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In embedded system design, an application is usually broken up into independent 

blocks so that their implementation can be performed in parallel.  The definition of the 

interfaces between these blocks ensure that they can be recombined together to produce a 

functional system.  However, the presence of many interfaces incurs significant overhead 

that greatly reduces the performance of a system. 

In this dissertation, a cross-layer co-design methodology is presented which 

produces high performance embedded systems by concentrating on the reduction of 

interface overheads.  The main steps in the process include removal of intermediate 
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interfaces, optimizing the application algorithm to minimize the use of interfaces, and 

finally, accelerating the performance of the interfaces themselves. 

In addition to the research contribution of a design methodology, implementations 

of a wide range of embedded systems which vary in both size and application domains in 

presented.  These implementations illustrate both the validity of the methodology and 

demonstrate how the process can be applied to systems that span physical domains, 

hardware/software domains, and security domains. 
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Chapter 1  

 

Introduction 

 

In embedded systems, the performance of a single application or function is often 

a critical factor to its success.  The traditional design process, however, does not reflect 

the importance of this design goal.  It first focuses on the implementation of a 

functionally correct system, then through profiling accelerates the application through 

acceleration of its component blocks. 

To quickly implement an algorithm, the design is broken up into several different 

implementation blocks which allow different designers to work on them independently.  

The interface ensures that the different structures are able to interact well with each other 

and produce a functional system.  Blocks on the same abstraction layer use the interface 

to synchronize parallel computations.  Interfaces between different levels serve to 

abstract lower level structures so that they can be easily used by higher level blocks.  

These compositional properties are very useful in the building of functional systems; 

however, the interface between each layer of abstraction introduces significant 

performance overheads. 
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Indeed all the different layers of abstraction and different interfaces are very 

important in general computing systems that must be highly adaptable and perform many 

different functions.  In a processor based embedded system, the operating system 

provides application software a system call interface to common system services such as 

reading and writing to files and outputting data to the screen.  Drivers allow software to 

access peripherals without having to worry about the details of the underlying signaling 

protocol.  In communication systems, the media access control (MAC) layer abstracts 

away the details of securing a communication channel so that a higher layer block can 

transmit its message.  However, for embedded systems, the significant interface 

overheads between blocks can lead to expensive products or the sacrifice of important 

features. 

The overhead of an interface is taken up by two main tasks: the packaging and 

sending of data and the synchronization between the two communicating components.  In 

a software system running on UNIX, sockets are commonly used for two processes to 

communicate with each other; the synchronization time is taken up by the setup of a 

socket connection and communication time is taken up by the time it takes for data to 

travel through the established connection.  In hardware, synchronization costs are often in 

the form of a handshaking protocol and communication speed is limited by the bit-width 

of the data ports.  In the networking context, synchronization time includes the time it 

takes to gain access to the communication channel.  In a TDMA system, this is 

determined by the time slot allocation algorithm.  In an Ethernet system using the 

CSMA/CD protocol, this is a function of the current network load. 
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In this dissertation, a (holistic) cross-layer design methodology is presented which 

produces high performance embedded systems by concentrating on the reduction of 

interface overheads.  In contrast to methods that reduce the time taken in the processing 

of a specific interface, the methodology presented also takes into consideration the 

removal of intermediate interfaces and the optimization of algorithms to minimize the use 

of the remaining interfaces. 

This strategy is shown to be applicable to a wide range of embedded systems 

which vary in size and application domains.  In addition to interfaces between different 

abstraction layers, this dissertation focuses on interfaces between different heterogeneous 

technologies, components and information types. 

 

1.1 Examples of Interface Overhead 

Interface inefficiencies account for a significant percentage of time spent on a 

calculation even in embedded systems.  In [1], the authors explored performance 

optimization of the AES function in the Java cryptographic library.  In this exercise, the 

Java API must be maintained in order to support legacy software which uses the library.  

Compared to the initial software only execution time of 198741 cycles, the hardware 

accelerated coprocessor version showed an order of magnitude improvement (19198 

cycles).  However, on further examination of the results, it was discovered that 18939 of 

those cycles were spent just passing data through the Java environment to the coprocessor.  
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In other words, performance improvements of three orders of magnitude can be achieved 

if interface overhead can be eliminated.  

The implementation of TCP is an example of a widely used system where the 

majority of the time is lost on intermediate interfaces.  In [2], a detailed performance 

profiling of the Linux-2.4 TCP stack is performed.  The architecture of this 

implementation is shown in Figure 1-1(a).  The results show that actual protocol 

processing only accounts for 10-15% of the actual execution time.  Techniques such as 

zero-copy networking, checksum offloading and interrupt coalescing [3] are popular 

techniques and have been shown to double the performance of systems when used in 

combination.   

These techniques focus on acceleration individual processing steps and do not 

remove intermediate interfaces which still make up the majority of execution times.  

Figure 1-1   TCP protocol implementation (a) with traditional architecture (b) with 
optimized architecture 

User mode

Kernel mode

Application App. buffer

User 
socket library

Kernel sockets

TCP/IP stack

HW device driver

Network interface hardware

Send
buffer
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buffer

User mode

Kernel mode

Application App. buffer

Network interface hardware
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More than 50% of time is spent in the operating system performing interrupt handling, 

context switching, and system calls.  More than 30% is spent on copying data from one 

memory location to another. 

The profiling study implied that TCP performance can be improved by orders of 

magnitude if its processing can be consolidated into a single environment (such as 

specialized hardware) where the intermediate interfaces can be removed.  Removing 

interfaces is difficult since the operating system is responsible for sorting and distribution 

of packets to the different applications; operating systems are full of internal interfaces.  

Remote direct memory access (RDMA) technology provided a solution to this problem in 

2000 [4] by introducing a method which allows the sender to specify to the receiver the 

memory location to store the data.  Thus TCP processing can be accelerated by 1) the 

removal of intermediate interfaces and 2) simplification of the application level interface 

through RDMA technology.  The resulting implementation architecture is shown in 

Figure 1-1(b). 

The process of TCP offloading echoes the main steps of the cross-layer design 

methodology proposed in this dissertation.  First, the different parts of the algorithm are 

collected into a single implementation domain where intermediate interfaces are removed.  

The algorithm itself can then be optimized; optimization may even involve the design and 

implementation of a new algorithm that performs the same functionality more efficiently.  

Finally the application interface is simplified and optimized by separating the control and 

dataflow components. 
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1.2 Performance Components 

To better understand how the algorithm can be optimized under the cross-layer 

co-design methodology, the time spend on all applications can be broken up into three 

generic performance components and analyzed.  The three components are: control, 

computation and communications.  Each of the design steps presented, focus on the 

reduction of the time spend on these components. 

The control element determines the manner in which data is transferred between 

domains in a system.  In a multitasking system, the portions of the operating system that 

manages the scheduling of tasks and performs context switches all reduce performance.  

In a software context switch, this is made up of the time it takes to save the context 

information of the current process and load the context information of the new processes.    

In the context of hardware, control overheads include the time spent performing 

handshaking between IP blocks, performing bus arbitration and synchronization.  In a 

larger scale of networks such as TDMA and CDMA, control overheads include tasks 

such as clock synchronization, network coordination and media access control. 

It is the nature of interfaces to allow data to flow between two different domains.  

However, each additional interface must inevitably require some performance overhead 

to manage this transfer of data.  The removal of intermediate interfaces, therefore, also 

removes the control overheads due to each of the interfaces. 

The computation element represents the series of operations that must be 

performed to produce the desired behavior in a system.  The execution time of systems 
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can be improved through modifications to the algorithms or implementation in different 

technologies.  In data intensive applications, transformations of the algorithm for better 

data locality have been proven to vastly improve performance because unnecessary 

memory transfers are eliminated.  In the context of interfaces, reducing intermediate 

interface boundaries exposes the algorithm to more of these optimization opportunities. 

The communications element represents the time it takes to transfer data between 

different domains.  When intermediate interfaces are removed, the communications 

between different domains are also removed.  While this in itself can improve 

performance, there still exists at least one interface (to the user application) that cannot be 

removed.  Performance can still be improved by optimizing the algorithm to require less 

communications or by acceleration of the communication mechanism. 

 

1.3 The Cross-Layer Co-design Methodology 

1.3.1 Minimize Interfaces 

Once a task or application has been identified for acceleration, the first step is to 

minimize all the intermediate interfaces in the algorithm; the overhead due to interfaces 

are reduced if no interfaces exist.  While the ideal case is for the application to be 

implemented without any interfaces, in most systems there exist some interfaces that are 

either impossible to remove or are very difficult to remove. 
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Interfaces that are impossible to remove include the physical interface, the 

application interface, and security interface.  All these interfaces must exist since they are 

defined by the application itself.  In an optical communications system, electronic data in 

the system must eventually be transferred in the optical domain.  If a task or function is 

shared among several applications, then an interface must exist for the applications to 

access the accelerated services.  In contrast, if data must not be shared among 

applications, a security interface must exist to prevent data from being transferred 

between two domains. 

The interface between proprietary IP blocks in a system is a common example of 

an interface that is very difficult to remove.  Companies depend on the implementation 

details of their design to survive and will not part with this information easily.  An 

interface can also keep two complex blocks separated.  Removing this interface can lead 

to a system that is too complex to analyze and optimize. 

1.3.2 Optimize Algorithm 

Once interfaces have been removed from the design, optimization to the algorithm 

itself is performed.  Optimization techniques are very domain dependent.  Classical 

software optimization strategies include transforming the algorithm to reduce the amount 

of executed instructions, memory access, and branch instructions.  In the hardware 

domain, the algorithm can be accelerated by taking advantage of fast circuit technologies, 

and application specific architectures that take advantage of specialized functional units, 

pipelining, and parallel execution. 
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With a view towards reduction of interfaces, the optimization of an algorithm 

includes the possibility of a using a new algorithm that performs the same functions as 

the initial one but more efficiently.  A solution obtained through this method, if available, 

is inherently easier to accelerate. 

1.3.3 Optimize Interfaces 

After the previous step, the remaining interfaces in the system are either 

impossible to remove or very difficult to remove.  They can, however, still be accelerated 

to improve application performance. 

The acceleration of the interface can be accomplished through implementation of 

new technologies.  For example, DMA improves the interfaces between memory and a 

coprocessor in a SOC system.  Widening the bus width of the system also improves 

interface performance by allowing larger amounts of data to be transferred each clock 

cycle. 

A complimentary method of accelerating the interface processing is through the 

redefinition of the interface itself.  For example, in an interface with a network protocol 

stack, header information is usually required by the interface for each packet to be sent.  

An improvement would be to only require header information to be given once per 

connection (which may span many packets of data). 
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1.4 Dissertation Overview 

Chapter 2 describes the process used to design an optical network and illustrates 

how the methodology is used in large systems that span multiple physical domains.  The 

development of an uncoordinated optical network was motivated by the observation that 

coordinated networks incur significant interface overheads in trying to maintain 

synchronization.  An efficient implementation of such a system can be built by 1) 

removal of intermediate interfaces and 2) consolidating the channel code processing to a 

single domain.  This strategy produced very low overheads between the physical domains 

and also enabled the development of fast and efficient channel codes in the hardware 

domain. 

In the SOC context, hardware implementation of algorithms in coprocessors is a 

popular and easy way to improve performance by accelerating the computation element.  

Thus it is a good strategy to consolidate as much of the operation in hardware as possible 

to reduce intermediate interface overheads.  Even with extensive consolidation, there 

remains, however, the final interface to the user.  In Chapter 3, common processor - 

coprocessor interface options were studied to determine their relative merits.  The 

overhead of the interface is from the combination of the control and communications 

elements.  In Chapter 4, a methodology to separate these two elements and optimize them 

separately is presented. 

Regular interfaces are designed to facilitate the efficient transfer of data between 

different domains.  In contrast, security interfaces are designed to regulate and restrict the 



 11 

transfer of data.  While these two types of interfaces represent conflicting purposes, 

Chapter 5 demonstrates how the design methodology can be used to build an efficient 

coprocessor that provides isolation services to the application processes that use it.  The 

strategy of consolidating isolation services in hardware then providing a simple but 

restricted interface to user processes is also used to develop a new secure processor 

architecture in Chapter 6. 
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Chapter 2  

 

Interface Between Physical Domains 

 

Optical networks provide the backbone of a large percentage of the internet.  

Their main benefit is high throughput and low signal degradation.  However, even with 

these attractive properties and the consumer’s insatiable demand for more bandwidth and 

higher throughputs, the technology that makes up the internet is not used in local area 

networks (LAN). 

The main reason for this is complexity and inefficiency of traditional optical 

networking technologies.  WDMA and TDMA systems are able to transmit at near 100% 

optical capacities but require many resources to maintain coordination among all the 

nodes in the system.  In TDMA, all nodes in the system must be synchronized to a base 

time and a central control distributes time slots to the nodes in the system. 

Such a system incurs considerable costs; even before data is transmitted, a node 

must allocate resources to be connected and synchronized with the network.  The 

overhead includes functions to synchronize all the nodes in the system as well as the 
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implementation of the central control which monitors the network and arbitrates all 

network accesses.  For the nodes in the network, overheads for transmitting a message 

include requesting of network resources so that messages can be exchanged, waiting for 

resource allocation and the partitioning of messages into multiple packets to fit time slot 

requirements. 

Such complexities increase the interface inefficiency and have contributed to the 

unpopularity of optical networks in the local area network domain.  Traditional Ethernet 

is the protocol of choice in this domain due to its simple interface and uncoordinated 

control scheme.  Nodes on the network can be added and removed from the network 

dynamically without disruption of network communications.  In addition, there is no 

explicit coordination between the nodes.  When a certain node wants to transmit data, it 

merely starts to transmit and the protocol determines what to do when a collision occurs.  

The price that is paid for the simple interface design is that collisions start to dominate in 

highly loaded networks and bandwidth becomes highly degraded as a result [5][6]. 

It should be noted that though Ethernet technology has been adapted to be used in 

high speed and optical networks (standards are being developed up to 100Gbps), the 

uncoordinated feature has been removed along the way.  The protocol has given up the 

CSMA/CD property which is responsible for detecting and dealing with collisions.   

The task, therefore, is to develop an uncoordinated optical network scheme which 

is able to combine the easy interface properties of traditional Ethernet with the high 

bandwidth/throughput properties of optical networks in the LAN context.  Such a system 

involves system co-design between three separate physical domains (the optical, 
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electrical, and logical); the design of the two physical interfaces at the boundary of these 

domains must be carefully considered. 

To build an efficient interface, major processing functions are first consolidated to 

a single domain.  Because of the complexities of the algorithms required for 

uncoordinated access, processing was consolidated to the logical domain; thus, the 

electrical and optical systems and the interface between them can be kept simple. 

In this chapter, the uncoordinated multiple access problem is explained in detail.  

To implement an efficient system, the protocol processing is consolidated in the logical 

domain.  Once the problem is bound to a single domain, the algorithms were designed 

taking into consideration the design parameters of high optical throughput and 

architectural limitations.  Validation of the methodology and design was performed by 

implementing the algorithms on FPGAs and interfacing it to an optical network. 

 

2.1. Optical Networks 

Optical communications have been becoming more and more important with the 

ever-increasing demands for bandwidth.  Fiber optic technology has been demonstrated 

for speeds up to hundreds of gigabits per second because of its low loss and low 

dispersion over extended bandwidths.  These properties of optical technology have been 

well utilized to form the backbone of global networks such as the internet and telephone 

networks. Communications among the optical transmission stations approach 100% 

efficiency (requiring no redundancy for error correction) by means of WDMA and 
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TDMA techniques. This has been possible at the cost of maintaining coordination 

between the different transmitting nodes.  

In the local area network domain, optical networks have had limited success.  

Though the optical token ring (FDDI) network promises higher bandwidth [7], Ethernet 

networks are significantly more popular.  This success is due to the ease in which a 

network can be set up.  Nodes on the network can be added and removed from the 

network dynamically without disruption of network communications.  In addition, there 

is no coordination between the nodes.  When a certain node wants to transmit data, it 

merely starts to transmit and the protocol determines what to do when a collision occurs. 

This need not be the case.  In the CANbus network [8], collisions between data 

from several transmitters are used to determine the priority of the messages.  By 

monitoring the aggregate signal of all the transmitters, a transmitter can determine 

whether there is a transmitter of higher priority.  If this is the case, it would abort its own 

transmission.  High priority transmissions have higher number of dominant bits (bits 

whose value cannot be over-written) in its header; if a dominant bit is detected by a 

transmitter that is transmitting a non-dominant bit, then it knows that it is colliding with a 

high priority transmission.  Though CANbus only allows collisions in the header of a 

data transmission to determine priority, it illustrates that data can be transmitted in the 

OR channel even when collisions occur. 

An OR channel is a channel that behaves like an N-input OR gate, where N is the 

number of nodes transmitting simultaneously.  Assuming on-off keying, if any node 

transmits a '1' data bit, all the receivers will see a '1' bit in the channel.  If all nodes 
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transmit a '0' bit, then the receivers will see a '0' in the channel.  In the CANbus network, 

the '1' bit is called the dominant bit since its value hides the presence of any '0' bits.  A 

passive optical star network can also be used as an OR channel.  Physically, the dominant 

'1' bit is represented by the presence of light and the '0' bit is presented by the absence of 

light. 

Though there are efforts to implement Ethernet on optical networks, aggregate 

throughput performance is fundamentally limited by collision of data [9].  The desirable 

properties of Ethernet are demonstrated by marrying the high-bandwidth properties of 

optical networks with the flexibility of Ethernet.  Collisions are avoided by careful design 

of channel codes.  The uncoordinated multiple access properties will be provided by a set 

of novel channel codes, which guarantee that data can be decoded at optical bit error rates 

i.e. BER<10e-9.  This bit error rate performance will be maintained even in the presence 

of other transmissions (interference).  30% efficiency was achieved by treating the 

interference users as noise.  Theoretically, up to 70% efficiency can be achieved in such a 

channel. In [10] nonlinear turbo codes which provide a BER of 1e-7 at 60% efficiency 

has been proposed. However, these codes require block-lengths in the order of thousands, 

which increases latency, and require an iterative decoding is much more costly to 

implement and cannot achieve optical data rate using current technology.  

2.1.1 Demonstrator Design 
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The process of building a high performance system through multiple 

technological domains is described in this chapter for the case of a novel optical network.  

The result is a working demonstrator that meets the system requirements and validates 

the design approach.  To demonstrate uncoordinated multiple access optical networking, 

the system comprises of six nodes simultaneously transmitting into an optical channel.  A 

receiver node takes the aggregate signal and decodes a single user.  Figure 2-1 shows the 

system block diagram of the system.  Each transmitting node is comprised of an FPGA, 

which codes the data; a laser, which provides the carrier for the coded data; and a 

modulator, which combines the two together and puts the data on the channel. 

Figure 2-1    High level view of demonstration system 
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Successful transmission and decoding of data from six users on a single optically 

coupled network verifies the correct functionality of the design.  The channel bit rate of 2 

Gbps is divided among the 6 nodes using novel channel coding techniques.  This will 

give an un-coded useful data bandwidth of 93 Mbps for each node.  The channel 

bandwidth is guaranteed for each node; in Ethernet technologies, useful bandwidth 

experienced by each node are not guaranteed and depends on the traffic characteristics of 

the other nodes in the system. 

Though the system was built with commercial off the shelf components, the 

design involves co-design between several design domains.  The decision to implement 

the channel codes on a Virtex II Pro FPGA platform allows hardware speeds to be 

achieved while maintaining a programmable platform.  In addition to this, this platform 

allows us to accurately predict the performance and cost of such a network in the future 

when ASICs are used.  The choice of platform in the logical domain, simplifies the 

design of the interfaces in both the electrical and optical domains. 

The Virtex II Pro FPGA board contains several high speed serial transceivers.  

They were independently measured to be able to support a channel rate of 2 Gbps.  The 

electrical/optical system was built in order to support this rate. 

The main design goal for channel coding is to find the highest rate code that is 

able to provide <10e-9 BER.  Experience has shown to us that for complex FPGA 

designs, useful work take between 5ns to 10ns to compute; this translates to a 100 MHz 

to 200 MHz clock.  In order to process the 2 Gbps, the coding algorithm will need to 
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support a parallelization factor of at least 10 to 20.  Also because of the large throughput 

requirements, powerful iterative coding algorithms may not be used. 

