98, November 2005.

[36] W. Qin, S. Rajagopalan, S. Malik, “A Formal Concurrency Model Based

Architecture Description Language for Synthesis of Software Development

Tools,” ACM 2004 Conference on Languages, Compilers, and Tools for

Embedded Systems, June 2004, pp. 47-56.

 158

[37] I-J Huang, W-K Huang, R-T Gu, and C-F Kao, “A cost effective multimedia

extension to ARM7 microprocessors,” IEEE International Symposium on Circuits

and Systems, 2002.

[38] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer and A.

Vandercappelle, “Data and Memory Optimization Techniques for Embedded

Systems”. ACM Transactions on Design Automation of Electronic Systems, Vol

6, No. 2, pp.149-206, April 2001.

[39] R.W. Hartenstein, J. Becker, M. Herz, and U. Nageldinger, “A novel sequencer

hardware for application specific computing” . IEEE International Conference on

Application-Specific Systems, Architectures and Processors, 1997.

[40] M. Herz, R. Hartenstein, M. Miranda, E. Brockmeyer, and F. Catthoor, “Memory

addressing organization for stream-based reconfigurable computing” , 9th

International Conference on Electronics, Circuits and Systems, 2002.

[41] http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.zip

[42] http://www.xilinx.com/ise/embedded/edk91i_docs/edk_ctt.pdf

[43] K. Weber, “The accelerated integer GCD algorithm,” ACM Transactions on

Mathematical Software, 1995.

[44] D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical

Algorithms (3rd edition), Reading, Massachusetts: Addison-Wesley, 1997.

 159

[45] S. Chatterjee, A. R. Lebeck, P.K. Patnala, and M. Thottethodi, “Recursive array

layouts and fast matrix multiplications,” IEEE Transactions on Parallel and

Distributed Systems, Nov 2002.

[46] U.J. Kapasi, S. Rixner, W.J. Dally, B. Khailany, J.H. Ahn, P. Mattson, and J.D.

Owens, “Programmable Stream Processors,” Computer, August 2003.

[47] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell Broadband Engine

Architecture and its first implementation – A performance view”, IBM Journal of

Research and Development, 2007-08-14.

http://www.research.ibm.com/journal/rd/515/chen.html

[48] J.A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,

"Introduction to the Cell multiprocessor", IBM Journal of Research and

Development, 2005-09-07.

http://researchweb.watson.ibm.com/journal/rd/494/kahle.html

[49] National Institute of Standards and Technology (U.S.), Advanced Encryption

Standard. http://csrc.nist.gov/publication/drafts/dfips-AES.pdf

[50] P-H Kamp and R. Watson, “Building Systems to Be Shared, Securely,” ACM

Queue, vol. 2, issue 5, pp. 42-51, July/August 2004.

[51] S.J. Vaughan-Nichols, “How trustworthy is trusted computing?” Computer, vol.

35, issue 3, pp.18-20, March 2003.

 160

[52] R. Oppliger and R. Rytz, “Does trusted computing remedy computer security

problems?” IEEE Security and Privacy Magazine, vol.3, issue 2, pp.16-19,

March/April 2005.

[53] http://www.trusted-logic.com/mob_tech.html

[54] N. Brownlee and K. Claffy, “ Internet stream size distributions,” Proc. of 2002

ACM SIGMETRICS international conference on Measurement and Modeling of

Computer Systems, pp.282-283, June 2002.

[55] Tanenbaum, J. Herder, and Herbert Bos, “Can We Make Operating Systems

Reliable and Secure?” Computer, vol.39, issue 5, pp.44-51, May 2006.

[56] T. Garfinkel and M. Rosenblum, “When Virtual is Harder than Real: Security

Challenges in Virtual Machine Based Computing Environments,” Proceedings of

the 10th Workshop on Hot Topics in Operating Systems (HOTOS-X), May 2005..

[57] Quickthreads,

http://www.cs.washington.edu/research/compiler/papers.d/quickthreads.html

[58] Lwip protocol stack, http://savannah.nongnu.org/projects/lwip/

[59] W. Qin, and S. Malik, “Flexible and Formal Modeling of Microprocessors with

Application to Retargetable Simulation,” Proc. of DATE 2003, pp. 556-561,

March 2003.

