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Abstract of the Dissertation

Universal Channel Codes and

Trellis State-Diagram Reduction

by

Jun Shi

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2005

Professor Richard D. Wesel, Chair

The compound channel coding theorem was originally studied in the 1960’s. It

states that for a compound channel consisting of a family of channels, there exists

a single code that achieves the capacity of the compound channel with probability

of error converging to zero as the block-length goes to infinity. This theorem lays

the theoretical foundation of universal codes that perform uniformly well under all

the channels in the family. During the design phase, one can take all the possible

scenarios into consideration and form a compound channel. Codes designed for

the compound channel possess robustness.

The compound-channel coding theorem is asymptotic in the block-length. It

does not address the practical situation when the block-lengths of the codes are

finite. This dissertation evaluates the performance of universal codes as the block-

lengths vary. The sphere packing bound and random coding bound are used in

the evaluation. It is found that the performance can vary significantly when the

block-length is short. However, universal behavior is a practical goal when the

block-length is as long as 5000. Furthermore low density parity check (LDPC)

xv



codes fit naturally as candidates for universal codes.

The concept of universal codes is further extended to multiple-antenna sys-

tems. We limit ourselves to space-time constellations. A class of constellations

that possess the channel-eigenvector invariance (CEI) property is studied. The

necessary and sufficient condition for these constellations is found. It is shown

that they are extensions of the orthogonal designs. These constellations, how-

ever, can not be a building block of a universal system due to the inherent mutual

information loss. Constellation and coding have to be designed simultaneously

to achieve universality.

A state-diagram reduction algorithm for trellis coded modulation is proposed

in the dissertation. The algorithm is based on the finite-state-machine (FSM)

theory. We show that an arbitrary trellis code needs at most half of the all possible

product-states to describe the error events. Our algorithm is able to reduce the

number of states further by applying the FSM minimization algorithm in the

forward and backward directions. The reduction is achieved with low complexity.

xvi



CHAPTER 1

Introduction

1.1 Universal Codes

More than half a century has passed since Shannon published his seminal paper

The Mathematical Theory of Communication. Numerous channel coding schemes

have been proposed and implemented in communication systems. The advances

in channel coding have impact on many areas including wireless communications,

sensor networks, and magnetic storage. It has been pointed out by McEliece at

the ISIT 2004 Shannon Lecture that channel coding accounts for 37% of the orders

of magnitude improvement in image bit rate for deep space communications [1].

A simple communication system is illustrated in Fig. 1.1. The input symbol

is x, which belongs to the alphabet X . The channel is basically a probabilistic

mapper which maps input x to output y ∈ Y with some conditional probability

determined by the characteristics of the channel. The capacity of this channel

is the maximum mutual information between x and y over all the possible input

distributions, i.e. C = max
x

{I(x; y)}. Shannon proved that any data rate less

than C is achievable with probability of error converging to zero as the block-

length grows to infinity. The goal of channel coding is to design input sequences

that are able to achieve the capacity of the channel. Coding theorists have taken

distinct approaches to meet the goal, including block codes, convolutional codes,

trellis coded modulation, and more recently, iterative decoding based turbo codes

1



and LDPC codes. A prominent achievement is the invention and application of

iterative decoding, which approaches the Shannon capacity of additive white

Gaussian noise (AWGN) channels within 0.0045dB with a block-length of 107 [2].

)|( xyP
yx

Figure 1.1: A simple channel

The channel characteristics are usually assumed to be known a priori when

designing error-correcting codes. For example, AWGN channels or binary sym-

metric channels (BSCs) are often the targeted channels. In practice due to chan-

nel uncertainty, it is desirable to have robust codes that perform well not only on

a specific channel, but universally well across a family of channels. These codes

are called universal codes and are the main focus of this dissertation.

The theorem of universal codes is also known as the compound channel coding

theorem in the literature [3]. A compound channel is illustrated in Fig. 1.2. The

channel is described by the condition probability P (y|x, s) indexed by s. We

assume that the transmitter knows the channel belongs to a family of channels but

does not know exactly what the channel is. We also assume the coherence time

of the channel is larger than the codeword length so that the compound channel

assumption is valid. The universal coding theorem states that the capacity of

a compound channel can be achieved by a single code. This theorem is the

theoretical foundation of universal codes.

The prominent advantage of the universal codes is robustness. If the designer

of the system is able to predict the variation of the channel, he can form a com-

2
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Figure 1.2: A compound channel

pound channel consisting all the possible variations. A universal code designed

for this compound channel will work for all individual ones. Universal codes lend

themselves to easy implementation. Systems equipped with universal codes are

relatively simpler than those with adaptive schemes. This is extremely impor-

tant for those applications where power consumption and silicon area are major

concerns.

The theorem of universal codes was first studied by Blackwell et. al. [4],

Dobrushin [5] and Wolfowitz [6] in the 1960’s. The results were extended to

Gaussian channels by Root and Variaya [7]. The design of universal codes nev-

ertheless is not a simple task. Universal code designs based on the maximin

criterion were proposed and studied for periodic channels and multiple-antenna

systems by Wesel et. al. [8, 9]. Constellation designs for both single antenna and

multiple antenna systems were studied by Tse and Viswanath [10], based on the

optimality of diversity and multiplexing gain. In this dissertation, we will study

the finite block-length behavior of universal codes and explore the applications

to space-time constellations.

1.2 Trellis State-Diagram Reduction

Combining coding and modulation, trellis coded modulation (TCM) is an effi-

cient method to increase the spectral efficiency and power efficiency. It was first

proposed by Ungerboeck [11] and found immediate applications in high-data-

3



rate communications over band-limited channels. For example, TCM is used in

International Telecommunication Union (ITU) V.32, V.32bis and V.34 modem

systems.

There are at least two distinct methods to design TCMs. The first method

is set-partitioning, proposed by Ungerboeck in [11]. By partitioning the constel-

lation points into different subsets that have large intra-subset distances, this

method guarantees large Euclidean distance between codewords despite the fact

that some bits are not explicitly coded. The second method is a full computer

search, in which all bits are explicitly coded. The performance of a TCM can

be obtained by computer simulation or evaluated by error bounds such as the

union bound. Due to the nonlinearity of the constellation mapper, a product-

state diagram is needed for performance evaluation. As a result, the number of

states increases from N to N2, where N is the number of states of the underlying

convolutional code. Complexity reduction of the state diagram for TCMs has

been extensively studied in the literature. Most studies were focused on par-

ticular structures of the codes that guarantee a simple state diagram. In this

dissertation, we will follow an FSM-based approach originally proposed in [12]

and present an iterative reduction method that can be applied to generic TCMs.

1.3 Outline

The rest of the dissertation is organized as follows. Chapter 2 introduces the con-

cept of universal codes and studies the finite block-length properties of universal

codes. Chapter 3 applies the universal codes to MIMO systems and investigates

the channel-eigenvector-invariant space-time constellations. Chapter 4 presents

an FSM-based trellis code state diagram reduction algorithm. Examples are used

to illustrate the efficiency of the algorithm. Chapter 5 concludes the dissertation

4



and outlines future research directions.
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CHAPTER 2

Universal Codes with Finite Block-Lengths

2.1 Background

Traditional code design is targeted at a specific channel. The design relies on

two key assumptions: first the channel can be identified accurately, second the

characteristics of the channel do not change dramatically from those for which

the code is designed. In reality, there exists a variety of situations for which

these assumptions can not be satisfied. When this happens, the performance

of such designed optimal codes might deteriorate significantly. For example, an

optimal AWGN code might not perform well under periodic erasure channels [8]

or partial band jamming channels [13]. A space-time code optimal for Rayleigh

fading channels may not work well under some special scenarios, including singu-

lar channels that result from a single line-of-sight path, or the “keyhole” channel

[14].

One approach to solve this problem is to design individual optimal codes

for each channel condition. However this scheme requires storage for all the

possible codes at the transmitter and the receiver and the ability of both sides

to intelligently identify and adapt to the environment. An alternative approach

is to design a code that works reasonably well under most, if not all, possible

scenarios. In this chapter, we study both the theoretic and practical aspects of

the latter approach.

6



2.2 Compound Channel Coding Theorem

A compound channel arises when users communicate under some channel uncer-

tainty [3], i.e. users know the channel belongs to a family of channels but they do

not know exactly what the channel is. Throughout this chapter, we will restrict

our discussion to discrete memoryless channels (DMCs).

Definition 1 A compound channel is a family of channels indexed by i ∈ I
denoted by

{P (y|x, i), x ∈ X , y ∈ Y , i ∈ I}, (2.1)

where X and Y are the input and output alphabet, respectively. I is the index

set which can be finite, countably infinite or uncountably infinite. P (y|x, i) is the

conditional probability governing the channel with index i.

It is assumed that the channel index remains unchanged during the course of

the transmission. Or at least the time that the channel index stays the same is

longer than the codeword block-length. If the index varies arbitrarily from symbol

to symbol, then such a channel is referred as an arbitrarily varying channel [3],

which is not the focus of this chapter.

The capacity of a compound channel is defined as

C(I) = sup
Q(x)

inf
i∈I

Ii(x; y), (2.2)

where I(x; y) is the mutual information between the input and output random

variables. Define the infimum of the capacities of the individual channels as

Cinf(I) = inf
i∈I

sup
Q(x)

Ii(x; y). (2.3)

Note that C(I) ≤ Cinf(I). However it can be shown C(I) = 0 if and only if

Cinf(I) = 0 [6]. So any set of positive-capacity channels will have a positive

compound channel capacity.
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Blackwell, Breiman and Thomasian [4] proved that the capacity of a com-

pound channel with discrete alphabet can be achieved by a single sequence of

codes. A similar result also appeared in [6]. This result was extended by Root

and Varaiya [7] to p × p (square) linear Gaussian compound channels where the

alphabet is continuous. The slight generalization of their theorem to the p × q

(rectangular) MIMO channels is stated below.

Theorem 1 A family of Gaussian multiple-input multiple-output (MIMO) chan-

nels is denoted as {H i,Ki, i ∈ I}, where the index set I is an arbitrary set. The

channel input output is governed by y = H ix + zi, where H i is a p × q matrix

and zi, the noise, is a Gaussian random vector of dimension p×1 with zero mean

and the covariance matrix Ki. Assume there exist real numbers a, α1, α2 such

that for each i ∈ I,

1. ‖H i‖ ≤ a, where ‖ · ‖ is the spectral norm of a matrix, i.e. the square root

of the largest eigenvalue of H∗
i H i.

2. α1 ≤ x∗Kix
‖xi‖2 ≤ α2, for any p × 1 vector x.

Then any rate R < C(I) defined in (2.2) is achievable. i.e. there exists a sequence

of (2nR, n) codes such that the probability of error under any channel in the family

approaches zero as the block-length approaches infinity.

Proof: The theorem for square channel matrices first appeared in [7]. The

original proof is however mathematically involved. In the Appendix, we give an

alternative proof based on random codes and typical set decoding. �

The surprising fact about the compound channel coding theorem is that the

probability of error goes to zero uniformly as long as the code rate is less than

8



the compound channel capacity no matter what channel the sequence of codes

is actually encountering. The uniform convergence does not mean that the error

probability of each channel in the compound channel goes to zero at exactly the

same speed, but the speed is at least lower bounded. The difference is negligible

at large block-length, but significant for codes with relatively short block-length.

This short-block-length behavior is the focus of this chapter.

2.3 Codes with Finite Block-Lengths

Before we analyze the performance of an error-correcting code under various

channels, a fair and convenient figure of merit is needed. This figure should

automatically take channel conditions into consideration and act consistently

across all channels.

2.3.1 Figure of Merit

The code performance in an AWGN channel is usually gauged by the signal-to-

noise-ratio (SNR) required to achieve a certain target bit error rate (BER) or

frame error rate (FER). SNR can be used to evaluate different codes under the

same channel condition and the same rate. However it is not suitable for codes

with distinct rates or under various channel conditions. A few metrics have been

proposed in the literature. For example, Forney proposes the normalized SNR in

the high-SNR regime [15], which is defined as

SNRnorm =
SNR

22R − 1
, (2.4)

where R is the code rate. 10 log10(SNRnorm) is often called the SNR gap of a

code. The value of the SNR gap indicates how far a system is operating from

the Shannon limit. In the low-SNR regime and the wide-band regime, Verdú
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suggests that the figure of merit is not SNR, but rather the normalized energy

per information bit, Eb/N0 [16].

We propose excess mutual information (EMI) as the figure of merit for the

purpose of universal code design. It is defined as:

EMI(SNR, R) = I(SNR) − R, (2.5)

where R is the rate of the code and SNR is the signal-to-noise-ratio at which

the code achieves a certain target probability of error, I(SNR) is the mutual

information of the channel at that SNR. For the AWGN channel with Gaussian

input, I(SNR) coincides with the capacity of the channel. EMI indicates how

much penalty is paid due to the imperfectness of the code.

For an AWGN channel, EMI and SNR gap only differ by some constant factor

in the high-SNR and high-rate regime. Assuming a real AWGN channel with

Gaussian input, SNR gap can be written as

SNR gap = 10 log10(SNR) − 10 log10(2
2R − 1)

≈ 10 log10(SNR) − 20R log10(2).
(2.6)

EMI can be written as

EMI =
1

2
log2(1 + SNR) − R

≈ 1

2
log2(SNR) − R.

(2.7)

The approximations in (2.6) and (2.7) are valid when R and SNR are large

respectively. Under these assumptions, the EMI and the SNR gap differ by a

factor of 20 log10 2. In the low SNR and low rate regime, this linear relationship

is no longer valid. But there still exists a monotonic bijection between them.

It is interesting to note that EMI appears in the probability of error under

typical set decoding. Recall that in the proof of the capacity of a Gaussian
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channel, the error probability of a Gaussian code book of block-length n is upper

bounded by [17, p. 245]

P (n)
e ≤ 2ε + 23nε2−n(I(X;Y )−R)

= 2ε + 23nε2−nEMI.
(2.8)

The EMI is not the error exponent which is defined as

Et =
ln(P

(n)
e )

n
. (2.9)

Even for typical set decoding, the ε in (2.8) hides too much information about

the error exponent. However, EMI is indeed related to the probability of error.

2.3.2 Design of Universal Codes

Universal code design is inherently a multicriterion optimization problem. One

approach could be to design a code which optimizes the sum of some metric over

all the channels in the family. Another possible criterion is to optimize the worst

case performance. We will show examples to illustrate these criteria.

2.3.2.1 Trellis codes for Periodic Erasure Channels

The performance of a trellis code can be upper bounded by the transfer function

bound. At high SNR, the bound can be approximated by its first term as listed

in (2.10).

NbQ

(√
SNRdmin

2

)
, (2.10)

where Nb is the number of bits in error associated with events having the mini-

mum Euclidean distance dmin. A search can be conducted to find the code that

minimizes
∑

i SNRi or
∑

i EMIi at a certain target probability of error, where the

sum is over all the erasure patterns in the compound channel family. The trellis
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code whose performance is shown in Fig. 2.1 is one of those codes optimized for

EMI under the period-2 erasure [8]. It exhibits consistently good performance

under both channels. A detailed explanation of this figure will be rendered later

in this chapter.
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Figure 2.1: Sphere packing bound (spb), random coding bound (rcb) and

computer simulation results (sim) for AWGN channel with block-length 46.

11–non-erasure channel, 01–erasure channel.

2.3.2.2 Universal Space Time Trellis Codes

Root and Varaiya’s compound channel coding theorem was proven for MIMO

channels although it is only recently that MIMO channels have drawn consider-

able attention. So a natural application of the compound channel coding theorem

is space-time code design.

However, caution has to be taken before applying the theorem directly. A

MIMO channel is usually described as y = Hx + z, where H obeys Rayleigh or

Rician fading law. It can be modelled as a compound channel if the fading process

is slow relative to the code block-length. The so-called quasi-static fading or block

fading model fits in this category. Under this model, the outage capacity is a more
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relevant quantity than the ergodic capacity. Furthermore, the two conditions in

the theorem on the norm of H and the norm of the covariance matrix of z need to

be satisfied. It is commonly assumed that the noise is i.i.d. and has unit variance.

