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This dissertation mainly focuses on two different branches of coding theory and its applications:1)

coding to approach capacity in short blocklengths using feedback and 2) LDPC coding for Flash

memory systems. In the first area, we study the benefits that feedback with incremental redundancy

can provide to increase the maximum achievable rate in communication systems, using carefully

designed adaptive non-binary LDPC codes. We show how to achieve over 90% of the idealized

throughput of rate-compatible sphere-packing with maximum-likelihood decoding (RCSP-ML) for

average blocklengths of 150-450 bits. This is important because it illustrates that feedback greatly

reduces the number of transmitted symbols required to achieve near-capacity performance.

We then extend these ideas to feedback systems where the number of incremental transmissions

is limited. In order to optimize the blocklengths for each incremental transmission we formulate an

integer optimization problem involving an approximation based on the inverse-Gaussian p.d.f., the

distribution of the blocklength required for successful decoding. The brute-force approach to solve

this computationally complex optimization problem quickly becomes infeasible. In order to solve

this problem efficiently, we introduce sequential differential optimization (SDO) algorithm that has

only linear complexity to identify optimal incremental transmission lengths. The results obtained

from SDO are negligibly different from the exponentially complex exhaustive-search solution. By

using the optimized incremental transmission lengths (with an average blocklength of less than

500 bits), non-binary LDPC codes achieve a throughput greater than 90% of the capacity with a

ii



two-phase scheme. Furthermore, we extend these ideas to the case of using cyclic redundancy

checks (CRC). With CRC, even better performance in the blocklength range of about 500 bits is

obtainable. The overhead associated with a CRC prevents great performance in short blocklength

regime (fewer than 400 bits). We also extend these ideas to systems with larger constellations

operating at a higher signal-to-noise ratio (SNR).

Another incremental transmission coding scheme studied in this dissertation focuses on de-

sign and use of rate-compatible protograph-based raptor-like (PBRL) LDPC codes with various

blocklengths and rates that can be used in feedback systems over additive-white Gaussian noise

(AWGN) channels. The codes proposed in this work use X-OR operations and density evolution to

produce additional degree-one parity bits providing extensive rate compatibility. The protographs

are also carefully lifted to avoid undesirable graphical structures such as problematic stopping sets.

For a target frame error rate of 10−5, at each rate the k = 1032 and k = 16384 code families perform

within 1 dB and 0.4 dB, respectively, of both the Gallager bound and the normal approximation.

The k = 16384 code family outperforms the best known standardized code family, the AR4JA and

longer DVB-S2 codes.

We extend the ideas in design of PBRL codes from AWGN channels to binary symmetric

channels (BSC) and binary erasure channels (BEC). We introduce two fast and efficient algorithms

to calculate the threshold of LDPC codes used over BSC. These algorithms serve as alternatives to

the quite complex density evolution algorithm. Since these new algorithms are quite fast, we use

them to design PBRL LDPC codes for BSC.

To explore the advantage of feedback in conjunction with other modern coding schemes, in

this work we use an extension of reciprocal channel approximation (RCA) to accurately and effi-

ciently predict the frame error rate (FER) performance of polar codes by analyzing the probability

density function (p.d.f.) of the log-likelihood ratio (LLR) values associated with information bits.

The preliminary results show that a feedback scheme in conjunction with a repetition coding sys-

tem significantly reduces the blocklength required to achieve a target FER. For example, using

a rate-0.5 128-bit polar code as the initially transmitted code, the theoretical analysis verified by

simulation shows a 16-fold reduction in blocklength with only about 7.4% of overhead in for-
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ward channel transmissions. We also make an improvement to this feedback coding scheme which

reduces the overhead to almost 3% for a similar FER performance gain.

The second part of this dissertation focuses on design of binary and non-binary LDPC codes

for Flash memory systems. Usually the FER requirements in Flash memory systems is more strict

than wireless communication systems. In order to improve the error correction capability of the

codes used in Flash memory systems, sometimes the same memory cell is read multiple times. In

this dissertation, we study the coding gain from multiple reads of the same Flash memory cell with

distinct word-line voltages. The subsequent additional reads provide enhanced precision for LDPC

decoding. We identify a trade-off in LDPC code design when decoding is performed with multiple

precision levels and conclude that the best code at one level of precision is typically not be the best

code at a different level of precision.

By studying the trade-off in LDPC code design by using extrinsic-information-transfer (EXIT)-

function analysis employing the reciprocal channel approximation (RCA), we obtain the optimal

LDPC code degree distributions for initial hard decoding (one-bit quantization of the channel out-

put) and for decoding with the soft information provided by subsequent additional reads in both

SLC (two-level cell) and MLC (four-level-cell) Flash memory. The results indicate that design for

hard decoding can provide irregular degree distributions that have good thresholds across a range

of possible decoding precisions. Finally, we illustrate that the MMI optimization of word-line

voltages for five reads is a quasi-convex problem for the Gaussian model of SLC Flash.
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CHAPTER 1

Non-Binary LDPC Codes with Feedback

This chapter presents a general approach for optimizing the number of symbols in incremental

transmissions in a feedback communication system with a limited number of increments. This ap-

proach is based on a tight normal approximation on the rate for successful decoding. Applying this

approach to a variety of feedback systems using non-binary (NB) low-density parity-check (LDPC)

codes shows that greater than 90% of capacity can be achieved with average blocklengths fewer

than 500 transmitted bits. One result is that the performance with a maximum of ten transmission

and decoding attempt closely approaches the performance with an infinite number of incremental

transmissions. Most of the analysis in this section focuses on binary-input additive-white Gaus-

sian noise (BI-AWGN) channels but also demonstrates that the normal approximation works well

on examples of fading channels as well as high-SNR AWGN channels that require larger QAM

constellations. The analysis covers both variable-length feedback codes with termination (VLFT)

and the more practical variable length feedback (VLF) codes without termination that require no

assumption of noiseless transmitter confirmation. For VLF we consider both a two-phase scheme

and CRC-based scheme.

1.1 Introduction

The classical results from [1] show that feedback does not increase the capacity of discrete mem-

oryless channels. However, Polyanskiy et al. [2] and Chen et al. [3] show that capacity can be

approached in a smaller number of channel uses using feedback. Polyanskiy et al. [2] introduce

random-coding lower bounds for variable-length feedback coding with termination (VLFT) and
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without termination (VLF), which approach capacity with average blocklengths of hundreds of

bits. A communication system without feedback, on the other hand, requires thousands of bits to

closely approach capacity [4]. The goal of this section is to design practical systems using non-

binary low-density parity-check (NB-LDPC) codes that match or exceed the lower bounds of [2].

Most of the analysis in this section is not exclusive for NB-LDPC codes, but NB-LDPC codes are

used for demonstration because they perform well in the short-blocklength regime (150 to 600 bits)

that is of interest. Polyanskiy et al. [4] illustrated that in a non-feedback communication system,

the maximum achievable throughput is significantly lower for short blocklengths of up to several

hundred bits.

In VLFT analysis of [2], the receiver provides full noiseless feedback to the transmitter. The

transmitter sends additional incremental bits until it knows the receiver has decoded the message

correctly, resulting in zero probability of error. The “T” in VLFT stands for termination and

corresponds to a noiseless transmitter confirmation (NTC) bit that the transmitter uses to terminate

the transmission. As shown in Fig. 1.1, the NTC is transmitted through a channel different from the

main communication channel experiencing an additive Gaussian noise. In contrast, VLF (without

the “T”) does not have the advantage of an NTC. All VLF forward transmissions go over the same

noisy channel. Thus, there is a nonzero probability of undetected error in VLF.

Fig. 1.1 illustrates the system model of VLFT with the NTC transmitted after each transmis-

sion. NTC contains 1 bit of information and is used to terminate the transmission in case of

successful decoding. For most of analysis in this chapter, the communication takes place over an

additive-white Gaussian noise (AWGN) channel.

VLF and VLFT are examples of hybrid automatic repeat request (HARQ) schemes. Prior

to Polyanskiy et al. [2] and Chen et al. [3], HARQ feedback schemes had been studied in great

detail in many papers including for example [5–10]. These papers provide an overview of HARQ,

discuss how error correcting codes can be combined with ARQ and demonstrate applications of

HARQ. In particular, [10] shows that hybrid ARQ is especially useful in point-to-point scenarios.

The coding schemes that are most commonly explored in HARQ systems [11–13] are based on

convolutional codes (CCs) or a concatenation of turbo and block parity-check codes, where the
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Tx Rx
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Noiseless feedback

I1

Noiseless Transmitter 
Confirmation (NTC)

Figure 1.1: The VLFT system model with NTC transmitted after each transmission to let the

receiver know if it has decoded the message correctly and if the transmission can be terminated.

The transmission is over an AWGN channel and we assume noiseless feedback throughout the

analysis.

Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is used to determine which bit is unreliable and needs

to be transmitted in the subsequent transmissions. These works use a genie (equivalent to NTC in

VLFT) to terminate transmissions.

In order to remove the genie and realize a more practical system (equivalent to VLF) [7, 9, 14–

17] consider reliability-based HARQ using convolutional codes where the transmission terminates

when the probability of having a correctly decoded message is high enough. For example, in [9]

the reliability metric is based on the average magnitude of the log-likelihood ratios of the source

symbols.
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In [18,19], Soljanin et al. study VLFT HARQ using rate-compatible binary LDPC codes. They

use maximum likelihood (ML) decoding analysis to determine the size of incremental transmis-

sions in case of decoding failure. In [20, 21] Soljanin et al. extend their analysis to time-varying

binary erasure channels.

Some other high-throughput ARQ schemes use rateless spinal codes as in [22,23], where hash

functions are used for the subsequent coded symbols. In [24], Romero uses cyclic redundancy

check (CRC) codes to study the performance of spinal codes in VLF setting. Use of polar codes

with HARQ is also studied in [25, 26]. These works present polar-code-based HARQ schemes

over binary-input additive white Gaussian noise (BI-AWGN) and Rayleigh fading channels using

Chase combining.

The closest work to the analysis presented here is by Pfletschinger et al. in [27] which uses rate-

adaptive, non-binary LDPC codes in a HARQ scheme over Rayleigh fading channel in the VLFT

setting. They present two algorithms that use channel statistics and mutual information to opti-

mize the blocklengths for each transmission to maximize the throughput. Based on channel state

information at transmitter, the code rates, modulations, and maximum number of retransmissions

are all optimized prior to initial transmission.

Chen et al. [3] and Williamson et al. [28] analyzed a VLFT scheme based on rate-compatible

sphere-packing with an ML decoder (RCSP-ML). RCSP is an approximation of the performance

of communication with repeated incremental redundancy and noiseless transmitter confirmation

(IR-NTC). Fig. 1.2 shows how RCSP extends sphere-packing analysis from a single fixed-length

code to a family of rate-compatible codes. For the ideal family of rate-compatible codes, each code

in the family achieves the perfect packing and is decoded by a maximum-likelihood (ML) decoder.

If the decoding is not after the incremental transmission Ii, the transmitter moves forward with

transmitting the next package Ii+1. In each stage and after each transmission, an NTC signal in

form of genie is used to either terminate the transmission or let the receiver know that the receiver

has not been able to decode the original message correctly. In case of the latter scenario, the

receiver expects the incremental package in the subsequent transmission.

Chen et al. [3] also simulated a VLFT scheme using tail-biting convolutional codes. The sim-
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Figure 1.2: VLFT scheme based on RCSP-ML. For the ideal family of rate-compatible codes, each

code in the family achieves the perfect packing and is decoded by an ML decoder.

ulation results are for very short, punctured rate-compatible tail-biting convolutional codes. These

codes can achieve very high throughput in the VLFT setting. The initial transmission is accom-

plished by puncturing the mother code. In subsequent incremental transmissions, one bit is trans-

mitted at a time until the receiver decodes correctly using all received information. Note that the

specific bits transmitted are pre-determined and do not depend on the feedback. The feedback is

used only to decide when to terminate the transmission. The use of tail biting convolutional codes

avoids the penalty of additional bits required to get the decoder back to the all-zero state. There-

fore, The punctured rate compatible code is derived from a mother code of which a few bits are

originally not transmitted. Those bits are later on sent as the decoder fails to decode correctly.

For the 2-dB binary-input additive-white-Gaussian-noise (BI-AWGN) channel, rate-compatible
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tail-biting convolutional codes with feedback achieve about 95% of the idealized RCSP-ML through-

put (RRCSP) for average blocklengths up to 50 bits. For the 2-dB BI-AWGN channel with feedback,

the convolutional codes achieve about 95% of the idealized RCSP-ML throughput (RRCSP ) for av-

erage blocklengths up to 50 bits. In [29], Williamson et al. also analyzed VLF systems for similar

blocklengths of up to 100 bits. However, for average blocklengths of 100 bits and larger, the

throughput of the convolutional code decreases. This performance degradation worsens as the av-

erage blocklength increases because the frame error rate of the convolutional code increases as the

length of code increases. This phenomenon happens because the performance of the convolutional

code does not improve for blocklengths larger that what the trace back depth supports.

As Chen et al. mention in [3], rate-compatible codes for IR-NTC systems that approach the per-

formance predicted by RCSP-ML in the VLFT setting still remained to be identified for expected

latencies (average blocklengths) of 200 to 600 bits. One of the primary focuses of this chapter is to

demonstrate that non-binary LDPC (NB-LDPC) codes with incremental transmissions can attain

over 90% of the predicted RCSP-ML throughput in the VLFT setting for average blocklengths of

150 to 450 bits. This latency region is important because it is still short enough that feedback

provides a real advantage but also long enough that good VLFT performance can translate to good

VLF performance when ideal termination is replaced by a practical termination scheme within

the primary channel. In this chapter, similar to [3], an incremental redundancy (IR) scheme is

used to give information to the receiver one bit at a time. A genie in form of NTC informs the

receiver whether the decoded codeword is correct determining if the next increment needs to be

sent. Since the transmissions continue until the correct codeword is decoded, the probability of

error is zero. Furthermore, we show how to optimize the lengths of the incremental transmissions

and to demonstrate that NB-LDPC codes with optimized incremental transmissions can achieve

throughputs close to theoretical limits for expected latencies of 150 to 500 bits in the VLF setting

. Most of the following analysis is applicable to any coding scheme, but we use NB-LDPC codes

to demonstrate the possible performance motivated by [30], which shows that NB-LDPC codes

without feedback, perform well in this short-blocklength regime.

In this section we initially analyze the performance of NB-LDPC codes in VLFT for a BI-
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AWGN channel with an SNR of 2 dB with an unlimited number of transmissions and with the

number of transmissions m fixed to be five and ten. We also consider two-phase VLF system

with m = 5. In VLFT, the non-binary LDPC codes attain over 90% of the predicted RCSP-ML

throughput for average blocklengths of 150 to 450 bits. Also, in a VLF scheme incorporating

a confirmation phase after each communication phase (hence called “two-phase”), about 92% of

capacity is achieved in less than 500 bits with a maximum of five transmissions. We also consider

another VLF system that uses a stopping criterion that incorporates a cyclic redundancy check

(CRC). Hence we consider the system with an unlimited number of transmissions as well as a

more practical scenario in which the number of transmissions is limited in various VLFT and

VLFT systems.

The size of the incremental messages in each transmission significantly affects the overall

throughput of the system. We describe methods to select the size of each incremental message to

maximize the throughput in VLFT and VLF schemes. We describe reciprocal-Gaussian and Gaus-

sian approximations for probability density function (p.d.f.) of the cumulative blocklengths and

their corresponding instantaneous rates supported by the channel. These approximations enable

us to formulate an analytical throughput maximization problem that facilitates optimization of the

sizes of the incremental transmissions.

In this work, we consider a broad range ofm, the number of possible transmissions. For a large

value of m and by using the optimized blocklengths, , the VLF with CRC system achieves better

throughput performance than the two-phase VLF schemes for the example BI-AWGN channel with

an SNR of 2 dB in the blocklength regime of 150 to 600 bits. For this channel, the CRC-based

VLF scheme achieves about 94% of the capacity with an unlimited number m of transmissions

and about 92% of the capacity with m = 10.

Similar results are extended to a higher-SNR (8 dB) channel and use a larger 16 quadrature

amplitude modulation (QAM) constellation. The capacity of the 8 dB 16-QAM AWGN channel

is 2.68 bits per symbol. The VLF-with-CRC system with an unlimited number of transmissions

achieves a throughput of 2.37 bits per symbol with a frame error probability of less than 10−3. This

throughput corresponds to 88% of the capacity in the blocklength regime of about 40 16-QAM

7



symbols. Furthermore, the results show good performance for SNR-5dB BI-AWGN fading channel

with the channel state information (CSI) available at the receiver. The capacity of this channel

is 0.67 bits. The VLF-with-CRC system with an unlimited number of transmissions achieves a

throughput of 0.60 with a frame error probability of less than 10−3. This throughput corresponds

to 90% of the capacity in the blocklength regime of about 140 bits.

We compare the throughput achieved by our optimization applied to NB-LDPC codes with

convolutional codes whose blocklengths were optimized by a coordinate-descent algorithm in [31]

for information blocks of k = 12,24, and 36 GF (256) symbols (k = 96,192, and 288 bits) with

m = 5 transmissions in VLFT and two-phase VLF settings. In order to use the same NB-LDPC

codes designed in analysis of VLFT and two-phase VLF, the information blocks are reduced by 7

bits of CRC to k = 89,185, and 281 bits.

The rest of the chapter proceeds as follows: Section 1.2 provides an overview of the VLFT

system, presents the NB-LDPC code design, and discusses the desirability of having degree-1 vari-

able nodes in design of the NB-LDPC codes and provides the discussion on the post-processing

modifications made to the NB-LDPC decoder to further improve performance. Section 1.3 dis-

cusses the reciprocal-Gaussian approximation for the probability mass function of the cumulative

blocklengths required for successful decoding and applies the Gaussian approximation ideas to

other communication channels such as high SNR and Fading channels. Section 1.4 presents the

sequential differential optimization algorithm (SDO) for optimizing the size of each incremental

transmission in VLFT. Section 1.5 presents a VLF system with CRC and analyzes this system with

an unlimited number of transmissions and extends the results to the system with a limited number

of transmissions. Section 1.6 gives an overview of the two-phase VLF scheme and uses SDO to

optimize the cumulative blocklength at each decoding attempt. Section 1.7 compares the through-

put and the expected latency of NB-LDPC and convolutional codes in VLFT and VLF settings.

Section 1.8 concludes this chapter.

8



1.2 VLFT with Non-Binary LDPC Codes

Feedback cannot increase the capacity of point-to-point channels, but it can facilitate higher through-

put at significantly lower latency than systems without feedback. The latency improvement is made

possible by capitalizing on favorable noise realizations and attempting to decode early, instead of

needlessly sending additional symbols [28]. In case of an unfavorable noise realization, additional

information is required which effectively lowers the communication rate to match the operational

capacity of the channel. Therefore, incremental transmissions are necessary for coding systems

with feedback. A rate compatible code adapts the coding rate according to the channel noise. As

the channel condition deteriorates, the transmission rate is lowered up to a point that the coding

system supports the channel condition. As the channel conditions improve, the code rate is again

increased to obtain better throughput.

1.2.1 System Overview

Traditionally, rate-compatible codes are designed by starting from a low-rate mother code and

increasing the rate by puncturing the code. In general, finding an optimized puncturing pattern

for finite length codes is not easy. To lower the rate of a punctured rate-compatible code, some

initially encoded but punctured (not transmitted) bits from the mother code are transmitted as

subsequent incremental transmissions. A good property of punctured rate compatible codes in

terms of complexity is that they can be encoded and decoded with a single encoder and decoder

respectively.

The proposed NB-LDPC coding scheme has this advantage of requiring only a single encoder

and a single decoder while it does not explicitly involve puncturing. Rather, we design a short,

high-rate NB-LDPC code for which all symbols are transmitted in the initial transmission. Each

subsequent transmission is a single bit carefully selected to help the decoder as much as possible

given its current decoding state. The rate is gradually lowered by sending these additional bits,

each of which is a function of selected bits in the binary representation of the non-binary symbols.

We choose high-rate protograph-based NB-LDPC codes in this chapter. See [30] for a dis-
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(a) Only degree-2 variable nodes (regular) (b) degree-1 and 2 variable nodes (irregular)

Figure 1.3: Two protographs: (a) has only degree-2 variable nodes and (b) has a both degree-2 and

degree-1 variable nodes.

cussion of protograph-based LDPC design. The codes are irregular, having mostly degree-2 and

a few degree-1 variable nodes. Short-blocklength NB-LDPC codes with only degree-2 variable

nodes (regular) designed over large Galois field sizes are known to perform well [32]. However,

we observed that for short blocklengths and large Galois field sizes, the addition of a few degree-1

variable nodes improves the convergence of the decoder in the low SNR region (see Fig. 1.4 and

Table 1.1). The operating SNR in this chapter is 2 dB.

It is crucial that the code used for the initial transmission has a very high coding rate, even

higher than the capacity. The coding rate is lowered in case of decoding failure. For example

for the BI-AWGN channel with SNR 2 dB, the initial code can have a rate of 0.75 to 0.8 while

the capacity of the channel is 0.685. By doing this we can take advantage of favorable noise

realizations and decode correctly at a shorter block length.

1.2.2 Desirability of Degree-1 Variable Nodes

Simulation results of short-blocklength NB-LDPC codes over large Galois fields show an improved

convergence at low SNR values for codes with degree-1 variable nodes. Fig. 1.4 shows the frame

error rate (FER) comparison of the lifted (copied and permuted) versions of the two rate-1/2 pro-

tographs in Fig. 1.3 for low Eb/N0 values. These protographs are lifted 4 times and the NB-LDPC

codes are over GF (28).

Fig. 1.4 shows that at 2 dB the FER for the protograph in Fig. 1.3b is lower than Fig. 1.3a. The

FERs in Fig. 1.4 may seem high, but for feedback with incremental redundancy, an initial FER of
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Figure 1.4: FER comparison of the lifted versions of the regular (Fig. 1.3a) and irregular (Fig. 1.3b)

protographs in Fig. 1.3. Both codes are designed over GF (256) with rate 1/2 (n = 16 GF (256)

symbols and k = 8 GF (256) symbols).

0.02 is not unreasonable as it indicates 98% of codewords need no further redundancy.

The better FER for the protograph in Fig. 1.3b than the one in Fig. 1.3a is explained by the

smaller number of short cycles present in the lifted version of the protograph in Fig. 1.3b. Table 1.1

lists the number of l−cycles (cycles of length l) for the two protographs in Fig. 1.3.

There is an issue with having degree-1 variable nodes in NB-LDPC codes. The connection of

these variable nodes to cycles results in rank-deficient sub-matrices within the non-binary parity-

check matrix [33] leading to a low minimum symbol distance. However, this issue is less prob-

lematic in feedback systems where the incremental transmissions gradually increase the distance
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Table 1.1: Small cycle count for the protographs in Fig. 1.3

Protograph 4-cycles 6-cycles 8-cycles 10-cycles 12-cycles

Fig. 1.a 0 0 36 0 96

Fig. 1.b 0 0 6 0 16

among candidate codewords. This form of rate compatible coding can be considered as a specific

form of concatenation. I Furthermore, we present a decoding algorithm for the proposed codes

with computational decoding complexity the same as that of the mother code. The codes designed

in this manner perform well and retain expected throughput of higher than 90% of ML decoded

RCSP analysis at average latencies 150 to 500 bits. In order to achieve even better throughput at

low latency, a random initial state (RIS) dithering post processing technique is added to the non

binary LDPC decoder to further improve its performance.

For most of the analysis, the operating SNR in this chapter is 2 dB, similar to the work of

[34–36]. However, to emphasize the generality of the approach in this work, Section 1.3.1 shows

results for higher-SNR AWGN and fading channels.

It is necessary that the initial transmission has a rate higher than the capacity to take advantage

of good channel realizations. The coding rate is lowered until decoding is successful. For example

for SNR-2dB BI-AWGN channel, the initial code can have a rate of 0.75 to 0.8 while the capacity

of the channel is 0.685.

We will consider feedback systems that transmit incremental redundancy one bit at a time and

also systems that transmit incremental redundancy in multiple-bit increments. For systems that use

multiple-bit increments, a practical system may limit the maximum number m of increments. In

the context of a specified m, this work also optimizes the lengths of the m possible increments to

maximize throughput.

Section 1.2.3 provides a detailed description of how we generate each bit of incremental re-

dundancy for the NB-LDPC codes that we use. Then, Section 1.3 shows that in the context of this

incremental redundancy, the coding rate that first produces successful decoding is closely approx-
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imated by a normal distribution. Knowing a distribution that describes the coding rate of the first

successful decoding facilitates optimization of the lengths of multiple-bit increments, as described

in Section 1.4.

1.2.3 Creating a Bit for Incremental Transmission

In [35], Vakilinia et al. use NB-LDPC codes in a VLFT system with 1-bit increments. In case of

failure to decode to the correct codeword, after the initial transmission, the transmitter sends one

bit at a time until the decoder decodes correctly.

Traditionally, rate-compatible codes are designed by starting with a low-rate mother code and

increasing the rate by puncturing the code. The proposed NB-LDPC coding scheme in [35] does

not explicitly involve puncturing. Rather, the design starts with a short, high-rate NB-LDPC code

for which all symbols are transmitted in the initial transmission. Each subsequent transmission is

a single bit carefully selected to help the decoder as much as possible given its current decoding

state. The rate is gradually lowered by sending these additional bits, each of which is a function of

selected bits in the binary representation of the non-binary symbols.

A rate-KN NB-LDPC code over GF (2m) used in a binary communication link encodes an in-

formation sequence of size Km bits into a sequence of size Nm bits. The LDPC code can be

represented by a full-rank parity-check matrix H of size (N −K,N). This parity-check matrix is

the null space of aK×N generator matrixGwith the elements of the matrix chosen fromGF (2m).

A valid codeword result in a zero vector when it is multiplied by this parity check matrix.

y = {x ∈ GF (2m)N ∣Hx = 0} (1.1)

In order to use an NB-LDPC code with the primitive element α over binary-input channels,

each GF (2m) = {0, α0, α1, ..., α(2m−2)} symbol is converted to m bits. For example, consider

GF (23) with the primitive element of α. Table 1.2 shows how each element of GF (23) can be

uniquely represented in 3 bits (g3, g2, g1).
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Table 1.2: Binary representation of GF (8) elements

αi 0 1 α α2 α3 α4 α5 α6

Poly. 0 1 α α2 α+1 α2+α α2+α+1 α2+1

g3g2g1 000 001 010 100 011 110 111 101

The rate-KN non-binary LDPC codes proposed here initially encode a sequence of Km bits (K

GF (2m) symbols) into a codeword of length Nm. The rate is lowered to Km
Nm+b where b is number

of additional incremental bits. Each additional bit is created by an xor (⊕) combination of bits in

the binary representation of theGF (2m) symbols. For each variable node, the reliability of each of

the 2m−1 possible combinations of the bits in the binary representation is computed. For example,

inGF (23) the reliabilities of the seven possible combinations g1, g2, g3, g1⊕g2, g2⊕g3, g1⊕g3, g1⊕

g2⊕ g3 are computed for each variable node. The single bit that is the combination with the lowest

reliability (looking over all combinations for all variable nodes) is transmitted.

This is a form of active feedback in the sense that the feedback is telling the transmitter what to

transmit rather than only whether to transmit additional bits from a pre-determined rate-compatible

code family. This is a generalization of the ideas of active hypothesis testing [37]. For comparison,

we also performed simulations using non-active feedback, in which the additional bits are selected

at random.

The input frame consisting of K GF (2m) information symbols is initially encoded by the

rate-KN NB-LDPC encoder into a sequence of length N GF (2m). These GF (2m) symbols are

converted by their binary representations to bits. The Nm bits are modulated using BPSK and

transmitted over an AWGN channel. The additive noise is modeled as an independent, zero-mean

Gaussian random sequence with variance σ2. The received Nm bits are grouped into N blocks of

lengthm. These binary blocks of sizem are used to compute the reliabilities (log-likelihood ratios)

for each non-binary symbol. As in [35], SNR is calculated as 1
σ2 , the ratio of the transmission power

over the noise variance.

This coding scheme makes the unreliable variable nodes more reliable and let the decoder
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(a) Rate-0.8 irregular protograph with degree-1 and

2 variable nodes

(b) Rate-0.75 irregular protograph with degree-1

and 2 variable nodes

Figure 1.5: Rate-0.75 and rate-0.8 non-binary LDPC protographs

escape from the local minima (trapping and absorbing sets) in cases of non-convergence. Addi-

tionally, this form of concatenation makes valid but wrong codewords less probable than the correct

codeword.

1.2.4 Non-binary Code Designs

In this chapter we design NB-LDPC codes with symbols from GF (28) for three different infor-

mation blocks (k) of 96, 192, and 288 bits. The code for information block k = 96 (K = 12

GF (28) symbols) is the 3-times lifted version of the rate-0.8 protograph in Fig. 1.5a. For infor-

mation blocks k = 192 and k = 288 bits (K = 24, and K = 36 GF (28) symbols), the protograph in

Fig. 1.5b is lifted 8 and 12 times respectively to obtain rate-0.75 codes. The reason for selecting a

higher-rate code for k = 96 is given in Sec. 1.7 and a complete description of the non-binary codes

used in this work is available online.

