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High-capacity NAND flash memories achieve high-density by storing more than one bit per cell.

Storage systems require extremely low block-error-rates, making powerful error-correcting codes

with low-error floors necessary. Low-density parity-check (LDPC) codes are well known to ap-

proach the capacity of the additive white Gaussian noise (AWGN) channel, but they often suffer

from error floors and require soft information to achieve better performance. This dissertation

tackles these two problems.

The first part of this dissertation introduces the cycle consistency matrix (CCM) as a powerful

analytical tool for characterizing and avoiding absorbing sets in separable circulant-based (SCB)

LDPC codes. Each potential absorbing set in an SCB LDPC code has a CCM, and an absorbing

set can be present in an SCB LDPC code only if the associated CCM is not full column-rank.

Using this novel observation, a new code construction approach selects rows and columns from

the SCB mother matrix to systematically and provably eliminate dominant absorbing sets by

forcing the associated CCMs to be full column-rank. Simulation results both in software and

in hardware demonstrate new codes that have steeper error-floor slopes and provide at least one
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order of magnitude of improvement in the low FER region.

This dissertation also shows how identifying absorbing-set-spectrum equivalence classes

within the family of SCB codes with a specified circulant matrix significantly reduces the search

space of code matrices with distinct absorbing set spectra. For a specified circulant matrix, SCB

codes all share a common mother matrix and thereby retain standard properties of quasi-cyclic

LDPC codes such as girth, code structure, and compatibility with existing high-throughput hard-

ware implementations. SCB codes include a wide variety of LDPC codes such as array-based

LDPC codes as well as many common quasi-cyclic codes. Hence the CCM approach should find

wide application.

The second part of this dissertation focuses on coding for flash memory. Traditional flash

memories employ simple algebraic codes, such as BCH codes, that can correct a fixed, specified

number of errors. This dissertation investigates the application to flash memory of low-density

parity-check (LDPC) codes which are well known for their ability to approach capacity in the

AWGN channel. We obtain soft information for the LDPC decoder by performing multiple cell

reads with distinct word-line voltages. The values of the word-line voltages (also called reference

voltages) are optimized by maximizing the mutual information between the input and output

of the multiple-read channel. Our results show that using this soft information in the LDPC

decoder provides a significant benefit and enables the LDPC code to outperform a BCH code

with comparable rate and block length over a range of block error rates. Using the maximum

mutual-information (MMI) quantization in the LDPC decoder provides an effective and efficient

estimate of the word-line voltages compared to other existing quantization techniques.
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CHAPTER 1

Introduction

1.1 Low Density Parity Check codes

Low-Density Parity-Check (LDPC) codes were first introduced by Gallager in his thesis in the

early 1960’s [Gal63]. An (n, dv, dc) LDPC code was defined as a code of block length n in

which each column of the parity check matrix contains dv ones and each row contains dc ones.

With respect to the regular structure of Gallager’s codes, which refer to uniform column and row

weight, these codes are now called regular LDPC codes. Gallager also invented soft-decision

and hard-decision iterative decoders that were based on message passing. He showed simulation

results for codes with block length around 500 bits by using hard-decision decoding, and these

results showed the great potential of LDPC codes for error correction. Unfortunately however,

the codes that Gallager used to simulate were not long enough to approach Shannon capacity

over Hamming bound, and the limited computational capability at that time was another barrier

for the simulations of long length codes. During the next decades before the invention of turbo

codes, LDPC codes were largely neglected.

The message passing algorithm, which is defined on graphs, has become further understood

during the last thrity years. Tanner [Tan81] introduced bipartite graphs to describe low-density

codes and the sum-product algorithm based on these graphs. Wiberg et al. [Wib96] extended

Tanner graphs by including state variables which are invisible to decoders. Pearl [Pea88] sys-

tematically described the “belief propagation” algorithm operating on Bayesian networks. It has

been recently shown that the forward/backward algorithm for turbo codes, the belief propagation

algorithm for LDPC codes, and many other decoding algorithms for other graph-based codes,
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are variations of the generalized sum-product (S-P) algorithm operating on the so-called factor

graphs (see [KFL01] [For01]). To avoid confusion in notation, we will call all variations of the

generalized S-P algorithms “message passing”.

In the mid-1990’s, Berrou et al. [BGT93] demonstrated the impressive capacity-approaching

capability of turbo codes, which activized recent interest in turbo codes and other long random

linear codes. It is well-known that Turbo codes share many properties with LDPC codes, espe-

cially in the way that message passing is performed in the iterative decoders. These similarities

led to an explosion of interest in early work on LDPC codes. In 1999, MacKay et al. [Mac99]

showed that LDPC codes have near capacity performance and proposed several empirical rules

for how to construct good LDPC codes with random selection. Luby et al. [LMS01] formally

showed that properly constructed irregular LDPC codes can approach capacity more closely than

regular ones. Richardson, Shokrollahi and Urbanke [RSU01] created a systematic method called

“density evolution” to design and analyze the degree distribution asymptotically for extremely

long sequence in various channel models.

Some other interesting and important research topics related to LDPC codes emerged in

addition to the above fundamental topics. For our purpose, the decoding complexity per bit

for message passing depends on the topology of the graph rather than block length, which

makes the decoding of extremely long blocks possible. However, the encoding complexity is

quadratic in block length if dense generator matrices are used. An almost linear time system-

atic encoder[RU01] was proposed by converting the parity-check matrix to “approximate” lower

triangular form by permutation. The permutation transform doesn’t affect code performance be-

cause it preserves the sparsity of the original parity-check matrix. It is worthwhile that the trans-

formed generator matrix with a special shape allows itself to encode most of the non-systematic

bits recursively in linear time. Chung et al. [CRU01] proposed a Gaussian approximation ap-

proach to reduce the density evolution algorithm to a one-dimensional problem, with only a little

loss in accuracy of performance. Mao [MB01] showed that different scheduling in the message

passing decoder gives different performance when the SNR is high enough. Davey [DM98]

showed by their simulations that LDPC codes over GF(q) outperform binary LDPC codes. Fos-
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sorier [Fos01] designed a reliability-based decoder to tighten the performance gap between mes-

sage passing decoder and maximum likelihood (ML) decoder. Kou [KLF01] designed LDPC

codes based on finite geometries with quasi-cyclic structures and very good minimum distance

properties.

We are able to find the performance threshold for infinitely long codes whose associated bi-

partite graphs are assumed to follow a tree-like structure by density evolution. With this method,

Richardson et al. [RSU01] designed rate one-half LDPC codes that achieve bit error rate (BER)

10−6 within less than 0.1 dB from the capacity limit. But they used the block length of 1 million

bits to achieve this performance, which is too long for many applications. Bipartite graphs rep-

resenting moderate-length codes without nodes of degree one inevitably have many short cycles,

while in Richardson’s analysis these cycles are neglected for the density evolution. Cycles in

bipartite graphs would degrade the optimality of the practical message passing decoder. In other

words, the existence of cycles would ruin the conditional independence on the neighbours of a

node, therefore graph separation is inaccurate and so is Pearl’s polytree algorithm [Pea88], of

which belief propagation is a special case.

With respect to the limitation of finite length and the sub-optimality of message passing in a

graph with cycles, in the low FER region a flattening of the frame error rate (FER) curve called

the error floor usually occurs for LDPC codes with moderate block lengths and high code rates.

Prior work indicates that certain sub-graphs called trapping sets [Ric03], and, in particular, a

subset of trapping sets called absorbing sets [DZW10] are a primary cause of the error floor

in practical implementations. Part of this dissertation focuses on the error floor region and the

absorbing set analysis for a class of structured regular LDPC codes.

The other part of this dissertation focuses on the application of LDPC codes in flash memory.

Flash memory can store large quantities of data in a small device that has low power consumption

and no moving parts. Error control coding for flash memory is becoming more important in a

variety of ways as the storage density increases. The increasing number of levels (and smaller

distance between levels) means that variations in cell behavior from cell to cell (and over time
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due to wear-out) lower the signal-to-noise ratio of the read channel making a stronger error-

correction code necessary. Reductions in feature size make inter-cell interference more likely,

adding an equalization or interference suppression component to the read channel [LHC02].

Also, the wear-out effect is time varying, introducing a need for adaptive coding to maximize the

potential of the system.

LDPC codes have typically been decoded with soft reliability information while flash systems

have typically only provided hard reliability information to their decoders. This dissertation

demonstrates that at least some soft information is crucial to successfully reaping the benefits

of LDPC coding in flash memory. We also explore how much soft information is necessary to

provide most of the benefits and how flash systems could be engineered to provide the needed

soft information without an unnecessary penalty in complexity or processing time.

1.2 Dissertation outline

In this dissertation, we study the error floor of LDPC codes and the LDPC application for flash

memory, in Chapter 2 and Chapter 3 respectively. Chapter 2 introduces the cycle consistency

matrix (CCM) as a powerful analytical tool for characterizing and avoiding absorbing sets in

separable circulant-based (SCB) LDPC codes. Each absorbing set in an SCB LDPC code has a

CCM, and an absorbing set can be present in an SCB LDPC code only if the associated CCM

is not full column-rank. Using this novel observation, a new code construction approach selects

rows and columns from the SCB mother matrix to systematically and provably eliminate domi-

nant absorbing sets by forcing the associated CCMs to be full column-rank. Simulation results

both in software and in hardware demonstrate that the new codes have steeper error-floor slopes

and provide at least one order of magnitude of improvement in the low FER region.

The CCM-based analysis shows that quasi-cyclic code families described in [TSS04], [Fos04]

and [Fan00] include codes with good absorbing set spectra with a proper choice of parameters.

This chapter also shows how identifying absorbing-set-spectrum equivalence classes within the

family of SCB codes with a specified circulant matrix significantly reduces the search space of
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code matrices with distinct absorbing set spectra.

Chapter 3 explores how to obtain the soft information from flash memory read channel for

the LDPC decoder. This chapter first uses pulse-amplitude modulation (PAM) with Gaussian

noise to model Flash cell threshold voltage levels, and investigates how to optimize the word-

line voltages by maximizing the mutual information (MMI) between the input and the output

of the equivalent read channel. After choosing the word-line voltage for each of the reads, the

multiple-read channel can be represented by a probability transition matrix and the data can be

decoded with a standard belief-propagation algorithm. Then we extend the MMI approach to

other channel models such as retention noise model.

Chapter 3 also explores how the quantized setting should be considered in the selection of

the LDPC degree distribution. LDPC codes are usually designed with the degree distribution op-

timized for the AWGN channel [RSU01]. However, our simulations show that, in the quantized

setting, adjusting this “optimal” degree distribution can significantly improve performance.
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CHAPTER 2

Combinatorial Analysis of Absorbing Sets for Separable

Circulant-Based LDPC Codes

For LDPC codes operating over additive white Gaussian noise channels and decoded using

message-passing decoders with limited precision, absorbing sets have been shown to be a key

factor in error floor behavior. Focusing on this scenario, this chapter introduces the cycle con-

sistency matrix (CCM) as a powerful analytical tool for characterizing and avoiding absorbing

sets in separable circulant-based (SCB) LDPC codes. Each potential absorbing set in an SCB

LDPC code has a CCM, and an absorbing set can be present in an SCB LDPC code only if the

associated CCM is not full column-rank. Using this novel observation, a new code construction

approach selects rows and columns from the SCB mother matrix to systematically and provably

eliminate dominant absorbing sets by forcing the associated CCMs to be full column-rank. Sim-

ulation results both in software and in hardware demonstrate that the new codes have steeper

error-floor slopes and provide at least one order of magnitude of improvement in the low FER

region.

This chapter also shows how identifying absorbing-set-spectrum equivalence classes within

the family of SCB codes with a specified circulant matrix significantly reduces the search space

of code matrices with distinct absorbing set spectra. For a specified circulant matrix, SCB codes

all share a common mother matrix and thereby retain standard properties of quasi-cyclic LDPC

codes such as girth, code structure, and compatibility with existing high-throughput hardware

implementations. SCB codes include a wide variety of LDPC codes such as array-based LDPC

codes as well as many common quasi-cyclic codes. Hence the CCM approach should find wide
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application.

2.1 Introduction

Low-density parity-check (LDPC) codes were introduced by Gallager [Gal63] and are well-

known for approaching capacity with iterative decoding [RSU01]. However, in the low FER

region a flattening of the frame error rate (FER) curve called the error floor usually occurs for

LDPC codes with moderate block lengths and high code rates. This performance degradation is

due at least in part to the sub-optimality of message passing in a graph with cycles.

For LDPC codes operating over additive white Gaussian noise channels and decoded using

message-passing decoders with limited precision, absorbing sets have been shown in [ZDN06,

ZDN08, ZDN09] to be a key factor in error floor behavior. This chapter focuses this scenario

and on one suitable class of regular LDPC codes: separable, circulant-based (SCB) codes. For

a specified circulant matrix, SCB codes share a common mother matrix and include array-based

LDPC codes as well as many common quasi-cyclic codes. SCB codes retain standard properties

of quasi-cyclic LDPC codes such as girth, code structure, and compatibility with existing high-

throughput hardware implementations. These codes might be applicable for high-throughput

data storage applications when message passing decoding is used with limited precision.

Prior work indicates that certain sub-graphs called trapping sets [Ric03], and, in particular,

a subset of trapping sets called absorbing sets [DZW10] are a primary cause of the error floor

in practical implementations. Absorbing sets are trapping sets that are stable under bit-flipping

operations.

Since trapping sets are partially due to the sub-optimality of the iterative decoding algorithm,

one possible direction to avoid the trapping sets is to improve the decoding algorithm. More

effective message-passing algorithms [CGW10, KKH09], better iteration averaging schemes

[VF06, LM05], more efficient quantizations [WC07, ZDN09] and post-processing for absorb-

ing sets [ZDN08] all can improve the error floor.
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A complementary direction to improving the error floor is to design a parity check matrix with

certain properties. The Approximate Cycle EMD1 (ACE) algorithm [TVW04] or the Progressive

Edge Growth (PEG) algorithm [XB04] can be used for a column-by-column construction. Alge-

braic methods for constructing LDPC codes also demonstrate good error floors as compared to

randomly constructed codes. Results in [LZT07], [CXD04], [ZHL10], [HDL11], and [NCM10]

present some notable work in this area.

Recent papers have proposed methods to improve the absorbing set spectrum. Introducing

additional check nodes [LHM06] or increasing the girth [MKL06] eliminates small trapping sets

for some codes. The algorithm in [NCM10] and [NVM10] constructs quasi-cyclic codes from

Latin squares so that the Tanner graph does not contain certain trapping sets.

A very clever idea of deterministically constructing structured LDPC codes free of trapping

sets was developed in [ABA11b] [ABA11a]: carefully chosen edges in the lifted graph of the

original code are swapped to provably eliminate the presence of detrimental trapping sets. Our

approach has a similar spirit as that of [ABA11b] [ABA11a]: we also provide a deterministic

method for ensuring that the resultant parity check matrix does not have detrimental absorbing

sets while maintaining the structure of the matrix. While [ABA11b] [ABA11a] focuses on suc-

cessively performing graph lifting of a base graph for the elimination of detrimental structures,

we focus on a fixed bit node degree for a whole code family. We do not enlarge the graph nor

do we alter bit/check node degrees. As a result, the two methods can be further combined for an

even more powerful code search and construction.

This chapter introduces the cycle consistency matrix (CCM) as a powerful analytical tool

for characterizing and avoiding absorbing sets in separable circulant-based (SCB) LDPC codes.

Each absorbing set in an SCB LDPC code has a CCM, and an absorbing set can be present in an

SCB LDPC code only if the associated CCM is not full column-rank. Using this novel observa-

tion, a new code construction approach selects rows and columns from the SCB mother matrix to

systematically and provably eliminate dominant absorbing sets by forcing the associated CCMs

1EMD is the acronym for Extrinsic Message Degree.
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to be full column-rank. Simulation results both in software and in hardware demonstrate that

the new codes have steeper error-floor slopes and provide at least one order of magnitude of

improvement in the low FER region.

The CCM-based analysis shows that quasi-cyclic code families described in [TSS04], [Fos04]

and [Fan00] include codes with good absorbing set spectra with a proper choice of parameters.

This chapter also shows how identifying absorbing-set-spectrum equivalence classes within the

family of SCB codes with a specified circulant matrix significantly reduces the search space of

code matrices with distinct absorbing set spectra.

Section 2.2 introduces separable circulant-based (SCB) codes and the cycle consistency ma-

trix (CCM). Sections 2.3 and 2.4 identify the CCMs for the dominant 2 absorbing sets of example

families of SCB codes with column weights 5 and 4, respectively. These two sections then se-

lect specific rows from the SCB mother matrix to eliminate certain dominant absorbing sets by

forcing the associated CCMs to be full column-rank. These two sections also show how select-

ing specific columns from the SCB mother matrix can further eliminate the remaining dominant

absorbing sets, again by forcing the associated CCMs to be full column-rank 3 While we pro-

vide a detailed analysis of these two important choices for the column weight, it is important to

mention tat the analysis does not depend on the Section 2.6 provides simulation results demon-

strating a substantial performance improvement obtained by the new codes both in hardware and

in software. Section 2.7 delivers the conclusions.

2.2 SCB Codes and the Cycle Consistency Matrix

We now introduce separable, circulant-based (SCB) codes and summarize their key properties

in Section 2.2.1. Section 2.2.2 first summarizes absorbing sets as the combinatorial objects of

interest and then introduces the main concept of this chapter: the cycle consistency matrix (CCM)

2For the purposes of the argument we qualitatively refer to the small absorbing sets as dominant.
3It is important to recognize that the CCM approach is not dependent on the variable node degree; rather the

chapter focuses on two important choices of variable node degrees for high-rate codes not previously studied in the
open literature.
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of an absorbing set. The section concludes with a theorem providing necessary and sufficient

conditions for the existence of a given absorbing set in SCB codes in terms of its CCM.

2.2.1 Separable, Circulant-based LDPC codes

Circulant-based LDPC codes are composed of circulant matrices and form a subset of (r, c)

regular LDPC codes, where r is the variable-node degree and c is the check-node degree. Each

circulant matrix is p× p where p represents a prime number. r and c are both less than or equal

to p. The structure of these codes is particularly compatible with high-throughput hardware

implementations [ZDN09].

The parity-check matrix of circulant-based LDPC codes can be described as follows:

Hr,c
p,f =




σf(0,0) σf(0,1) σf(0,2) . . . σf(0,c−1)

σf(1,0) σf(1,1) σf(1,2) . . . σf(1,c−1)

σf(2,0) σf(2,1) σf(2,2) . . . σf(2,c−1)

...
...

... . . .
...

σf(r−1,0) σf(r−1,1) σf(r−1,2) . . . σf(r−1,c−1)




,

where σ is the following p× p circulant matrix:

σ =




0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . .
...

...

0 0 . . . 1 0




,

and f(i, j) is any function mapping the (row-index, column-index) pairs to the integers {0, . . . , p−
1}.