So the condition on the noise covariance matrix is satisfied. The condition on

the channel matrix is not always satisfied because no matter whether H follows

Rayleigh or Rician fading, its norm can be arbitrarily large with some positive

probability. Nevertheless we need only to consider the channels whose norm is

bounded from above number because the propagation environments are passive.

Having justified the applicability, we are in the position to formulate the space

time code design problem in the context of the compound channel theorem. First

we need to identify the family of channels. Any channel whose mutual information

is less than data rate R should not be included because according to Shannon’s

coding theorem, reliable communication is not possible through this channel. The

critical set of channels are those whose mutual information is exactly equal to R.

So an interesting compound channel is defined as all the H ’s that satisfy:

log det
(
I + HH†) = R (2.11)

The compound channel capacity of this set is equal to the minimum mutual

information of all the individual channels with a uniform input. For an error

event X → X̂ and a particular channel H , the associated Euclidean distance is

d(X → X̂) = Tr
(
∆X†H†H∆X

)
, (2.12)

where ∆X = X − X̂, and Tr(·) is the trace of a matrix. Using (2.10), we can

compute the SNR required to achieve a certain probability of error. Since there

are infinitely many channels satisfying (2.11), proper sampling is needed. The

objective is to search for a code that minimizes the maximum EMI over all the

sample channels. Such designed trellis codes for 2× 2 systems were shown in [9].

However this approach becomes difficult as the system becomes large.
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2.4 Periodic Erasure Channels

A simple way to generate a family of channels is to erase transmitted symbols

periodically with different patterns. Each erasure pattern generates a channel in

the family. We will focus on periodic erasure channels due to its simplicity.

Consider a binary symmetric periodic erasure channel with input symbols

xi ∈ {−1, 1}. f(xi, p) is the channel function, i.e. with probability of 1 − p,

f(xi, p) = xi, while with probability of p, f(xi, p) = −xi. ai ∈ {0, 1} are the

erasing coefficients with period T , i.e. ai = ai+T . Similarly an AWGN periodic

erasure channel can be formulated as yi = aixi + ni, when ni is the Gaussian

noise.

The periodic erasure channel can be regarded as a simplified model for frequency-

hopped systems where partial band interference arises due to frequency dependent

disturbance [13]. It can also model communications in the presence of jamming.

2.5 Error Bounds and Error Exponents

A finite block-length code is often compared to the Shannon capacity to measure

its imperfectness. However this comparison is not completely fair because in

most cases, the Shannon capacity can only be achieved as the block-length goes to

infinity. Among available finite block-length analysis tools are the sphere packing

bound (SPB) [18] and the random coding bound (RCB) [19]. The probability of

error for codes with finite block-length is lower bounded by the SPB.

The RCB, characterizing the average performance of a randomly selected

codes, serves as an upper bound on the probability of error for an optimal code.

However in reality it might be the case that even the RCB can not be achieved

by a carefully designed code due to the increasing decoding complexity. A fair
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assessment of a finite block-length code can be made by measuring its EMI against

the EMI of the SPB or the RCB. We state the SPB and the RCB for the BSC and

the AWGN channel, respectively, then extend them to periodic erasure channels.

2.5.1 Sphere Packing Bound (BSC)

The derivation of the SPB for the BSC is combinatorial. For an (n, k) binary

code, the bound can be written as [19, 20]

Pw(n, k, p) ≥ pr+1(1 − p)n−r−1

(
r+1∑
i=0

(
n

i

)
− 2n−k

)

+
n∑

i=r+2

(
n

i

)
pi(1 − p)n−i

=
n∑

i=r+1

(
n

i

)
pi(1 − p)n−i

− pr+1(1 − p)n−r−1

(
2n−k −

r∑
i=0

(
n

i

))
,

(2.13)

where p is the crossover probability of the BSC and r is the maximum integer

such that
∑r

i=0

(
n
i

) ≤ 2n−k.

2.5.2 Sphere Packing Bound (AWGN)

The derivation of Shannon’s SPB for the AWGN channel is essentially geomet-

ric. The codewords of block-length n are regarded as points on an (n − 1)-

dimensional sphere with radius
√

nEs. The error probability is lower bounded by

the probability that an n-dimensional Gaussian random variable falls out a cone

which corresponds to the Vonoroi region of the transmitted codeword. The error

probability is given as [18, 21]:

Pw ≥ Qn(θs, A), (2.14)
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where A =
√

Es/No, θs is the half angle of a cone whose solid angle is a fraction

1/2k of the total solid angle of the sphere. k is the information bit length. θs

satisfies

Ωn(θs) =

∫ θs

0

(n − 1)Γ(n
2

+ 1)(sin φ)(n−2)

nΓ(n+1
2

)
√

π
dφ =

1

2k
. (2.15)

Qn(θs, A) is given as

Qn(θs, A) =

∫ π

θs

(n − 1)(sin φ)(n−2)

2n/2
√

πΓ(n+1
2

)∫ ∞

0

s(n−1)e−(s2+nA2−2s
√

nA cos φ)/2dsdφ.

(2.16)

The computation in (2.15) and (2.16) becomes numerically unstable when n be-

comes large. The following asymptotic approximations should be used for large

n:

Ωn(θs) ≈
Γ(n

2
+ 1)(sin θs)

(n−1)

nΓ(n+1
2

)
√

(π) cos θs

≈ (sin θs)
(n−1)

√
2πn cos θs

, (2.17)

Qn(θs, A) ≈ 1√
nπ

√
1 + G2(θs, A) sin θs

×

[G(θs, A) sin θse
−(A2−AG(θs,A) cos θs)/2]n

AG(θs, A) sin2 θs − cos θs

,

(2.18)

where G(θs, A) = (1/2)[A cos θs +
√

A2 cos2 θs + 4].

2.5.3 Random Coding Bound and Error Exponent (BSC)

The RCB for the BSC is computed as [19, p. 146]

P n
w ≤ e−nEr(R), (2.19)

where Er(R) is the random coding exponent. However, even for such a simple

channel, Er(R) does not have a simple explicit form. We need first to compute an
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intermediate parameter δ whose relation with the code rate R (in nats) is given

as:

R = ln 2 − H(δ), (2.20)

where H(δ) is the binary entropy function (in nats).

For δ in the range

p ≤ δ ≤
√

p√
p +

√
1 − p

, (2.21)

where p is the crossover probability, the random coding exponent of the BSC is

Er(R) = −δ ln p − (1 − δ) ln(1 − p) − H(δ). (2.22)

For

R < ln 2 − H(

√
p√

p +
√

1 − p
), (2.23)

the exponent becomes

Er(R) = ln 2 − 2 ln(
√

p +
√

1 − p) − R. (2.24)

2.5.4 Random Coding Bound and Error Exponent (AWGN)

Assume Gaussian input, the RCB for the AWGN channel has an explicit form

[19, p. 340]. As in the BSC case, we need to compute the error exponent. For

the rate R (in nat) in the range:

1

2
ln

(
1

2
+

A

4
+

1

2

√
1 +

A2

4

)
≤ R ≤ 1

2
ln(1 + A), (2.25)

where A = Es/No. The error exponent is

Er(R) =
A

4β

[
β + 1 − (β − 1)

√
1 +

4β

A(β − 1)

]

+
1

2
ln

[
β − A(β − 1)

2

(√
1 +

4β

A(β − 1)
− 1

)]
,

(2.26)
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where β = e2R. When R is less than the left hand side of (2.25), the error

exponent becomes

Er(R) = 1 − β +
A

2
+

1

2
ln

(
β − A

2

)
+

1

2
ln β − R, (2.27)

where

β =
1

2

(
1 +

A

2
+

√
1 +

A2

4

)
. (2.28)

2.5.5 Extension to Periodic Erasure Channels

As far as the effect of block-length is concerned, sending a codeword through

a periodic channel is equivalent to puncturing the codewords first then sending

through a standard channel. The previously listed bounds and error exponents

can be extended to erasure channels by this equivalence. For example, the random

coding bound of a rate-1/4 length-N code with erasure pattern “10” is the same

as that of a rate-1/2 length-N/2 code without erasures.

2.6 Numerical Analysis and Simulation Results

2.6.1 Random Coding Error Exponents

The random coding error exponent indicates the rate at which the error probabil-

ity of the ensemble codes approaches zero as block-length grows. We consider a

BSC and an AWGN compound channel with erasure patterns “1111” and “0111”.

For a fair comparison, the BSC’s have a crossover probability 0.11 for the first

erasure pattern and 0.0615 for the second pattern such that both channels have

capacity 0.5 bit. In the AWGN case, we set the SNR to be 3 for the first pattern

and 5.3496 for the second such that both channels have capacity 1.0 bit. The

random coding error exponents are plotted in Fig. 2.2 for various code rates. It
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is clear that the error exponents are distinct in both the AWGN and the BSC

compound channels.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4
Random Coding Error Exponents

Rate

E
rr

or
 E

xp
on

en
t

1111, AWGN
0111, AWGN
1111, BSC
0111, BSC

Figure 2.2: Random coding error exponents for a BSC with capacity 0.5 bit

and an AWGN periodic erasure channel with capacity 1.0 bit. 1111–non-erasure

channel, 0111–erasure channel.

2.6.2 Periodic Erasure BSC

Suppose CH1 is the standard BSC with crossover probability p and CH2 is a BSC

with erasure pattern “0111”. This example is different from above in that both

channels have the same p. The capacities of two channels are:

C1(p) = 1 − H(p), C2(p) =
3

4
(1 − H(p)), (2.29)

where H(p) = −(1 − p) log2(1 − p) − p log2(p) is the binary entropy function.

In both cases, the code rate is 1/4. According to (2.5), the EMI for CH1 is

calculated by EMI1 = C1(p)−0.25 and the EMI for CH2 is EMI2 = C2(p)−0.25.

Bounds on the frame error rate for block-length 52 are plotted against EMI in

Fig. 2.3.

It is observed that the erasure channel is a more efficient channel in the sense
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Figure 2.3: Sphere packing bound (SPB) and random coding bound (RCB) for

BSC with block-length 52. 11–non-erasure channel, 01–erasure channel.

that it uses less EMI according to the SPB and the RCB. So one would expect

a short block-length universal code to have better performance in an erasure

channel than in a standard channel in terms of EMI.

2.6.3 Periodic Erasure AWGN Channel

A more interesting case is AWGN channel. In what follows we compare the SPB

and the RCB performance to that of three different codes, a trellis code, an LDPC

code and a turbo code.

Example 1 A trellis code

The rate 1/3 trellis code [171 46 133] (in octal) prosposed in [8] was simu-

lated. Gray labeled 8PSK constellation was employed. The block-length was 46

symbols. Again, we denote the standard AWGN channel by CH1 and the one

with erasure pattern “01” by CH2. The EMI for CH1 is (per complex symbol)

EMI1 = log(1 + SNR) − R. (2.30)
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And the EMI for CH2 is

EMI2 = 1/2 log(1 + SNR) − R. (2.31)

The bounds on frame error rate are plotted against SNR in Fig. 2.1(a) and

against EMI in Fig.2.1(b), together with the simulation results. If only looking

at the SNR plot and ignoring the SPB and RCB, one might assume that the

code performance is much worse in the erasure channel because it needs larger

SNR. However this is not correct. The erasure channel inherently requires a

larger SNR than the AWGN channel at the same capacity. Like the BSC case,

the erasure channel requires less EMI according to the bounds. The simulation

results agree with the bounds. This phenomenon can be justified by the following

computation.

Suppose a code operates at SNR1 and SNR2 in CH1 and CH2 (as defined

above) respectively in order to achieve a certain target FER. If the following is

satisfied,

SNR1 ≤ SNR2 ≤ SNR2
1 + 2SNR1, (2.32)

then according to (2.30) and (2.31), we have EMI1 ≤ EMI2 . The SNR’s for this

trellis code happened to fall in the region defined in (2.32).

Example 2 An LDPC code

Although Fig. 2.1 shows that the bounds for the two channels differ consider-

ably at short block-length, meaning that constant EMI is not possible across both

channels, this gap becomes much smaller at longer block-lengths. As shown in

Fig. 2.4, the difference among the bounds becomes negligible as the block-length

becomes large. Also shown in the Fig. 2.4 are simulation results of a rate 1/4

block-length 20000 binary LDPC code mapped to 5000 16QAM symbols. This
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code was optimized for AWGN channel. Its parity check matrix was generated

according to the degree distribution in (2.33). The graph-conditioning method in

[22], [23] and [24] was used to lower the error floor. Systematic design of LDPC

codes for periodic erasure channel through density evolution was presented in

[25].

Four different channels were considered, including the standard AWGN chan-

nel and three erasure channels. This code performs uniformly well under all four

channels in terms of EMI.

λ(x) = 0.356x + 0.219x2 + 0.175x5

+ 0.057x6 + 0.1x15 + 0.0926x16

ρ(x) = 0.5x3 + 0.5x4.

(2.33)
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Figure 2.4: Sphere packing bound (spb), random coding bound (rcb) and

computer simulation results (sim) for AWGN channel with block-length 5000.

11111–non-erasure channel, 01110, 01110, 01010–three erasure channels.

Example 3 A turbo code
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The rate 1/3 turbo code SC-5 proposed in [26] is shown in Fig. 2.5. The

block-length was 10000 8PSK symbols. The bounds still suggest that the era-

sure channel uses less mutual information, but the simulation result shows the

opposite. This is because the 8PSK symbol in the erasure channel carries 2 bits

of information, close to the saturation regime of the 8PSK-constrained capacity.

The same phenomenon is observed in the previous LDPC example, where the

code performs worse in terms of EMI in the most erased channel.
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Figure 2.5: Sphere packing bound (spb), random coding bound (rcb) and com-

puter simulation results (sim) for AWGN channel with block-length 10000.

11–non-erasure channel, 10–erasure channel.

2.7 Discussion and Summary

EMI is a useful metric to fairly compare a single code operating at a single

rate. If codes of different rates are to be compared, a better metric is a relative

quantity, e.g. R/C, (C − R)/C or (C − R)/R, where C is the capacity of the

channel. For example, consider an AWGN erasure channel which erases all the

odd symbols, the code rate is R and channel capacity is 1/4 log2(1 + SNR).
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Thus EMI is 1/4 log2(1 + SNR) − R. Equivalently, we can puncture all the odd

symbols then transmit it through a standard AWGN channel. In this case, the

code rate is 2R and channel capacity is 1/2 log2(1 + SNR). Thus EMI becomes

1/2 log2(1 + SNR) − 2R. In this example, EMI changed due to our different

perspectives. The relative quantities listed above behave consistently.

The compound channel coding theorem is reviewed in this chapter. A new

proof of the theorem is presented. Like most coding theorems, only the asymp-

totic behavior of codes for a compound channel is stated in the theorem. We

investigate the performance limits of universal codes with finite block-lengths by

using the random coding bound and the sphere packing bound. It is shown that

although probability of error approaches zero uniformly under all the channels

in the family, the difference could be significant at finite block-lengths. Once the

input block-length is on the order of 5000 bits, the bounds indicate that uniform

behavior over all channels is a practical goal. Furthermore, LDPC codes seem

well-suited to provide this behavior. It is interesting to notice that in all three

examples, the codes perform approximately 0.2 bit EMI away from the SPC.

So the short block-length trellis code in the example is as universal as the long

block-length codes.

24



CHAPTER 3

Channel Eigenvector Invariance Space Time

Constellations

3.1 Introduction

Recent years have seen intensive research on multiple antenna systems. Multiple-

input-multiple-output (MIMO) systems make high-data-throughput, low-error-

rate communications possible. A commonly used model for MIMO systems is

described as

y = Hx + n, (3.1)

where x ∈ C
nt is the transmitted signal from nt antennas, y ∈ C

nr is the re-

ceived signal at nr antennas. H is an nr × nt complex matrix characterizing

the fading channel. n is a complex vector whose elements are i.i.d. zero-mean,

complex Gaussian random variables with variance-0.5 real and imaginary parts.