Incremental transmissions are used progressively to lower the rate of the codes designed in

the previous section until the transmission is decoded correctly. This section presents how the

incremental transmissions are created bit by bit in the encoder and processed by the decoder.

It is easier to explain the decoding of non binary LDPC codes by their corresponding bipartite

graph. The graph consists of N variable nodes corresponding to the transmitted codeword and N-K

check nodes corresponding to the parity checks. A connection exists between variable node j and

check node i if the corresponding element Hij in the parity check matrix H is non-zero. Messages
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are only exchanged between connected nodes. It is easier to explain the decoding of non binary

LDPC codes by their corresponding bipartite graph with variable nodes and check nodes.

The iterative decoder sends vectors of log-likelihood ratios (LLRs) between variable and check

nodes. In the initial iteration the LLR associated with the belief that Vj = a, the variable node

j taking on the value a ∈ GF (2m), with respect to the reference belief that Vj = 0 is defined by

LLRa
j = log (P (Vj=a∣Y )

P (Vj=0∣Y )), where Y is the information received from the channel. For independent

Gaussian noise, the prior LLR values obtained from the channel can be calculated from the sum of

the individual LLRs for each received bit in the group of m bits. For example, for a variable node

j over GF (23), the channel prior LLR for α4 = (1,1,0) is calculated as follows:

LLRα4

j = log(
P (Vj = a∣Y )
P (Vj = 0∣Y )

) (1.2)

= log
P (g3(Vj) = 1∣x3)P (g2(Vj) = 1∣x2)P (g1(Vj) = 0∣x1)
P (g3(Vj) = 0∣x3)P (g2(Vj) = 0∣x2)P (g1(Vj) = 0∣x1)

= log
P (g3(Vj) = 1∣x3)P (g2(Vj) = 1∣x2)
P (g3(Vj) = 0∣x3)P (g2(Vj) = 0∣x2)

= − 2

σ2
(x3 + x2).

The decoding algorithm is initialized by sending these messages from variable nodes to check

nodes. After this initialization step, the decoding process continues by sending LLR vectors itera-

tively from the variable nodes to their neighboring check nodes and vice versa. Iterative message

passing only exchanges extrinsic information between connected nodes.

A hard decision about the original codeword is made when the messages go back to the variable

nodes. If this decision satisfies the check-node constraints, the decoding is terminated. Otherwise,

the messages between variable and check nodes are iteratively exchanged until a valid codeword

is detected or the maximum number of iterations is reached.

Once the decoder terminates iterations, it provides feedback to the transmitter of the codeword

it has identified (or that it has failed to identify a codeword) and the least reliable combination

of bits identified. If the codeword is correct, the transmitter sends the NTC which terminates the

transmission of that codeword. Otherwise, the transmitter transmits the incremental redundancy

bit. Each additional bit is created by an XOR (⊕) combination (summation in GF (2)) of bits in
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Figure 1.6: Example of the reliabilities for all seven possible combinations g1, g2, g3, g1 ⊕ g2, g2 ⊕

g3, g1 ⊕ g3, g1 ⊕ g2 ⊕ g3 for all nine variable nodes. The combination with the lowest reliability is

transmitted as incremental redundancy.

the binary representation of one GF (2m) symbol. For each variable node, the receiver computes

the reliability of each of the 2m−1 possible combinations of the bits in the binary representa-

tion is computed. For example, in GF (23) the reliabilities of the seven possible combinations

g1, g2, g3, g1⊕ g2, g2⊕ g3, g1⊕ g3, and g1⊕ g2⊕ g3 are computed for each variable node. Finally, the

single combination bit that has the least reliability (e.g. considering all seven combinations for all

variable nodes and choosing the least-reliable combination for a single variable node) is requested

from the transmitter.

The decoder re-computes the initialization only for the variable node that has been updated

with an additional bit. Continuing the previous example, if bits 1 and 3 in variable node j are
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combined for the transmitted incremental bit, the new initialization LLR is computed as:

LLR′ α4

j = LLRα4

j + log
P (g4(Vj) = (0⊕ 1)∣xnew)
P (g4(Vj) = 0∣xnew)

(1.3)

= LLRα4

j − 2

σ2
(xnew). (1.4)

The rest of the iterative process is not changed. The transmission of addition bits based on lowest

reliability combination continues until the decoder decodes to the correct codeword.

Finally, the GF (2m) symbols are converted back to binary and the additional transmitted bits

are also computed based on the desired binary combinations. For instance, in the previous example,

α4 as a symbol in GF (23) will be converted to binary (1,1,0,1) where the rightmost 1 is an xor

combination of the 1st and 3rd bits from the left.

This is a form of active feedback in which relatively extensive feedback tells the transmitter

what to transmit in contrast to non-active feedback in which a single bit of feedback indicates

whether to transmit. This is a generalization of the ideas of active hypothesis testing [37]. In [35]

Vakilinia et al. compared the performance of a non-active feedback system and the active feedback

system discussed earlier for NB-LDPC codes and showed significantly better performance with the

active feedback system. The active feedback used in [35] tells the transmitter which bit combina-

tion to be transmitted next. This active feedback scheme does not require the receiver to transmit

back the entire message, contrary to the analysis of [2]. In the non-active feedback scheme of [35]

the additional bits are selected at random.

In this dissertation, we consider both active and non-active feedback. The non-active feedback

in this work corresponds to sending the XOR of all bits representing one of the variable nodes of

the original rate-k/N0 NB-LDPC code. This predetermined non-active feedback system performs

close to the system with active feedback since the active feedback of [35] usually asks for the XOR

of all bits for the subsequent transmissions. The figures and results in this chapter indicate whether

active or non-active feedback scheme was used to generate them.

This coding scheme makes the unreliable variable nodes more reliable and let the decoder

escape from the local minima (trapping and absorbing sets) in cases of non-convergence. Ad-

ditionally, this form of concatenation makes valid but wrong codewords less probable than the
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correct codeword. In order to improve the performance of NB-LDPC codes, we can also use the

post processing algorithm discussed next.

1.2.5 Post Processing

The performance of a belief-propagation (BP) decoder is suboptimal compared to the optimal ML

decoding. This suboptimality is usually due to the failure of the BP decoder to converge to a valid

codeword. Post-processing techniques improve the performance of BP decoders by helping the

decoder converge to valid codewords more frequently.

The post-processing technique used here is a modified version of Random Initial State (RIS)

algorithm which originally [38] resulted in improvements in the floor and waterfall regions for a

binary LDPC decoder. The RIS algorithm explores the neighborhood of the received vector to find

a convergence region by adding a dithering random vector to the received vector. The dithering

slightly perturbs the initial vector so that the decoder decodes to a nearby codeword.

In case of non convergence to a valid codeword, dithering begins by choosing a vector with in-

dependent and identically Gaussian distributed zero-mean components with variance of σ′2 smaller

than the variance of the channel noise. This process is performed for a certain number of times t.

If the decoder fails to converge to a valid codeword after t decoding attempts, the incremental

bit is transmitted. If only a unique valid codeword is detected, this codeword is fed back to the

transmitter. If the decoded codeword is correct the next block of information is sent, otherwise,

an additional incremental bit is transmitted to decode the current block. The RIS algorithm may

result in the decoder converging to multiple valid codewords in the t decoding attempts. In this

case, the receiver computes the squared Euclidean distance between the detected codewords and

the received sequence and selects the codeword with the smallest squared Euclidean distance.
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Figure 1.7: Empirical probability mass function (p.m.f.) corresponding to the blocklength required

for successful decoding for the first time in VLFT using GF (256) NB-LDPC code over SNR-2dB

AWGN channel. Also shown is the reciprocal-Gaussian approximation of (1.7) with µS = 0.6374

and σS = 0.0579. Smallest blocklength is N0 = 120 bits with k = 96 information bits so that the

initial rate is R0 = k
N0

= 0.8.

1.3 Gaussian and Reciprocal-Gaussian Approximations

The input frame consisting of K GF (2m) information symbols is initially encoded by the rate-
K
N NB-LDPC encoder into a sequence of length N GF (2m) symbols. These GF (2m) symbols

are converted using their binary representations to bits. The Nm bits are modulated using binary

phase shift keying (BPSK) and transmitted over an AWGN channel. The additive noise is modeled

as an independent, zero-mean Gaussian random sequence with variance σ2. As in [34], SNR is

calculated as 1
σ2 , the ratio of the transmission power to the noise variance.

Consider a stream of incremental redundancy as described in Section 1.2.3 arriving one bit at a

time at the receiver (after an initial transmission of a high-rate NB-LDPC code). We are interested

in the statistical behavior of the random variable describing the blocklength of the first successful

decoding and the corresponding random variable describing the coding rate of that first successful

decoding.
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Figure 1.8: Empirical p.m.f. corresponding to RS = k
NS

computed from Fig. 1.7 and Gaussian

approximation of (1.5) with µS = 0.6374 and σS = 0.0579.

For the system of [35], the “VLFT simulation active” plot in Fig. 1.7 shows the empirical p.m.f.

of the blocklength of first successful decoding. The total blocklength NS includes the initial block

and all incremental transmissions, (with active feedback) required for receiver to decode the NB-

LDPC codeword correctly for the first time. The “VLFT simulation active” plot in Fig. 1.8 shows

the empirical p.m.f. of the instantaneous rate (RS = k
NS

) at which decoding is successful for the

first time. Fig. 1.8 shows that RS is well-approximated by a normal distribution

fRS(r) =
1√

2πσ2
S

e
− (r−µS)

2

2σ2
S (1.5)

with mean µS = E(RS) and variance σ2
S = Var(RS). The intuition behind these approximations is

consistent with the “normal approximation” of the accumulated information density due to the law

of large numbers (LLN) in [4].

To maximize throughput, the initial code-rate of the NB-LDPC code is chosen so that almost

no codeword is successfully decoded in the initial transmission. Thus, the empirical probability

mass function (p.m.f.) of the number of additional increments required to decode correctly does

not have a spike at zero.

Fig. 1.9 shows the complementary cumulative distribution function (c.c.d.f.) for the distribution
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Figure 1.9: Empirical c.c.d.f. and the approximation on the tail of a normal distribution (Q-

function) corresponding to the shaded area of Fig. 1.8.

of RS and the Gaussian approximation of Fig. 1.8. Fig. 1.9 confirms that the distribution of RS

is well approximated by a Gaussian distribution. As discussed later, the empirical c.c.d.f is used

to show that the Gaussian approximation is valid for a variety of AWGN channels including the

high SNR ones using larger constellations and also for fading channels. The “VLFT simulation

active” plot in Fig. 1.9 shows the empirical c.c.d.f. of the instantaneous rate (RS = k
NS

) at which

decoding is successful for SNR-2dB BI-AWGN of [36]. This c.c.d.f. plot shows the cumulative

probability that the channel supports a rate higher than the rate on the x axis. This higher rate

means that the decoding has been successful with a lower number of transmitted bits. The c.c.d.f.

plot corresponds to the shaded area of Fig. 1.8. The “Gaussian Approximation” plot of Fig. 1.9

corresponds to the tail probability of the standard normal distribution of Fig. 1.8.

The parameters µS and σ2
S in (1.5) for a particular code need to be determined through simula-

tion and curve fitting. Having the p.m.f. of the NS , the curve fitting process involves calculating

the p.m.f. and c.c.d.f. of RS and solving a linear regression problem to obtain µS and σS . Note

that µS is not the expected throughput but rather the average of the instantaneous rates supported
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by the channel.

The cumulative distribution function (c.d.f.) of NS is FNS(n) = P (NS ≤ n), and we have

FNS(n) = P ( k
RS

≤ n)= P (RS ≥
k

n
)= 1 − FRS(

k

n
). (1.6)

Taking the derivative of FNS using the Gaussian approximation of FRS produces the following

“reciprocal-Gaussian” approximation for p.d.f. of NS:

fNS(n) =
k

n2
√

2πσ2
S

e

−(kn−µS)
2

2σ2
S . (1.7)

This p.d.f as shown in Fig. 1.7 closely approximates the empirical distribution of NS . For

N1 < N2, the probability of the decoding attempt being successful at blocklength N2 but not at N1

using this approximation is

∫
N2

N1

fNS(n)dn = ∫
N2

N1

k

n2
√

2πσ2
S

e

−(kn−µS)
2

2σ2
S dn (1.8)

= Q
⎛
⎝

k
N2

− µS
σS

⎞
⎠
−Q

⎛
⎝

k
N1

− µS
σS

⎞
⎠
. (1.9)

The increase in blocklength from N1 to N2 reduces the rate from k
N1

to k
N2

. Note that (1.9)

gives the probability that the channel supports rate k
N2

while not supporting the higher rate k
N1

. The

Q functions in (1.9) are due to the normally-distributed highest-rate-of-successful-decoding (RS)

at k
N1

and k
N2

.

1.3.1 General Applicability of the Normal Approximation

A similar Gaussian analysis is obtainable for other channels and different SNR values. Fig. 1.10

shows a similar complementary cumulative Gaussian approximation for the same GF (256) NB-

LDPC code of Fig. 1.8 with an initial binary rate of 0.8 on SNR-8dB 16-QAM AWGN channel.

Each non-binary element of the NB-LDPC code is mapped onto two 16-QAM symbols. Once

again, the distribution of the instantaneous rate that the channel supports is well approximated by

a normal distribution.
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Figure 1.10: Empirical c.c.d.f. and the approximation on the tail of a normal distribution with

µS = 2.63 and σS = 0.19 of the instantaneous rate (RS = k
NS

) at which decoding is successful for

SNR-8dB 16-QAM AWGN channel.

Furthermore, Fig. 1.11 shows the complementary cumulative Gaussian approximation for the

same GF (256) NB-LDPC code of Fig. 1.8 with an initial binary rate of 0.8 on SNR-5dB BI-

AWGN fading channel with CSI knowledge at the receiver. The output of the channel, Y = βX+N

where the input X is a binary phase-shift keying (BPSK) modulated signal and N is the Gaussian

noise with Var(N) = σ2. The average SNR of this channel is 1
σ2 . The coefficient β is a Rayleigh

distributed random variable satisfying E[β2] = 1. The value of β is known at the receiver. The

distribution of the instantaneous rate that the channel supports is again well approximated by a

normal distribution. Since the normal distribution approximation is valid for various channels,

most of the analyses in the subsequent sections of this chapter are also valid for various channels

with different SNR values.

To further discuss the generality of the Gaussian approximation on the rate that the channel

supports in our feedback system, consider the accumulated information density i(X,Y ) at the

receiver at the time of successful decoding. The expected value of i(X,Y ) is the capacity of the

channel. For BI-AWGN channel, the i(X,Y ) is derived as follows:
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Figure 1.11: Empirical c.c.d.f. and the approximation on the tail of a normal distribution with

µS = 0.66 and σS = 0.05 of the instantaneous rate (RS = k
NS

) at which decoding is successful for

SNR-5dB AWGN fading channel.

i(X,Y ) = log2
fY ∣X(y∣x)
fY (y) (1.10)

= log2
e−(y−x)

2/(2σ2)

1
2(e−(y−1)

2/(2σ2) + e−(y+1)2/(2σ2))
(1.11)

= log2
e−z

2/(2σ2)

1
2(e−z

2/(2σ2) + e−(z+2)2/(2σ2))
(1.12)

= 1 − log2(1 + e−2(z+1)/σ
2). (1.13)

For BI-AWGN channel, i(X,Y ) is a function only of the noise realization z = y−x for x = ±1,

and hence i(X,Y ) = i(z). For each transmitted bit from the NB-LDPC code over the channel,

there is some amount of information density accumulated. The total amount of information density

accumulation (I) at the receiver until the receiver decodes the message correctly
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Gaussian Approximation

Figure 1.12: Empirical c.c.d.f. and the approximation on the tail of a normal distribution with

µS = 0.64 and σS = 0.06 of the average accumulated information density (RI = I
NS

) at which

decoding is successful for SNR-2dB AWGN channel.

I =
Ns

∑
k=1

i(zk). (1.14)

The corresponding rate associated with the accumulated information density is RI = I
Ns

. As

pointed out by [4], (1.14) is a sum of independent random variables for which the central limit the-

orem will converge quickly to a normal distribution. An important consideration for our approach

is whether the rate at which a practical decoder succeeds also follows a normal distribution. This

hinges on the ability of a rate-compatible code family as in [39] to operate with a small gap from

capacity over the rate range of interest.

For the previously discussed SNR-2dB BI-AWGN channel, Fig. 1.12 shows the c.c.d.f. of

RI and the corresponding Gaussian approximation. The rate corresponding to the accumulated

information density at the receiver until the decoding is successful also follows the Gaussian ap-

proximation.

Fig. 1.13 shows the average accumulated information density for decoding correctly at a partic-
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Figure 1.13: Average amount of the accumulated information density for decoding correctly at a

particular code rate for the GF(256) NB-LDPC of Fig. 1.7 code over SNR-2dB AWGN channel.

ular code rate for the NB-LDPC code. This figure shows on average, how much more information

in number of bits the NB-LDPC code requires to decode the message correctly compared to the

operating rate. The “ideal decoder” plot in Fig. 1.13 corresponds to the average accumulated in-

formation density being equal to the rate (the line of equality).

1.4 Optimizing Transmission Lengths

Consider the scenario in which the number of increments (packets of incremental redundancy) as-

sociated with a codeword that can be accumulated at the receiver is limited to m. Using the p.d.f.

of NS from (1.7) we find the optimal blocklengths {N1,N2,⋯,Nm} to maximize the throughput.

The initial blocklength N1 satisfies N1 ≥ N0 where N0 is the smallest possible blocklength (of

the original NB-LDPC code). Each of the additional bits beyond N0 transmitted in the first trans-

mission is the exclusive-or of all eight bits representing one of the variable nodes of the original

rate-k/N0 GF(256) NB-LDPC code. The other transmissions use the scheme in Section 1.2.3 to

generate the subsequent bits.
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1.4.1 Throughput Optimization Through Exhaustive Search

An accumulation cycle (AC) is a set of m or fewer transmissions and decoding attempts ending

when decoding is successful or when the mth decoding attempt fails. If decoding is not successful

after the mth decoding attempt, the accumulated transmissions are forgotten and the process starts

over with a new transmission of the first block ofN1 symbols. From a strict optimality perspective,

neglecting the symbols from the previous failed AC is sub-optimal. However, the probability of

an AC failure is sufficiently small that the performance degradation is negligible. Neglecting these

symbols greatly simplifies analysis.

Define the throughput as RT = E[K]
E[N] , where E[N] represents the expected number of channel

uses in one AC and E[K] is the effective number of information bits transferred correctly over the

channel in one AC.

The expression for E[N] is

E[N] = N1Q
⎛
⎝

k
N1

− µS
σS

⎞
⎠

(1.15)

+
m

∑
i=2
Ni

⎡⎢⎢⎢⎢⎣
Q

⎛
⎝

k
Ni

− µS
σS

⎞
⎠
−Q

⎛
⎝

k
Ni−1

− µS
σS

⎞
⎠

⎤⎥⎥⎥⎥⎦
(1.16)

+Nm

⎡⎢⎢⎢⎢⎣
1 −Q

⎛
⎝

k
Nm

− µS
σS

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (1.17)

The right hand side of (1.15) shows the contribution to expected blocklength from successful

decoding on the first attempt in the AC. Q(
k
N1

−µS
σS

) is the probability of decoding successfully with

the initial block of N1. Similarly, the terms in (1.16) are the contributions to expected blocklength

from decoding that is first successful at total blocklength Ni (at the ith decoding attempt). Finally,

the contribution to expected blocklength from not being able to decode even atNm is 1−Q(
k
Nm

−µS
σS

)

which is shown in (1.17). Even when the decoding has not been successful at Nm, the channel has

been used for Nm channel symbols.
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The expected number of successfully transferred information bits E[K] is

E[K] = kQ
⎛
⎝

k
Nm

− µS
σS

⎞
⎠
, (1.18)

where Q(
k
Nm

−µS
σS

) is the probability of successful decoding at some point in the AC. Note that

E[K] depends only upon Nm. In fact, for large values of Nm, E[K] ≈ k and thus not sensitive to

the choice of Nm

Exhaustive search (ES) can be used to optimize {N1,N2,⋯,Nm} to maximize RT = E[K]
E[N] . The

order of complexity for ES is O((Nmax−N0+1
m

)), where Nmax is the maximum allowable overall

blocklength for an AC. Since E[K] ≈ k, maximization of RT is equivalent to minimization of

E[N].

1.4.2 Sequential Differential Optimization

Sequential differential optimization (SDO) is an extremely effective alternative to ES. Over a range

of possible N1 values, SDO optimizes {N2,⋯,Nm} to minimize E[N] for each fixed value of N1

by setting derivatives to zero as follows:

{N2,⋯,Nm ∶ ∂E[N]
∂Ni

= 0, ∀i = 1,⋯,m−1} . (1.19)

For each i ∈ {2, . . . ,m}, the optimal value of Ni is found by setting ∂E[N]
∂Ni−1

= 0, yielding a

sequence of relatively simple computations. In other words, we select the Ni that makes our

previous choice of Ni−1 optimal in retrospect. For example to find N2 we compute the derivative

∂E[N]
∂N1

= Q
⎛
⎝

k
N1

− µS
σS

⎞
⎠
+ (N1 −N2)Q′ ⎛

⎝

k
N1

− µS
σS

⎞
⎠
= 0 (1.20)

and solve for N2 as

N2 =
Q(

k
N1

−µS
σS

) +N1Q
′ (

k
N1

−µS
σS

)

Q′ (
k
N1

−µS
σS

)
, (1.21)

where

Q′ ⎛
⎝

k
Ni
− µS
σS

⎞
⎠
= k

N2
i σS

1√
2π
e

−( k
Ni

−µS)
2

2σ2
S . (1.22)
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Figure 1.14: The expected average blocklength as a function of the size of the second increment is

convex. Therefore, there is a minimum average blocklength for the optimum choice of the second

blocklength size N2.

For i > 2, ∂E[N]
∂Ni−1

= 0 depends only on {Ni−2,Ni−1,Ni} as follows:

∂E[N]
∂Ni−1

=Q
⎛
⎝

k
Ni−1

−µ
σ

⎞
⎠
+ (Ni−1−Ni)Q′⎛

⎝

k
Ni−1

−µ
σ

⎞
⎠
−Q

⎛
⎝

k
Ni−2

−µ
σ

⎞
⎠
.

Thus we can solve for Ni as

Ni =
Q(

k
Ni−1

−µ
σ )+Ni−1Q

′(
k

Ni−1
−µ

σ )−Q(
k

Ni−2
−µ

σ )

Q′(
k

Ni−1
−µ

σ )
. (1.23)

Actually, for each possible value of N1, SDO can be used to produce an infinite sequence of

Ni values that solve (1.19). Each such sequence is an optimal sequence of increments for a given
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choice of the second blocklength size N2.

density of retransmission points on the transmission axis. As N1 increases, the density decreases.

Using SDO to compute the optimalm points is equivalent to selecting the most dense SDO-optimal

sequence that when truncated to m points results in the highest throughput. Fig. 1.14 shows that

the expected average blocklength as a function of the size of the second increment is convex.

Therefore, there is a minimum average blocklength for the optimal choice of N2. As shown in

Fig. 1.15, the optimal choice of N2 makes the derivative of the average blocklength with respect to

the size of the second increment equal zero.
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Table 1.3: Optimized {N1,N2,⋯,Nm}, RT , and λ from ES and SDO for k = 96 bits for VLFT on

a 2 dB SNR binary-input AWGN channel using µS = 0.6374 and σS = 0.0579.

Alg. m {N1,N2,⋯,Nm} RT λ

ES, SDO 2 158 , 188 0.566 169.6

ES 3 150, 167, 194 0.58638 163.71

SDO 3 150, 167, 195 0.58635 163.72

ES 4 146, 158, 172, 198 0.59709 160.77

SDO 4 146, 158, 172, 197 0.59707 160.78

ES, SDO 5 143, 153, 163, 176, 201 0.603 159.2

ES, SDO 6 140, 149, 157, 166, 179, 204 0.608 157.9

ES, SDO 7 139, 147, 154, 161, 170, 182, 206 0.611 157.1

1.4.3 Application to VLFT with m Transmissions

Table 1.3 shows the optimized {N1,N2,⋯,Nm}, resulting throughput RT , and expected block-

length λ = k/RT for various m. The values obtained by SDO are very close to the values obtained

by ES.

For m = 2,5,6, and 7, the optimized blocklengths for both approaches are the same. For

m = 3 and 4 the blocklengths differ only in the value of Nm (shown in bold) and only by one

bit. This small difference in Nm causes a negligible difference in the maximum throughput RT

and minimum expected blocklength λ = k
RT

. Since the complexity of ES is exponential in m,

it is infeasible to obtain a globally optimal solution for m > 7; whereas SDO, with complexity

O(Nmax −N0), can find a solution within seconds even for large m.

Fig. 1.17 and Fig. 1.16 show the optimum RT and λ for various m using SDO. The dashed

lines show the maximum achievable RT and the corresponding minimum achievable λ with an

32



2 4 6 8 10 12 14 16 18 20
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

VLFT R
T
 for various values of m

m

R
T

 

 

VLFT R
T
 m=∞

VLFT R
T
 for m=2,3,...,20

Figure 1.16: Throughput (RT ) and the expected blocklength (λ) as a function of the number of

transmissions m achieved by non-binary LDPC codes in the VLFT setting for k = 96.

Table 1.4: Optimized RT , and λ using SDO for various values of m with k = 96 bits for VLFT on

a 2 dB SNR binary-input AWGN channel using µS = 0.6374 and σS = 0.0579.

m 2 3 5 10 15 20 ∞

λ 167.1 163.7 159 155.5 154.3 153.7 151.9

RT 0.566 0.586 0.603 0.618 0.622 0.624 0.63742

unlimited m as in [35]. As a function of m, RT quickly converges to the m = ∞ asymptote

and even for m ≈ 10 the throughput is close to the value achievable with an unlimited number

of increments. Correspondingly, the expected latency also converges quickly and for m ≈ 10 the

expected blocklength is close to the minimum λ achievable by unlimited transmissions of one bit

at a time.
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transmissions m achieved by non-binary LDPC codes in the VLFT setting for k = 96.

1.5 VLF with CRC

In this section, similar to the case of m =∞ VLFT, the transmitter sends one bit of incremental re-

dundancy at a time until the decoder converges to the correct codeword or converges to an incorrect

codeword that passes the CRC check. The difference here compared with the VLFT scheme is that

instead of using NTC as a genie, cyclic redundancy check (CRC) codes are used as error-detecting

codes to detect whether there is an error in the decoded message. In systems incorporating CRCs,

a certain number of check bits, Lcrc, are computed and added to the information message of length

kinf . Fig 1.18 shows how the checksum bits are computed by initially appending the information

bits with an all-zero block of length Lcrc and then computing the remainder of the division by a

divisor polynomial of degree Lcrc + 1. The total block containing the original information block

and the additional CRC check bits are finally encoded by the NB-LDPC encoder and the encoded

message is transmitted over the communication channel.

At the receiver, the NB-LDPC decoder initially attempts to decode the received block. If

decoding results in a codeword, the CRC check determines whether the check bits agree with the

data by computing the checksum from the first kinf bits of the received data and comparing this
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Figure 1.18: The block diagram corresponding to coding with CRC.

checksum with the last Lcrc received bits. Alternatively, the receiver can divide all received bits

by the generator polynomial and check if the Lcrc-bit remainder is all-zero. In order to achieve

an undetected error probability of ε, of the CRC code length Lcrc is chosen so that the overall

probability of error resulting from the NB-LDPC and CRC codes combined is smaller than ε.

The transmitter terminates transmission when the receiver sends feedback indicating that the

decoded message passes the CRC check correctly. If the message is correctly decoded, it passes

the CRC detection of CRC and the transmitter moves on to the next message. If the message is

decoded incorrectly and the decoded message fails to pass CRC, the transmitter sends more bits to

increase reliability of the bits already transmitted. if the receiver decodes the message incorrectly

and the erroneously decoded message passes the CRC check, the transmitter moves on to the next

message and the packet is assumed in error. This error is undetected by the receiver. In the case

of unlimited transmissions (m = ∞), the transmitter transmits one bit at a time until the decoder

either decodes the message correctly or until it decodes to a message that passes the CRC check.

With a limited number of transmissions, the blocklength corresponding to each transmission

and the length of CRC are chosen to guarantee a probability of undetected error of at most ε. If

the message is not decoded correctly even after m transmissions (and the NACKs are correctly

received), the receiver deletes all received symbols and a new transmission cycle begins with the

transmitter sending the original block of N1 symbols.
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Figure 1.19: Empirical p.m.f. and reciprocal-Gaussian fit for the shortest cumulative blocklength

(NE) after which decoding never again converges to an incorrect codeword. The smallest block-

length for the GF(256) NB LDPC code is N0 = 120 bits with k = 96 information bits. Thus, the

initial rate is R0 = k
N0

= 0.8.