A column (row) group is a column (row) of circulant matrices. Each variable node has a

label (j, k) with j ∈ {0, ..., c − 1} being the index of the corresponding column group and

k ∈ {0, ..., p − 1} identifying the specific column within the group. Similarly, each check node

has a label (i, l) where i ∈ {0, ..., r − 1} and l ∈ {0, ..., p− 1}.
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This chapter focuses on separable, circulant-based (SCB) codes, which are defined as fol-

lows:

Definition 1 (Separable, Circulant-Based (SCB) Code) An SCB code is a circulant-based LDPC

code with a parity-check matrix Hr,c
p,f in which f(i, j) is separable, i.e., f(i, j) = gr(i) · gc(j)

mod p. �

Parity check matrices of SCB codes with a specified circulant matrix can be viewed as orig-

inating from a common SCB mother matrix Hp,p
p,fm

with fm(i, j) = i · j mod p. The functions

gr(i) and gc(j) effectively specify which rows and columns of the mother matrix are selected for

the resultant SCB matrix. The ranges of gr(i) and gc(j) are both {0, . . . , p− 1}.

SCB codes include, for example, the constructions in [TSS04], [Fos04], and [Fan00]. The

girth of all SCB codes is guaranteed to be at least 6 by the SCB constraint on the submatrix

exponent value f(i, j) = gr(i)·gc(j) (since all entries in each of gr and gc are distinct, [DZW10]).

The SCB structure imposes certain conditions [DZW10] on the variable and check nodes:

Bit Consistency: The neighboring check nodes of a variable node must have distinct row-

group (i) labels.

Check Consistency: The neighboring variable nodes of a check node must have distinct

column-group (j) labels.

Pattern Consistency: (As shown in [DZW10]) Since every entry in the SCB mother matrix

with the value 1 satisfies k + ij = l mod p, if two variable nodes corresponding to columns

(j1, k1) and (j2, k2) share a check node in row group i, they must satisfy:

k1 + ij1 = k2 + ij2 mod p. (2.1)

Note that the converse also holds: If (2.1) is satisfied, then the two variable nodes (j1, k1) and

(j2, k2) share a check node in row group i of the SCB mother matrix.

Cycle Consistency: As shown in [DZW10], the equations of the form (2.1) for any length-

2t cycle in an SCB mother matrix, which involve t variable nodes with column-group labels
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j1 through jt and t check nodes with row-group labels i1 through it, show that the cycle must

satisfy:
t∑

m=1

im(j(m+1) mod t − jm) = 0 mod p. (2.2)

After reviewing absorbing sets below, (2.2) is used to construct a necessary matrix equation

for an absorbing set to exist based on the cycles contained in that absorbing set.

2.2.2 Absorbing sets and the Cycle Consistency Matrix

An LDPC code with parity-check matrix H is often viewed as a bipartite (Tanner) graph GH =

(V, F,E), where the set V represents the variable nodes, the set F represents the check nodes,

and the set E corresponds to the edges between variable and check nodes.

For a variable node subset Vas ⊂ V , analogous toGH , letGas = (Vas, Fas, Eas) be the bipartite

graph of the edges Eas between the variable nodes Vas and their neighboring check nodes Fas. Let

o(Vas) ⊂ Fas be the neighbors of Vas with odd degree in Gas and e(Vas) ⊂ Fas be the neighbors of

Vas with even degree in Gas. We refer to the nodes in e(Vas) as “satisfied check nodes” because

they will satisfy their parity-check equations when all the nodes in Vas are in error.

Definition 2 (Absorbing Set (cf. [DZW10])) An (nv, no) absorbing set is a set Vas ⊂ V with

|Vas| = nv and |o(Vas)| = no, where each node in Vas has strictly fewer neighbors in o(Vas) than

in e(Vas). �

Moreover, if each variable node in V \Vas has strictly fewer neighbors in o(Vas) than in

F\o(Vas), an (nv, no) absorbing set is called an (nv, no) fully absorbing set [DZW10]. An impor-

tant property of fully absorbing sets is that they are stable under bit-flipping decoding in which

the bit values of variable nodes are flipped if a majority of their neighboring check nodes are not

satisfied.

Fig. 2.1 shows an example of a (4, 8) absorbing set, which has 4 variable nodes and 8 unsat-

isfied check nodes.
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Figure 2.1: Depiction of a (4, 8) absorbing set. Black circles are the four bit nodes (variable

nodes) of the absorbing set. The white squares are the satisfied neighboring check nodes, and the

black squares are the eight unsatisfied neighboring check nodes.

Suppose there are nv variable nodes in an absorbing set. Let j1, . . . , jnv be the column-group

labels of these nv nodes in the SCB mother matrix. Define um = jm − j1 for m ∈ {2, ..., nv}
and define u = [u2, ..., unv ]. For each cycle in the absorbing set, by replacing the difference of

j’s with the difference of u’s, (2.2) may be written as

t∑

m=2

(im−1 − im)um = 0 mod p, (2.3)

where 2t is the length of that cycle. Note that the sequence of check-node row groups {i1, i2, . . . , it}
will be different for different cycles reflecting the particular cycle trajectories.

Every cycle in the absorbing set satisfies an equation of the form (2.3). Taken together, these

equations produce a matrix equation: Mu = 0 mod p, where M`m is the coefficient of um in

(2.3) for the `th cycle.

A key property of M is that Mu = 0 mod p completely characterizes the requirement that

every cycle in Gas satisfies (2.3). Even so, it is not necessary for M to include a row for every
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cycle in the absorbing set.

A cycle need not be included in M if it is a linear combination of cycles already included

in M. Thus the number of rows needed in M is the number of linearly independent cycles in

Gas. Some definitions from graph theory [R 06] are necessary to establish the number of linearly

independent cycles in Gas and hence how many rows are needed for M.

Definition 3 (Incidence Matrix) For a graph with n vertices and q edges, the (unoriented) in-

cidence matrix is an n × q matrix B with Bij = 1 if vertex vi and edge xj are incident and 0

otherwise. �

Note that since each edge is incident to exactly two vertices, each column of B has exactly

two ones.

The incidence matrix of a graph is useful for identifying the cycles in the graph because every

cycle has the property that the indicator vector xc of the edges in the cycle satisfies Bxc = 0

mod 2. In fact, the edges identified by the vector xc form a cycle (or a union of cycles) if and

only if Bxc = 0 mod 2. This is formalized in the definition below.

Definition 4 (Binary Cycle Space) The binary cycle space (bcs) of a graph, which is the set of

binary vectors that are indicator vectors of the edges in a cycle or a union of cycles, is the null

space of its incidence matrix over GF (2). �

For any absorbing-set bipartite graph Gas a “variable-node” (VN) graph can be constructed

whose only vertices are Vas and for which two vertices in the VN graph are connected iff there

is a check node that connects them in Gas. For a code with girth greater than 4, multiple edges

are not allowed between vertices since they will introduce a length-4 cycle. Fig. 2.2 shows the

VN graph for the absorbing set graph in Fig. 2.1. It is for the VN graph that we construct the

incidence matrix Bas. If each satisfied check node in Gas has degree 2, then the incidence matrix

Bas is simply the transpose of the submatrix ofHr,c
p,f whose rows correspond to the satisfied check

nodes of Gas (a subset of Fas) and whose columns correspond to the variable nodes in Vas. If a

shared check node has degree-N , its neighbors form a size-N clique in the VN graph.
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v1 v2

v3v4

Figure 2.2: Variable-node (VN) graph of the (4, 8) absorbing set of Fig. 2.1.

The number of linearly independent cycles in an absorbing set is the dimension Dbcs of its

binary cycle space. Dbcs is the size of the null space of the incidence matrix Bas:

Dbcs = q − rank(Bas) , (2.4)

where q is the number edges in the VN graph of the absorbing set. Knowing the number of

linearly independent cycles allows us the specify an efficient M, which we define to be a Cycle

Consistency Matrix as follows:

Definition 5 (Cycle Consistency Matrix) A Cycle Consistency Matrix M of an absorbing-set

graph Gas has |Vas| − 1 columns and Dbcs rows. The rows of M correspond to Dbcs linearly

independent cycles in Gas. Each row has the coefficients of u in (2.3) for the corresponding

cycle. �

Note that M ·u = 0 mod p completely characterizes the requirement that every cycle in Gas

satisfies (2.3).

Recall that the vector u contains difference information about the column groups involved

in the absorbing set: the value of the first column group is subtracted from each of the others.
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The vector u cannot be an all-zero vector because the Check Consistency condition requires that

variable nodes sharing a check node have distinct column groups, and a zero entry indicates

that the variable node is in the first (j = j1) column group. Thus a necessary condition for the

existence of a given absorbing set is that its M does not have full column-rank in GF (p).

Definition 6 (Extensible VN Graph) If the VN graph of an absorbing set GA
as is a sub-graph of

the VN graph of at least one other absorbing set GB
as with the same number of variable nodes,

then we say the VN graph of the absorbing set GA
as is extensible. �

Equipped with these definitions, the next theorem gives necessary and sufficient conditions

for the existence of absorbing sets in SCB codes.

Theorem 1 Given a proposed absorbing set graph Gas = (Vas, Fas, Eas), where every variable

node is involved in at least one cycle,4 specified column group labels of the variable nodes in Vas

in the SCB mother matrix, and specified row-group labels of the check nodes in Fas in the SCB

mother matrix, the following are necessary conditions for the proposed absorbing set to exist in

each daughter SCB LDPC code (with a parity check matrixH that includes the specified row and

column groups of that SCB mother matrix): (1) The CCM forGas does not have full column-rank;

(2) Variable nodes in Vas satisfy the Bit Consistency condition and can form a difference vector

u in the null space of the CCM; and (3) Each check node in Fas satisfies the Check Consistency

condition. Taken together, these conditions are also sufficient if the VN graph of this absorbing

set is not extensible.

Proof: Each of the three conditions has already been shown to be a necessary condition

for the existence of Gas in an SCB. If all of these three conditions are satisfied, all the cycles

corresponding to the rows of the CCM exist in GH because they can be constructed as follows:

Conditions (1) and (2) ensure a sequence of variable node column groups [j1, j2, ..., j|Vas|] that

form a vector [u2, ..., u|Vas|] in the null space of the CCM. For any fixed k1, we can compute

4If the variable node degree is at least 2, then each variable node in a given absorbing set must be a part of at
least one cycle.
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k2, ..., k|Vas| using the Pattern Consistency requirement of equation (2.1). Any linear combination

of these cycles exists in GH as well.

These cycles cover every edge except edges that connect a variable node to a degree-1 check

node inGas. If (1) a variable node’s unsatisfied check node is the same as another variable node’s

unsatisfied check node, or (2) a variable node’s unsatisfied check node is the same as one satisfied

check node in the graph, or (3) two of the satisfied check nodes are the same, then there exist

other independent cycles in the VN graph which extend the VN graph.

In these cases, the original structure is extensible and the conditions in the theorem are not

sufficient to establish the existence of the absorbing set Gas originally considered. (The con-

ditions in the theorem might instead be caused by the presence of an absorbing set whose VN

graph is an extension of the VN graph of the originally considered absorbing set.) However, if

the original VN graph is not extensible, the above constructed solution establishes the existence

of the proposed absorbing set Gas in GH . �

Corollary 1 Given a non-extensible (nv1, no1) absorbing-set graph G1
as = (V 1

as, F
1
as, E

1
as) whose

VN grahp is a sub-graph of the VN graph of another (nv2, no2) absorbing-set graph G2
as =

(V 2
as, F

2
as, E

2
as). Then the existence of G1

as is a necessary condition for the existence of G2
as.

Proof: Suppose the CCMs of G1
as and G2

as are M1 and M2 respectively. If the VN graph of

G1
as is a sub-graph of the VN graph ofG2

as, the independent cycles ofG1
as will also be independent

in G2
as and thus at least one valid M2 has M1 as a sub-matrix:

M2 =


 M1 0

A B


 , (2.5)

where the sub-matrix [A B] represents the other linearly independent cycles in G2
as, which are

not included in G1
as. Therefore if there exists a valid u2 such that M2u2 = 0 mod p, the first

nv1 − 1 elements would also be a valid u1 such that M1u1 = 0 mod p. This shows that the

existence of G1
as is a necessary condition of the existence of G2

as. �
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2.3 Analytical results for r = 5 SCB codes

We now consider the Hr,p
p,f(i,j) LDPC codes as an instance of high-performance practical LDPC

codes with a hardware-friendly structure. We consider both r = 4 and r = 5 SCB codes, but we

begin with the r = 5 case because it is easier to analyze in the sense of eliminating the dominant

absorbing sets. This section provides an example with r = 5 (five row groups) that shows how to

design an SCB code with a specified circulant matrix that eliminates the dominant absorbing sets

by selecting rows from the SCB mother matrix to force the CCMs associated with the dominant

absorbing sets to be full column-rank.

This example of SCB code design involves two classes of SCB codes:

• Array-based codes [Fan00] are the most elementary SCB codes in which the first r rows

of the SCB mother matrix Hp,p
p,f , f(i, j) = i · j comprise the parity-check matrix. We will

refer to this class as the elementary array-based (EAB) codes.

• As shown in [DWZ10], a careful selection of the r row-groups from the overall SCB

mother matrix can improve performance over the EAB codes. Thus, selected-row (SR)

SCB codes are our second class of SCB codes. The parity-check matrix for these codes

is Hr,p
p,f , f(i, j) = gr(i) · j where gr(i) is called the row-selection function (RSF). We will

often represent an RSF as the vector
[
gr(0) gr(1) gr(2) gr(3) gr(4)

]
.

Theorem 1 shows that an absorbing set may be avoided either by forcing the associated CCM

to be full column rank or by precluding u from being in the null space of M. Corollary 1 shows

that if a non-extensible absorbing set does not exist, then all absorbing sets whose VN graphs

contain the VN graph of this absorbing set also do not exist. The CCM approach carefully selects

the RSF (and possibly also the analogous column selection function (CSF)) to systematically

eliminate small absorbing sets, in the order of the size of the VN graph of the absorbing sets.

Section 2.3.1 establishes that (4, 8) absorbing sets are the smallest possible for a general

r = 5 code family. Then Corollary 2 shows that (4, 8) absorbing sets indeed exist for this r = 5

array-based code family. This theoretical result is also consistent with previous experimental
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results of a sum-product decoding algorithm implemented in software and on a hardware emula-

tor [ZDN09] for which it was shown that decoding errors due to (4, 8) absorbing sets dominate

the low BER region of an r = 5 array-based code.

Sections 2.3.1, 2.3.2 and 2.3.3, respectively, show that (4, 8), (5, 9) and (6, 8) absorbing sets

exist in the EAB code with r = 5 and that carefully selecting row groups from the SCB mother

matrix can systematically eliminate these absorbing sets. Section 2.3.4 provides several good

RSFs that can eliminate small absorbing sets for r = 5 SCB codes. Section 2.3.5 explores the

absorbing set spectrum of the existing quasi-cyclic LDPC codes with the Tanner construction

[TSS04]. Section 2.3.6 identifies equivalence classes among SCB codes.

2.3.1 (4, 8) absorbing sets

In this section we analyze (4, 8) absorbing sets. The main result states that (4, 8) absorbing sets

exist in SCB codes and specifically in EAB codes (Corollary 3), but that (4, 8) absorbing sets

can be provably eliminated from SR-SCB codes using a suitable RSF, as shown in Corollary 4.

These theoretical results will be substantiated by experimental results in Section 2.6.

First note that (4, 8) absorbing sets are smallest possible for any regular code with girth at

least 6 and variable node degree r = 5 [Dol10]. To see why this is true, note that the cases with

nv < 4 can be directly eliminated by the girth condition, since each of nv variable nodes needs

to have at least 3 satisfied checks. When nv = 4, the girth constraint prevents any variable node

from sharing more than 3 checks with other variable nodes in the absorbing set, so that no must

necessarily be 8 and each pair of variable nodes in the absorbing set shares a distinct satisfied

check. Thus (4, 8) absorbing sets are only possible when the girth equals 6. Therefore, the (4, 8)

absorbing set in Fig. 2.1 is the smallest possible absorbing set in the H5,p
p,f(i,j) code family. More

general results regarding the minimality of absorbing sets are provided in [Dol10].

This section shows that the (4, 8) absorbing set always exists in r = 5 EAB codes. How-

ever, by carefully selecting row groups from the SCB mother matrix, r = 5 SR-SCB codes can

systematically eliminate all (4, 8) absorbing sets.
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The (4, 8) absorbing set provides an example of how to construct the CCM for a given ab-

sorbing set. Using the technique of Section 2.2, the absorbing set graph in Fig. 2.1 induces the

variable-node (VN) graph shown in Fig. 2.2. There are five cycles in the variable-node graph,

but not all of these cycles need to be explicitly represented in the CCM. The incidence matrix

Bas of the VN graph shown in Fig. 2.2 with q = 6 and Vas = 4 is

Bas =




1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1



. (2.6)

Remark 1 In this absorbing set, since every satisfied check node has degree-2, the incidence

matrix is the transpose of the submatrix Ĥas of the parity-check matrix that only includes the

absorbing-set variable nodes and satisfied check nodes:

Ĥas =




1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1




. (2.7)

The rank of Bas in (2.6) is 3 under GF (2). Thus the dimension of the binary cycle space is

Dbcs = q−rank(Bas) = 6−3 = 3, which means that three linearly independent cycles span the

binary cycle space.

Selecting the following three linearly independent cycles in Fig. 2.1: v1−v2−v3, v1−v2−v4,
v1−v3−v4 (here and in the remainder vl corresponds to the bit node labeled (jl, kl)) produces the

CCM in (2.8) and its determinant in (2.9) as follows:

M =




i1 − i2 i2 − i5 0

i1 − i6 0 i6 − i4
0 i5 − i3 i3 − i4


 , (2.8)
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detM = −(i1 − i2)(i6 − i4)(i5 − i3)− (i2 − i5)(i1 − i6)(i3 − i4) . (2.9)

Using Fig. 2.1 and (2.9), Theorem 1 leads to the following corollary regarding (4, 8) absorb-

ing sets:

Corollary 2 Given an SCB mother matrix with a specified p, the existence of a selection of

integers for row group labels i1, . . . , i6 satisfying the Bit Consistency conditions associated with

the absorbing sets shown in Fig. 2.1 and satisfying detM=0 (with detM given in (2.9)) is

necessary and sufficient for the existence of the (4, 8) absorbing sets shown in Fig. 2.1.

Proof : Since the VN graph in Fig. 2.2 of the (4, 8) absorbing sets is a fully connected graph,

it is not extensible without introducing a parallel edge which implies a length-4 cycle in the

corresponding bipartite graph, an operation that would violate the property that the girth is at

least 6. Because the VN graph is non-extensible, Theorem 1 applies. Hence detM=0 mod p

and Bit Consistency are both necessary conditions. If the Check Consistency is also satisfied, the

three conditions together are sufficient by Theorem 1. The rest of the proof shows that identifying

a selection of integers for row group labels i1, . . . , i6 satisfying the Bit Consistency conditions

and satisfying detM=0 implies the existence of j1, j2, j3, j4 satisfying the Check Consistency

conditions.