 

2.2. Uncoordinated Multiple Access Code Design 

In this section, the optical channel model used in this work and the high-level 

system design techniques used to provide uncoordinated multiple access to optical 

channels is briefly described.  For further details on the theoretical aspects of the 

approach presented in this chapter, the reader should look at [11].  

A simple communications model that can describe the multiple-user optical 

channel with non-coherent combining is the OR multiple access channel (OR-MAC).  In 

this channel, if all users transmit a zero, then the channel output is a zero.  However, if 

even one user transmits a one, then the channel output is a one.  

Information theory tells us that the maximum sum-rate (the sum of the rates of all 

the transmitters in the system) of the OR channel is 1 information bit per received data bit.  

For uncoordinated multiple-access, Interleaver-Division Multiple-Access (IDMA) 

[12][13] is a promising approach which has been successfully applied to general MACs.  

With IDMA, every user has the same channel code, but each user's code bits are 

permuted using a unique randomly drawn interleaver.  The receiver is assumed to know 

the interleaver of the desired users, and performs joint iterative decoding of all the users 

data.  However, under current technology, this decoding technique produces prohibitively 

large designs for optical speeds with today’s technology.     
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Hence, for a simple uncoordinated access decoder, other users must be treated as 

noise.  From a single-user perspective, this transforms the OR channel into the Z-Channel 

shown in Figure 2-2.  In this channel, when a particular user transmits a 1, a 1 is received.  

When this user transmits a 0, a 1 can be received with probability equal to the probability 

that any of the users transmits a 1.  

 

Treating other users as noise, a channel sum-rate of ln(2)~70% can theoretically 

be achieved for any number of users. Thus, while dramatically decreasing the decoding 

complexity, only 30% of the channel sum-rate would be lost with the use of capacity 

achieving codes. 

For the IDMA-based architecture presented above, what is left is to design 

appropriate channel codes for the Z-Channel.  In order to achieve the maximum 

symmetric sum-rate where each user sees a Z-channel, the channel code must produce in 

its output a particular average density of ones p1 which depends on the number of users N 

as:  
N

p opt )2ln(
1 ≈ . 

Figure 2-2    The Z-Channel 
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Linear codes produce an average ones density of 1/2, which would lead to an 

unacceptable sum-rate.  For example, for 6 users the maximum achievable sum-rate using 

linear codes is less than 10%, and for 10 users it is less than 1%.  Hence, non-linear codes 

that produce the proper ones density are required for this application.  

The channel code used in this work is a Non-Linear Trellis Code (NL-TC) code.  

This novel code provides the appropriate information rate and density of ones.  A Viterbi 

decoder allows a simple and fast decoding of NL-TC.  A brief description of the design 

of these codes is presented in the following subsections. 

2.2.1. Directional Hamming Distance 

Regular convolutional codes are designed so that the Hamming distance between 

codewords is maximized.  Hamming distance is the number of bits that differ between the 

codewords.  This distance is directly associated with the number of errors such a code can 

decode. In the Z-Channel, a transmitted 1 will always induce a received 1.  Thus, to make 

a decoding error, the decoder must see ones in all the bit positions where the incorrect 

codeword has ones.  This implies that a new definition of distance is required.  Let us 

define the directional Hamming distance dD(c1,c2) the number of positions at which the 

codeword c1 has a 0 and the codeword c2 has a 1.  Note that dD(c1,c2) is not necessarily 

equal to dD(c2,c1). 

Given that the purpose of the design is to maximize this directional distance, the 

safest definition of distance between branches would be 

di,j = min[dD(ci,cj), dD(cj,ci)] , 
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which is the ‘greedy’  branch-wise metric that will be maximized in the design.  

By taking the minimum between the two directional distances as the metric to maximize, 

we seek to maximize the minimum directional distance dmin between all codewords, albeit 

in a greedy fashion. 

With this branch-wise metric, codewords with equal Hamming weights produce a 

larger dmin than codewords with different Hamming weights, so output values are 

assigned to the trellis branches with as similar Hamming weight as possible, preferably 

equal. 

2.2.2. Non-Linear Trellis Code Design 

A conventional feed-forward trellis encoder is used in order to determine the 

branches of the trellis, as shown in Figure 2-3.  It is a rate-1/n, 2v-state trellis code, with 

one input bit per trellis branch.  However, instead of using generator polynomials to 

compute the output of each branch as is typically done, a non-linear table-lookup directly 

assigns the output values. 

The trellis code design consists of assigning output values to the branches of the 

trellis code.  Those outputs have to maintain the desired average density of ones p1.  The 

goal is to maximize the minimum directional distance dmin using the greedy pair wise 

metric. 
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Figure 2-3    Basic sub-graph of the trellis diagram 
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distance between the 8 branches coming from a split two sections before, the distance 

between all 4 branches coming from a split a trellis section before and all splits are 

maximized as well.  The same design strategy is used to maximize the distance between 

merges. 

Using the above design strategy, three candidate codes were design with coding 

rates of 1/17, 1/18, and 1/20.  Figure 2-5 shows the candidate codes in a Matlab 

simulation of BER versus the number of simultaneous users in the system.  The achieved 

BER is in the order 1e-5 which is considerably above the target BER 1e-9. However, this 

can be solved by using a Reed-Solomon code as an outer-code as will be explained in 

Section 2.2.3. The 1/20 code was chosen for the system for practical reasons.  Though the 

1/17 and 1/18 codes may achieve the required BER, the high speed serial transceiver has 

a 20 bit interface and is, therefore, easier to connect with a 1/20 code.  The other codes 

Figure 2-4    a) Four paths that start on the same state in two trellis sections.  b) 
Four paths that arrive to the same state in two trellis sections.  Branches are labeled 

with the input bits that induce traversal of the branch 
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require extra interface hardware to be built and may add to the complexity of the design 

and decrease throughput. 

2.2.3. Block Code with NL-TC 

Optical systems typically deliver a very low BER.  In order to maintain this BER, 

the rate of the NL-TC channel code would have to be very low.  A better solution is 

found taking into account the distribution of the erred bits in a transmitted stream after 

the NL-TC decoding.  Thus, a high rate block code that can correct few symbol errors can 

be attached as an outer code, dramatically lowering the BER. 

A concatenation of the rate-1/20 NL-TCM code with a (255 bytes, 237 bytes) 

Reed-Solomon code has been tested for the 6-user OR-MAC scenario.  The rate of this 

code is (237/255)×(1/20) = 0.0465.  The simulated BER is 2.5e-10.  For six users, the 

sum-rate is 6×0.0465 = 0.279.  
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Figure 2-5  Bit error rate of NL-TC codes versus the number of users 
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I/O) to be sent off-chip.  The chosen rate 1/20 trellis code together with IDMA provide 

the uncoordinated access properties of the system and are able to bring the bit error rate 

(BER) to about 1e-5 for six users.  The outer Reed Solomon block code further decreases 

the BER to below 1e-9. 

All the nodes of the system use the same code, but the IDMA interleavers are 

used to ensure that the coded bit patterns do not look the same in the optical channel.  

Finally, the Reed-Solomon block code is used to further reduce the BER to less than 1e-9.  

In addition to these blocks, synchronization blocks ensure that the received bits are 

aligned properly so that decoding can be performed correctly. 

During code design, the interference signal was assumed to have a random 

Figure 2-6    Coding implementation dataflow 
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uniform distribution; therefore interleavers are used after channel coding to randomize 

the position of the code bits.  This combination allows us to recover data at a BER of 1e-

5.  A Reed Solomon block code is added at the back end to reduce the BER further to 1e-

9.  Since the target physical layer is the optical channel, data throughput is the main 

design criterion.  The Viterbi decoder and interleaver blocks have been identified as the 

bottlenecks of the system and novel architectures are developed to mitigate their effects.  

2.3.1. Trellis Encoder 

To protect data in the OR channel, the NL-TCM code uses 20-bit codewords and 

contains 64 states.  Figure 2-7 shows the architecture of the trellis encoder.  The design of 

the encoder consists of a 5 bit shift register used to address memories that outputs two of 

the 128 possible codewords.  The latest input bit is used to select the desired codeword.  

Each clock cycle a new data bit is shifted into the register and a new 20 bit codeword is 

produced.  Unlike common binary encoders, the designed trellis code has a relatively low 

ones density, much less than the usual 50%. 

Figure 2-7  Trellis encoder architecture 
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2.3.2. Viterbi Decoder 

In DSP implementations, the Viterbi decoder focused on the acceleration of a 

single branch metric calculation and careful memory management for storing the results.  

This means for decoding a single code word, several clock cycles (depending on the 

number of states in the trellis code) are needed.  Hardware architectures such as those 

proposed by Zhu and Benaissa [16] and Guo et al. [17] have focused on area efficient 

architectures.  For common wireless applications, such as 802.11b and 802.16a, Abdul 

Shakoor et al. [18] describe a fast parallel hardware implementation that decodes at 

160Mbps on a FPGA.   

Figure 2-8    Viterbi decoder architecture 
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For the non-linear trellis code that uses 20-bit codewords and contains 64 states, a 

trace back length of 35 is used in the Viterbi decoder.  The technique used to design the 

decoder is to parallelize and pipeline all operations as much as possible.  Care was taken 

to find structures where feedback paths are as short as possible.  The overall architecture 

of the Viterbi decoder is shown in Figure 2-8. 

The Viterbi decoder can be divided into several different stages, each of these 

stages will be discussed individually in detail: 

• calculation of metric 

• accumulation and selection of metric 

• finding of minimum path  

• subtraction of accumulated result 

 

Figure 2-9    Calculation of path metric 
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Because the Viterbi decoder is being designed for the OR channel, the branch 

metric used is different from traditional designs.  In an OR channel, it is impossible to 

receive a 0 bit when a 1 bit has been transmitted by any of the nodes.  Because of this, in 

the comparison between the received codeword and branch codeword, if any of the 

received bits is 0 when a 1 is expected the branch metric is set to a maximum value of 20.  

Errors in which a 1 is received when a 0 is expected are summed together to give the 

branch metric in the normal case.  The logic used to implement this function is shown in 

Figure 2-9.  In the 64 state codes, 128 branch metrics are calculated in parallel; the logic 

used to calculate this function constitutes one stage in the decoder pipeline. 

There are two possible branches that lead to each of the 64 state nodes.  The path 

with the smallest path metric (which is an accumulation of past branch metrics) is chosen 

as the most likely path that was taken to reach the node.  Path metric calculation is 

performed by adding the path metric of the source nodes to their respective branch 

metrics.  The two sums are then compared and the path with the lowest metric is selected.  

Sixty-four of these calculations are performed in parallel and constitutes a single stage in 

the pipeline.  Further pipelining of this stage is impossible since the calculation of the 

path metric involves a feedback path from previous path metric calculations.  Figure 2-9 

shows the implementation of this function. 

The most likely bit that was transmitted is the bit at the head of the path with the 

lowest path metric.  At each cycle, 64 path metrics are calculated and their respective 

paths are accumulated.  A sorting network is used to select the path with the smallest 

accumulated metric.  A minimum time sorting network based on Batcher’s odd-even 



 32 

merging algorithm [19] is used.  This is a recursive algorithm that sorts a group of 

unordered numbers (Figure 2-10) and contains the following three steps: 

• Divide the numbers in to two groups 

• Sort the two groups of numbers separately 

• odd-even merge the two groups of numbers. 

Since it is a recursive algorithm, the basic operation is a sorting of two numbers.  

This is implemented with a two input comparator.  The odd-even merge procedure which 

combines two sets of sorted numbers into a single set is also recursive and based on the 

use of two input comparators. 

For the sorting of n numbers, the number of comparators grows in )log( 2nnO .  

The delay through the network is ��
�

�
��
�

� +
2

log1 n
.  For the designed system of 64 states, this 

translates to 543 comparators with a delay of 21 comparators.  However, since there are 

Figure 2-10    Block diagram of sorting network 
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no feedback paths in the sorting algorithm, the architecture can be fully pipelined to 

achieve very fast throughputs. 

 The minimum path metric is fed back to the Viterbi decoder and subtracted from 

all 64 accumulated path metrics.  This is to ensure that the register values do not overflow.  

The sorting network used to find the minimum path is heavily pipelined, so the value 

used is several cycles behind the values that are currently calculated.  This delay in the 

results translates to larger possible accumulated path metric values which may necessitate 

the use of larger operators (like adders); this increases the delay of the calculation.  

Therefore, care was taken to pipeline the sorting network only to the degree that is 

necessary to avoid unnecessary increases in hardware and possible increases in critical 

path delays.  The sorting network in the design is pipelined to have 6 cycles of latency. 

2.3.3. Interleaver 

Interleavers, which permute the order of data bits, are commonly used to 

randomize the data stream and improve the performance of error correcting codes.  

However, in the designed system, each transmitter uses a unique interleaver pattern.  This 

pattern is chosen from a set of patterns determined at design time to have good cross 

correlation properties.  The role of the interleaver in the system is similar to its role in an 

IDMA system described by Ping et al. [13].  In that system, interleavers are used to 

distinguish nodes in a wireless CDMA system and increase channel capacity.  The 

interleaver design, therefore, must be flexible enough to accommodate a family of 

permutation sequences that work well together.  Interleaver design for IDMA has been 
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examined by Pupeza et al. [20]; however, since the focus of that work has been on 

performance efficiency rather than high-speed implementation the results are not 

applicable to the design high data rates. 

A de-interleaver is used at the receiver to recover the initial sequence.  Its 

architecture is the same as the interleaver architecture; the permutation sequences, 

however, are run in reverse order to recover the original uninterleaved signal. 

In theory, the ideal interleaver architecture is one that allows an input data block 

of size N to be permuted to any of its N! possible permutations.  Conventional interleaver 

architectures process the data serially i.e. a single bit at a time.  This scheme becomes 

increasingly difficult to implement as data rates increase e.g. a 10Mbps channel only 

allows 100ps to process each bit.  The architecture design, therefore, focuses on parallel 

processing to achieve the desired rate.  Care was taken, however, to ensure that the 

architecture can support enough permutations so that a good set of interleaver patterns 

can be found. 

One possible method of implementing the interleaver is to consider the input as 

20 bit words.  The output of the interleaver will be a random ordering of the 20 bit words.  

The implementation of this interleaver is both fast and has low complexity.  However, 

simulations show that this does not provide enough randomness for the channel codes. 
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To increase randomness without sacrificing speed and complexity, a randomized 

write-by-row, read-by-column scheme for the 1600 bit interleaver was adopted.  As seen 

in Figure 2-11, data can be broken into square blocks of 400 bits.  Each of the 20 rows 

and columns are indexed.  Groups of 20 incoming bits are written to a randomly indexed 

row.  When the data block is filled, the bits are read out of the block one column at a time 

in a random order. 

The 400-bit-square block forms the basic unit of the interleaver design.  In order 

to produce the necessary randomness, four of such blocks were used in the final 

implementation.  Like the indexing within the blocks, the inputs and outputs of the four 

blocks are accessed independently and randomly.  

This scheme provides us with enough randomness to operate on the optical 

channel.  In the interleaver design, 4 square blocks of 400 bits are used, giving us a total 

of 80 indexed locations.  This corresponds to a design space of (80!)2 > 1e+237 possible 

Figure 2-11    Indexed write-by-row, read-by-column interleaver 
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permutation sequences to choose from.  For the desired channel rate of 2 Gbps, using the 

20-bit word size of the trellis code, the target operating frequency for the interleaver is 

100MHz. 

Two such memory blocks are used to allow the desired throughput to be 

maintained.  While the first block is being written to, the second block is being read out.  

When the memory block is filled/emptied, the function of the memory blocks is reversed.  

This ping-pong arrangement doubles the area of the interleaver. 

2.3.4. Reed Solomon Code 

When the Trellis decoder block makes an error, the errors usually come in a burst 

of a few bits at a time.  A Reed Solomon (RS) code is a block code that operates on bytes 

at a time.  This makes it a very good choice to correct the residual errors and bring the 

final BER to below 1e-9.  A standard (255,237) RS code was selected. 

Since timing is not critical in this block, a standard open source architecture 

design from Han [21] was used.  The syndromes of the input data block are first 

calculated.  The results are then used to calculate the error locator polynomial using 

Berlekamp's algorithm.  The Chien algorithm is used to find the roots of the error locator 

polynomial and these roots provide the location of the errors.  Finally, the magnitudes of 

the errors are captured. 

The data rate at the output of the NL-TCM decoder is 100Mbps.  Since the Reed 

Solomon code operates on data blocks of 255 bytes (2040 bits), the time budget for the 
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RS decoder is 20.4us.  The module runs on a 50MHz clock, and at the worse case the 

decoding operation takes 856 cycles (17.1us) to complete. 

2.3.5. Implementation Results 

The system blocks were implemented on the Virtex II-Pro FPGA from Xilinx.  

Table 2-1 summarizes the size various blocks in the design.  The critical period is given 

for the transmitter and receiver. 

 

Table 2-1  Size and speed of transmitter and receiver blocks 

 Area 
(slices) 

Critical 
period (ns) 

Transmitter   
Reed Solomon encode 189 5.3 
NL-TCM encode 34 3.4 
Interleaver 3387 7.7 
Receiver   
Reed Solomon decode 3686 9.0 
NL-TCM decode 
(Viterbi) 

10504 10.3 

Interleaver 3387 7.7 
 

The transmitter is implemented on the Virtex II Pro XC2VP20 FPGA which 

contains 9,230 slices of logic.  Each transmitter design occupies 40% of the available area.  

The receiver is a significantly larger design and is implemented on the XC2VP50 which 

has a capacity of 23,616 slices.  The receiver design occupies 70% of the available area. 
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2.4. Electrical / Optical Interfaces 

Optical systems implementing wavelength division multiplexing (WDM) and 

Ultradense WDM with wavelength spacing as small as 0.05 nm (6.25GHz) have been 

demonstrated to give a high level of multiplexing [22].  However, such systems require 

co-ordination between the different users to make sure that no two users transmit at the 

same wavelength.  The multiple access scheme proposed in this chapter, however, 

requires that there be no coordination.  In addition, this scheme is independent of the 

center wavelength used for the optical transmission, unlike the requirement of 

specifically designed multiplexers / demultiplexers for WDM systems.   

The nonlinear trellis codes described and designed here are based on the 

assumption that there is incoherent addition of the data from the six channels.  In other 

words, the transmission of a ‘1’  from any two users cannot result in destructive 

Figure 2-12    Electrical / optical system architecture 

Tx - 2

Tx -1

PC Amp Mod 1

1x
4 

C
ou

pl
er

Laser1

PC Amp Mod 2

Tx - 3

PC Amp Mod 3

Tx - 4

PC Amp Mod 4

Laser2

Laser3

Laser4

Tx - 6

Tx - 5

PC Amp Mod 5Laser5

PC Amp Mod 6Laser6

1x
4 

C
ou

pl
er

Unused 
port

Tx - 2

Tx -1

PC Amp Mod 1

1x
4 

C
ou

pl
er

Laser1

PC Amp Mod 2

Tx - 3

PC Amp Mod 3

Tx - 4

PC Amp Mod 4

Laser2

Laser3

Laser4

Tx - 6

Tx - 5

PC Amp Mod 5Laser5

PC Amp Mod 6Laser6

1x
4 

C
ou

pl
er

Unused 
port

PIN-PD TIA

Agilent 11982A

Clock from 
transmitter end

Ø

D 
Flip-
Flop

RF Amp

Adjustable 
Threshold

Adjustable 
Phase

PIN-PD TIA

Agilent 11982A

Clock from 
transmitter end

Ø

D 
Flip-
Flop

RF Amp

Adjustable 
Threshold

Adjustable 
Phase



 39 

interference and will always result in a ‘1’ .  In contrast, interference from two coherent 

sources may result in an output of ‘0’ .  In the implementation of the system, different 

laser sources were used for each channel, with wavelengths determined independently of 

each other.  Hence, coupling of any two laser outputs can only give a ‘1’  by constructive 

interference and never a ‘0’ . 