Since the CRC as an error detection tool is used only when the decoder converges to a code-

word, it is crucial to differentiate between erroneous decoding and failure to converge to a code-

word. Fig. 1.19 shows the empirical p.m.f. of the required cumulative number of symbols (NE)

until the receiver will never again converge to an incorrect codeword. Note that Fig. 1.19 is condi-

tioned on the decoder initially decoding to a wrong codeword at N0 = 120. The probability that the

decoder decodes incorrectly at N0 is γ. (For the experiment that produced the p.m.f. in Fig. 1.19

γ = 0.165.)

For blocklengths larger than NE , the decoder either decodes correctly or fails to converge to

any codeword. This is a different condition than correct decoding, which was modeled in Figs. 1.7

and 1.8. Fig. 1.20 shows the empirical p.m.f. of RE = k
NE

, the instantaneous rate at which the

decoder stops decoding to the wrong codeword, and the corresponding Gaussian approximation.

Fig. 1.21 shows the state diagram representing all the scenarios that can happen based on our

simulations. According to our simulations, if the decoder converges to a wrong codeword, it

continues to decode to the same wrong codeword even with additional incremental transmissions.
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Figure 1.20: Empirical p.m.f. and Gaussian approximation with µE = 0.626 and σ2
E = 0.056 of RE

in VLFT setting.

The increased reliability from incremental transmissions never moves the decoder from one wrong

codeword to another wrong codeword. It only helps the decoder either to converge to the correct

codeword or not to converge to any codeword at all. Figs. 1.7, 1.8 correspond to the blocklength

and rate of entry to state 3. Figs. 1.19, 1.20 correspond to the blocklength and rate of leaving state

1 where the decoder converges to a wrong codeword.

We require an undetected error probability of smaller than ε. If the transmission starts with a

blocklength of length N0, the total probability of error is γ × 2−Lcrc , where 2−Lcrc is approximately

the probability of error that the CRC checks for a wrong codeword. We use standard CRC codes

in this chapter. However, for the best error detection, the CRC codes can be designed specifically

for a particular code as shown in [40].

For the error probability constraint of ε, we choose the length of the CRC code so that γ×2−Lcrc <

ε. For example, if ε is set to be 10−3 and γ = 0.165, the length of the CRC code Lcrc = 8 is required

to guarantee the overall probability of error, γ × 2−Lcrc = 6.25 × 10−4 < ε = 10−3.

As will be illustrated in the results section (Section 1.7), the throughput of this scheme can

be well predicted by the results obtained from VLFT with unlimited transmissions (Section 1.4)
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Figure 1.21: The state diagram corresponding to LDPC coding with incremental transmissions.

modified by a factor of k−Lcrc
k that captures the back-off in rate due to the CRC overhead. For

example, in our previous analysis from Table 1.3 for m =∞, the rate is 0.632 while with a CRC of

length 8, for kinf = 96 − 8 = 88 the rate is predicted to be 96−8
96 × 0.632 = 0.579. As the simulation

results of Section 1.7 show, the actual achieved rate is 0.575 with an undetected error probability

of 8.04 × 10−4. We will discuss these results in more detail in Section 1.7.

1.5.1 VLF with CRC and Limited Transmissions

In VLF with a limited number of transmissions, the length of each incremental transmission should

be selected to maximize RT = E[K∣Lcrc]
E[N] , where E[N] is given by (1.15) and E[K ∣Lcrc] is the

effective number of transmitted information bits, computed as

E[K ∣Lcrc] = (K −Lcrc)
⎡⎢⎢⎢⎢⎣
Q

⎛
⎝

K
Nm

− µS
σS

⎞
⎠
− PN12

−Lcrc

⎤⎥⎥⎥⎥⎦
, (1.24)

under the constraint that the probability of undetected error PN1 2−Lcrc < ε. PN1 is the probability

of converging to an incorrect codeword at blocklength N1.

An approximation technique similar to the one used in optimizing the length of each incre-
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Table 1.5: Optimized {N1,⋯,Nm} for m=5 in VLF-with-CRC using SDO for different values of

Lcrc. The exact same values were obtained by ES.

Lcrc {N1,N2,⋯,N5} λ RT ε

1 193, 198, 205, 216, 241 193.27 0.49 8.95 × 10−4

2 187, 192, 199, 210, 235 187.38 0.50 9.02 × 10−4

3 180, 185, 192, 203, 228 180.67 0.51 9.82 ×10−4

4 174, 180, 187, 198, 222 175.14 0.52 9.14 × 10−4

5 166, 172, 180, 192, 216 168.48 0.54 9.62 × 10−4

6 157, 164, 172, 184, 209 162.68 0.55 9.58 × 10−4

7 143, 153, 163, 176, 201 159.14 0.56 9.44 × 10−4

8 143, 153, 163, 176, 201 159.07 0.55 4.72 × 10−4

9 143, 153, 163, 176, 201 159.04 0.54 2.36 × 10−4

10 143, 153, 163, 176, 201 159.02 0.54 1.18 × 10−4

mental redundancy block in VLFT is used here: [Q(
k
Nm

−µS
σS

) − PN1 2−Lcrc ] ≈ 1. The optimization

problem of maximizing RT = E[K∣Lcrc]
E[N] reduces to minimizing E[N] for each Lcrc. The SDO tech-

nique used in Section 1.4 can be used here under the additional constraint that PN1 2−Lcrc < ε.

For each Lcrc, the optimized {N1,⋯,Nm} values for this case are identical for SDO and ES

and the values are given in Table 1.5. For small values of Lcrc we need to use a large value

of N1 to make sure PN1 2−Lcrc < ε. As a larger value of Lcrc is selected, N1 and consequently

{N2,⋯,N5} decrease while the error probability constraint is still satisfied. For Lcrc = 7 the set

of {N1,⋯,N5} = {143,153,163,176,201} minimizes the expected latency λ and maximizes RT .

For larger values of Lcrc > 7, the set of optimum blocklengths does not change and only the overall

probability of error decreases as the CRC length is increased.

The optimal set of blocklengths for Lcrc ≥ 7 and m = 5 is the same as the set for VLFT and

m = 5 from Table 1.3. The intuition for this is that once Lcrc is large enough that decoding decisions
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are extremely reliable, the optimal blocklengths for VLF-with-CRC should match those of VLFT.

Because the blocklengths are identical, the throughputRT form = 5 with Lcrc = 7 can be computed

by reducing the RT in Table 1.3 to account for the overhead of the CRC. The reduction from the

m = 5 VLFT rate RT = 0.603 is 96−7
96 where 96−7

96 × 0.603 = 0.559 which corresponds to the RT

from Table 1.5 for Lcrc = 7. While both SDO and ES give the same values for different Lcrc values,

the order of complexity for SDO is O(Lcrc(Nmax −N0)) while with ES algorithm the complexity

has the much larger order of O(Lcrc(Nmax−N0

m
)). As the simulation results of Section 1.7 show, the

actual achieved rate is 0.541 with an undetected error probability of 5.75 × 10−4.

For the simulations in Section 1.7 the CRC code used for Lcrc = 7 has a polynomial represen-

tation of 0x09 (x7 +x3 + 1). This CRC code has been used by Telecommunication Standardization

Sector of the International Telecommunications (CCITT) which sets international communications

standards. The CRC code used for Lcrc = 8 has a polynomial representation of 0x07 (x8+x2+x+1)

and is used in MultiMedia Cards (MMC) and Secure Digital (SD) cards.

1.6 Two-Phase VLF

Now we consider the two-phase VLF model in which the transmitter (source) uses the primary

communication channel to confirm whether the receiver (destination) has decoded to the correct

codeword. As in [41], the two-phase incremental redundancy scheme has a communication phase

followed by a confirmation phase.

Fig. 1.22 shows a block diagram for the two-phase communication scheme. Starting at the left,

a message block of size N1 is transmitted (communication phase). If the destination decodes cor-

rectly, the source sends a coded forward “ACK” on the same forward noisy channel to confirm the

successful decoding (confirmation phase). If the destination decodes incorrectly, the source sends

a coded forward NACK. The ACKs and NACKs are repetition codes of length A1 symbols and are

transmitted over the same forward noisy channel from the transmitter (source) to the receiver (des-

tination). If the decoder does not converge to any codeword with N1 symbols, the transmitter skips

the unnecessary confirmation phase and immediately transmits the second increment of N2 −N1
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Figure 1.22: Two-phase VLF block diagram and the forward transmission stages in two-phase

VLF systems.

bits.

Fig. 1.23 shows the first and second stages in decoding the message in two-phase VLF system.

Initially, the receiver tries to decode the message by only receiving the blocklength of I1. If it is

able to decode the message, the transmitter encodes and sends the one bit information that whether

the receiver has decoded the message the message correctly. The transmission continues afterward

based on whether the receiver decodes the confirmation message correctly.

In the two-phase VLF setting, we use the probability distributions of NS , RS , NE and RE from

Figs. 1.7, 1.8, 1.19, and 1.20. The optimization problem is to maximize RT = E[K]
E[N] where

E[K] = k (
m

∑
i=1
PSSi ) ≈ k

⎛
⎝
Q

⎛
⎝

k
Nm

−µS
σS

⎞
⎠
−
m−1
∑
i=1

PEEi
⎞
⎠
, (1.25)

with PEE
i representing the probability the receiver decodes both the message and the NACK erro-

neously and P SS
i is the probability the receiver decodes both message and ACK successfully. Note

that (1.25) assumes (consistent with our simulation results) that once the decoder is in state 3 of

Fig. 1.21, it does not return to state 1 even if a forward ACK is incorrectly received as a forward
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Figure 1.23: First and second stages of the transmission and confirmation phases in two-phase

VLF systems.

NACK. In any case, as in Section 1.2 we assume E[K] ≈ k.

The expected number of symbols transmitted in an AC is

E[N] =
m

∑
i=1

(Ni+Ai) [P SS
i +PEE

i ]+Ai [P SE
i +PES

i ] (1.26)

+Nm (1 − (
m

∑
i=1
P SS
i +

m

∑
i=1
PEE
i )) , (1.27)

where P SE
i is the probability of decoding the message successfully but decoding the ACK as a

NACK. Conversely, PES
i is the probability of decoding the message erroneously but decoding the

NACK successfully. The term multiplying Nm in (1.27) is the probability that an AC ends without

satisfying either of the stopping conditions. (1.27) is also approximated toNm (1 −Q(
k
Nm

−µS
σS

) + P SE
m ).

The probabilities P SS
i , PEE

i , P SE
i , and PES

i are computed as follows:
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PSSi =
⎡⎢⎢⎢⎢⎣
Q
⎛
⎝

k
Ni
−µS
σS

⎞
⎠
−Q

⎛
⎝

k
Ni−1

−µS
σS

⎞
⎠

⎤⎥⎥⎥⎥⎦
[1−Q(

√
Ai
σc

)] (1.28)

PEEi =
⎡⎢⎢⎢⎢⎣
γ
⎛
⎝
1 −Q

⎛
⎝

k
Ni
−µE
σE

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
[Q(

√
Ai
σc

)] (1.29)

PSEi =
⎡⎢⎢⎢⎢⎣
Q

⎛
⎝

k
Ni
−µS
σS

⎞
⎠
−Q

⎛
⎝

k
Ni−1

−µS
σS

⎞
⎠

⎤⎥⎥⎥⎥⎦
[Q(

√
Ai
σc

)] (1.30)

PES =
⎡⎢⎢⎢⎢⎣
γ
⎛
⎝
1 −Q

⎛
⎝

k
Ni
−µE
σE

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
[(1−Q(

√
Ai
σc

))] . (1.31)

In (1.28) the probability of decoding correctly at Ni and not at blocklengths smaller than or

equal to Ni−1 is Q(
k
Ni

−µS
σS

) −Q(
k

Ni−1
−µS

σS
) and Q (

√
A1

σc
) is the probability that the ACK is decoded

as a NACK, where σc is the standard deviation of the channel noise. In (1.29), γ [1 −Q(
k
Ni
−µE
σE

)] is

the probability of decoding erroneously at Ni.

We optimize the blocklengths for two-phase VLF to maximize RT under the constraint that
m

∑
i=1
PEE
i < ε , using both ES and SDO approaches from Section 1.4 for fixed values of {A1,⋯,Am}.

For ES we considered values of N1 ≤ N2 ≤ ⋅ ⋅ ⋅ ≤ Nm and constrained Nm to be no larger than

the blocklength corresponding to a rate-0.1 code (Nm ≤ 10k). For SDO we considered N1 values

ranging from the initial coding length N0 to 3k, which was the range that gave useful values of ε.

Table 1.6 shows two sets of {N1,⋯,Nm} with m = 5 obtained for different N1 in SDO with

ε≈10−3. The optimized {N1,⋯,Nm} with ε≤10−3 from ES is close to the SDO optimized block-

lengths. The optimized blocklengths from SDO can also be used as optimization limits for ES

algorithm and significantly reduce the ES optimization space.

Selecting a maximum size of the confirmation blocks (Amax), the order of complexity for SDA

considering every set of values {A1,⋯,Am} is O (Ammax(Nmax −N0)). In contrast, ES requires

O (Ammax(
Nmax−N0

m
)). ES is not feasible for all possible values of {A1,⋯,Am}, but SDO can be

used to explore the confirmation block sizes with ES employed to make small adjustments in the

values of Ni for the best values of {A1,⋯,Am} according to SDO. As seen in Section 1.4 ES and

SDO give very similar results, but SDO is much less complex.
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1.7 Results

Fig. 1.24 shows RT versus λ for NB-LDPC and convolutional codes using VLFT. In VLFT with

an unlimited number of transmissions (1-bit increments), convolutional codes with ML decoders

perform very well at short average blocklengths of up to 100 bits. VLFT schemes have through-

puts greater than capacity at short blocklengths because of the NTC. Convolutional codes follow

the marginal RCSP-ML (with unconstrained input) plot closely at short-blocklength with a small

gap that is due to the binary input for convolutional codes. At longer blocklengths of about 200

bits, marginal RCSP-ML rate approaches the capacity. NB-LDPC codes outperform convolutional

codes at longer blocklengths because the codeword error rate of convolutional codes increases once

the blocklength exceeds twice the traceback depth [42] whereas the NB-LDPC code performance

continues to improve with blocklength. The gaps between the throughputs for m =∞, m = 5, and

m = 10 NB-LDPC codes are similar to the gap observed in Fig. 1.17 . For m = 10 the perfor-

mance of NB-LDPC codes in VLFT is much closer to the case of m = ∞. The NB-LDPC codes

of Fig. 1.24 are over GF (256). The shortest code for k = 96 bits has an initial blocklength of

15 GF (256) symbols (120 bits), corresponding to an initial rate of 0.8. The NB-LDPC codes for

k = 192 and k = 288 have initial blocklengths of 256 and 384 bits, respectively. Some results for

the finite-m systems follow the non-active feedback scheme described in Section 1.2.3.

Fig. 1.25 shows the percentage of RCSP-ML rate for VLFT achieved by NB-LDPC and con-

volutional codes in VLFT. In the expected-blocklength range of 150-600 bits, NB-LDPC codes

Table 1.6: Optimized {N1,⋯,Nm} form=5 two-phase VLF using SDO and ES with {A1,⋯,A5} =

{5,4,3,3,3}.

Alg. k {N1,N2,⋯,N5} λ RT ε

SDO 96 145, 156, 167, 180, 202 166.1 0.5779 1.2E-3

SDO 96 146, 158, 171, 188, 230 166.6 0.5762 9.4E-4

ES 96 146, 158, 170, 184, 211 166.4 0.5771 9.9E-4
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Figure 1.24: RT vs. λ for NB-LDPC and 1024-state convolutional codes for VLFT with m = ∞,

m = 10, and m = 5.

achieve a throughput of about 90% of RCSP-ML throughput (and about 91% and 96% of un-

constrained and binary-input capacity, respectively) with an unlimited number of transmissions.

When the number of the transmissions is limited to 10 and 5, the throughput percentage decreases

to about 90% and 85%, respectively. RCSP-ML analysis is applied to the unconstrained-input

AWGN channel at SNR 2-dB, for which the capacity is 0.684. The capacity of BI-AWGN channel

at 2-dB SNR is 0.642 which is about 6% lower than the unconstrained-input AWGN capacity.

Table 1.7 summarizes the blocklengths that maximize the throughput in the two-phase VLF and

VLF-with-CRC settings with ε=10−3, for both NB-LDPC codes and (for comparison) tail-biting

convolutional codes. Blocklengths for the NB-LDPC codes are obtained from (1.25-1.27) using ES

on an optimization space limited by initial SDO results. Blocklengths for the convolutional codes

are based on the coordinate-descent algorithm in [31] using the assumption of rate-compatible
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Figure 1.25: Percentage of VLFT RT that NB-LDPC achieves with m =∞, m = 10, and m = 5.

sphere-packing. Table 1.7 also shows the percentage of BI-AWGN capacity obtained in the two-

phase VLF setting with m = 5 transmissions.

For k = 192 and 288, the NB-LDPC code obtains throughputs greater than 90% of BI-AWGN

capacity with an average blocklengths λ of less than 500 bits in the 2-phase setting. NB-LDPC

codes in the VLF-with-CRC setting with m = 5 achieve throughputs slightly lower than the ones

in the 2-phase setting with m = 5. However, similar to Fig. 1.17 if m is increased to 10, VLF-

with-CRC results in higher throughputs. Large values of m lead to a degradation in throughput

performance for two-phase VLF due to the overhead associated with the more frequent forward

ACK and NACK messages in the confirmation phase.

The rate-1/3 convolutional codes in Table 1.7 have octal generator polynomials (117,127,155)

for the 64-state code and (2325,2731,3747) for the 1024-state code [35]. The NB-LDPC codes

are described completely online1.
1UCLA Communication Systems Laboratory (CSL) website at http://www.seas.ucla.edu/csl/resources/index.htm
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Table 1.7: Optimized {N1,⋯,N5} for two-phase VLF and VLF-with-CRC with m=5 at SNR 2

dB, and corresponding RT and λ values achieved in simulations. {A1,⋯,A5} = {5,4,3,3,3} for

two-phase VLF using NB-LDPC codes. For the convolutional codes,Ai = 6, 8, and 9 ∀i for k = 96,

192, and 288 bits, respectively.

Code k {N1,N2,⋯,N5} λ RT %

CRC NB 89 143,153,163,176,201 164.5 0.541 84.2

2-Phase NB 96 146,158,170,184,211 170.4 0.563 87.7

2-Phase CC 96 138,153,166,180,204 168.6 0.569 88.6

CRC NB 185 293,309,325,346,386 323.4 0.572 89.1

2-Phase NB 192 301,322,344,369,408 330.5 0.581 90.5

2-Phase CC 192 287,309,331,352,384 349.4 0.549 85.4

CRC NB 281 459,487,518,550,597 491.3 0.572 89.1

2-Phase NB 288 459,487,518,550,597 495.7 0.581 90.5

2-Phase CC 288 416,441,463,488,532 599.6 0.480 74.8

Fig. 1.26 shows the throughput obtained in the VLF setting for NB-LDPC codes, 64-state and

1024-state tail-biting convolutional codes with m = 5, m = 10, m = ∞ for ε = 10−3. As the

blocklength increases, as mentioned in [34], the performance of the codes in VLF gets closer to

the performance in VLFT. The plots for m = 5 are from Table 1.7. With m = ∞, the k = 89 the

NB-LDPC code achieves a throughput greater than the random coding lower bound obtained from

the analysis in [2].

Fig. 1.27 shows the percentage of the capacity of the BI-AWGN channel at 2-dB SNR achieved

by NB-LDPC and convolutional codes using VLF. In the expected blocklength range of 300-500

bits, NB-LDPC codes with CRC achieve a throughput of about 94% of capacity with an unlimited

number of transmissions. When the number of the transmissions is limited to 10, the throughput

percentage decreases to about 93%. For m = 5, NB-LDPC codes perform slightly better in two-
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Figure 1.26: RT vs. λ for NB-LDPC with m = ∞ in VLF-with-CRC and 64 and 1024-state

convolutional codes and NB-LDPC codes with m = 5 in VLF.

phase VLF setting than in VLF-with-CRC. Note that for m = ∞ or even m = 10 two-phase VLF

will not perform well because of the overhead associated with the confirmation messages.

As discussed in Section 1.3 similar Gaussian approximation analysis can be done for higher-

SNR AWGN channels. for instance, for SNR-8dB AWGN channel which uses a larger 16-QAM

constellation, the VLF-with-CRC system with an unlimited number of transmissions achieves a

throughput of 2.37 bits per symbol with a frame error probability of less than 10−3. This throughput

corresponds to 88% of capacity in the blocklength regime of 40 16-QAM (quadrature amplitude

modulation) symbols. Furthermore, the VLF-with-CRC system on 5-dB BI-AWGN fading channel

with an unlimited number of transmissions achieves a throughput corresponding to 90% of capacity

in the blocklength regime of about 140 bits.
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VLF.

1.8 Conclusions

We used the reciprocal-Gaussian approximation for the blocklength of first successful decoding

to optimize the size of each incremental transmission to maximize throughput in VLFT and VLF

settings. For feedback with a limitation on the number of transmissions, the sequential differential

optimization (SDO) algorithm can be used quickly and accurately to find the optimal transmission

lengths for a wide range of channels and codes. In this chapter, we discussed and applied SDO

to non-binary LDPC codes for a variety of feedback systems. We focused on the binary-input

AWGN channel but verified the effectiveness of the Gaussian approximation and SDO on the stan-

dard AWGN channel with a 16-QAM input and on a fading channel. In the 300-500 bit average

blocklength regime, this work reports the best VLFT and VLF throughputs yet. VLFT throughputs

are higher than VLF, but VLF is more practical because it does not assume a noiseless transmitter
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confirmation symbol. For VLF-with-CRC with m = ∞, NB-LDPC codes with optimized block-

lengths achieve about 94% of the capacity of 2-dB BI-AWGN channel for an average blocklength

of 300-500 bits. In the same blocklength regime, for VLF-with-CRC with m = 10, NB-LDPC

codes with optimized blocklengths achieve about 93% of the capacity.

The performance results can also be considered in terms of SNR gap. In Fig. 1.27, the random-

coding lower bound for a system with feedback is 0.27 dB from the Shannon limit for k = 280

with a blocklength of less than 500 bits. Looking at the VLF-CRC NB-LDPC codes for k = 280 in

Fig. 1.27, the m = ∞ NB-LDPC code is 0.53 dB from Shannon limit. The NB-LDPC non-active

feedback system in Fig. 1.27 uses ten rounds of single-bit feedback to operate within 0.65 dB of

the Shannon limit with an average blocklength of less than 500 bits. Similar analysis can also be

done for higher-SNR AWGN and fading channels.
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CHAPTER 2

Polar Codes with Feedback

This chapter uses an extension of Reciprocal Channel Approximation (RCA) to accurately and

efficiently predict the frame error rate (FER) performance of polar codes by analyzing the prob-

ability density function (p.d.f.) of log likelihood ratios (LLR) associated with information bits.

A feedback scheme uses the RCA to predict the p.d.f of LLRs in conjunction with a repetition

coding system to decrease the blocklength required for a target FER by a factor of 16. Using a

rate-0.5 128-bit polar code as the initially transmitted code, the FER of the system with feedback

is obtained by theoretical analysis and verified by simulation. Including the additional incremental

transmissions the average blocklength for the system with feedback is 137.55 bits and the rate is

0.4653. Without feedback, a polar code with blocklength 2048 is required to achieve a comparable

FER at a comparable rate. Intuitively, feedback allows the polar code to use fewer frozen bits in

the initial transmission and then uses repetition codes to provide the needed reliability to resolve

unreliable unfrozen bits identified by feedback.

2.1 Introduction

Polar codes are a class of modern error correcting codes introduced by Arikan [43]. These codes

can achieve the capacity of binary-input symmetric discrete memoryless channels universally. Po-

lar codes have an explicit construction using a kernel matrix and have low encoding and decoding

complexity. Originally, Arikan [43] used the 2 x 2 kernel matrix F in (2.1) to show the effect of
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polarization.

F =
⎡⎢⎢⎢⎢⎢⎣

1 0

1 1

⎤⎥⎥⎥⎥⎥⎦
(2.1)

When a large number of these polarizing matrices are concatenated, the channel polarizes in

the sense that the fraction of the transmitted bits that experience a noiseless channel to the total

number of channel uses is equal to the capacity of the channel. The rest of the fraction of the bits

are deemed useless as they experience very noisy synthetic channels. The information (unfrozen)

bits are allocated to the noiseless synthetic channels and pre-determined values (usually zeros) are

allocated to the noisy channels.

Researchers [44] have studied the polarization phenomenon with larger kernel matrices than

(2.1). The general requirement for a square matrix to be a valid polarizing kernel matrix is that none

of the column permutations of the matrix should result in an upper triangular matrix. Korada et

al. [45] show that larger polarizing matrices can increase the speed of polarization. Asymptotically,

the rate of polarization shows how fast the probability of error decays to zero as the blocklength B

of the polar code approaches infinity. Arikan and Telatar [46] derived an upper bound suggesting

that this rate scales exponentially in −Bβ where β is the rate of polarization. For kernel matrices

smaller than 16 × 16, β < 1/2.

In this chapter, we use the original polarization kernel matrix (2.1) to analyze how feedback

can help in achieving a target FER at a much smaller blocklength with feedback than without

feedback. The figure of merit used in this work is the expected total number of forward channel

uses required to achieve a particular FER. This total number of forward channel transmissions

includes the blocklength of the polar code initially transmitted as well as the subsequent forward

transmissions based on the feedback. The FER performance gain is compared with the FER of the

no-feedback system with an average rate similar to the scheme where feedback is used. In other

words, we take into account the overhead due to the additional transmissions and the consequent

rate reduction in our comparison.

Reciprocal channel approximation (RCA) was used in [47, 48] to design LDPC codes. We

use RCA to accurately estimate the FER of short blocklength polar codes (without feedback).
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Moreover, RCA gives an approximation on the distribution of the LLR values of the information

bits (the unfrozen bits).

The approximate distribution of the LLR values obtained by RCA informs the use of feedback

during decoding. Feedback requests additional bits only when the reliability of the successive-

cancellation-decoded information bits falls in a specified low-reliability region of the RCA-obtained

distribution. A repetition code of a specified length is used to increase the reliability of those par-

ticular bits. Significant coding gain or equivalently polarization-rate improvement is obtained by

this scheme. Furthermore, an RCA-based analysis accurately predicts the simulation performance

of this feedback scheme.

The rest of the chapter is organized as follows: Sec. 2.2 gives an introduction to successive

cancelation (SC) decoding of polar codes and the LLR calculation of the information bits. Sec. 2.3

provides the system model and discusses the application of RCA to polar codes. This section

also compares the FER performance predicted by RCA with simulation results. Sec. 2.4 presents

the feedback scheme, demonstrates its significant improvement of FER, and compares the RCA

analysis of that scheme with simulation results. Furthermore, it defines an optimization problem

to achieve a particular FER in short blocklength and shows the mathematical derivations for the

results obtained in the this section. Sec. 2.5 concludes this chapter.

2.2 Polar Codes

Fig. 2.1 shows the graphical representation of the polarization matrix used in this section. The bits

V1 and V2 are combined according to the kernel matrix (2.1) to give W1 and W2

W1 = V1 ⊕ V2 (2.2)

W2 = V2 (2.3)

From (2.2) and (2.3), V1 can be calculated by V1 =W1 ⊕W2. The probability of error for V1 is

high because if either W1 or W2 is decoded incorrectly, V1 will be decoded incorrectly.

The LLR value for V1 can be calculated as if V1 is connected to a check node in an LDPC code
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Figure 2.1: The graph of the kernel matrix.

that also connects to the variable nodes W1 and W2. The LLR value of V1 can be calculated as:

LLRV1 = 2 tanh−1(tanh(LLRW1

2
) tanh(LLRW2

2
)). (2.4)

If V1 is in fact decoded correctly (or it has a value already determined) the probability of

error for V2 is significantly lower since the decision about V2 is from two independent channel

observations:

V2 =W2 (2.5)

V2 =W1 ⊕ V1 . (2.6)

Assuming V1 is previously determined, the LLR value of LLRV2 is calculated as follows:

LLRV2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LLRW1 +LLRW2 if V1 = 0

−LLRW1 +LLRW2 if V1 = 1

(2.7)

Computation of the LLRs of all the bits in a polar code follow from repeated applications of

(2.4) and (2.7).

In this chapter we consider a channel with binary input and additive white Gaussian noise (BI-

AWGN) having signal-to-noise ratio (SNR) sch where equiprobable information bits are coded

according to the polar code designed with the polarization matrix (2.1).
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2.3 RCA for Polar Codes

The RCA for BI-AWGN channel in the study and design of LDPC codes uses a single real-valued

parameter s, the SNR, to approximate the distribution of LLR messages exchanged between vari-

able and check nodes. RCA for LDPC codes is a low complexity alternative to the density evolution

algorithm. The RCA approach can be applied to polar codes with SC decoders.