Consider the Bit Consistency conditions associated with each of the four variable nodes in

Fig. 2.1. Our concern is only regarding Bit Consistency conditions that involve satisfied check

nodes. Hence the six row-group labels of interest are {i1, . . . , i6}. For example, the Bit Consis-

tency conditions applied to (j1, k1) require that i1 6=i5, i1 6=i4, and i4 6=i5.

There are six different row-group labels of interest, but only five possible row groups since

r = 5. At least one pair of row-group labels must share the same row group. The inequalities

implied by the Bit Consistency conditions allow only i1 = i3, i2 = i4, and i5 = i6.

Just as shown in [DZW10] for (4, 4) absorbing sets, if all three of these equalities are satisfied,

the Cycle Consistency conditions require all variable nodes to have the same column group.
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which violates the Check Consistency conditions.

Visualizing the (4, 8) absorbing set as a triangular-base pyramid with the four variable nodes

as vertices, every point is symmetric to every other point and the three possible equalities allowed

by the Bit Consistency conditions are all isomorphisms. Thus, we only need to consider one case

of one equality being satisfied and one case of two equalities being satisfied.

In summary, there are only two possible non-isomorphic row-group labelings for the (4, 8)

absorbing set as follows [DWZ10]: for any bijective assignment of {0, 1, 2, 3, 4} to {t, x, y, z, w},
(i1, i2, i3, i4, i5, i6) can be either (x, y, x, y, z, w) (Assignment 1) or (x, t, w, y, z, z) (Assignment

2). Applying (2.9) to these two assignments yields the following:

detM = (y − x) ((z − x)(w − y) + (z − y)(w − x)) (2.10)

for Assignment 1, and

detM = (z − w)(x− t)(y − z)− (y − w)(x− z)(z − t) (2.11)

for Assignment 2.

If detM=0 mod p, there exists a non-zero solution to M·u= 0 mod p, where u=[u2, u3, u4]
T .

With either Assignment 1 or Assignment 2, the resulting M has six nonzero entries such that if

one of {u2, u3, u4} is nonzero, all three must be nonzero. Furthermore, the structure of M en-

sures that any nontrivial solution to detM=0 mod p will have u2, u3, and u4 all distinct. Thus,

for a fixed j1, we can find j2, j3, and j4 without contradiction to Check Consistency (since all are

distinct). Fixing one specific k value will determine all others according to Cycle Consistency,

yielding the variable nodes of (4, 8) absorbing sets in the code. Therefore, a row-group labeling

that satisfies Bit Consistency and detM=0 mod p is a necessary and sufficient condition for

the existence of (4, 8) absorbing sets. �

Remark 2 Now we examine how Corollary 2 applies to EAB and SR-SCB codes. For EAB

codes, {x, y, z, w, t} = {0, 1, 2, 3, 4}. For Assignment 1 there are no solutions that achieve
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detM=0 mod p for prime p large enough (p>17). However, for Assignment 2 there are 8 solu-

tion sets for (x, y, z, w, t): {(4, 3, 2, 0, 1), (4, 1, 2, 0, 3), (3, 4, 2, 1, 0), (3, 0, 2, 1, 4), (1, 4, 2, 3, 0),
(1, 0, 2, 3, 4), (0, 3, 2, 4, 1), (0, 1, 2, 4, 3)}. Note that in all solutions z is always 2. �

As an example, let’s find one set of js and ks so that detM=0 mod p. Among the EAB

Assignment-2 solutions above, consider the last one: (x = 0, y = 1, z = 2, w = 4, t = 3) so that

(i1, i2, i3, i4, i5, i6) = (0, 3, 4, 1, 2, 2). For this solution set,

M =




i1 − i2 i2 − i5 0

i1 − i6 0 i6 − i4
0 i5 − i3 i3 − i4


 =




−3 1 0

−2 0 1

0 −2 3


 , (2.12)

detM = −(−3)(1)(−2)− (1)(−2)(3) = 0 . (2.13)

As shown in (2.13), detM=0 for any p. Suppose p = 47 and u2 = 1. Solving Mu = 0 gives

us u3 = 3, u4 = 2. Selecting j1 = 0 gives j2 = 1, j3 = 3, j4 = 2. From Pattern Consistency,

taking k1 = 0 gives k2 = 0, k3 = 41, k4 = 45. Thus, once a nonzero solution to detM=0

mod p is specified (for example by selecting u2), specifying any j1 and k1 leads directly to a

solution that identifies a specific absorbing set.

Continuing with this specific choice of (i1, i2, i3, i4, i5, i6), there are p− 1 ways to select u2,

each of which yields a distinct nonzero solution to detM=0 mod p. (Selecting u2=0 gives

the all-zeros solution.) For each of these solutions there are p ways to select each of j1, and k1,

yielding a total of p2(p− 1) solutions.

Thus there are there Θ(p3) such solutions. As with this specific choice, for each of the eight

solutions above there are Θ(p3) absorbing sets. The overall number of absorbing sets is thus

Θ(p3). Here and in the remainder of the chapter we use the standard asymptotic notation for Θ:

a positive function f(p) is Θ(pk) if there exist constants c1 and c2 such that 0 < c1 ≤ c2 < ∞
for which c1pk ≤ f(p) ≤ c2p

k for all p ≥ 0.
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For sufficiently large p (p>17), the (4, 8) absorbing set identified above is always a (4, 8) fully

absorbing set since otherwise there would exist a variable node (j5, k5) outside the absorbing set

incident to at least three of the checks labeled i7 through i14. Such a configuration would either

violate the girth constraint (have girth less than 6) or it would imply the existence of a new

absorbing-set configuration spanning four variable nodes, these being the node (j5, k5) and three

variable nodes from the starting (4, 8) absorbing set. These four variable nodes would necessarily

be connected such that their common constraint is given in (2.10), previously shown to not exist

for sufficiently large p.

To avoid the (4, 8) absorbing set we need to consider alternatives to the EAB selection of

row-group labels. SR-SCB codes can select the row-group labels to force the determinant of

the CCM to be nonzero for the (4, 8) absorbing sets. The goal is to identify a set of five (since

r = 5) row-group labels such that any valid assignment of those labels to i1 through i6 satisfies

detM 6=0 mod p in (2.11). One such example is the RSF [0, 1, 2, 4, 6]. For a valid assignment

of {0, 1, 2, 4, 6} to i1 through i6, recall that the Bit Consistency conditions allow only i1 = i3,

i2 = i4, and i5 = i6. Any such valid assignment of these labels has detM 6=0 mod p in (2.11)

for any prime p greater than 23. Therefore in SR-SCB codes with a well chosen RSF there are

no (4, 8) absorbing sets for sufficiently large p. Another example is the RSF [0, 1, 3, 8, 19] which

avoids all (4, 8) absorbing sets for p = 47 and certain other p’s as described in [DWZ10].

The above analysis proves the following corollaries.

Corollary 3 The (4, 8) (fully) absorbing sets exist in SCB mother matrices and in particular in

all EAB codes described by the parity check matrix H5,p
p,i·j , and their number scales as Θ(p3) in

the EAB code.

Corollary 4 There are no (4, 8) absorbing sets in the SR-SCB codes described by the parity

check matrix H5,p
p,gr(i)·j , for prime p large enough and with a proper choice of RSF.
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2.3.2 (5, 9) absorbing sets

Assuming an RSF that avoids the (4, 8) absorbing sets, this section proves that the (5, 9) ab-

sorbing sets are the smallest remaining. The CCM approach shows that the (5, 9) absorbing sets

always exist in the EAB codes (Corollary 8), but are avoided for SR-SCB codes by some of the

RSFs that precluded the (4, 8) absorbing sets (Corollary 9). We start by establishing a series of

intermediate results, proven in Corollaries 5, 6 and 7.

Corollary 5 Assuming (4, 8) absorbing sets do not exist, (5, b) absorbing sets also do not exist

for b < 9.

Proof: For r = 5, the total number of edges in a (5, b) absorbing set is 25. The number of

edges that connect to satisfied check nodes is even. The number of remaining edges b can only be

odd. Thus if b < 9, b can only take on values from {1, 3, 5, 7}. For these b values, the absorbing

set graph has at least 18 edges connecting to satisfied check nodes and thus the corresponding

VN graph has nine or more edges. This forces the VN graph to either have parallel edges (cor-

responding to length-4 cycles) or contain as a subgraph the VN graph of a (4, 8) absorbing set.

Since length-4 cycles are not possible in SCB codes, Corollary 1 implies that the (5, b) absorbing

sets with b < 9 do not exist if (4, 8) absorbing sets are absent. �

Corollary 6 Assuming (4, 8) absorbing sets do not exist, the (5, 9) absorbing set is the smallest

possible absorbing set, and there are no other (5, b) absorbing sets.

Proof: From Corollary 5, b≥9 in the absence of (4, 8) absorbing sets. Since the number

of edges that go to unsatisfied check nodes is at most 10 and b is odd, the only possible (5, b)

absorbing set is the (5, 9) absorbing set. We first prove that the VN graph of (5, 9) absorbing sets

does not contain the (4, 8) absorbing-set graph as a sub-graph.

Suppose a (5, 9) absorbing set has a (4, 8) absorbing set as a subgraph. We label the five

variable nodes as v1, v2, v3, v4 and v5. Without loss of generality, let v1, v2, v3 and v4 form a

(4, 8) absorbing set. If v5 connects to a satisfied check node in the (4, 8) absorbing set, for

25



(j1,k1)

(j2,k2)

(j5,k5)

(j3,k3)

(j4,k4)
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i8 i6i9
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i13

i17

i16 i15

i14

Figure 2.3: Depiction of a (5, 9) absorbing set. Black circles are bit nodes in the absorbing set,

white squares are their satisfied checks, and black squares are their unsatisfied checks.

example check node c1 that connects v1 and v2, v1 and v2 will have more unsatisfied check nodes

than satisfied check nodes. Then v5 has also to connect to one of v1’s unsatisfied check node c2

to make v1 satisfy the absorbing set property. However, v1, c1, v5 and c2 form a length-4 cycle,

which leads to a contradiction.

Thus v5 cannot connect to the satisfied check nodes of v1, v2, v3 and v4. Since v5 has at least

three satisfied check nodes, it has to connect to at least three of the formerly unsatisfied check

nodes of v1, v2, v3 and v4. This makes the total number of unsatisfied check nodes seven or less

and certainly not nine. This again leads to a contradiction. Therefore (5, 9) absorbing sets cannot

have (4, 8) absorbing sets as a subset. �

The only remaining possible configuration of a (5, 9) absorbing set is where one variable

node has four satisfied check nodes and four variable nodes have three satisfied check nodes.

Fig. 2.3 depicts this configuration, which has a VN graph that does not contain the VN graph of a

(4, 8) absorbing as a sub-graph. Corollary 7 below builds the necessary and sufficient conditions

of this absorbing set.
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Corollary 7 For matrix M in (2.14), a row-group label assignment that satisfies the Bit Con-

sistency conditions and detM = 0 mod p is necessary and sufficient for the existence of (5, 9)

absorbing sets in Fig. 2.3.

Proof: With an analysis similar to that of (4, 8) absorbing sets, the binary cycle space for

Fig. 2.3 has dimension 4. We construct the following CCM by selecting the following linearly

independent cycles: v1−v2−v3, v1−v2−v5, v1−v3−v4, v1−v4−v5:

M =




i1 − i5 i5 − i2 0 0

i1 − i8 0 0 i8 − i4
0 i2 − i6 i6 − i3
0 0 i3 − i7 i7 − i4



. (2.14)

As in the proof of Corollary 2, we can show that a row-group label assignment that satis-

fies the Bit Consistency conditions and detM = 0 mod p is necessary and sufficient for the

existence of a (5, 9) absorbing set, where

detM =(i1 − i5)(i8 − i4)(i2 − i6)(i3 − i7)

− (i1 − i8)(i5 − i2)(i6 − i3)(i7 − i4) mod p .
(2.15)

�

Under the Bit Consistency conditions, there are 5 possible non-isomorphic check label-

ing patterns of (i1, i2, i3, i4, i5, i6, i7, i8) as follows: (x, y, z, w, z, w, x, y), (x, y, z, w, t, w, x, y),

(x, y, z, w, t, w, x, z), (x, y, z, w, t, x, t, y), and (x, y, z, w, t, w, t, y), where different letters cor-

respond to distinct row-group labels.

The EAB codes have the set of row-group labels {x, y, z, w, t} drawn from the set {0, 1, 2, 3, 4}.
For the 4th pattern (x, y, z, w, t, x, t, y), there are 8 solution sets (x, y, z, w, t) ∈ {(4, 0, 1, 3, 2),
(4, 0, 3, 1, 2), (3, 1, 4, 0, 2) ,(3, 1, 0, 4, 2), (1, 3, 4, 0, 2), (1, 3, 0, 4, 2), (0, 4, 1, 3, 2), (0, 4, 3, 1, 2)}
that always have detM=0 in (2.15). The other four patterns have a nonzero determinant for p

large enough. Once the labels of the check nodes are selected (cf. Fig. 2.3), the variable node

labels (pairs (j1, k1) through (j5, k5)) can be selected in Θ(p3) ways as in the (4, 8) case.
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For SR-SCB codes with a proper choice of RSF, detM 6=0 mod p for p large enough. One

such example is using an RSF of [0, 1, 2, 4, 7] where detM 6=0 mod p for the prime p greater

than 89 except for the set p ∈ {101, 103, 131, 179}. Therefore we can conclude with the follow-

ing two corollaries.

Corollary 8 (5, 9) absorbing sets exist in EAB codes described by the parity check matrixH5,p
p,i·j ,

and their number scales as Θ(p3).

Corollary 9 There are no (5, 9) absorbing sets in the SR-SCB codes described by the parity

check matrix H5,p
p,gr(i)·j , for prime p large enough and with a proper choice of RSF gr(i).

2.3.3 (6, 8) absorbing sets

This (fairly long) section considers the (6, 8) absorbing sets, which are the smallest remaining

after the (4, 8) and (5, 9) absorbing sets. We will investigate the (6, 8) absorbing sets both for

EAB codes and for SR-SCB codes that preclude the (4, 8) and (5, 9) absorbing sets. The six

subsections that follow examine respectively the six candidate configurations of (6, 8) absorbing

sets to be studied. The configurations are shown in Fig. 2.4 through Fig. 2.9 and constitute all

possible choices.

Section summary. We first prove in subsection 2.3.3.1 that the check node degree is not

larger than 2 in the SCB codes that preclude (4, 8) absorbing sets. Combinatorial and consis-

tency arguments show (subsections 2.3.3.3, 2.3.3.4 and 2.3.3.6) that three of the remaining five

configurations are not present for p sufficiently large in either the EAB code or in SR-SCB codes

that preclude the (4, 8) and (5, 9) absorbing sets.

The other two configurations have the cardinality Θ(p3) in the EAB code. However, both

of these configurations contain a (4, 8) absorbing set as a subset and thus cannot be present in

SR-SCB codes that preclude the (4, 8) absorbing sets. These two configurations are analyzed in

subsections 2.3.3.2 and 2.3.3.5.

With this comprehensive analysis of (6, 8) absorbing sets we can conclude that our optimized

28



SR-SCB codes do not have any (6, 8) absorbing sets.

2.3.3.1 Configuration 1 - check nodes with degree>2

This case is precluded by the following lemma:

Lemma 1 If a (6, 8) absorbing set has a check node that connects to more than two variable

nodes in the absorbing set graph, it will contain (4, 8) absorbing sets as a sub-graph.

Proof: An absorbing set contains a (4, 8) absorbing set as a sub-graph if the VN graph of the

original absorbing set contains a four-node clique, which is the VN graph of a (4, 8) absorbing

set. We consider separately the satisfied and unsatisfied check nodes and show that if a single

check node of either type has degree larger than 2, a four-node clique is guaranteed. For the

satisfied check nodes, if the degree is larger than two, it must be four or six. Recalling that a

degree-N check node in an absorbing set implies an N -node clique in its VN graph, we see that

satisfied check nodes can only have degree 2 if four-node cliques are to be avoided.

Now we consider the unsatisfied check nodes. Because the girth constraint precludes parallel

edges, the VN graph of a (6, 8) absorbing set has at most
(
6
2

)
= 15 edges. If it has all 15 possible

edges, the VN graph is a six-node clique and contains
(
6
4

)
= 15 four-node cliques. Each edge in

a six-node clique is an edge in exactly 6 of the 15 four-node cliques. Thus, removing one edge

from a six node clique reduces the number of four-node cliques contained by the graph by 6,

from 15 to 9. Removing a second edge from the six-node clique can remove at most six more

four-node cliques, so that at least three remain. Thus, if the VN graph of a (6, 8) absorbing set

has 13 or more edges, it must contain a (4, 8) absorbing set as a sub-graph.

With six nodes and r = 5, the (6, 8) absorbing-set graph has 30 edges between variable nodes

and check nodes. If all eight unsatisfied check nodes are singly connected, this accounts for 8 of

the 30 edges. Since the satisfied check nodes all have degree 2, the remaining 22 edges of the

absorbing set become the eleven edges of its VN graph, which is not enough to guarantee a four-

node clique. Consider what happens when some of the unsatisfied check nodes have degree 3
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(any larger degree would trivially introduce a four-node clique). Suppose the number of degree-

1/2/3 check nodes is n1/n2/n3 respectively. Then we have n1 + n3 = 8 unsatisfied check nodes,

and 3n3 + 2n2 + n1 = 30 edges between variable and check nodes. These two equations lead to

n3 + n2 = 11. Since the number of the edges in the VN graph is nV N = 3n3 + n2 = 11 + 2n3,

nV N will be 13 or more if n3 > 0. Therefore if unsatisfied check nodes have degree 3, the (4, 8)

absorbing set will exist. Fig. 2.4 shows an example of such a (6, 8) absorbing set, with its two

degree-3 check nodes and nine degree-2 check nodes. Having more than two degree-3 check

nodes forces more than 15 edges in the VN graph which in turn forces parallel edges in the VN

graph causing a violation of the girth constraint. Hence, all cases have been considered, and

any (6, 8) absorbing set with a check node having degree larger than two must contain a (4, 8)

absorbing set as a sub-graph. �

Based on Lemma 1, attention is now restricted to cases where all check nodes in the absorbing

set graph have degree at most 2.

In a candidate (6, 8) absorbing set, variable nodes can have 3, 4 or 5 satisfied checks. To

maintain 8 unsatisfied checks, there can be at most 2 variable nodes with 5 satisfied checks.

Suppose first that there are two such variable nodes. Since there are a total of 8 unsatisfied

checks, the other 4 variable nodes must each have 3 satisfied and 2 unsatisfied checks. This

necessarily implies the configuration shown in Fig. 2.5 which we discuss next.