The electrical/optical system design for the demonstration is shown in Figure 2-12.  

Six independent continuous wave lasers, centered at 1550 nm are independently 

modulated with data from each user.  They are then all coupled together using two optical 

couplers and transmitted on a single fiber.  On the receiving end, the combined signals 

are detected by a photodetector.  Since the photodetector detects intensity and hence 

effectively acts as a ‘mixer’  of the different signals, care must be taken about the 

wavelengths being used for transmitting the data.  If two lasers with very closely spaced 

wavelengths are used, the output of the photodetector would have components of phase 

noise within the bandwidth of the optical receiver.  This led us to choose lasers with 

wavelength separation of >0.08 nm (10 GHz) since we were using a receiver with a 

bandwidth of 10 GHz.    

In a practical implementation, an optical phase locked loop (OPLL) can be used to 

minimize the phase noise in the system [23] to a level below other noise sources such as 

the laser Relative Intensity Noise (RIN) noise [24] or the photodetector shot noise.  

Under the conditions of the experiments, the system is limited by the shot noise, the 

spectral density of which is given by 2qPtotalηB dBm/Hz where q is the electron charge, 

Ptotal is the total average optical power reaching the detector, η and B are the responsivity 
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and the bandwidth of the detector.  The limitations of shot noise are explained in detail by 

Saleh and Teich [25].  Efforts have been made to minimize the shot noise level and will 

be dealt with in the following section. 

2.4.1. Optical Transmitter 

The first 3 transmitting lasers come from the 3 channels of a Santec External 

Cavity laser (ECL) while DFB lasers from JDSU and Fujitsu are used for the other 3 

channels.  The current of the DFB lasers is controlled using an ILX Lightwave Controller.  

The operating optical powers are to the order of 2-5 mW and at this power, the system is 

limited by shot noise.  The noise at the “0”  level can be minimized by allowing a 

negligible amount of light through the system.  This can be obtained by appropriately 

biasing the optical modulators. 

LiNbO3 Mach-Zehnder modulators (MZM) are used as the intensity modulators 

which modulate the transmitted light with the electrical signal.  These modulators work 

on the principle of the electro-optic effect and have been studied in detail by Wooten et al. 

[26].  An MZM modulator consists of two identical arms of optical waveguides made of 

an electro-optic material such as LiNbO3.  The refractive index of this material changes 

proportional to the electric field across it.  When the signal applied across the electrodes 

placed close to the optical waveguides of the modulator changes, the corresponding 

refractive index variation causes a change in the phase of the optical signal through it.  

The change in phase is converted to intensity modulation by the interference of the 

optical signals from the two arms of the MZM.  The refractive index change of the 
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electro-optic material is dependent on the polarization of the light.  Hence polarization 

controllers (PC) are placed in the optical path before being input into them.  Correct 

polarization is ensured by adjusting it to give maximum optical power at the output of the 

MZM modulators.  

Two 4 x 1 optical couplers are used to combine the 6 optical channels into a 

single channel for transmission.  Due to the reversible nature of the couplers, each optical 

channel sees a loss of 6 dB every time it goes through a coupler.  All the transmitters are 

asynchronous with each other. 

As mentioned above, the shot noise level of the system is proportional to the 

average optical power.  There may or may not be direct control of the optical output 

power from the laser itself.  Provided the output powers of the lasers are at a minimum, 

the output power of the MZM can be adjusted by the DC bias applied across the 

modulator electrodes.  In order to minimize the noise, the preferable DC bias should be 

set close to the minimum output power of the MZM such that the shot noise level is 

below the thermal noise level of the system.  The trade-off at this bias point is that the 

signal is largely distorted due to the nonlinear characteristics of the transfer function of 

the MZM at lower DC bias levels [27].  A DC bias is finally set at a point which strikes a 

balance between the noise level (signal-to-noise ratio) and the nonlinearity and is found 

by optimizing the bias level until the best BER for any given user is achieved. 
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2.4.2. Optical Receiver 

Two 4x1 couplers combine the optical signals of the six users together.  The 

combined channels are transmitted through a single optical fiber to the receiver end. An 

HP 11982A lightwave converter, which consist of a p-i-n photodetector (PIN-PD) 

followed by a Transimpedance Amplifier (TIA), is used to convert the light into an 

electrical RF signal.  The detected RF signal is a result of the data from all the 6 users 

added together i.e. the sum of the optical powers transmitted by each user.  However, 

since this output is a sum of incoherent data, it follows the properties of an OR channel 

and transmits a “0”  only when all the users transmit a 0.  Since the HP 11982A has no 

limiting characteristics, the amplitude of the output is proportional to the number of users 

transmitting a “1” .  

A D flip-flop following the lightwave converter is used to convert this multilevel 

signal into a binary signal.  The D flip-flop samples the input data at every positive edge 

of the clock fed into it.  The clock is followed by an adjustable RF phase delay line which 

changes the relative phase between the clock and the signal.  This allows the receiver to 

be synchronized with any desired user.  An adjustable threshold is provided to the D flip-

flop and the multi-level photodetected output is converted into a binary signal depending 

on its value relative to the threshold.  Thus, the D flip-flop performs the function of 

retiming and regeneration.  The output binary signal is designed to have voltage levels 

that are recognizable by the FPGA receiver. 
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2.5. Results 

Pictures of the demonstration setup are shown in the following figures.  Figure 

2-13 shows the laser sources; a mixture of ECL and DFB type lasers is used.  Figure 2-14 

shows how two of the FPGA transmitters are connected to the optical network.  The light 

travels from left to right and passes through the polarization controllers (A) to the optical 

modulators (B).  The modulation signal is provided by the FPGA (C).  Figure 2-15 shows 

the computer used to display the bit error rate and the oscilloscope to look at the raw 

received waveform. 

 

 

Figure 2-13    Demonstration setup: laser sources 
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Figure 2-16(a) shows the raw received waveform for the case of four 

simultaneous transmitters.  After the thresholder and D flip flop circuit, the result is 

shown in Figure 2-16(b).  This is the waveform that is given to the receiver FPGA to 

decode. 

 

Figure 2-14    Demonstration setup:  FPGA's and laser modulators 

A
B

C
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Testing of the system proceeded in the following manner.  The desired user 

transmits a constant pattern in which the receiver FPGA is able to detect.  This channel is 

activated first, and the threshold and sampling moment is adjusted to the correct point.  

Each of the other FPGA transmitters is set to transmit random coded data.  This 

interference is added to the optical channel one at a time so that the threshold and 

sampling time may be manually adjusted.  This proceeds until all six transmitters are 

simultaneously transmitting on the optical channel.  The result of this is presented in 

Table 2-2. 

Figure 2-15    Demonstration setup:  system monitor and measurement 
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Thresholding should also be performed automatically in a real system.  In this 

case, the receiving node can adjust the threshold by measurement of the ones density of 

the received signal.  When all nodes are transmitting, a ones density of 0.5 is expected 

and a feedback loop can be designed to track this. 

 

Table 2-2    System results 

Channel 
rate 

1.2 Gbps *  6 = 7.2 Gbps 

Data rate 60 Mbps *  6 = 3.6 Gbps 
Users Bits 

tested 
Errors 
found 

Measured 
BER 

1 1.5e11 0 < 6.4e-12 
2 4.6e10 0 < 2.2e-11 
3 1.2e9 0 < 8.3e-10 
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Due to interfacing problems with the Rocket I/O transceiver, only a system with 3 

users at a channel bit rate of 1.2 Gbps was demonstrated.  This performance degradation 

can be attributed to two main factors:  

1.  the noise of the lasers used 

2.  the clock and data recovery circuit in the FPGA 

As more users are added into the network, the noise floor begins to rise.  This 

decreases the signal to noise ratio of the desired user and contributes to the higher bit 

error rate. 

The high speed serial interface of the Virtex II Pro is a hard IP placed on the 

FPGA programmable fabric and is therefore not itself programmable.  It is designed to 

receive data with a high degree of transitions.  Since the received signal (aggregate of all 

transmitters) cannot be guaranteed to conform to this specification, there are instances 

where errors are caused by failure of the clock and data recovery circuit of the high speed 

serial interface.  We are currently working to bypass this circuit on the FPGA so that the 

incoming data can be clocked with an externally supplied clock 

 

2.6. Conclusions 

In this chapter, a high performance design was achieved by first simplifying the 

interfaces between the physical domains.  Processing functions were, therefore, 

concentrated in the logical domain and novel algorithms (channels codes) were 

developed and implemented to ensure an uncoordinated system with guaranteed 
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bandwidth is achieved.  Using commercial off the shelf components, an operational 

optical network with high data bandwidth was demonstrated where each user is able to 

transmit at a channel rate of 1.2 Gbps with a BER of less than 1e-9.  To accomplish this 

goal, the channel codes where co-designed together with the architectural implementation.  

The optical system was specially designed to be able to interface with the digital 

hardware.  It is only with the close cooperation of these three parts throughout the design 

and implementation steps that the system is able to function.   

This design process was validated through the building of an optical network 

demonstrator that is able to support 3 simultaneous users transmitting at a guaranteed 1.2 

Gbps on a single wavelength. 
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Chapter 3  

 

Hardware / Software Interface Exploration 

 

The previous chapter discusses how to design efficient interfaces between 

different physical domains.  While they can both be considered part of the same logical 

domain (their functionality is fundamentally bounded by the properties of logic gates), 

there is also much research on the interface between hardware and software. 

The logical domains of hardware and software have different properties.  The 

main benefit of software is its flexibility and portability; it can be developed remotely and 

mistakes can be corrected afterwards.  Its performance is, however, limited by the 

processor’s instruction set architecture and serial execution.  Hardware has much higher 

performance because specialized circuits can be developed to perform specific operations 

and parallel computation is possible.  The drawback is extra design effort and the 

increased cost of manufacturing. 

To produce a design that meets performance and cost requirements, a standard 

design process has emerged in industry.  First, the software is executed on the target 
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processor and profiled.  The sections of code which are shown to be the major bottleneck 

are then selected to be implemented in hardware as a coprocessor.  These accelerators are 

often connected to the processor through a peripheral bus. 

The design focus, therefore, is for performance to be improved through the 

acceleration of individual computations; a cross-layer approach that considers interfaces 

has largely been ignored.  However, it has been shown that for many applications, the 

time it takes to pass through the interface takes up a greater amount of time than the 

calculation itself.  Therefore, significant additional performance gains can be achieved by 

the selections of the appropriate interface technology and optimizing algorithms for it. 

In this chapter, a novel system used to analyze and explore the effects of different 

interface options is presented.  The choice of interface impacts both the software (through 

the software drivers need to communicate with the coprocessor) and the hardware 

(through the extra logic needed to communicate with the processor).  The novel 

contribution of the system described is that it is able to jointly analyze the cost of both 

these components, so that an efficient interface can be selected.   

 

3.1. Interface Overhead 

System performance can be improved by implementing in hardware the operation 

taking the most time to calculate.  Hardware coprocessors enable multiple operations to 

be computed in parallel and can also speed up those operations with specialized logic.  

However, while system performance improves significantly over pure software systems, 
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in some applications, the time spent in using the coprocessor accelerator is taken up by 

the interface; the actual computation on the coprocessor is minimal.   Though the addition 

of a coprocessor provides better performance, additional system performances can be 

obtained by using the appropriate interface technology to communicate with the 

coprocessor.  In addition, while performance is important in the design of a system, it is 

not the only factor that is considered in real world design decisions.  The choice of 

interface technology is decided not only on the final system performance but also on 

factors such as portability of design, application requirements, and development tools 

support. 

GEZEL is a powerful design tool used for both simulation and implementation of 

complex heterogeneous computing systems.  Its main features include the ability to 

interconnect and simulate IP cores from disparate sources and also the ability to describe 

in FSMD form its own coprocessor logics.  This has led to many successful designs that 

range in scale from large NOC and SOC systems to small RFID systems. 

Interface in this context refers to the way in which a processor is able to 

communicate with either a specialized coprocessor or another processor in the system.  In 

traditional design, the processors’  instruction set simulator (ISS) are connected to other 

processing elements within a simulation environment.  The GEZEL [28] system supports 

both clock cycle accurate simulation and also has RTL code generation facilities. 

In this chapter, the way in which GEZEL is used to support different interface 

options is presented.  In particular, the way in which it can be used to build and simulate 

the special functional unit interface which enables the building of ASIPs is described.  A 
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comparison of the design process for each type of interface is illustrated using the 

example of the coprocessor for thread management. 

3.1.1. Related Work 

SystemC [29] and SpecC [30] are system level modeling (SLM) languages that 

also support interconnection of heterogeneous processing elements.  While they support 

descriptions of custom logic that can generate RTL, the same language is also used to 

describe behaviors at higher levels of abstraction (these descriptions are not 

synthesizable).  Because of this, the interconnection of ISS and custom logic is also not 

straightforward and design teams manually translate the SLM description system into 

Verilog/VHDL.  GEZEL provides an IP block construct to connect the ISS to the GEZEL 

development environment and all behaviors written in GEZEL are able to be 

automatically converted to synthesizable RTL by default.  

The SLM languages are designed for high level design exploration while GEZEL 

is focused on design and exploration of systems at the implementation level.  The 

Tensilica design environment [31][32] works at a similar level by providing a platform 

where the designer can modify processor hardware in order to accelerate an application.  

While this provides the designer with a full set of tools to specify new instructions and 

functional units, the system only allows customization of its own proprietary Xtensa 

processor and assumes a special functional unit interface. In contrast, GEZEL allows for 

easy exploration of different interface options and can be easily adapted to be used with 

any ISS through its simple IP block interface.  Because of this, GEZEL provides a 
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uniform environment that can be used to design small systems, such as those used in 

smartcards, as well as complicated SOC systems.   

 

3.2. Interface Options 

The three interface options that are examined are shown in Figure 3-1.  They vary 

on the degree of integration with the processor core.  The following sections examine in 

more detail the properties of each of the interfaces and how they have been used. 

3.2.1. Memory Mapped Interface 

The memory mapped interface is the simplest and most flexible interface.  Using 

this interface, software can access external systems by writing and reading data from 

specific memory locations.  The architecture is shown in Figure 3-1(a).  For example, in a 

thermostat application, software will read a value from a dedicated memory location to 

obtain the current temperature and write to another memory location to program the 

heater setting. 

Figure 3-1    Coprocessor interface options (a) memory mapped, (b) 
coprocessor port, (c) special functional unit 
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Much more complicated systems can be built using this interface.  One example is 

the building of a NOC system [33] which connects several independent processors 

together.  The software running on each of the processors communicate with one another 

through simple network routers described in GEZEL and interfaced through specific 

memory addresses. 

The main benefit of the memory mapped interface is its ease of use and portability.  

Since most processors have memory systems, software written need only be written once 

to be able to run on most processors.  Also, since reads and writes are treated as memory 

accesses, data dependency and hazard handling remains unchanged across platforms.  

Conversely, it is also the properties inherited from memory access that gives the biggest 

disadvantage; it has the same latency as memory access and performance further 

degrades when there is contention on the bus.  In the ARM processor, the access time has 

been measured to be 12 clock cycles.  For applications that require complex interactions 

or large data transfers, this option may prove to be too inefficient. 

3.2.2. Coprocessor Port Interface 

In the coprocessor port interface, coprocessor access is removed from the memory 

bus and connected directly to the processor (See Figure 3-1(b)).  Communication is more 

efficient in this case since there are no addresses to decode and no wait cycles necessary 

to wait for slow memory response times. 

The GEZEL system can easily interface with these special coprocessor ports.  In 

the ARM core, two such ports are available for use.  Their use was demonstrated in the 
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design of crypto-accelerators in [34] and communication delays have been measured to 

be 7 clock cycles in this system.  This special type of port is not only reserved for high 

performance processors; some microcontrollers also provide this feature.  The 8-bit 8051 

processor is very popular in small systems such as smart cards and RFID.  The use of this 

port in [35] accelerated the 83-bit HECC algorithm by more than a factor of 200. 

Though communications is much faster, there are some costs in terms of both 

software code portability and flexibility.  Access to each of these ports differs according 

to processor platform; they are accessed through special instructions and protocols so 

software must be rewritten in order to run on different systems.  In addition, the number 

of these ports for a given processor is limited, therefore, only a limited number of 

coprocessors can be connected this way. 

3.2.3. Special Functional Unit Interface 

The decoupled nature of the processor-coprocessor dynamic in the above interface 

options implicitly requires communication overheads.  In ASIP design, the datapath of 

the processor itself is modified to support increased functionality (See Figure 3-1(c)).  

Since the functional unit has direct access to the processor register file, communication 

costs can be minimized. 

GEZEL is able to support ASIP design through the use of the special functional 

unit (SFU) interface.  Through this interface, GEZEL can be used to describe the datapath 

of special instructions that are added to the processor. 
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In addition to faster communications, system performance can also be greatly 

increased with specialized processing.  The traditional method of acceleration is to use 

special hardware to speed up complex calculations on a data set.  If communications is 

not too great, memory mapped interfaces and coprocessor port interfaces can be used to 

obtain acceptable performance.  The SFU interface is also able to perform the same tasks 

but with increased speed due to reduced communications.  However, the SFU interface 

also allows the integration of processing that can affect the control flow of software.  By 

having access to the program counter in the processor core, SFU has the additional ability 

to jump to any memory location – this is a functionality that is impossible with the other 

interface options. 

While there are many potential benefits in using the interface, software written on 

such a platform is not portable.  ASIP’s contain very specialized instructions that operate 

on specific registers; therefore, special simulators and compilers must be used for the 

specific development platform. 

 

3.3. Interface Mechanics 

Interface between the ISS and the development environment is accomplished 

through the IP block modules.  IP blocks are written in C++ to allow for the description 

on behaviors that cannot be described by the GEZEL language.  In the context of a SOC, 

they are used to describe the different interfaces between the ISS and the special datapath 

logic.   
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For the memory mapped and coprocessor interfaces, there is already kernel 

support in the design environment.  Memory mapped IP blocks intercept memory reads 

and writes and directs them to the GEZEL environment where logic can be described to 

operate on the data.  Coprocessor IP blocks simulate a buffered coprocessor interface.  

Reads and writes to the coprocessor port are buffered in the queues of these blocks and 

made accessible to the design environment. 

For ASIP design, minor modifications to the design environment must be made.  

In the design, Simit-ARM [36] is used as the ISS, and a special IP block is described to 

interface with the special functional unit port of the ISS.  When special machine 

instructions are called, the IP block is triggered and passes the appropriate register values 

to the design environment where the logic of the functional unit is described.  The results 

are passed through to the same IP block so that it can be stored in the processor’s register 

file. 

Because the logic of the SFU may take several cycles, the ISS itself must be 

modified to take this into account.  In most simulators, this will involve modifications to 

the sections of code that are responsible for instruction scheduling and resource 

reservations.  The ISS must know exactly when an operation is complete so that 

subsequent dependent instructions do not get scheduled before the results are available.  

In addition, certain resources (e.g. registers) may be used by the functional unit and 

cannot be used by subsequent instructions; the ISS must be modified to prevent these data 

hazards from occurring. 
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The ASIP design is done using the Simit-ARM cycle true simulator.  The 

simulator itself is described in a processor architecture language called MADL [59] 

which allows designers to easily specify the resources used up by each instruction at each 

stage of the pipeline.  Once the architecture is described, the description can be used to 

automatically generate an ISS that is able to handle interactions with the new instructions 

and their corresponding functional units. 

 

3.4. ASIP Case Study 

To demonstrate the performance and design process of the three different 

interface options described, the design of a special logic block for thread management is 

explored.  The purpose of this coprocessor is to enable acceleration of the context switch 

operations in embedded multitasking systems. 

The thread manager is responsible for keeping track of all the running processes 

in the system.  It does this by maintaining a queue of all the processes in the system.  

Processes in the system are uniquely identified by the values in the stack pointer (SP) and 

program counter (PC) registers. 
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Three thread management commands are used to access the thread manager and 

form the primitives needed for context switch. 

• The create command takes the current register values of SP and PC and stores them 

in the queue of the thread manager. 

• The yield instruction takes the SP and PC register values and replaces them with new 

ones. 