Assume a BI-AWGN channel with input x and output y,

y = x + z, (2.8)

where z ∼ N(0, σ2
ch) is a white Gaussian noise sample and x ∈ {1,−1} are binary-phase-shift-

keying (BPSK) modulated channel inputs corresponding to 0 and 1 respectively. Note that for this

scenario sch = 1/σ2
ch. The bit LLR of a message received at the receiver is given by

L = Ln(P (y∣x = +1)
P (y∣x = −1)

) = 2y

σ2
ch

= 2ysch . (2.9)

Since polar codes are linear block codes, without loss of generality assume that the all-zero

codeword is transmitted where all information and frozen bits are set to zero. Under the assump-

tion that only x = +1 is transmitted over the channel, the channel output y will have a Gaussian

distribution, y ∼ N(1, σ2
ch). Consequently, the LLR message L is normally distributed with mean

E(L) and variance var(L) given by

E(L) = 2E(y)
σ2
ch

= 2

σ2
ch

(2.10)

Var(L) = 4

σ4
ch

Var(y) = 4

σ2
ch

. (2.11)

Define the reciprocal SNR as r ∈ R such that

C(s) +C(r) = 1 , (2.12)

where C(s) is the capacity of the BI-AWGN channel with SNR s. For computational simplicity

and numerical precision we prefer to express C(s) as

C(s) = 1 − ∫
∞

−∞
log2 (1 + e−(2

√
2su+2s)) e

−u2

√
π
du, (2.13)
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Figure 2.2: RCA to calculate the LLR p.d.f. of V1

which is obtained from [49, (15)] through a change of variables. The self-inverting reciprocal

energy function

R(s) = C−1 (1 −C(s)) (2.14)

in [47] transforms between s and r: r = R(s) and s = R(r).

Let sch be the channel SNR and sWi
for i ∈ 1,2 be the SNR corresponding to the nodes Wi in

Fig. 2.1. Using C(s) and C−1(s) we can calculate the SNR observed at V1. The function R(s)

makes the corresponding values Di in Fig. 2.9 additive at the check node (+) in Fig. 2.9. Thus the

SNR value at V1 is calculated by C−1(1 − C(D1 +D2)) as in Fig. 2.9. The distribution of V1 is

approximately Gaussian with a mean of 2sV1 and variance of 4sV1 . Under the assumption that V1

is correctly decoded (V1 = 0), W1 and W2 provide two independent looks at V2 and the SNR at V2

is the summation of the SNR values observed at W1 and W2:

sV2 = sW1 + sW2 . (2.15)

The LLR distribution of each information bit (assumed by RCA to be Gaussian) is calculated

at each stage of SC decoding. If any of the information bits is decoded in error the entire block

will be decoded in error as the errors propagate in an SC decoder. The frame error probability is
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Figure 2.3: RCA to calculate the LLR p.d.f. of V1
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Figure 2.4: RCA to calculate the LLR p.d.f. of V1

the probability that none of the bits is decoded incorrectly:

PFE = 1 −
k

∏
1

P (ûi = 0∣u1 = 0, . . . , ui−1 = 0) . (2.16)

Note that ûi is the decision about the information bit ui for i ∈ {1, . . . , k}, made by the SC

decoder. Assuming all information bits from 1 to i − 1 < k are decoded correctly, the SNR for

each information (unfrozen) bit is si. The distribution is approximately N(µi,sc,2µi,sc) where

µi,sc = 2sui . The probability that the ith successively decoded information bit is in error under the

assumption that all the previous information bits are decoded correctly is approximated by
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Figure 2.5: Simulation FER and FER predicted by RCA and DE for a rate-0.5 polar code of length

128 bits constructed using the original kernel matrix of (2.1).

P (ûi = 0∣u1 = 0, . . . , ui−1 = 0)≈Q
⎛
⎝
−

µi,sc√
2µi,sc

⎞
⎠
. (2.17)

Thus the FER (PFE) is approximately

PFE ≈1 −
k

∏
i=1
Q(−

µi,sc√
µi,sc

) . (2.18)

Fig. 2.5 shows the FER predicted by RCA and illustrates how closely it follows the FER ob-

tained from simulations and also density evolution (DE) for different SNR values.

Fig. 2.6 shows the probability of error for each information bit and its comparison to the RCA-

predicted probability of error of (2.17). RCA can be effectively used to select which bits are more

unreliable. Those bits can be selected as frozen bits to lower the rate and increase reliability.
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Figure 2.6: Information bit probability of error from simulation (bar plot) and RCA predicted

probability of error as in (2.17).

2.4 Reduction in Blocklength to Achieve a Target FER

In this section we show how feedback can be used to reduce the blocklength required to achieve

a specified FER. Essentially, feedback allows the polar code to use fewer frozen bits in the initial

transmission and then uses repetition codes to provide the needed reliability to resolve unreliable

unfrozen bits identified by feedback.

In order to use feedback to reduce the error probability of the SC decoded information bit

ui, a symmetric LLR threshold range around zero ([−ti, ti]) is determined. If the LLR from SC

decoding is in this range, feedback instructs the transmitter to increase reliability by sending a

repetition code of size ni indicate the value of bit currently being decoded.

The probability that the LLR value of the SC-decoded bit ui falls in the less reliable range of

[−ti, ti], where ti is the threshold, is given by

P (−ti<Li< ti)=Q(
−ti−µi,sc

σi,sc
)−Q(

ti−µi,sc

σi,sc
) . (2.19)
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If the LLR Li of ui is in the range of [−ti, ti], feedback initiates the use of a repetition code

to increase the number of independent observations of the channel and consequently increase the

reliability of ui. The probability of having the increased LLR value (L′i) become positive and hence

be decoded correctly is

P (L′i > 0∣ − ti < Li < ti), (2.20)

where L′i includes the additional reliability Li,rc from the repetition code, i.e. L′i = Li +Li,rc.

The total probability of correctly decoding the information bit ui under the assumption that all

the previous information bits are decoded correctly is

P (ûi = ui) = P (Li > ti) + P (L′i > 0, ∣Li∣ < ti) . (2.21)

The second term (joint probability) in (2.21) can be decomposed into the product of two terms

P (L′i > 0∣ − ti < Li < ti)P (−ti < Li < ti).

Note that P (ûi = ui) depends on the length of the repetition code as well as the threshold ti.

The selection of these parameters will be discussed later in this in section.

Under the assumption that ui = 0, for a repetition-coded signal with a blocklength of ni, Li,rc is

normally distributed with a mean of µi,rc = ni( 2
σ2
ch
) = 2nisch and a variance of σ2

i,rc = ni( 4
σ2
ch
). For

simplicity of notation, the index i is omitted in the following. For the general case where ti, µi,sc

and σi,sc of (2.19) are represented by t, µsc, and σsc (for successive cancellation) respectively, the

probability P (L′ > 0∣ − t < L < t) has the following expression:

∫
∞

0
c1e

c2(v) [Q(v −G1

G2

) −Q(v +G1

G2

)]dv , (2.22)

where

c1 =

√
1

σ2
sc+σ2

rc

√
2π (Q(−t − µsc

σsc
) −Q(t − µsc

σsc
))

(2.23)

c2(v) =
−(v − µsc − µrc)2

2(σ2
sc + σ2

rc)
(2.24)

G1 =
t(σ2

sc + σ2
rc)

σ2
sc

(2.25)

G2 =
√

(σ2
sc + σ2

rc)
σrc

σsc
. (2.26)
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In this section we derive the p.d.f. corresponding to (2.22). Equations (2.27)-(2.28) show the

p.d.f.s of Lrc and Lsc.

fLrc(x) =
1√

2πσ2
rc

e
− (x−µrc)

2

2σ2rc (2.27)

fLsc(y) =
c1√

2πσ2
sc

e
− (y−µsc)

2

2σ2sc ,−t < y < t , (2.28)

where

c1 =
1

Q(−t − µsc
σsc

) −Q(t − µsc
σsc

)
. (2.29)

Let L′ = Lrc + Lsc. The p.d.f of L′ is the convolution of the p.d.fs of Lrc and Lsc and is given

by

fL′(v) = ∫
∞

−∞
fLrc(u)fLsc(v − u)du . (2.30)

The integrand of (2.30) can be expressed as a normal term multiplied by the term c6 as follows:

fLrc(u)fLsc(v − u) = c2
1√
2πc23

e
− (u−c4)

2

2c2
3 , (2.31)

where

c2 = c5ec6
√

2πc23 (2.32)

c5 =
c1

2πσscσrc
, (2.33)

c6 =
−(v − µsc − µrc)2

2(σ2
sc + σ2

rc)
, (2.34)

c23 =
σ2
rcσ

2
sc

σ2
sc + σ2

rc

, (2.35)

c4 =
σ2
scµrc + (v − µsc)σ2

rc

σ2
sc + σ2

rc

. (2.36)

The variable u is only defined in the range of [v − t, v + t] consistent with (2.28). Integrating

(2.31) over u ∈ [v − t, v + t], the p.d.f of fL′(v) is derived as

fL′(v) = c2 (Q(v − t − c4
c3

) −Q(v + t − c4
c3

)) . (2.37)
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By simplifying terms, (2.37) reduces to

fL′(v) = c2 (Q(v +G1

G3

) −Q(v +G2

G3

)) , (2.38)

where G1 =
−σ2

scµrc + µscσ2
rc − t(σ2

sc + σ2
rc)

σ2
sc

, (2.39)

G2 =
−σ2

scµrc + µscσ2
rc + t(σ2

sc + σ2
rc)

σ2
sc

, (2.40)

G3 =
√

(σ2
sc + σ2

rc)
σrc
σsc

. (2.41)

Under the assumptions that σ2
sc = 2µsc and σ2

rc = 2µrc,

G2 = −G1 =
t(σ2

sc + σ2
rc)

σ2
sc

. (2.42)

Finally, the probability of (2.22) is given by

∫
∞

0
c6 (Q(v −G1

G3

) −Q(v +G1

G3

))dv. (2.43)

Equation (2.22), which is derived, shows the probability that a particular bit u is decoded

correctly if the original LLR value from the initial SC decoding is within the thresholds [−t, t]

and a repetition code of length n is used. c1 and G1 are variables that depend on the choice of

the threshold t and the channel SNR. G2 only depends on the SNR of the channel and the LLR

distribution of the SC decoded bit u.

The probability that a particular information bit u is correctly and reliably decoded by the initial

SC decoding or with the increased reliability from the repetition code when its LLR is within the

threshold [−ti, ti] is

Pfb(t,n)(û = u) = P (L > t)+P (L′ > 0∣ − t < L < t)P (∣L∣ < t) (2.44)

= Q ( t−µsc
σsc

)+ ∫
∞

0 ec2(v)[Q( v−G1
G2

)−Q( v+G1
G2

)]dv
2πσscσrc

.
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Figure 2.7: FER prediction based on RCA versus the threshold (t) for the optimization problem of

(2.46) where n = 5 and ε = 0.007. The total expected number of additional bits ∑ki=1 ∆fb(ui, t, n) =

9.40 in the transmitted repetition codes.

The expected number of additional bits transmitted in the forward direction to increase the

reliability of the single information bit u in response to feedback is

∆fb(u, t, n)=n(Q(
−t − µsc,u

σsc
)−Q(

t − µsc,u

σsc
)) . (2.45)

For a particular target FER ε, the optimization problem is to find the ti and ni values such that

the total expected number of additional bits is minimized. Therefore, the optimization problem
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Figure 2.8: FER prediction based on RCA versus the RC blocklength (n) for the optimization

problem of (2.46) where t = 5.1 and ε = 0.007. The total expected number of additional bits

∑ki=1 ∆fb(ui, t, n) = 9.40 in the transmitted repetition codes.

reduces to

Minimize
{t1,...,tk,n1,...,nk}

k

∑
i=1

∆fb(ui, ti, ni) (2.46)

s.t. 1 −
k

∏
i=1
Pfb(ti,ni)(ûi = ui) < ε . (2.47)

The size of the above optimization problem is very large where ni can be any positive integer

number and each ti is any positive real number. To simplify the optimization space, in this section,

we assume ti = t and ni = n for all i, even though we will continue to reflect in our calculations

that µsc,i and σsc,i are distinct for each i. We have found that constraining the optimization to a

single t and a single n in fact does not substantially diminish performance.

64



0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

n=128 and k=64 bits
F

E
R

 

 

FER

FER = 0.007

0 1 2 3 4 5 6
0

5

10

15

N
u

m
b

e
r 

o
f 

a
d

d
it
io

n
a

l 
b

it
s

Threshold

 

 

Additional bits

 Additional bits for FER = 0.007

Figure 2.9: The improved results by re-transmitting the unreliable bits from the originally trans-

mitted bits as the new additional bits.

In this section, we show the analysis for the optimal solution to the optimization problem of

(2.46) under the assumption that ti = t and ni = n for all i. For a constant repetition-code length

of n = 5, Fig. 2.7 shows the average number of the repetition-transmitted additional bits under the

FER constraint of ε = 0.007. For a fixed n, the probability of error as in (2.47) decreases, but the

expected number of additional bits transmitted in the forward direction increases since the size of

the unreliable region has increased. For n = 5, the minimum threshold t that achieves an FER

of smaller than ε = 0.007 is t = 5.1. This value of t corresponds to an unreliable LLR range of

[−5.1,5.1].

For a constant LLR threshold of t = 5.1, Fig. 2.8 shows the average number of the repetition-
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Figure 2.10: FER of the feedback system obtained by simulations and its comparison to the anal-

ysis of Sec. 2.4. The feedback system shows about 16-fold reduction in blocklength required to

achieve a target FER of 7 × 10−3 compared to the case without feedback.

transmitted additional bits under the FER constraint ε = 0.007 . For a fixed t, the probably of error

as in (2.47) decreases as the length of the repetition code n increases. After a certain point, the

rate of decay of the probability of error decreases with an increase in n. This is due to the choice

of threshold t resulting in a small enough unreliable region that with a high probability the SC de-

coded LLR values become less than the lower threshold −t. In this scenario, increasing n does not

significantly lower the overall probability of error while it increases expected number of additional

bits transmitted in the forward direction. For t = 5.1 the minimum length of the repetition code n

that achieves an FER smaller than ε = 0.007 is n = 5.
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Fig. 2.10 shows simulation results on a 2 dB binary-input AWGN channel including a polar

code with feedback using the values t = 5.1 and n = 5, which optimize ∑ki=1 ∆fb(ui, t, n) for the

target FER of ε = 7 × 10−3 at 2 dB for the original rate 0.5 polar code shown in Fig. 2.5. This

target was chosen because it is an order of magnitude below the FER of a rate-0.4653 blocklength-

128 polar code at 2 dB. Based on RCA analysis, the effective rate is 0.4658 after accounting for

the expected additional bits, which total ∑ki=1 ∆fb(ui, t, n) = 9.40 due to the repetition codes. The

simulation results used an average of 9.55 additional bits and the effective rate of the simulation is

0.4653.

Fig 2.10 also shows the FER simulation results for polar codes without feedback for various

blocklengths ranging from 128 to 2048 with rates set as closely as possible to 0.4653. The actual

rates were 0.4688 for the blocklength 128, 0.4648 for blocklengths 256 and 512, and 0.4658 for

blocklengths 1024 and 2048.

For rates near 0.465, the polar code with feedback achieved an FER of 7×10−3 with an average

blocklength of 128 + 9.55 = 137.55. In contrast, a polar code without feedback requires a block-

length of 2048 for a comparable FER. Thus the reduction in blocklength achieved by feedback is

a about factor of 16.

2.5 Conclusions

In this chapter we have shown how to use an extension of RCA to closely and efficiently predict the

FER performance of polar codes by analyzing the p.d.f of LLR values associated with information

bits. Using this distribution and a feedback scheme incorporating a repetition code, the blocklength

required to achieve a target FER is decreased by a factor of 16 as compared to a polar code without

feedback. The use of feedback allows a smaller faction of the initial bits to be frozen because

feedback provides the ability to effectively freeze a few more bits after the initial transmission

through the use of a repetition codes to provide additional needed reliability.
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CHAPTER 3

Protograph-Based Raptor-like Codes

In this chapter, we propose protograph-based Raptor-like (PBRL) codes as a class of rate-compatible

(RC) LDPC codes for binary-input AWGN channels. As with the Raptor codes, exclusive-OR op-

erations on precoded bits produce additional parity bits providing extensive rate compatibility.

Unlike Raptor codes, each additional parity bit in the protograph is explicitly designed to optimize

the density evolution threshold. During the lifting process, ACE and CPEG constraints are used to

avoid undesirable graphical structures. Some density-evolution performance is sacrificed to obtain

lower error floors, especially at short blocklengths.

Simulation results are shown for information block sizes of k = 1032 and 16384. For a target

frame error rate of 10−5, at each rate the k = 1032 and 16384 code families perform within 1 dB

and 0.4 dB of both the Gallager bound and the normal approximation, respectively. The 16384

code family outperforms the best known standardized code family, the AR4JA codes. The PBRL

codes also outperform DVB-S2 codes that have the advantages of longer blocklengths and outer

BCH codes. Performance is similar to RC code families designed by Nguyen et al. that do not

constrain codes to have the PBRL structure and involve simulation in the optimization process at

each rate.

3.1 Introduction

This chapter provides a general technique for constructing families of rate-compatible (RC) low-

density parity-check (LDPC) codes and provides numerical results showing excellent performance.
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3.1.1 Rate-Compatible Channel Codes

RC punctured convolutional (RCPC) codes and RC punctured turbo (RCPT) codes are among the

most popular RC channel codes used in incremental redundancy (IR) systems [50]. For both RCPC

[51] and RCPT [52] codes, a collection of RC puncturing patterns are often carefully designed to

ensure good error rate performance across the family of rates despite the RC constraint. Liu and

Soljanin showed that RCPT code performance degrades significantly when the punctured code rate

is above a threshold [53].

Low-Density Parity-Check (LDPC) codes were first introduced by Gallager in his disserta-

tion in 1963 [54]. Tanner [55] introduced the representation of LDPC codes as bipartite graphs.

MacKay [56] showed that LDPC codes provide capacity-approaching performance similar to turbo

codes [57] when decoded by a message-passing algorithm with soft information.

Irregular LDPC codes have parity-check matrices that have a variety of column weights and

row weights. By optimizing the variable-node and check-node degree distributions, Luby et al. [58]

showed that properly constructed irregular LDPC codes can achieve rates even closer to capacity

than regular codes, which have a single column weight and a single row weight. Richardson,

Shokrollahi and Urbanke [59] created a systematic method called density evolution to design and

analyze the optimal degree distribution of LDPC codes based on the assumption that the block-

length can be infinitely long.

Inspired by the capacity-approaching performance of LDPC at individual rates, approaches

including [60–74] construct RC LDPC code families.

Any RC code may be considered as a low-rate code that is punctured to produce higher rates,

but design approaches can be distinguished as to whether the design begins with the lowest rate or

the highest rate. In [60–65], the lowest rate “mother code” is designed first and then puncturing

is designed to obtain the higher rates. However, as observed in [66] and elsewhere, finite-length

LDPC RC code families obtained in this way suffer from a larger performance degradation than

punctured turbo codes at high rates.

To avoid this problem at high rates, the method of extension designs the high-rate code first
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and then the lower rate codes are designed on top of that foundation. This approach has been

explored in articles including [66–74]. Our analysis uses the extension approach. Also, as in

[61,66,68] our design approach focuses on maximizing the density-evolution/EXIT threshold as a

design objective.

As in [67, 73], our RC code family is designed by extending a protograph. Thorpe [75] intro-

duced protograph-based LDPC codes, or protograph codes. These codes were studied extensively

by Divsalar et al. [76]. The design of protograph codes begins with the construction of a relatively

small bipartite graph called the protograph. After using density evolution to properly design the

protograph, a copy-and-permute operation, often referred to as “lifting”, is applied to the proto-

graph to obtain larger graphs of various sizes, resulting in longer-blocklength LDPC codes. As part

of lifting, the variable-node connections of the edges of the same type are permuted among the pro-

tograph replicas. Even when the protograph has parallel edges, lifting can ensure that the final code

does not have parallel edges. A detailed discussion on parallel edges in protographs can be found

in [76], which also discusses how protograph codes facilitate efficient decoder implementation in

hardware.

In contrast to [67] and [73], but similar to [71, 72], we restrict the code family to have the

basic structure of Raptor codes [77]. Constraining the design in this way makes the construction

and optimization manageable while still providing outstanding performance and extensive rate-

compatibility. Introduced by Luby [78] and Shokrollahi [77] respectively, LT codes and Raptor

codes share many similarities with LDPC codes and are shown to achieve the capacity of binary

erasure channel (BEC) universally. Etesami et al. [79] explored the application of Raptor codes to

binary memoryless symmetric channels and derive various results, including the fact that Raptor

codes are not universal except for the BEC. Note that results on Raptor codes such as [77] and [79]

rely heavily on the assumption of large information blocks.

Following the Raptor-like structure proposed in [71], Nitzold et al. applied spatial coupling [80]

to improve the threshold, These spatially coupled codes can be viewed as Raptor-like LDPC con-

volutional codes [81]. Nitzold et al. focused on the analysis of the asymptotic decoding threshold

where the rate loss due to the time-spreading number L is negligible.
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Recent work by Nguyen and Nosratinia [74] considered a general structure for extending RC

protograph codes but ends up proposing an example protograph that has the Raptor-like structure

as first proposed in [71] and [72].

3.1.2 Organization and Main Contributions

We propose a class of RC LDPC codes called protograph-based raptor-like (PBRL) LDPC codes.

The construction and optimization of PBRL codes are discussed and simulation results are pre-

sented. Comparing to existing codes in the literature (e.g. AR4JA codes in [82], DVB-S2 codes

in [83] and protograph codes in [73]), PBRL codes show outstanding performance while providing

extensive rate-compatibility.

Our analysis is based on the precursor conference papers [71, 72]. The PBRL approach was

introduced in [71] and used to design k = 192 RC code families. In [71] a PBRL code family with

multiple parallel edges to the punctured node produced thresholds within 0.34 dB of capacity at

every rate, but the best simulated performance was achieved by a code family with higher thresh-

olds that had only one pair of parallel edges connected to the punctured node. This is an example

of the well-known inability of threshold alone to guide short-blocklength design.

In [72] the PBRL approach is applied to the design of long-blocklength code families, providing

a k = 16368 LDPC code family as an example. Also, reciprocal channel approximation (RCA)

replaces the standard density evolution of [71] to provide a fast and accurate approximation of the

density evolution threshold to speed up the optimization process. In [72] the punctured node is

connected to every check node in the IR part at least once to provide low thresholds. As in [71],

parallel edges to the punctured node from the IR check nodes are kept to a minimum, in this case

two check nodes had a pair of parallel edges to the punctured node. In both [71] and [72] the

circulant progressive edge growth (CPEG) algorithm [84] was used for lifting.

This chapter unifies and extends the material in the conference papers [71] and [72]. The

contributions beyond the precursor papers include the description of a modified RCA algorithm for

use with single-check variable nodes (which are essential to PBRL codes), the design of new code
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families for k = 1032 and k = 16384 that use lifting that incorporates both CPEG and Approximate

Cycle Extrinsic Message Degree (ACE) constraints, comparison with finite-length performance

bounds and approximations, and a careful discussion of how constraints on the connections can be

used to sacrifice some threshold performance to avoid problematic error floors. These constraints

become less stringent for longer blocklengths.

The rest of the chapter is organized as follows: Sec. 3.2 presents the PBRL code structure.

Sec. 3.3 provides the design procedure to construct PBRL codes. Sec. 3.4 constructs example

PBRL code families and presents analysis and simulation results. Finally, Sec. 3.5 concludes the

chapter.

3.2 Protograph-Based Raptor-Like LDPC Code

This section introduces the structure, encoding, and decoding of PBRL codes.

3.2.1 The Structure of PBRL Codes

Fig. 4.1 shows the protograph structure of a PBRL code. This protograph consists of two parts: (1)

a highest-rate code (HRC) protograph and (2) an incremental redundancy code (IRC) protograph.

The IRC provides lower rates as more of its variable nodes are transmitted, starting from the top.

The bipartite graph of a PBRL protograph can be described by a protomatrix, which is the

parity-check matrix of a protograph. Let 0 be the all-zeros matrix and I be the identity matrix with

the appropriate dimensions. The protomatrix of the protograph shown in Fig. 4.1 is given as

H =
⎡⎢⎢⎢⎢⎢⎣

HHRC 0

HIRC I

⎤⎥⎥⎥⎥⎥⎦
(3.1)

where the HRC parity-check matrix HHRC and IRC parity-check matrix HIRC are given as

HHRC =
⎡⎢⎢⎢⎢⎢⎣

1 1 2 1 2 1

2 2 1 2 1 2

⎤⎥⎥⎥⎥⎥⎦
(3.2)
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Highest-rate code Incremental redundancy code

Figure 3.1: Protograph for a PBRL code with a highest-rate code (HRC) with rate 2/3 followed by

an incremental redundancy code (IRC) that uses only degree-one variable nodes. The IRC provides

lower rates as more of its variable nodes are included, starting from the top.

and

HIRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

1 1 1 0 1 0

0 1 0 0 1 1

1 0 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.3)

Hence to fully express the protomatrix of a PBRL protograph it is enough to specify HHRC and

HIRC. Note that as long as HHRC is full rank, the proto-matrix at each rate (i.e. as each row of HIRC

is added) is also full rank.

The overall protograph determined by HRC and IRC protographs is lifted to produced the final

code. We use circulant matrices in the lifting process. After lifting, the HRC code is structurally

identical to the precode in a Raptor code. Similarly. the degree-one variable nodes of the second
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part can be efficiently encoded as modulo-2 sums of the precode symbols in a manner similar to

the LT code in a Raptor code.

The PBRL structure resembles a Raptor code, but with some important differences: 1) the

variable nodes of the HRC are transmitted for a PBRL code but the precode variable nodes are

not transmitted for a Raptor code 2) the connections that create a variable node in the LT part are

random and potentially infinite for a Raptor code, but the connections that create a variable node

in the IRC are deterministic, finite in number, and carefully designed for a PBRL code, and 3) the

decoding of PBRL codes is different from that of Raptor codes as we discuss in the next subsection.

The overall PBRL protograph may be considered as the concatenation of the highest-rate LDPC

code having parity-check matrix HHRC and the low-density generator matrix (LDGM) code [85]

having the systematic generator matrix

G = [I HT
IRC

] . (3.4)

LDGM codes by themselves are known generally to have high error floors and poor asymptotic

minimum distance [56, 85, 86]. However, as observed in [85, 86], concatenating an LDGM code

with an outer code (the HRC in our case) mitigates the high error floor problem.

The IRC is created by the addition of variable nodes that are exclusively degree-one, which

correspond to the identity matrix in (4.1). Such degree-one nodes are generally associated with

poor error-floor performance. However, rate compatibility forces the sub matrix that is an identity

matrix in (4.1) to be at least lower triangular. Any full-rank choice of the overall matrix in (4.1)

that incorporates this lower triangular component will be range-equivalent to a matrix for which

the lower triangular part is the identity matrix. Thus, the possible codes (i.e. the possible sets of

valid codewords) is not affected by restricting the variable nodes in the IRC have degree one.

The remaining concern is that these degree-one variable nodes might introduce bad perfor-

mance (i.e. a high error floor) under iterative decoding. As observed in [85, 86] the error floor

problem can be resolved by concatenation with another code, as we have done by concatenating

with the HRC. Moreover, increasing the degree of these variable nodes can introduce small cycles

which must be addressed during lifting.
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With the PBRL approach, each additional degree-one variable node boosts the reliability of

the variable nodes with which it connects through its only neighboring check node (as described

by the corresponding row of HIRC). This is similar to the active feedback incremental redundancy

approach used in [87,88]. A PBRL code family is thus a well-designed highest-rate code combined

with additional variable nodes that provide efficient incremental redundancy to that highest-rate

code such that each additional variable node in the protograph lowers as much as possible the SNR

at which decoding succeeds.

3.2.2 Decoding and Encoding of PBRL Codes

A traditional Raptor code encodes the information bits to produce the precoded symbols and then

encodes the precoded symbols with an LT code. In the case of an LDPC precode used with an

LT code, the decoding often proceeds as follows: the decoder first performs BP decoding on the

LT code and then performs BP decoding on the precode using the results of the completed LT

decoding.

In [89], the authors note that because of the two-stage decoding, the complexity of Raptor

codes is higher than that of RC LDPC codes. The PBRL code family always transmits the output

symbols of the precode and has deterministic connections in the LT code. These two properties

facilitate joint decoding of the HRC code part and the IRC code part, an idea that first appeared

in [90] for Raptor codes.

For traditional Raptor codes that do not transmit the precode symbols and use randomized

encoding, the initial transmission of the LT symbols may not contain enough information for BP

decoding to succeed even in a noiseless setting. Always transmitting the precode symbols allows

PBRL codes to have the potential for successful decoding at the initial transmission.

For high-rate PBRL codes, the decoder can deactivate those check nodes in the IRC part for

which the neighboring degree-one variable node is not transmitted, offering significant complexity

reduction.