If the channel state infomation is not available at the transmitter, a uniform in-

put distribution is optimal [27, 28]. With an i.i.d. Gaussian input, the mutual

information I between the transmitted and the received signals in (3.1) given a

realization of H , is shown in (3.2).

I(x; y|H) = log det

(
I +

P

nt

HH†
)

= log
∏

i

(
1 +

P

nt

λi(HH†)
)

,
(3.2)
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where † is the complex conjugate transpose. P is the average power of the

transmitted vector x. λi(·) stands for the ith eigenvalue of a matrix.

The statistics of H vary from model to model. When the fading is slow, the

so-called block fading model is usually used, where H stays fixed during one block

and then new entries are drawn independently according to the complex Gaussian

distribution at the next block. In the block fading model, the transmitted signal

x in (3.1) extends to an nt × T matrix X and y becomes an nr × T matrix Y ,

where T is the block-length.

Various space-time code design criteria, such as the rank criterion and the

determinant criterion [29, 30], have been derived to achieve large diversity and

coding gains. The underlying idea is to minimize the average pairwise error prob-

ability. These designs depend highly on channel distributions. Codes designed

for a Rayleigh fading channel do not necessarily work well in certain singular or

unitary channels.

Alternatively, codes designed from the compound channel theory enjoy more

universality. A block fading channel is an example of a compound channel [3],

where the channel state information H is unknown at the transmitter except

the knowledge that it belongs to a certain set. Compound channel theory states

that one can find a code to achieve rates arbitrarily close to the capacity of

the compound channel [7, 6]. In the block-fading scenario, the capacity of the

compound channel happens to be the minimum mutual information among all

the channels with uniform inputs [9, 28]. So by using a single code, we can achieve

arbitrarily small probability of error for all channels with mutual information no

less than the rate. This code achieves the outage capacity of the fading channel

under every fading distribution as the block-length goes to infinity. Such a code

is the best one can expect in a block fading channel.
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The existence result in [7, 6] sheds little light on the construction of such uni-

versal codes. The code design is inherently a multicriterion optimization problem

[8]. Some success with trellis codes [9] and LDPC codes [25] has been achieved.

It is observed that the channel matrix H contributes to the mutual information

in (3.2) only through its squared singular values (i.e. the eigenvalues of HH†).

A family of channels with the same set of singular values has identical mutual

information. So a universal channel code should perform identically under these

channels. A code that achieves the same performance irrespective of the eigen-

vectors is called channel-eigenvector invariant. In this chapter we investigate the

feasibility of constructing channel-eigenvector invariant space-time constellations.

Any code equipped with these constellations is automatically channel-eigenvector

invariant.

3.2 Preliminaries

Since the design of channel-eigenvector invariant constellations will rely heavily

on the Hurwitz-Radon matrix equations, we present a short overview of this topic.

The interested readers are referred to [31, 32] for details.

We use ᵀ to denote the transpose of a matrix and † the complex conjugate

transpose. I and 0 are the identity and all-zero matrices respectively. Their

dimensions are implicitly decided in the context. R and C denote the field of

the real numbers and the complex numbers respectively. ∗ denotes the complex

conjugate. i =
√−1 is the pure imaginary unit.
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3.2.1 Hurwitz-Radon Matrix Equations

The Hurwitz-Radon matrix equations were independently examined around 1920

by Hurwitz and Radon to study the composition of quadratic forms. These equa-

tions have been used in topology, algebra, and analysis beyond their inventors’

original purpose [33].

Definition 2 The following system is called the Hurwitz-Radon matrix equations

over field F,

AiA
ᵀ
i = I i = 1, 2, . . . k,

AiA
ᵀ
j + AjA

ᵀ
i = 0 1 ≤ i < j ≤ k,

(3.3)

where A1,. . ., Ak ∈ F
n×p. The set of matrices {Ai, i = 1, . . . , k} is called a solu-

tion to the matrix equations. k is called the cardinality of the solution. �

The Hurwitz-Radon matrix equations can be simply denoted by [k, n, p] over

the field F since these are the only quantities that matter. A major concern of

the equations is to decide the relationship among k, n and p and to explicitly

construct the Ai’s. Although the problem when n and p are arbitrary integers still

remains open, the case n = p is totally settled for any field F whose characteristic

is not 2. The results are listed below.

Theorem 2 If p = n = 2a(2b + 1) and 2 is not the characteristic of the field F,

then the maximum k such that the set of matrix equations (3.3) has a solution is
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equal to the Hurwitz-Radon function ρ1(n).

ρ1(n) = ρ1(2
a(2b + 1))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2a + 1 if a ≡ 0 ( mod 4),

2a if a ≡ 1 ( mod 4),

2a if a ≡ 2 ( mod 4),

2a + 2 if a ≡ 3 ( mod 4).

(3.4)

�

Although the cardinality of a solution to the Hurwitz-Radon matrix equations

in the square case is limited by ρ1(n), the solution is not unique. A very important

one among all the solutions is the integer solution where all the entries of Ai are

in the set {0,±1}. The existence of a solution to the [ρ1(n), n, n] Hurwitz-Radon

matrix equations implies the existence of an integer solution. Hence restriction

on the entries to the set {0,±1} does not reduce the cardinality of a solution.

3.2.2 Hermitian Hurwitz-Radon Matrix Equations

If the field F = C, (3.3) has the following variant which is very useful in the

space-time code design.

Definition 3 The following system is called the Hermitian Hurwitz-Radon ma-

trix equations over the complex field C,

AiA
†
i = I i = 1, 2, . . . 2k,

AiA
†
j + AjA

†
i = 0 1 ≤ i < j ≤ 2k,

(3.5)

where A1,. . ., A2k ∈ C
n×p. 2k is called the cardinality of the solution. �
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We denote the equations in (3.5) by [k, n, p] over C. When n = p, the maxi-

mum k is equal to

ρ2(n) = ρ2(2
a(2b + 1)) = a + 1. (3.6)

The solution to the [ρ2(n), n, n] Hermitian Hurwitz-Radon equations is not

unique either. A solution is called an integer solution if the entries of the matrices

{Ai, i = 1, . . . , ρ2(n)} are in {0,±1} and the entries of the remaining matrices

{Ai, i = ρ2(n) + 1, . . . , 2ρ2(n)} are in {0,±i}. The existence of a solution to

the [ρ2(n), n, n] Hermitian Hurwitz-Radon equations implies the existence of an

integer solution.

We implicitly assume the solutions to (3.3) and (3.5) have the maximum k

for given n, p and F. That is, whenever n = p, we have k = ρ1(n) or k = ρ2(n)

for (3.3) and (3.5), respectively. The following property of linear independence

will be utilized shortly.

Lemma 1 Let {Ai, i = 1, . . . , k} be a solution to (3.3) (for F = R) or (3.5) (for

F = C), then {Ai} are linearly independent with respect to real coefficients. To

be specific, let {ai} be a set of real numbers.

k∑
i=1

aiAi = 0n×p, (3.7)

if and only if

ai = 0, i = 1, . . . k. (3.8)

�

30



Proof: Assume that (3.7) is true, then

0n×n = 0n×p0
†
n×p

=

(
k∑

i=1

aiAi

) (
k∑

i=1

aiAi

)†

=

(
k∑

i=1

ai
2

)
In×n.

(3.9)

Since ai’s are real numbers, ai = 0 for i = 1, . . . , k. �

Note that in the above lemma, {ai} are required to be real numbers while

{Ai} can be complex matrices.

3.2.3 Orthogonal Designs

Alamouti [34] first proposed the 2×2 orthogonal design. This idea was generalized

to square and rectangular matrices of arbitrary size [35]. We follow the definitions

in [36].

Definition 4 A real orthogonal design Ox is defined as an n × p matrix whose

nonzero entries are the real indeterminates ±x1,±x2, . . . ,±xk such that,

OxOᵀ
x =

(
k∑

i=1

x2
i

)
I. (3.10)

The matrix Ox is also called a [k, n, p] real orthogonal design. �

The definition of its complex counterpart goes in parallel.

Definition 5 A complex orthogonal design Oz is defined as an n×p matrix whose

nonzero entries are the complex indeterminates ±z1,±z∗1 ,±z2,±z∗2 , . . . ,±zk,±z∗k,
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such that,

OzO†
z =

(
k∑

i=1

|zi|2
)

I, (3.11)

The matrix Oz is also called a [k, n, p] complex orthogonal design. �

Note the indeterminates xi in (3.10) can be any real number and zi in (3.11)

can be any complex number. Such a design is also referred as the standard

orthogonal design in this chapter. When xi and zi are confined to a finite set, the

orthogonal design generates a set of matrices which is referred as the O-STC. It

is different from the restricted orthogonal design in [37, 38]. The distinction will

be elaborated later on.

The benefit of space-time codes from the orthogonal designs is their very low

maximum-likelihood decoding complexity. Each symbol in an orthogonal design

can be decoded individually, in contrast to the general case where all the symbols

from one transmission have to be decoded jointly to achieve maximum-likelihood

performance. The drawback of the orthogonal design is the significant rate and

mutual information loss for MIMO systems with more than two antennas.

A real orthogonal design Ox can be expressed as a linear combination of

constant real matrices as follows.

Ox =
k∑

i=1

xiAi, (3.12)

where Ai ∈ {0,±1}n×p. Similarly, a complex orthogonal design Oz can be ex-

pressed as the following linear combination.

Oz =
k∑

i=1

(�(zi)Ai + �(zi)Bi) , (3.13)

where �(·) and �(·) are the real part and the imaginary part respectively. Ai ∈
{0,±1}n×p, Bi ∈ {0,±i}n×p and such that Oz’s entries are in {±zk,±z∗k}. It can
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be shown [39] that Ai and Bi satisfy the following equalities.

AiA
†
i = I, BiB

†
i = I, 1 ≤ i ≤ k

AiA
†
j = −AjA

†
i , BiB

†
j = −BjB

†
i , 1 ≤ i 
= j ≤ k

AiB
†
j = −BjA

†
i , 1 ≤ i, j ≤ k

(3.14)

The orthogonal design and the Hurwitz-Radon equations are closely related

in the following sense.

Theorem 3 The existence of a [k, n, p] real orthogonal design is equivalent to the

existence of an integer solution to the [k, n, p] Hurwitz-Radon matrix equations

(3.3). The existence of a [k, n, p] complex orthogonal design is equivalent to the

existence of an integer solution to the [k, n, p] Hermitian Hurwitz-Radon matrix

equations (3.5). �

The real part of the theorem can be shown by modifying the proof in [36,

Proposition 1] and the complex part by modifying the proof in [39, Appendix] to

accommodate the integer constraint.

The integer constraint in Theorem 3 can be removed either in the square case

n = p where the constraint does not reduce the cardinality of the solution or in

the linear processing orthogonal design case where the entries of Ox or Oz are

allowed to be linear combinations of {±xi} or {±zi,±z∗i }, respectively.

3.3 Channel-Eigenvector Invariance

In a multi-antenna system, a constellation can be a set of matrices spanning both

space and time. These matrices have dimension nt × T , where nt is the number
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of transmit antennas and T is the time span. We call the set of matrices a space-

time constellation. Our definition of the space-time constellation includes the

well-known schemes such as the Alamouti code [34], the space-time block codes

from orthogonal designs [35], and the linear dispersion codes (LDCs)[40].

Throughout the chapter we consider the block fading scenario where the chan-

nel coherence time is much larger than the matrices time span T . Thus all of the

columns in a space-time matrix are affected by the same channel.

A space-time constellation is called channel-eigenvector invariant if its pair-

wise error probability does not depend on the eigenvectors of H†H . We write

H ∼ λ = (λ1, · · · , λn) (3.15)

if H†H has eigenvalues (λ1, · · · , λn). Channel-eigenvector invariance is rigor-

ously defined as follows:

Definition 6 Let H(λ) be the set of all nr × nt complex matrices H ∼ λ for

some fixed λ. A space-time constellation is channel-eigenvector invariant

if for any constellation matrix pair (X1,X2), both having dimension nt × T , the

squared Euclidean distance between X1 and X2 is independent of the eigenvectors

of H†H.

d2(X1 → X2|H) = Tr
(
(X1 − X2)

†H†H(X1 − X2)
)

= Tr
(
H†H(X1 − X2)(X1 − X2)

†)
= f(∆X,λ), (3.16)

for any H ∈ H(λ), where ∆X = X1 − X2, Tr(·) is the trace of a matrix and

f(· , · ) is a certain function of matrices. �
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The absence of the eigenvectors of H†H in (3.16) justifies the name “channel-

eigenvector invariant”. It has been mentioned earlier that channel-eigenvector

invariant constellations are practically useful for the design of compound channel

codes. They are also conceptually pleasing. According to (3.2), the mutual

information between the channel input and output (and ergodic capacity as well)

depends only on the non-zero eigenvalues of HH† (the same as those of H†H),

one would expect that a good constellation also has this property.

A necessary and sufficient condition for a constellation to be channel-eigenvector

invariant is based on the following lemma.

Lemma 2 [9] If A and B are two n×n positive semidefinite matrices with non-

negative eigenvalues λ1 ≥ λ2 ≥ · · · ,≥ λn and γ1 ≥ γ2 ≥ · · · ,≥ γn, respectively,

then
n∑

i=1

λiγn+1−i ≤ Tr(AB) ≤
n∑

i=1

λiγi, (3.17)

�

Proof: Suppose that A and B have the following eigenvalue decompositions.

A = U †ΛU , B = V †ΓV , (3.18)

where U and V are unitary matrices, Λ and Γ are diagonal matrices. Let Q =

UV †, then Q is also a unitary matrix.

Tr(AB) = Tr(U †ΛUV †ΓV )

= Tr(ΛQΓQ†)

=
n∑

i=1

n∑
j=1

|Qij|2λiγj

(3.19)
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where Qij is the (i, j) element of Q. The lower bound can be obtained by solving

the following linear programming problem.

min
n∑

i=1

n∑
j=1

|Qij|2λiγj

s.t.
n∑

i=1

|Qij|2 = 1, i = 1, · · · , n

n∑
j=1

|Qij|2 = 1. j = 1, · · · , n

(3.20)

Since both the objective function and the constraints are linear in |Qij|2, the

optimal value is achieved at vertices, which corresponds to {|Qij|2} being entries

of permutation matrices. It is easy to verify the optimal solution is the lower

bound in (3.17). The upper bound can be obtained in a similar fashion. �

Note that the lower bound and the upper bound are equal if and only if at least

one of the matrices has identical eigenvalues. Replacing A and B with H†H

and ∆X∆X† respectively, we have:

Theorem 4 A space-time constellation is channel-eigenvector invariant if and

only if every “squared” difference matrix ∆X∆X† has identical eigenvalues. i.e.

λ = λ1

(
∆X∆X†) = · · · = λn

(
∆X∆X†) , (3.21)

where ∆X = X1−X2. X1 and X2 are two arbitrary matrices in the space-time

constellation. i.e.

(X1 − X2) (X1 − X2)
† = ∆X∆X† = λI, (3.22)

�

36



3.4 Channel-Eigenvector Invariant STCs

We will first study the structure of channel-eigenvector invariant space-time con-

stellations under the linear constraint.

3.4.1 Linear CEI-STCs

Definition 7 A real linear space-time constellation Lx is a set of real matrices

of dimension nt × T such that

Lx = {X | X =
k∑

i=1

xiAi}, (3.23)

where {Ai ∈ R
nt×T , i = 1, . . . , k} is called the basis of Lx. Each xi is a real num-

ber. Similarly, a complex linear space-time constellation Lz is a set of complex

matrices of dimension nt × T such that

Lz = {X | X =
k∑

i=1

(�(zi)Ai + �(zi)Bi)}. (3.24)

where {Ai, Bi ∈ C
nt×T , i = 1, . . . , k} is called the basis of Lz. Each zi is a

complex number. �

Note that equations (3.23) and (3.24) are similar to (3.12) and (3.13) respec-

tively. This is not surprising because orthogonal designs are linear space-time

constellations. The following lemma establishes the conditions for a linear space-

time constellation to be channel-eigenvector invariant.