• The retire instruction invokes a context switch by replacing the SP and PC with new 

values from the next process. 

In the experiments, the thread manager is interfaced with the ARM processor 

using the three interface options.  The Simit-ARM simulator was used in conjunction 

with GEZEL to provide cycle accurate simulation.  In addition to comparing the final 

results, the design process is illustrated in detail so that methodology complexity can be 

compared. 

3.4.1. Memory Mapped Interface  

The thread manager acts like a special storage element in the system; it stores the 

PC and SP of all the processes and returns the values for the next process during a 

Figure 3-2    Thread manager architecture 
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context switch.  However, under the memory mapped interface, it cannot be responsible 

for the context switch operation itself.  It is the responsibility of the software to supply 

the current values of PC and SP to the coprocessor to store and to also ensure that the 

new values of PC and SP are properly stored into the corresponding registers.  Though 

both performance and software size is reduced by the addition of the memory mapped 

thread manager, these interface tasks add overhead to the actual thread management tasks. 

Figure 3-3 shows the software interface code used to implement the yield 

instruction and illustrates the software overhead associated with the memory mapped 

interface.  Line 6 moves the base address of the coprocessor to r0.  After the PC and SP 

are loaded to the coprocessor, Lines 9-15 perform the handshaking protocol.  The new PC 

and SP values are not loaded into the registers until lines 16 and 17.  The write operation 

Figure 3-3    ARM assembly code for the memory 
mapped yield operation 

  stmfd sp!, {r0-r12, r14} 1 
  mov r0, #0 2 
. . . (clear all registers) 3 
  mov r12, #0 4 
  mov r14, #0 5 
  mov  r0, #-2147483648 6 
  str pc, [r0] 7 
  str sp, [r0,#4] 8 
  mov  r1, #1 9 
  str r1, [r0, #8] 10 
  str r1, [r0,#20] 11 
.LOOP: 12 
  ldr r1, [r0,#24] 13 
  cmp r1, #0 14 
  beq .LOOP 15 
  ldr  sp, [r0,#16] 16 
  ldr  pc, [r0,#12] 17 
  mov  r1, #0 18 
  str r1, [r0,#20] 19 
  ldmfd sp!, {r0-r12, r14} 20 
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on line 11 signals to the thread manager that a command is available to be processed.  It 

is paired with the read in line 13 which signals that the command is complete.  These two 

operations represent the overhead due to handshaking. 

The memory mapped interface also introduces extra hardware in the coprocessor.  

To facilitate the handshaking protocol, additional ports must be added to signal the 

availability of a new command and also the completion of a command.  Table 3-1 shows 

the ports used by the thread manager coprocessor.  Each of these ports must be buffered 

by registers.  The need for additional registers and a more complex state machine to 

implement the handshaking protocol contributes to the hardware overhead associated 

with the memory mapped interface. 

3.4.2. Coprocessor Interface 

The Microblaze FSL interface on the ARM processor is used to illustrate the 

thread manager performance in a coprocessor port.  The FSL is a dedicated coprocessor 

interface driven by a simple one way handshaking protocol.  The link is buffered by 

dedicated queues which allow concurrent execution of both the ARM processor and the 

thread manager. 

From the processor side, a write port is available for sending data to the 

coprocessor.  A status port indicates whether data is available on the read port.  

Compared to the memory mapped interface, data is written to a single coprocessor port; 

no explicit write command is necessary to signal the coprocessor that a new command is 

available.  However, there remains a ‘acknowledge’  read port that is polled to determine 
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when the thread management task is completed.  This one way handshaking reduces the 

overheads experience in the memory mapped interface. 

 

Table 3-1    Thread manager I/O ports 

Port Port 
Type 

Access 
address 

Old PC Input 0x80000000 
Old SP Input 0x80000004 
Command Input 0x80000008 
Request Input 0x8000000C 
New PC Output 0x80000010 
New SP Output 0x80000014 
Acknowledge Output 0x80000018 

 

Figure 3-4 shows the assembly code used to implement the yield instruction.  Line 

6 defines the location of the write port.  Lines 7-10 load the instruction, PC, and SP to the 

processor; no extra str instruction is necessary to signal the coprocessor of a new 

command. Lines 11-14 poll the status port for the new values.  When data is available, 

the values of SP and PC are taken from a single read port and stored in their respective 

registers. 
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The FSL coprocessor interface adds only minor hardware overhead.  Extra logic 

is necessary to implement the handshaking protocol.  No extra hardware, however, is 

necessary for buffering the incoming commands and parameters.  This is because the 

buffered coprocessor interface already provides this service and is included in the size of 

the processor. 

3.4.3. Special Functional Unit Interface 

The special SFU instruction in the ARM processor is used to access the thread 

manager.  It access values directly from the processors register file; it reads values from 

three registers (SP, PC, Rn) and writes to two registers (SP, PC).  All instructions are 

completed in a single cycle. 

Since the ISA is modified to take advantage of the new functional unit, the 

additional tasks in the processor pipeline must also be specified.  The MADL code 

Figure 3-4   ARM assembly code for the 
coprocessor port yield operation 

  stmfd sp!, {r0-r12, r14} 1 
  mov r0, #0 2 
. . . (clear all registers) 3 
  mov r12, #0 4 
  mov r14, #0 5 
  mov  r0, #-2147483648 6 
  mov  r1, #1 7 
  str r1, [r0] 8 
  str sp, [r0] 9 
  str pc, [r0] 10 
.LOOP: 11 
  ldr r1, [r0,#8] 12 
  cmp r1, #0 13 
  beq .LOOP 14 
  ldr  sp, [r0,#4] 15 
  ldr  pc, [r0,#4] 16 
  ldmfd sp!, {r0-r12, r14} 17 
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fragment in Figure 3-5 shows how the new instructions are specified in the processor 

architecture. 

The code specifies the resources needed for the new instructions in the buffer (BF) 

and write back (WB) stages.  In the BF stage, the registers that are needed for the 

operation are specified (lines 5-6) and then sent to the external functional unit (line 7).  

The result registers are also specified here (line 8) so that data hazards can be avoided.  In 

the WB state, values are gathered from the external functional unit (line 13) and assigned 

to the destination registers (line 14).  Note that the destination registers are the same as 

Figure 3-5    MADL code to describe resource usage of new 
instructions 

Figure 3-6    MADL code to describe resource usage 
of new instructions 

// BUFFER STAGE 1 
e_ex_bf_sfu: { 2 

// reg 13 corresponds to SP 3 
// reg 15 corresponds to PC 4 
v_rm=*mRF[13], v_rs=*mRF[15],  5 
v_rn=*mRF[rn], 6 

   *mSF3x2[0]= (v_rm, v_rs, v_rn), 7 
   dst2=mRF[13], dst3=mRF[15] 8 
}; 9 
 10 
// WRITE BACK STAGE 11 
e_bf_wb_sfu:  { 12 

(tmp1, tmp2, tmp3) = *mSF3x2[0], 13 
   *dst2 = tmp1, *dst3 = tmp2, 14 
   !dst2, !dst3, 15 
   !dst_buffer, !dst2_buffer 16 
}; 17 

 

stmfd sp!, {r0-r12, r14} 1 
mov r0, #0 2 
. . . (clear all registers) 3 
mov r12, #0 4 
mov r14, #0 5 
yield 6 
ldmfd sp!, {r0-r12, r14} 7 
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those reserved in the previous pipeline stage. 

The modified ISS is connected to the GEZEL development environment through 

a specially programmed IP block which is triggered only when the SFU instruction is 

invoked.  Through the IP block, the thread manager, which is described in GEZEL, is 

able to operate directly on the values of the register file.  Because of this, there is no 

interface overhead; performance increases and the software size is reduced.  Figure 3-6 

shows the assembly coded used to implement the yield instruction.  After the register file 

is stored in the stack and the values are cleared (lines 1-5), the SFU yield instruction is 

called (line 6).  SP and PC values are replaced directly by the thread manager in a single 

cycle and the register values of the new thread are then popped from the stack in line 7.  

There is no overhead taken up by the reading and writing of data and parameters to ports 

or memory locations nor is there any overhead taken by handshaking.  Because these 

operations are no longer necessary, context switches are completed more quickly and 

require less software. 

Using the SFU interface, the thread manager is now part of the processor’s 

pipelines.  Because of this, the unit must buffer the input data (i.e. the PC and SP values) 

in registers.  While no extra logic is added for handshaking, the registers do add extra 

hardware that is not associated with the actual data processing operation and can be 

considered a form of overhead. 
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3.4.4. Results 

Table 3-2 shows the performance results of the case study when compared with 

an unmodified ARM processor.  In the multitasking system, yield is used for the actual 

context switch and is therefore invoked most often.  Based on the performance of the 

yield instruction, the memory mapped interface solution is 2.4 times faster than the 

equivalent software routine.  In contrast, the ASIP solution is 3 times faster (25% faster 

than the memory mapped interface version). 

Table 3-2    Comparison of execution time for thread management operations 

Module SW 
(cycles) 

Mem 
(cycles) 

Copr 
(cycles) 

ASIP 
(cycles) 

Create 743 463 459 448 
Retire 348 66 61 48 
Yield 191 80 71 61 

 
In all the above examples, the thread manager is able to execute the instructions in 

a single clock cycle.  The difference in performance is due to the time taken for 

handshaking, communications of data and parameters, and the moving of values to the SP 

and PC registers.  The memory mapped interface is characterized by slow handshaking 

and slow communications due to the use of the peripheral bus.  The coprocessor interface 

benefits from faster handshaking and fast communications due to direct connection to the 

processor.  Both the memory mapped interface and coprocessor interface incur overheads 

due to the moving of values to the SP and PC. 

The SFU interface is not affected by any of these factors as the thread manager is 

located directly in the processor datapath and therefore has the highest performance.  

There are no handshaking or communication costs since the PC and SP are taken directly 
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from the register file.  The output of the thread manager is also written directly to the 

register file. 

Table 3-3    Comparison of speed and area of interface options 

Module Size (Kgates) Critical path 
(ns) 

N-ARM7TM 50 17  
ASIP 1.7 7.6 
Coprocessor 1.0 7.5 
Memory 
mapped 

3.3 7.6 

 
To examine the relative size of the thread manager, the GEZEL description was 

converted into VHDL.  This code was then synthesized using Synopsis.  The TSMC 

0.18um CMOS standard cell library with conservative wire load model was used.  Table 

3-3 shows the results.  The results were compared to the synthesized N_ARM7TM design 

from [37].  The additional memory needed for the memory depends on the maximum 

number threads that the system is designed to support; each additional thread requires 64 

bits of storage.  Not including the two port memory of the thread queue, the thread 

management unit only takes 2% of the total ARM processor area.  When the different 

interface options are compared, the memory mapped interface has the largest size due to 

the extra registers necessary in both the input and output ports.  The implementation 

using the coprocessor port is the smallest since there is no extra registers required within 

the coprocessor as buffering is included in the interface port. 

 

Table 3-4    Comparison of code size for thread management operations 

Implementation Size (bytes) 
Quickthreads (SW) 1330 
ASIP 252 
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Coprocessor 352 
Memory mapped 404 

 
In the implementations explored, the thread management functionality 

implementation is moved from software to hardware.  Table 3-4 shows the relative 

software size for the different interface options when compared with the Quickthreads 

[57], a simple and portable threads toolkit.  When compared with a purely software 

implementation, all the coprocessor options reduced the software size by more than 3x.  

The remaining software overheads reflect the instructions necessary to transfer data to 

and from the coprocessor and perform handshaking. 

 

3.5. Conclusions 

The GEZEL design environment provides an environment that allows easy 

exploration of a wide variety of interface options.  The cost of each interface option can 

be evaluated in both software and hardware.  While the memory mapped interface and 

coprocessor port interface has been well used in previous designs, they may still under 

perform in certain applications.  The special functional unit interface allows the designer 

access to the core of a processor so that coprocessor functions can be directly integrated 

into the processor datapath.  Hardware integrated context switching is one such 

application that benefits from the special functional unit interface.  In this chapter, the 

detailed design of how the SFU interface is used in the GEZEL environment is described.  

The resulting architecture improves context switching performance by a factor of 3 while 

only increasing processor core area by 2% when compared with software solutions. 
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Chapter 4  

 

Accelerating Control and Communications 

 

In the previous chapter, we showed that the SFU interface outperforms other 

popular interfaces in system on chip (SOC) design.  This is because by integrating 

specialized processing directly into the processor datapath, the time it takes to transmit 

control and data to the specialized hardware is greatly reduced. 

Though very effective, in many embedded system designs, such intimate access to 

a processor is not available and ASIP designs are not possible.  Thus improvements to 

traditional interface options are restricted to the use of architectural components external 

to the main processor. 

From chapter 3, it is noted that the interface overhead is composed of the time it 

takes to transmit control information and the time it takes to transmit the actual operands.  

The handling of each of these interface elements have different requirements so interfaces 

can be made more efficient if the elements are separated and their functions accelerated 
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individually.  In this chapter, the process of how this can be achieved is described and 

illustrated with implementation case studies. 

4.1. Common Acceleration Techniques 

Over the last decade, many important techniques have been developed to improve 

the performance of embedded systems.  Chief among them is the DTSE software 

technique [38], acceleration of functions in hardware, and direct memory access (DMA) 

techniques [39].  However, there have not yet been studies that explore how all these 

techniques can be quickly explored and implemented in a design. 

Data intensive calculations are often communications bound.  That is, the time it 

takes to transport operands to a processing unit and store the results back to memory 

takes a significant percentage of the total time.  Thus to improve the performance of 

embedded systems, techniques to reduce the amount of communications is as important 

as techniques to accelerate the actual computation. 

The software strategy involves the transformation of an algorithm to minimize the 

time it takes to run.  This can be done through minimizing the number and complexity of 

instructions (computation) needed to perform a calculation and also through minimizing 

the memory accesses (communications).  The latter technique is well studied by [40] and 

has been proven to be very successful. 

The traditional hardware approach accelerates the slow part of the algorithm in 

hardware by designing a coprocessor.  Specialized hardware has the ability to perform 

complex operations quickly through the design of specialized circuits.  In addition, 
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multiple calculations can be performed in parallel, further reducing the time it takes to 

perform a computation.  Compared to software techniques, this strategy is only able to 

accelerate the computation part of the algorithm. 

The two above design steps have become industry standard.  However, further 

performance gains can be achieved through more efficient allocation of data streams to 

the coprocessor.  The communications part of the algorithm can be accelerated through 

DMA techniques.  These are implemented by special hardware components in the 

computer architecture which transfers data directly from the memory to the hardware 

coprocessor.  While the technology is not new, its integration into the design of 

accelerators in SOCs has not been explored. 

Each of the above techniques can individually significantly increase system 

performance.  However, enhanced performance increases above the sum individual 

improvements can be observed when several techniques are employed together. 

In this chapter, a development environment which allows the exploration of the 

interactions among these three techniques is developed.  We find that while memory 

access minimization techniques greatly enhance software performance, it also enables 

efficient data transfers in hardware.  Thus significant performance improvements above 

the sum of the individual improvements can be obtained when the techniques are used 

together.  Using the case studies of GCD calculation and complex matrix multiplication, 

we show that performance exploration can be performed quickly and lead to designs that 

increase performance by over two orders of magnitude over base system. 
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4.2. System Setup 

4.2.1. System Architecture 

 
To explore the effects of the various hardware and software optimization 

techniques on real SOC implementations, we required a hardware programmable 

platform.  The XUP Virtex-II FPGA development platform [41] from Xilinx was chosen 

due to its wide selection of IP and mature design environment.  At the heart of the board 

is the XC2VP30 FPGA [15] which contains hard IP’s such as PowerPC processor, Block 

RAMs, and 18x18 multipliers.  These hard IP can be interconnected through 

configuration of the FPGA fabric.  The easy reconfiguration properties of the FPGA 

make it a good platform to study different processing architectures and their effect on 

performance. 

Figure 4-1   Base SOC architecture 
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Figure 4-1 shows the base architecture of our processing system.  In the base 

architecture, the algorithms are implemented on the 32-bit PowerPC 405 processor core 

running a 300MHz.  Software is stored on off-chip DDR RAM through a 64-bit interface.  

Due to the double data rate operation, the RAM can provide the FPGA with 128 bits of 

data per FPGA clock cycle. 

The PowerPC is interfaced with the external memory and the general FPGA 

fabric through the processor local bus (a 64 bit bus running at 100 MHz).  It is through 

this bus that hardware accelerators and memory access accelerators can be interfaced to 

the main processor. 

4.2.2. Design Environment 

A series of design tools are used to enable quick exploration of design alternatives 

and easy implementation of the designs onto the FPGA platform.  Figure 4-2 shows an 

overview of the proposed design methodology. 
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The design exploration is performed using the Gezel design environment [28] 

which enables cycle true hardware/software co-simulation.  As with its use in the 

previous chapter, the software and hardware components can be quickly co-simulated and 

verified without register transfer level simulations required.  Accurate system 

performance estimations can be used at this level to evaluate different design options.  In 

contrast with the use of Gezel for simulation, in this chapter, it is also used to provide a 

easy path to implementation.  Both the software and hardware descriptions that runs in 

the simulation environment can be directly inserted into the base XPS computing 

platform. 

Implementation of the final design is performed using the Xilinx XPS design 

environment [42] which is able to generate the generic system architecture.  This includes 

components such as system buses and peripherals which are connected to the PowerPC 

processor on-chip.  The custom hardware designed in the Gezel environment is 

automatically converted to VHDL, enclosed in hardware wrappers, and integrated into 

Figure 4-2    Design methodology 
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the system architecture.  The resulting SOC (including the custom hardware) can then be 

synthesized and written onto the FPGA. 

The software portion of the design is implemented in standard C and can therefore 

be easily cross-compiled to the PowerPC processor.  The interface with the custom 

hardware is similar to the one provided by the Gezel environment so the driver code need 

not be radically modified. 

In addition to custom hardware accelerators which accelerate computation time, 

hardware blocks can also be used to accelerate the dataflow element of the system.  

Direct memory access (DMA) blocks are an example of such specialized hardware that 

can be added to the design at this stage to further accelerate the system performance. 

4.2.3. Optimizations 

Each of the optimizations discussed in this subsection infers a particular control 

and dataflow architecture.  The relevant architectures are shown in Figure 4-3. 

Figure 4-3  Control and dataflow architectures for (a) base architecture 
(b) traditional coprocessor architecture (c) datapath accelerated 

coprocessor architecture 
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Software optimizations imply a basic computer architecture (Figure 4-3(a)) where 

the processor is connected to external memory through a bus.  Both dataflow and control 

information is transported along this single bus.  Improvements in this architecture can 

focus on accelerating the algorithm or reducing the amount of data that travels between 

the processor and external memory.   

In addition, data access patterns can be optimized to take advantage of the 

properties of the local bus.  Data transfers between the processor and external memory 

can be optimized by changing the software data access pattern.  In our platform, the time 

it takes to access 128 bits of data is the same as the time it takes to access 32 or 64 bits.  

Therefore, software written for this platform should try to access memory in 128-bit 

blocks.  In addition, linear accesses provide the greatest throughput to the DDR RAM.  

Each DDR access requires a 1 cycle latency for the command, 2-3 cycles to access the 

location, followed by the actual data transfer.  By utilizing sequential memory locations, 

the data can be transferred in bursts and therefore minimize the command and access 

latencies. 

Custom hardware can be used to accelerate calculations to a much higher degree 

than software techniques.  This is because hardware can be designed especially for 

complex calculations and can also be easily parallelized.  The technique is well used and 

has become an industry standard for embedded systems.  Though the computation task is 

greatly accelerated in the resulting architecture (Figure 4-3(b)), the time it takes to 

transport data is increased.  This is because data between the memory and coprocessor 
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must pass through the PPC; compared to a software only solution, the amount of 

communications is doubled. 

To accelerate the communications part of a computation, a DMA block can be 

used (Figure 4-3(c)).  This block allows data to flow directly between the coprocessor 

and external memory.  Thus the dataflow time is improved by both the reduction and 

acceleration of data transfers 

Direct memory access (DMA) is a hardware solution to accelerate data transfers.  