Encoding of PBRL codes is as efficient as of Raptor codes: after encoding the precode, the
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encoding of the IRC part only involves exclusive-or operations on the precode output symbols. For

efficient encoding of the precode, see the discussion in [76] on efficient encoding of protograph

codes.

The Raptor-like structure is very restrictive. One might expect the structural constraints to limit

performance as compared to less-restrictive structures for extending LDPC codes. One of the main

conclusions that we draw in this chapter is that despite these constraints, we obtain Raptor-like

protographs with very low iterative decoding thresholds. By careful design of the protograph and

the lifting process, the resulting finite-length codes can outperform existing RC LDPC codes that

have been designed without the constraint of a Raptor-like structure.

3.3 Optimization of PBRL LDPC Codes

This section presents optimization procedures for finding the HRC and IRC components that com-

prise a good PBRL code family, considering both short and long blocklengths. Belief propagation

(BP) decoding is assumed. The optimization criteria for both long and short-blocklength codes are

primarily based on minimizing the iterative decoding threshold at each rate while enforcing con-

straints on the connections to avoid problematic error floors. These constraints are more stringent

for short blocklength designs than for long blocklength designs.

To simplify the threshold computations, we use a modified version of the reciprocal channel ap-

proximation (RCA) algorithm. After presenting the modified RCA in subsection 3.3.1, subsection

3.3.2 describes the design of the HRC and subsection 3.3.3 describes the design of the IRC.

3.3.1 Density Evolution with Reciprocal Channel Approximation

The asymptotic iterative decoding threshold [91] characterizes the performance of the ensemble of

LDPC codes that share a specified protograph. This threshold indicates the minimum SNR required

to transmit reliably, meaning that the expected bit error rate goes to zero with that ensemble of

codes as the blocklength grows to infinity. Note that this may not coincide with the block error rate
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going to zero.

Computing the exact iterative decoding threshold for BI-AWGN requires significant compu-

tation. The RCA [47] [76] provides a fast and accurate approximation to the density evolution

algorithm originally proposed by Richardson et al. [91] [59]. Experimental results [76], [47] show

that the deviation of RCA from the exact density evolution threshold is less than 0.01 dB.

The RCA for BI-AWGN channel uses a single real-valued parameter s, the SNR, to approxi-

mate the density. Define the reciprocal SNR as r ∈ R such that C(s) + C(r) = 1 where C(s) is

the capacity of the BI-AWGN channel with SNR s. For computational simplicity and numerical

precision we prefer to express C(s) as

C(s) = 1 − ∫
∞

−∞
log2 (1 + e−(2

√
2su+2s)) e

−u2

√
π
du, (3.5)

which is obtained from [49, (15)] through a change of variables. The self-inverting reciprocal

energy function

R(s) = C−1 (1 −C(s)) (3.6)

in [47] transforms between s and r: r = R(s) and s = R(r).

Let schl be the channel SNR = 2EcNo = 2Rc
Eb
No

where Ec
No

is the code symbol signal-to-noise ratio,
Eb
No

is information bit signal-to-noise ratio, and Rc is the code rate. Let se be the message passed

along an edge e from a variable node to a check node and re be the message passed along an edge

e from a check node to a variable node. Let Ec be the set of edges that connect to a check node c

and Ev be the set of edges that connect to a variable node v.

RCA first initializes the message se to 0 if the edge e is connected to a punctured variable node

and to schl otherwise. For all edges e in the graph, RCA then computes a sequence of messages

(s(n)e , r
(n)
e ), n = 0, . . . ,N where N is the maximum number of iterations.

The original density evolution [91] determines the threshold based on the pdfs of all outgoing

messages from variable nodes. Aiming to approximate this density evolution, RCA [47] deter-

mines the decoding threshold sth as the minimum schl such that s(N)
e > T for all edges e in the

graph, where T is a stopping threshold.
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Note that for the edge connecting to a degree-one variable node, se = schl regardless of the

number of iterations. For this reason, the original RCA does not work if the graph contains degree-

one variable nodes. We use a slightly modified version of the RCA that focuses on the overall

reliability of each variable node Sv, rather than the reliability of every edge se. This modification

allows computation of a meaningful decoding threshold for protographs with degree-one variable

nodes. Letting N be the maximum number of iterations and T > 0 be the stopping threshold, the

modified RCA is summarized as follows:

Algorithm 1 (Modified Reciprocal Channel Approximation) Let fRCA(schl) be a binary-valued

function that returns 1 if schl is higher than sth and 0 otherwise. To determine its output, the

modified RCA computes the sequence (s(n)e , r
(n)
e ) , n = 0, . . . ,N , for all edges e in the graph. The

computation of the sequence is given as follows:

0) For edges e connected to punctured variable nodes, set s(0)e = 0. For all other edges set

s
(0)
e = schl.

1) For n = 1, . . . ,N , generate (s(n)e , r
(n)
e ) as follows:

r
(n)
e = ∑

i∈Ec∖e
R (s(n−1)i ) , (3.7)

s
(n)
e = s(0)e + ∑

i∈Ev∖e
R (r(n)i ) . (3.8)

2) At each iteration compute S(n)
v as

S
(n)
v = S(0)

v + ∑
e∈Ev

R (r(n)e ) , (3.9)

for all variable nodes v in the graph, where S(0)
v is

S
(0)
v =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if v is punctured

schl otherwise
. (3.10)

3) Let S∗(n) = min{S(n)
v ∶ ∀v in the graph}. At each iteration, compute S∗(n). If S∗(n) > T ,

set fRCA(schl) = 1 and stop; otherwise, set fRCA(schl) = 0 and continue to the next iteration,

stopping if n = N .

78



By monotonicity of the threshold [92] we can perform bisection search at the desired level of

precision using the function fRCA. To increase computation speed, a lookup table and linear inter-

polation are used to compute R(s).

3.3.2 Optimizing the Highest-Rate Code of a PBRL Family

Primarily, the HRC photograph is simply the protograph of a good code at the desired rate. Our

design follows the work of Divsalar et al. [76, Sec.III], with some additional optimization through

RCA analysis and LDPC code simulation.

One main conclusion of [76] as also observed in [93–96] is that protograph ensembles with

a minimum variable-node degree of 3 or higher are guaranteed to have linear minimum distance

growth with the blocklength. This observation for irregular LDPC codes was also recognized

in [97] and [98].

Divsalar et al. [76] also noted that judiciously adding a few variable nodes with degree 2 or even

degree 1 improves the protograph’s threshold. A small number of variable nodes with degree less

than 3 can be present in the protograph while still retaining the linear minimum distance growth

property as long as there is no loop comprised entirely of degree-2 nodes. The HRC protographs

designed in Secs. 3.4.1 and 3.4.2 ensure the linear minimum distance growth property.

As explained in [76], puncturing a node in the HRC can improve the threshold performance. A

variant of PBRL codes for which the protograph of the HRC has at least one punctured (untrans-

mitted) node is referred to as the Punctured-Node PBRL (PN-PBRL) codes in [71]. In this work,

all of our examples belong to the class of PN-PBRL codes due to their superior performance. We

will refer to these codes simply as “PBRL codes”, but they are also PN-PBRL codes since they

have a punctured node.

We identify the HRC for a family of PBRL codes by a triplet of parameters (nv, nc, np): number

of variable nodes nv, number of check nodes nc and number of punctured nodes np. For the code

families designed in Secs. 3.4.1 and 3.4.2, np = 1. Assuming that HHRC is full rank, the set of

possible rates of this family of RC codes is given by (nv − nc)/(nv − np + i) for all integers i > 0.
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3.3.3 Optimizing the IRC Protograph of a PBRL Family

Optimization of the IRC part includes consideration of linear minimum distance growth, the thresh-

old values obtained at each rate, and the ability to realize the performance those threshold values

predict by avoiding high error floors.

At the heart of IRC optimization is a greedy algorithm to optimize the threshold of the proto-

graph of each rate given the protograph of the previous (higher) rate. This optimization algorithm

is summarized as follows:

Algorithm 2 Given an HRC protograph, the protograph for the IRC of a PBRL code family is

obtained by the following steps:

1. Add a new check node and a new degree-one variable node connected to the new check node.

2. Use the modified RCA to find the connections between the new check node and the variable

nodes of the HRC that give the lowest threshold under specified constraints on the con-

nections. These constraints can vary with the intended blocklength but always include the

constraint that each new row of HIRC has at least two edges.

3. Stop when the lowest rate desired has been obtained. Otherwise, go to step 1.

PBRL code families retain linear minimum distance growth by requiring that each new row in

HIRC has at least two edges. As long as the HRC has linear minimum distance growth, ensuring

non-trivial connections for each new check node in the IRC in this way preserves linear minimum

distance growth for all rates. This follows from the analysis of linear minimum distance growth in

the context of LDPC codes concatenated with LDGM codes in [85, 86, 99, 100].

There are two key features that dramatically improve protograph thresholds at low rates. The

first is that parallel edges improve the threshold and the second is that the punctured node of the

precode should connect to all (or almost all) of check nodes in the IRC part with at least a single

edge. Fig. 3.2 illustrates the importance of these features by comparing two PBRL code families

that both use (8,2,1) HRC protographs and eleven degree-one variable nodes in the IRC proto-

graph. The protograph family from [71] connects the punctured node to seven of the eleven check
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(8,2,1) rate−6/7 HRC from [22] (used for k=192)

(8,2,1) rate−6/7 HRC from [23] (used for k=16368)

(11,3,1) rate−8/10 HRC from [25] (used for k=1024)

(10,2,1) rate−8/10 HRC from Sec. IV−A (used for k=1032)

(11,3,1) rate−8/10 HRC from Sec. IV−B (used for k=16384)

(19,4,2) rate−15/17 HRC from [24] (used for k=16368)

Figure 3.2: Gap of protograph threshold to binary AWGN capacity for each rate in the PBRL code

family for four different PBRL protographs. These four protographs correspond to the following

codes: the k = 192 PBRL family featured in [71], the k = 16368 PBRL family featured in [72],

the k = 16384 PBRL family whose protograph is designed in Sec. 3.4.2 and the protograph for

k = 1032 PBRL families designed in 3.4.1.

nodes connected to degree-one IRC variable nodes. Only the first such check node is connected to

the punctured node with a parallel edge. In contrast, the protograph family from [72] connects the

punctured node to all eleven check nodes connected to degree-one IRC variable nodes, Also, for

this family the first two such check nodes are connected to the punctured node with parallel edges.

Fig. 3.2 shows the dramatic threshold improvement of the protograph family of [72] over the one

of [71].

Increased connectivity to the punctured node through single and parallel edges and the use of

parallel edges elsewhere in the IRC lowers the thresholds significantly for the lower rates. The
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threshold improvement, however, diminishes as the number of parallel edges increases. Moreover,

even at long blocklengths lifting cannot overcome the resulting damage to the graphical structure

of the code if the parallel edges are added too aggressively. Thus, an important aspect of IRC

design is controlling the number of parallel edges to give the best possible thresholds for which

lifting can successfully translate the excellent thresholds into excellent frame error rate (FER) and

bit error rate (BER) performance. We will explore this trade-off in Secs. 3.4.1 and 3.4.2 to see how

differently it plays out in the context of short-blocklength and long-blocklength codes.

3.4 Design Examples

This section presents design examples. Subsection 3.4.1 presents a short-block-length design ex-

ample. Subsection 3.4.2 presents a long-block-length design example. Subsection 3.4.3 provides

the gaps of SNR to the Shannon limit of SNR for reliable communication for FER 10−5 for PBRL

families designed in this chapter and previously in [71,72]. The description of the codes discussed

here can be found on the UCLA CSL website.

3.4.1 A Short-Blocklength PBRL Design Example

This subsection provides an example PBRL protograph family designed for information block-

length k = 1032 and compares it to a comparable code from [74]. The HRC uses the (10,2,1)

protograph shown below:

H
(1032)
HRC =

⎡⎢⎢⎢⎢⎢⎣

3 1 3 1 3 1 3 1 2 1

1 3 1 3 1 3 1 2 1 2

⎤⎥⎥⎥⎥⎥⎦
. (3.11)

The IRC adds 15 degree-one check nodes at the lowest rate. The first variable node in the HRC

is always punctured, and the first degree-one variable node in the IRC is always transmitted. Thus

the range of rates of the form 8/(9 + i) from 8/10 to 8/24. The HIRC obtained from Algorithm 3
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(with constraints we discuss below) is

H
(1032)
IRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0 0 0

1 1 1 0 1 1 1 0 1 0

2 1 1 0 1 1 1 0 0 0

1 1 1 0 0 1 1 0 0 1

2 1 1 0 0 1 1 0 0 0

1 1 1 0 0 1 1 0 0 1

2 1 1 0 0 0 1 1 0 0

1 1 1 0 0 1 1 0 0 0

2 0 0 0 0 0 1 1 1 0

1 1 1 1 0 0 1 0 0 0

2 0 0 0 0 1 1 0 1 0

1 0 0 1 0 0 1 0 0 0

2 0 1 0 0 1 1 0 0 0

1 1 0 1 0 0 0 0 0 0

2 0 0 0 1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.12)

For this code design, we restrict our attention to potential HRC protographs with variable nodes

having either degree 3 or degree 4. This restriction ensures linear minimum distance growth ac-

cording to [76].

For this short-blocklength HRC, we address the trade-off between threshold and error floor by

varying the number of degree-4 nodes in the HRC photograph. Using all degree-3 variable nodes

provides the best threshold. Increasing the number of degree-4 variable nodes in the HRC lowers

the error floor but increases the threshold as shown in Fig. 3.3. With fewer than 6 degree-4 variable

nodes, the ACE-and-CPEG lifted codes for k = 1032 result in high error floors. As shown in (3.11),

our HHRC has seven degree-4 variable nodes, the smallest number of degree-4 variable nodes that

yielded good error-floor performance.

For the IRC design, we require every check node in the IRC to connect to the punctured variable

node of the HRC. These connections alternate between a single edge and a parallel edge (alternat-

ing 1s and 2s in the first column of (3.12)). In [72] two of the eleven check nodes in the IRC (the
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two associated with highest two rates) connected to the punctured node with parallel edges. As

discussed in Sec. 3.3.3, both [71,72] show that further threshold improvement can be obtained with

more parallel edges. However, use of parallel edges is limited in [71, 72] because the CPEG-lifted

codes displayed high error floors when more parallel edges were used.

The PBRL code families in [71] and [72] used CPEG alone for lifting. Combining CPEG with

the ACE algorithm produces a lifting that better avoids damage to the graphical structure so that the

alternating parallel edges to the punctured node could be used. This makes sense because extrinsic

connections have an important influence on the error floor and the ACE algorithm [101] ensures

that all small cycles have a minimum number (η) of these connections.

For this short-blocklength design, combined ACE-and-CPEG lifting allowed half the connec-

tions to the punctured node to be parallel edges, but we found that using parallel edges elsewhere

in the IRC led to error floors for these short blocklengths.

We use two-step lifting as in [76] and employ CPEG and ACE algorithm jointly to lift the

lowest rate code. The pre-lifting step has a lifting number of 3 to remove the parallel edges. The

lifting number in the second stage is 43, giving information blocklength of k = 1032.

CPEG enforces a girth of 6. We used η = 12 and dACE = 5 for the ACE algorithm applied to

the lowest rate. A pair (dACE, η) implies that every cycle consisting of up to dACE variable nodes,

i.e. every cycle of length up to 2dACE, is connected to at least η extrinsic check nodes. In other

words, all the cycles with length 10 or less have at least 12 extrinsic connections for the lowest-rate

(rate-1/3) code.

Fig. 3.4 shows that CPEG + ACE lifting for the protographs given in (3.11) and (3.12), provides

larger η values than CPEG alone especially at the low end of our rate range. In Fig. 4.6, comparing

the PBRL CPEG-only curves with the ACE+CPEG curves in the lower-rate range shows how the

higher η values achieved by ACE+CPEG translate to an improved error floor.

Nguyen and Nosratinia constructed a family of RC protograph codes in [74] with short block-

lengths (k = 1024). The design process in [74] featured optimization based on EXIT analysis

similar to this work, but did not constrain the code to have the PBRL structure. The fact that this
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Figure 3.3: Gap of threshold from binary AWGN capacity vs. number of degree-4 variable nodes

for potential highest-rate-code protographs based on a (10,2,1) protograph with all variable nodes

having degrees 3 or 4. Gap is shown for the rate-0.8 protograph where the additional row has

two parallel edges connected to the punctured node and the remaining connections are optimized

to minimize the threshold under the constraint that each connection is either a single edge or not

present. The result with seven degree-4 variable nodes corresponds to the protomatrix in (3.11).

code family has the PBRL structure even though it was not constrained to is a further validation of

the PBRL approach.

The example in [74] uses 6 pairs of parallel edges in the IRC, all of which are connected to the

punctured node in the HRC. The results agree with the observations in the current analysis and also

in [71] and [72] that having parallel edges connected to the punctured node improves the threshold.

The protograph family described by (3.11)-(3.12) has the same size as the family proposed

in [74]. Fig. 4.6 compares the FER performance of the RC codes proposed in [74] and the PBRL

codes described by (3.11)-(3.12). The code family described by (3.11)-(3.12) has similar perfor-

mance overall to that of [74] as shown in Figs. 4.6 and 3.9. The similarity in performance is not
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CPEG-only lifted family for k = 1032.

surprising since the code family in [74] was found by a similar optimization approach optimizing

over a larger family of codes that include the PBRL family as a sub-class.

However, the search in [74] required experimental testing (simulation) of numerous codes with

near-optimal thresholds at each rate. In contrast, after the design of the HRC protograph, our

search simply optimized the threshold for each successive rate in a greedy fashion under certain

constraints on edges that were imposed to control the error floor. The surprising result is that

greedy threshold optimization can produce a family that is competitive if the proper constraints on

edge connections are imposed.

Now we explore the constraints we imposed on the edge connections. Recall the intuition of

the IRC variable nodes providing reliability back to the original HRC. As the rate decreases we

desire the check nodes of the IRC eventually to connect to all of the variable nodes in the HRC.

However, density evolution threshold optimization tends to favor asymmetric degree distributions

so that the rich get richer in that IRC check nodes added later tend to connect to HRC variable
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Figure 3.5: Comparison of frame error rates between PBRL codes and the codes in [74] with

k = 1032. The protographs for the PBRL code family are from (3.11) and (3.12).

nodes that already connect to IRC check nodes.

Thus for short block-length codes we ensure good connectivity by requiring the IRC check

nodes eventually to connect with all the HRC variable nodes as rate decreases. The specific con-

straints for the IRC in (3.11) are as follows: at rate 8/11 there can be at most two degree-3 variable

nodes, at rate 8/13 there can be at most one degree-3 variable node, at rate 8/16 the minimum de-

gree of the variable nodes is 4, at rate 8/18 there is at most one degree-4 variable node and finally at

rate 8/21, the degree-4 variable nodes in HRC have at least degree five in the rate-8/21 parity-check

matrix.

Fig. 3.2 allows comparison of the gaps from capacity for the thresholds of the protographs

defined by (3.11)-(3.12) to the gaps of the k = 1024 protographs of [74]. The gaps are similar

except at rate 8/13 where the protograph from [74] has a threshold about 0.2 dB lower than the
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protograph from (3.11)-(3.12) whose threshold was hampered by the constraints described above.

The average gap of threshold from capacity for the protographs defined by (3.11)-(3.12) over the

rate range shown in Fig. 3.2 is 0.3914 dB.

Our simulations use floating-point iterative decoders with a flooding schedule for message-

passing unless otherwise stated. Decoding terminates early if all parity checks are satisfied before

reaching the maximum number (200) of iterations.

3.4.2 A Long-Blocklength PBRL Design Example

This subsection designs a PBRL code family with blocklength k = 16384 and compares it to the

k = 16368 PBRL family designed in [72] and the k = 16384 family designed in [73], which does

not use the PBRL structure. To improve performance, we use a PBRL protograph featuring an

(11,3,1) HRC protograph instead of the smaller (8,2,1) HRC protograph used for the PBRL

code family of [72]. The first variable node in the HRC is always punctured and HIRC has 22 rows,

each corresponding to an additional degree-one check node as described in Sec. 3.2.1. Thus the

protograph family provides a range of rates of the form 8/(10 + i) from 8/10 to 8/32. The HRC

protograph for the k = 16384 PBRL code is

H
(16384)
HRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 1 1 1 1 1 1 0 0 1

1 1 2 2 2 2 2 2 2 1 1

2 0 0 0 0 0 0 0 1 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.13)

Applying Algorithm 3 with constraints on the connections of the IRC check nodes to the vari-

able nodes of the HRC produces the HIRC given in (3.14) at the end of the chapter. As in the

short-blocklength example, we require every check node in the IRC to connect to the punctured

variable node of the HRC. These connections alternate between a single edge and a parallel edge

(alternating 1s and 2s in the first column of (3.14)).

Unlike [72] and in contrast to the short-blocklength design in (3.11)-(3.12), the constraints

applied to Algorithm 3 for this design allow parallel edges for connections to the non-punctured

nodes of the HRC. Specifically, when optimizing the IRC using Algorithm 3, each connection to
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a non-punctured node may have zero, one, or two edges leading to the 0, 1, and 2 values in the

columns of (3.14). In [72] the only choices were zero and one, but the addition of ACE to the

lifting process allows more parallel edges.

Nguyen et al. [73] constructed a family of RC protographs with a (19,4,2) protograph for the

highest rate 15/17 and a (47,32,1) protograph for the lowest rate of 15/46. Fig. 3.2 shows that

the protograph family defined by (3.13)-(3.14), with an (11,3,1) protograph for the highest rate

of 8/10 and a (33, 25,1) protograph for the lowest rate of 8/32, gives thresholds comparable to

those obtained in [73] despite the smaller protograph sizes. Fig. 3.2 also shows that the resulting

thresholds have at least 0.1 dB of improvement at every rate compared to the thresholds of the

(smaller) protographs used for the k = 16368 PBRL family in [72]. The gaps to capacity in Fig.

3.2 for the codes using (3.13)-(3.14) are all less than or equal to 0.164 dB. Furthermore, the average

gap of threshold to capacity is 0.1408 dB.

We use two-step lifting as in [76] and employ CPEG and ACE algorithm jointly to lift the

lowest rate code. The pre-lifting step has a lifting number of 4 to remove the parallel edges. The

lifting number in the second stage is 512, giving information blocklength of k = 16384. CPEG

enforces a girth of 8. Fig. 3.4 shows the η values of the k = 16384 PBRL code family obtained by

lifting the protographs of (3.13)-(3.14) with dACE = 6. Achievable η (minimum number of extrinsic

edges for cycles of length 12 or smaller) increases as rate decreases.

Fig. 3.6 compares the FER performance of the PBRL code family in [72] at rates 1/3, 1/2, and

2/3 to the DVB-S2 standard (with and without an outer BCH code) [83] and AR4JA codes from

the CCSDS standard [82]. In some cases for DVB-S2 codes, only results for a maximum of 50

iterations were available. The blocklengths of the DVB-S2 codes are fixed to 64800 bits, whereas

the PBRL and AR4JA codes have a fixed information length of 16368 bits and blocklengths of

32736 bits and 24552 bits for rate 1/2 and rate 2/3, respectively. When concatenated with the BCH

code, the overall rates of DVB-S2 codes are 0.497 bits and 0.664 bits.

Fig. 3.6 shows that in the waterfall region, the PBRL codes from [72] outperform both the

AR4JA codes and the DVB-S2 codes. Note that the PBRL codes outperform DVB-S2 even though

the DVB-S2 codes have longer blocklength and benefit from concatenation with a BCH code.
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Figure 3.6: This figure is from [72]. FER comparison for PBRL codes from [72], codes in the

DVB-S2 standard [83], and AR4JA LDPC codes in the CCSDS standard [82].

Fig. 3.7 presents the BER and FER performance for five of the rates supported by the PBRL

code family based on (3.13)-(3.14).

Fig. 3.8 compares the FER between our k = 16384 PBRL code using (3.13)-(3.14), our k =

16368 PBRL code from [72], and the RC protograph codes proposed in [73] at rates 1/3 and

1/2. The simulation results in [73] used an 8-bit quantized decoder with 200 iterations whereas

our simulations used floating point decoder with 200 iterations. The simulations of the codes

based on (3.13)-(3.14) in Fig. 3.8 used layered belief propagation, which generally performs better

than flooding. Using flooding in our simulation results in less than 0.05dB of degradation at 100

iterations in our PBRL code example.

Comparing at FER around 10−6, this PBRL code is 0.2 dB better than Nguyen et al.’s code at

rate 1/3 and about 0.1 dB better at rate-1/2. Note that the code family using (3.13)-(3.14) performs
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Figure 3.7: Frame error rates and bit error rates for the protographs defined by (3.13)-(3.14). The

lifting number is 2048, resulting in k = 16384.

better even though the code family from [73] uses a larger protograph and is not constrained to the

Raptor-like structure.

3.4.3 SNR Gap Analysis of PBRL Codes

Fig. 3.9 shows the SNR gaps inEb/N0 between the Shannon limit of the BI-AWGN channel and the

required SNR to achieve FER of 10−5 in simulations of PBRL code families we have designed and

the codes from [73] and [74]. Gaps from simulated PBRL codes are shown for the k = 192 PBRL

codes from [71], k = 1032 PBRL codes from Section 3.4.1, k = 16368 PBRL codes from [72],

and k = 16384 PBRL codes from Sec. 3.4.2. Gallager’s random coding union bound and the

refined normal approximation of [102], both computed for FER =10−5 and the specified rates and

blocklengths are provided for reference.

Examining the differences between the average SNR gaps of the code families and the average
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Figure 3.8: Frame error rates comparison between the PBRL codes with 19 variable nodes in the

protograph (k = 16368), the PBRL codes with 33 variable nodes in the protograph (k = 16384),

and the RC protograph codes proposed in [73] (k = 16368).

SNR gaps of the computed points for the Gallager bound at the comparable blocklengths, The

difference is 1.053 dB for k = 192 family from [71], 0.658 dB for the k = 1032 family from Sec.

3.4.1, 0.660 dB for the k = 1024 family from [74], 0.395 dB for the k = 16386 code from [72],

0.354 dB for the k = 16384 code from [73], and 0.255 dB for the k = 16384 code from Sec. 3.4.1.

The k = 192 example from [71] was designed without the benefit of the fast RCA algorithm and

without the use of ACE in the lifting so that more improvement is likely possible at this shortest

blocklength. Still, this k = 192 PBRL code family outperforms the RCPT codes in the 3GPP-

LTE standard [103] at high SNRs and does not have error floors up to the highest SNRs studied

in [71]. Other rate-compatible product codes and high-order non-binary turbo codes are designed

in [104, 105]. These codes perform well in the short blocklength regime, but have much higher

decoding complexity. Their blocklengths are shorter than the codes explored in this chapter.
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Figure 3.9: SNR gaps in Eb/N0 between the Shannon limit of the BI-AWGN channel and the

required SNR to achieve FER of 10−5 for rates in the PBRL code families for five different PBRL

code families and the codes from [73] and [74]. The code from [74] has the PBRL structure

although it was not a constraint in its design.

3.5 Conclusions

In this chapter, we study the construction and optimization of protograph-based Raptor-like (PBRL)

LDPC codes by designing a highest-rate code (HRC) and sequentially adding degree-one variable

nodes whose neighboring check node is connected to the variable nodes of the HRC so as to mini-

mize the density evolution threshold. The new connections must obey constraints that control the

error floor. Puncturing a single variable node in the HRC improves the threshold performance of

PBRL codes.
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Instead of the original density evolution, a modified reciprocal channel approximation (RCA)

is used to obtain a fast and accurate approximation for the thresholds of PBRL codes to result

in reasonable code-design complexity. Once the HRC is designed, the remaining code design

including the ACE+CPEG lifting takes a few hours on a typical personal computer.

Controlling the error floor is especially important for short-blocklength PBRL code families.

For an example short-blocklength PBRL code family designed for k = 1032 we sacrificed threshold

in order to improve error floor performance by increasing the number of degree-4 variable nodes

in the HRC. Even in our long-blocklength (k = 16384) PBRL design example, a small amount of

threshold performance is sacrificed in order to ensure good error floor performance by allowing

only half of the connections to the punctured node to involve parallel edges.

For both long- and short-blocklength designs, we found that using CPEG and ACE jointly led

to a more successful lifting of the protograph so that more threshold-reducing parallel edges could

be introduced before causing a problematic error floor.