Lemma 3 A real linear space-time constellation defined in (3.23) is channel-

eigenvector invariant if and only if

AiA
ᵀ
i = ξiI, i = 1, · · · , k, (3.25)
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AiA
ᵀ
j + AjA

ᵀ
i = ξijI, 1 ≤ i < j = k, (3.26)

where each ξi is a positive real number and each ξij is a real number.

Similarly a complex linear space-time constellation defined in (3.24) is channel-

eigenvector invariant if and only if

AiA
†
i = ξAi

I, BiB
†
i = ξBi

I, 1 ≤ i ≤ k (3.27)

AiA
†
j + AjA

†
i = ξAij

I, 1 ≤ i 
= j ≤ k (3.28)

BiB
†
j + BjB

†
i = ξBij

I, 1 ≤ i 
= j ≤ k (3.29)

AiB
†
j + BjA

†
i = ξAiBj

I, 1 ≤ i, j ≤ k, (3.30)

where ξAi
and ξBi

are positive real numbers. ξAij
, ξBij

and ξAiBj
are real numbers.

�

Proof: We first prove the real case. Suppose Lx is a channel-eigenvector

invariant constellation. Let X1, X2 ∈ Lx be expressed as follows.

X1 =
k∑

i=1

x1iAi, X2 =
k∑

i=1

x2iAi. (3.31)

X1 and X2 are said to differ at i if x1i 
= x2i, but x1j = x2j for all j 
= i. They

are said to differ at (i, j) if x1k 
= x2k, k = i, j but x1k = x2k for all k 
= i, j.

According to Theorem 4, we have the following equality:
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λI = (X1 − X2)(X1 − X2)
ᵀ

=
k∑

i=1

(x1i − x2i)
2AiA

ᵀ
i

+
k∑

i=1

k∑
j>i

(x1i − x2i)(x1j − x2j)(AiA
ᵀ
j + AjA

ᵀ
i )

, (3.32)

where λ is a non-negative real number dependent on the matrix pair. By letting

X1 and X2 differ at i, we have (3.25). And by letting X1 and X2 differ at (i, j),

we obtain (3.26).

The converse can be proved by simply verifying that (3.32), and hence (3.22)

holds if (3.25) and (3.26) are true.

The complex case follows in the same fashion by letting X1 and X2 differ at

i’s real part or imaginary part. �

Apparently, Lemma 3 implies that constellations from the orthogonal designs

are channel-eigenvector invariant. Actually we can say more about this.

Theorem 5 A real linear space-time constellation Lx is channel-eigenvector in-

variant if and only if each matrix Ai can be written as a linear combination of a

solution to the Hurwitz-Radon matrix equations. To be specific, Ai can be written

as

Ai =
m∑

j=1

aijOj, i = 1, · · · , k, (3.33)

where m ≤ k. Each aij is a real number. {Oj, j = 1, · · · ,m} is a solution to the

[m,nt, T ] Hurwitz-Radon matrix equations.

Similarly, a complex linear space-time constellation Lz is channel-eigenvector

invariant if and only if matrices Ai and Bi can be written as a linear combination
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of a solution to the Hermitian Hurwitz-Radon matrix equations. To be specific,

Ai and Bi can be written as

Ai =
m∑

j=1

aijOj +
m∑

j=1

bijQj, i = 1, · · · , k

Bi =
m∑

j=1

cijOj +
m∑

j=1

dijQj, i = 1, · · · , k

(3.34)

where m ≤ k. aij, bij, cij and dij are real numbers. {Oj, Qj, j = 1, · · · ,m} is a

solution to the [m,nt, T ] Hermitian Hurwitz-Radon matrix equations. �

Proof: See Appendix. �

By Theorem 5, we can rewrite any linear CEI-STC X as

X =
k∑

i=1

xiAi

=
k∑

i=1

xi

m∑
j=1

aijOj

=
m∑

j=1

(
k∑

i=1

xiaijOj

)

=
m∑

j=1

x′
jOj,

(3.35)

where x′
j =

∑k
i=1 xiaij. This indicates that X is a generalization of a linear

processing orthogonal design [35, Definition 3.4.1] since (3.35) means XXᵀ =∑m
j=1

(∑k
i=1 xiaij

)2

I. It degrades to a linear processing orthogonal design if

m = k and aij = 0 for i 
= j. Although this generalization provides more freedom

in the choice of the basis {Ai} ({Ai,Bi} for the complex case), it sacrifices the
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low decoding complexity enjoyed by the orthogonal design because the symbols

might be mixed together. Furthermore, it does not increase the maximum number

of linearly independent matrices, which is limited by the solution to the Hurwitz-

Radon matrix equations.

3.4.2 Restricted CEI-STCs

We have studied the structure of the linear CEI-STC. Recall that there is no

requirement on the entries of the matrices defined in (3.23) and (3.24). However,

the transmitted signals are usually confined to a finite set, say points from a

QPSK or an 8-PSK constellation. This set is called the base set, denoted as S.

This section explores how the restricted base set changes the characterization of

a CEI-STC.

The base set is real if it consists of real numbers, otherwise it is called complex.

If S is real, we assume that it is symmetric about the origin, i.e. xi ∈ S implies

−xi ∈ S. If S is complex, we assume that it is symmetric relative to both the

x-axis and the y-axis on the complex plane, i.e. zi ∈ S implies −zi and ±z∗i ∈ S.

The symmetry of S is also used in O-STCs and LDCs where the negation and

complex conjugate of a transmitted signal are allowed. Furthermore, 0 is assumed

to be in S which allows an antenna to send nothing during a time slot.

Denote N to be a set of nt × T matrices whose entries are drawn from S. N
is the set of all matrices that could possibly be transmitted. A subset M ⊂ N
is channel-eigenvector invariant if it satisfies (3.22) in Theorem 4. The subset

M is called a restricted CEI-STC. To distinguish the restricted CEI-STC from

the linear one, note that the linear constraint (3.23) or (3.24) is absent but there

is a restriction of the base set. After proving Theorem 6, we will see that the

restricted CEI-STC has an affine structure.
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For the restricted CEI-STC, a major concern is the cardinality of M. The

cardinality does not make sense in the linear CEI-STC case because there is

no restriction on the base set. However the cardinality of a restricted CEI-

STC decides the raw data rate of the space-time constellation. For example, an

Alamouti code over QPSK generates 16 matrices of dimension 2 × 2, meaning

each matrix conveys 4 bits information. A fundamental problem is to determine

the maximum cardinality of M, given the dimension of the matrix nt×T and the

base set S. In the following, we will mainly concentrate on the nt = T case and

briefly discuss the case where nt < T . It is clear that if nt > T , then |M| = 0.

Care should also be taken to distinguish between the O-STC and the restricted

orthogonal design [37, 38]. The former is the set of matrices generated by the

standard orthogonal design. The orthogonal design as defined in (3.10) or (3.11)

is first constructed and then the limitation of the variables to a finite set is

applied. As for the latter, the variables are first limited to a finite set and then

the orthogonal design condition is met by properly choosing the basis matrices.

It has been shown that the restricted orthogonal design can be different from the

O-STC if S is sufficiently constrained. Take an example from [37], let H be an

n×n Hadamard matrix, Λx be an n×n diagonal matrix with x1, x2, . . ., xn along

the diagonal. Each xi can only take values 1 or −1. HΛx forms an restricted

orthogonal design which has n variables rather than ρ1(n). Note that n > ρ1(n)

for n > 8, for example, ρ1(10) = 2. The set of matrices HΛx with entries in

{±1} has cardinality of 2n. Later we will show that there does not exist an n×n

restricted CEI-STC with the same cardinality over {±1}.

A sufficient condition for a restricted orthogonal design to be equivalent to an

standard orthogonal design was found in [41]. However for a given base set, the

maximum number of matrices that form a restricted orthogonal design remains
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an open question. Furthermore, unlike the standard case, not every restricted

orthogonal design is channel-eigenvector invariant. The difference of an arbitrary

pair of matrices in the above Hadamard matrix example might not even be of full

rank. Thus we will only compare the restricted CEI-STC to the O-STC rather

than the restricted orthogonal design.

Our main results focus on the case where nt = T . The matrices generated

from the orthogonal design form a channel-eigenvector invariant set. However, it

is not known whether it is a maximum set for the restricted CEI-STC. Our main

result is presented in the following theorem.

Theorem 6 Let M be a maximum-cardinality channel-eigenvector invariant sub-

set of N where the matrices are of dimension n × n. Denote the size of the base

set by s = |S|. Then, |M| = sρ1(n) when S is real and

sρ2(n) ≤ |M| ≤ (�s

2
� + 1)2ρ2(n) (3.36)

when S is complex. For the latter, both bounds are tight in the sense that each of

them is the maximum cardinality under certain selection of n and S. �

To unify the proof, |M| = sρ1(n) in the real case can be regarded as sρ1(n) ≤
|M| ≤ sρ1(n). First consider the lower bound for both cases. Since the set of

matrices generated by the [ρ1(n), n, n] real orthogonal design or the [ρ2(n), n, n]

complex orthogonal design over S satisfies (3.22), the size of this set serves as a

lower bound. There are sρ1(n) ways to choose {xi} in (3.10) and sρ2(n) ways to

choose {zi} in (3.11).

To consider the upper bound, we need to define the difference set.
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Definition 8 Let S be a set of numbers. The difference set of S, denoted ∆S is

defined by

∆S = {si − sj|∀si, sj ∈ S} (3.37)

�

Assume M = {Ai, i = 1, . . . , k} to be a maximum channel-eigenvector invariant

constellation for a base set S. Define

Bi = Ai − A1, i = 2, . . . , k. (3.38)

The following lemma states that Bi is generated by a solution to the (Hermi-

tian) Hurwitz-Radon matrix equations.

Lemma 4 Let {Ai} and {Bi} be defined above. Let |∆S | = δs. If ∆S is real,

then there exists a solution to the [ρ1(n), n, n] Hurwitz-Radon matrix equations,

denoted as {Oj,j = 1, . . . , ρ1(n)}, such that

Bi =

ρ1(n)∑
j=1

aijOj, i = 2, . . . , k, (3.39)

where each aij is a real number. Similarly, if ∆S is complex, then there exists a

solution to the [ρ2(n), n, n] Hermitian Hurwitz-Radon matrix equations, denoted

as {Oj,Qj,j = 1, . . . , ρ2(n)}, such that

Bi =

ρ2(n)∑
j=1

cijOj +

ρ2(n)∑
j=1

dijQj, i = 2, · · · , k, (3.40)

where cij, dij are real numbers. �
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Proof: Consider the complex case. According to the definition, {Ai} and

{Bi} have the following relationship.

Bi − Bj = Ai − Aj 2 ≤ i, j ≤ k (3.41)

Since {Ai} is channel-eigenvector invariant, Bi satisfies

BiB
†
i = ξiI i = 2, . . . k

(Bi − Bj)(Bi − Bj)
† = ξijI 2 ≤ i < j ≤ k,

(3.42)

where ξi and ξij are positive real numbers. Now expanding the second equation,

we have

BiB
†
j + BjB

†
i = ξ′ijI 2 ≤ i < j ≤ k, (3.43)

where ξ′ij is real. Using the Gram-Schmidt technique from Lemma 11 in the

Appendix, we conclude that Bi can be written as

Bi =

ρ2(n)∑
j=1

cijOj +

ρ2(n)∑
j=1

dijQj, i = 2, · · · , k, (3.44)

where {Oi,Qi, i = 1, . . . , ρ2(n)} is a solution to the the [ρ2(n), n, n] Hermi-

tian Hurwitz-Radon matrix equations. cij and dij are real numbers. The real

case follows in the same manner. �

For any channel-eigenvector invariant set {Ai}, {Bi} have the form in (3.39)

or (3.40) with all entries in ∆S . Because of the structure, we can first bound the

maximum size of {Bi} then obtain {Ai} by properly selecting A1. This idea is

used to find the upper bound.
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Proof of Theorem 6 (the upper bound): Assume S is real. We will show

that Ai is completely determined by the values of its ρ1(n) entries. Let {Bi} and

{Oi} be defined as in Lemma 4. Since all Oi’s are linearly independent, (3.39)

says that only ρ1(n) entries of Bi can assume values freely in ∆S . These entries

determine aij’s in (3.39) completely, which in turn fix the remaining entries of

Bi. Because Ai = Bi + A1, Ai is also determined by its corresponding ρ1(n)

entries for any given A1. There are only sρ1(n) possible combinations for these

ρ1(n) entries of Ai because all of them must be in S.

When S is complex, Lemma 1 only ensures that {Oi,Qi, i = 1, . . . , ρ2(n)}
are linearly independent with real coefficients. We have to consider the real and

imaginary parts of (3.40) separately. Let Bi = B̂i + iB̃i, Oi = Ôi + iÕi and

Qi = Q̂i + iQ̃i. The variables with ˆ are the real parts and the ones with ˜ are

the imaginary parts. (3.40) is equivalent to the following:

B̂i =

ρ2(n)∑
j=1

cijÔj +

ρ2(n)∑
j=1

dijQ̂j, i = 2, · · · , k, (3.45)

B̃i =

ρ2(n)∑
j=1

cijÕj +

ρ2(n)∑
j=1

dijQ̃j, i = 2, · · · , k. (3.46)

According to Lemma 1, {Oi,Qi, i = 1, . . . , ρ2(n)} are linearly independent

with respect to real coefficients, which implies either {Ôi, Q̂i, i = 1, . . . , ρ2(n)}
or {Õi, Q̃i, i = 1, . . . , ρ2(n)} or both are linearly independent. Without loss of

generality, we assume the first case is true. Then cij and dij can be solved by

specifying 2ρ2(n) entries of B̂i. Fix A1, let Ai = A1 + Bi. Then Ai is also

determined by the real part of the corresponding 2ρ2(n) entries. Since each entry

of Ai has to be in S, the real part can assume at most (� s
2
� + 1) values due to

the symmetry of S. Thus there are at most (� s
2
�+ 1)2ρ2(n) possible values for Ai.
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This gives the upper bound. Cases where each of the bounds is the maximum

cardinality are shown in the example below. �

The proof reveals the affine structure of the restricted CEI-STC which is

formed by a linear CEI-STC {Bi} shifted by A1. Recall we did not explicitly

impose any linear constraint like (3.23) or (3.24), the linearity comes into play

automatically. If the all-zero matrix is in the restricted CEI-STC, then it is also

a linear CEI-STC.

Example 1 (achievability of the bounds): We first show that the lower bound

is the maximum cardinality when n = 2 and S = {0,±1±i}, which is the standard

QPSK with the origin. Following the notation in Lemma 4, notice that if a 2× 2

complex matrix Bi satisfies

BiB
†
i = ξiI, (3.47)

where ξi is a positive number, then it has the following form.⎡
⎣ a b

−b∗ei(δ+2θ) aeiδ

⎤
⎦ (3.48)

where a, b are arbitrary complex numbers. a = |a|eiθ, δ is an arbitrary angle.

Since all the entries of (3.48) are in ∆S which has 13 points, δ + 2θ has to be one

of the following values {0, π/2, π, 3π/2}. Thus Bi takes one of the following

four forms.⎡
⎣ a b

−b∗ a∗

⎤
⎦ ,

⎡
⎣a b

b∗ −a∗

⎤
⎦ ,

⎡
⎣ a b

b∗i −a∗i

⎤
⎦ ,

⎡
⎣ a b

−b∗i a∗i

⎤
⎦ . (3.49)

Suppose that each Bi takes the first form, then (3.43) is automatically satis-

fied. It is left to choose a proper A1. Define M to be a subset of {A1,A1+Bi, i =
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2, . . . m} such that ∀ X ∈ M, all of X’s entries are in S. An exhaustive com-

puter search shows that |M| is maximized if and only if A1 takes the same form

as Bi. This leads to an orthogonal design and the lower bound of (3.36) is the

best that can be achieved. A similar argument works if Bi takes the other forms.