In software data transfers, memory accesses to a hardware coprocessor must travel 

through the PowerPC processor.  A DMA unit accelerates the process by allowing blocks 

of data to be transferred directly to the coprocessor in a burst.  Thus performance 

improves due to two main factors.  One, instead of each data item hitting the bus twice, 

each item is only transferred once.  Two, the DMA controller is able to take advantage of 

both bus and DDR RAM burst access. 

Our design environment allows easy exploration of all these design alternatives.  

The integration of DMA technology to the evaluation process greatly enhances the design 

choices and enables additional performance gains.  In the following case studies, we 

show that the use of DMA technology not only improves performance when used alone 

but its benefits are further enhanced by software optimization techniques. 
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4.3. Case Studies 

To compare the benefits of the proposed methodology on different types of design 

we study the design to two case studies.  The case studies illustrate the degree of 

improvements that is achievable for specific algorithms. 

4.3.1. Greatest Common Divisor 

Euclid's binary greatest common divisor (GCD) algorithm is a well used 

algorithm known to be simple and fast to implement.  Its software description is shown in 

Figure 4-4.  The function takes in two numbers and results in a single number which is 

the GCD of the two operands.  

In the reference software implementation of this algorithm, a while loop 

successively reduces the two operands until one reaches zero.  In each cycle of the loop, 

the least significant bit (LSB) of the operands is examined and shift and/or subtraction 

operations are performed depending on the result. 



 79 

This is a very sequential algorithm and software implementation is limited by 

control instructions (i.e. compare and branch instructions).  At the algorithmic level, there 

has been some work to reduce the asymptotic complexity of the algorithm [43].  More 

practically, software optimizations focusing on loop unrolling techniques have show 

performance improvements of more than a factor of two [44]. 

Figure 4-4  Reference GCD algorithm 

unsigned int gcd(unsigned int u, unsigned int v) 
{ 
  int shift; 
 
  if (u == 0 || v == 0) 
    return u | v; 
 
  for (shift = 0; ((u | v) & 1) == 0; ++shift) { 
    u >>= 1; 
    v >>= 1; 
  } 
 
  while ((u & 1) == 0) 
    u >>= 1; 
 
  do { 
    while ((v & 1) == 0)  /* Loop X */ 
      v >>= 1; 
 
    if (u <= v) { 
      v -= u; 
    } else { 
      int diff = u - v; 
      u = v; 
      v = diff; 
    } 
    v >>= 1; 
  } while (v != 0); 
 
  return u << shift; 
} 
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A hardware implementation of the binary GCD algorithm is an easy way to 

improve performance because complex control operations can be performed very 

efficiently in hardware.  Figure 4-5 shows the state machine description of the GCD 

coprocessor.  Compared to the software version where several compare and branch 

operations are required in each loop iteration, the hardware implementation is able to 

perform each iteration in a single clock cycle. 

Once the control overhead is reduced through the use of a coprocessor, the time it 

takes to transfer operands from memory and store the results back to memory becomes 

the major bottleneck.  A DMA unit is added to the architecture to accelerate memory 

accesses.  The execution times of the systems produced at each step of the design is 

shown in Table 4-1 for operands of various sizes.  Table 4-2 shows the speed up in each 

case. 

Table 4-1    Execution time for GCD implementation options 

microsec 32 64 128 256 

Figure 4-5   Finite state machine for GCD coprocessor 

fsm euclid_ctl(euclid) { 
  initial s0; 
  state s1, s2; 
 
  @s0 (init) -> s1; 
 
  @s1 if (done) then (complete)          -> s2; 
      else if (m[0]&n[0])  then (reduce, outidle) -> s1; 
      else if (m[0]&~n[0]) then (shiftn, outidle) -> s1; 
      else if (~m[0]&n[0]) then (shiftm, outidle) -> s1; 
      else (shiftn, shiftm, shiftf, outidle)   -> s1; 
 
  @s2 (outidle) -> s2; 
} 
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SW 503.7 1136.08 2104.46 3615.08 
FIFO 83.72 160.26 312.88 618.62 
DMA 46.3 83.18 157.14 304.84 

 

Table 4-2   Performance speedup for GCD implementation options 

speedup 32 64 128 256 
SW 1.00 1.00 1.00 1.00 
FIFO 6.02 7.09 6.73 5.84 
DMA 10.88 13.66 13.39 11.86 

 

On average, the hardware implementation of the algorithm shows a speedup of a 

factor of 6.  In the software implementation, each loop iteration has at minimum, 4 

comparison instructions and 2 branch instructions; this suggests that most of the 

improvements are due to the efficient control structures in hardware.  Addition of the 

DMA unit further improves performance by a factor of two.  This number is directly 

related to the number of times that data is transferred in the bus.  Since this operation 

does not involve the transfer of large amounts of data, burst mode has not been activated 

and larger speedups are not realized.  

4.3.2. Complex Matrix Multiplication 

In the second case study, an algorithm that involves more complex calculations 

and larger data transfers is selected.  The complex matrix multiplication operation is 

chosen and the software code is shown in Figure 4-6.  The algorithm multiplies two NxN 

matrices to produce the answer matrix.  The software reference algorithm is comprised of 

three nested loops to access the matrix array elements.  Note that the multiplication 
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operation is complex and is actually composed of 4 multiplication operations and 2 

addition operations.  

 

This case study promises large potential for performance improvements.  In the 

calculation portion, the complex multiplication operation can be computed efficiently in 

hardware.  In addition, the computation of elements of the answer matrix is inherently 

independent of each other so a high degree of parallelization is possible.  Large data sizes, 

especially in cases where N is large, can be greatly accelerated through DMA since burst 

mode can be taken advantage of. 

To make use of efficient memory access, a matrix multiplication algorithm was 

devised to linearly scan through the RAM and perform 32 complex multiplications per 

cycle.  The algorithm begins by sending eight blocks of A values (a block is 4 elements) 

to the coprocessor. The eight blocks are from subsequent rows in A. Next, a block from B 

is sent to the coprocessor. The four incoming B elements are multiplied by the first 

element in each row of the A, and each of the 32 partial C products is accumulated. After 

a full row of B has been processed, the next active elements in A are the eight elements in 

Figure 4-6  Reference code for matrix multiplication 

void mmmKernel(Number* A, Number* B, Number* C, int N) 
{       
  int i, j, k; 
  for (j = 0; j < N; j++) 
    for (i = 0; i < N; i++) 
      for (k = 0; k < N; k++) 
        C[i*N+j] = C[i*N+j] + A[i*N+k]*B[k*N+j] ; 
} 
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the subsequent columns. The process of sliding over B’s rows, and A’s columns is 

continued until the entire B matrix has been traversed. At this point, the complete product 

for the first 8xN elements of C has been computed and can be written back to RAM. The 

algorithm then repeats itself computing eight rows of C at a time until all of the C results 

have been calculated. 

With the plan to perform linear scans through the RAM, 4 elements at a time 

(128-bits), the design also attempted to optimize the use of the FPGA’s hard IP resources. 

The Virtex-II XC2VP30 provides 136, 18-bit x 18-bit multipliers in the FPGA fabric, 

along with 136, 18Kb SelectRAM blocks. To utilize these fast discrete resources, the 

design performed 32 complex multiplies and accumulates per cycle. Since a single 

complex multiplication requires four multiplications and 2 addition/subtractions, a total 

of 128 multiplications, and 64 addition/subtractions were performed per cycle. In 

addition, one accumulate was needed for each of the 32 real and imaginary components, 

Figure 4-7  Scalable coprocessor architecture 
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resulting in another 64 addition / subtractions each cycle. Therefore, the final design 

utilizes 128 out of the 136 multipliers and performs 128 addition/ subtractions per cycle. 

An interesting characteristic of our software algorithm is that the algorithm leads 

to a loosely coupled and scalable coprocessor architecture.  The coprocessor has an input 

FIFO, output FIFO and single register called N-Reg. The controlling processor writes the 

dimension of the matrices into N-Reg. For a given coprocessor configuration, N-Reg is 

the only control parameter that needs to be set at runtime. Based off the single N-Reg 

parameter, the coprocessor’s entire control FSM is determined. Therefore, in addition to a 

simple runtime configuration, the coprocessor’s control logic is captured by a low-

overhead FSM.  The coprocessor’s architecture also allows the designer to configure 

parameters optimal for their specific system.  For example, Figure 4-7 displays a 

coprocessor with a single MAC row. To implement a coprocessor that computes eight 

rows in parallel, a single design parameter is set to add the additional computational 

capacity. In addition to computational capacity, the internal datapath width to the “Aunit”  

and “MAC Unit”  is configurable as well.  In fact, a design was tested and verified with a 

configuration of (Aunit = 8x4, MAC = 8x4) and (Aunit = 16x4, MAC = 16x2) within 

minutes of each other.  Therefore, the coprocessor architecture can scale to utilize a 

system’s available resources. 

Following the above design process, three different systems were implemented.  

The first is a software only system that improves performances by optimizing memory 

access patterns.  The resulting transformed algorithm is then implemented as a 

coprocessor.  Further gains are achieved when a DMA controller is used to directly 
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supply the data elements from memory.  The execution times of the scenarios are shown 

in Table 4-3.  The corresponding speedup compared to the reference software is shown in 

Table 4-4. 

 

Table 4-3  Execution time for matrix multiplication implementation options 

microsec 128 256 512 1024 
SW 250736 3015457 45354321 362205433 

OPT SW 169596 1414189 14411677 114796740 

COPROC 30450 212524 1574459 12060870 

DMA 5975 40248 165489 210370 
 

 

Table 4-4   Performance speedup for matrix multiplication implementation options 

speedup 128 256 512 1024 
SW 1 1 1 1 

OPT SW 1.5 2.1 3.1 3.2 

COPROC 8.2 14.2 28.8 30.0 

DMA 42.0 74.9 274.1 1721.8 
 

 

From the results, software optimizations to reduce memory accesses provided 

modest speedup to the system.  For N=1024, the software technique is able to improve 

performance by 3x; this suggests that data transfers are the dominant performance 

bottleneck as N gets large.  For small matrices, the coprocessor implementation added an 

additional 3x improvement and the DMA implementation added an additional 3x 

improvement above that.  In contrast, for large matrix sizes, the measured improvements 

is 10x and 50x respectively.  This result shows that though software optimization 
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techniques may bring only modest speedup, its combination with hardware techniques 

can realize performance increases of more than three orders of magnitude. 

 

4.4. Related Work 

The methodology presented in this chapter shows how high performance systems 

can be produced in hardware / software co-design techniques are also used to optimize 

control and dataflow components of a computation.  This idea has already been taken 

advantage of in the family of stream processors [46]. 

The graphics processing unit (GPU) is the best know type of stream processor and 

is a good example of the performances that can be achieved when the control and 

dataflow elements are separated and optimized separately.  The generic GPU architecture 

consists of a deep pipeline designed to process an input data stream.  Software written for 

the GPU runs on a specialized processor core designed to supply parameters to each of 

the pipeline stages.  Dataflow is optimized because data passes directly from one 

processing unit to the next.  Control is optimized by the use of a processor core specially 

design to only provide parameters to the processing units. 

The Cell processor [47] is an example of a more programmable design that 

explicitly optimized control and datapath elements separately.  The processor consists of 

one PPE connected to 8 SPUs through an internal high speed bus.  The SPU processors 

are optimized for arithmetic calculations and programmed by the PPE.  Each of the 8 SPE 
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also contains a Memory Flow Controller that allows the data to be passed directly from 

one SPU to another.  This enables the PPE to specify how data flows between the SPUs. 

In recent benchmarks [48], the Cell processor was able to achieve 60x speedup on 

the 256x256 matrix multiplication operation when the reference code is optimized for 

computation and communications for a single SPU.  The SPU is considerably more 

powerful than the PPC405 processor used in our case studies, so it is no surprise that it 

also outperforms our design.  However, when all SPU cores are used, the benchmarks 

show a 8x performance increase.  This shows that through good dataflow designs, 

communication overheads can be minimized.  

The resulting performance demonstrated is impressive and validates the efficacy 

of this approach.  However, besides the high cost, there are several reasons why the cell 

processor is not suitable for embedded systems in general. 

1. The SPU while optimized for arithmetic functions is still restricted by the ISA and 

sequential processing paradigm of processors. 

2. The heterogeneous cores in the Cell processor create complications in the porting 

of algorithms.  Taking advantage of control and dataflow optimizations for the 

architecture often requires a complete redesign of algorithms and software. 

From a certain point of view, to realize high performance gains, the algorithm 

must be molded to fit the architecture. 

In contrast to the design approach of stream processors, we present a design 

methodology which allows explicit optimization of the control and datapath of an 
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embedded system.  In contrast to designing a system based on the Cell processor, our 

process is based on the system-on-chip (SOC) design approach.  Thus, like the design of 

the GPU, a system can be built to fit the specific application.  Unlike the GPU design, 

however, the degree of programmability in the control and datapath elements may be 

specified.  The GPU has a fixed dataflow and control limited to the specification of 

computational parameters.  The Cell processor enables both the dataflow and control 

element to be programmable, though SPUs restrict the granularity of optimizations. 

Our methodology provides a unified tool and environment where all these 

elements can be explored. The design flow also enables a quick path to implementation 

which is important to embedded systems where design time is an important factor. 

 

4.5. Conclusions 

It is clear that there are many techniques both in the hardware and software 

domains that can be used to improve the performance of embedded systems.  Three of the 

most popular are:   reduction of memory accesses in software, acceleration of functions 

using coprocessors, and acceleration of memory accesses direct memory access (DMA) 

units.  They are popular in industry because they follow a simple design methodology 

while producing large performance improvements. 

However, there has been little study on the effects of these methods when used in 

combination.  In this chapter, we introduce a design environment which is able to explore 

the interactions of these design techniques (which extend through hardware / software 
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boundaries).  Through the use of two case studies, we show that for some applications, 

the performance gains from the combination of these techniques are more than linear.  

The GCD case study shows that an order of magnitude performance increase can be had 

by accelerating a computation in coprocessor hardware and then accelerating the 

communications with a DMA module.  However, in the matrix multiplier case study we 

show that if the algorithm is first transformed to minimize data transfers, the performance 

gains achieved by implementation of the new algorithm is greatly multiplied.  Results 

show performance improvement of up to three orders of magnitude in certain cases. 

The design environment also flows easily into an implementation.  The smooth 

design flow can be attributed to our design environment which is able to guide the design 

of the system architecture so that it is optimized for the application.  This is in contrast to 

stream processors where the application must be modified to fit the architecture.  Faster 

design times are a significant advantage for an embedded system design since they are 

very sensitive to time to market.  A system that is able to realize high performance while 

minimizing design time is attractive.  Our design environment enables the easy 

exploration of proven techniques to achieve high performance and a framework to 

quickly realize the resulting system. 

In traditional design, the computing architecture is first defined and software is 

then developed to be optimized for it.  Our design environment, in contrast, uses 

hardware / software co-design techniques to encourage the design of a computing 

architecture that is optimized for the specific application. 
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Chapter 5  

 

Localized Security Interface 

 

In this chapter, the interface between logical entities (processes) which share a 

common processor is examined.  Multitasking computing systems have become main 

stream even in the field of embedded systems.  With the ability to run multiple 

applications on a single platform, comes the real concern that some of these applications 

may be malicious. 

The interface between different tasks in a system is a purely logical one but is also 

different in purpose than the interfaces discussed so far in this dissertation.  The 

interfaces discussed so far divide up the system horizontally and are designed so that data 

can travel easily through.  In contrast, security boundaries divide up the system vertically 

and are designed so that data cannot travel through them.  The boundary is vertical 

because, though there is much sharing of resources between the different applications 

running on a single system, data from one application must not be accessible by another 
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process.  To prevent loss or corruption of data and software, the interface between 

processes must be strengthened. 

Though the purpose of the two types of interfaces may, at first glance, appear to 

be conflicting, the cross-layer co-design methodology can still be used.  In this chapter, 

the way in which this can be accomplished is presented through the design of a multi-

threaded coprocessor architecture.  In the design, a shared security function is first 

identified.  The isolation and access control layers are then collapsed into a single 

hardware domain where they are optimized together with the crypto-algorithm.  The 

resulting designs exhibit both high performance and high security. 

 

5.1. Functional Isolation 

Security for multitasking systems focus on the implementation of two main goals: 

resource access control and resource isolation.  Resource access control is the assignment 

of usage permissions for system resources or functions to processes in the system.  

Classic security systems design focus mainly on this task; this is usually done by explicit 

assignment of access rights to each running process and controlling the interaction 

between them and various system resources (such as files, IPC, and the network stack).  

Resource isolation tries to ensure that data from one process is not able to leak to another 

process.  Historically, this feature is the responsibility of the operating system and has 

been implemented without assuming the presence of a malicious process in the system. 
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In a perfect system, a malicious process can be perfectly identified and its access 

to system resources appropriately restricted.  In such a scenario, the task of isolation is 

not important since the malicious process does not even have access to the resource.  The 

contributors of the Trusted Computing Group [64] focus on this idea by building 

processors supported by a complex trust infrastructure to ensure that only trusted 

software is allowed to be installed or executed in the system.  Though well promoted by 

industry, the effectiveness of such an approach is debatable [51][52]. 

In a real system, it is very easy for a malicious program to gain access [65].  In 

such a situation, it is important that the process is not able to crash the system or, more 

importantly, steal and/or use information from other resources in the system.  Therefore, 

in the absence of perfect access control, this chapter focuses on the implementation of a 

system with stronger process isolation properties; malicious programs may run, but they 

cannot interfere with other processes. 

Process isolation is not a new idea.  One of the earliest implementations is the 

Unix process which was designed to prevent several users of a mainframe computer from 

interfering with each other.  Since it was not designed with security in mind, malicious 

users have exploited the weak isolation.  Though there are many OS security patches 

released, new security holes are discovered daily.  It has been argued that this is due to 

the monolithic nature of traditional OS’s and the large amount of code that is allowed to 

run in kernel mode [55]. 
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5.1.1 Related Work 

From its early days, process isolation has been thought of as a software problem 

in the domain of operating systems.  In [55], Tanenbaum argues convincingly that a 

secure operating system should be exclusively composed of a set of interactive processes 

(microkernels).  This method forces a certain degree of isolation between the different 

processes responsible for the various operating system functions.  Due to this isolation, a 

security breach in one of the processes does not necessarily mean a compromise to the 

whole system.  In addition, partitioning of the OS functions allows the designer to 

minimize the amount of code that is allowed to run in kernel mode. 

A popular software solution to isolation is the virtual machine.  Virtual machines 

[50] allow several operating systems to run on a single processor; isolation is enforced by 

a virtual machine monitor which restricts communication between the different operating 

systems (in fact, one operating system is not even aware of the existence of another).   

Mixed hardware/software solutions include processor architectural features that 

try to protect against common known attacks.  The ARM Trustzone [61] processors have 

an additional security mode which allows trusted software to access additional secure 

registers and memory management units.  In the age of inexpensive silicon, SOC designs 

are able to dedicate a whole processor to run untrusted software [62].  In the CELL 

processor [63], each of the eight Synergistic Processor Elements (SPE) can be configured 

as a secure processing vault which ensures that the application running on it is isolated. 
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5.1.2 Functional Process Isolation 

Guaranteeing process isolation to a whole system is a daunting task.  However, in 

most systems certain functions or resources can be identified as needing more protection 

than others.  In general computing, the keyboard or the disk drive may be a major source 

of information leak.  In embedded computing, isolation is particularly important in the 

calculation of security primitives and protocols.  The French company, Trusted Logic, in 

its TL Security Model Architecture [53] for mobiles has used this idea to build a small 

and secure security kernel.  Isolation properties are very strong within the kernel, while 

other functions are left to a standard operating system. 

 

Software systems are also vulnerable to cache attacks as describe by [69] and 

successfully demonstrated by [67] on the AES algorithm and [68] on the RSA algorithm.  

The attacks involve a malicious process observing the pattern of cache misses in the 

system in order to obtain the secret key.  While there have been some cache designs [66] 

that claim to be resistant to such attacks, such solutions are not widely available to 

Figure 5-1    Lack of hardware isolation in current 
architectures 
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common processors.  Coprocessors are a better solution since they can be easily added to 

the peripheral bus of most processors and access to them does not pass through the 

memory subsystem.  However, such coprocessors must still be carefully designed to 

ensure that information does not leak between independent processes through the 

coprocessor.  As Figure 5-1 shows, even though a secure operating system may provide 

isolation services, the coprocessor still can leak information between independent 

processes through the coprocessor registers.    