2.3.3.2 Configuration 2 - Fig. 2.5

Since the configuration in Fig. 2.5 has two overlapping (4, 8) absorbing sets, the existence of

this (6, 8) absorbing set relies on both CCM determinants of these two (4, 8) absorbing sets that

share an edge. Therefore with a proof similar to that of Corollary 2, we can show the following

result:

Lemma 2 A necessary and sufficient condition for the existence of (6, 8) absorbing sets in

Fig. 2.5 is detM1 = 0 mod p and detM2 = 0 mod p, where M1 and M2 are CCMs of

the two internal (4, 8) absorbing sets.
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(j1,k1) (j2,k2) (j3,k3)

(j6,k6) (j5,k5) (j4,k4)

Figure 2.4: Candidate 1 configuration of a (6, 8) absorbing set. In this configuration two check

nodes (i10 and i11) are connected to three variable nodes. Its VN graph is a six-node clique and

that it contains 15 (4, 8) absorbing sets as sub -graphs. In all other candidate (6, 8) configurations

that we consider, check nodes have degree ≤ 2.
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(j1,k1) (j2,k2)

(j3,k3)(j6,k6) (j5,k5) (j4,k4)

Figure 2.5: Candidate 2 configuration of a (6, 8) absorbing set. In this configuration two vari-

able nodes have 5 satisfied check nodes which forces the remaining four variable nodes each

to have exactly two satisfied check nodes. Note the (4, 8) absorbing sets (v1, v2, v3, v4) and

(v1, v2, v5, v6).
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For the EAB codes, we can further show the following result:

Corollary 10 In the EAB codes, there are p2(p − 1) (6, 8) absorbing sets with the topology

shown in Fig. 2.5 for p larger than 17.

Proof: We may start with the substructure spanning 4 bit nodes (j1, k1), (j2, k2), (j5, k5) and

(j6, k6). Recall from Remark 2 in Section 2.3.1 that discussed the (4, 8) absorbing sets for EAB

codes that out of six check nodes shared by these bit nodes, exactly two have the repeated label

(it being label z = 2). Recall also from Section 2.3.1 that there are p2(p− 1) ways of assigning

values of the bit nodes and the check nodes in this (4, 8) substructure.

By symmetry of the configuration it suffices to consider the case when this repeated label

is the one corresponding to i5 and i10 and when this repeated label corresponds to some other

pair of parallel edges. The latter case is not possible since the bit nodes (j1, k1), (j2, k2), (j3, k3)

and (j4, k4) themselves constitute a (4, 8) absorbing set and the propagation of the check labels

through the proposed configuration necessarily violates the check label constraints. In the former

case, by the Bit Consistency constraints, the labeling of the checks incident to (j3, k3) and (j4, k4)

is unique for each of the nodes (without assuming these two nodes themselves share an edge).

Moreover, for the independently selected values of (j3, k3) and (j4, k4), we show by Pattern

Consistency constraint that they indeed have a common check i11, itself labeled “2”. As a result,

once the values (j1, k1), (j2, k2), (j5, k5) and (j6, k6) and their shared checks are pinned down

– which can be done in p2(p − 1) ways – the rest of the proposed (6, 8) configuration follows

uniquely. As a result, the cardinality of (6, 8) absorbing sets of the type in Fig. 2.5 is p2(p− 1).

Moreover, it can be verified by the configurations of the check node labels, that these absorbing

sets are in fact fully absorbing sets. �

Similarly, the following corollaries are consequences of Corollary 3 and 4.

Corollary 11 The (6, 8) absorbing sets in Fig. 2.5 exist in EAB codes described by the parity

check matrix H5,p
p,i·j , and their number scales as Θ(p3).
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(j2,k2) (j3,k3)

(j1,k1)

(j6,k6) (j5,k5) (j4,k4)

Figure 2.6: Candidate 3 configuration of a (6, 8) absorbing set. This is the first of two configura-

tions with exactly one variable node that has 5 satisfied check nodes.

Corollary 12 There are no (6, 8) absorbing sets with the structure of Fig. 2.5 in the SR-SCB

codes described by the parity check matrix H5,p
p,gr(i)·j , for prime p large enough with a proper

choice of RSF (that precludes (4,8) absorbing sets).

Suppose now that there is exactly one variable node in the absorbing set having all five

checks satisfied. The variable nodes in the absorbing set must necessarily be arranged either as

in Fig. 2.6 or Fig. 2.7.
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2.3.3.3 (6, 8) configuration candidate 3 - Fig. 2.6

Lemma 3 In the Tanner graph corresponding to H5,p
p,f(i,j) for the EAB codes and SR-SCB codes,

there are no (6, 8) absorbing sets for p large enough of the type shown in Fig. 2.6.

Proof: Without loss of generality we may assign check node labels for the checks emanating

from the variable node (j1, k1) as follows: i1 = x,i2 = y, i3 = z, i4 = w, and i5 = t, where

x, y, z, w, t are the five distinct check labels.

The binary cycle space for Fig. 2.6 has dimension 6. We construct the following CCM by

selecting the following linearly independent cycles: v1− v2− v6, v1− v3− v6, v1− v2− v5, v1−
v3 − v4, v1 − v3 − v5, v1 − v2 − v4:

M =




x− i6 0 0 0 i6 − t
0 y − i9 0 0 i9 − t

x− i7 0 0 i7 − w 0

0 y − i11 i11 − z 0 0

0 y − i10 0 i10 − w 0

x− i8 0 i8 − z 0 0




. (2.16)

The rank of the matrix is at most 5 so in fact we may consider the 5× 5 submatrix formed by

the first five rows (call it B). If the matrix B is full rank, then M is full rank. Hence det(B) = 0

is necessary for the existence of the absorbing sets of this type. This condition can be expressed

as

−(i11 − z)[−(x− i6)(i9 − t)(i7 − w)(y − i10)

+(x− i7)(i6 − t)(y − i9)(i10 − w)] = 0 mod p.
(2.17)

Also consider the bottom-left 4 × 4 submatrix (call it A). Note that the Bit Consistency

conditions ensure that every element of M that is not explicitly zero in (2.16) must be nonzero.

Thus, if the matrix A is full rank, then M is full rank (rank-5) because either of the top two rows

provide a row linearly independent from the bottom four rows. Hence det(A) = 0 is necessary
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for the existence of absorbing sets of the type shown in Fig. 2.6. This condition can be expressed

as

−(x− i7)(i10 − w)(y − i11)(i8 − z)

+(x− i8)(i7 − w)(i11 − z)(y − i10) = 0 mod p.
(2.18)

For the values of i6, i7, i9, i10 and i11 in the set described by f(i, j) both for the EAB and for the

SR-SCB codes, and such that the i labels of check nodes sharing a variable node are distinct (see

Fig. 2.6), (2.17) and (2.18) evaluate to zero for only finite number of values of the parameter p.

For gr(i) = i (the EAB code) det(B) 6= 0 for p > 23. We can also find many SR-SCB codes

where (2.17) and (2.18) evaluate to zero only for a finite number of values of the parameter p.

For example, with the SR-SCB code defined by the RSF [0, 1, 2, 4, 7], det(A) 6= 0 for p > 89.

Thus for p sufficiently large, neither the EAB code nor well-designed SR-SCB codes contain

(6, 8) absorbing sets of the type shown in Fig. 2.6. �

Incidentally, there do exist values of p for certain RSFs for which both det(A) = 0 and

det(B) = 0. For example, for p = 11, 17, 19, 23 with the RSF [0, 1, 2, 3, 4] both conditions

hold. As we show in Corollary 13 below, det(A) = 0 and det(B) = 0 together are a sufficient

condition for the existence of absorbing sets of the type shown in Fig. 2.6 if (4, 8) absorbing

sets have been excluded by the RSF. We also identify RSFs such as [0, 1, 2, 4, 8] where both

determinants are zero for an infinite number of p values.

Corollary 13 In the Tanner graph corresponding to H5,p
p,f(i,j), if (4, 8) absorbing sets have been

excluded by the RSF, (6, 8) absorbing sets of the type shown in Fig. 2.6 exist if and only if

det(A) = 0 and det(B) = 0, where A and B are as defined in the proof of Lemma 3.

Proof: We already established above that both det(A) = 0 and det(B) = 0 are necessary for

the existence of (6, 8) absorbing sets of the type shown in Fig. 2.6. At this point we need only

establish that these two conditions are also sufficient.

The corollary to be proven assumes that the row labels i1, . . . , i11 have been specified so that

the Bit and Check Consistency conditions are satisfied and such that det(A) = 0 and det(B) = 0.
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The first three rows of A are always linearly independent. (Recall that every element of M

that is not explicitly zero in (2.16) must be nonzero.) Thus if det(A) = 0 the bottom row of A is

a linear combination of the other 3 rows. Thus, the bottom row of M is a linear combination of

the three rows of M just above it, and rank(B) = rank(M).

Thus, if det(A) = 0 and det(B) = 0, M is not full rank, and there exists a non-zero u such

that equation (2.16) is satisfied.

If (4, 8) absorbing sets have been excluded by the selected RSF, then the (6, 8) absorbing set

in Fig. 2.6 is not extensible. Thus by Theorem 1 det(A) = 0 and det(B) = 0 is a sufficient

condition for the existence of the (6, 8) absorbing set in Fig. 2.6. That is, with the row labels

i1, . . . , i11 specified so that the Bit and Check Consistency conditions are satisfied and such that

det(A) = 0 and det(B) = 0, selecting any j1, j2, and k1 will lead to the the entire specification

of the absorbing set as with Corollary 2. �

2.3.3.4 (6, 8) configuration candidate 4 - Fig. 2.7

Lemma 4 In the EAB codes corresponding to H5,p
p,i·j , there are no (6, 8) absorbing sets with the

topology shown in Fig. 2.7 for p large enough.

Proof: The binary cycle space for Fig. 2.7 has dimension 6. We construct the following

CCM by selecting the following linearly independent cycles: v1−v2−v3, v1−v2−v4, v1−v3−v4,
v1−v3−v6, v1−v4−v5, v1−v5−v6:

M =




i1 − i2 i2 − i5 0 0 0

i1 − i6 0 i6 − i4 0 0

0 i5 − i3 i3 − i4 0 0

0 i11 − i5 0 0 i7 − i11
0 0 i10 − i4 i8 − i10 0

0 0 0 i9 − i8 i7 − i9




. (2.19)
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(j1,k1) (j2,k2)

(j3,k3)(j4,k4)

i5 i6

i1

i3

i4 i2

i7
i8

i10

i9

i11
i12

i13

i14i15

i16

i17

i18

i19

(j5,k5)

(j6,k6)

Figure 2.7: Candidate 4 configuration of a (6, 8) absorbing set. This is the second of the two

configurations with exactly one variable node that has 5 satisfied check nodes.

It suffices to consider the case when the labels i1, i2, i3, i4, i5, i6 adopt one of the following

two assignments: (i1, i2, i3, i4, i5, i6) = (x, t, w, y, z, z) or (z, t, z, y, x, w).

As with the proof of Lemma 3, M is not full column-rank if detA = 0 mod p and detB = 0

mod p, where A is the top-left 3× 3 submatrix of M and B is the bottom-right 4× 4 submatrix

of M. The matrix A corresponds to the (4, 8) absorbing set involving variable nodes v1, v2, v3,

and v4. As shown in Corollary 3, EAB codes always contain (4, 8) absorbing sets. Thus there is

always an assignment of EAB row group labels to i1, i2, i3, i4, i5, i6 such that detA = 0 mod p.

When detA = 0 mod p, the second row of A is a linear combination of the the first and

third rows of A. Thus the second row of M is a linear combination of the first and third rows.

Therefore the rank of M only depends on the submatrix M̂ that contains all the rows of M except

the second row. Thus for the first assignment,

38



det M̂ =(x− t)[(z − w)(i10 − y)(i7 − i11)(i9 − i8)

− (i11 − z)(w − y)(i8 − i10)(i7 − i9)] ≡ 0 mod p
(2.20)

is a necessary condition for the existence of the (6, 8) absorbing set with the configuration shown

in Fig. 2.7. Similar analysis can be done for the second assignment. This constraint cannot

be satisfied for p > 41 for i1 to i11 taking values in the set {0, 1, 2, 3, 4} and such that the Bit

Consistency constraints are satisfied for both labellings. �

Note that the VN of the configuration shown in Fig. 2.7 contains a subgraph that is the VN

graph of a (4, 8) absorbing set. The following again is an easy consequence of Corollary 4.

Corollary 14 The configuration shown in Fig. 2.7 is not possible in SR-SCB codes for which

(4, 8) absorbing sets are absent.

In the remainder we consider the case when no bit node in the absorbing set has all five

satisfied checks. This constraint implies one of the configurations shown in Fig. 2.8 and Fig. 2.9.

2.3.3.5 (6, 8) configuration candidate 5 - Fig. 2.8

Lemma 5 In the Tanner graph corresponding to H5,p
p,i·j there are Θ(p3) (6, 8) absorbing sets of

the type shown in Fig. 2.8 for p large enough.

Proof: Note that by the property of (4, 8) absorbing sets satisfied check nodes in the sub-

structure spanning bit nodes (j1, k1), (j2, k2), (j3, k3), and (j4, k4) can be labelled by either

(i1, i2, i3, i4, i5, i6) = (x, t, w, y, z, z) or (i1, i2, i3, i4, i5, i6) = (z, t, z, y, x, w).

Using the technique of Section 2.2.2 we construct the CCM for this configuration under

labeling (i1, i2, i3, i4, i5, i6) = (x, t, w, y, z, z). The binary cycle space for Fig. 2.8 has dimension

6. We construct the following CCM by selecting the following linearly independent cycles:

v1 − v2 − v3, v1 − v2 − v4, v1 − v3 − v4, v1 − v2 − v5, v1 − v3 − v6 − v4, v1 − v5 − v6 − v4:
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(j1,k1)

(j5,k5)

(j6,k6)

(j2,k2)

(j3,k3)(j4,k4)

Figure 2.8: Candidate 5 configuration of a (6, 8) absorbing set. This is the first of two configura-

tions with no variable nodes that have 5 satisfied check nodes.
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M =




x− t t− z 0 0 0

x− z 0 z − y 0 0

0 z − w w − y 0 0

x− i5 0 0 i5 − i4 0

0 i9 − w w − i10 0 i10 − i9
0 0 y − i10 i11 − i4 i10 − i11




. (2.21)

Analogous to the proof of Lemma 4, the top-left 3-by-3 matrix has a zero determinant and with-

out loss of generality, suppose the second row of M is linearly dependent of the other five rows.

Denote the other five rows as M̂. Its determinant is

det M̂ = −(x− i5)(t− z)(w − y)(i10 − i9)(i11 − i4)

+ [−(z − w)(i5 − i4)((w − i10)(i10 − i11)− (i9 − i10)(i10 − i9))

+ (i9 − w)(w − y)(i5 − i4)(i10 − i11)](x− t) mod p.

(2.22)

In fact this determinant always evaluates to zero for every value of p for 6 non-isomorphic

edge labellings. For each such labelling, once the values of j1, k1 and j2 are selected (which can

be done in p2(p − 1) ways), the rest of values in the configuration follows uniquely. Therefore

there are 6p2(p− 1) such absorbing sets.

For certain small values of p, p ∈ {2, 3, 7, 11, 13, 31, 47}, there are additional solutions for

which (2.22) evaluates to zero, raising the total number of solutions to 8p2(p− 1). Nonetheless,

the scaling Θ(p3) of the cardinality of the absorbing sets still holds.

In the latter case, for (i1, i2, i3, i4, i5, i6) = (z, t, z, y, x, w) we likewise establish a matrix

relating the labels of the check nodes (i7, i8, i9, i10, i11) in Fig. 2.8 incident to bit nodes (j5, k5)

and (j6, k6) to adjacent checks. Again, by imposing the Bit Consistency conditions, we conclude

that the above constraint cannot hold for p > 23 and therefore such a labelled configuration is in

fact not possible for large enough p. �
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(j4,k4)

(j5,k5)

(j6,k6)

(j3,k3)

(j2,k2)
(j1,k1)

Figure 2.9: Candidate 6 configuration of a (6, 8) absorbing set. This is the second of two config-

urations with no variable nodes that have 5 satisfied check nodes.

As in the previous case, the VN graph of the configuration shown in Fig. 2.8 has a subgraph

that is the VN graph of a (4, 8) absorbing set. The following again is an easy consequence of

Corollary 4.

Corollary 15 The configuration shown in Fig. 2.8 is not possible in SR-SCB codes for which

(4, 8) absorbing sets are absent.

2.3.3.6 (6, 8) configuration candidate 6 - Fig. 2.9

The last configuration we consider is the one in Fig. 2.9.

Lemma 6 In the Tanner graph corresponding to H5,p
p,f(i,j), for p large enough there are no (6, 8)
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absorbing sets of the type shown in Fig. 2.9 in either the EAB codes or in the SR-SCB codes.

Proof: Using the technique of Section 2.2.2 we construct the CCM for this configuration. The

binary cycle space for Fig. 2.9 has dimension 6. We construct the following CCM by selecting

the following linearly independent cycles: v1 − v2 − v4, v1 − v4 − v5, v2 − v3 − v4, v3 − v4 −
v5, v2 − v3 − v6, v1 − v2 − v6:

M =




i8 − i2 0 i2 − i1 0 0

0 0 i1 − i4 i4 − i10 0

i6 − i2 i3 − i6 i2 − i3 0 0

0 i5 − i3 i3 − i4 i4 − i5 0

i9 − i6 i6 − i7 0 0 i7 − i9
i8 − i9 0 0 0 i9 − i11




. (2.23)

The inspection of M reveals that rank(M) = 4 if and only if det(A) = 0 and det(B) = 0,

where

A =




i8 − i2 0 i2 − i1 0

0 0 i1 − i4 i4 − i10
i6 − i2 i3 − i6 i2 − i3 0

0 i5 − i3 i3 − i4 i4 − i5



, (2.24)

B =




i8 − i2 0 i2 − i1 0 0

0 0 i1 − i4 i4 − i10 0

i6 − i2 i3 − i6 i2 − i3 0 0

i9 − i6 i6 − i7 0 0 i7 − i9
i8 − i9 0 0 0 i9 − i11




. (2.25)

Their determinants are

det(A) = (i8 − i2)[−(i1 − i4)(i3 − i6)(i4 − i5)

+ (i4 − i10)((i3 − i6)(i3 − i4)− (i2 − i3)(i5 − i3))]
(2.26)
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det(B) = (i4 − i10)[−(i8 − i2)(i9 − i11)(i2 − i3)(i6 − i7)

+ (i2 − i1)((i6 − i2)(i6 − i7)(i9 − i11)

− (i3 − i6)((i9 − i6)(i9 − i11)− (i7 − i9)(i8 − i9)))]

(2.27)

Then in a manner similar to the proof of Lemma 3, we can show that the determinant of the

corresponding matrix evaluates to zero only for finitely many choices for p for either selection

of gr(i). If the determinant is equal to zero, we can prove the existence by constructing a valid

solution, as stated in the proof of Theorem 1. In particular for the EAB codes, it suffices for p to

be > 29 and p 6= 41 for the configuration not to exist.