In summary, this chapter provides a complete design procedure for constructing rate-compatible

LDPC code families that perform uniformly close to finite blocklength performance limits for both

short (k = 1032) and long (k = 16384) blocklengths.
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H
(16384)
IRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 2 1 0 0 0 0 1 0 0

1 2 1 0 1 0 0 0 0 1 0

2 0 0 2 0 1 0 0 0 0 0

1 1 0 0 0 0 1 0 0 2 0

2 2 0 0 0 0 0 1 0 0 0

1 0 0 0 0 2 0 0 0 2 0

2 0 0 0 2 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0 1 0

2 0 0 1 0 0 1 0 0 0 0

1 0 0 0 1 0 1 0 0 1 0

2 0 1 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 2 0 0 0

2 0 1 0 0 0 1 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1

1 0 0 2 0 0 0 0 0 1 0

2 0 1 0 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0 0

2 0 1 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)
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CHAPTER 4

PBRL Codes for Binary Symmetric and Erasure Channels

This chapter discusses design of protograph-based Raptor-like (PBRL) codes as a class of rate-

compatible (RC) LDPC codes for binary erasure channels (BEC) and binary symmetric channels

(BSC). Similar to the Raptor codes, the RC property is achieved by X-OR operations of the pre-

coded bits. The additional parity bits, which lower the rate, are selected such that their connections

in the protograph optimize the density evolution threshold. In order to avoid problematic graph-

ical objects in the lifted bipartite graph and guarantee the linear growth distance property some

constraints are imposed in the threshold optimization algorithm. Simulation results are presented

for information block sizes of k = 1032 and k = 16384. These results are compared with finite

blocklength bounds of Polyanskiy, Poor, and Verdu (PPV) as well as several asymptotic bounds.

The k = 1032 code family optimized for BEC operates at various rates in the range of 8/9 to 8/48

and has an average mutual information gap of 0.087 bits from the capacity at the frame error rate

(FER) of 10−5. The k = 16384 code family operates at rates 8/10 to 8/32 and has an average mutual

information gap of 0.0326 bits from the capacity at FER = 10−5. For BSC, the optimized k = 1032

and k = 16384 code families operate within an average mutual information gap of 0.147 and 0.073

bits from the BSC capacity at FER = 10−5.

4.1 Introduction

Low-Density Parity-Check (LDPC) codes were first introduced by Gallager in his dissertation in

1963 [54]. These codes are identified by their parity-check matrices. Irregular LDPC codes have

parity-check matrices with various number of ones (weights) in each column and row. By optimiz-
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ing the variable-nodes’ column weights and check-nodes’ row weights (degree distributions), Luby

et al. [58] showed that irregular LDPC codes can achieve rates very close to capacity. Richardson

et al. [59] invented an algorithm called density evolution (DE) to design and analyze the optimal

degree distributions of infinitely long LDPC codes. There are many papers analyzing LDPC codes

over BEC. For examples see [106], [107], [108], [109], [110], [111], and [112].

Traditionally, rate-compatible (RC) codes are designed with optimized puncturing patterns with

good error-rate performance across a family of rates. In general, any RC code may be considered

as a low-rate code that is punctured to produce higher rates. However, in this chapter we use

the method of extending a protograph [67, 73], where the higher-rate codes are designed first and

the lower-rate codes are designed based on their higher-rate counterparts. We use DE and extrin-

sic information transfer (EXIT) threshold maximization as the main design criterion to select the

connections between the variable and check nodes. After using DE thresholds to optimize the

protograph, a copy-and-permute operation, often referred to as “lifting”, is applied to the proto-

graph to obtain larger parity check matrices of the desired sizes. Refer to [75, 76] for a thorough

discussion on photographs and lifting algorithms.

In [72] the PBRL approach is applied to the design of RC LDPC families over additive white

Gaussian noise (AWGN) channels. Also, reciprocal channel approximation (RCA) for AWGN

channels replaces the standard DE algorithm of [59] to provide a fast and accurate approximation

for DE threshold to speed up the optimization process. In previous chapter, the results of [71]

and [72] are unified and extended; Error floor performance is improved both with edge constraints

added to the RCA-based greedy optimization and by using approximate cycle extrinsic message

degree (EMD) [101] constraints in addition to CPEG [113] in the lifting process.

Similar to [71, 72], this work restricts the code family to have the basic structure of Rap-

tor codes [77] and this class of RC LDPC codes is called protograph-based raptor-like (PBRL)

LDPC codes [71,72]. In this chapter, we discuss the construction and optimization of PBRL codes

specifically for the binary erasure channel (BEC) and binary symmetric channel (BSC) and present

simulation results for codes with information lengths of k = 1032 and k = 16384. These results are

compared with finite-blocklength approximations and asymptotic bounds. Constraining the design
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to enforce Raptor code structure makes the construction and optimization of PBRL codes man-

ageable while these codes still provide outstanding performance and extensive rate-compatibility.

As in the previous chapters, lifting is performed using a combination of approximate cycle EMD

(ACE) and circulant progressive edge growth (CPEG) liftings. We refer to this lifting algorithm

that combines ACE and CPEG as an ACE+CPEG lifter.

The rest of the chapter is organized as follows: Sec. 4.2 presents the PBRL code structure.

Sec. 4.3 provides the design procedure to construct PBRL codes for BEC. Sec. 4.4 provides a sum-

mary of the existing finite-blocklength bounds and approximations for BEC. Sec. 4.5 constructs

two examples of PBRL code families for information block size of k = 1032 and k = 16384, and

presents the analysis and simulation results. Sec. 4.6 proposes a fast and accurate alternative tech-

nique to DE algorithm for the BSC. Sec. 4.7 presents two code families with information block

sizes of k = 1032 and k = 16384 optimized for the BSC. Finally Sec. 4.9 concludes the chapter.

4.2 Protograph-Based Raptor-Like LDPC Code

This section introduces the structure of PBRL codes. The parity check matrix of a protograph is

called protomatrix and can be presented by a bipartite graph. Let 0 be the all-zeros matrix and I

be the identity matrix, the protomatrix of PBRL codes has a general form of

H =
⎡⎢⎢⎢⎢⎢⎣

HHRC 0

HIRC I

⎤⎥⎥⎥⎥⎥⎦
, (4.1)

where HRC describes the highest-rate protograph and IRC corresponds to the incremental redun-

dancy protograph.

Fig. 4.1 shows the protograph structure of a PBRL code with HRC part on the left and IRC

part on the right. The IRC part provides lower rates as gradually more of its variable nodes are

transmitted, starting from the first variable node on the top. The use of the punctured node as

shown in the protogaph of Fig. 4.1 improves the iterative decoding threshold.

The protomatrix of the protograph shown in Fig. 4.1 has HRC and IRC parts of

98



!"#$%&'()*'%+,-.% /0,)%1%0'*2+)%.30.*0,4+,-.%
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Figure 4.1: Protograph for a PBRL code with a punctured node and a highest-rate code (HRC) with

rate 4/5 followed by an incremental redundancy code (IRC) that uses only degree-one variable

nodes. The IRC provides lower rates as more of its variable nodes are included, starting from the

top.

HHRC =
⎡⎢⎢⎢⎢⎢⎣

1 1 2 1 2 1

2 2 1 2 1 2

⎤⎥⎥⎥⎥⎥⎦
(4.2)

and

HIRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

1 1 1 0 1 0

0 1 0 0 1 1

1 0 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.3)

The IRC is created by the addition of variable nodes that are exclusively degree-one, which cor-

respond to the identity matrix in (4.1). The first column of the above matrices corresponds to the

99



punctured node. The final protograph determined by HRC and IRC protographs is lifted to produce

the actual code. The lifting algorithm uses circulant matrices in the lifting process to guarantee a

minimum number of extrinsic connections (ACE number) for each cycle as well as a minimum

girth.

The Raptor-like structure is quite restrictive; however, the structural constraints do not limit

the performance of PBRL codes compared to less-restrictive RC LDPC codes obtained by exten-

sion. One of the main conclusions of our analysis is that we obtain Raptor-like protographs with

very good iterative decoding thresholds despite these constraints. Similar observations for AWGN

channels have been made in previous chapter where the resulting finite-length PBRL codes out-

perform existing RC LDPC codes that have been designed without the constraint of a Raptor-like

structure. Furthermore, PBRL codes facilitate efficient encoding and decoding as discussed in the

previous chapter.

4.3 Optimization of PBRL LDPC Codes for BEC

This section presents the optimization procedures for finding the HRC and IRC components that

comprise a good PBRL code family for the BEC. The optimization criteria for both long and short

blocklength codes is primarily based on maximizing the iterative decoding threshold (channel era-

sure probability) over the BEC at each rate, while enforcing constraints on the connections to

avoid problematic error floors. These constraints are more stringent in design of short blocklength

codes. For the iterative decoding threshold computations, we use the reciprocal channel approxi-

mation (RCA) algorithm as an efficient and accurate alternative to DE algorithm to calculate the

iterative decoding thresholds. Note that the RCA for BEC represents the exact DE algorithm.

4.3.1 Density Evolution with Reciprocal Channel Approximation

The asymptotic iterative-decoding threshold characterizes the performance of an ensemble of the

LDPC codes with identical protographs [91]. This threshold for BEC indicates the maximum

channel-erasure probability pit to have the expected bit-error rate go to zero as the blocklength
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grows to infinity. The RCA algorithm, originally proposed in [47] for regular LDPC codes uses a

single parameter to approximately characterize the distribution of the messages exchanged between

variable and check nodes over a BEC or an AWGN channel.

4.3.2 Density Evolution in Protographs for BEC

For BEC a single real-valued parameter, the probability of erasure p, serves as a stand-in for full

density evolution. Alternatively, we can use the RCA algorithm and track the self-information of an

erasure, s = − lnp, which is additive at variable nodes. The reciprocal parameter, r = − ln(1 − p),

the self-information of a non-erasure, is additive at the check nodes. The parameter r satisfies

C(s) + C(r) = 1, which implies e−s + e−r = 1 where C is the capacity of the channel. Note that

r = R(s) and s = R(r). The parameters r and s are related to each other by the self-inverting

function R(s) = C−1(1 − C(s)) = − ln (1 − e−s) where C−1 is the inverse of C. With the above

definitions for BEC, the RCA algorithm represents the exact one-dimensional density evolution.

RCA in [47] was used to find the optimal degree distribution for unstructured regular LDPC codes

over BEC. In this section, we extend the idea of using RCA to efficiently calculate the DE threshold

to protographs over BEC.

To calculate the DE threshold of a protograph using RCA, we first identify all transmitted

variable nodes and select a target channel erasure probability pch = e−sch . As shown in Fig. 4.2, the

transformed messages obtained from ⇀
se are passed along edges leaving the variable nodes (⇀se = sch

for the transmitted nodes and ⇀
se = 0 for the punctured nodes). The transformation R(⇀se) is applied

and an extrinsic return message, ↼re is determined by computing the sum of all incoming messages

except for the one along edge e. Transformation R(⋅) is then reapplied to produce ↼
se. The process

continues and the iterative decoding threshold pit = e−sch is determined by the smallest value of sch

such that an unbounded growth of all messages ⇀se can be achieved.

Algorithm 3 (RCA) Let ev (ec ) be the set of edges connected to the variable node v (check node

c). For iterations n = 0, . . . ,N , and for all edges e in the protograph, the RCA computes the

messages as follows:
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-
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e
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c

Figure 4.2: RCA algorithm to calculate the density evolution threshold in protographs for BEC.

0) For edges e connected to punctured variable nodes, set ⇀s
(0)
e = 0. For all other edges set

⇀
s
(0)
e = sch = − ln(pch).

1) For n = 1, . . . ,N , compute the following:

⇀
r
(n−1)
e = R(⇀s

(n−1)
e′ ) (4.4)

↼
r
(n)
e = ∑

e′∈ec∖e

⇀
r
(n−1)
e′ , (4.5)

↼
s
(n)
e = R(↼r

(n)
e′ ) (4.6)

⇀
s
(n)
e = ⇀

s
(0)
e + ∑

e′∈ev∖e

↼
s
(n)
e′ , (4.7)

2) When n = N compute S(N)
v for all variable nodes v

S
(N)
v = ∑

e∈ev

↼
s
(N)
e , (4.8)

For large enough N , and some large T , the maximum pch that produces S(N)
v > T for all variable

nodes represents the iterative decoding threshold pit for BEC.
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4.3.3 Maximum a Posteriori Probability (MAP) Threshold of Protographs for the Erasure

Channel

To compute an upper bound to the maximum a posteriori probability (MAP) threshold we use the

area theorem [114]. We use the results from the final step of RCA algorithm described in the pre-

vious subsection for binary erasure channel by computing S(N)
v for each transmitted variable node

for range of pch ∈ [pit,1]. Starting with pch = 1 and decreasing it, for each value of pch, we com-

pute hBP (pch) = 1
∣v∣−∣vp∣ ∑v′∈v∖vp e

−S(N)
v′ where hBP (pch) is the output extrinsic erasure probability

when the input channel erasure probability is pch. In the equation for hBP (pch), v is the set of all

variable nodes in the photograph and vp is the set of all punctured variable nodes. As discussed in

[106, 112, 115], by using the area theorem, p∗MAP is obtained as the solution to

Rc = ∫
1

p∗MAP

hBP (pch)dpch , (4.9)

where p∗MAP is an upper bound to the MAP threshold pMAP . For some ensembles (e.g. regular

LDPC), hBP (pch) = hMAP (pch) for pMAP ≤ pch ≤ 1, in such case p∗MAP = pMAP [112, 115]. Let

pcap = 1 −Rc, where Rc is the coding rate in BEC, then pit ≤ pMAP ≤ pcap.

4.3.4 Optimizing the Highest-Rate Code (HRC)

Primarily, the HRC photograph is simply the protograph of a good code at the highest desired rate.

Our protograph code design mainly follows the guidelines in work of Divsalar et al. [76, Sec. III]

but uses the RCA optimization algorithm for fast and efficient threshold calculation. The main

conclusions of [76] are that protograph ensembles with a minimum variable-node degree of 3 or

higher are guaranteed to have linear minimum distance growth with the blocklength. Furthermore,

as explained in [76], puncturing a node in the HRC can improve the threshold performance. The

HRC protographs designed in Secs. 4.5.1, 4.5.2, 4.7.1, and 4.7.2 ensure the linear minimum dis-

tance growth property and have a punctured node.
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4.3.5 Optimizing the Incremental-Redundancy Code (IRC)

The IRC part is optimized by using the RCA algorithm of Sec. 4.3.2 and choosing the new rows that

optimize the iterative thresholds. The other considerations that are taken into account are the linear

minimum distance growth and low error-floor properties enforced by the additional constraints.

PBRL code families retain linear minimum distance growth by requiring that each new row in

HIRC has at least two nonzero values. As long as the HRC has linear minimum distance growth,

ensuring non-trivial connections for each new check node in the IRC in this way preserves linear

minimum distance growth for all rates.

There are two key features that dramatically improve protograph thresholds at low rates. The

first is that parallel edges improve the threshold and the second is that the punctured node of the

precode should connect to all (or almost all) of check nodes in the IRC part with at least a single

edge. The increased connectivity to the punctured node through single and parallel edges improves

the thresholds significantly for the lower rates. The threshold improvement, however, diminishes

as the number of parallel edges increases. Moreover, even at long blocklengths lifting cannot

overcome the resulting damage to the graphical structure of the code if the parallel edges are added

too aggressively. Thus, an important aspect of IRC design is controlling the number of parallel

edges to give the best possible thresholds for which lifting can successfully translate the excellent

thresholds into excellent frame error rate (FER) and bit error rate (BER) performance.

As a result, the greedy optimization of Algorithm 3 is applied with additional constraints that

require full connectivity to the punctured node with at least single edges and that control the num-

ber of parallel edges. For very short blocklengths and small protographs, only one pair of parallel

edges connecting to the punctured node may be allowed as in the most effective designs in [71]. As

the blocklength of the lifted codes and/or the size of the protograph increase, more parallel edges

can be utilized.
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4.4 upper and lower bounds for BEC

Gallager [54] proposed an upper bound on the probability of error for discrete memoryless chan-

nels. The upper bound can be expressed in terms of Kullback-Leibler distance. The relative entropy

of p∗ with respect to p, also called the Kullback-Leibler distance, is defined by

D(p∗, p) = p∗ ln
p∗

p
+ (1 − p∗) ln

1 − p∗
1 − p

. (4.10)

If p∗ = pcap = 1 −Rc, which is maximum erasure probability at capacity of BEC, and p < p∗ is the

channel erasure probability, the FER for a random (n, k) code with code rate Rc = k
n is given by

Pe ≤ e−nD(pcap,p). (4.11)

The PPV [102] achievable upper bound on the probability of error is

P̄e ≤ 1 −
n

∑
j=0

(n
j
)(1 − p)jpn−j

2nR−1
∑
m=0

1

m + 1
(2nR−1

m
)

×2−jm(1 − 2−j)2nR−1−m. (4.12)

The PPV [102] lower bound using meta converse is given by

Pe ≥
n

∑
e=[n−k]+1

(n
e
)(1 − p)n−epe(1 − 2n−k−e). (4.13)

The following theorem is also due to PPV [102].

Theorem 4 For the BEC with erasure probability p,

nRc = n(1 − p) −
√
np(1 − p)Q−1(ε) +O(1), (4.14)

or ε ≈ Q((1− p−Rc)
√

n
p(1−p)), regardless of whether ε is maximal or average probability of error.

The above PPV approximation is used to compare with the simulation results for k = 1032 and

k = 16384 raptor-like codes for various code rates discussed later in Fig. 4.6.
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4.5 Design Examples For BEC

This section presents two families of RC PBRL codes. Subsection 4.5.1 presents the design pro-

cedure for a short-blocklength (k = 1032) code and subsection 4.5.2 presents the design procedure

for a long-blocklength (k = 16384) code.

4.5.1 Short-Blocklength PBRL Design Example

This subsection provides an example PBRL protograph family designed for information block-

length k = 1032. The HRC uses the protograph

H
(1032)
HRC =

⎡⎢⎢⎢⎢⎢⎣

3 3 3 1 1 1 3 1 2 1

1 1 1 3 3 3 1 2 1 2

⎤⎥⎥⎥⎥⎥⎦
. (4.15)

The IRC adds up to 39 degree-one variable nodes to provide a range of rates of the form 8/(9 + i)

from 8/9 to 8/48. After the design of the HRC protomatrix, IRC protomatrix is obtained by

optimizing the threshold for each successive rate under the constraints on edges to ensure low

error floor.

Fig. 4.3 shows an example of EXIT function using RCA to compute the iterative decoding

threshold pit. As discussed earlier, p∗MAP is calculated using the area theorem as an upper bound

on MAP threshold. The shaded region under the iterative BP curve has an area equal to the code

rate Rc.

For the protomatrices of (4.15) and (4.16), Table 4.1 shows pit, p∗MAP , and pcap . The param-

eter pit is the highest channel-erasure probability that an iterative BP decoder can support as the

blocklength of the LDPC code grows to infinity. p∗MAP is the highest channel-erasure probability

that an MAP decoder supports asymptotically. pcap = 1−Rc is the maximum erasure probability at

capacity for BEC. The “Gap” column of Table 4.1 shows the mutual information gap between the

iterative threshold and the capacity in number of bits. For k = 1032 code family the average gap is

0.020 bits.
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H
(1032)
IRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0 1 0

2 1 1 0 0 1 1 0 1 0

1 1 1 0 0 0 1 0 1 1

2 1 1 0 0 1 1 0 1 0

1 0 1 0 0 1 1 0 0 1

2 0 1 0 0 0 1 1 0 0

1 0 1 0 0 0 1 1 0 0

1 0 1 0 1 0 1 0 0 0

1 1 1 0 0 0 1 0 0 0

1 1 0 0 1 0 0 0 0 0

1 0 1 1 0 0 1 0 0 0

1 1 1 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 1

1 0 1 1 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0

1 1 0 0 1 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0

1 1 0 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 0 0

1 1 1 0 1 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 1 0 0

1 0 0 1 0 0 1 0 0 0

1 0 0 0 0 0 1 1 0 0

1 0 0 0 0 1 0 0 0 1

1 0 0 0 1 0 1 0 0 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 1 0

1 0 0 0 0 1 0 0 1 0

1 0 0 0 1 0 0 0 1 0

1 0 1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.16)
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Figure 4.3: EXIT function using RCA for the rate-1/2 code of (4.15) and (4.16).

4.5.2 Long-Blocklength PBRL Design Example

In this subsection, we design a PBRL code family with information blocklength k = 16384. The

protograph family provides a range of rates of the form 8/(10 + i) from 8/10 to 8/32. The HRC

protograph for the k = 16384 PBRL code is

H
(16384)
HRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 1 1 1 1 1 1 0 0 1

1 1 2 2 2 2 2 2 2 1 1

2 0 0 0 0 0 0 0 1 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.17)

Similar to the design of k = 1032 code family, RCA algorithm optimizes the threshold cor-

responding to the connections of the IRC check nodes to the variable nodes of the HRC part of

(4.18). In the optimization process, each connection to the punctured node may have zero, one,

or two edges leading to values of 0, 1, and 2 in the first column of (4.18). Each connection to a
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non-punctured node may have zero or one edge in the other columns of (4.18). Table 4.2 shows

pit, p∗MAP , and pcap for the k = 16384 code family with an average gap of 0.0138 across various

rates.

4.5.3 Short and Long-Blocklength PBRL Results for BEC

After obtaining the HRC and IRC parts, two-step ACE+CPEG lifting as in [76] is used to lift the

lowest rate code with a required girth of six and eight for the k = 1032 and k = 16384 families. For

the k = 1032 family, the pre-lifting step has a lifting number of 3 to remove the parallel edges. The

lifting number in the second stage is 43, resulting in an information blocklength of k = 1032. For

the k = 16384 family, the pre-lifting step has a lifting number of 4 and the lifting number in the

second stage is 512.

Figs. 4.4 and 4.5 show the frame-error rate performance of the PBRL codes designed for k =

1032 and k = 16384, respectively over BEC. For a fixed rate, the k = 16384 PBRL code family in

Fig 4.5 achieves a particular FER at a higher BEC erasure probability than the codes designed for

k = 1032 in Fig 4.4. The BEC erasure probability obtained at FER = 10−5 is used for the analysis

in Fig 4.6.

Fig. 4.6 shows the mutual information gap from capacity in number of bits for the PBRL codes

constructed for k = 1032 and k = 16384 at a frame error rate of 10−5. These simulations use

floating-point iterative decoders with a flooding schedule for message-passing. Decoding termi-

nates early if all parity checks are satisfied before reaching the maximum number (300) of itera-

tions. A more efficient decoder for BEC is the peeling decoder. If the number of iterations in BP

decoder is high enough, e.g. 300, the performance of these two decoding methods is the same. For

BEC, it is also possible to use maximum likelihood decoding at the expense of higher complexity.

For the k = 1032 family, the simulations show a gap from the capacity of 0.0873 bits while the

gap to the PPV finite blocklength analysis is only 0.0494 bits. For the k = 16384 family, the gaps

from the capacity and PPV finite blocklength analysis are 0.0326 and 0.0236 bits, respectively. It

is surprising that a greedy threshold optimization algorithm alone can produce a code family with

109



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BEC erasure probability p

F
ra

m
e
 e

rr
o
r 

ra
te

PBRL k=1032 family of Sec. V−A

 

 

Rate 8/48

Rate 8/40

Rate 8/32

Rate 8/24

Rate 8/20

Rate 8/16

Rate 8/14

Rate 8/12

Rate 8/10

Figure 4.4: Frame error rates for the k = 1032 protographs defined by (4.15) and (4.16) over BEC.

such an outstanding performance.

Fig. 4.7 illustrates the ACE number η values for each rate. A pair (dACE, η) implies that every

cycle consisting of up to dACE variable nodes, i.e. every cycle of length up to 2dACE, is connected

to at least η extrinsic check nodes. For more discussion of the ACE algorithm see [101]. All the

cycles with length 10 or less in k = 1032 code have at least 6 extrinsic connections for the rate-1/2

code. Similarly, all the cycles with length 12 or less in k = 16384 code have at least 7 extrinsic

connections for the rate-1/2 code.
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Figure 4.5: Frame error rates for the k = 16384 protographs defined by (4.17) and (4.18) BEC.

4.6 Density Evolution in Protographs for BSC

In this section we present two RCA algorithms to approximate the DE threshold for LDPC codes

transmitted over binary symmetric channels (BSC). In both approximations, we assume a binary

symmetric channel with the transition probability p. Furthermore, due to the symmetry of the

channel, we assume that the all-zeros codeword is transmitted. The goal of these approximations

is to find simple alternative algorithms to calculate the density evolution threshold by tracking a

single parameter.

The first method is based on the similar ideas used in the analysis of BI-AWGN channels. RCA
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Figure 4.6: Mutual information gap from capacity and PPV finite-blocklength analysis in number

of bits for the PBRL codes constructed for k = 1032 and k = 16384 at a frame error rate of 10−5.

The protograph for the k = 1032 PBRL code is based on (4.15,4.16,4.17, and 4.18).

for BI-AWGN channels uses a real-valued parameter s, the SNR, to approximate the probability

density function of the LLR values transmitted between variable and check nodes. The function

used in RCA algorithm for BI-AWGN channels is C(s) which gives the capacity of the BI-AWGN

channel with SNR s. For computational simplicity and numerical precision we prefer to express

C(s) as

C(s) = 1 − ∫
∞

−∞
log2 (1 + e−(2

√
2su+2s)) e

−u2

√
π
du, (4.19)

which is obtained from [49, (15)] through a change of variables.

For the threshold analysis of BSC, as shown in Fig. 4.8, the variable-node update operation

includes a summation of LLR distribution between an approximated normal distribution and the

probability mass function corresponding to the LLR distribution of the messages that the variable
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Figure 4.7: ACE value (η) versus rate for the short blocklength (k = 1032) with dACE = 5 and long

blocklength (k = 16384) with dACE = 6 codes designed for BEC.

nodes receive from the channel. The resulting distribution of the messages has a bi-modal distri-

bution. We approximate this bi-modal distribution with a normal distribution that carries the same

amount of mutual information (capacity). In order to calculate the amount of information that the

bi-modal LLR distribution of Fig. 4.8 carries for µ = 2s, we can modify [4.19] to take into account

the shift, L = log(1−p
p ). The parameters L and −L are the discrete support values for the LLR

distribution of messages that the variable nodes receive from the channel. It needs to be noted that

the variance of each of the modes in the bi-modal distribution individually is 2µ.
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Figure 4.8: Variable-node update is the summation of the input LLR messages. Considering a

simple case of variable-node update with two input LLR messages, the resulting LLR distribution

is the convolution of the input LLR distributions, which result in a bi-modal distribution.

The modified version of 4.19 which includes the parameter L is given by

C(s,L) = 1 − p∫
∞

−∞
log2 (1 + e−(2

√
2su+2s+L)) e

−u2

√
π
du

−(1 − p)∫
∞

−∞
log2 (1 + e−(2

√
2su+2s−L)) e

−u2

√
π
du, (4.20)

.

As explained earlier, for each given raw error probability of the channel (p) RCA algorithm can be used

to approximate the density evolution threshold by only tracking a single parameter s. The major complexity

in using this approximation is in calculating the integrals in [4.20] in each iteration for variable node updates.

The complexity of calculating the integrals can be high enough that may hinder designing large LDPC

codes over BSC. In order to simply this calculation, we introduce another approximation which avoids

the complicated integral operations. The threshold values obtained from the second method is compared

with the threshold values from the first RCA algorithm and the true threshold from the density evolution

algorithm. The threshold values obtained from the second method RCA2 are used to design the LDPC

codes for BSC in this work.

For the second method, we use the capacity of BSC (C(p) = 1 −H(p)) where H(p) is binary entropy

function given by

H(p) = −p log2(p) − (1 − p) log2(1 − p). (4.21)

.

The RCA method is based on a transformation R(s) of one dimensional message from variable nodes

(VN) to check nodes (CN) such that the operations at VN and CN are additive. Similar to the RCA algorithm
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for BEC, The reciprocal self-inverting function R(s) is defined as

R(s) = C−1(1 −C(s)). (4.22)

We define the parameter r satisfying C(s) + C(r) = 1. This implies that r = R(s) and s = R(r).

It is necessary to relate the parameter s to the parameter p, the crossover probability of BSC, such that

using the transformation R(s) provides accurate results for iterative decoding threshold close enough to the

true density evolution threshold for BSC. The problem of choosing such transformation R(s) and relating

s to p has remained unsolved since the introduction of RCA for BI-AWGN channels. Here we propose

s = [Q−1(p)]2, which results in defining the channel capacity as

C(s) = 1 −H(Q(
√
s)). (4.23)

With this definition for the BSC, the RCA represents an approximation to the one-dimensional density

evolution. To apply density evolution to a protograph, define schl = [Q−1(p)]2. The remaining parts of

the RCA algorithm for BSC is identical to the ones discussed in Sec. 4.3.2 for BEC. We tried other trans-

formation candidates based on matching the mutual information or using the stability conditions for BSC

and AWGN channels, but the transformation s = [Q−1(p)]2 gave us the best results very close to the true

thresholds obtained from the full DE algorithm. Note that using exact DE for BSC to optimize the codes

may take at least 100 times longer than the method proposed in this work.

4.7 Design Examples for BSC

This section presents two families of RC PBRL codes. Subsection 4.7.1 presents the design procedure

for a short-blocklength codes (k = 1032) and subsection 4.7.2 presents the design procedure for a long

blocklength code (k = 16384).