[60] TAP/TUN universal interface, http://vtun.sourceforge.net/tun/

[61] http://www.arm.com/products/esd/trustzone_home.html

 161

[62] I. Hiroaki, A. Ikeno, M. Kondo, J. Sakai, and M. Edahiro, “VIRTUS: A New

Processor Virtualization Architecture for Security Oriented Next-Generation

Mobile Terminals,” Proc. 2006 Design Automation Conference (DAC 2006),

pp.484-489, July 2006.

[63] K. Shimizu, S. Nusser, W. Plouffe, V. Zbarsky, M. Sakamoto, and M. Murase,

“Cell Broadband Engine processor security architecture and digital content

protection,” Proceedings of the 4th ACM international workshop on Contents

protection and security, October 2006.

[64] Trusted Computing Group, https://www.trustedcomputinggroup.org/home

[65] W. E. Kuhnhauser, “Root Kits: an operating systems viewpoint,” ACM SIGOPS

Operating Systems Review, vol.38, issue 1, pp.12-23, January 2004.

[66] D. Page, “Partitioned Cache Architecture as a side Channel Defense Mechanism",

Cryptology ePrint Archive, Report 2005/280, 2005.

[67] D. A. Osvik, A. Shamir and E. Tromer, “Cache attacks and Countermeasures: the

Case of AES", Cryptology ePrint Archive, Report 2005/271, 2005.

[68] C. Percival, “Cache missing for fun and profit", Proc. of BSDCan 2005, Ottawa,

manuscript available from http://www.daemonology.net/hyperthreading-

considered-harmful

[69] D. Page, “Defending Against Cache Based side Channel Attacks", Information

Security Technical Report 8(1):30-44, 2003.

 162

[70] M. Gasser, Building a Secure Computer System. Van Nostrand Reinhold, May

1988.

[71] Minix 3 OS, http://www.minix3.org/

[72] M. Rosenblum, and T. Garfinkel, “Virtual machine monitors: current technology

and future trends,” Computer, vol.38, issue 5, pp.39-47, May 2005.

[73] A. Whitaker, M. Shaw, and S. Gribble, “Denali: A Scalable Isolation Kernel,”

Proceedings of the Tenth ACM SIGOPS European Workshop, Saint-Emilion,

France, September 2002.

[74] http://www.virtuallogix.com/

[75] http://www.trango-systems.com/

[76] I. Arce, “Ghost in the Virtual Machine,” IEEE Security and Privacy Magazine,

July-Aug 2007.

[77] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang,

Jacob R. Lorch, "SubVirt: Implementing malware with virtual machines",

Proceedings of the 2006 IEEE Symposium on Security and Privacy , May 2006.

[78] J. Rutkowska, “Subverting VistaTM Kernel for Fun and Profit” , BlackHat

Briefings USA, August 2006, Las Vegas, NV.

[79] D. A. Dai Zovi, “Hardware Virtualization Rootkits,” BlackHat Briefings USA,

August 2006, Las Vegas, NV.

 163

[80] R. York, “A New Foundation for CPU Systems Security: Security Extensions to

the ARM Architecture” , ARM Limited, May 2003.

[81] K. Prettyjohns, “Hard Real-Time Microcontroller for Embedded Applications,”

Embedded World, February 2007.

[82] Ubicom Inc., “The Ubicom IP3023 Wireless Network Processor,” 2003.

[83] K. Shimizu, S. Nusser, W. Plouffe, V. Zbarsky, M. Sakamoto, and M. Murase,

“The Cell Broadband Engine processor security architecture and digital content

protection,” Proceedings of the 4th ACM international workshop on contents

protection and security (MCPS06), October 2006.

[84] H. Chan, P. Schaumont, and I. Verbauwhede, “Process Isolation for

Reconfigurable Hardware,” 2006 International Conference on Engineering of

Reconfigurable Systems and Algorithms (ERSA06) (Distinguished Paper), pp.

164-170, June 2006.