For p < 29, and with the RSF equal to [0, 1, 2, 3, 4], both det(A) and det(B) equal 0 mod p,

which means this configuration exists for any prime number p < 29 with the RSF equal to

[0, 1, 2, 3, 4]. We also identify RSFs such as [0, 1, 2, 3, 6] where both determinants are zero for

an infinite number of p values, and thus this configuration always exists for any prime number p

with the RSF [0, 1, 2, 3, 6]. �

2.3.4 Summary for (4, 8), (5, 9) or (6, 8) absorbing sets

We have now considered all possible (6, 8) configurations. The following theorem is a conse-

quence of previously established results in Corollary 2, Lemma 1 through Lemma 6, and Corol-

lary 3 through Corollary 15.

Theorem 2 In r = 5 EAB codes the number of (4, 8), (5, 9) and (6, 8) absorbing sets scales as

Θ(p3) whereas in SR-SCB codes with a properly selected RSF such as the examples given below

there are no (4, 8), (5, 9) or (6, 8) absorbing sets for large enough p.

Table 2.1 presents some examples of RSFs that produce r = 5 SR-SCB codes for which

(4, 8), (5, 9) and (6, 8) absorbing sets do not exist. Additionally, [0, 1, 2, 4, 7] for p > 179 and

[0, 1, 3, 4, 5] for p > 271 are generally good to eliminate (4, 8), (5, 9) and (6, 8) absorbing sets.

Remark 3 For sufficiently small p’s, (4, 8), (5, 9) and (6, 8) absorbing sets cannot be eliminated
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Table 2.1: Row selection functions for SR-SCB codes with r = 5 and a specified p (p > 61) that

avoid all (4, 8), (5, 9), and (6, 8) absorbing sets.

p Rate k
n
= 1− rp−r+1

p2
RSF

67 0.9263 [0, 1, 2, 4, 17]

73 0.9323 [0, 1, 2, 3, 11]

79 0.9373 [0, 1, 2, 6, 7]

83 0.9403 [0, 1, 2, 3, 7]

89 0.9443 [0, 1, 2, 4, 11]

simultaneously for the SR-SCB codes. Here are a few examples that remove most of these absorb-

ing sets for p < 50: (1) for p = 47 with RSF= [0, 1, 2, 3, 5], only the absorbing sets in Fig. 2.3

and Fig. 2.6 exist; (2) for p = 43 with RSF=[0, 1, 2, 4, 6], only the absorbing set in Fig. 2.3 exists.

�

2.3.5 Absorbing set spectrum in Tanner construction

We now apply our analysis to the Tanner construction in [TSS04], whose codes are in the family

of SCB codes. The Tanner-construction codes have the parity-check matrix Hr,c
p,ai·bj with a, b ∈

GF (p) and o(a) = r and o(b) = c, where o(a) indicates the multiplicative order of a in GF (p).

We refer to this class of codes as Tanner-construction codes throughout the chapter.

Lemma 7 In the Tanner graph corresponding to quasi-cyclic LDPC H5,p
p,ai·bj in [TSS04], no

(4, 8) or (6, 8) absorbing sets exist with parameters selected in Table I of [TSS04].

Proof: For the codes in Table I of [TSS04] with girth greater than 6, neither (4, 8) nor (6, 8)

absorbing sets exist since they contain length-6 cycles. For the codes in Table I of [TSS04] with

girth = 6, we have analyzed each code using the CCM approach and confirmed that in each

case neither (4, 8) nor (6, 8) absorbing sets exist. This analysis is too lengthy to include in this
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chapter, but we provide the following example.

Consider the girth = 6 code with p = 31, c = 6, r = 5 as an example, with a = 2, b = 6. The

matrix H5,p
p,f(i,j) here is a sub-matrix of the SR-SCB code with RSF [1, 2, 4, 8, 16]. Thus f(i, j) =

aibj is achieved because the RSF enforces ai and the submatrix of the SR-SCB code selects the

columns to enforce bj . We set up a system of equations as before, and conclude that for (4, 8)

absorbing sets, the only possible labeling for p = 31 is (i1, i2, i3, i4, i5, i6) = (x, t, w, y, z, z).

There are five non-isomorphic solutions to (2.11): (x, y, z, w, t) = (2, 4, 1, 16, 8), (1, 8, 2, 4, 16),

(1, 2, 4, 16, 8), (1, 4, 8, 2, 16), (1, 2, 16, 8, 4).

Each of the solutions corresponds to the CCM equation:

Mu =




x− t t− z 0

x− z 0 z − y
0 z − w w − y







u2

u3

u4


 = 0. (2.28)

Since detM = 0 and rank(M) = 2, equation (2.28) is equivalent to


 x− t t− z 0

x− z 0 z − y







u1

u2

u3


 = 0. (2.29)

If we expand the u’s with ui = ji − j1, equation (2.29) is equivalent to


 z − x x− t t− z 0

y − x x− z 0 z − y







j1

j2

j3

j4



= 0. (2.30)

We denote the matrix in equation (2.30) as R.

Suppose the null space of each realization of the matrix R (as a function of the (x, y, z, w, t)

values) is Ni, 1 ≤ i ≤ 5. For any (4, 8) absorbing set, (j1, j2, j3, j4) should be in ∪
1≤i≤5

Ni.

Because of the Tanner construction, the column groups for this code are the powers of 6 mod 31.
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Denote this set by Y = {1, 6, 5, 30, 25, 26} the index of the selected column groups in the quasi-

cyclic code. The 4-tuple (j1, j2, j3, j4) should also be in ∪
i,j,k,l

(Y (i), Y (j), Y (k), Y (l)) where

i, j, k, l are distinct integers between 1 and 6. However, in this case,

{ ∪
i,j,k,l

(Y (i), Y (j), Y (k), Y (l))} ∩ { ∪
1≤i≤5

Ni} = ∅.

Thus (4, 8) absorbing sets do not exist and consequently (6, 8) absorbing sets in Figs. 2.5, 2.7

and 2.8 also do not exist.

Similarly, the null space of matrices considered in equations (2.16) and (2.23) in Lemma 3

and 6 does not have a non-trivial intersection with ∪
i,j,k,l

(Y (i), Y (j), Y (k), Y (l)), which elimi-

nates the possibility of existence of (6, 8) absorbing sets in Fig. 2.6 and 2.9. �

Codes listed in Table I of [TSS04] are mostly moderate-rate codes (the rate being around 0.5).

The construction of codes with higher rates from this code family requires more columns to be

selected from the SCB mother matrix. However, when more columns are selected, the Tanner

construction cannot guarantee the absence of certain absorbing sets.

Lemma 8 In the Tanner graph corresponding to quasi-cyclic LDPC with H5,p
p,ai·bj in [TSS04],

for higher rates in this class, (4, 8), (5, 9) and (6, 8) absorbing sets can exist.

Proof: For higher rates in this class, for instance with parameters p = 31, c = 10, r = 5,

a = 2, b = 15 (with Y =1,15,8,27,2,30,16,23,4,29), (4, 8) and (6, 8) absorbing sets exist due to

∪
i,j,k,l

(Y (i), Y (j), Y (k), Y (l)) ∩ ∪
1≤i≤5

Ni being non-empty, and thus equation (2.16) and (2.23)

have nonzero solutions with Y . �

With the same row selection, the parity check matrix of the SR-SCB code has the parity check

matrix of the Tanner construction as a submatrix. According to the conclusions of Theorem 2,

we can modify Tanner construction by using an optimized row selection to avoid all the (4, 8),

(5, 9) and (6, 8) absorbing sets for large p.

Lemma 9 In the Tanner graph corresponding to quasi-cyclic LDPC codes (in [TSS04]) de-

scribed by H5,p
p,ai·bj with higher rates and large enough p, all of (4, 8), (5, 9) and (6, 8) absorbing

sets can be eliminated by only modifying the mapping sequence of the rows.
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Proof: By replacing the row mapping sequence gr(i) = αi−1 by gr(i) = [0, 1, 2, 4, 7], the

quasi-cyclic LDPC H5,p

p,f̂(i,j)
becomes a new class of SCB LDPC codes with f̂(i, j) = gr(i) ·

bj . Since H5,p

p,f̂(i,j)
is a submatrix of the mother matrix Hp,p

p,i·j , it follows that (4, 8),(5, 9) and

(6, 8) absorbing sets can be structurally eliminated for p large enough using the exactly the same

analysis as presented in Sections 2.3.1 through 2.3.3. �

Remark 4 We already showed that one can easily check the existence of certain absorbing sets

in Tanner construction [TSS04] (Lemmas 8 and 9). Other popular quasi-cyclic LDPC codes,

such as codes in [Fos04] and [Fan00] can also be viewed as being constructed based on a

selection of certain rows and columns of the SCB matrix. Codes in the Section III-B2/B3 of

[Fos04] use the SCB structure with parity-check matrix Hr,c
p,f(i,j), where f(i, j) = i · j, 0 ≤

i ≤ r − 1, 0 ≤ j ≤ c − 1 or f(i, j) = (ai − 1)(bj − 1), 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c − 1.

Array codes [Fan00] use the first r row groups of Hp,p
p,i·j . The approach developed for the SCB

construction can therefore be easily applied to codes in [Fos04] and [Fan00].

2.3.6 Equivalence Classes for SR codes

The above analysis leads to some helpful code equivalence conditions.

Since the order of the elements in the RSF only permutes the matrix Hr,c
p,gr(i)·j and does not

change the code properties, we can assume that the RSF vector [a1, a2, ..., ar] is ordered in as-

cending order.

Consider a difference matrix D of the RSF, where Dij ≡ aj − ai mod p, 1 ≤ i, j ≤ r.

If D̃ = D or D̃ is the reflection of D on its antidiagonal, we say that D̃ and D are equivalent

difference matrices. The following lemma establishes some absorbing-set equivalence classes.

Lemma 10 The following pairs of RSFs are equivalent in the sense that they have the same

absorbing sets:

1. [a1, a2, ..., ar] ≡ [a1, a2, ..., ar] + constant mod p
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2. [a1, a2, ..., ar] ≡ [a1, a2, ..., ar]× constant6=0 mod p

3. [a1, a2, ..., ar] ≡ [ã1, ã2, ..., ãr] if they have equivalent difference matrices.

Proof: With results proven in Lemma 1 through Lemma 6, and in Corollary 2 through Corol-

lary 15, the existence of any particular absorbing set hinges on on whether the determinant of the

associated CCM is zero. Since the determinant is only a function of the differences between the

elements of the RSF, if two RSFs [a1, a2, ..., ar] and [ã1, ã2, ..., ãr] share any of the three equiv-

alent conditions, [a1, a2, ..., ar] has a zero determinant if and only if [ã1, ã2, ..., ãr] has a zero

determinant. �

Remark 5 Since the null space of CCM also only depends on the difference of the column-group

indices, analogous equivalence conditions can be established column-wise. �

The following is a consequence of Lemma 10.

Corollary 16 Any RSF is equivalent to an RSF [0, 1, x, y, z], where x, y, z are positive integers.

Proof: With condition (1) in Lemma 10, a mapping vector is equivalent to any mapping vector

that differs by a constant in GF (p). Thus we can subtract the smallest value in the mapping

vector and obtain a 0 in the mapping vector. Then, with condition (2) in Lemma 10 and the

multiplicative property of GF (p), we can multiply the mapping vector by some value in GF (p)

to make one of the non-zero elements equal to 1. Therefore any mapping vector is equivalent to

a mapping vector that contains 0 and 1. �

This result enables a reduced search of structured matrices with good error-floor properties.

For example, a row-mapping vector [0, 1, 2, 4, 6] is equivalent to [1, 2, 3, 5, 7], and to [0, 2, 4, 8, 12].

2.4 Theoretical results for r = 4

This section provides an example with r = 4 (four row groups) that shows how to design an SCB

code with a specified circulant matrix that eliminates the dominant absorbing sets by selecting
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rows and columns from the SCB mother matrix to force the CCMs associated with the dominant

absorbing sets to be full column-rank.

In addition to the EAB codes and SR-SCB codes introduced in Section 2.3, removing a

few column groups from an SR-SCB code provides further improvement. Hence, shortened SR

(SSR) SCB codes form our third class of SCB codes. The parity-check matrix for these codes

is Hr,c
p,f , with f(i, j) = gr(i) · gc(j) where gc(j) is called the column-selection function (CSF).

Note that for a p× p circulant matrix, EAB and SR-SCB codes have p column groups (p2 binary

columns), but SSR-SCB codes have fewer column groups since gc(j) selects a subset of the

possible column groups.

Section 2.4.1 identifies the (6, 4) absorbing sets as dominant for EAB codes with r = 4. Sec-

tion 2.4.2 analyzes the three possible (6, 4) absorbing set configurations and shows how carefully

selecting four row groups from the SCB mother matrix can eliminate two of the three possible

configurations. Section 2.4.3 provides an efficient provable algorithm to eliminate all (6, 4) ab-

sorbing sets by combining the row selection of Section 2.4.2 with column selection in which

some column groups of the SCM mother matrix are removed.

2.4.1 Identifying the dominant absorbing sets

From the previous results in [DZW10], (6, 4) absorbing sets are the smallest possible structure

for EAB codes with r = 4 for p > 19. Hardware simulations [ZDN09] also demonstrate that

(6, 4) absorbing sets are the dominant cause of the error floor for example r = 4 EAB codes.

Based on these results, a key goal will be to design an r = 4 SCB code that avoids all

(6, 4) absorbing sets. The lemma below establishes that the new code design approach does not

introduce other smaller absorbing sets that were avoided by the codes discussed above.

Lemma 11 In the Tanner graph corresponding to H4,p
p,gr(i)·j , there is no absorbing set smaller

than (6, 4) for p large enough with a careful choice of the row-selection function gr(i).

Proof: The smallest possible absorbing sets for an H4,p
p,gr(i)·j SCB code are (4, 4), (5, 2), (5, 4)
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and (6, 2) absorbing sets (cf. [DZW10]). The (4, 4), (5, 4) and (6, 2) absorbing sets for r = 4

are sub-graphs of the (4, 8), (5, 9) and (6, 8) absorbing sets, respectively, for r = 5. From the

analysis of absorbing sets for r = 5 in the previous section (see also [DWZ10]), a careful choice

of the r = 5 row-selection function (RSF) ã(i) eliminates the (4, 8), (5, 9) and (6, 8) absorbing

sets for p large enough. Taking any 4-element subset gr(i) of such an ã(i), for example the

RSF gr(i) where [gr(0), gr(1), gr(2), gr(3)] = [0, 1, 3, 4], as a subset of [0, 1, 3, 4, 5] that can

eliminate the (4, 8), (5, 9) and (6, 8) absorbing sets for p > 271, avoids the (4, 4), (5, 4) and

(6, 2) absorbing sets for r = 4. Any RSF that avoids the (4, 4) absorbing set also avoids the

(5, 2) absorbing set [DZW10]. Thus the resulting H4,p
p,gr(i)·j avoids (4, 4), (5, 2), (5, 4) and (6, 2)

absorbing sets. �

Remark 6 Since the SSR code is a shortened version of the SR code, obtained by removing

certain variable nodes, no smaller absorbing set will be introduced in the SSR code. �

In Section 2.4.2, we show that SR codes always have (6, 4) absorbing sets, irrespective of

the choice of gr(i). Avoidance of all such configurations using shortening is the subject of

Section 2.4.3.

2.4.2 (6, 4) absorbing sets in SR-SCB codes

Three distinct configurations of (6, 4) absorbing sets are possible for r = 4 SCB codes. This

section shows which of these configurations are possible in EAB and SR-SCB codes. The first

configuration exists in the EAB code and in every possible SR-SCB code. The second configu-

ration exists in the EAB code but can be avoided by a proper choice of the RSF for the SR-SCB

code. The third configuration does not exist in either the EAB code or the SR codes.

2.4.2.1 The first (6,4) configuration

Fig. 2.10 shows the first configuration of a (6, 4) absorbing set in an r = 4 SCB code. The

following lemma establishes that the EAB code and all SR codes have this configuration.
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Figure 2.10: Depiction of the first (6, 4) absorbing set configuration.

Lemma 12 In the Tanner graph corresponding to the EAB code and all SR codes with H4,p
p,f(i,j)

there are (6, 4) absorbing sets for any p with the configuration shown in Fig. 2.10.

Proof: Using the technique of Section 2.2.2 we construct the CCM for this configuration. The

binary cycle space for Fig. 2.10 has dimension 5. We construct the following CCM by selecting

the following linearly independent cycles: v1− v2− v3, v1− v2− v4, v1− v2− v5, v1− v3− v6−
v4, v1 − v5 − v6 − v4,

M =




i4 − i5 i5 − i1 0 0 0

i4 − i6 0 i6 − i2 0 0

i4 − i7 0 0 i7 − i3 0

0 i1 − i8 i9 − i2 0 i8 − i9
0 0 i2 − i9 i10 − i3 i9 − i10




. (2.31)

To avoid this absorbing set we need to force the determinant of the CCM to be nonzero. Note

that det(M) is computed as

M11M23M34M42M55

−M12

(
M23M31M45M54 −M21M34(M43M55 −M45M53)

)
,

52



where Mij denotes the (i, j) entry in M.

From the proof of Lemma 8 in [DZW10], there are only two non-isomorphic row-group label-

ings for the check nodes of Fig. 2.10. It is sufficient to consider only (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)

= (x, y, z, w, y, z, x, z, x, y) or (x, y, z, w, y, z, x, z, w, y) with x, y, z, and w taking distinct val-

ues in the range of RSF. The first labeling yields

M =




w − y y − x 0 0 0

w − z 0 z − y 0 0

w − x 0 0 x− z 0

0 x− z x− y 0 z − x
0 0 y − x y − z x− y




, (2.32)

and det(M) = 0 regardless of the specific values of w, x, y, z taken as mutually distinct integers

mod p.

Thus there exists a non-zero solution to M · u ≡ 0 mod p. One solution to this equation is



u2

u3

u4

u5

u6




≡




(x− y)(z − y)(x− z)
(w − y)(z − y)(x− z)
(w − z)(y − x)(x− z)
(w − x)(y − x)(z − y)

(w − y)(x− z)(z − y) + (y − x)(w − z)(x− y)




. (2.33)

For this absorbing set, the Check Consistency condition requires u2 6= 0, u3 6= 0, u4 6= 0,

u5 6= 0, u2 6= u3, u2 6= u4, u2 6= u5, u3 6= u6, u4 6= u6, and u5 6= u6. These requirements as well

as the Bit Consistency inequalities are met since x, y, z, w are mutually distinct.

The solution in (2.33) satisfies the Bit, Check and Cycle Consistency constraints. This is a

sufficient condition for the existence of a (6, 4) absorbing sets with the configuration of Fig. 2.10.

Any four distinct values between 0 and p− 1 for {x, y, z, w} identify a labeling of this first type

that identifies an absorbing set in the EAB code and every SR SCB code.

Consider (i1, i2, . . . , i10) = (x, y, z, w, y, z, x, z, w, y), the second labeling. In this case

det(M) 6= 0 for {x, y, z, w} = {0, 1, 2, 3}. Thus det(M) 6≡ 0 mod p for p large enough,
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Figure 2.11: Depiction of the second candidate (6, 4) absorbing set.

and there is no such (6, 4) configuration with this labeling in the EAB code for p large enough.