Next we show that the upper bound is the maximum cardinality when n = 8

and S = {0,±ai,±ibi| ai, bi ∈ R, i = 1, . . . ,m}, i.e., the base set consists of real

and pure imaginary numbers. Let

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 iy1 x2 iy2 x3 iy2 x4 iy4

iy1 x1 −iy2 −x2 −iy3 −x3 iy4 x4

−x2 −iy2 x1 iy1 x4 iy4 −x3 −iy3

iy2 x2 iy1 x1 −iy4 −x4 −iy3 −x3

−x3 −iy3 −x4 −iy4 x1 iy1 x2 iy2

iy3 x3 iy4 x4 iy1 x1 iy2 x2

−x4 iy4 x3 −iy3 −x2 iy2 x1 −iy1

iy4 −x4 −iy3 x3 iy2 −x2 −iy1 x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Z generates a restricted CEI-STC. Since each xi can assume any value in

{0, ai, i = 1, . . . ,m} and each yi can assume any value in {0, bi, i = 1, . . . ,m}, Z

can be any of the (m+1)8 distinct matrices. Recall that ρ2(8) = 4 and s = 2m+1.

The upper bound of (3.36) is achieved.

Z is neither a real nor a complex orthogonal design because its entries can not

be arbitrary real or complex numbers. In contrast, the 8× 8 complex orthogonal

design with entries restricted to S generates (2m+1)4 matrices, which is equal to

the lower bound of (3.36). So in this example, the restricted CEI-STC is larger

than the complex O-STC. The equality ZZ† =
∑4

i=1(x
2
i +y2

i ) shows that Z itself

is a restricted orthogonal design. It is not clear nonetheless whether all restricted

CEI-STCs are also restricted orthogonal designs. As a by-product, this example
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verifies that a restricted orthogonal design can be different than the standard

one.

We now briefly comments on the case nt < T . Although the basic idea should

be the same, there exist two difficulties. First, we have extensively used the

solution to the [k, n, n] Hurwitz-Radon matrix equations to obtain Theorem 6.

However, the solution to the [k, nt, T ] Hurwitz-Radon matrix equations when

nt 
= T remains open. Second, it has been shown the [k, n, n] Hurwitz-Radon

matrix equations always have integer solutions as long as there exists an arbitrary

solution. Whether this holds when nt 
= T has not been proved, although it is

conjectured to be true [31, p. 314].

Efforts have been made to obtain the maximum rate of k/T when the solution

is integral. Techniques presented in [36] can be used to construct orthogonal

designs with arbitrary nt, however there is no control over the value of T . Once we

obtain a [k, nt, T ] orthogonal design, then the number of the matrices generated

by the orthogonal design always serves as a lower bound on the cardinality of a

CEI-STC.

3.5 Mutual Information Loss of CEI-STCs

Due to the stringent constraint in (3.21), a CEI-STC in general does not have

enough degrees of freedom to maintain the mutual information promised by

a multiple-antenna system. To analyze the mutual information loss, we shall

rewrite (3.23) and (3.24) as (3.50) and (3.51) respectively.

X =
[
Â1x Â2x · · · ÂT x

]
(3.50)
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X =
[
Â1ẑ + B̂1z̃ Â2ẑ + B̂2z̃ · · · ÂT ẑ + B̂T z̃

]
(3.51)

where

x =
[
x1 x2 · · · xk

]ᵀ
(3.52)

ẑ =
[
�(z1) �(z2) · · · �(zk)

]ᵀ
(3.53)

z̃ =
[
�(z1) �(z2) · · · �(zk)

]ᵀ
. (3.54)

Each Âi consists of the ith columns of {Aj, j = 1, . . . k} and each B̂i consists

of the ith columns of {Bj, j = 1, . . . k}.

The space-time constellation constrained channel mutual information can be

computed by forming a large MIMO channel including the matrices {Âi} and

{B̂i} [40]. We need to distinguish the space-time constellation constrained chan-

nel from the conventional constellation-constrained channel. In the former case,

the constraint comes from the the space and time formation of the input sig-

nals which are still Gaussian distributed, while in the latter case, the inputs are

limited to a finite set.

A space-time constellation is mutual-information lossy if the mutual in-

formation of the constellation constrained channel is less than that of the uncon-

strained one for i.i.d. Gaussian input. For a constellation defined in (3.50) or

(3.51) to be mutual information preserving, the following condition must be met.

Theorem 7 Consider the linear constellation defined in (3.23) and (3.24). As-

sume the basis matrices satisfying the following power constraints:

Tr
(
ÂiÂ

ᵀ
i

)
= nt, i = 1, . . . , k (3.55)

Tr
(
ÂiÂ

†
i + B̂iB̂

†
i

)
= 2nt, i = 1, . . . , k (3.56)
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where (3.55) is for the real case and (3.56) is for the complex case. The con-

stellation is mutual-information lossy on average under Rayleigh fading channels

with i.i.d Gaussian input if k < min(nt, nr) × T . �

Proof: See Appendix. �

We do not claim that Theorem 7 is new. Actually, it is a de facto standard

in the LDC design. For example, the authors in [40] assert k = min(nt, nr) × T

“since this tends to maximize the mutual information ”. However we are not

able to find a rigorous proof. The caveat is that the mutual information loss in

Theorem 7 is on average. There exists a particular realization of the channel under

which the space-time constellation constrained mutual information is actually

larger than the unconstrained one. This is because the space-time constellation

effectively performs some “water-filling”. We use mutual information instead of

capacity because the capacity of a constrained channel is not achieved by an i.i.d.

Gaussian input given the transmitter knows the matrices {Âi} and {B̂i}. The

space-time constellation constrained channel can be viewed as a fading channel

with correlation. The capacity of such channels was derived in [42].

An immediate implication of Theorem 7 is:

Corollary 1 If a square CEI-STC can be written as (3.50) or (3.51), which

satisfies the power constraints in (3.55) or (3.56), then the CEI-STC is mutual-

information lossy under Rayleigh fading channels with i.i.d. Gaussian input ex-

cept the following cases: nt = T = 2 or 4 or 8, nr = 1 if the constellation is real

and nt = T = 2, nr = 1 if the constellation is complex. �
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Proof: We need only compare k and min(nt, nr)×T according to Theorem 7.

For the real linear CEI-STC, (3.35) says that k ≤ ρ1(n). So k ≤ min(nt, nr) × T

except the cases listed in the corollary. A similar result holds for the complex

case. For the restricted CEI-STC whose entries are limited to a finite set, the

Gaussian input mutual information should be interpreted as follows. We find a set

of independent variables whose values determine the entire matrix in a restricted

CEI-STC. These variables are regarded as the input of the channel and assumed

to be i.i.d. Gaussian distributed. From the proof of Theorem 7, the number of

independent variables is at most ρ1(n) for the real case and at most 2ρ2(n) real

parts for the complex case. The result follows by comparing these numbers with

min(nt, nr) × T .

3.6 Summary

It is interesting to compare the orthogonal design with the CEI-STC. The two

concepts originate from different perspectives. The former focuses on the matri-

ces themselves, mainly pursued for its low decoding complexity, while the latter

places requirements on their difference, mainly pursued for the invariance of prob-

ability of error under different channel eigenvectors. Depending on the base set,

a complex restricted CEI-STC can have larger cardinality than the complex O-

STC. If the entries are real numbers, then the restricted CEI-STC has the same

cardinality of the O-STC.

No matter whether the entries are restricted in a finite set or whether the linear

constraints (3.23) or (3.24) are imposed, the CEI-STC are limited by the solution

to the (Hermitian) Hurwitz-Radon matrix equations, which is the direct cause

of mutual information loss. It has been shown by examples that the approach

that first restricts the base set then orthogonalizes the matrices may result in a
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large cardinality than the approach that first orthogonalizes the matrices then

restricts the base set. So we should take the former approach whenever the base

set is known a priori.

The maximum cardinality of a restricted CEI-STC is specified in Theorem 6,

but the restricted CEI-STC of the maximum cardinality is not unique. This is

due to the nonuniqueness of the solution to the Hurwitz-Radon matrix equations.

As shown in Example 1, the 2 × 2 restricted CEI-STC can be of any forms in

(3.49). Each of them generates a restricted CEI-STCs of the same cardinality.

Just like the conventional TCM, a space-time constellation can be set-partitioned

to achieve coded performance. Some work in this direction has been seen in

[43, 44] where the O-STC was expanded before set partitioning. However the

expanded set is no longer channel-eigenvector invariant. This is confirmed by

computer simulation in [9].

Our original motivation was to investigate the structure of the universal codes

which perform equally well whenever the channels provide enough mutual infor-

mation. However except for a few cases, the CEI-STC is mutual-information

lossy. Thus the divide-and-conquer method, first obtaining eigenvector invari-

ance then obtaining eigenvalue spread invariance, does not seem to be promising.

There is definitely a tradeoff between channel-eigenvector invariance and eigen-

value spread invariance. It might be wise to consider them jointly. Future work

can be focused on trading eigenvector invariance for less mutual information loss.
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CHAPTER 4

Trellis State-Diagram Reduction

4.1 Introduction

Viterbi’s seminal work [45] introduced generating function techniques for comput-

ing a union bound on the bit error rate of convolutional codes. For a convolutional

code with N states, an N -state error event diagram is sufficient to produce the

correct generating function. However, general trellis codes may require up to N2

states for the error event diagram because the error event distance depends on

the transmitted sequence. The computation of the generating function of a trellis

code may be separated into two stages. The first stage reduces the number of

states as much as possible using low-complexity approaches. The second stage

produces the generating function from the reduced-state diagram through some

form of matrix inversion, which has a relatively high complexity.

Zehavi & Wolf [46], Rouanne & Costello [47], Liu, Oka & Biglieri [48] and

Biglieri & McLane [49] derived some sufficient conditions (e.g. quasi-regularity)

for the error event diagram to be independent of the transmitted sequence, which

means only N states are necessary. But not all error diagrams can be indepen-

dent of the transmitted sequence. Techniques working on generic trellis codes

are particularly useful in code searches. By taking advantage of the symmetry

of the constellations, Wesel [50] proposed a method that is able to reduce the

number of states to some quantity between N and N2 without resorting to quasi-
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regularity. But symmetry of constellation does not cover all the reducible cases.

More generic approaches based on the FSM (finite-state-machine) theory were

proposed by Schlegel [12], Kucukyavuz & Fitz [51] and Ryan [52]. However their

FSM-theory-based reduction algorithms preserve not only the generating func-

tion but also the input-output relationship which is an extra constraint preventing

further reduction. In this chapter we propose an improved reduction technique

by eliminating this constraint.

4.2 Preliminaries

4.2.1 Product-State Diagrams

For a trellis code with N states, we define a product-state as the ordered pair

(ei, si), where si is the correct state of the encoder and ei is the bitwise exclusive-

or of the correct state and a (possibly wrong) receiver state. There are N2

product-states in a product-state diagram.

Let g(s1, s2) or g(e1, e2) denote the binary label in response to the transition

s1 → s2 or e1 → e2 respectively, and f [g(s1, s2)] denote the corresponding con-

stellation point. In a product-state diagram, an edge from product-state (e1, s1)

to (e2, s2) exists if and only if both transitions e1 → e2 and s1 → s2 exist in the

encoder state diagram. The edge (e1, s1) → (e2, s2) has the label

p(s1→s2|s1)
∑

n

pnI
dH(i12)W d2

E(f [g(s1,s2)],f [g(s1,s2)⊕g(e1,e2)]), (4.1)

where p(s1→s2|s1) is the conditional probability of transition s1 → s2 given state

s1. The summation is over all parallel transitions. pn is the probability of having

the nth transition among all possible parallel transitions. For trellis codes with no

parallel transitions, the summation becomes a single nonzero term. The exponent
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of I is the Hamming weight of the binary input i12 that causes the transition

e1 → e2, i.e., the number of input bits in error. The exponent of W is the

squared Euclidean distance between the transmitted and received constellation

points.

4.2.2 The Generating Function

The generating function can be computed by adapting Biglieri’s approach [53].

For simplicity, we define the index of the product-state (e1, s1) to be e1 ×N + s1.

We call those product-states indexed from 0 to N − 1 “correct states” and the

remaining (N2 − N) product-states “erroneous states”. Consider an N2 × N2

transition matrix G whose entry Gij is either the label of the transition from

product-states j to i as shown in (4.1) or zero if no such transition exists. The

matrix G has the form

G =

⎡
⎣d c

b A

⎤
⎦, (4.2)

where d is an N × N matrix for transitions among correct states. c is an N ×
(N2 − N) matrix for transitions from an erroneous state to a correct state. b

is an (N2 − N) × N matrix for transitions from a correct state to an erroneous

state. A is an (N2−N)× (N2−N) matrix for transitions between two erroneous

states. The generating function is calculated as

T (W, I) = 1dp + 1c(I − A)−1bp, (4.3)

where 1 is the 1 × N row vector of ones, p is the N × 1 column vector whose

elements are all 1/N , I is the (N2−N)×(N2−N) identity matrix. The commonly

used upper bound on bit error probability is then given as [54]

Pe ≤ 1

k
ed2

free/4N0Q
(√

d2
free/2N0

) ∂T (W, I)

∂I
|I=1,W=e−1/4N0 , (4.4)
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where

∂T (W, I)

∂I
= 1d′p + 1c(I − A)−1b′p

+ 1c′(I − A)−1bp

+ 1c(I − A)−1A′(I − A)−1bp.

4.3 Finite State Machine Minimization

A product-state diagram can be regarded as the state diagram of an FSM which

has correct states as both its sources and sinks. In the standard FSM theory,

two FSM’s are equivalent if they have the same input-output relationship [55]. In

contrast we consider two product-state diagrams to be equivalent if they produce

the same generating function. According to this definition, we have the following

lemma.

Lemma 5 An unreduced N2-state diagram is equivalent to an (N2−N +1)-state

diagram by combining all correct states into one state.

Proof: We construct a transition matrix with lower dimension and show

that the new matrix has the same generating function as the original one. The

unreduced transition matrix G is defined in (4.2). Define an (N2 − N + 1) ×
(N2 − N + 1) matrix Ĝ of the form

Ĝ =

⎡
⎣d̂ ĉ

b̂ A

⎤
⎦,

where d̂ = 1dp, ĉ = 1c, b̂ = bp. Ĝ is the transition matrix of a reduced product-

state diagram which has the same erroneous states as the original one but has
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only one correct state. Since the generating function of the reduced diagram

T̂ (W, I) = d̂ + ĉ(I − A)−1b̂

= 1dp + 1c(I − A)−1bp

= T (W, I),

which is the generating function of the original state diagram, the two diagrams

are equivalent. �

Note that Ĝ is formed by first replacing leftmost N columns of G with their

sum multiplied by 1/N and then replacing topmost N rows of G with their sum.

The first column and row of Ĝ provide the labels of all the edges connected with

the new correct state.

Lemma 5 states that all correct states can always reduce to one state. The

next lemma shows that further reductions are possible under certain conditions.

Lemma 6 If there are two identical rows or columns in the transition matrix G,

the corresponding two states can reduce to one state.

Similar statement for convolutional codes also appeared in [56]. A matrix with

identical rows or columns was called row-uniform or column-uniform respectively

in [48] and [52]. But row or column-uniform is defined on the error weight matrices

which are sub-matrices of G.

Proof: Since Lemma 5 states that the original N2-state diagram is always

equivalent to an reduced (N2 − N + 1)-state diagram with one correct state, we

only need to show Lemma 2 is valid for the reduced diagram whose transition

matrix has the same form as shown in (4.2) except that d is now a scalar and b

and c are vectors.
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Let us first consider the identical column case. It is easy to verify that switch-

ing a pair of rows and the corresponding columns of G does not change the gen-

erating function. So without loss of generality, we assume the last two columns

of G are identical. Define two operational matrices,

E1 =

⎡
⎢⎢⎢⎣

Im−2

1/2 0

1/2 0

⎤
⎥⎥⎥⎦ , E2 =

⎡
⎢⎢⎢⎣

Im−2

1 1

0 0

⎤
⎥⎥⎥⎦

where m = N2 − N + 1, Im−2 is the (m − 2) × (m − 2) identity matrix. Define

ĉ = cE1 =
[
c̃ 0

]
b̂ = E2b =

⎡
⎣b̃

0

⎤
⎦

Â = E2AE1 =

⎡
⎣Ã 0

0 0

⎤
⎦ G̃ =

⎡
⎣d c̃

b̃ Ã

⎤
⎦

(4.5)

where c̃ and b̃ are 1 × (N2 − N − 1) and (N2 − N − 1) × 1 vectors. Ã is a

(N2 − N − 1) × (N2 − N − 1) matrix. G̃ is the new transition matrix which

has the same states as G except that the two states corresponding to the two

identical columns reduce to one state. Now we need to show that G̃ and G are

equivalent, i.e., their generating functions are identical.