4.7.1 Short-Blocklength PBRL Design Example for BSC

This subsection provides an example PBRL protograph family designed for information blocklength k =

1032. The HRC uses the protograph

H
(1032)
HRC =

⎡⎢⎢⎢⎢⎢⎣

3 3 3 1 1 1 3 1 2 1

1 1 1 3 3 3 1 2 1 2

⎤⎥⎥⎥⎥⎥⎦
. (4.24)
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The IRC adds up to 39 degree-one variable nodes to provide a range of rates of the form 8/(9 + i) from 8/9

to 8/48. The first variable node in the HRC part is always punctured.

After the design of the HRC protomatrix, IRC protomatrix is obtained by optimizing the threshold for

each successive rate in a greedy fashion under the constraints on edges to ensure low error floor.

The finite blocklength discussion in this sections follows the analysis from [102] for BSC. For equiprob-

able input distributions with BSC crossover probability p, blocklength n, and the number of information

messages M = 2k, there exists an (n,M, ε) code with a maximal probability of error of ε such that

ε ≤
n

∑
t=0

(n
t
)pt(1 − p)n−tmin{1, (M − 1)

t

∑
i=0

(n
i
)2−n} . (4.26)

For a given k and for each rate RC , we use (4.26) as an approximation on the maximum cross over

probability p to achieve a desired frame error probability ε.

For the protomatrices of (4.24) and (4.25), Table 4.3 shows pit, pppv, and pcap . The parameter pit is

the highest channel transition probability that an iterative BP decoder can support as the blocklength of the

LDPC code grows to infinity. pppv is the highest channel transition probability obtained from the PPV finite

blocklength analysis. The solution to Rc = 1 −H(pcap) for pcap is the maximum transition probability at

capacity of BSC. The “Gap” column of Table 4.3 shows the mutual information gap between the iterative

threshold and the capacity in bits. For k = 1032 code family, the average gap is 0.021.

After obtaining the HRC and IRC parts, similar to the codes designed for BEC, two-step ACE+CPEG

lifting is used to lift the lowest-rate code with a required girth of six for the k = 1032 family. The pre-lifting

step has a lifting number of 3 and the lifting number in the second stage is 43.

4.7.2 Long-Blocklength PBRL Design Example for BSC

This subsection designs a PBRL code family with information blocklength k = 16384 . The protograph

family provides a range of rates of the form 8/(10 + i) from 8/10 to 8/32. The HRC protograph for the

k = 16384 PBRL code is

H
(16384)
HRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 1 1 1 1 1 1 0 0 1

1 1 2 2 2 2 2 2 2 1 1

2 0 0 0 0 0 0 0 1 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.27)
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H
(1032)
IRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0 1 0

2 1 1 0 0 1 1 0 1 0

1 1 1 0 0 0 1 0 1 1

2 1 1 0 0 0 1 0 1 1

1 0 1 0 0 1 1 0 1 0

2 0 1 0 0 0 1 1 0 0

1 0 1 0 0 0 1 1 0 0

1 0 1 0 1 0 1 0 0 0

1 1 1 0 0 0 1 0 0 0

1 1 0 0 1 0 0 0 0 0

1 0 1 1 0 0 1 0 0 0

1 1 0 0 0 0 1 0 0 0

1 0 1 1 0 0 1 0 0 0

1 0 0 0 0 1 1 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 0 0 1 0 1 0 0 0

1 1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 0 0 0

1 0 1 0 1 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0

1 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 1 0 1 0

1 0 0 0 1 1 0 0 0 0

1 0 0 1 0 1 0 0 0 0

1 1 0 0 0 0 0 0 1 0

1 0 0 0 0 1 0 0 1 0

1 0 0 0 1 0 0 0 1 0

1 1 0 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 1

1 0 1 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.25)
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Figure 4.9: Frame error rates for the k = 1032 protographs defined by (4.24) and (4.25) over BSC.

Similar to the design of k = 1032 code family, RCA algorithm optimizes the threshold cor-

responding to the connections of the IRC check nodes to the variable nodes of the HRC part of

(4.28). In the optimization process, each connection to the punctured node may have zero, one, or

two edges in the first column of (4.28). Each connection to a non-punctured node may have zero

or one edge in the other columns of (4.28). Table 4.4 shows pit, pppv, and pcap for the k = 16384

code family with an average gap of 0.0215 bits across various rates.

Two step ACE+CPEG lifting which guarantees a girth of eight is used to lift the lowest rate

code. The pre-lifting step has a lifting number of 4 and the lifting number in the second stage is

512.

Figs. 4.9 and 4.10 show the frame-error rate performance of the PBRL codes designed for

k = 1032 and k = 16384, respectively over BSC. For a fixed rate, the k = 16384 PBRL code
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Figure 4.10: Frame error rates for the k = 16384 protographs defined by (4.27) and (4.28) over

BSC.

family in Fig. 4.10 achieves a particular FER at a higher BSC crossover probability than the codes

designed for k = 1032 in Fig 4.9. The BSC crossover probability obtained at FER = 10−5 is used

for the analysis in Fig 4.11.

Fig. 4.11 shows the gap to capacity in bits for k = 1032 and k = 16384 code families at

FER = 10−5. These simulations use floating-point iterative decoders with a flooding schedule for

message-passing. Decoding terminates early if all parity checks are satisfied before reaching the

maximum number (300) of iterations. The average mutual information gap to capacity for k = 1032

and k = 16384 codes are 0.1470 and 0.0730 bits. The gaps to PPV finite blocklength analysis are
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Figure 4.11: Mutual information gap from capacity and PPV finite-blocklength analysis in number

of bits for the PBRL codes constructed for k = 1032 and k = 16384 at a frame error rate of 10−5.

The protograph for the k = 1032 PBRL code is based on (4.24,4.25,4.27, and 4.28).

even smaller at 0.0807 and 0.0466 bits respectively.

Fig. 4.12 illustrates the ACE number η values for each rate for the two families of short and

long-blocklengths codes designed for BSC. As explained in [101], the ACE number is important

ensuring that the cycles in the bipartite graph of the LDPC codes are well connected. As illustrated

in the previous chapter, high ACE values help with the undesired graphical structures that cause

error floors.

120



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

Rate

A
C

E
 (

η
)

 

 

ACE values for k=1032 family for BSC

ACE values for k=16384 family for BSC

Figure 4.12: ACE value (η) versus rate for the short blocklength (k = 1032) with dACE = 5 and

long blocklength (k = 16384) with dACE = 6 codes designed for BSC.

4.8 Mixed BEC-AWGN Channel

In this section we present an RCA algorithm to approximate the DE threshold for a mixed channel

where some variable nodes of the LDPC code are absolutely correct or erased (with probability

ε) while some other variable-nodes are transmitted over an AWGN channel. This sort of mixed

channel is observed over networks where some bits are either decoded correctly with a very high

probability or completely erased while some other bits only experience normally distributed noise.

RCA for mixed channels can be developed efficiently by keeping track of three variables:

1. The mean (µ) of the approximated Gaussian distribution which relates to the SNR (s) by

µ = 2s,
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Figure 4.14: Check-node update with two input messages. The messages have three main param-

eters of P∞, P0, and µ. The last parameter of PG can be calculated easily by PG = 1 − P0 − P∞.

2. The probability of decoding the message correctly (P∞),

3. The probability that a bit is erased (P0).

Fig. 4.13 shows the probability density function for the general form of the LLR values (mes-

sages) passed between the variable nodes and check nodes. The two probability mass functions at

P0 and P∞ correspond to the probability that a variable node is either erased or decoded correctly,

respectively. Furthermore, PG = 1 − P0 − P∞ and it corresponds to the total probability of the

noisy part of the message. Fig. 4.14 shows an example of check-node updates with two messages

received from two neighboring variable nodes. The output message also has three components

corresponding to the erasure probability P t
0 , correct probability P t

∞, and the expected value of

the Gaussian approximation calculated using the capacity formula of C(s) according to [4.19] for

AWGN channels. Additionally the last parameter is P t
G, which corresponds to the total probability

associated with the noisy part of the LLR distribution.
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Figure 4.15: The check-node update in LDPC codes can be broken up into check-node operation

with two inputs at a time. This process along with the updating algorithm shown in Fig. 4.14 make

the implementation of RCA algorithm for mixed channels linear in complexity.

Considering Fig. 4.14, the only case where the output message from the check node is definitely

correct is when both input messages correspond to the correct messages P ′
∞ and P ′′

∞. Therefore,

P t
∞ = P ′

∞ ×P ′′
∞. As long as one of the input messages to the check node is erased, the out message

is erased, hence, P t
0 = 1−(1−P ′

0)(1−P ′′
0 ). The probability corresponding to LLR values following

a Gaussian distribution is P t
G = 1 − P t

0 − P t
∞. Using the C(s) and R(s) functions as discussed in

[4.19] and a dummy variable s3, the check-to-variable node message follows

s3 = R (R(s′) +R(s′′)) , (4.29)

st = C−1 (P
′
GP

′′
∞C(s′)+P ′′GP

′
∞C(s′′)+P ′′GP

′
GC(s3)

P ′GP
′′
∞+P ′′GP ′∞+P

′′
GP

′
G

) . (4.30)

If the degree of a check node is more than three, by using the property of breaking up each

check-node into multiple check-nodes with two inputs from variable nodes, as shown in Fig. 4.15,

the check-node operation can be performed with linear complexity. The naive extension of the

check node operation shown in Fig. 4.14 with more than two input messages by simultaneously

considering the messages from all neighboring variable nodes has an exponential complexity.

The variable node update is similar to the check node update with only difference that a variable

node is certain about its value as long as it receives at least one input from any neighboring check-

node with P∞. In addition, a variable node is erased with the probability that all the messages from

the neighboring check nodes are erased. Similarly, the variable node operations can be performed

with linear complexity.
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Figure 4.16: RCA threshold values corresponding to the highest σ or the smallest SNR value for

the Gaussian noise channel in combination with different erasure channels at which the LDPC code

of [4.31] is decoded correctly. The first and last variable nodes are assumed to be transmitted over

a BEC with erasure probability ε while the other variable nodes are transmitted over an AWGN

channel.

HMixed =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0

1 1 0 1 1 0 0 0

1 1 1 0 0 1 1 0

1 0 0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.31)

To illustrate the results for one matrix example in form of PBRL codes, consider the matrix

of [4.31]. In this example, we assume the first and last variable nodes are transmitted over an

erasure channel with erasure probability ε, while the other five variable nodes are transmitted over

an AWGN channel with channel variance σ.

Fig. 4.16 shows the RCA threshold values corresponding to the smallest SNR value for the

Gaussian noise channel in combination with different erasure channels at which the LDPC code

can be decoded with zero probability of error. In Fig. 4.16 the extreme points for erasure probability

of 1 (the first and last variable nodes are always erased) and erasure probability of 0 (the first and
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Figure 4.17: Frame error rates for the n = 19288 protographs and RCA threshold values corre-

sponding to the smallest SNR value for the Gaussian noise channel in combination with different

erasure channels for the LDPC code of [4.31]. The first and last variable nodes are assumed to be

transmitted over a BEC with erasure probability ε while the other variable nodes are transmitted

over an AWGN channel.

variable nodes are known) can be computed using the original RCA algorithm. These extreme

points confirm the performance of RCA algorithm for the other cases where the erasure probability

0 < ε < 1.

Fig. 4.17 shows the simulation results for the LDPC code in [4.31] for different erase proba-

bility values. The vertical lines illustrate the RCA threshold values corresponding to the smallest

SNR values for the Gaussian noise channel at which the LDPC code of [4.31] is decoded correctly.

The first and last variable nodes are assumed to be transmitted over a BEC with erasure probability

ε while the other variable nodes are transmitted over an AWGN channel.

4.9 Concluding Remarks

This chapter studies the construction and optimization of protograph-based Raptor-like (PBRL)

LDPC codes over BEC and BSC. This work designs PBRL codes by designing a highest-rate
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code (HRC) and sequentially adding degree-one variable nodes whose neighboring check node

is connected to the variable nodes of the HRC while maximizing the density evolution threshold

(erasure and crossover probability for BEC and BSC respectively). Puncturing a single variable

node in the HRC improves the threshold performance of PBRL codes. Instead of the original

density evolution, the RCA algorithm (which is exact for BEC) is used to obtain a fast and accurate

thresholds of PBRL codes to result in reasonable code-design complexity. For BSC, we propose

an efficient and precise RCA algorithm based on a Gaussian approximation as an alternative the

density evolution algorithm.

In summary, the analysis in this chapter provides a complete design procedure for constructing

rate-compatible LDPC code families that perform uniformly close to the capacity and finite block-

length performance limits for both short (k = 1032) and long (k = 16384) blocklengths over BEC

and BSC.
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Table 4.1: Thresholds for the k=1032 PBRL code family over BEC

Rate Threshold Threshold Capacity Gap

pit p∗MAP pcap 1 − pit −Rc

8/9 0.069 0.111 0.111 0.045

8/10 0.167 0.200 0.200 0.033

8/11 0.223 0.264 0.273 0.064

8/12 0.287 0.327 0.333 0.046

8/13 0.343 0.380 0.385 0.064

8/14 0.401 0.427 0.429 0.028

8/15 0.437 0.465 0.467 0.053

8/16 0.469 0.499 0.500 0.031

8/17 0.503 0.528 0.529 0.053

8/18 0.524 0.554 0.556 0.066

8/19 0.556 0.578 0.579 0.052

8/20 0.577 0.598 0.600 0.019

8/21 0.592 0.617 0.619 0.066

8/22 0.617 0.635 0.636 0.050

8/23 0.634 0.651 0.652 0.051

8/24 0.648 0.665 0.667 0.016

8/25 0.663 0.678 0.680 0.051

8/26 0.676 0.691 0.692 0.051

8/27 0.688 0.702 0.704 0.051

8/28 0.699 0.713 0.714 0.051

8/29 0.709 0.723 0.724 0.052

8/30 0.719 0.732 0.733 0.052

8/31 0.728 0.741 0.742 0.052

8/32 0.736 0.749 0.750 0.013

8/33 0.744 0.757 0.758 0.054

8/34 0.751 0.764 0.765 0.054

8/35 0.758 0.771 0.771 0.055

8/36 0.764 0.777 0.778 0.057

8/37 0.770 0.783 0.784 0.058

8/38 0.776 0.789 0.790 0.059

8/39 0.782 0.794 0.795 0.060

8/40 0.787 0.799 0.800 0.013

8/41 0.792 0.804 0.805 0.063

8/42 0.797 0.809 0.810 0.063

8/43 0.802 0.813 0.814 0.060

8/44 0.807 0.817 0.818 0.058

8/45 0.811 0.821 0.822 0.059

8/46 0.815 0.825 0.826 0.060

8/47 0.819 0.829 0.830 0.060

8/48 0.823 0.832 0.833 0.011
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 1 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 1 1 0

2 1 1 0 0 1 0 0 0 0 0

2 0 0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1 0 1 0

2 1 0 0 1 0 0 0 0 0 0

2 0 1 0 0 1 0 0 0 0 0

2 0 0 0 1 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0 0

2 0 0 0 1 0 1 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0

2 0 1 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0

1 0 0 1 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0 0

1 0 1 0 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.18)

128



Table 4.2: Thresholds for the k=16384 PBRL code family over BEC

Rate Threshold Threshold Capacity Gap

pit p∗MAP pcap 1 − pit −Rc
8/10 0.167 0.200 0.200 0.040

8/11 0.256 0.273 0.273 0.022

8/12 0.319 0.332 0.333 0.021

8/13 0.370 0.384 0.385 0.023

8/14 0.414 0.428 0.429 0.025

8/15 0.452 0.466 0.467 0.027

8/16 0.487 0.499 0.500 0.025

8/17 0.517 0.529 0.529 0.026

8/18 0.542 0.555 0.556 0.030

8/19 0.565 0.578 0.579 0.032

8/20 0.587 0.599 0.600 0.031

8/21 0.606 0.618 0.619 0.033

8/22 0.623 0.636 0.636 0.035

8/23 0.638 0.651 0.652 0.039

8/24 0.655 0.666 0.667 0.034

8/25 0.668 0.679 0.680 0.036

8/26 0.681 0.691 0.692 0.035

8/27 0.692 0.703 0.704 0.038

8/28 0.703 0.713 0.714 0.038

8/29 0.713 0.723 0.724 0.039

8/30 0.722 0.732 0.733 0.041

8/31 0.731 0.741 0.742 0.041

8/32 0.739 0.749 0.750 0.042
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Table 4.3: Thresholds and finite-blocklength PPV analysis for k=1032 PBRL family over BSC

Rate Threshold Threshold Capacity Gap

pit pppv pcap 1 −H(pit) −Rc

8/9 0.008 0.0049 0.015 0.044

8/10 0.025 0.0146 0.031 0.031

8/11 0.036 0.0264 0.047 0.049

8/12 0.050 0.0400 0.061 0.047

8/13 0.064 0.0518 0.075 0.041

8/14 0.079 0.0635 0.088 0.029

8/15 0.090 0.0732 0.099 0.030

8/16 0.101 0.0830 0.110 0.028

8/17 0.111 0.0928 0.120 0.026

8/18 0.119 0.1025 0.129 0.029

8/19 0.129 0.1104 0.138 0.024

8/20 0.137 0.1182 0.146 0.024

8/21 0.143 0.1260 0.154 0.027

8/22 0.152 0.1338 0.161 0.021

8/23 0.160 0.1396 0.168 0.018

8/24 0.166 0.1475 0.174 0.018

8/25 0.172 0.1533 0.180 0.018

8/26 0.178 0.1592 0.186 0.017

8/27 0.183 0.1650 0.191 0.017

8/28 0.188 0.1689 0.196 0.017

8/29 0.190 0.1748 0.201 0.023

8/30 0.197 0.1787 0.206 0.017

8/31 0.202 0.1846 0.210 0.016

8/32 0.206 0.1885 0.215 0.016

8/33 0.210 0.1924 0.219 0.015

8/34 0.214 0.1963 0.222 0.015

8/35 0.218 0.2002 0.226 0.016

8/36 0.221 0.2041 0.230 0.015

8/37 0.225 0.2080 0.233 0.015

8/38 0.228 0.2119 0.237 0.015

8/39 0.231 0.2158 0.240 0.015

8/40 0.234 0.2178 0.243 0.015

8/41 0.237 0.2217 0.246 0.014

8/42 0.240 0.2256 0.249 0.014

8/43 0.243 0.2275 0.252 0.013

8/44 0.246 0.2314 0.254 0.012

8/45 0.249 0.2334 0.257 0.013

8/46 0.251 0.2354 0.260 0.012

8/47 0.254 0.2393 0.262 0.013

8/48 0.256 0.2412 0.264 0.013
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(16384)
IRC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 1 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 1 0 0

2 0 1 0 1 1 0 0 0 0 0

2 0 1 0 0 0 1 0 1 0 0

2 1 0 0 0 0 0 1 0 0 0

1 1 1 0 1 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0 1 0 0

2 1 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 0 0

1 0 1 0 0 1 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 1 0 0 0

1 0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 0 0 0

1 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 1 1 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 1 0

1 1 0 0 0 0 0 1 0 0 0

1 0 0 1 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.28)
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Table 4.4: Thresholds and finite-blocklength PPV analysis for the k=16384 PBRL code family

over BSC

Rate Threshold Threshold Capacity Gap

pit pppv pcap 1 −H(pit) −Rc
8/10 0.024 0.0264 0.031 0.037

8/11 0.043 0.0420 0.047 0.017

8/12 0.057 0.0557 0.061 0.018

8/13 0.071 0.0693 0.075 0.015

8/14 0.083 0.0811 0.088 0.016

8/15 0.095 0.0928 0.099 0.014

8/16 0.106 0.1025 0.110 0.012

8/17 0.116 0.1123 0.120 0.012

8/18 0.124 0.1221 0.129 0.015

8/19 0.133 0.1299 0.138 0.013

8/20 0.141 0.1396 0.146 0.013

8/21 0.149 0.1455 0.154 0.011

8/22 0.156 0.1533 0.161 0.011

8/23 0.162 0.1611 0.168 0.013

8/24 0.168 0.1670 0.174 0.013

8/25 0.174 0.1729 0.180 0.013

8/26 0.180 0.1787 0.186 0.012

8/27 0.185 0.1846 0.191 0.013

8/28 0.190 0.1885 0.196 0.013

8/29 0.195 0.1943 0.201 0.012

8/30 0.199 0.1982 0.206 0.013

8/31 0.204 0.2041 0.210 0.012

8/32 0.208 0.2080 0.215 0.012
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CHAPTER 5

Coding for Flash Memory Systems

Multiple reads of the same Flash memory cell with distinct word-line voltages provide enhanced

precision for LDPC decoding. In this chapter, the word-line voltages are optimized by maximiz-

ing the mutual information (MI) of the quantized channel. The enhanced precision from a few

additional reads allows frame error rate (FER) performance to approach that of full-precision soft

information and enables an LDPC code to significantly outperform a BCH code.

For a well-designed LDPC code, the quantization that maximizes the mutual information also

minimizes the FER in our simulations. The chapter also identifies a trade-off in LDPC code design

when decoding is performed with multiple precision levels; the best code at one level of precision

will typically not be the best code at a different level of precision.

5.1 Introduction

Flash memory can store large quantities of data in a small device that has low power consumption

and no moving parts. The original NAND Flash uses only two levels. This is called single-level-

cell (SLC) Flash because there is only one actively written charge level. Devices currently available

using four levels are called multi-level-cell (MLC) Flash.

Error control coding for Flash memory is becoming more important as the storage density

increases. The increasing number of levels increases sensitivity to variations in signal-to-noise

ratio (SNR) from cell to cell and over time due to wear-out. This makes stronger error-correction

codes necessary. Also, the wear-out effect is time varying, introducing a need for adaptive coding

or modulation to maximize the potential of the system.
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Low-density parity-check (LDPC) codes are well-known for their capacity-approaching ability

for AWGN channels [116] and are the subject of recent interest for application to the Flash mem-

ory read channel. For example, in [117] LDPC codes without access to enhanced precision are

shown to provide a performance improvement over BCH codes, but that improvement becomes

small at high code rates. Also in [117], an alternative error correction scheme is introduced that

takes into account the dominant cell-level errors found in eight-level cells. This scheme provides

improvement for eight-level cells without using enhanced precision.

Important work related to codes that consider the dominant cell-level error is that of Gabrys et

al. on graded bit error correcting codes [118]. In contrast to codes designed for dominant errors,

our work focuses on the use of enhanced precision to improve performance. While we explore

the improvement in terms of standard LDPC codes, enhanced precision should also improve the

performance of alternative error correction schemes that focus on the dominant cell-level errors as

long as the decoders can utilize soft information.

Another approach for using LDPC codes in Flash memories [119] is to design the codes for

use with rank modulation. Rank modulation [120–122] stores information in the cell using the

relative value (or ordering) of cell charge levels rather than the absolute value. LDPC codes for

rank modulation require the cell charge-level ordering at the decoder.

As observed in [120], rank modulation eliminates the need for discrete cell levels, overcomes

overshoot errors when programming cells, and mitigates the problem of asymmetric errors. This is

an exciting approach for future Flash architectures. However, current Flash systems use the same

word-line voltage to read all cells on the page and thus would require a large number of page reads

to learn the charge-level ordering. Our work focuses on the traditional approach of coding with

fixed target charge levels and assumes that when reading each page, the same word-line voltage is

used for all cells.

We note that an alternative to using multiple reads to enhance precision is to perform a single

read with a dynamic threshold as introduced by [123] to adapt to time-varying channel degradations

such as the mean shift that occurs due to retention loss. We note that dynamic thresholds are

complementary to the use of enhanced precision, and a combined approach could be especially

134



effective.

As also discussed in [124], this chapter uses mutual information maximization as the objec-

tive function that drives the optimization of the word-line voltages (thresholds) used for the mul-

tiple reads that provide enhanced precision. Mutual information maximization is also explored

in [125] for the design of memory-efficient decoding of LDPC codes and in [126] for quantization

of binary-input discrete memoryless channels and the design of the message-passing decoders of

LDPC codes used on such channels.

Another aspect of current research follows from the fact that Flash memory systems must erase

an entire block of data at once. Each block consists of numerous pages and each page contains

thousands of bits. Even to change a small amount of data on a single page, the entire block must

be erased. Moreover, the process of erasing and re-writing a block of data degrades performance.

Each time electrons are written and then erased from the floating gate, the integrity of the floating

gate degrades in a process known as “cell wear-out”.

In [127], coding is used to minimize the frequency with which a block must be erased and the

number of auxiliary blocks required for moving pages of data in a Flash memory system. Effi-

cient wear-leveling and data movement in Flash is an important problem, but our work addresses

the complementary problem of improving the ability to reliably read a page by using enhanced

precision.

LDPC codes have typically been decoded with soft information (a relatively high-precision

representation of a real or complex number describing a received symbol value) while Flash mem-

ory systems have typically provided only hard reliability information (a single bit representing the

output of a sense-amp comparator) to their decoders. This work demonstrates that enhanced preci-

sion through multiple reads is crucial to successfully reaping the benefits of LDPC coding in Flash

memory. We explore how to select the word-line voltages used for additional reads, how many

such reads are necessary to provide most of the LDPC performance benefits, and how varying

levels of precision can impact code design.

Section 5.2 focuses on the NAND architecture for Flash memory, shows the configuration of

135



a NAND Flash memory cell and introduces the NAND Flash memory read channel model. Sec-

tion 5.3 shows how to obtain word-line voltages by maximizing the mutual information (MI) of the

equivalent read channel using a simple Gaussian model of SLC (two-level) Flash as an example.

The soft information is obtained by reading from the same sense-amp comparator multiple times

with different word-line voltages. Section 5.4 shows that a few additional reads provide most of

the benefit of enhanced precision through both a mutual information analysis and an LDPC sim-

ulation example. Section 5.5 describes the LDPC codes used in this chapter to illustrate that the

relative performance of LDPC codes can depend on the level of quantization. This section also

demonstrates a code design trade-off as follows: the best code in terms of both density evolution

threshold and empirical performance at one precision level is not the best according to either den-

sity evolution threshold or empirical performance at another precision level. This is a practically

important issue because the same code may well be decoded with varying levels of precision. In a

practical system it is likely that additional page reads to enhance precision will be used only if the

page could not be decoded without them.

Section 5.6 extends the discussion to MLC (four-level) Flash. The Gaussian Approximation

and Reciprocal Channel Approximation ideas are used as alternatives to the DE analysis of LDPC

codes tracking a single parameter µ, representing the mean, as a surrogate for the entire LLR

distribution in each iteration. Section 5.7 discusses the degree-distribution optimization algorithm

for a rate-r code and finally, Section 5.8 concludes this chapter.

5.2 The Read Channel of NAND Flash Memory

This section focuses on the NAND architecture for Flash memory. Fig. 5.1 shows the configuration

of a NAND Flash memory cell. Each memory cell in the NAND architecture features a transistor

with a control gate and a floating gate. To store information, a charge level is written to the cell

by adding a specified amount of charge to the floating gate through Fowler-Nordheim tunneling by

applying a relatively large voltage to the control gate [128].

To read a memory cell, the charge level written to the floating gate is detected by applying a
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specified word-line voltage to the control gate and measuring the transistor drain current. When

reading a page, a constant word-line voltage is applied to all cells in the page. A sense amp

comparator compares the drain current to a threshold. If the drain current is above this threshold,

then the word-line voltage was sufficient to turn on the transistor. This indicates that the charge

written to the floating gate is below a certain value. The sense amp comparator provides only one

bit of information about the charge level present in the floating gate.

A bit error occurring at this threshold-comparison stage is a raw bit error and the phrase chan-

nel bit error probability refers to the probability of a raw bit error given a specified amount of

distortion in the process of writing to the cell, retaining the charge level over a period of time, and

reading the cell. We refer to this overall process as the read channel.

The word-line voltage or reference voltage required to turn on a particular transistor (called the

threshold voltage) can vary from cell to cell for a variety of reasons. For example, the floating gate

can be overcharged during the write operation, the floating gate can lose charge due to leakage

in the retention period, or the floating gate can receive extra charge when nearby cells are written

[129]. The variation of threshold voltage from its intended value is the read channel noise.

We initially assume an i.i.d. Gaussian threshold voltage for each level of an SLC (i.e., two-

level) Flash memory cell. This is equivalent to binary phase-shift keying (BPSK) with additive

white Gaussian noise (AWGN), except that the threshold voltage cannot be directly observed.

Rather, at most one bit of information about the threshold voltage may be obtained by each cell

read.

More precise models such as the model in [129], in which the lowest and highest threshold

voltage distributions have a higher variance, and the model in [130], in which the lowest threshold

voltage (the one associated with zero charge level) is Gaussian and the other threshold voltages

have Gaussian tails but a uniform central region, are sometimes used. The model in [131] is

similar to [130], but is derived by explicitly accounting for real dominating noise sources, such as

inter-cell interference, program injection statistics, random telegraph noise and retention noise.

In the next section, we present a general quantization approach for selecting word-line voltages
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Figure 5.1: A NAND Flash memory cell.

for reading Flash memory cells and apply it to the specific example of SLC (two-level) Flash using

a simple identically distributed Gaussian channel model.