The EAB code is one possible SR code. Other careful choices of the RSF gr(i), produce other

SR codes that likewise do not have this (6, 4) configuration. �

2.4.2.2 The second (6,4) configuration

Fig. 2.11 shows the second possible configuration of a (6, 4) absorbing set in an r = 4 SCB code.

The following lemma establishes that the EAB code has this configuration but well-designed SR

codes avoid it.

Lemma 13 In the Tanner graph corresponding to H4,p
p,f(i,j), (6, 4) absorbing sets of the type

shown in Fig. 2.11 exist in the EAB code, but do not exist in certain SR codes for p large enough.

Proof: Again using the technique of Section 2.2.2 we construct the CCM for this configura-

tion. The binary cycle space for Fig. 2.10 has dimension 5. We construct the following CCM by

selecting the following linearly independent cycles: v1− v3− v4, v1− v5− v6, v2− v3− v4, v2−
v5 − v6, v1 − v4 − v2 − v5,

M =




0 i1 − i9 i9 − i2 0 0

0 0 0 i3 − i10 i10 − i4
i5 − i6 i9 − i5 i6 − i9 0 0

i7 − i8 0 0 i10 − i7 i8 − i10
i6 − i7 0 i2 − i6 i7 − i3 0




. (2.34)

54



Note that the determinant is computed as follows:

det(M) =−M12M25M33M41M54 +M13M25M32M41M54

+M12M24M31M45M53 −M12M25M31M44M53

−M12M24M33M45M51 +M13M24M32M45M51

+M12M25M33M44M51 −M13M25M32M44M51.

As with the previous lemma, the proof of Lemma 8 in [DZW10] identifies exactly two non-

isomorphic labelings for (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) in Fig. 2.11. These are (x, y, z, w, y,

x, w, z, z, y) and (x, y, z, w, y, z, w, x, w, y) for {x, y, z, w} = {0, 1, 2, 3}.

For the first labeling det(M) is zero for distinct x, y, z, and w. Thus the configuration in

Fig. 2.11 with this labeling exists in the EAB code. For the second labeling, det(M) is not zero

for distinct x, y, z, and w. Therefore the configuration with this labeling does not exist in the

EAB codes for p large enough.

For both labelings, SR codes can avoid the configuration in Fig. 2.11 with a careful choice

of RSF. One such example is the RSF [0, 1, 3, 4]. Since the largest prime factor of det(M) is 31,

the mapping vector avoids this configuration for p > 31. �

2.4.2.3 The third (6,4) configuration

Fig. 2.12 shows the third configuration of a (6, 4) absorbing set in an r = 4 SCB code. The

following lemma establishes that neither the EAB nor well-designed SR codes have this config-

uration.

Lemma 14 In the Tanner graph corresponding to H4,p
p,f(i,j) there are no (6, 4) absorbing sets for

p large enough with the configuration shown in Fig. 2.12 in either the EAB or in the SR code.

Proof: Similar to the proof of Lemmas 12 and 13, the minimum number of independent

cycles needed in Fig. 2.12 is 5 and the CCM can be constructed using the cycles v1 − v3 − v4,
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Figure 2.12: Depiction of the third candidate (6, 4) absorbing set.

v1 − v2 − v4, v1 − v2 − v5, v2 − v5 − v6, v1 − v3 − v6 − v5:

M =




0 i1 − i8 i8 − i2 0 0

i4 − i5 0 i5 − i2 0 0

i4 − i6 0 0 i6 − i3 0

i6 − i7 0 0 i9 − i6 i7 − i9
0 i1 − i10 0 i9 − i3 i10 − i9




. (2.35)

where

det(M) =M12M23(M31(M44M55 −M45M54)−M34M41M55)

+M13M21M34M45M52.
(2.36)

With the proof of Lemma 8 in [DZW10], there are seven non-isomorphic labelings for (i1, i2, i3, i4,

i5, i6, i7, i8, i9, i10). Fixing (i1, i2, i3, i4) = (x, y, z, w), we need only consider (i5, i6, . . . , i10) =

(x, y, z, z, x, y), (x, y, z, z, x, w), (x, y, z, z, w, y), (x, y, z, w, w, y), (z, x, y, w, w, z), (z, y, x,

w, w, y), and (z, y, x, w, w, z) .

For these seven labelings det(M) is not zero for {x, y, z, w} ∈ {0, 1, 2, 3} for p large enough.

Therefore the configuration in Fig. 2.12 with this labeling does not exist in the EAB codes for

p large enough. With a numerical evaluation of the determinant, p > 13 is sufficient for the

absence of this configuration in the EAB codes. Moreover, for all of the seven labelings, SR-

SCB codes can avoid the configuration in Fig. 2.12 with careful choice of the row mapping. One
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such example is the EAB RSF. Another is to choose the RSF [0, 1, 3, 4], which can avoid this

configuration for p > 19. �

2.4.3 Eliminating (6, 4) absorbing sets with shortening

For a sufficiently large p, well-designed SR codes avoid the (6, 4) absorbing set configurations

in Fig. 2.11 and 2.12. However, as shown in Lemma 12, SR codes cannot eliminate the (6, 4)

absorbing set configuration in Fig. 2.10. We now consider shortened SR (SSR) codes that retain

only certain column groups from the SCB mother matrix (reducing the rate). A well-chosen

column selection gc(j) allows the Tanner graph corresponding to H4,c
p,gr(i)·gc(j) to avoid all (6, 4)

absorbing sets.

We begin with an SR code using well-selected RSF gr(i), for instance [0, 1, 3, 4], that already

avoids the (6, 4) absorbing set configurations in Figs. 2.11 and 2.12 for p large enough. We then

choose a CSF gc(j) to also avoid the (6, 4) absorbing set configurations in Fig. 2.10. Choosing

a column selection gc(j) reduces to choosing a submatrix of H4,p
p,gr(i)·j by eliminating certain

variable nodes. This operation cannot introduce smaller absorbing sets.

One solution to M · u ≡ 0 mod p is equation (2.33). The rank of M in (2.32) is 4, and

therefore this single solution forms a basis of the null space. Multiplying u by a constant c, for

1 ≤ c ≤ p− 1, also results in a solution. These p− 1 solutions cover all of the feasible solutions

described by the null space. For fixed u1, ..., u5, we can choose j1 from 0, 1, ..., p− 1 and obtain

j2, ..., j6. Thus there are p(p − 1) ways to find j1 to j6 for a fixed {x, y, z, w}. Since there are

4! ways to assign check node labels based on the set {x, y, z, w} for a fixed row mapping, there

are at most 24p(p− 1) possible vectors [j1, j2..., j6] that can form the configuration in Fig. 2.10.

These vectors form the set Ṽ of vectors, which completely characterizes the instances of this

absorbing set configuration.

If a CSF is applied, each variable node group label j is in a set J where J ⊂ {0, 1, ..., p− 1}
and we can only choose [j1, j2..., j6] such that jm ∈ J,m = 1, ..., 6. There are

(|J |
6

)
possible

[j1, j2..., j6] vectors and they form a set of vectors V . If V ∩ Ṽ = ∅, the new code does not have
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the (6, 4) configuration in Fig. 2.10. We can find such a CSF with the greedy column-cutting

procedure described in Algorithm 1 or the column-adding procedure described in Algorithm 2.

Algorithm 1 Greedy column-cutting algorithm.
1: % Initialization: C begins with all columns.

2: C = {0, 1, ..., p− 1}.
3: Collect all the vectors [j1, j2..., j6], that form the configuration in Fig. 2.10 with jn ∈ C, n =

1, ..., 6 and they form a set W= Ṽ .

4: % Proceed one column at a time removing columns that % preclude vectors in Ṽ until no

vector in Ṽ is possible.

5: while |W | > 0 do

6: Find the most frequent j in W , say jm.

7: Replace C by C \ jm.

8: Remove every [j1, j2..., j6] that involves jm from W .

9: end while

10: % C contains the column groups of the designed code.

Remark 7 A similar technique could be applied to increase the girth [MKL06] instead of elim-

inating the smallest absorbing set. However, simply increasing the girth would not guarantee a

better performance, see e.g. [NVM10]. �

2.4.4 SSR codes with Tanner construction

This section shows that for r = 4, the row-selection function gr(i) of the Tanner construction

[TSS04] will always introduce (4, 4) absorbing sets for the case set forth in the following lemma.

For a an element of GF (p) let o(a) denote its multiplicative order in GF (p).

Lemma 15 In the Tanner graph corresponding to the quasi-cyclic LDPC code with the parity-

check matrix H4,p−1
p,gr(i)·gc(j), where gr(i) = ai, o(a) = 4, gc(j) = bj, o(b) = p− 1, (4, 4) absorbing

sets as shown in Fig. 2.13 always exist.
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Algorithm 2 Column-adding algorithm.
1: % Initialization: Select an initial six columns for C that % do not form a vector in Ṽ .

2: J = {0, 1, ..., p− 1}.
3: Collect all the ordered vectors [j1, j2..., j6], that form the configuration in Fig. 2.10 with

jn ∈ J, n = 1, ..., 6, into the set Ṽ .

4: Choose a distinct 6-element set C, C ⊆ J .

5: while for some ordering [ĵ1, ĵ2..., ĵ6] of the elements of C, [ĵ1, ĵ2..., ĵ6] ∈ Ṽ do

6: Choose another distinct 6-element set C randomly such that C ⊆ J .

7: end while

8: % Proceed one column group at a time, adding columns % to C that do not introduce the

absorbing set.

9: J = {0, 1, ..., p− 1} \ C
10: while |J | > 0 do

11: Select a jm randomly from J .

12: if every [ĵ1, ĵ2..., ĵ6] 6∈ Ṽ for every ĵ1, ĵ2..., ĵ6 ∈ {C ∪ jm} then

13: C = C ∪ jm
14: end if

15: J = J \ jm
16: end while

17: % C contains the column groups of the designed code.
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Figure 2.13: Depiction of the (4, 4) absorbing set configuration.

Proof: With the analysis similar to that of the proof Corollary 2, it follows that there is

only one possible non-isomorphic check labeling for this configuration that satisfies Bit Con-

sistency and Check Consistency: (i1, i2, i3, i4, i5, i6) is (x, y, x, y, z, w), where {x, y, z, w} ⊂
(gr(0), gr(1), gr(2), gr(3)). Therefore the necessary and sufficient condition for the existence of

(4, 4) absorbing sets can be also formulated as

detM = (z − x)(w − y) + (z − y)(w − x) = 0 mod p. (2.37)

Since gr(i) = αi, o(α) = 4, we can assign x = 1, w = α, y = α2, z = α3. Then the determinant

can be represented as

detM = (α3 − 1)(α− α2) + (α2 − α3)(1− α)

= 2(1− α + α2 − α3)

= 2(1− α)(1 + α2) .

(2.38)

With the fact that o(α) = 4, α4 = 1. Also, o(α2) = 2 so that the only possible value of α2 in

GF (p) is p− 1. Thus detM = 0 mod p.

According to the analysis in the proof of Corollary 2, detM = 0 mod p implies that there

exists a non-zero u = [u2, u3, u4]
T , where u2 6= 0, u3 6= 0, u4 6= 0 are required to satisfy the

bit-consistency conditions. Since o(β) = p − 1, the parity check matrix H4,p−1
p,gr(i)·gc(j) includes
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almost all the column groups except the one with index 0. Thus by carefully selecting a non-zero

j1 such that j1 6= p − u2, j1 6= p − u3, j1 6= p − u4, we can always find j2 6= 0, j3 6= 0, j4 6= 0,

and the resulting [j1, j2, j3, j4] will produce the (4, 4) absorbing sets for any specific k1 value. �

Remark 8 Tanner constructions with o(β) < p − 1 and r = 4 sometimes can avoid all (4, 4)

absorbing sets by either increasing the girth or by making the intersection between null space of

M and variable node space to be empty. However, (4, 4) absorbing sets may still exist in some

constructions with o(β) < p − 1 and r = 4. In these cases they dominate the error floor. For

example, with p = 67, gr(i) = 11i, gc(j) = 5j, o(11) = 4, o(5) = 30, the resulting code has

dominant (4, 4) absorbing sets.

2.5 Discussion for r = 3

For the EAB codes with r = 3, the (3, 3) and (4, 2) absorbing sets in Fig. 2.14 and 2.15 are

the smallest ones [DZW10]. Since the (3, 3) absorbing set is composed of a length-6 cycle,

increasing the girth of the code is necessary to eliminate such absorbing sets. Thus the SR-SCB

code cannot avoid the (3, 3) absorbing sets. We can still eliminate these absorbing sets in SSR-

SCB codes with the CCM approach to shorten the code such that the variable nodes cannot form

a difference vector that falls into the null space of the CCM, which is equivalent to increasing the

girth in this case. The resulting SSR-SCB codes have much lower rates and are not the interest

of this chapter. Similarly, we can apply the CCM approach to the (4, 2) absorbing set and easily

prove the existence in any EAB and SR-SCB codes. The SSR-SCB codes can avoid the (4, 2)

absorbing set by shortening to low rates and are the interest of this chapter.

2.6 Results

In this section we experimentally demonstrate the performance improvement achieved by the

proposed modifications. We show that it is consistently valid across various choices of decoding
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Figure 2.14: Depiction of the (3, 3) absorbing set configuration.

Figure 2.15: Depiction of the (4, 2) absorbing set configuration.
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Table 2.2: Hardware error profiles for three (2209, 1978) codes, one EAB code and two SR-SCB

codes. More input frames were emulated for the higher SNR level. The total number of collected

errors is denoted n.e.
p = 47 (2209, 1978) EAB code

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (8,6) (8,8) (8,10)

5.6dB 272 97 27 64 10 16 17 11 5

5.8dB 211 121 20 34 9 3 3 4 3

p = 47 (2209, 1978) SR-SCB-1 RSF = [0,1,3,8,19]

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (8,6) (8,8) (8,10)

5.6dB 197 0 30 36 27 25 3 17 13

5.8dB 90 0 25 16 22 16 3 10 1

p = 47 (2209, 1978) SR-SCB-2 RSF = [0,1,2,4,6]

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (8,6) (8,8) (8,10)

5.6dB 179 0 30 28 29 22 5 9 10

5.8dB 116 0 25 16 22 16 3 10 1

implementations and platforms both in software and in hardware. In simulations, we use 200

iterations and a Q4.2 fixed-point quantization, 4 bits to the left of the radix point to represent

integer values and 2 bits to the right of the radix point to represent fractional values. We simulate

sum-product algorithm [ZDN09] and soft-xor algorithm [MS03] for different codes. We also

identify the absorbing sets responsible for each error and report an error profile for each simu-

lation. As expected, when an SR-SCB code or SSR-SCB code is designed to preclude certain

absorbing sets, they do not appear in the error profile obtained by simulation.

2.6.1 SCB codes for r = 5

Consistent with the results presented at the end of Section 2.3.1, Table 2.2 and Fig. 2.16 show

the performance of three (2209, 1978) codes: the EAB code and two SR-SCB codes. All three

63



3.5 4 4.5 5 5.5 6
1e−11

1.0E−10

1.0E−9

1.0E−8

1.0E−7

1.0E−6

1.0E−5

0.0001

1.0E−3

0.01

1

E
b
/N

0
(dB)

F
E

R
/B

E
R

SCB (2209,1978) LDPC AWGN fixed point Q4.2

 

 
SPA EAB FER
SPA EAB BER
SPA SR−SCB FER
SPA SR−SCB BER
SXOR EAB FER
SXOR EAB BER
SXOR SR−SCB FER
SXOR SR−SCB BER
HW SPA EAB FER
HW SPA SR−SCB−1 FER
HW SPA SR−SCB−2 FER
HW SPA EAB BER
HW SPA SR−SCB−1 BER
HW SPA SR−SCB−2 BER

Figure 2.16: Performance comparison of the (2209, 1978) EAB and SR-SCB LDPC codes.

codes are SCB codes with the following parameters: check node degree = 47, bit node degree =

5, and f(i, j) = gr(i) · j. The EAB code uses gr(i) = i, SR-SCB-1 uses the RSF [0, 1, 3, 8, 19] ,

i.e. (i, gr(i)) ∈ {(0, 0), (1, 1), (2, 3), (3, 8), (4, 19)}, and SR-SCB-2 uses the RSF [0, 1, 2, 4, 6].

Regardless of the decoding algorithm (sum-product algorithm (SPA) or soft-XOR (SXOR)),

(4, 8) absorbing sets cause a significant fraction of decoding errors for the EAB code. With SR-

SCB codes, there are no such errors (as must be the case according to the analysis of Section

2.3.1). Moreover, removing the (4, 8) absorbing sets does not lead to an increase in higher-order

absorbing sets. Rather, removing the (4, 8) absorbing sets also decreases higher order absorbing

sets that contain the (4, 8) absorbing set or some of its cycles. Thus, the SR-SCB codes have

fewer total errors than the EAB code.

We also implemented a sum-product decoder on an FPGA platform that works for all three

codes since the basic array-code structure is preserved in the SR-SCB versions. A substantial

simulation speedup via the FPGA platform allows us to extend the BER curve down to 10−11,

as shown in Fig. 2.16. Note that the SR-SCB codes improve the slope in the error floor region
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Figure 2.17: Performance comparison of the (841, 700) EAB and SR-SCB LDPC codes.

significantly for both FER and BER. The BER improvement is more than one order of magnitude

at 5.4 dB.

Table 2.2 gives the error profiles for these three codes for the two highest SNRs simulated

on the FPGA. Consistent with the software-based simulation and the theoretical analysis, (4, 8)

absorbing sets dominate the error floor of the EAB array code. In both of the SR-SCB codes,

having virtually the same performance (see Fig. 2.16), the (4, 8) absorbing sets are completely

eliminated, the BER curve is lowered, and its slope is improved. Another noticeable effect is

the reduction of the number of (6, 8) absorbing set errors after the code modification, which

is attributed to the elimination of the (4, 8) substructures, which are contained by some (6, 8)

structures.

Fig. 2.17 shows that elimination of the (4, 8) absorbing set can provide a noticeable improve-

ment even at short block lengths. This figure compares two (841, 700) codes with p = 29, the

65



EAB code and the SR-SCB code with RSF [0, 1, 2, 4, 6] that precludes all (4, 8) absorbing sets.

Table 2.3 and Fig. 2.18 show the performance improvement over the EAB code of an SR-

SCB code that eliminates of all the (4, 8) and (6, 8) absorbing sets with the RSF [0, 1, 2, 4, 6].

This comparison is for (1849, 1638) codes with p = 43.

Table 2.4 and Fig. 2.19 show simulations comparing longer block-length EAB and SR-SCB

codes. The performance improvement of the SR-SCB code is due to the structural elimination

of the (4, 8), (5, 9) and (6, 8) absorbing sets using the RSF [0, 1, 2, 4, 17] which was identified

in Table 2.1 of Section 2.3.3.6 as completely avoiding these three absorbing sets. As expected,

the error profile as shown in Table 2.4 shows that the SR-SCB code completely eliminates the

(4, 8), (5, 9) and (6, 8) absorbing sets.