T̃ (W, I) = d + c̃(I − Ã)−1b̃

= d +
∞∑

n=1

c̃Ã
n
b̃

= d +
∞∑

n=1

cAnb

= d + c(I − A)−1b

= T (W, I)

(4.6)
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Eq.(4.6) is true because for any positive integer n, we have,

c̃Ãnb̃ = ĉÂnb̂

= cE1E2AE1E2AE1 . . . E2AE1E2b

= cAnb

(4.7)

where the last equality follows from the fact that AE1E2 = A and cE1E2 = c

since the last two columns of G are identical.

Note that the generating functions for the transition matrix G and its trans-

pose GT are equal. So identical rows of G can be regarded as identical columns

of GT . The argument follows. �

As shown in the proof, the reduced transition matrix G̃ is actually obtained

by summing two rows and halving the sum of two columns in the identical column

case. If we let E1 = ET
2 and E2 = ET

1 , we will get a new matrix with the same

generating function by summing two identical columns and halving the sum of

the corresponding rows. So we have two ways to reduce the diagram. This is

also true for the identical row case. In this chapter we adopt the convention

illustrated in Fig. 4.1 where the incoming and outgoing edge labels correspond

to the rows and columns of G respectively.

2IW
IW

IW
1 1 2

2a

2b

(a) Identical rows

IW
IW

IW
12 2

1a

1b

(b) Identical columns

Figure 4.1: Illustration of Lemma 6

Lemma 6 requires identical rows or columns for state reduction, which is a very

strict constraint. However we are able to extend it by introducing the concept of

equivalent states.
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Definition 9 State s1 and s2 are said to be forward (backward) equivalent if there

exists a one-to-one mapping on their outgoing (incoming) edges such that

1. The corresponding edges have identical labels.

2. The succeeding (preceding) states associated with corresponding edges are

forward (backward) equivalent.

According to the definition, state 1a and 1b are forward equivalent in Fig.

4.1(b), and state 2a and 2b are backward equivalent in Fig. 4.1(a). The equiva-

lence relation is usually defined as forward equivalence in the FSM theory where

the input-output relationship needs to be preserved. However in our particu-

lar application since only the generating function is concerned, the backward

equivalence is also a valid equivalence relation. Note that the definition above

is recursive because the word “equivalent” also appears in the second condition.

The recursive definition can be converted to an iterative one by introducing the

concept “k-equivalent”. We will use forward equivalence in our iterative def-

inition of equivalence. There is an analogous iterative definition of backward

equivalence.

Definition 10 State s1 and s2 are said to be k-equivalent (where k is an integer)

if there exists a one-to-one mapping on their outgoing edges such that

1. The corresponding edges have identical labels.

2. The succeeding states associated with corresponding edges are (k-1)-equivalent.

The partition induced by k-equivalence is denoted as Pk. If the initial con-

dition is given as “all states are 0-equivalent”, we can find the partition Pk for

any positive integer k by following Definition 10 iteratively. If two states are k-

equivalent, they are also (k-1)-equivalent. So a subset in Pk is always contained
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in a subset in Pk−1, which means Pk is a finer partition than Pk−1. Consequently,

the number of subsets in Pk is monotonically non-decreasing with regard to k.

Since the number of subsets is upper bounded by the number of states, there

exists a finite integer n which satisfies the equality Pn−1 = Pn, the stopping con-

dition. Once the stopping condition is met, two states in a subset of Pn have

corresponding succeeding states that are both (n-1)-equivalent and n-equivalent.

So n-equivalence satisfies the recursive condition in Definition 9. The above de-

scription implies the following algorithm.

Forward (Backward) Partitioning Algorithm

1. k = 0. The initial partition denoted as P0 is a single set containing all the

states.

2. k = k + 1. Refine the partition. Two states in a subset of Pk−1 are in

a subset of Pk if there exists a one-to-one mapping on their outgoing (in-

coming) edges such that the corresponding edges have the same labels and

the succeeding (preceding) states associated with corresponding edges are

in the same subset of Pk−1.

3. Go to step (2) until Pk = Pk−1. Pk is the final forward (backward) partition.

Since an equivalence class in the final partition can be represented by any of its

members, reduction is possible whenever there is an equivalence class consisting of

more than one state. The following theorem gives the upper bound on the number

of product-states required for linear trellis codes, i.e., trelllis codes consisting of

a linear convolutinal encoder and a (usually nonlinear) signal mapper.

Theorem 8 For a linear trellis code, its product-state diagram requires at most

N2−N
2

+ 1 states.
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Proof: Group the N2 product-states according to their error states such that

those sharing the same error state are in the same group. There are N groups

with N product-states each. Then partition each group by pairing up (e, s) with

(e, s ⊕ e). We will show that the paired product-states are equivalent.

Group e1

Group e2

Group e3

(e , s )1 1

1(e , s    e )+1 1

(e , s )

+

+

(e , s )

2 2

2 2 2

3 3

3 3 3

(e , s    e )

(e , s    e )

pI
i1W

w1

pI
i2W

w2

Figure 4.2: Paired product-states are equivalent

As shown in Fig. 4.2, consider arbitrary pair (e1, s1) and (e1, s1 ⊕ e1) which

belongs to group e1. Assume state (e1, s1) has an outgoing edge arriving at state

(e2, s2) with the label pI i1Ww1 , where p is a constant independent of the states.

If the transition e1 → e2 is caused by the input ie and the transition s1 → s2 is

caused by the input is, then feeding ie⊕is to the state e1⊕s1 causes the transition

e1 ⊕ s1 → s2 ⊕ e2. So there is always an edge from (e1, s1 ⊕ e1) to (e2, s2 ⊕ e2)

with the label pI i2Ww2 . Since both edges start at error state e1 and end at error

state e2, we have i1 = i2. As for w1 and w2, we have

w1 =d2
E(f [g(s1, s2)], f [g(s1, s2) ⊕ g(e1, e2)]),

w2 =d2
E(f [g(s1 ⊕ e1, s2 ⊕ e2)],

f [g(s1 ⊕ e1, s2 ⊕ e2) ⊕ g(e1, e2)]).
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Because of the linearity of the constituent convolutional code we get

g(s1, s2) ⊕ g(e1, e2) = g(s1 ⊕ e1, s2 ⊕ e2),

g(s1 ⊕ e1, s2 ⊕ e2) ⊕ g(e1, e2)

= g(s1, s2) ⊕ g(e1, e2) ⊕ g(e1, e2) = g(s1, s2).

So w1 = w2. Condition 1 of Definition 1 holds now. Notice that the ending states

(e2, s2) and (e2, s2 ⊕ e2) are paired too. The second condition is also satisfied.

The same is true for other outgoing edges. Hence the paired states are equivalent.

There are N2/2 such pairs in the product-state diagram. Combining this result

with Lemma 5, the product-state diagram requires at most N2−N
2

+ 1 states. �

Now we are ready for the iterative FSM minimization algorithm.

Iterative FSM Minimization Algorithm

1. Form the product-state diagram and denote it by SD.

2. Apply forward partitioning algorithm to SD. Reduce the diagram by com-

bining states in the same equivalence classes in the final partition into one

state. The new label is obtained by summing over the labels of the edges

sharing the same starting and ending equivalence classes and then divid-

ing the sum by the number of members in the starting equivalence class.

Denote the reduced diagram as SD1.

3. Apply backward partitioning algorithm to SD1. Reduce the diagram in the

same way as in step (2). Denote the reduced diagram as SD2.

4. SD = SD2. Go to (2) until neither step (2) nor (3) is able to reduce the

diagram. SD is the final reduced diagram.
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Questions may arise like: Since according to the FSM theory the forward par-

titioning alone gives the minimal equivalent diagram, why could the backward

equivalence provide further reduction? The answer lies in the definition of equiv-

alence. In the FSM theory, two states are equivalent if they generate the same

output sequence for every possible input sequence. That is, there is no difference

between them by only looking at the input and output sequences. However, when

it comes to state diagram reduction, two states are equivalent if they contribute

identically to the generating function. Having same input-output relationship

certainly implies contributing equally to the generating function, but not vice

versa.

For instance, consider two states in a diagram. Assume one of them generates

an output sequence (a1, a2, a3, a4) then ends at the sink node, while the other

generates sequence (a4, a3, a2, a1) responding to the same input then ends at

the same sink node. For this input sequence, both of them contribute
∏4

i=1 ai to

the generating function. These states could be equivalent if that is their entire

contribution to the generating function.

Furthermore, two states can reduce to one state even though they generate

totally different output symbols. This is possible because two states could be

backward equivalent. We will show an example from a real code later in this

chapter.

4.4 Computing the Generating Function

The reduction in the previous section does not typically produce a one-state

diagram. Usually, we have to compute c(I − A)−1b as shown in (4.3) (but for

a reduced diagram) to obtain the generating function. We only consider the case
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where b and c are vectors because all correct states can be combined into one

state. This computation involves matrix inversion which is generally an O(n3)

process. 1 In the rest of this section, we will study matrix inversion from two

perspectives.

4.4.1 Gaussian Elimination

Matrix inverse in (4.3) can be computed by standard Gaussian elimination [58].

To be more specific, we first form the matrix

M =

⎡
⎣I − A b

−c 0

⎤
⎦ . (4.8)

Then apply Gaussian elimination to M until c becomes a zero vector. Now we

have

M ′ =

⎡
⎣A′ b′

0 d′

⎤
⎦ . (4.9)

Note that this is possible only if I − A is non-singular. d′ is exactly what we

want.

d′ = c(I − A)−1b. (4.10)

4.4.2 Node Elimination for the Signal-flow Graph

The product-state diagram is also a signal-flow graph [59], where the label of

an edge is called transmittance and the matrix G in (4.2) is called connection

matrix of the graph. Computing c(I − A)−1b amounts to “solving” the graph,

i.e., successively eliminating the nodes of the graph until only source nodes and

1Theoretically there exist O(n2.496) matrix inversion algorithms [57], however they are quite
involved and do not provide insight into this problem. Our purpose is to show that matrix
inversion is more complex than the FSM minimization. This is also valid for those O(n2.496)
algorithms.
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sink nodes remain. In the case of computing the generating functions, we need

to eliminate all the erroneous states until the graph reduces to one state with a

self loop whose transmittance is the generating function.

Elimination of a node must be performed in a manner such that the transmit-

tances between remaining nodes do not change. The transmittances lost due to

node elimination need to be transferred to other edges. Node elimination is equiv-

alent to proper operations on the connection matrix G. Suppose the connection

matrix before the elimination has the following form.

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0,0 g0,1 . . . g0,n−2 g0,n−1

g1,0 g1,1 . . . g1,n−2 g1,n−1

...
...

...
...

gn−2,0 gn−2,1 . . . gn−2,n−2 gn−2,n−1

gn−1,0 gn−1,1 . . . gn−1,n−2 gn−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.11)

Now we eliminate the node corresponding to the last row and the last column of

G. Assume this node does not have any self loop, i.e. gn−1,n−1 = 0. Node elimi-

nation is achieved by disposing of the last column and row of G and modifying

the remaining entries. The reduced connection matrix G1 is shown in (4.12).

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

g0,0 + gn−1,0g0,n−1 g0,1 + gn−1,1g0,n−1 . . . g0,n−2 + gn−1,n−2g0,n−1

g1,0 + gn−1,0g1,n−1 g1,1 + gn−1,1g1,n−1 . . . g1,n−2 + gn−1,n−2gn−2,n−1

...
...

...

gn−2,0 + gn−1,0gn−2,n−1 gn−2,1 + gn−1,1gn−2,n−1 . . . gn−2,n−2 + gn−1,n−2gn−2,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.12)

If the node has a self loop, we should divide the last column of G by 1− gn−1,n−1

before applying the elimination described above. Continue the elimination until

only the sink and source nodes (which happen to be the same node) remain. At

this point G becomes a scalar which is equal to the generating function we get

from Gaussian elimination. This approach is detailed in [60].
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4.5 Complexity Analysis

Once the first stage has reduced the state diagram as much as possible, the

complexity of computing c(I − A)−1b is clear. We will discuss its complexity

first. Then we will give an upper bound on the complexity of the first stage.

4.5.1 Gaussian Elimination

The complexity analysis of Gaussian elimination is rather straightforward. We

count the number of multiplications and additions in computing c(I − A)−1b.

Assume the matrix A, b, c in (4.8) have the dimension (n−1)×(n−1), (n−1)×1,

1×(n−1), respectively. When eliminating the ith column, we need (n−i+1)(n−i)

multiplications and (n − i)2 additions. Let CMm, CMabe the total number of

multiplications and additions respectively. They are determined by the following

equations.

CMm =
n−1∑
i=1

i2 +
n−1∑
i=1

i =
n(n − 1)(2n − 1)

6
+

n(n − 1)

2
. (4.13)

CMa =
n−1∑
i=1

i2 =
n(n − 1)(2n − 1)

6
. (4.14)

4.5.2 Signal-Flow Graph Node Elimination

As described in the previous section, the complexity varies upon whether the

node to be eliminated has a self loop or not. If it does, extra multiplications

are needed. When we eliminate the ith node, (i − 1)2 + Mi multiplications and

(i − 1)2 additions are needed, where Mi is zero if the node does not have a self

loop or n − i if it has a self loop. Denote CGm and CGa as the total number of
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multiplications and additions respectively. we have

CGm =
n−1∑
i=1

i2 +
n−1∑
i=1

Mi =
n(n − 1)(2n − 1)

6
+

n−1∑
i=1

Mi. (4.15)

CGa =
n−1∑
i=1

i2 =
n(n − 1)(2n − 1)

6
. (4.16)

The second term in (4.15) could be n(n−1)
2

in the worst case where all nodes have

self loops or zero in the best case where none of the nodes have a self loop. In

reality, the term takes some value between these extreme cases. Note that CMa

always equals to CGa. However CGm is upper bounded by CMm. Although both

of them are O(n3) processes, the signal-flow graph node elimination is slightly

less complex than Gaussian elimination.

4.5.3 The FSM Minimization

Unlike Gaussian elimination and the signal-flow graph node elimination, the FSM

minimization can not often reduce a diagram to a single state. The number

of states resulting from the FSM minimization is actually unknown until the

minimization process completes. So its complexity is unpredictable and varies

from case to case. However, we are still able to find an upper bound.

Consider a minimization process starting at n states and ending at m states,

where n ≥ m. According to the description in Section III, the reduction consists

of at most n − m partitionings. The worst case is that each partitioning creates

one singleton set. That is, after the first partitioning, there are two sets, one

singleton set and one set with n − 1 elements. This partitioning needs at most

2n − 3 comparisons. The second partitioning results in two singleton sets and a

set with n − 2 elements. At most 2n − 5 comparisons are needed at this step.

Continue in this fashion until in the end there are m − 1 singleton sets and one
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set with n−m+1 elements. Note comparisons are merely additions. Denote the

total number of additions as CFa(m), which is a function of m, the final size of

the diagram. CFa(m) is given as

CFa(m) = 22k

[
n−1∑

i=n−m

2i − (n − 1)

]
= 22k[−m2+(2n−1)m−(n−1)],m = 1, 2, . . . n.