In this chapter, the use of coprocessors for process isolation is motivated.  

Compared with traditional isolation techniques that are defined in terms of fixed 

processors and fixed architectures, the major difference with the proposed coprocessor 

centric approach is that isolation can be provided to arbitrary architectures.  In addition to 

higher performance, a well designed interface can guarantee isolation during computation. 

 

5.2. Hardware Isolation Motivation 

In order for a hardware based approach to be valid, the proposed system must 

realize properties that significantly improve current process isolation schemes.  The main 

benefits of hardware are the potential of increased security and better performance.  We 

propose a secure coprocessor design that will provide strong process isolation properties.  

Like the TL Security Model Architecture, the coprocessor will provide a specific function 

or service for the various processes in the system.  The following examples of a 

coprocessor that provides an encryption service illustrate how coprocessor architectures 

are currently not capable of providing these properties.  In the examples, a processor is 
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making use of a coprocessor that provides encryption and decryption services to multiple 

processes. 

5.2.1 Security Examples 

One possible attack can occur at the moment that a process has just used the 

coprocessor to encrypt a command to a remote server.  A malicious process may then use 

the same coprocessor without reprogramming the settings to send its own data to the 

remote server, essentially spoofing the identity for the first process. 

In a related attack, the malicious process can partially reprogram the coprocessor 

by just changing modes from encryption to decryption.  The previous encoded output can 

then be reinserted into the coprocessor to reveal the unencrypted message. 

With current coprocessors, this can be prevented by having the tasks reset the 

coprocessor after each operation.  However, this solution imposes additional overhead, 

because it increases the period within which the coprocessor interface will remain locked 

by a single task.  Moreover, it leaves the responsibility of security on the design of the 

operating system.  Operating systems themselves are very complicated software 

structures. 

5.2.2 Performance Examples 

Assume that a single coprocessor encrypts two channels of streaming data.  Each 

channel has a different mode of operation and different keys.  The streaming data is time 

sensitive and must have its delay bounded by a certain value.  For a traditional interface, 

this would mean that the operating system would have to manage the context switching 
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between these two tasks.  The overhead due to software context switching and repeated 

interactions with the coprocessor is a limitation on the total throughput of the system. 

A system with many processes having bursty data illustrates an extreme example 

of context switching.  This situation is not unusual in a VPN server, which handles large 

number of secure interactive sessions. 

The coprocessor can be designed to store the contexts (process specific data such 

as the key and mode of operation) of the processes in the coprocessor.  This means that 

for streaming applications, the bandwidth of the encryption core is shared among the 

active tasks with no time lost to context switching.  For extremely bursty traffic, the 

context information is already stored in the coprocessor; therefore, overheads associated 

with processor-coprocessor interactions are minimized. 

 

5.3. Agent Based Coprocessor 

To show how process isolation can be implemented, a coprocessor based scheme 

is proposed that is able to provide significant benefits in security and performance.  In the 

following subsections, a general system architecture where the coprocessor exists is first 

defined.  Then a protocol for communication with the coprocessor is defined before the 

actual architecture of the coprocessor itself is presented. 
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5.3.1 System Architecture 

Figure 5-2 shows three possible system architectures for a coprocessor and its 

communications with a CPU.  The dashed lines represent the flow of data and the solid 

lines represent the flow of control signals.  In Figure 5-2 (a), the coprocessor directly 

connects to the microprocessor.  This means that both data and control signals must pass 

through the microprocessor, making this the main bottleneck.  In the second architecture 

(Figure 5-2(b)), the coprocessor connects directly to a streaming interface that will supply 

the data.  With this architecture, the microprocessor only deals with control of the 

coprocessor and interactions proceed on a block-by-block basis rather than a word-by-

word basis. 

Figure 5-2    Different system architectures: a) simple coprocessor 
interface, b) streaming coprocessor interface, and c) hybrid coprocessor 
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The most significant source of communications overhead is the transfer of context 

information.  In an encryption application, context is the process specific data such as the 

control state, the secret key, the mode of operation, and initial values.  The transfer of this 

information for each process not only reduces system efficiency, but also increases the 

risk of data interception. 

Figure 5-2(a) may seem to incur a large overhead but has the benefit of a more 

traditional architecture and is more appropriate for interactive type applications such as a 

telnet session.  Figure 5-2(b) is more appropriate for processing of continuous streaming 

data or large data blocks.  The proposed design must to be compatible with either of these 

common architectures.  An example of how this is accomplished in shown in Figure 

5-2(c). 

5.3.2 Interface Protocol 

The security example shows how information can leak between two processes in 

the system in ways that are not obvious.  To ensure process isolation, a method to 

physically keep all context information between the running processes separate must be 

derived.  In addition, a mechanism is needed to bind the software process with the 

hardware context such that it can not be accessed by unauthorized processes.  To 

accomplish these two tasks, an interface protocol was developed.   
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The coprocessor interface communicates with the main processor and distributes 

work to the agents.  Using the interface protocol, a software process is able to set up a job 

by sending parameters to the coprocessor.  This context is stored in the coprocessor until 

the software process terminates the job. 

Figure 5-3 shows the basic interface between the coprocessor and the processor.  

After sending the parameters necessary for a particular operation, the coprocessor will 

confirm receipt by issuing a unique random number.  This number will be used by the 

software application in the future to issue commands to the coprocessor for the specific 

channel.  This unique ID number makes it difficult for other software processes (in 

charge of a different data stream) from accessing another’s job parameters or internal 

registers. 

From the point of view of a software process running on the main processor, the 

use of the ID numbers is invisible and is managed by the API drivers.  When a process is 

created, a memory location is allocated to store the ID number.  The API setup function 

will store the ID number at this location when a channel is created.  In subsequent API 

Figure 5-3    Processor - coprocessor interface 
protocol 

Set up context

Return unique 
random ID number

Use ID number to 
issue commands

Close context 
(end of job)

Processor Coprocessor



 101 

function calls, the number will be used to communicate with the coprocessor.  Using this 

API, the software process does not have access to the ID number and cannot give this 

number to another process; this means that the link between a software process and its 

hardware agent is tightly coupled.  Table 5-1 shows the five types of commands that may 

be available. 

Table 5-1    Commands accepted by coprocessor 

Command  Description 
Agent setup Reserve/configure an agent for a 

calculation 
Agent check Check to see if previous 

calculation has been completed 
Agent release Clear a certain context from the 

coprocessor 
Agent single Perform a single preset 

calculation 
Agent continuous Perform a series of preset 

calculations taking data directly 
from memory 

Immediate Perform a single calculation 
 

A malicious process can try to access a context by trying to guess a valid ID 

number.  The processor interface mitigates the effectiveness of such an attack by not 

revealing any information about whether an ID number is valid or not.  When the agent 

check, agent release and agent continuous commands is given with an non-existing ID 

number, the coprocessor will always respond with DONE.  For the Agent single and 

Immediate commands, a random number is returned.  This gives the attacker no 

indication of the validity of the guessed ID number. 
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5.3.3 Distributed Architecture 

While the interface protocol ensures the correct binding between software 

processes and the hardware tasks, the coprocessor architecture ensures that the context 

information is kept physically separated.  In addition, the architecture has a large 

influence on the speed in which the functions are performed. 

The architecture of the proposed coprocessor is shown in Figure 5-4 and is 

composed of the following main parts: 

• processing unit 

• agents  

• data interface 

• processor interface 

 

Figure 5-4    Distributed coprocessor architecture 
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The coprocessor processing unit contains the core logic needed to perform a 

specialized task.  In traditional, coprocessor design, engineers have concentrated on this 

part to accelerate calculations.  It is often large and complex; therefore, it is important 

that it can be used efficiently. 

The agents are composed of a state machine and registers to store the context for a 

particular channel.  It is responsible for ensuring that a function is performed correctly on 

a particular data block or stream in a particular context.  In general, agents cycle through 

the following operations:  

• fetch data from input port,  

• perform operations on data using the datapath,  

• write results to output port.   

Because multiple agents exist in a single coprocessor access control logic must be 

used to access the datapath and interface ports.  In general, the addition of agents to a 

coprocessor incurs very little area overhead due to its simple control operations.   

The modular architecture also provides an easy and flexible design platform.  The 

interface protocol serves to isolate the requests made by the main processor from the 

active components performing the computation.  This allows the number of agents and 

processing units to vary independent of application software.  This results in smaller and 

more portable software (multiple versions for each dynamic configuration is no longer 

necessary). 

The coprocessor can be configured by specification of the number of agent blocks 

and associated processing units.  The two parameters, the number of agents and the 
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number of processing units, affect the performance of the system differently.  The 

number of agent blocks determines the number of simultaneous processes that may be 

handled.  The number of processing units determines the maximum throughput which the 

system can support.  For an efficient system, these two parameters are determined based 

on the required throughput and latency of the processes. 

The agents and processing units all operate independently from each other.  The 

agents are isolated from the main processor through the processor interface block.  The 

processing units are isolated from the agents through the access control block.   

 

5.4. System Case Study 

To demonstrate and study the characteristics of a system that uses the proposed 

secure coprocessor architecture, a secure web-server application was developed.  The 

server uses the AES algorithm to individually encrypt data from each of its 

communication channels.  The hash algorithms, SHA1 and SHA-256 are also 

implemented as coprocessors.  Hash algorithms are widely used in message 

authentication (MAC) which ensures that messages have not been modified during 

transmission.  The objective is not only to evaluate the benefits of the proposed secure 

coprocessor architecture, but also to evaluate the design tools and procedures needed to 

implement a secure coprocessor based system. 



 105 

5.4.1 Secure Web Server Application 

A secure web server application was implemented to demonstrate how a real 

system interacts with the proposed security coprocessor.  The application performs the 

following tasks:  When a client establishes a connection with the server, a key and 

encryption mode of operation is negotiated.  Data is then encrypted and sent to the client.  

Several clients can be handled simultaneously and a process is created to manage each 

connection.   

During the testing of the system, several connections are made to the server, each 

spawning its own process.  Each of these processes independently registers its security 

context with the secure coprocessor.  When several files are transferred, the coprocessor 

is able to handle several encryption/decryption jobs simultaneously and without leakage 

of information.  The footprint of the different software components is shown in Table 5-2. 

Table 5-2    Size of software components 

Server Application 2,794 bytes 
SW AES (for system w/o 
coprocessor) 

33,536 bytes 

Coprocessor interface drivers 2,928 bytes 
Quickthreads library 1,868 bytes 
Multithreaded TCP/IP 
communications stack 

106,957 bytes 

System calls 4,508 bytes 
TOTAL 152,591 bytes 

 
From the system point of view, the size of the software can be reduced by 20% if 

a coprocessor is used to perform AES encryption.  This shows that for many applications, 

it is possible to both reduce cost and increase performance and security. 
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5.4.2 Distributed Architecture 

To build and evaluate the application, a proprietary development environment 

was used.  The development environment enables co-simulation of the hardware and 

software components of the design as well as interactions with real network traffic.  The 

following subsections describe the different components that make up this design 

environment. 

5.4.2.1 Co-simulation Platform 

The GEZEL language was used to implement the coprocessor.  GEZEL is a 

system design language proven very effective in the design of coprocessors [28].  In 

addition to easy co-simulation software processes and hardware coprocessors, in this 

chapter GEZEL has been extended to allow interactions with a real networking 

Figure 5-5    Co-simulation platform 
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environment.  Thus using this platform, cycle true behavior of the system can be analyzed 

while allowing the system to be able to interact with the environment. 

Figure 5-5 shows the co-simulation platform used to verify and examine the 

coprocessor design.  The coprocessor was written in GEZEL and co-simulated with 

application software running on the SimIT-ARM [59] cycle-true instruction set simulator. 

The software system was cross compiled and loaded onto the SimIt-ARM 

simulator and co-simulation was performed with the coprocessor in the GEZEL 

environment.  To allow connections with clients outside of the simulation environment, 

the simulator was modified to support the POSIX select(), open(), and close() system 

calls.  Client processes can then connect to the simulation through the TAP/TUN drivers 

[60].  These drivers help implement a virtual network device.  This setup allows us to 

have external client processes connect to the server that is running in a co-simulation 

environment. 

After verification of the design, the GEZEL tool was used to generate 

synthesizable VHDL.  The Synplicity synthesis tools used this generated code to produce 

the area and speed measurements for the design. 

5.4.2.2 Coprocessor Interface Drivers 
Communications between a software process and the coprocessor takes place 

directly through the memory-mapped interface.   Since context isolation is provided by 

the coprocessor, it is not necessary for the OS to provide special access control services 

to manage its use.   
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Commands to the coprocessor are written directly to its registers, a process that 

takes about 11 clock cycles per 32-bit word.  This limits the maximum data throughput 

between the processor and coprocessor. 

5.4.2.3 Threads Library 
A full operating system is not necessary to demonstrate the benefits of the secure 

interface solution in a multitasking system.  However, a threads library is necessary.  A 

compact threads library was developed supporting a subset of the pthreads API.  It was 

developed using QuickThreads [57], a simple and portable threads toolkit.   

To illustrate a multitasking system, only the basic functions of thread initialization 

and context switching were implemented.  The context switch flavor used is not 

preemptive.  In the current design, a context switch occurs when a process releases a 

system lock. 

5.4.2.4 Protocol Stack 
The TCP/IP protocol stack is a suite of networking protocols necessary to 

communicate with the internet.  The implementation of this is based on the lightweight 

internet protocol (lwip-0.7.1) code [58].   

The stack is implemented for a multithreaded system.  Each thread is in charge of 

a particular protocol or interface.  Communications between the different network 

protocol threads is accomplished by a mailbox message passing system.  Though the 

library supports all the features of an internet stack, the demonstration system built uses 

only a subset of this.   

In the example implementation, networking functions are implemented with only 

two threads.  At the lowest layer, an Ethernet interface is implemented to manage the 
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basic input and output functions from the system to the network.  The TCP/IP thread 

processes the packets and manages all the opening, closing and maintenance of 

connections.  Applications can communicate with this stack through a sockets-like 

interface.  

5.4.3 AES Coprocessor Architecture 

The AES coprocessor was implemented according to the principles explained in 

Section 5.3.  Using GEZEL, the coprocessor is described and linked with the SimIt-ARM 

simulator.  It is in this environment that verification and study of the properties of the 

coprocessor was performed. 

5.4.3.1 AES Algorithm 
The AES cipher is a block cipher [49], which means that encryption and 

decryption operate only on fix blocks of data.  In the implementation case study, 128 bit 

is the block size. 

The algorithm consists of five main operators: AddRoundKey, SubBytes, 

ShiftRows, MixColumns, and KeyExpansion.  The inverse of these operators are used for 

decryption.  Figure 5-6 shows the how these operators are used to perform encryption and 

decryption. 
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For round = 1 to 9 

SubBytes 
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AddRoundKey 
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InvShiftRows 
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ShiftRows 
AddRoundKey 

InvSubBytes 
AddRoundKey 

Figure 5-6    Pseudocode for AES encryption and decryption 

In both encryption and decryption algorithms, there is a FOR loop that runs 

through four of these steps.  Hardware is efficiently realized by implementing only this 

group of operations (a single round) into hardware.  The same hardware can then be used 

several times to perform a single encryption or decryption operation. 

5.4.3.2 Interface Protocol 
The microprocessor connects to the coprocessor through a memory-mapped 

interface.  The interface protocol uses an instruction set designed to minimize the amount 

of communications necessary.  Figure 5-7 shows the format of the instructions the 

coprocessor receives.  Depending on the type of command, zero or more of the optional 

fields are used. 

Figure 5-7    Instruction format of the AES coprocessor 

Cmd (3) Mode(4) ID number (24)

Read address (32)
Write address (32)

Block size (10)

Key (128)
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The normal use of the protocol proceeds in the following manner:  A process 

sends a command to the coprocessor to reserve some resources for future calculations.  If 

resources are available, the coprocessor grants the request by returning a random and 

unique ID number.  Future commands will use this ID number to reference the 

cryptographic context in which calculations occur.  At the end of a process' life, the 

processor gives the command to the coprocessor to release the reserved resources.  

The protocol also allows using the coprocessor without the reservation of 

resources.  In this case, the coprocessor will return the result upon the completion of the 

calculation. 

Table 5-3 shows the five types of commands that are available and the amount of 

communications needed to complete them.  The commands correspond directly to the 

generic commands of Table 5-1. 

Table 5-3  Commands accepted by the AES coprocessor 

Command  Return value 32-bit words transferred 
(rd+wr) 

Agent setup ID number or FALSE 9+1 
Agent check DONE or FALSE 1+1 
Agent release DONE or FALSE 1+1 
Agent single AES result or FALSE 5+4 
Agent 
continuous 

DONE or FALSE 4+1 

Immediate AES result or FALSE 13+4 
 
 
5.4.3.3 AES Coprocessor Architecture 

Figure 5-8 shows the main logical blocks in the coprocessor. The processor 

interface block accepts instructions from the microprocessor through a memory-mapped 

interface.  This block will then assign the work to one of the agent blocks.  The agent 
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blocks are dedicated controllers that are able to perform AES encryption and decryption 

in any mode of operation.  The agent blocks each have enough registers to store the state 

of the calculation.  The AES core performs the actual calculations.  In the implementation 

example, this is a purely combinational block, which performs a single round of 

encryption or decryption; eleven rounds are necessary to perform a single AES 

calculation.  

 There are several agents in the coprocessor managing multiple AES cores (each 

responsible for calculating a single round).  The number of these elements changes 

depending on the throughput and latency requirements of the system.  A round robin 

scheduling algorithm is used to ensure fair access to the AES cores.  Memory read and 

write access control blocks are available to support the streaming or block processing 

architecture of Figure 5-2(b).  For easy integration with popular architectures, all 

interfaces are 32-bit buses. 

Figure 5-8   Architecture of AES multitasking 
coprocessor 

Agent
1

Agent
n

Processor interface

…

AES round
core 1

AES access control

Read
Mem

Access
control

Write
Mem

Access
Control

…
AES round

core m



 113 

Both encryption and decryption support the following modes of operation:  

electronic codebook (ECB), cipher block chaining (CBC), cipher feedback (CFB), output 

feedback (OFB), and counter (CTR).  Such flexibility enables support of a wide variety 

of popular security protocols including IPSec, SSH, and SSL/TLS. 

5.4.3.4 Agent Blocks 
The architecture of the agent block is shown in Figure 5-9.  These blocks are 

responsible for managing calculations for a single process.  The task given to an agent 

may be to encrypt a large data file.  In this case, the agent block retrieves the data from 

memory, performs multiple AES calculations, and then writes the encrypted data back to 

memory.  Because there is a tight coupling between a software process and its agent, 

many agent blocks exist within the multitasking coprocessor. 

Figure 5-9  Architecture of the AES agent blocks 
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The agent consists of a small finite state machine with a collection of registers to 

remember the state of AES calculations. 

The values stored in the registers add up to 722 bits of data and contribute to over 

60% of the area of this block.  In designs where many agents are required, area can be 

saved by using an AES core that performs a full AES calculation; intermediate data 

storage (which accounts for 30% of the total registers) will not be required in the agent.  

The result is a larger AES core and a system with slightly longer latencies.  Instead of 

registers, a RAM module for each of the agents can also achieve a more area efficient but 

lower performance design. 

5.4.3.5 Access Control 
Access control blocks regulate admission to the AES core and the external 

memory blocks by the agents.  Each of these blocks implements a round robin priority 

scheduler.  This means that the priority of the agents to use the resources rotates each 

clock cycle.  This ensures fairness among the agents competing to use the resources and 

guarantees that all calculations experience the same delays. 

In the implementation, a generic and purely combinatorial AES core was 

implemented.  The purpose was to compare the size of the multitasking processor with 

the size of a typical single round AES core. 