2.6.2 SCB codes for r = 4

Fig. 2.20 and Table 2.5 show the performance of (2209, 2024) EAB code and SR-SCB codes

both with check node degree = 47 and bit node degree = 4. The EAB code has gr(i) = i and the

SR-SCB code uses RSF [0, 1, 2, 4]. Consistent with the theoretical analysis, the (6, 4) absorbing

sets dominate the error floor of the EAB code. The reduction of the (6, 4) absorbing sets provides

the SR performance improvement.

We also compare the performance of a high-rate quasi-cyclic (QC) code under Tanner con-

struction [TSS04] with a similar-rate SSR code. The QC code has the following parameters:

p = 61, f(i, j) = ai · bj , a = 11, b = 5, o(a) = 4 and o(b) = 30, where o(a) indicates the

multiplicative order of a in GF (p). Compared to the SSR code, this is a code with the same

variable-node degree, a similar block length (N = 1830), and a similar rate (0.8683). Using

the CCM based analysis, one can show that this code does not have (6, 4) absorbing sets, al-

though it does have (4, 4) absorbing sets (due to an inappropriate row mapping). The SSR code

has the following parameters: p = 79, RSF = [0, 1, 3, 4], and b(i) ∈ {2, 6, 7, 14, 17, 18, 22, 26, 27,
30, 36, 37, 38, 46, 47, 49, 55, 56, 57, 58, 61, 62, 65, 66, 67, 76, 77, 78}. We thus obtain a code with

the same variable-node degree, a similar block length (N = 2212) and a similar rate (0.8585).
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Table 2.3: Hardware error profiles for the EAB (1849, 1638),code (top), and the SR-SCB code

(bottom).

p = 43 (1849, 1638) EAB code

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (7,11) (8,6) (8,8) (8,10)

5.6dB 236 98 24 37 11 15 5 8 12 5

5.8dB 182 103 19 29 7 7 4 0 1 5

6.0dB 160 98 22 15 3 4 1 4 3 2

p = 43 (1849, 1638) SR-SCB code RSF = [0, 1, 2, 4, 6]

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (7,11) (8,6) (8,8) (8,10)

5.6dB 126 0 23 0 23 17 8 5 8 10

5.8dB 92 0 27 0 15 13 6 6 6 6

6.0dB 48 0 19 0 14 4 3 3 1 1
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Figure 2.18: Performance comparison of the (1849, 1638) EAB and SR-SCB LDPC codes.
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Table 2.4: Error profiles for the EAB SCB (4489, 4158), code (top), and the SR-SCB code

(bottom), both with p = 67. n.e. is the number of collected errors.

(4489, 4158) EAB code

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (7,11) (8,6) (8,8) (8,10)

5.6dB 150 67 17 22 7 6 5 6 6 3

5.8dB 139 83 18 16 6 5 1 3 3 1

6.0dB 131 77 18 22 5 1 1 2 1 1

6.2dB 107 85 10 5 4 2 0 0 0 0

(4489, 4158) SR-SCB code RSF = [0, 1, 2, 4, 17]

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (7,11) (8,6) (8,8) (8,10)

5.6dB 106 0 0 0 25 15 6 15 13 6

5.8dB 140 0 0 0 35 29 14 16 6 8

6.0dB 60 0 0 0 25 7 5 9 5 3

68



4 4.5 5 5.5 6 6.5
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
b
/N

0

F
E

R

LDPC (p=67,r=5) AWGN fixed point Q4.2

 

 

N=4489 EAB code rate=0.9263
N=4489 SR code rate=0.9263

Figure 2.19: Performance comparison of (4489, 4158) EAB and SR-SCB codes.

This code provably eliminates (6, 4) absorbing sets without introducing smaller absorbing sets.

The profiles in Table 2.5 also support this claim. Similar analysis can be applied to the codes

in [Fos04] as well.
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Figure 2.20: Performance comparison of EAB, SR, SSR, and a code from [TSS04].

Table 2.5: Error profiles for (2209, 2024) EAB (p = 47), SR-SCB (p = 47), and SSR-SCB

(p = 79) codes.

SNR n.r. n.e. (6,4) (6,6) (7,4) (8,2) (8,4) (9,4) (10,4) (12,4)

(2209, 2024) EAB code

5.6dB 2.0E8 322 236 2 2 27 3 1 37 1

6.0dB 8.0E8 329 329 0 0 0 0 0 0 0

(2209, 2024) SR-SCB code RSF = [0, 1, 2, 4]

5.6dB 2.0E8 167 38 3 0 40 45 3 2 0

6.0dB 8.0E8 88 4 0 0 2 48 3 0 0

(2212, 1899) SSR-SCB code RSF = [0, 1, 3, 4]

5.2dB 8.0E8 98 0 6 5 21 23 1 16 5

5.6dB 1.6E9 32 0 0 0 0 11 0 0 0
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2.7 Conclusion

This chapter proposes the SR-SCB and SSR-SCB code families based on circulant matrices that

are suitable for applications operating at low FER levels. We introduced a novel cycle consis-

tency matrix description of dominant absorbing sets to guide code design and analysis. Our

approach is a deterministic method that can provably eliminate certain absorbing sets in a large

family of circulant-based codes, and can do so without changing the code’s properties such as

girth, rate and implementation complexity. This approach thus offers a class of codes with prov-

ably better performance than some known constructions. Theoretical findings were substantiated

by experimental results showing consistent and significant improvement in the low BER region

over a range of decoding algorithms, both in software and in hardware. A useful feature of the

proposed approach from the implementation standpoint is that it can be easily combined with

better decoding algorithms for the maximum improvement of the overall performance. Future

work involves extending the analysis to other channel types and irregular codes.
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CHAPTER 3

Soft Information for LDPC Decoding in Flash:

Mutual-Information Optimized Quantization

High-capacity NAND flash memory achieves high density storage by using multi-level cells

(MLCs) to store more than one bit per cell. Although this larger storage capacity is certainly

beneficial, the increased density increases the raw bit error rate (BER), making powerful error

correction coding necessary. Traditional flash memories employ algebraic codes, such as BCH

codes, that can correct a fixed, specified number of errors. This chapter investigates the ap-

plication of low-density parity-check (LDPC) codes which are well known for their ability to

approach capacity in the AWGN channel. We obtain soft information for the LDPC decoder

by performing multiple cell reads with distinct word-line voltages. The values of the word-line

voltages (also called reference voltages) are optimized by maximizing the mutual information

(MI) between the input and output of the multiple-read channel. Our results show that using this

soft information in the LDPC decoder provides a significant benefit and enables the LDPC code

to outperform a BCH code with comparable rate and block length over a range of block error

rates. Using maximum mutual-information (MMI) quantization in the LDPC decoder provides

an effective and efficient estimate of the word-line voltages. Constraining MMI quantization to

satisfy the constant-ratio condition simplifies the optimization with negligible performance loss

for four-level cells. This chapter also shows that quantization can affect how the LDPC degree

distribution should be optimized and provides an example where adjusting the degree distribution

away from the“optimal” AWGN distribution can improve performance in a quantized setting.
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3.1 Introduction

Flash memory can store large quantities of data in a small device that has low power consumption

and no moving parts. The original NAND flash memories used only two levels. This was called

single-level-cell (SLC) flash because there is only one nonzero charge level. Devices currently

available use multiple levels and are referred to as multiple-level cell (MLC) flash. Four and

eight levels are currently in use, and the number of levels will increase further to provide more

storage capability [LLa08][TSa09].

Error control coding for flash memory is becoming more important in a variety of ways as the

storage density increases. The increasing number of levels (and smaller distance between levels)

means that variations in cell behavior from cell to cell (and over time due to wear-out) lower

the signal-to-noise ratio of the read channel making a stronger error-correction code necessary.

Reductions in feature size make inter-cell interference more likely, adding an equalization or

interference suppression component to the read channel [LHC02]. Also, the wear-out effect is

time-varying, introducing a need for adaptive coding to maximize the potential of the system.

Low-density parity-check (LDPC) codes are well-known for their capacity-approaching abil-

ity in the AWGN channel [RSU01]. LDPC codes have typically been decoded with soft reliability

information while flash systems have typically provided only hard reliability information to their

decoders. This chapter demonstrates that at least some soft information is crucial to successfully

reaping the benefits of LDPC coding in flash memory. The chapter explores how much soft in-

formation is necessary to provide most of the LDPC performance benefit and how flash systems

could be engineered to provide the needed soft information without an unnecessary penalty in

complexity or processing time. This chapter also explores how the lack of full soft information

changes the LDPC code design process.

This chapter first uses pulse-amplitude modulation (PAM) with a Gaussian noise to model

flash cell threshold voltage levels, and investigates how to optimize the word-line voltages to

provide the maximum mutual information (MMI) between the input and the output of the equiv-

alent read channel. After choosing the word-line voltage for each of the reads, the multiple-read
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channel can be represented by a probability transition matrix and the data can be decoded with a

standard belief-propagation algorithm. The chapter then extends the MMI approach to the reten-

tion noise model [WDZ11b] which more accurately models flash memories. The MMI approach

is also explored in [LT05] [KY] for the design of the message-passing decoders of LDPC codes

to optimize the quantization of the output of a binary-input channel.

In [DXZ11], a heuristic quantization algorithm sets the word-line voltages to the value where

the two adjacent pdfs have a constant ratio R. The constant-ratio method leaves the parameter R

unspecified. The MMI approach provides a natural way to selectR in the constant-ratio method.

Simulation results show that the constant-ratio approach with MMI selection simplifies the MMI

optimization with negligible performance loss for four-level cells as long as the underlying LDPC

code is well designed for the quantized channel.

Indeed, the quantized setting has a significant impact on the LDPC code design because small

absorbing sets, which were discussed earlier in this dissertation, can dominate performance. This

chapter explores how the quantized setting should be considered in the selection of the LDPC

degree distribution. LDPC codes are usually designed with the degree distribution optimized for

the AWGN channel [RSU01]. However, our simulations show that, in the quantized setting, ad-

justing this “optimal” degree distribution to avoid small absorbing sets can significantly improve

performance.

Section 3.2 introduces the basics of the NAND flash memory model and LDPC codes. Sec-

tion 3.3 shows how to obtain word-line voltages by maximizing the MI of the equivalent read

channel. This section presents the MMI optimization approach and the constant-ratio method for

SLC and MLC flash for the PAM-Gaussian model and the retention noise model. Section 3.4

provides simulation results demonstrating the benefits of using soft information with word-line

voltages selected as described in Section 3.3 and compares the full MMI optimization with opti-

mization constrained using the constant-ratio method. Section 3.5 delivers the conclusions.
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Figure 3.1: A NAND flash memory cell.

3.2 Background

This section introduces the basics of NAND flash memory and LDPC codes.

3.2.1 Basics of NAND Flash Memory

This chapter focuses on the NAND architecture for flash memory. Fig. 3.1 shows the config-

uration of a NAND flash memory cell. Each memory cell in the NAND architecture features a

transistor with a control gate and a floating gate. To store information, a charge level is written

to the cell by adding a specified amount of charge to the floating gate through Fowler-Nordheim

tunneling by applying a relatively large voltage to the control gate [BCM03].

To read a memory cell, the charge level written to the floating gate is detected by applying

a specified word-line voltage to the control gate and measuring the transistor drain current. The

drain current is compared to a threshold by a sense amp comparator. If the drain current is above

the comparator threshold, then the word-line voltage was sufficient to turn on the transistor,

indicating that the charge written to the floating gate was insufficient to prevent the transistor
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from turning on. If the drain current is below the threshold, the charge added to the floating

gate was sufficient to prevent the applied word-line voltage from turning on the transistor. The

sense amp comparator only provides one bit of information about the charge level present in the

floating gate. A bit error occurring at this threshold-comparison stage is called a raw bit error.

The word-line voltage required to turn on a particular transistor (called the threshold volt-

age) can vary from cell to cell for a variety of reasons. For example, the floating gate can

be overcharged during the write operation, the floating gate can lose charge due to leakage in

the retention period, or the floating gate can receive extra charge when nearby cells are written

[MH09].

The probability density function of the variation of threshold voltage from its intended value

is often modeled by a Gaussian distribution. In this chapter, we initially assume an i.i.d. Gaussian

threshold voltage for each level of an MLC flash memory cell such that an m-level flash cell is

equivalent to an m-PAM communication system with AWGN noise, except that the threshold

voltage cannot be directly observed. Rather, at most one bit of information about the threshold

voltage may be obtained by each cell read.

More precise models such as the model in [MH09] in which the lowest and highest thresh-

old voltage distributions have a higher variance and the model in [LZ10] in which the lowest

threshold voltage (the one associated with zero charge level) is Gaussian and the other threshold

voltages have Gaussian tails but a uniform central region are sometimes used. The model in

[WDZ11b] is similar to [LZ10], but is derived by explicitly accounting for real dominating noise

sources, such as inter-cell interference, program injection statistics, random telegraph noise and

retention noise. This chapter uses the model of [WDZ11b] to study the MMI approach in a more

realistic setting than the initial i.i.d. Gaussian assumption.

3.2.2 Basics of LDPC codes

LDPC codes [Gal63] are linear block codes defined by sparse parity-check matrices. By opti-

mizing the degree distribution, it is well-known that LDPC codes can approach the capacity of an
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AWGN channel [RSU01]. Several algorithms have been proposed to generate LDPC codes for a

given degree distribution, such as the ACE algorithm [TJV04], and the PEG algorithm [HEA01].

Designing LDPC codes with low error-floors is crucial for the flash memory application

since storage systems usually require block-error-rates lower than 10−15. This topic has gener-

ated a significant amount of recent research including [Ric03] [WDW11b] [WDW11a] [ICV08]

[NVM10] [HDL11].

In addition to their powerful error-correction capabilities, another appealing aspect of LDPC

codes is the existence of low-complexity iterative algorithms used for decoding. These itera-

tive decoding algorithms are called belief-propagation algorithms. Belief-propagation decoders

commonly use soft reliability information about the received bits, which can greatly improve

performance. Conversely, a quantization of the received information which is too coarse can

degrade the performance of an LDPC code.

Traditional algebraic codes, such as BCH codes, use bounded distance decoding and can

correct up to a specified, fixed number of errors. Unlike these traditional codes, it can be difficult

for LDPC codes to guarantee a specified number of correctable errors. However the average

bit-error-rate performance can often outperform that of BCH codes in Gaussian noise.

The remainder of this chapter studies how quantization during the read process affects the

performance of LDPC decoding for flash memory. In the next section, we present a general

quantization approach for selecting word line voltages for reading the flash memory cells in both

the SLC and the MLC cases.

3.3 Obtaining Soft Information

Since the sense amp comparator provides at most one bit of information about the threshold

voltage (or equivalently about the amount of charge present in the floating gate), decoders for

error control codes in flash have historically used hard decisions on each bit from the sense-amp

comparator outputs.

77



Soft information can be obtained in two ways: either by reading from the same sense amp

comparator multiple times with different word line voltages (as is already done to read multi-

level flash cells) or by equipping a flash cell with multiple sense amp comparators on the bit line,

which is essentially equivalent to replacing the sense amp comparator (a one-bit A/D converter)

with a higher-precision A/D converter.

These two approaches are not completely interchangeable. The real goal is to detect soft

information about the threshold voltage. Each additional read of a single sense amp compara-

tor can provide additional useful soft information about the threshold voltage if the word line

voltages are well-chosen.

In contrast, multiple comparators may not give much additional information if the drain cur-

rent vs. word-line-voltage curve (the classic I-V transistor curve) is too nonlinear. If the drain

current has saturated too low or too high, the outputs from more sense-amp comparators are not

useful in establishing precisely how much charge is in the floating gate. If the word line voltage

and floating gate charge level place the transistor in the linear gain region, then some valuable

soft information is provided by multiple sense amp comparators.

Our work focuses on the first technique described above in which soft information is obtained

from multiple reads using the same sense-amp comparator with different word line voltages.

This section investigates the potential improvement of increasing the resolution beyond one

bit and studies how best to obtain this increased resolution. In [DXZ11], the use of soft informa-

tion was explored and the poor performance of uniformly spaced word-line voltages was clearly

established.

This chapter takes an information-theoretic perspective on optimizing the word-line voltages.

Similar to other work (not in the context of flash memory) such as [LT05] [KY], this chapter seeks

to quantize so as to create an effective read channel that has the maximum mutual information

(MMI). We study quantization models with different numbers of reads for both SLC and MLC

flash memory.

In the course of our analysis, we choose the word-line voltages for each quantization to

78



achieve MMI between the input and output of each equivalent read channel. Theoretically, this

choice of word-line voltages maximizes the amount of information provided by the quantization.

The next subsection studies the simple PAM-Gaussian model. We first explore an example of

SLC with just one additional read to provide extra soft information. Then, the section looks

at the benefit of additional reads for SLC and MLC. After that, we extend the analysis to the

retention noise model and study constraining the MMI approach with the constant-ratio method.

Numerical results are given in Section 3.4.

3.3.1 PAM-Gaussian Model

This subsection describes how to select word-line voltages to achieve MMI in the context of a

simple model of the flash cell read channel as PAM transmission with Gaussian noise. MMI

word-line voltage selection is presented using three examples: SLC with two reads, SLC with

three reads, and 4-level MLC with six reads.

For SLC flash memory, each cell can store one bit of information. Fig. 3.2 shows the model

of the threshold voltage distribution as a mixture of two identically distributed Gaussian random

variables. When either a “0” or “1” is written to the cell, the threshold voltage is modeled as

a Gaussian random variable with variance
√
N0/2 and either mean −√Es (for “0” ) or mean

+
√
Es (for “1” ).

For SLC with two reads using two different word line voltages, which should be symmetric

(shown as q and −q in Fig. 3.2), the threshold voltage is quantized according to three regions

shown in Fig. 3.2: the green region, the red region, and the union of the blue and purple regions.

This quantization produces the effective discrete memoryless channel (DMC) model is shown in

Fig. 3.3 (a) with input X ∈ {0, 1} and output Y ∈ {0, e, 1}.
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AssumingX is equally likely to be 0 or 1, the MI between the input and output of the resulting

DMC can be calculated as

I(X;Y ) = H(Y )−H(Y |X)

= H

(
p1+p3

2
, p2,

p1+p3
2

)
−H (p1, p2, p3) , (3.1)

where the crossover probabilities shown in Fig. 3.3 (a) are p1 = 1−Q−, p2 = Q− −Q+, and p3 = Q+

with

Q− = Q

(√
Es − q√
N0/2

)
and Q+ = Q

(√
Es + q√
N0/2

)
. (3.2)

For fixed Es/N0, the MI in (3.1) is a quasi-convex function of q and can be maximized

numerically to find the parameter q that yields the MMI. Fig. 3.4 and 3.5 show how MI varies

as a function of q for three values of Es/N0 for two and three reads. The assumption here

is that choosing q to maximize the MI should provide approximately optimal LDPC decoding

performance for a given level of quantization. The optimum q∗ is a function of Es/N0 as shown

in Fig. 3.6. For example, if Es/N0 = 3.241 dB, q∗ = 0.2188
√
Es, and if Es/N0 = 6.789

dB, q∗ = 0.1253
√
Es. However, we note that the dependence of q on Es/N0 is not dramatic

for practical SNR ranges because when Es is known, the MI is only slightly reduced when, for

example, the optimal q for Es/N0 = 3.241 dB is used when the actual SNR is Es/N0 = 6.789

dB. The selection of q becomes more critical as the channel SNR degrades, so the value of q

should be set according to the worst expected noise conditions.