(4.17)

where 22k is the number of outgoing edges from each states. Now we compare

it with the signal-flow graph node elimination. Define CGa(m) to be the number

of additions needed for the same reduction if the node elimination is used. The

analysis in the previous section shows

CGa(m) =
n−1∑
i=m

i2,m = 1, 2, . . . n. (4.18)

We examine two extreme cases where m = 1 and m = n. Evaluate CFa(m) and

CGa(m) at these values, we have

CFa(1) = 22k(n − 1) CGa(1) =
n(n − 1)(2n − 1)

6
, (4.19)

CFa(n) = 22k(n − 1)2 CGa(n) = 0. (4.20)

On one hand, CGa(1) > CFa(1) if 22k < n(2n−1)
6(n−1)

. That is, if both techniques can

reduce the diagram to one state, the FSM minimization has fewer additions for

small k. On the other hand, CGa(n) < CFa(n). If the diagram is so asymmet-

ric that going through the FSM technique does not reduce the diagram at all,

the node elimination technique is better because nothing is gained by the FSM

computation. We will show that there exists a critical point t between 1 and n

where CGa(t) = CFa(t). On one side of this point, the FSM technique has less

complexity. On the other side of the point, the opposite is true.

Take the first derivative of CFa(m) and CGa(m) with regard to m, we get

C ′
Fa(m) = 22k(2n − 2m − 1), (4.21)
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C ′
Ga(m) = −m2 + m + 1/6. (4.22)

For 1 ≤ m < n, C ′
Fa(m) > 0 but C ′

Ga(m) < 0. So CFa(m) is monotonically in-

creasing and CGa(m) is monotonically decreasing. Given the boundary conditions

at m = 1 and m = n, there is one and only one point where two curves meet. Fig.

4.3 shows CFa(m) and CGa(m) for n = 256 and different k’s. Because commonly

used constellations have at least one axis of symmetry [50], the FSM minimiza-

tion usually brings the size of the product-state diagram below the critical point.

In addition, the FSM minimization does not involve any multiplications. Thus

even our loose bound of FSM complexity indicates that the overall complexity

of the FSM technique is lower than that of the matrix inversion techniques to

provide the same degree of graph simplification.
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Figure 4.3: Complexity comparisons

As for the iterative FSM reduction, it is hard to have a bound because the

number of iterations also varies from code to code. But we observe that it-

eration does not increase computational burden dramatically for two reasons.

First, the number of iterations is usually quite small as shown in Table 4.1 where

we list the results from exhaustive search over the rate 1/3 codes of the form
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[
g0(D) g1(D) g2(D)

]
with up to 4 memory elements (N = 16). Second, the

number of comparisons at each iteration is diminishing because the size of the

diagram is monotonically decreasing.

Table 4.1: Number of iteration for rate 1/3 codes

Number

of memory

elements

Maximum

number of

iterations

Average

number of

iterations

2
8PSK 4 2.57

8PAM 4 2.73

3
8PSK 4 2.73

8PAM 4 3.37

4
8PSK 4 2.83

8PAM 6 3.70

4.6 The Algorithm

Having analyzed the complexity of alternatives for each of the two stages, we

are in a position to propose an efficient algorithm for computing the generating

function. Due to the monotonicity of CFa(m), the FSM minimization is upper

bounded by O(22kn2).2 It has lower complexity than Gaussian elimination or

the signal-flow graph node elimination. We select it as the first step in reducing

a product-state diagram. As for the second step, both the signal-flow graph

node elimination and Gaussian elimination have complexity of O(n3). We choose

2The existence of an O(22knlogn) minimization algorithm [61] confirms our claim that the
FSM minimization should be employed in the first place.
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the former not only because it has slightly less complexity but also because it

embodies the idea of state diagram reduction.

Our algorithm goes as follows. For a trellis code with N encoder states, if

it has a linear convolutional encoder, form the N2−N
2

+ 1 product-state diagram

according to Theorem 1. Otherwise form the N2 −N + 1 product-state diagram

according to Lemma 5. Then employ the iterative FSM minimization technique

to reduce the diagram. Finally use the signal-flow graph node elimination to

further reduce the diagram to one state. The label of the self loop in the one-

state diagram is the generating function.

4.7 Examples and Discussion

4.7.1 Quasi-regular Trellis Codes

A trellis code is quasi-regular [47] if the code is composed of a linear binary

encoder and a signal mapper, and the the quantity

W (s, eo) =
∑
xs

p(xs|s)W d2
E(xs,eo) (4.23)

is constant for all encoder state s for a fixed binary error output eo, where xs

is any possible output from state s. Since quasi-regularity implies that all the

product state (e, s) sharing the same error state e are forward equivalent, the

FSM minimization reduces the product-state diagram of a quasi-regular trellis

code to at most N states.

4.7.2 Degraded Trellis Codes

We define degraded trellis codes to be trellis codes whose product-state dia-

gram can be reduced to less than N states by the iterative FSM minimization.
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Although any product-state diagram can be reduced to less than N states by

signal flow graph elimination or Gaussian elimination, a degraded trellis code

permits this reduction with a low-complexity stage-one algorithm. The example

we present here is a rate 1/3 trellis code
[
D2 + 1 D 1

]
with natural labeling

8-PSK. As shown in Fig. 4.4, the reduced diagram has only 3 states. Similar ob-

servations were mentioned in [51] and [52]. Note that this is not achievable with

quasi-regularity [46, 47, 48], Wesel’s technique [50], or by the row and column

uniform properties [49].

00

+IW1.17

W4 W8

21IW6.83

(IW6.83 )/2

IW 1.17

Figure 4.4: A degraded trellis code

4.7.3 Backward Equivalence

Section III shows that backward equivalence is theoretically able to further reduce

the diagram. Here we give an example from a real code. Consider another rate

1/3 trellis code
[
D2 D2 + D 1

]
with natural labeling 8-PAM. Note that this

trellis code is not row-uniform, column-uniform, or quasi-regular. The existing

FSM theory based techniques presented in [51] or [52] are able to reduce it to

5 states as shown in Fig. 4.5(a). Close examination shows that although state

2a and 2b have different outgoing labels they are actually backward equivalent.

Backward partitioning reduces them to one state as shown in Fig. 4.5(b).
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Figure 4.5: Backward equivalence in a real code
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4.7.4 The Union Bound

We can compute the union bound using (4.4). The process is similar to computing

the generating function except that we will encounter a slightly complicated term

c(I − A)−1A
′
, where A′ is a matrix instead of a vector. Extension to the node

elimination algorithm is needed. Assume A and A′ are both (n − 1) × (n − 1)

matrix, c is a 1 × (n − 1) vector, Define an n × 2(n − 1) matrix as follows.

G =

⎡
⎣ 0 c

A′ A

⎤
⎦ . (4.24)

G is the connection matrix of a signal-flow graph with n−1 source nodes and one

sink node. The technique described in Section IV is used to eliminate the interme-

diate nodes until G becomes a 1×(n−1) vector which is equal to c(I − A)−1A
′
.

Consider the rate 1/4 trellis code [117 155 145 137] with Gray labeling 16-

QAM. This code is given as an irreducible example in [50]. The numbers of

reduced states obtained with different techniques are listed in Table 4.2. The

iterative FSM minimization reduces the number of states significantly.

Table 4.2: Reduction in the first stage

Variables or Techniques Number of states

N 64

N2 4096

(N2 − N)/2 + 1 2017

Wesel [50] 4096

Kucukyavuz & Fitz [51] 1240

The standard FSM 653

The iterative FSM 527
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The number of comparisons for the standard FSM minimization is approxi-

mately 3.0 × 105. For the iterative FSM minimization approximately 3.4 × 105

comparisons are needed. The upper bound from (4.17) for each case is 9.8 × 106

and 8.0 × 106 respectively. This verifies that the iterative process only increases

complexity slightly. It also shows that the upper bound is very loose.

The CPU time required to compute the union bound at a fixed SNR using a

1.2 GHz Pentium 4 computer is reported in Table 4.3, where ‘FSM’, ‘IFSM’, ‘GE’,

‘SFG’ stand for the FSM minimization, the iterative FSM minimization, Gaussian

elimination, the signal-flow graph node elimination respectively. According to

the table the iterative FSM minimization followed by node elimination is the

most efficient algorithm. The node elimination is slightly faster than Gaussian

elimination as we predicted in the complexity analysis.

Table 4.3: Comparison of different techniques

Techniques CPU time (seconds)

Direct GE 3510

Direct SFG 3261

FSM+GE 15.91

FSM+SFG 14.48

IFSM+GE 8.2

IFSM+SFG 7.54

4.8 Summary

We have proposed an efficient approach to compute the generating function for

trellis codes. The proposed approach consists of two stages. A low-complexity
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iterative FSM minimization is performed in the first stage and a signal-flow graph

node elimination algorithm is employed in the second stage. We have also pre-

sented detailed comparisons between alternatives for each of the two stages to

show the efficiency of our techniques.

For trellis codes comprised of a linear convolutional encoder and a signal

mapper, we have derived an upper bound on the size of the product-state diagram

to be N2−N
2

+ 1. This bound halves the size of an N2-product-state diagram

without introducing any computational cost.
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CHAPTER 5

Conclusion

5.1 Summary

Chapter 2 reviewed the compound channel coding theorem and formally intro-

duced the universal codes. The performance of universal codes was evaluated

against the sphere packing bound and the random coding bound as the block-

lengths varied. The universality is an asymptotic behavior, which is a practical

goal for long codes such as turbo or LDPC codes.

Chapter 3 applied the universal codes to MIMO systems. A class of space-

time constellations with the channel-eigenvector-invariance property were shown

to be an extension of the orthogonal designs. This class of constellations were

however not universal due to varying mutual information loss under different

MIMO channels. Both constellation and channel coding should be used to achieve

universality.

Chapter 4 presented a trellis state diagram reduction algorithm based on the

FSM theory. Compared to existing methods, the proposed method was applicable

to more generic codes and had lower complexity. The complexity of matrix

inversion was dominant in the union bound computation. The proposed method

should be used as the first step to reduce the size of the state transition matrix.

79



5.2 Future Work

The channel-eigenvector-invariant space-time constellations found in Chapter 3

has the drawback of mutual information loss. The trade-off between eigenvector

invariance and eigenvalue invariance has been observed. It would be interesting

to examine the exact trade-off mathematically. Also, how to achieve the trade-off

by designing proper channel codes and constellations can be a subject for future

study.
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CHAPTER 6

Appendix

6.1 Chapter 2

6.1.1 Proof of Theorem 1

Theorem 1 A family of Gaussian multiple-input multiple-output (MIMO) chan-

nels is denoted as {H i,Ki, i ∈ I}, where the index set I is an arbitrary set. The

channel input output is governed by y = H ix + zi, where H i is a p × q matrix

and zi, the noise, is a Gaussian random vector of dimension p×1 with zero mean

and the covariance matrix Ki. Assume there exist real numbers a, α1, α2 such

that for each i ∈ I,

1. ‖H i‖2 ≤ a, where ‖ · ‖2 is the spectral norm of a matrix, i.e. the square

root of the largest eigenvalue of H∗
i H i.

2. α1 ≤ x∗Kix
‖xi‖2 ≤ α2, for any p × 1 vector x.

Then any rate R < C(I) defined in (2.2) is achievable. i.e. there exists a se-

quence of (2nR, n) codes such that the probability of error under any channel in

the family approaches zero as the block-length approaches infinity. �

Proof: We start with the case p = q. The result will be generalized to p 
= q

afterwards. Following [7], we divide the proof into two steps. We will show the
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theorem is true when the set of the channels is finite, then extend the result

to infinitely many channels by bounding the error probability of an arbitrary

channel.

Definition 11 [17] The set A
(n)
ε of jointly typical sequence x(n),y(n) with respect

to the distribution p(x, y) is the set of n-sequences with empirical entropies ε-close

to the true entropies, i.e.,

A(n)
ε = { (x(n),y(n)) ∈ X (n) × Y(n) :∣∣∣∣− 1

n
log p(x(n)) − H(X)

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(y(n)) − H(Y )

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(x(n),y(n)) − H(X,Y )

∣∣∣∣ < ε, }

(6.1)

where

p(x(n),y(n)) =
n∏

i=1

p(xi,yj). (6.2)

For the MIMO gaussian channel in Theorem 1, the probability of the typical set

can be bounded as follows.

Lemma 7 Let y = Hx + z, where H is a deterministic matrix of dimension

p× p and x and z are independent Gaussian random vectors of dimension p× 1

with zero mean and covariance matrices S and K, respectively. Consider i.i.d.

drawn length-n sequence (x(n),y(n)) of dimension 2pn × 1,

Pr
{
(x(n),y(n)) /∈ A(n)

ε

}
< 6e−

nε2

4p . (6.3)
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Proof: We bound the probability when the first inequality in (6.1) is violated.

Pr
{− log p(x(n)) < nH(X) − nε

}
(a)
= Pr

{np

2
− nε − x(n)ᵀK(n)−1

x(n) ≥ 0
}

(b)

≤
(
et( p

2
−ε)Ee−

t
2
xᵀK−1x

)n

=
(
e

pt
2
−εt− p

2
log(1+t)

)n

(c)

≤
(

e
pt2

4
−εt

)n

(d)
=

(
e−

ε2

p

)n

,

(6.4)

where K(n) in (a) is a block diagonal matrix of dimension np×np with K along

the diagonal. (b) is due to the Chernoff bound and the fact x(n) is i.i.d. drawn.

t is an arbitrary positive number and E stands for expectation. (c) is because

t − 1/2 log(1 + t) ≤ t2/2 for 0 ≤ t < 1. We substitue t = 2ε/p < 1 in (c) and

arrive at (d).

The other direction goes similarly.

Pr
{− log p(x(n)) > nH(X) + nε

}
= P

{
−np

2
− nε + x(n)ᵀK(n)−1

x(n) ≥ 0
}

≤
(
e−t( p

2
+ε)Ee

t
2
xᵀK−1x

)n

=
(
e−

pt
2
−εt− p

2
log(1−t)

)n

(a)

≤
(

e
pt2

2
−εt

)n

(b)
=

(
e−

ε2

2p

)n

,

(6.5)

where (a) is because t + log(1 − t) ≥ −t2 for 0 ≤ t ≤ 0.5. We obtain (d) by

substituting t = ε/p in (a). Combine (6.4) and (6.5) we get

Pr

{∣∣∣∣− 1

n
log p(x(n)) − H(X)

∣∣∣∣ > ε

}
< 2e−

nε2

2p . (6.6)
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Similarly, we can prove

Pr

{∣∣∣∣− 1

n
log p(y(n)) − H(Y )

∣∣∣∣ > ε

}
< 2e−

nε2

2p , (6.7)

Pr

{∣∣∣∣− 1

n
log p(x(n),y(n)) − H(X, Y )

∣∣∣∣ > ε

}
< 2e−

nε2

4p . (6.8)

Finally, we arrive at (6.3) by the union bound. �

The following lemma gives bounds on the power of input and output of the

channel.

Lemma 8 With the same setup in Lemma 7, denote the total power of vector

x(n) by Px = Tr(S). Then for any ε > 0,

Pr
{‖ x(n) ‖2≥ n(Px + ε)

} ≤ e−c1n, (6.9)

where c1 = 1
2
[ ε
2P

− log(1+ ε
P
)]. Furthermore, if the channel satisfies the conditions

in Theorem 1, for any input complying with the power constraint ‖ x(n) ‖2≤ nPx,

the output satisfies,

Pr
{‖ y(n) ‖2≥ nPy | x(n)

} ≤ e−c2n, (6.10)

where Py = 2a2Px + 2pα1 + 2 and c2 = 1
pα1

− log(1 + 1
pα0

).

Proof: This is a direct result of the Chernoff bound. See Lemma 5,8 of [7]. �

In the following lemma, we prove the existence of universal codes for a finite

set of channels.

Lemma 9 With the same setup up as Theorem 1, denote L = |I|, the cardinality

of the index set I. Assume L to be finite, any rate R < C(I) is achievable.
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Proof: We will use the same ideas in [17], namely random codes and joint

typical decoding. We generate i.i.d. codewords according to the distribution of x.

The codewords are denoted by x(n)(w), w = 1, 2, ..., 2nR. The receiver looks for

codewords that are jointly typical with the received vector. If a single codeword

is found, it is declared to be the transmitted codeword. Otherwise an error is

declared. The receiver also declares an error if the chosen codeword does not

satisfy the power constraint. Without loss of generality, assume that codeword 1

is sent.