5.4.4 SHA Coprocessor Architecture 

In secure communications, encryption algorithms such as AES ensure that 

messages are kept private during transmission.  Hash algorithms, in contrast, are used to 

ensure that the messages are not altered during transmission.  The popular SHA-1 and 
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SHA-256 hash algorithms was implemented using the multithreaded coprocessor 

framework.  Both algorithms are able to handle a maximum message size of 264 bits and 

operate on 512 bit block sizes.  Because of this, the effect of algorithmic properties on the 

coprocessor architecture can be studied. 

5.4.4.1 SHA Hash Algorithm 
 

SHA-1 SHA-256 
Pad message to multiple of 512 bits 
Split message into N 512-bit blocks 
For message block = 1 to N 

For iteration = 1 to 80 
Do SHA-1 operation 

Accumulate intermediate hash 
Return final 160-bit hash value 

Pad Message to multiple of 512 bits 
Split message into N 512-bit blocks 
For message block = 1 to N 

For iteration = 1 to 64 
Do SHA-256 operation 

Accumulate intermediate hash 
Return final 256-bit hash value 

Figure 5-10    Pseudocode for the SHA hash algorithms 

The SHA family of hash algorithms follows a common control structure but differ 

in the operations performed.  Figure 5-10 shows the pseudo code for the SHA-1 and 

SHA-256 hash algorithms.  The message to be hashed is first padded so that its size is a 

multiple of the block size.  In the examples, the block size is 512 bits, so zeros must be 

added to the end of the message to extend the message size to nx512 bits.  Multiple 

iterations of the hash algorithm are performed on each of the message blocks in message 

order.  This operation creates an intermediate hash value that is used to compute the 

intermediate hash value of the next message block. 

 

Table 5-4    Comparison of SHA-1 and SHA-256 hash algorithms 

 Message 
size (bits) 

Block size 
(bits) 

Hash size 
(bits) 

Security 
(bits) 

SHA-1 <264 512 160 80 
SHA-256 <264 512 256 128 

 



 116 

The difference in the two SHA algorithms is summarized Table 5-4.  The SHA1 

algorithm performs 80 iterations for each message block and produces hash values of 160 

bits.  The SHA-256 algorithm performs 64 iterations and produces a hash value of 256 

bits.  Though it performs less iteration, the operations are more complex and the resulting 

hash value is considered more secure. 

The implemented hardware core for the SHA coprocessors performs the 

operations found in the inner loop of the algorithm.  Thus, the core is used 80 times for 

SHA-1 and 64 times for SHA-256 for each message block. 

5.4.4.2 Interface Protocol 
The microprocessor connects to the coprocessor using the memory mapped 

interface.  Figure 5-11 shows the format of the instructions the SHA coprocessor is able 

to receive.  Since both the SHA-1 and SHA256 algorithms take the same input, the 

instruction format can be reused in both cases.  The optional parameter fields are used to 

specify the message to be hash.  For messages coming from the processor, the Data field 

is used.  For messages coming directly from memory, three Read Address and Message 

size registers are used. 

The normal use of the protocol proceeds in the following manner:  a process sends 

a command to the coprocessor to reserve an agent to perform a future hash operation.  If 

an agent is available, the coprocessor reserves it and returns a random and unique ID 

number.  The process will use this ID number to communicate the location of the 

messages to be hashed. 
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The SHA hash function has only a single mode of operation, so commands to the 

agent mainly involve specifying the contents of the message to be hash and/or the 

location in which it is located.  When the calculate hash command is given, the agent will 

correctly pad the message and return the final has value to the process through the 

memory mapped interface.  At this point the job is complete and the process gives the 

command to release the reserved resources. 

Table 5-5   Commands accepted by the SHA coprocessor 

Command  Description Return value 32-bit words 
transferred 
(rd+wr) 

Agent setup Reserve and configure 
an agent for SHA 
calculation 

ID number or 
FALSE 

1+1 

Agent check Check to see if previous 
calculation has been 
completed 

DONE or FALSE 1+1 

Agent release Clear a certain context 
from the coprocessor 

DONE or FALSE 1+1 

Agent single Add a new work to the 
message block 

AES result or 
FALSE 

1+1 

Agent 
continuous 

Add a block of words 
to the message block 
from data taken directly 
from memory 

DONE or FALSE 3+1 

Get hash Pad the current AES result or 1+5 (SHA-1) 

Figure 5-11   Instruction format of the SHA 
coprocessor 

Cmd (3) ID number (24)

Read address (32)
Message size (32)

Data (32)
Optional
parameters
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message block and 
generate hash value 

FALSE 1+8 (SHA-256) 

 
Table 5-5 shows the 6 types of command that are available and the 

communications needed to complete them.  Note that the SHA-256 has larger overhead 

due to the larger hash size. 

5.4.4.3 SHA Coprocessor Architecture 
Figure 5-12 shows the main logical blocks in the coprocessor.  The processor 

interface block accepts instructions through a memory mapped interface and assigns 

work to the agent blocks.  The agent blocks each have its own set of registers to store the 

intermediate state of hash operations.  SHA core performs contains the logic that 

performs the actual operations.  In the implementation, the core performs a single 

iteration of the SHA algorithm.  In SHA-1, the core is invoked 80 times for each message 

block while in SHA-256 it is invoked only 64 times.  

 
5.4.4.4 Agent Blocks 

Figure 5-12   Architecture of SHA multitasking coprocessor 
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The architecture of the agent blocks are shown in Figure 5-13.  Each block is 

responsible for calculating the hash value of a single message for a single process.  To 

hash a large message, the agent is able to retrieve the data from memory, correctly pad 

and partition the message blocks and perform the hash functions.  The final hash value is 

returned to the process through the memory mapped interface.  There is a one to one 

relationship between a message to be hashed an the agent that performs the hash.  

Because of this, a software process may have multiple agents under its control and many 

agents exist within the multitasking coprocessor to service these jobs. 

The agent consists of a collection of registers that store the message block to be 

hashed and the intermediate hash values.  Additional registers are used to store the 

current state of the calculation such as location of message and size of message.  As with 

the AES coprocessor, a RAM module can significantly reduce the size of the agents. 

Figure 5-13    Architecture of the SHA agent blocks 
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5.4.5 System Performance 

The coprocessor designs were implemented and tested in the system design 

environment.  The following sections analyze the resulting performance and cost of the 

system.   

5.4.5.1 Design Size and Speed 
  To examine the relative size of each of the modules in the design, the design was 

synthesized for the Virtex-II Pro FPGA using Synplicity.  Table 5-6 shows the results for 

the AES coprocessor. 

Table 5-6   Size and speed of modules in the AES coprocessor 

Module Slices Critical path 
(ns) 

AES core 3037 -- 
AES access controller 132 2.9 
Agent (each unit) 1065 7.6 
Read memory access 
controller 

186 6.2 

Write memory access 
controller 

12 1.9 

Microprocessor interface 623 5.8 
 

The AES core takes three times more area than the agents.  This suggests that for 

a system that uses many contexts, system performance can be inexpensively increased by 

the addition of more agents (instead of the addition of more cores).  Compared to the 

addition of a separate coprocessor or AES core, the resulting area/performance ratio is 

lower. 

The results for the SHA coprocessors are shown in Table 5-7 and Table 5-8 

respectively. 



 121 

Table 5-7  Size and speed of the modules in the SHA-1 coprocessor 

Module Slices Critical path (ns) 
SHA1 core 262 -- 
SHA1 access controller 86 2.0 
Agent (each unit) 1090 6.7 
Read memory access 
controller 

58 1.8 

Microprocessor interface 277 6.1 
 
 

Table 5-8  Size and speed of the modules in the SHA-256 coprocessor 

Module Slices Critical path (ns) 
SHA256 core 269 -- 
SHA256 access controller 178 1.7 
Agent (each unit) 1627 8.7 
Read memory access 
controller 

58 1.8 

Microprocessor interface 294 5.3 
 

The logic of the SHA hash algorithms is low in complexity and therefore the core 

takes much less area than the agents used to control it.  The size of the agents is mainly 

due to the large number of registers needed to store a message block and the intermediate 

states of computation.  In a traditional coprocessor design, these registers will be included 

in the size of the coprocessor core.  In addition, the traditional design cannot make any 

claims of better security. 

5.4.5.2 Coprocessor Efficiency 
In internet applications such as SSL and SSH, encryption and hashing are both 

performed on the same data packet:  encryption to protect the privacy of the 

communication, and hashing to protect the integrity of the message.  Because of this, the 

same metrics are used to measure the performance of the AES function and the SHA hash 

functions. 
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In order to show the benefits of the coprocessor design at the system level, 

performance analysis was conducted using real world data.  Studies such as [54] shows 

that 90% of internet traffic is under 1Kbytes.  In the test scenario, a packet size of 

1Kbytes is assumed.  Using this assumption, the time it takes to process each of these 

packets can then be measured.  Table 5-9 shows the results of the comparison. 

 

Table 5-9  Comparison of overhead for bursty traffic loads 

 Context switch 
(cycles) 

AES calc 
(cycles) 

Total Time 
(cycles) 

Efficiency  

Proposed 54 504 558 90 % 
Traditional 194 504 698 72 % 

 
This result shows that the proposed interface can handle 25% more 1Kbyte 

packets as the traditional coprocessor interface.  This gap widens as the packet size 

decreases.  The efficiency improvement is due to the storage of context in the agents; 

when a context switch occurs, this information need not be retransferred to the 

coprocessor.  However, the actual AES core is still not running at full capacity.  This 

suggests that further improvements are possible in the instruction set design of this type 

of coprocessor.  Future versions should further optimize the design to increase the 

capacity for the bursty traffic model. 

In the AES comparison (Table 5-9), the percent utilization of the processing core 

is compared between the proposed architecture and that of the traditional one.  Both are 

assumed to have a similar DMA function for accessing data directly from memory.  The 

proposed architecture showed significantly higher efficiency since context information 
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such as secret keys, initial vectors, and modes of operation are kept in the coprocessor 

and do not need to be transferred at each context switch. 

The SHA version of the coprocessor does not have this advantage.  This is 

because hash functions do not need any initial parameters to operate.  When compared to 

traditional architectures, both architectures require the transmission of the address 

locations where the data is located.   In addition, the SHA hash algorithms have high 

utilization of the core – 80 iterations for SHA-1 and 64 iterations for SHA-256.  

Efficiency is therefore fixed at near 100% for both implementations. 

5.4.5.3 Coprocessor Latency 
The coprocessor is also able to encrypt several continuous data streams.  This 

traffic pattern is common for multimedia type applications.  Latency is often important in 

teleconferencing applications and they exhibit this type of traffic pattern.  Table 5-10 

shows how the latency changes as the coprocessor processes multiple data streams. 

Table 5-10  Comparison of latency for different number of simultaneous streams in AES 

Number of 
simultaneous streams 

Proposed 
interface latency 
(clock cycles) 

Traditional interface 
latency (clock cycles) 

1 22 12 
2 28 400 
3 36 594 
4 48 788 

 
For a single stream, the traditional approach outperforms the proposed interface 

approach.  However, for multiple data streams the multitasking coprocessor is able to 

scale much more gradually.  In the multhreaded interface, context switching is performed 
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in hardware at the AES round level.  Consequently, the latency increases much more 

gradually. 

This effect becomes much more serious for traditional interfaces when 

implemented in a network that processes both bursty packets and continuous streams.  

The high frequency of bursts can severely degrade the latency of the stream processes. 

Note that agents are hardware objects designed to make efficient use of the 

computational resource, in this case, the computation of one AES round.  The overall 

throughput of the system, however, is limited by the AES core.  For systems requiring 

increased throughput, multiple cores must be created. 

Table 5-11   Comparison of latency for different number of simultaneous streams in SHA-1 

Number of 
simultaneous streams 

Proposed interface 
latency (clock cycles) 

Traditional interface 
latency (clock cycles) 

1 113 113 
2 160 226 
3 240 339 
4 320 452 

 

Table 5-12   Comparison of latency for different number of simultaneous streams in SHA-256 

Number of 
simultaneous streams 

Proposed interface 
latency (clock cycles) 

Traditional interface 
latency (clock cycles) 

1 97 97 
2 128 194 
3 192 291 
4 256 388 

 
Hashing is usually used in conjunction with encryption/decryption to ensure that 

the transmitted message has not been modified.  Because both operations must be 

performed on the transmitted or received message, latency of the operation is a very 

relevant metric.  One of the main advantages of the proposed architecture is the fast 
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hardware context switching that the coprocessor can perform independent of the main 

processor.  Table 5-11 shows the comparison for SHA-1 algorithm and Table 5-12 shows 

the comparison for the SHA-256 algorithm.  The new architecture shows latency 

improvements of 29% for SHA-1 and 34% for SHA256. 

In the traditional interface, for each additional data stream the additional latency 

experienced is made up of the time it takes to transfer the new context and the time it 

takes to hash one hash message block.  In contrast, in the proposed interface, the 

additional data stream only experiences the latency due to the calculation since context 

information is already stored in the coprocessor.  For a coprocessor that contains only a 

single core, the additional latency for each data stream in the traditional coprocessor is 

113 (23+80) cycles for SHA1 and 97 (33+64) for SHA2.  The proposed interface 

experiences only 80 cycles and 64 cycles respectively.  Further performance 

improvements to both systems can be obtained by the addition of a second core in the 

processor -- above two simultaneous streams, the additional latency due to calculation 

latency is halved (40 cycles for SHA1 and 32 cycles for SHA2). 

5.4.6 Design Methodology 

The implementation examples of the AES and SHA coprocessors show that there 

exist applications that can benefit from the addition of a secure coprocessor.  The 

proposed coprocessor architecture can improve security in all multitasking systems, but 

the cost of that security greatly depends on the algorithm which it implements.  A large 

and complex core which is shared by multiple small agents is the best case scenario since 
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it demonstrates both increased performance and increased security with minimum 

overhead when compared with traditional coprocessor architectures. 

Agents store the state of the computation in registers and they constitute the 

majority of the agent's area.  From an implementation point of view, it would be 

beneficial to select (if possible) the algorithm that will give greatest amount of security 

while minimizing the size of the intermediate state. 

  Because of these costs, the proposed solution may not be appropriate for all 

systems and the designer should understand when it is needed.  Applications that require 

many different communication channels or require a well used shared security functions 

can benefit the most from the proposed architecture.   

In terms of efficiency of the coprocessor core, improvements can be made for 

functions that are highly programmable and require initial values or keys.  In this respect, 

the coprocessor is suitable for encryption and decryption algorithms in general. 

In terms of latency of multiple data streams, the proposed architecture will always 

outperform traditional architectures since context switches can be set up to run 

independent of the controlling processor.  The rate in which the latency grows increases 

depending on the number of iterations required to processes one message block.  For the 

AES algorithm, this works out to be a maximum of 12 cycles per additional data stream.  

For the SHA algorithms this works out to be 80 cycles for SHA-1 and 64 cycles for SHA-

256.  
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5.5. Conclusions 

Embedded systems are becoming more and more complex.  Because of this the 

opportunities for compromising a system and the information in which it is processing is 

constantly increasing.  Process isolation is one important component in the design 

process. 

In terms of interface design, it is clear that secure systems have less complex 

driver software code running in kernel mode; this minimizes the chance that kernel code 

contains a security leak.  In addition, though kernel mode provides some measure of 

protection to kernel processes, they remain vulnerable to software cache attacks and 

protection does not extend to external hardware such as coprocessor in the system.  

Because of this, the new coprocessor architecture provides process isolation protection 

with minimal software drivers.  The functionality of the different security layers are 

combined in the coprocessor.  Optimizations performed at this level produce an interface 

that is both efficient and secure.  The idea is demonstrated and verified by building a 

secure web server which takes advantage of a secure AES coprocessor.  Implementations 

of secure SHA coprocessors further validate the design approach.   
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Chapter 6  

 

System Level Security Interface 

 

In the previous chapter, the concept of a security interface was introduced.  The 

design process, however, closely follows the traditional process (identify an operation 

and accelerating it through hardware).  The security concern becomes an extra design 

parameter that must be considered during the optimization stage. 

In this chapter, the cross-layer design process as it relates to the computing system 

as a whole is examined.  In other words, we examine the design of an interface that 

provides isolation to all applications at all points of execution.  To optimize this feature, 

the architecture of the processor itself must be reconsidered. 

 

6.1. Computer Security 

Computer architectures today are not adequate in providing security to the 

software programs that use it.  At the base of all current systems is the concept of 
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hierarchical security modes i.e. the core of the system is protected by layers of services 

with each layer further away from the hardware having more and more restrictions placed 

on its rights.  At the very top of this stack sits the user software processes, which has the 

fewest rights of all the layers.  This approach to designing secure systems is inherently 

more difficult to protect since it is usually the user processes that contain the secrets to 

protect. 

The solution to this problem is to build a system that depends on a multilateral 

security model.  In other words, a system must be built such that no single process has 

full system privileges and all processes are protected from each other.  This concept of 

isolation must be extended all the way down to hardware such that there is no possibility 

of software subversion. 

An ASIP design with additional instructions that implement a secure atomic 

context switch achieves this goal.  A thread manager that sits in the processor’s datapath 

manages the execution of all processes in the system and directly modifies the control 

flow to ensure secure context switching.  The design presented represents only an 

incremental change to a general embedded processor but provides security features that 

fundamentally are not provided by current systems. 

6.1.1 Multilateral Security 

A multilateral security model distributes system rights among the processes in the 

system.  All processes in the system will have its rights limited and none will have full 

system privileges.  Without a concentration of power, malicious process will not have an 
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obvious target to attack.  In addition, trusted user processes will not have to trust software 

layers below it to protect its own secrets. 

Figure 6-1 shows the difference between hierarchical and multilateral security 

architectures.  In the hierarchical model, the software scheduler manages user processes 

and has full access to their memory space.  Thus, the scheduler provides an obvious and 

easy target for a malicious process to attack.  In a multilateral system, the scheduler is a 

process that cannot access the memory space of other processes in the system.  A 

malicious process does not have a target that gives full access so subverting the system 

becomes more difficult. 

In this chapter, a novel ASIP design is presented that can be easily integrated into 

embedded systems to support a multilateral security architecture.  It accomplishes this by 

implementing a thread manager right within the datapath of the processor.  Thread 

management instructions are integrated into the instruction set architecture (ISA) and 

operate directly on the processor’s registers. 

Though the security goals are unique, modification of the processor to support 

control flow is not unheard of.  An interrupt is often handled with an automatic jump to 

the interrupt vector table together with an exchange of shadow registers.  In digital signal 

Figure 6-1   Hierarchical versus multilateral architecture 
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processors, the repeat instruction and zero-overhead looping was added so that a 

particular section of code can be looped a fixed number of times without the overhead of 

branch instructions.  Most control instructions added to ISA are purely to improve 

performance.  While performance improvement is demonstrated in the ASIP design, the 

main motivation is to design a processor that supports secure systems. 

Secure thread management is the base of any secure multilateral system.  In order 

to enforce the unique and specific privileges of each process, the system must know 

which process is running at all times.  In the proposed system, this responsibility is on the 

thread manager which is integrated into the processor’s datapath.  This ASIP solution 

provides system properties that are difficult to obtain with other architectures.  These 

include: 

• Guaranteed context switching 

• Native thread management 

• Strong identification of processes 

• Hardware based isolation 

• More distributed operating system 

6.1.2 Current Security Architectures 

In modern computing systems, security is built on the concept of hierarchical 

security modes.  Even in the smallest embedded system, it is common to find processors 

supporting a supervisor/kernel mode and user mode.  The kernel mode is usually 

occupied by the operating system (OS) which has all the rights in the system i.e. it has 
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full access to all memory locations and can execute any instruction.  In contrast, the user 

process has only limited access to memory and instructions. 

To provide increased security, processors began to support more layers of security 

(4 layers is common in modern systems).  Though many OS’s still only make use of the 

traditional two layers, microkernel operating systems [55] took advantage of the extra 

layers by splitting up the monolithic OS into many different communicating processes 

occupying the three lower levels.  The most well know microkernel OS is Minix 3 from 

Tanenbaum [71].  The most critical tasks such as interrupt handlers, schedulers, and 

timers ran in the lowest layer (ring 0).  Recently, virtualization technologies have become 

popular as a solution to security [72].  It also adds another layer of software below the 

operating system.  This layer, the virtual machine monitor (VMM) or hypervisor, is a thin 

software layer which reproduces the interface of the hardware so that multiple OS’s can 

run on top of a single processor platform. 