For SLC with three reads for each cell, the word-line voltages should again be symmetric

(shown as q, 0, and −q in Fig. 3.2). The threshold voltage is quantized according to the four

differently colored regions shown in Fig. 3.2. This quantization produces the effective DMC

model is shown in Fig. 3.3 (b) with input X ∈ {0, 1} and output Y ∈ {00, 01, 10, 11}.
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Assuming X is equally likely to be 0 or 1, the MI between the input and output of this DMC

can be calculated as

I(X;Y ) =H(Y )−H(Y |X)

=H

(
p1 + p4

2
,
p2 + p3

2
,
p3 + p2

2
,
p4 + p1

2

)

−H(p1, p2, p3, p4), (3.3)

where the crossover probabilities are p1 = 1−Q−, p2 = Q−−Q0, p3 = Q0−Q+,and p4 = Q+

with Q− and Q+ as above and

Q0 = Q

( √
Es√
N0/2

)
. (3.4)

Fig. 3.7 shows how MI increases with the number of reads for the SLC case. The top curve

shows the MI possible with full soft information (where the receiver would know the threshold

voltage exactly). The bottom curve shows the MI available with a single read, which is what

is available with a typical SLC implementation. With two reads, the MI is improved enough to

close about half of the gap between the single-read MI and the MI of full soft information. The

MI with 3 reads is larger than the MI with 2 reads. This approach can be extended to however

many reads are desired, but with diminishing returns as shown in Fig. 3.7. Fig. 3.8 shows how

the raw bit error probability requirement to achieve an MI of 0.9021 increases (relaxes) as the

number of reads increases.

For 4-level MLC flash memory, each cell can store 2 bits of information. Extending the

previously introduced SLC model in the natural way, we model the MLC read channel as a 4-

PAM signal with AWGN noise. To minimize the raw bit error rate, we also use the Gray labeling

(00, 01, 11, 10) for these four levels. Typically in 4-level MLC flash, each cell is compared

to 3 word-line voltages and thus the output of the comparator has 4 values (i.e., four distinct

quantization regions). If we consider three additional word-line voltages (for a total of six), the

threshold voltage can be quantized to seven distinct regions. This leads to an effective DMC

model with four inputs and seven outputs. The qualitative behavior of MMI and required BER

as the number of reads is increased is essentially the same as in Figs. 3.7 and 3.8 for SLC.
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If we consider three additional word-line voltages (for a total of six), the threshold voltage

can be quantized to seven distinct values as shown in Figure 3.9. The resulting DMC is given in

Figure 3.10. Since the channel is symmetric, the crossover probabilities for the channel model

are symmetric in the upper and lower half of the figure, i.e., p11 = p44, e1a = e4c, p12 = p43, etc.

Similar to the SLC analysis, the MI between the input and output can be calculated as

I(X;Y )

=H(Y )−H(Y |X)

=H

(
p11 + p21 + p24 + p14

4
,
p12 + p22 + p23 + p13

4
,

p13 + p23 + p22 + p12
4

,
p14 + p24 + p21 + p11

4
,

e1a + e2a + e2c + e1c
4

,
e1b + e2b + e2b + e1b

4
,

e1c + e2c + e2a + e1a
4

)

− 1

2
H(p11, p12, p13, p14, e1a, e1b, e1c)

− 1

2
H(p21, p22, p23, p24, e2a, e2b, e2c), (3.5)

where all of the crossover probabilities can be calculated in the same manner as with SLC. Thus,

in order to choose the optimal quantization levels q1, q2, and q3 for a fixed Es/N0, we maximize

the MI given in equation (3.5).

3.3.2 Retention Model

We can extend the MMI analysis of Section 3.3.1 to any model for the flash memory read channel.

As an example, we model a 4-level 6-read MLC as a 4-input 7-output discrete channel as shown

in Fig. 3.10. Instead of assuming Gaussian noise distributions as in Section 3.3.1, this section

numerically computes the probability transition matrix using the retention noise model from

[WDZ11b]. Fig. 3.11 shows the four conditional threshold-voltage probability density functions

generated according to [WDZ11b] and the resulting six MMI word-line voltages after six months

retention time. While the conditional noise for each transmitted (or written) threshold voltage is
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similar to that of a Gaussian, the variance of the conditional distributions varies greatly across

the four possible threshold voltages. Note that the lowest threshold voltage has by far the largest

variance.

Since the retention noise model is not symmetric, we need to numerically compute all the

probabilities in Fig. 3.10 and calculate the MI between the input and output:

I(X;Y ) =H(Y )−H(Y |X)

=H

(
p11 + p21 + p31 + p41

4
,
p12 + p22 + p32 + p42

4
,

p13 + p23 + p33 + p43
4

,
p14 + p24 + p34 + p44

4
,

e1a + e2a + e3a + e4a
4

,
e1b + e2b + e3b + e4b

4
,

e1c + e2c + e3c + e4c
4

)

− 1

4
H(p11, p12, p13, p14, e1a, e1b, e1c)

− 1

4
H(p21, p22, p23, p24, e2a, e2b, e2c)

− 1

4
H(p31, p32, p33, p34, e3a, e3b, e3c)

− 1

4
H(p41, p42, p43, p44, e4a, e4b, e4c). (3.6)
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The MI in (3.6) is in general not a quasi-concave function in terms of the word-line volt-

ages q1, q2, ..., q6, although it is quasi-concave for the simple model of two symmetric Gaussians

with symmetric word-line voltages studied in [WCS11]. Since (3.6) is a continuous and smooth

function and locally quasi-concave in the range of our interest, we can numerically compute the

maximum MI with a careful use of bisection search.

In [DXZ11], a heuristic quantization method constrains the word-line voltages to values

where the two adjacent pdfs have a constant ratio R. This method leaves the selection of R

to empirical simulation. The constant-ratio method can be viewed as a constraint that can be ap-

plied to MMI optimization in order to reduce the search space. As we will see in the next section,

constraining the quantization using the constant-ratio method can also simplify optimization by

yielding a convex or quasi-convex problem.
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3.4 Simulation Results

In this section we explore how to design an LDPC code in a quantized setting and demonstrate

the benefits of LDPC decoding using soft information provided through multiple reads. A rate-

0.9021 BCH code with block length n = 9152 and dimension k = 8256 provides a baseline for

comparison. For our simulations, we used three rate-0.9021 irregular LDPC codes, both with

block length n = 9118 and dimension k = 8225. Each of the three codes employs a distinct

degree distribution. However, each code was designed using the ACE algorithm [TJV04], and

the stopping-set check algorithm [RW04] to optimize the LDPC matrix while maintaining the

prescribed degree distribution. All of the simulations were performed using a sequential belief

propagation decoder.

3.4.1 Degree distribution in a quantized setting

Two of the LDPC codes studied feature distinct degree distributions with maximum variable

degree 19. For Code 1, the degree distribution is the usual optimal degree distribution for AWGN

[RSU01]. For Code 2, the initial AWGN-optimal degree distribution is adjusted to improve

performance in a quantized setting as follows:

Hard decoding makes the belief propagation process especially vulnerable to small absorbing

sets such as (4, 2), (5, 1), (5, 2) absorbing sets. Fig. 3.12 shows a (4,2) absorbing set found in

Code 1. Note that all of the variable nodes in this (4,2) absorbing have degree 3. To preclude

this absorbing set, we increase all the degree-3 variable nodes to have degree 4 to produce Code

2. Code 2 significantly outperforms Code 1 under hard decoding.

We also simulated another code with the maximum variable degree 24 with degree distribu-

tion optimized for AWGN (Code 3). Fig. 3.13 shows frame error rate versus retention time under

hard decoding for these three codes.

Code 3 has an even better density evolution threshold in AWGN than Code 1, but the newly

designed Code 2 with the lower AWGN threshold still outperforms it under hard quantization.
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Figure 3.12: A (4,2) absorbing set which is avoided by precluding degree-3 nodes
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Figure 3.13: Simulation results for 4-level MLC using hard quantization.

90



This demonstrates that a superior AWGN threshold does not necessarily imply superior per-

formance under hard decoding. When simulated in AWGN with full resolution soft decoding,

Code 3 performs better than Code 1, and Code 1 performs better than Code 2 . However, when

simulated under hard decoding, Fig. 3.13 shows that Code 2, which has the worst density evolu-

tion threshold under AWGN, gives the best performance because precluding degree-3 nodes has

removed the small absorbing sets that were dominating performance.

3.4.2 Maximizing mutual information to minimize frame error rate

Fig. 3.14 shows MI as a function of R for four-level MLC for both the simple 4-PAM Gaussian

model and the more realistic retention model of [WDZ11b] and the corresponding frame error

rates as a function of R for Code 2, which, as described above, is an LDPC code who’s degree

distribution has been adjusted to preclude small absorbing sets that are troublesome for quantized

channels. The Gaussian and retention channels in this figure were selected so that they had an

identical MMI for six-read (seven-level) unconstrained MMI optimization. For both models the

constant-ratio method provides the same MMI as obtained by the unconstrained MMI optimiza-

tion. Furthermore, it is striking how similar the MMI vs. R behavior is for the two different

channel models. For the Gaussian model, MI is a concave function of R. The curve of MI vs.

R for the retention model closely follows the Gaussian model curve, but is not a strictly concave

function.

The MMI approach is a way to select quantization levels in the hope of optimizing frame-

error-rate (FER) performance. Fig. 3.14 shows the frame error rate (FER) performance as a

function of R for both the Gaussian model and the retention model. The value of R that provides

the maximum MI also delivers the lowest FER of 3×10−5, thus confirming the essential hypoth-

esis of the MMI approach. Note that while the MI range is small (approximately 0.01 bits), this

variation in MI corresponds to more than an order of magnitude of FER variation.
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Figure 3.14: MI as a function of the constant-ratio value R for the 4-PAM Gaussian model with

Es/N0 = 10.76dB and the retention model for 6 months. Code 2 is simulated. These two

models both have an MMI of 1.885 bits. Note that the minimum FER occurs for the value of R

that maximizes mutual information, and that the FER increases quickly as R is varied away from

the optimum point.
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Figure 3.15: MI as a function of the constant-ratio value R for the 4-PAM Gaussian model with

Es/N0 = 10.76dB and the retention model for 6 months. Code 1 is simulated. These two models

both have an MMI of 1.885 bits.

If a code is not well-designed for the specific quantized channel, the MMI approach may not

provide the best performance as shown in Fig. 3.15. Code 1 is designed for the AWGN channel,

but, as discussed above, does not perform well in the quantized setting. Fig. 3.15 shows that the

minimum FER achieved is 10−4 on the quantized Gaussian channel and about 3 × 10−4 on the

quantized retention channel. The value of R that produces the minimum FER is 15 while the

maximum MI is achieved by R = 7. While the actual difference in FER performance between

R = 7 and R = 15 is small, this figure shows that the MMI approach does not identify the

minimum FER quantization for every code.

In particular, in this example where a code has small absorbing sets that limit its performance
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in a quantized setting the maximum MMI quantization does not minimize FER. It is important to

note that for the best codes, and hence the ones that would be used in practice, the MMI approach

is quite effective, as shown in FIg. 3.14 . It is an area for further investigation to understand more

fully the mechanism by which Code 1 performs better with a quantization that provides less

mutual information than the maximum possible, even if the variation in FER is small between

that provided by the MMI approach and the best FER found across possible R values.

3.4.3 Soft information with extra reads

Since the BCH decoder is limited to using hard decisions from the comparator, we first simulate

the LDPC decoder using only hard decisions in order to make a fair baseline comparison. The

BCH and LDPC 1-bit curves in Figs. 3.16 and 3.17 show that the LDPC code outperforms the

BCH code in this range of frame error rates, but not significantly so. The red dashed vertical line

gives the Shannon limit for operating at rate 0.9021 on this channel with a single bit of reliability

information. Frame error rate (FER) is plotted vs. channel bit error probability (raw bit error

probability). The frame sizes are the block lengths, k = 8256 for BCH and k = 8225 for LDPC.

Providing an additional bit of reliability information to the LDPC decoder through increased

quantization resolution improves performance significantly, recovering almost all of the perfor-

mance available with full soft information. This can be observed by comparing the Shannon

limits corresponding to varying levels of soft information with their respective simulations in

Figs. 3.16 and 3.17.

We also plot the frame error rate versus the traditional signal-to-noise ratio Es/N0 in Fig.

3.18 for SLC, where each Es/N0 corresponds to an equivalent raw bit error rate in Fig. 3.16.

Of course the BCH code will also benefit from the use of soft information. However, we were

unable to perform simulations of a BCH decoder utilizing soft information (such as erasures) for

inclusion in this chapter.
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Figure 3.16: Simulation results showing FER vs. raw channel bit error probability for SLC using

Code 2 and MMI quantization.
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Figure 3.17: Simulation results showing FER vs. raw channel bit error probability for 4-level

MLC using Code 2 and MMI quantization.
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Figure 3.18: Simulation results showing FER vs. signal-to-noise ratio for SLC using Code 2 and

MMI quantization.
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Figure 3.19: Simulation results of FER vs. retention time for LDPC Code 2 for 4-level MLC

with the retention channel model using MMI and constant-R quantization with a variety or R

values.

3.4.4 Comparison of quantization methods

Fig. 3.19 shows frame error rate (FER) plotted versus retention time for Code 2 under a variety of

quantizations. As discussed above, Code 2 has an adjusted degree distribution (with no degree-3

nodes) to lower the FER for hard quantization. Since the noise model is not symmetric, the MMI

approach with 3 reads has a slightly larger MI than the hard quantization with 3 reads, and thus

performs slightly better.

This plot shows the behavior that was highlighted in Fig. 3.14: the performance of the LDPC

codes is closely related to the MI of the equivalent channel given in Fig. 3.20. The R = 7 case

has the closest MI to the MMI in Fig. 3.20 and its FER performance is also very close to that

of the MMI approach in Fig. 3.19. For comparison, Fig. 3.21 shows similar results for six reads

using the Gaussian model.
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Figure 3.20: Mutual information vs. retention time for the MMI quantization and constant-ratio

quantizations with a variety of R values.
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Figure 3.21: Simulation results of FER vs. SNR for LDPC Code 2 for 4-level MLC with the

Gaussian channel model using MMI and constant-R quantization with a variety or R values.
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Figs. 3.22 and 3.23 are analogous to Figs. 3.19 and 3.21 but for Code 1, which was not

adjusted for the quantized setting. Thus, Figs. 3.22 and 3.23 present the detailed simulations

that were highlighted in 3.15. In this case the constant ratio method with R = 15 slightly

outperforms the MMI approach. Figs. 3.22 shows results for six reads per cell for four-level

MLC using the retention channel model, and Fig. 3.23 shows similar results for six reads per

cell for four-level MLC using the Gaussian model. This example reflects our experience that the

only cases in which the constant ratio method (slightly) outperforms the MMI method are cases

in which the LDPC degree distribution is not well-matched to the channel. In other words, when

one has identified a good code for the channel, MMI will give the best quantization. The degree

distribution for which MMI was not optimal was also not the best choice of degree distribution.

100



10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frame Error Rate vs Retention Time

Retention time (days)

F
ra

m
e 

E
rr

or
 R

at
e

 

 

BCH hard
3read hard
3read MMI
6read R=3
6read R=5
6read R=7
6read R=10
6read R=12
6read R=15
6read MMI

Figure 3.22: Simulation results for 4-level MLC using MMI and constant R with retention data

and Code 1.
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Figure 3.23: Simulation results for 4-level MLC using MMI and constant R with the Gaussian

model and Code 1.
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3.5 Conclusion

This chapter explores the benefit of using soft information in an LDPC decoder for flash memory.

Using a small amount of soft information improves the performance of LDPC codes significantly

and demonstrates a clear performance advantage over conventional BCH codes. In order to

maximize the performance benefit of the soft information, we present a method that selects the

word-line voltages to maximize the MI between the input and output of the equivalent read

channel. This method can be applied to any channel model and provides an effective and efficient

estimate of the word-line voltages compared to other existing quantization techniques. Possible

directions for future research include the design of better high-rate LDPC codes for flash memory,

and the analysis of the corresponding error-floor properties.
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CHAPTER 4

Conclusion

This dissertation tackles two problems in LDPC codes: how to construct better codes to lower the

error floor and how to obtain soft information from flash memory to have better LDPC decoding

performance. To explore the first problem, this dissertation proposes the SR-SCB and SSR-SCB

code families based on circulant matrices that are suitable for applications operating at low FER

levels. A novel approach introduces the cycle consistency matrix to describe each dominant

absorbing set structure. This approach establishes the necessary and sufficient conditions for a

given absorbing set structure to exist. Our analysis shows that this deterministic method can

provably eliminate certain absorbing sets in SCB codes without sacrificing code properties such

as girth, rate, and implementation complexity. The software and hardware simulation results

support our analysis in various cases and show significant improvement in the low BER region

over a range of decoding algorithms. A useful feature of the proposed approach from the imple-

mentation standpoint is that it can be easily combined with efficient decoding algorithms for the

maximum improvement of the overall performance.

There are still several challenges to be addressed on this topic. The current CCM approach

is based on SCB codes. How to extend this approach to other classes of quasi-cyclic LDPC

codes or even irregular codes is still an open problem. A possible direction to solve the irregular

case is using the mask technique to zero out some circulant matrices in the parity-check matrix

so that code properties such as degree distribution, girth and the absorbing set spectrum can be

improved.

To tackle the second problem, this dissertation investigates LDPC design and decoding for

flash memory. We show that degree distributions optimized for the AWGN channel do not give
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the best possible performance in quantized channels. Altering the degree distribution to avoid

small absorbing sets can significantly improve performance. We also show that a small amount

of soft information improves the performance of LDPC codes significantly and demonstrates a

clear performance advantage over conventional BCH codes. For a given number of reads, we

propose an MMI approach which selects word-line voltages to maximize the mutual information

between the input and output of the equivalent read channel. This method can be applied to any

channel model and provides an effective and efficient estimate of the word-line voltages. The

constant-ratio method adds a constraint to the MMI approach that simplifies the optimization

process.

One direction for future research is an investigation of the mechanism that causes absorbing

sets to be more important for quantized channels than unquantized channels. Other areas for

future investigation include the design of better high-rate LDPC codes for flash memory, opti-

mization techniques for larger numbers of reads and the analysis of the corresponding error-floor

properties.
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