Define the following events:

E0 =
{‖ x(n)(1) ‖2> Px

}
, (6.11)

Ei =
{
(x(n)(i),y(n)) ∈ A(n)

ε )
}

. (6.12)

Let P n
s be the average of the sum of error probabilities under individual channels

when codeword 1 is sent.

P n
s =

L∑
i=1

Pi {E|W = 1}

(a)

≤
L∑

i=1

⎛
⎝Pi(E0) + Pi(E

c
1) +

2nR∑
j=2

Pi(Ej)

⎞
⎠

(b)

≤
L∑

i=1

(
e−c1n + 6e−

nε2

4p + (log 2)e−n(Ii(x;y)−R)e6nε

)
(c)

≤ L

(
e−c1n + 6e−

nε2

4p + (log 2)e−nε

)
−→ 0, as n −→ ∞.

(6.13)

where (a) is due to the union bound, Pi(·) is the probability of an event un-

der the ith channel. (b) is due to Lemma 7 and 8. (c) follows from the fact

R < C(I) ≤ Ii(x, y),∀i ∈ I and n sufficiently large. Thus, for individual chan-

nel, the error probability also approaches zero. By deleting the worst half of the

codewords we obtain a code with low maximal probability of error. �

85



To extend the result to arbitrary set I, we need to find a dense finite sub-

set and establish the relationship of the error probabilities between an arbitrary

channel and its neighbor in the subset. The following lemma reveals the relation-

ship.

Lemma 10 Let (H1,K1) and (H2,K2) be two channels satisfying the con-

straints in Theorem 1. Denote x(n) and y(n) to be the input and output n-sequence

of p-dimensional vectors, respectively. Let PH1,K1{y(n)|x(n)} and PH2,K2{y(n)|x(n)}
are the np-variate probability density for the output signal sequence y(n) given

x(n), for the n-extension of the two channel (H1,K1) and (H2,K2), respectively.

Then for those x(n) satisfying ‖x(n)‖2 ≤ nPx and y(n) satisfying ‖y(n)‖2 ≤ nPy,

PH1,K1{y(n),x(n)}
PH2,K2{y(n),x(n)} ≤ en(c3(δ,η)+c4), (6.14)

where

c3(δ, η) =
1

2α2
0

(Py + a2Px + a
√

PxPy)δ

+
1

α2
0

(aPx +
√

PxPy)η,
(6.15)

c4 = log det(K2) − log det(K1), (6.16)

The variables δ = ‖K1 − K2‖, η = ‖H1 − H2‖, the numbers a and α0 are

defined in Theorem 1.

Proof: See Lemma 7 of [7]. �

Now we are ready to prove the theorem. Define the δ-neighborhood of the channel

(H ,K) ∈ I to be the all the channels (H ′,K ′) ∈ I satisfying ‖K − K ′‖ ≤ δ

and ‖H − H ′‖ ≤ δ. The conditions in Theorem 1 guarantee that the channel
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space is compact. We can select a finite subset I ′ ⊂ I such that for an arbitrary

channel in I, in its neighborhood there exists at least one channel belonging to

I ′. We denote |I ′| to be Lδ to emphasize its relationship with δ.

For any R < C(I) ≤ C(I ′)), by Lemma 9, we can find a sequence of codes

whose probability of error over I ′ vanishes as the block-length grows. The code

can be applied to the whole channel space in the following manner. If the channel

is in I ′, then the receiver uses its own typical set decoder described in Lemma 9,

otherwise the receiver borrows the typical set decoder from its neighbor that is in

I ′. The probability of error when the receiver uses its neighbor’s decoder can be

bounded. To be specific, let (H ,K) ∈ I and (H ′,K ′) ∈ I ′ satisfy ‖K−K ′‖ ≤ δ

and ‖H − H ′‖ ≤ δ, by Lemma 10 we get,

PH,K

{E ∩ Ec
0 ∩ Ec

y

} ≤ en(c3(δ,δ)+c4)PH′,K′
{E ∩ Ec

0 ∩ Ec
y

}
, (6.17)

where E is the event that the receiver makes an error, E0 is defined in (6.11)

and Ey is the event that y(n) violates the power constraints.

Using the Taylor expansion of det(·) at K ′ we can show that det(K)/ det(K ′) ≤
1 + P (δ)/αp

0, where P (δ) is a polynomial with P (0) = 0. Then, (6.17) becomes

PH,K

{E ∩ Ec
0 ∩ Ec

y

}
≤ exp

{
n

[
c3(δ, δ) +

1

2
log

(
1 +

P (δ)

αp
0

)]}
PH′,K′

{E ∩ Ec
0 ∩ Ec

y

}
≤ exp

{
n

[
c3(δ, δ) +

1

2
log

(
1 +

P (δ)

αp
0

)]}
PH′,K′ {E}

≤ exp

{
n

[
c3(δ, δ) +

1

2
log

(
1 +

P (δ)

αp
0

)]}
·

Lδ

(
exp {−c1n} + 6 exp

{
−nε2

4p

}
+ (log 2) exp {−nε}

)

(6.18)
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The last inequality is by Lemma 9. Since c3(δ, δ) and P (δ) approach zero when

δ goes zero, we can select sufficiently small δ to ensure the overall exponent in

the last expression to be negative. Then as n goes zero, PH,K

{E ∩ Ec
0 ∩ Ec

y

}
vanishes. Now we use the union bound,

PH,K {E} ≤ PH,K {E0} + PH,K {Ey} + PH,K

{E ∩ Ec
0 ∩ Ec

y

}
. (6.19)

According to Lemma 8, the first two terms vanish as the block-length approaches

infinity, thus the code works for any channel in I. The converse is due to the fact

that there exists a channel in I whose mutual information is less than C + ε. So

any rate great than C + ε will not be achievable for that channel, where ε is an

arbitrarily small number.

To extend it to p 
= q, let m = max(p, q) we can expand H to be of dimen-

sion m × m by padding zero columns or rows. Simultaneously we expand y by

appending zeros when p < q or expand x and z when p > q. The code works for

the expanded compound channel also works for the original compound channel.

Remark : The above proof simplifies the error probability computation by us-

ing typical set decoding. This requires channel side information at the receiver.

The original proof in [7] is stronger in the sense that it does not have this as-

sumption. One could however argue that the rate lose due to channel estimation

is negligible when the block-length goes to infinity.

6.2 Chapter 3

6.2.1 Orthogonalization Lemma

Lemma 11 Let {Ai, i = 1, . . . ,m} be a set of n × n matrices satisfying
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AiA
†
i = ξiI 1 ≤ i ≤ m,

AiA
†
j + AjA

†
i = ξijI 1 ≤ i < j ≤ m,

(6.20)

where {ξi} are positive real numbers and {ξij} are some real numbers. Each

Ai can be written as a linear combination of matrices from a solution to the

[ρ2(n), n, n] Hermitian Hurwitz-Radon matrix equations. i.e.,

Ai =

2ρ2(n)∑
j=1

aijCj, 1 ≤ i ≤ m, (6.21)

where {Ci} is a solution to the Hermitian Hurwitz-Radon matrix equations and

{aij} are real numbers. �

Proof: Define the norm ‖Ai‖ =
√

ξi if AiA
†
i = ξiI, and the inner product

(Ai,Aj) = ξij if AiA
†
j + AjA

†
i = ξijI. Select a maximum linearly independent

(with respect to real coefficients) subset of {Ai}. Without loss of generality,

assume they are the first p matrices. In the next step, we make A1 perpendicular

to all of the remaining matrices. A new set of matrices {B1i} are defined as

follows.

B11 =
A1

‖A1‖ ,

B1i = Ai − A1
(A1,Ai)

2‖A1‖2
, i = 2, · · · , p

(6.22)

It is easy to verify the following properties.

‖B11‖ = 1,

(B11,B1i) = 0, i = 2, · · · , p,

‖B1i‖ = c1i > 0, i = 2, · · · , p,

(B1i,B1j) = dij, i, j = 2, · · · , p, i 
= j,

(6.23)
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where c1i and dij are real numbers. The last two equalities ensure that the

new matrices still satisfy the eigenvector invariance conditions (6.20). The exact

values of c1i and dij are not of importance.

Then, we orthogonalize {B12} by defining {B2i}.

B22 =
B12

‖B12‖ ,

B2i = B1i − B12
(B12,B1i)

2‖B12‖2
, i = 3, · · · , p

(6.24)

The whole procedure resembles the Gram-Schmidt orthogonalization. We can

proceed in this way until all of {Ai, i = 1, . . . , p} are orthogonalized. This is pos-

sible since these matrices are initially linearly independent. Let Ci = Bii, then

{Ci} is a (possibly subset of) solution to the Hurwitz-Radon matrix equations.

Each matrix Ai is a linear combination (with real coefficients) of the solution. �

6.2.2 Proof of Theorem 5

Theorem 5 A real linear space-time constellation Lx is channel-eigenvector in-

variant if and only if each matrix Ai can be written as a linear combination of a

solution to the Hurwitz-Radon matrix equations. To be specific, Ai can be written

as

Ai =
m∑

j=1

aijOj, i = 1, · · · , k, (6.25)

where m ≤ k. Each aij is a real number. {Oj, j = 1, · · · ,m} is a solution to the

[m,nt, T ] Hurwitz-Radon matrix equations.

Similarly, a complex linear space-time constellation Lz is channel-eigenvector

invariant if and only if matrices Ai and Bi can be written as a linear combination

of a solution to the Hermitian Hurwitz-Radon matrix equations. To be specific,

Ai and Bi can be written as
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Ai =
m∑

j=1

aijOj +
m∑

j=1

bijQj, i = 1, · · · , k

Bi =
m∑

j=1

cijOj +
m∑

j=1

dijQj, i = 1, · · · , k

(6.26)

where m ≤ k. aij, bij, cij and dij are real numbers. {Oj, Qj, j = 1, · · · ,m} is a

solution to the [m,nt, T ] Hermitian Hurwitz-Radon matrix equations. �

Proof: If (6.25) holds, then we can show that (3.25) and (3.26) hold by

straightforward algebra. We first verify (3.25).

AiA
ᵀ
i =

(
m∑

j=1

aijOj

) (
m∑

j=1

aijOj

)ᵀ

=
m∑

j=1

a2
ijOjO

ᵀ
j

+
m∑

j=1

m∑
k>j

aijaik

(
OjO

ᵀ
k + OkO

ᵀ
j

)

=

(
m∑

j=1

a2
ij

)
I.

(6.27)

The last step is due to {Oj, j = 1, . . . m} from a solution to the Hurwitz-Radon

matrix equations. Similarly, we also get (3.26).

AiA
ᵀ
j + AjA

ᵀ
i

=

(
m∑

k=1

aikOk

) (
m∑

l=1

ajlOl

)ᵀ

+

(
m∑

l=1

ajlOl

) (
m∑

k=1

aikOl

)ᵀ

=
m∑

k=1

m∑
l=1

aikajl (OkO
ᵀ
l + OlO

ᵀ
k)

=

(
2

m∑
k=1

aikajk

)
I.

(6.28)
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Conversely, if {Ai, i = 1, . . . , k} is the basis of a linear CEI-STC, they satisfy the

conditions in Lemma 3. The result is obtained by applying the orthogonalization

lemma. The extension to the complex case is trivial. �

6.2.3 Proof of Theorem 7

Theorem 7 Consider the linear constellation defined in (3.23) and (3.24). As-

sume the basis matrices satisfying the following power constraints:

Tr
(
ÂiÂ

ᵀ
i

)
= nt, i = 1, . . . , k (6.29)

Tr
(
ÂiÂ

†
i + B̂iB̂

†
i

)
= 2nt, i = 1, . . . , k (6.30)

where (3.55) is for the real case and (3.56) is for the complex case. The con-

stellation is mutual-information lossy on average under Rayleigh fading channels

with i.i.d. Gaussian input if k < min(nt, nr) × T . �

Proof: We consider the real case. The MIMO system can be written as

Y = HX, where each entry of H is a Gaussian random variable N (0, 1). X is

defined in (3.50). By stacking the columns of Y on top of each other, we have

⎡
⎢⎢⎢⎣

y1

...

yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

HÂ1

...

HÂT

⎤
⎥⎥⎥⎦x (6.31)

where yi is the ith column of Y , x is defined in (3.52). Let ρ be the signal

to noise ratio. Denote H =
[
(HÂ1)

ᵀ · · · (HÂT )ᵀ
]ᵀ

The mutual information

of the channel (6.31) with i.i.d. Gaussian input is
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MI =
1

T
E log det (I + ρHHᵀ)

(a)

≤ 1

T

T∑
i=1

E log det
(
I + ρHÂi

(
HÂi

)ᵀ)

(b)
=

1

T

T∑
i=1

E log det (I + ρHΛiH
ᵀ)

(c)

≤ E log det (I + ρHHᵀ)

(6.32)

In the above, (a) is due to Fischer’s inequality [62, C.1.d. Theorem, p. 226]. (b)

is because the distribution of H does not change when multiplied by an orthog-

onal matrix. Λi is a diagonal matrix with eigenvalues of ÂiÂ
ᵀ
i . (c) is due to

the concavity of logdet(·) and the power constraint Tr
(
ÂiÂ

ᵀ
i

)
= nt. The same

approach applies to the complex case. �
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[9] C. Köse and R. D. Wesel. Universal Space-Time Trellis Codes. IEEE Trans.
on Info. Th., 49(10):2717–2727, Oct. 2003.

[10] D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cam-
bridge University Press, 2005.

[11] Ungerboeck, G. Trellis-Coded Modulation with Redundant Signal Sets:
Parts I and II. IEEE Comm. Mag., 25(2):5–20, Feb. 1987.

[12] C. Schlegel. Trellis Coding. IEEE Press, 1997.

[13] M. Pursely and J. Skinner. Decoding strategies for turbo product codes in
frequency-hop wireless communications. In Proc. IEEE ICC–03, May 2003.

[14] D. Chizhik, G. J. Foschini, M. J. Gans, and R. A. Valenzuela. Keyholes, Cor-
relations, and Capacities of Multielement Transmit and Receive Anttenas.
IEEE Trans. on Wireless Comm, 1(2):361–368, 2002.

94



[15] G. D. Forney. Modulation and Coding for Linear Gaussian Channels. IEEE
Trans. on Info. Th., 44(6):2384–2415, Oct. 1998.

[16] S. Verdu. Spectral Efficiency in the Wideband Regime. IEEE Trans. on
Info. Th., 48(6):1319–1343, June. 2002.

[17] T. M. Cover and J. A. Thomas. Elements of Infomation Theory. Wiley,
New York, 1991.

[18] C. E. Shannon. Probability of Error for Optimal Codes in a Gaussian Chan-
nel. Bell Sysst. Tech. J., 38:611–656, 1959.

[19] R. Gallager. Information Theory and Reliabile Communication. John Wiley
& Sons, New York, 1968.

[20] S. J. MacMullan and O. M. Collins. A Comparison of Known Codes, Ran-
dom Codes and the Best Codes. IEEE Trans. on Info. Th., 44(7):3009–3022,
Nov. 1998.

[21] S. Dolinar, D. Divsalar, and F. Pollara. Code Performance as a Function of
Block Size. TMO Progress Report 42-133, May 1998.

[22] T. Tian, C. Jones, J. Villasenor, and R. Wesel. Construction of Irregular
LDPC Codes with Low Error Floors. In Proc. IEEE ICC-03, Anchorage,
May 2003.

[23] A. Ramamoorthy and R. Wesel. Construction of Short Block Length Irreg-
ular LDPC Codes. In Proceedings of ICC, Jun. 2004.

[24] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel. Selective Avoidance
of Cycles in Irregular LDPC Code Construction. IEEE Trans. on Comm.,
To appear, Aug. 2004.

[25] C. Jones, A. Matache, T. Tian, J. Villasenor, and R. Wesel. The Univerality
of LDPC Codes on Wireless Channels. In Proceedings of Military Commu-
nications Conference, Oct. 2003.
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