Virtualization technologies have become popular partly due to the claim of 

increased security through isolation.  In fact, the popular x86 processor (a notoriously 

difficult processor for virtualization) is being redesigned by both Intel and AMD to better 

support isolation services.  In the embedded space, the Denali project from the University 

of Washington [73], have attempted to build a VMM that is small and scalable for web 

server applications.  Companies like VirtualLogix [74] and Trango [75] are already 

offering very small VMMs that are able to provide isolation services.  However, though 

isolation is provided, it is not clear how strong it is when exposed to a determined 

malicious process. 
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Though with increasing difficulty, attacks on each of these systems exist and 

follow a general pattern.  A malicious process enters the system and attacks the operating 

system to gain access to kernel mode.  Once this is accomplished, it has full system 

privileges and can attack other processes in the system.  Attacks include stealing secret 

information (keyloggers), subverting program execution (hijack), denial of service, etc. 

In standard monolithic systems, gaining control of the OS is relatively easy – 

there are many interfaces with the user process and only one of the API’s need be 

compromised to gain access to kernel mode.  For microkernel type operating systems, 

several successive attacks need to be made at each level before the kernel mode is 

reached.  This becomes a more difficult task, but is by no means impossible.  Virtual 

machines provide yet another level of protection such that malicious attacks can be 

contained to a single OS instance.  However, newer Malware is able to detect the 

presence of the VMM and mount attacks on them as well [76]. 

In the latest technology, a malicious virtual machine can be inserted below the 

VMM.  This attack was revealed, in concept, by University of Michigan in the SubVirt 

project [77].  Not long afterwards, two real attacks on commercial systems were 

demonstrated at the Blackhat conference.  The Blue Pill attack demonstrated such an 

attack on Windows Vista running on an AMD Pacifica processor [78].  The Vitriol 

rootkit-based attack was demonstrated on the Intel-VT processor running MacOS X [79]. 
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Figure 6-2 shows two different attack vectors.  The traditional attack has the 

malicious process attack the OS to gain access to a user process.  The new attack gains 

access to user processes by installing a malicious VMM running in the processor’s kernel 

mode.  Though the methods differ, there are two main commonalities to be noted: 

In an hierarchical security architecture, all attacks are focused on attacking the 

software running in kernel mode 

The ultimate target of the malicious attacks are other user processes, either to steal 

information or to subvert its normal execution. 

 

6.2. Secure Context Switch 

The secure context switch is the basis for a strong hardware supported multilateral 

computing system.  It is able to ensure that processes are isolated from one another.  In 

the proposed system, in order to precisely define the secure context switch, the attack 

model is first analyzed to determine what information is important to protect.  Then 

Figure 6-2   Attack vectors of malicious software 
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operational primitives and rules are derived so that context switches can occur without 

compromising this secret data.  

6.2.1 Attack Model 

Though there is a myriad of attacks that a malicious process can perform in a 

system, their objectives can be summarized into three main types: 

1. stealing secret information from another process 

2. corruption or insertion of malicious information in another process 

3. insertion of malicious execution code into another process 

The stealing of secret keys is the most obvious attack that can be made.  When 

secret information is compromised, a malicious process can gain access to bank accounts, 

medical records, and other personal and sensitive information.  This type of attack must 

be prevented to maintain the property of privacy. 

A malicious process is able to trick another process into operating on malicious 

information either by manipulation of pointers to data structures or by insertion of new 

parameters into another’s stack.  In such an attack a malicious process can trick a process 

into decrypting a secret message that it does not have the key to.  Alternately, if a 

banking application is attacked, a malicious message (such as: ‘ transfer all funds to 

account X’ ) can be inserted and then processed by an unprotected process. 

A process can be hijacked by another by overwriting the return address of a 

function call that is stored in the stack.  This allows malicious code to run with access to 
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all the private data and privileges of the target application.  This attack essentially allows 

the attacker to steal the identity of another process.   

6.2.2 Process Identity 

Processes in traditional systems are identified by process ID numbers assigned by 

the OS.  While the system works well in the absence of malicious processes, these ID 

numbers can be easily spoofed.  Identification of a process should be based on properties 

that cannot be spoofed.  The identity of a process at any time can be identified by the 

history of what it has done and what it is doing now.  To minimize implementation 

complexity and cost, the selection of the minimum features that can represent a process’  

identity was focused on.   The two properties are unique to each process and cannot be 

spoofed and can be minimally represented by two register values:  the stack pointer (SP) 

and the program counter (PC).  The SP points to what the process has done in the past 

and may hold valuable secrets.  The PC points to what it is doing now. 

In the system, during a context switch, these two registers are replaced by the 

thread manager atomically.  A potential malicious attacker has no opportunity to access 

these two values from another thread. 

6.2.3 Context Switch Primitives 

To protect and isolate the identities of all the processes in the system, three basic 

thread management primitives were defined.  The description of these commands and 

how they are implemented is described below: 

• Create()  
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This is the operation that registers a new process with the thread manager.  For a 

normal system, parameters to this operation include the location of the program to run, 

the location of the program stack, and the parameters of the program.  A secure system 

includes additional information such as the amount of memory needed along with the 

types of read or write privileges, amount of memory needed in the secret vault, and 

access needed to the coprocessors. 

• Yield() 

This operation performs the actual context switch operation i.e. it takes the current 

process’s context information out of the processor and replaces it with the context 

information of the new process.  A secure context switch ensures that no data from a 

previous context is accessible and also ensures that the two processes cannot have any 

direct or indirect interactions with each other during this time. 

• Retire() 

This operation executes when a process ends.  Resources which are assigned are 

deallocated.  The context information is taken away from the processor and replaced by 

the context of the next process.  Like yield(), the system must ensure that no data or 

interactions can pass between the leaving process and the new one.   

6.2.4 Fairness 

The proposed computer architecture implies a distributed control structure; the 

operating system does not need to be involved in scheduling.  Using a cooperative 

multithreading model, the processes in the system decide for themselves when to give up 
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control of the processor.  This system works well if all the processes are trusted and ‘ fair’  

with its execution time.  However, this cannot be assumed in general.  A malicious 

process may perform a denial of service attack on all the processes in the system by 

refusing to call yield.  The effectiveness of such an attack is limited by implementing a 

limited cooperative multithreading model.  In this system, after a context switch, the 

process is given a fixed amount of time to perform its calculations.  When time expires, 

the yield instruction is automatically inserted into the processor. 

For malicious processes, this forces them to give up control of the processor to 

other user processes – damage is thus limited.  Read access to a decrementing hardware 

watchdog timer allows friendly processes to see how much time is left in their execution 

budget so that they can prepare for a context switch. 

 

6.3. Implementation 

Implementation of the ASIP involves the design of both hardware and software 

components.  Figure 6-3 shows the architecture of the ASIP processor.  The thread 

manager is added to the datapath.  A watchdog timer is added outside the processor core 

to enforce time quotas.  The ISA is modified to access the new thread management 

commands and software drivers have been developed to take advantage of these new 

instructions.   
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6.3.1 Thread Manager 

The thread manager is responsible for maintaining a queue of context information 

for all the processes in the system.  Specifically, for each process in the system the thread 

manager stores the program counter (PC), and the stack pointer (SP).  During a context 

switch the PC and SP registers are pushed into the queue and replaced by new PC and SP 

values. 

The thread manager is implemented within the processor datapath and accessed 

through three processor instructions which correspond to the context switch primitives.  

In the system, it is implemented as a FIFO queue using a circular buffer architecture.  

Implementation cost is a RAM for storing SP and PC for all the processes in the system, 

and two registers that corresponds to read and write pointers.  The create instruction 

Figure 6-3   Addition of thread manager and watchdog 
timer to the datapath 
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stores the current SP and PC into the queue, therefore only the write pointer is 

incremented.  The yield instruction both stores the old context and provides a new one, 

so both the write and read pointers are incremented.   The retire instruction only gives 

out a new context so only the read pointer is incremented. 

The processor instructions to the thread manager do not allow any process to find 

the context information of another process.  The only time context information is released 

is through a context switch.  However, since the SP and PC are atomically replaced, a 

malicious process has no opportunity to access this information.  

6.3.2 Watchdog Timer 

The watchdog timer is a decrementing counter used to enforce the maximum time 

allowed for each process running on the processor.  It is decremented at each clock cycle 

and generates an interrupt when the counter reaches zero.  The counter is reset by the 

thread manager each time a context switch occurs.  The interrupt handler contains a 

single yield instruction which immediately switches the PC and SP registers; this 

forces a context switch to occur. 

This forced context switch is very abrupt, and there is a chance that information 

can leak through the other registers to the next process.  To enable processes the ability to 

make cleaner context switches, the watchdog timer counter value can be read through a 

memory mapped interface.  With this information, a process is able to know how much of 

its allotted time is left so that it can initiate its own context switch procedure. 

volatile long *time_left; 
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*time_left = (volatile long*) 0x80000004; 

The forced context switch ensures that malicious threads cannot monopolize the 

processor and perform a denial of service attack. 

6.3.3 Create ( ) 

The create instruction from the processor’s ISA takes the current register 

values of SP and PC and stores them in the queue of the thread manager.  Direct usage of 

this instruction essentially clones the parent process.  To spawn a new process, extra 

instructions must be added to distinguish one from another.  Note that the implicit 

assumption here is that the parent process is not malicious to the child process. 

 
Figure 6-4 shows the ARM assembly commands that are used to create a new 

process.  Before Create() is called, memory must be allocated for the stack of the new 

process and the entry address to the new function must be known. 

Figure 6-4   ARM assembly code for the create() operation 

Create (child_sp, child_pc) 
        mov    r0, #0 
        mov    r1, #1 
        mov    r4, sp 
        mov    sp, child_sp 
        stmfd  sp!, {r0-r12, r14} 
        create 
        ldmfd  sp!, {r0-r12, r14} 
        cmp    r1, #1 
        beq    PARENT 
        mov    lr, pc 
        mov    pc, child_pc 
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In the function, before create is called, a flag (r1) is set to indicate the parent 

process.  The address of the child_sp is then stored in the SP register.  All registers are 

then pushed onto the new stack and create is called.  This is the point where the new 

process will start its execution. 

After create, the values in the stack are popped and the flag is checked.  A set 

flag indicates that the current process is the parent.  In this case the flag is reset and all 

registers are pushed back onto the stack.  The original stack pointer (from the parent) is 

returned to the SP register and execution continues. 

In the case of the child process, the flag has already been modified by the parent 

(it executes first) and will be reset.  This indicates to the child process that it can now 

branch to the process entry function. 

6.3.4 Yield ( ) 

The yield instruction takes the SP and PC register values and replaces them 

with new ones.  Since these two values wholly represent the identity of a process, the new 

process is able to run immediately.  However, there is a possibility that information leaks 

between the two processes through the general purpose registers.  A clean context switch 

requires extra instructions. 
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Figure 6-5 shows the ARM assembly commands that can implement a clean 

context switch.  All the general purpose registers are first pushed into the stack.  Then the 

values of all the registers are cleared before yield is call.  This ensures that the next 

process will not be able to gain any extra information through leftover values in the 

registers.  

6.3.5 Retire ( ) 

Like the yield instruction, retire invokes a context switch by replacing the 

SP and PC.  In addition to clearing all the registers, the memory allocated to the stack 

should be freed as well. 

Figure 6-5   ARM assembly code for the yield() operation 

 

Figure 6-6    ARM assembly code for the retire() operation 

      stmfd sp!, {r0-r12, r14} 
      mov r0, #0 
       . . . (clear all registers) 
      mov r12, #0 
      mov r14, #0 
      yield 
      ldmfd sp!, {r0-r12, r14} 

      mov r0,sp 
      bl  free 
      mov r0, #0 
      mov r1, #0 
       . . . (clear all registers) 
      mov r12, #0 
      mov r14, #0 
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Figure 6-6 show the ARM machine code that is run before a retire is called.  

The memory allocated to the stack is first deallocated.  All the general purpose registers 

are then cleared to zero. 

A special case occurs when the current process is the last or only process in the 

system.  Retire would normally replace the SP and PC with new values from the next 

process.  If there is no other process in the system, then the PC is set to a special address 

in non-writeable memory.  This address location contains an infinite loop to a NOP 

instruction. 

6.4. Results 

The GEZEL language was used to implement the ASIP datapath modifications.  

GEZEL is a system design language proven very effective in the design and simulation of 

domain-specific micro-architectures [28].  It is also a design environment that enables 

easy co-simulation between user described logic and a wide variety of intellectual 

property. 

The thread manager and watchdog timer was written in GEZEL and co-simulated 

with software running on the Simit-ARM [36] cycle-true instruction set simulator.  After 

verification of the design, the GEZEL tool was used to generate synthesizable VHDL.  

Synopsys synthesis tools used this generated code to produce the area and speed 

measurements for the design. 

Table 6-1  Comparison of speed and area of datapath modifications 

Module Size (Kgates) Critical path (ns) 
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N-ARM7TM 50 17  
Thread manager 1 7  

 

To examine the relative size of the thread manager, circuit synthesis was 

performed using Synopsis.  The TSMC 0.18um CMOS standard cell library with 

conservative wire load model was used.  Table 6-1 shows the results.  The results were 

compared to the synthesized N_ARM7TM design from [37].  The additional memory 

needed for the memory depends on the maximum number threads that the system is 

designed to support and requires 64 bits per thread.  Not including the two port memory 

of the thread queue, the thread management unit only takes 2% of the total ARM 

processor area.   

Table 6-2  Comparison of execution time for thread management operations 

Module SW 
(cycles) 

ASIP 
(cycles) 

Create() 743 450 
Retire() 348 53 
Yield() 191 63 
Check_watchdog() --- 27 

 

Test software was run on an ARM simulator to compare the performance between 

a software thread manager and the ASIP implementation.  Table 6-2 shows the speed 

comparison between the purely software based context switch and the native thread 

management instructions of the ASIP.  The software threads library was developed using 

QuickThreads [57], a simple and portable threads toolkit. 
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In a multitasking system, the yield() command is used most often.  The results 

show that the ASIP solution is 3 times faster than the equivalent software routine.  The 

retire() operation  is almost 7 times faster.  The check_watchdog() function has no 

equivalent in software.  It is implemented with a memory mapped interface.  Reading the 

32-bit value from the watchdog time takes only 27 cycles. 

 

6.5. Discussion 

By removing hierarchical software layers, isolation of the software processes in 

the system becomes the responsibility of the hardware platform.  The context switch 

defines the border between two processes in the system and must be secured so that the 

boundary is not vulnerable to information leaks or malicious attacks.  This chapter 

Figure 6-7   Secure embedded system based on ASIP 
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demonstrates that with minor modifications to a processor core, an ASIP can be built that 

will support secure context switching.  There are, however, other parts of the system, 

such as the memory, where attacks can occur. 

While the proposed ASIP processor currently does not support these functions, it 

is an integral component a secure system that does.  Figure 6-7 shows an example of such 

a system. 

Connected to the ASIP core are two special modules: the memory rights manager 

and the secret vault.  The memory rights manager sits between the processor core and the 

memory subsystem.  It determines which memory locations the processor has access to.  

Also, access to sections of memory can be defined as read only, write only, or both read 

and write.  The secret vault is a small memory that is used to store keys and other 

sensitive information that will be used by security coprocessors in the system. 

The role of the thread manager in this system is to broadcast to the external 

modules the identity of the currently running thread.  For the memory subsystem, this 

means that each software process can be assigned unique, non-overlapping blocks of 

memory.  For processes that need to communicate with each other, shared memory 

locations can be negotiated.  The memory access rights of a software process cannot be 

compromised since the process does not have direct access to the memory manager – the 

settings are determined by the currently running process. 

From the point of view of the processor, the secure vault is a small private write 

only memory.  The secret vault output is connected directly to external secure 

coprocessor units like ECC or AES engines.  Since it knows the identity of the currently 
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running process through the thread manager, access to the secret information from the 

different processes in the system can be regulated.  Thus the secret keys can only be used 

by the corresponding software process.  For increased security, once the key is 

programmed, even the user process is not able to access its value.  This prevents possible 

side channels due to insecure programming practices.    

Thus the thread manager in the ASIP forms the basis of a strong and secure 

system.  Similar architectures can be developed to protect access to I/O devices, 

networking services, etc. 

 

6.6. Conclusions 

There is much interest in adding security to computing systems and the 

technologies from general purpose computers are now trickling down to the embedded 

domain.  Yet, all the technologies are based on hierarchical security architectures.  

Processors built using this architecture are focused on protecting operating systems 

instead of user processes where the root of trust resides. 

The secure context switch is the basis of multilateral security architecture.  In this 

chapter, an ASIP architecture that supports secure context switch is proposed.  The 

addition of a thread manager to the datapath cost less than 2% in area of the ARM7 

processor.  In addition to providing a more secure platform, this addition is also able to 

increase the performance of context switch functions by more than 3 times.   The 

proposed architecture can be used in the future to secure not only the context switch, but 
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also provide user process centered rights to all the different subsystems external to the 

processor core. 
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Chapter 7  

 

Conclusion 

 

In traditional embedded system design, the application is divided into independent 

blocks and implemented separately.  Interfaces allow the different components to interact 

together to produce a functioning system.  While this strategy produces systems that work, 

the interfaces between the modules introduce performance overheads.  In the design of 

embedded systems, performance is often a key design criterion.  It is, therefore, important 

to have a proven methodology to accelerate applications in embedded systems. 

The main contribution of this dissertation is the development of a cross-layer co-

design methodology to accelerate algorithms.  It is able to produce high performance 

embedded systems and is applicable to applications that vary in size and function.  The 

process consists of the following three steps: 

1. Remove intermediate interfaces to consolidate processing 
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Intermediate interfaces incur performance overhead and are not functionally 

necessary for correct system operation.  Removing them reduces interface overhead even 

before algorithmic optimizations are performed. 

2. Optimize algorithm 

Depending on the application domain, there are many optimization techniques 

that can be used.  The removal of intermediate interfaces exposes more opportunities to 

make use of them.  Given the existence of interfaces within the design, however, 

optimization of the algorithm also includes reducing the use of the interfaces and to 

organize the use of the interfaces efficiently. 

3. Optimize the interfaces 

For the interfaces that still exist in the system, performance can be further 

increased by changing the interface mechanism.  One such technique for this is the saving 

of local context information so that computation parameters need not be repeated 

transferred.  Another method is to separate the data flow and control flow components of 

a calculation; DMA is an implementation example of such a technique. 

Because of the broad applicability of the methodology and its novel approach, its 

use in design also enables the discovery of new technologies and algorithms.  In this 

dissertation, significant contributions have also been made in the areas of channel coding, 

signal processing architectures, optical networking, system design tools, and security 

architectures. 

In the first part of the dissertation, the methodology was used to design a new type 

of optical network that is able to guarantee high data throughput.  Following the co-
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design process, two key decisions allowed the achievement of the new and unique design: 

(1) the choice of an uncoordinated system immediately removed the complexities of a 

media access control module (2) the choice to consolidate all processing in digital 

hardware.  Thus the methodology enabled the design of new channel codes and the 

corresponding high speed hardware structures that implement them.  These results 

represent significant contributions to the areas of communication channel codes, signal 

processing, and optical networks. 

The application of the methodology in the domain of system on chip (SOC) is 

discussed in the second part of the dissertation.  In the domain of SOC, the designer is 

often limited by an underlying computer architecture.  Assumption of this model places 

many restrictions on the interfaces.  For example, the system bus bandwidth inherently 

restricts the speed in which information can be transferred through it.  Using this 

methodology, we show how algorithms can be optimized to take advantage of the 

interfaces available.  The contribution of this part is a set of tools that is able to support 

the design methodology from high level exploration stage all the way down to 

implementation. 

The third part of the dissertation examines how the methodology can be used to 

efficiently support greater security in embedded systems.  The resulting computer 

architecture designs support better security in embedded systems and, in addition, 

improve system performance.  This result is a significant contribution to the field of 

secure computer architectures.
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