5.3 Soft Information Via Multiple Cell Reads

Because the sense-amp comparator provides one bit of information about the threshold voltage (or

equivalently the amount of charge present in the floating gate), decoders for error control codes in

Flash have historically relied on hard decisions.

5.3.1 Obtaining Soft Information

However, soft information can be obtained in two ways: either by reading from the same sense-amp

comparator multiple times with different word-line voltages (as is already done to read multi-level

Flash cells) or by equipping a Flash cell with multiple sense-amp comparators on the bit line,

which is essentially equivalent to replacing the sense amp comparator (a one-bit A/D converter)

138



with a higher-precision A/D converter.

These two approaches are not completely interchangeable in how they provide information

about the threshold voltage. If the word-line voltage and floating gate charge level place the tran-

sistor in the linear gain region of the drain current vs. word-line-voltage curve (the classic I-V

transistor curve), then valuable soft information is provided by multiple sense amp comparators.

However, multiple comparators may not give much additional information if the I-V curve is too

nonlinear. If the drain current has saturated too low or too high, the outputs from more sense-amp

comparators are not useful in establishing precisely how much charge is in the floating gate.

In contrast, each additional read of a single sense amp comparator can provide additional use-

ful information about the threshold voltage if the word-line voltages are well-chosen. Our work

focuses on obtaining soft information from multiple reads using the same sense-amp comparator

with different word-line voltages. This approach was studied in [132], and the poor performance

of uniformly spaced word-line voltages was established.

The fundamental approach of this work is to choose the word-line voltages for each quan-

tization by maximizing the MI between the input and output of the equivalent discrete-alphabet

read channel. This approach has been taken in other work (not in the context of Flash memory)

such as [125, 126]. Theoretically, this choice of word-line voltages maximizes the amount of in-

formation provided by the quantization. This section explores the simplest possible case, SLC

(two-level) Flash using an identically distributed Gaussian model, which is equivalent to BPSK

transmission with Gaussian noise.

5.3.2 Quantizing Flash to Maximize Mutual Information

This subsection describes how to select word-line voltages to achieve maximum mutual informa-

tion (MMI) for two reads and three reads for the identically distributed Gaussian model.

For SLC Flash memory, each cell can store 1 bit of information. Fig. 5.2 shows a simplistic

model of the threshold voltage distribution as a mixture of two identically distributed Gaussian

random variables. When a “0” or “1” is written to the cell, the threshold voltage is modeled as a

139



−q 0 q
0

0.1

0.2

0.3

0.4

0.5

(shifted) SLC threshold voltage

P
ro

ba
bi

lit
y 

D
en

si
ty

−
√

Es

√
Es

Figure 5.2: Identically distributed Gaussian model for SLC threshold voltages. Also shown are

word-line voltages for two reads (the dashed lines) and three reads (all three lines). The quantiza-

tion regions are indicated by shading with the middle region for two reads being the union of the

blue and purple regions.

Gaussian random variable with variance N0/2 and mean −
√
Es (for “1” ) or mean +

√
Es (for “0”),

respectively.

5.3.3 Two reads per cell

For SLC with two reads, Fig. 5.2 shows symmetric word-line voltages q and −q. The threshold

voltage is quantized into three regions as shown in Fig. 5.2: the green region, the red region, and the

union of the blue and purple regions (which essentially corresponds to an erasure e). This quanti-

zation produces the effective discrete memoryless channel (DMC) model shown in Fig. 5.3(a) with

input X ∈ {0,1} and output Y ∈ {0, e,1}.

Assuming X is equally likely to be 0 or 1, the MI I(X;Y ) between the input X and output Y

140



Figure 5.3: SLC equivalent discrete read channels

of the resulting DMC can be calculated [133] as

I(X;Y ) =H(Y ) −H(Y ∣X) (5.1)

=H (p13
2
, p2,

p13
2

) −H (p1, p2, p3) , (5.2)

where H is the entropy function [133], pij = pi + pj , and the crossover probabilities shown in

Fig. 5.3(a) are p1 = 1 −Q−, p2 = Q− −Q+, and p3 = Q+ with

Q− = Q
⎛
⎝

√
Es − q√
N0/2

⎞
⎠

and Q+ = Q
⎛
⎝

√
Es + q√
N0/2

⎞
⎠
, (5.3)

where Q(x) = 1√
2π ∫

∞
x e−u

2/2du.

For fixed SNR Es
N0/2 , the MI in (5.1-5.2) for the identically distributed Gaussian model is a

quasi-concave function of q with a zero derivative only at the q that delivers the maximum MI and

at q =∞. The MI can be maximized analytically by setting dI/dq = 0. Let f(x) be the probability

density function of a standard normal distribution. The derivative is computed as

dI

dq
= f (T +

q ) log2 (
p13
2p3

) + f (T −
q ) log2 (

p13
2p1

) , (5.4)

where T +
q =

√
Es + q and T −

q =
√
Es − q.

Note that dI/dq is continuous on R+. At q = 0 we have p13 = p1+p3 = 1. Applying this to (5.4),
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Figure 5.4: MI and its derivative vs. q (for Es = 1) for SNR= Es
N0/2 = 4 dB for SLC (two-level)

Flash with two reads and with three reads under the identically distributed Gaussian model.

we have

dI

dq
= −f (

√
Es) log2 (4p1(1 − p1)) ≥ 0 , (5.5)

at q = 0 by the inequality of arithmetic and geometric means. Equality holds only when p1 = 1/2,

which also causes I(X;Y ) = 0. It can also be shown that dI/dq becomes negative for sufficiently

large q and then increases monotonically, approaching zero as q approaches infinity.

These properties, illustrated in the example of Fig. 5.4, ensure that there is a single zero

derivative for finite q corresponding to the desired maximum MI. Because (5.4) involves the Q

function, solving for the q that sets dI
dq = 0 requires a numerical approach such as the bisection

search [134].

The blue curves in Fig. 5.4 show how the MI for two reads and its derivative vary as a function

of q for an SNR of 4 dB. Note that when q = 0 there is no erasure region, which is equivalent to a

single read. As q increases so does the erasure region. MI is concave in q between q = 0 and the

142



point of inflection. Note that when q =∞ the channel always produces the output e and the MI is

zero.

5.3.4 Three reads per cell

Now consider SLC with three reads for each cell. The word-line voltages should again be sym-

metric (shown as q, 0, and −q in Fig. 5.2). The threshold voltage is quantized according to the

four differently shaded regions shown in Fig. 5.2. This quantization produces the DMC model as

shown in Fig. 5.3 with input X ∈ {0,1} and output Y ∈ {00,01,10,11}.

Assuming X is equally likely to be 0 or 1, the MI between the input and output of this DMC

can be calculated as

I(X;Y ) =H(Y ) −H(Y ∣X)

=H (p14
2
,
p23
2
,
p23
2
,
p14
2

) −H(p1, p2, p3, p4), (5.6)

where pij = pi + pj with p1 = 1 −Q−, p2 = Q− −Q0, p3 = Q0 −Q+, and p4 = Q+. Q− and Q+ are as

in (5.3) and

Q0 = Q
⎛
⎝

√
Es√
N0/2

⎞
⎠
. (5.7)

The derivative of MI with respect to the threshold q is

dI

dq
=

4

∑
j=1
p′j log2(pj) − p′14 log2(p14) − p′23 log2(p23) , (5.8)

where −p′1 = p′2 = f(T −
q ) and p′3 = −p′4 = f(T +

q ). When q = 0, (5.5) still applies.

The red curves in Fig. 5.4 show how the MI for three reads and its derivative vary as a function

of q for an SNR of 4 dB. Both at q = 0 and q =∞ the channel is equivalent to the binary symmetric

channel (BSC) produced by a single read with the threshold at zero. Thus the MI for both of these

extreme choices is identical. Fig. 5.4 shows a single zero derivative corresponding to the desired

maximum MI occurring between these two extremes. Again, solving for the q that sets dI
dq = 0

requires a numerical approach such as the bisection search [134].
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For the relatively simple identically distributed Gaussian model, dI/dq for the two-read and

three-read cases can be identified analytically as described above. However, even in realistic mod-

els in which the distributions are described numerically, the optimum q can usually be found by

a bisection search. Also, when the distributions are not identically distributed, the constant-ratio

approach of [132], which is introduced in Section 5.6 for the four-level MLC case, can be used to

produce a single-parameter optimization that again can be solved with quasi-convex optimization

methods [134].

5.3.5 Five Reads per cell

In this work we assume i.i.d. Gaussian threshold voltages for each charge level in SLC or MLC

Flash memory cells. These models are equivalent to 2-level or 4-level Pulse-Amplitude Modulation

with additive white Gaussian (N (0, σ2)) noise (AWGN). Fig. 5.5 shows the model of the threshold

voltage distribution as a mixture of the two identically distributed Gaussian random variables that

comprise the SLC model. Since the levels are at +1 and −1, the average energy (Eavg) of this

model is 1.
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Figure 5.5: SLC threshold voltage model

Similar to Fig. 5.5, the shifted 4-level MLC threshold voltage distribution is a mixture of four
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identically distributed Gaussian random variables. The voltage levels are at {+ 3√
5
,+ 1√

5
,− 1√

5
,− 3√

5
}

and correspond to the Gray labeled assignment {00,01,11,10} respectively. In this model Eavg =

1, similar to the SLC model.

5.3.6 Progressive Quantization on Read Channels

Each time a cell is read, the result is a single bit indicating whether the threshold voltage is above

the word-line voltage at the time of the read. As described in [135,136], reading the same SLC cell

n−1 times (for n ≥ 2) with different word-line voltages effectively produces an equivalent channel

with two inputs and n outputs as shown in Fig. 5.3.

In [135,136], the word-line voltages for each quantization are chosen by maximizing the mutual

information (MI) between the input and output of the equivalent discrete read channels. Let’s

consider the MI for the three equivalent channels corresponding to a single read, three reads, and

five reads, respectively. This set of channels might be seen by three LDPC decoding attempts with

progressively more reads.

Define Q(x) = 1√
2π ∫

∞
x e−u

2/2du, Q−
σ(x) = Q(x−1σ ), and let pij = pi + pj .

For the 1-read SLC in Fig. 5.3a, the MI can be expressed as

I(X;Y ) = 1 −H(p1, p2) , (5.9)

where H is the entropy function. p1 = Q−
σ(q) and p2 = 1 − p1. The quantization threshold (q) that

maximizes the MI is q = 0.

For the 3-read SLC model in Fig. 5.3c with n = 4,

I(X;Y ) =H(p14, p23) + 1 −H(p1, p2, p3, p4) , (5.10)

where p1 = Q−
σ(q1), p2 = Q−

σ(0)−p1, p3 = Q−
σ(−q1)−p12, and p4 = 1−Q−

σ(−q1) with q1 the word-line

voltage shown in Fig 5.5. As described in [136], for 3-read SLC, the optimal q1 satisfies
dI

dq1
= 0.

Since the MI is quasi-concave in q1, the optimal q1 can be found by a bisection search algorithm.

For the 5-read SLC (SLC5) model in Fig. 5.3c with n = 6,

I(X;Y ) =H(p16, p25, p34) + 1 −H(p1, p2, . . . , p6) , (5.11)

145



Threshold q
2

T
h
re

s
h
o
ld

 q
1

 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

MI for 5 reads

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

A D
1

B C

E

D
2

Figure 5.6: Mutual information vs. q1 and q2 for SLC5

where p1 = Q−
σ(q2), p2 = Q−

σ(q1) − p1, p3 = Q−
σ(0) − p12, p4 = Q−

σ(−q1) −Q−
σ(0), p5 = Q−

σ(−q2) −

Q−
σ(−q1), and p6 = 1 −Q−

σ(−q2) for q1 and q2 shown in Fig 5.5.

Fig. 5.6 shows the contour plot of mutual information (MI) vs. (q1,q2) for the 5-read case. The

maximum MI points can be obtained by solving the two partial differential equations
dI

dq1
= 0 and

dI

dq2
= 0. Assuming q2 ≥ q1, the MI is quasi-concave in q1 for a fixed value of q2 and vice-versa (in

each dimension) and can be maximized by bisection search.

Let’s use Fig. 5.6 to explore the effect of multiple decoding attempts with progressive reads on

word-line voltage optimization. Note that the MI along the q1 = q2 line shows the three-read MI

performance as a function of q1. The optimal single-read word-line voltage of zero (Point A) is

also optimal as the first read of three reads or five reads. However, The optimal position of q1 for

three reads is q1 = 0.61 (point B), while the optimal position of q1 for five reads is q1 = 0.4 (with

q2 = 0.9, point C). We note that the MI obtained with three reads is 0.6524 when q1 is optimized
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Figure 5.7: Mutual information vs. q1 and q2 for SLC5

for three reads, 0.6439 when q1 is optimized for five reads with q1 = 0.4 (point D1), and 0.6414

when q1 is optimized for five reads with q1 = 0.9 (point D2). Also, the MI obtained with five

reads is 0.6634 when q1 is optimized for three reads (point E, with q1 = 0.61 and q2 = 0.28) and

0.6687 when q1 is optimized for five reads (point C), assuming that q2 is chosen optimally in each

case. The MI differences are small in either case, but large enough to have noticeable effects on

frame error rate according to [136]. A greedy approach (optimizing q1 for three-read performance)

leads to the smallest degradation and would lower decoding time by increasing the probability of

decoding successfully after three reads, but optimizing q1 for the five-read scenario will produce

the lowest probability of losing a page.
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Figure 5.8: Simulation results of FER vs. channel bit error probability using the Gaussian channel

model for SLC (two-level) Flash comparing LDPC Code 2 with varying levels of soft information

and a BCH code. Both codes have rate 0.9021. The BCH and LDPC 1-read curves correspond to

hard decoding.

5.4 Performance vs. Number of Reads Per Cell

The MMI optimization approach generalizes to more than three reads per cell, but the optimization

becomes more complex. In these cases. For these cases we use bisection optimization performed

on promising small regions of the space until the optimal set of thresholds (within a small tolerance)

was identified.

Fig. 5.8 shows how the performance of an LDPC code (Code 2 described in Section 5.5 be-

low) improves as more soft information is made available to the decoder using MMI-optimized

thresholds. This simulation uses the Gaussian model of the SLC Flash memory cell shown in Fig.

5.2.

Fig. 5.8 plots FER versus channel bit error probability computed as Q (
√

2Es
N0

). For reference,

the FER performance of a binary BCH code capable of correcting up to 64 bit errors (using one

read per cell) is also shown. Both the LDPC code and the BCH code have rate 0.9021. The LDPC
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code has a frame size of k = 8225 bits and the BCH code has a frame size of k = 8256 bits. Also

for reference, dashed vertical lines show the Shannon limit (worst channel that could theoretically

support reliable transmission) for each level of quantization at the target rate of 0.9021.

Consistent with the mutual information analysis, this plot illustrates that each additional read

improves the FER performance of the LDPC code, but the performance improvement is diminish-

ing. Using three reads places the LDPC code performance within a relatively small gap from the

limit of the performance achieved by that code with full soft information (essentially, an infinite

number of reads). Note that the LDPC code outperforms the BCH code even with a single read,

but one or two additional reads significantly improve performance.

5.5 LDPC Code Descriptions

LDPC codes [137] are linear block codes defined by sparse parity-check matrices. By optimizing

the degree distribution, it is well-known that LDPC codes can approach the capacity of an AWGN

channel [116]. Several algorithms have been proposed to generate LDPC codes for a given degree

distribution, such as the ACE algorithm [138] and the PEG algorithm [139].

In addition to their powerful error-correction capabilities, another appealing aspect of LDPC

codes is the existence of low-complexity iterative algorithms used for decoding. These iterative

decoding algorithms are called belief-propagation algorithms. Belief-propagation decoders com-

monly use soft reliability information about the received bits, which can greatly improve perfor-

mance. Conversely, a quantization of the received information which is too coarse can degrade the

performance of an LDPC code.

Traditional algebraic codes, such as BCH codes, commonly use bounded-distance decoding

and can correct up to a specified, fixed number of errors. Unlike these traditional codes, it can

be difficult for LDPC codes to guarantee a specified number of correctable errors. However the

average bit-error-rate performance can often outperform that of BCH codes in Gaussian noise.
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5.5.1 Description of LDPC Codes

In this chapter we consider three irregular LDPC codes, which we will refer to as Code 1, Code 2,

and Code 3. These codes were selected to illustrate two points about LDPC codes in the context

of limited-precision quantization. The first point, illustrated later in this section, is that the relative

performance of LDPC codes (i.e., which one is better) can depend on the level of quantization.

Codes 2 and 3 were selected so that Code 2 has a better density evolution threshold than Code 3

for a single read while Code 3 has a better density evolution threshold than Code 2 for the full-

precision AWGN channel.

The second point is that MMI quantization does not provide the right threshold for every code

but should provide the right threshold as long as the code is good enough. This point is explored in

Section 5.6. Code 1 provides an example of a code that is bad enough (because of small absorbing

sets) that MMI quantization does not provide the correct quantization thresholds. Code 2 is a well-

designed code that avoids these absorbing sets and for which the MMI quantization minimizes the

frame error rate.

Codes 1 and 3 have degree distributions that optimize the density evolution threshold for the

full-precision AWGN channel with maximum variable node degrees of 19 and 24 respectively.

The degree distribution for Code 2 is a modification of the Code 1 degree distribution. It was not

explicitly designed to optimize any density evolution threshold, but has a better density evolution

threshold for the single-read AWGN channel than either Code 1 or Code 3.

The LDPC matrices were constructed according to their respective degree distributions using

the ACE algorithm [138] and the stopping-set check algorithm [140]. All of the simulations were

performed using a maximum of 50 iterations of a sequential belief propagation decoder. Decoding

stops as soon as all check nodes are satisfied. The frame size is k = 8225 bits for each of the three
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LDPC codes. The degree distributions of the three codes are as follows:

λ1(x) =2.0054 × 10−5 + 3.5776 × 10−2x + 0.39869x2

+ 8.4827 × 10−3x8 + 3.7701 × 10−2x9 + 0.51933x18

ρ1(x) =0.15662x54 + 0.84338x55

λ2(x) =1.7701 × 10−5 + 3.1579 × 10−2x + 0.46923x3

+ 7.4877 × 10−3x8 + 3.3278 × 10−2x9 + 0.45841x18

ρ2(x) =1.0975 × 10−3x61 + 0.73267x62 + 0.26623x63

λ3(x) =3.2172 × 10−2x + 2.681 × 10−3x2

+ 0.55764x3 + 0.40751x23

ρ3(x) =0.10366x57 + 0.89634x58 ,

where λ(x) is the left (variable-node) degree distribution and ρ(x) is the right (check-node) degree

distribution. A term of axd−1 in λ(x) indicates that a is the fraction of edges connecting to variable

nodes with degree d. The asymptotic threshold analysis of an LDPC code depends on the degree

distribution of its variable and check nodes. λ(x) = ∑
i
λixi−1 represents the variable-node degree

distribution where λi is the fraction of the total number of edges connected to degree-i variable

nodes. Similarly, ρ(x) = ∑
j
ρjxj−1 represents the check-node degree distribution where ρj is the

fraction of all edges that are connected to degree-j check nodes. An LDPC code with variable-node

and check-node degree distributions λ(x) and ρ(x) has a rate r = 1− ∫
1
0 ρ(x)dx

∫
1
0 λ(x)dx

. For a particular code

rate r, the code design optimization consists of finding the variable-node and check-node degree

distributions that minimize the Eb/N0 threshold.

5.5.2 Quantization-based Design Trade-off

Because reading a page of bits from the sense-amp comparators is a time-intensive operation, it is

likely that enhanced precision will be added progressively only if needed to facilitate successful

decoding. Hence, a single LDPC code will be decoded at a variety of precision levels, which
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Table 5.1: Density evolution thresholds for three LDPC codes. Full-precision threshold are in

terms of both noise variance σ and SNR. Single-read thresholds are in terms of channel bit error

probability ε and the corresponding SNR.

Full-precision AWGN Single-Read AWGN

Code σ SNR = 2Es/N0 ε SNR(ε)

1 0.499 6.04 dB 9.29 × 10−3 7.44 dB

2 0.483 6.32 dB 1.05 × 10−2 7.26 dB

3 0.492 6.16 dB 9.61 × 10−3 7.39 dB

introduces a design trade-off that can be illustrated with two LDPC codes.

Table 5.1 shows the density evolution thresholds for these three codes for the extremes of

a full-precision SLC channel and a single-read SLC channel assuming the Gaussian model of

Fig. 5.2. Table 5.1 reveals a trade-off between full precision performance and single-read perfor-

mance. For example, Code 2 has a lower (in dB) single-read threshold than Code 3, but a higher

full-precision threshold than Code 3. The density evolution differences indicate that the different

channels produced by the different quantizations will typically have different optimal LDPC codes

under iterative belief propagation decoding.

Fig. 5.9 shows FER vs. SNR simulation results consistent with the density evolution threshold

results shown in Table 5.1. Code 3 outperforms Code 2 when full soft information is available,

but Code 2 outperforms Code 3 when only a single read is available. Additional FER vs. channel

BER simulations for Codes 2 and 3 (that were omitted from Fig. 5.9 for clarity of presentation)

demonstrate that for 2 reads the codes have essentially the same performance, but for three reads

Code 3 has better performance than Code 2.
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Figure 5.9: Simulation results of FER vs. SNR= 2Es/N0 using the Gaussian channel model for

SLC (two-level) Flash comparing LDPC Code 2 and LDPC Code 3 with hard decoding (1 read)

and full soft decoding (essentially an infinite number of reads). Also shown are the Shannon limits

for hard and soft decoding and the density evolution thresholds for the two codes under the two

quantization scenarios. Both the density evolution results and simulation results show a trade-off

between performance under hard decoding and performance under soft decoding.

5.6 RCA-based EXIT Function Analysis

In their density evolution analysis of binary-input AWGN channels, Chung et al. [141] observed

that the distribution of the LLR messages at any iteration is approximately Gaussian. They showed

that based on a stability condition, the variance of the Gaussian distribution has to be twice its

mean. Therefore, the Gaussian distribution could be fully characterized by a single parameter.

They also observed that due to a duality property (reciprocal approximation) the LLR messages

from the variable to check nodes become additive at check nodes. This property is similar to

the LLR messages from check nodes to variable nodes that are additive at variable nodes. The

Gaussian Approximation and Reciprocal Channel Approximation simplified the DE analysis of
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LDPC codes over binary-input (BI) AWGN channels by tracking a single parameter µ, representing

the mean, as a surrogate for the entire LLR distribution in each iteration.

The references [142] and [143] applied similar ideas by using the EXtrinsic mutual Informa-

tion Transfer (EXIT) functions to simplify the DE threshold analysis. EXIT functions in iterative

coding schemes characterize how a priori input information to a decoder check or variable node

converts into extrinsic output information from the decoder check or variable node. The EXIT

functions track the evolution of the MI between the variable-to-check messages and the variable

node true value (Ioutv ) and the MI between check-to-variable messages and the variable node true

value (I inv ).

We now describe the use of EXIT functions with the Gaussian approximation and RCA to

compute LDPC decoding thresholds for different number of reads. In the following sections,

similar to Fig. 5.3, pis represent the transition probabilities. The LLRs are given by Lij = log pi
pj

.

f chL (l) represents the apriori channel LLR probability distribution function (p.d.f.). The notation ⊕

represents the convolution operator. δ(.) represents the Dirac delta function.

5.6.1 Binary LDPC Thresholds from RCA-based EXIT Functions

By the assumption of uniform input, symmetric channel, and transmission of the all-zero code-

word the initial channel LLR (log P (Y ∣X=0)
P (Y ∣X=1) ) distribution at a variable node for the single-read SLC

channel in Fig. 5.3a is

f chL (l) = p1δ(l −L12) + p2δ(l −L21) , (5.12)

where Lij = log pi
pj

. This p.d.f. is effectively a p.m.f. with support at L12 = log(P (Y =1∣X=0)
P (Y =1∣X=1)) and

L21 = log(P (Y =2∣X=0)
P (Y =2∣X=1)). Since the all-zeros codeword is assumed to be transmitted, the channel

LLR takes the values of L12 and L21 with probabilities p1 and p2 respectively. Similar expressions

hold for more reads, e.g. with five reads the channel LLR p.d.f. is

f chL (l) = p1δ(l −L16) + p2δ(l −L25) + p3δ(l −L34)

+ p4δ(l −L43) + p5δ(l −L52) + p6δ(l −L61) , (5.13)
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Figure 5.10: Mutual information vs. q1 and q2 for SLC5

with the pis as defined previously for the five-read channel. For the full soft-information (i.e. in the

limit of infinitely many reads of the flash cell) BI-AWGN channel, LLR = log(P (Y =y∣X=0)
P (Y =y∣X=1)) =

2
σ2y

where σ2 is the variance of the Gaussian noise. Therefore, the LLR is normally distributed with a

mean of 2
σ2 and variance of 4

σ2 :

f chL (l) = N (2/σ2,4/σ2) . (5.14)

In the first iteration (initialization step) of the threshold calculation algorithm, the extrinsic

mutual information from a variable node is calculated by Ioutv = J(f chL (l)) where

J(fL(l)) = 1 − ∫
L

log2(1 + e−l)fL(l)dl (5.15)

J(fL(l)) is a function of the LLR distribution fL(l) which gives the mutual information

of a binary-input symmetric-output channel with the LLR distribution of fL(l). For instance,

for the 1-read SLC channel we can alternatively calculate the mutual information of (5.9) as

J(f chL (l)) where f chL (l) is given in (5.12). If the LLR distribution is in form ofN (µ,2µ), JN (µ) =

J(N (µ,2µ)).
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After initialization, (5.16-5.21) are performed. This process is repeated until H(X) − Ioutv < ε′

(e.g. 10−7), where H(X) is the entropy of the input in Fig. 5.3. This is the convergence or the

stopping criterion of the algorithm. If the threshold-calculation algorithm fails at a particular noise

level, the noise level is decreased until the maximum noise level (minimum Eb/N0) at which the

algorithm converges is identified.

I inc = 1 − Ioutv (5.16)

µinc = J−1N (I inc ) (5.17)

Ioutc =
m

∑
j=1
ρiJN ((j − 1)µinc ,2(j − 1)µinc ) (5.18)

I inv = 1 − Ioutc (5.19)

µinv = J−1N (I inv ) (5.20)

Ioutv =
n

∑
i=1
λiJ(f chL (l)⊕N ((i − 1)µinv ,2(i − 1)µinv ) (5.21)

Eq. (5.16) follows from the duality property between the extrinsic information from a variable

node (Ioutv ) and the apriori information to a neighboring check node (I inc ). Eq. (5.17) follows from

the monotonicity of J , hence the inverse exists, as well as the assumption of normally distributed

LLR messages at each iteration. µinc is the mean of the approximately normally distributed LLR

messages at check nodes. Eq. (5.18) follows from the reciprocal approximation of the messages

exchanged between variable and check nodes, resulting in additive messages at check nodes. Eq.

(5.19) follows from the duality property between I inv and Ioutc . Eq. (5.20) follows the monotonicity

of J and the assumption of normally distributed LLR messages. µinv is the mean of the approxi-

mately normally distributed LLR messages at variable nodes. Eq. (5.21) follows from the additive

property of messages at variable nodes due to the independence assumption of apriori LLR mes-

sages.

For the SLC channels with one or more reads, such as the single-read and five-read cases of

(5.12) and (5.13), the convolution of the channel LLR p.d.f. (f chL (l)) and the LLR p.d.f. of the

incoming messages (N (µinv ,2µinv )) from the neighboring check nodes to variable node v in (5.21)

results in a mean shift LLR distribution of the messages from the check nodes. For example, for the

single-read case, f chL (l)⊕N (µinv ,2µinv ) = p1N (µinv −L12,2µinv )+p2N (µinv −L21,2µinv ). However, for
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BI-AWGN (5.14) the convolution results in the Gaussian distribution N (µinv + 2/σ2,2µinv + 4/σ2).

5.6.2 RCA-EXIT for Non-binary LDPC codes for SLC

For non-binary LDPC codes over GF (q) for SLC with uniform input, the LLR messages are

(q − 1) dimensional probability distribution vectors. We only consider GF (4) where the LLR

vectors correspond to {01,10,11}. The steps in calculating the threshold are similar to (5.16) to

(5.21). However, the J functional and the initialization steps are modified as follows:

l =

⎛
⎜⎜⎜⎜⎜
⎝

LLRch
01

LLRch
10

LLRch
11

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

log P (Y ∣X=00)
P (Y ∣X=01)

log P (Y ∣X=00)
P (Y ∣X=10)

log P (Y ∣X=00)
P (Y ∣X=11)

⎞
⎟⎟⎟⎟⎟
⎠

(5.22)

J(fL(l)) = 1 − 1

2 ∫L
log2(1 +

3

∑
i=1
e−li)fL(l)dl (5.23)

JN (µ) = J(N (µ,Σ)) (5.24)

µ =

⎛
⎜⎜⎜⎜⎜
⎝

µ

µ

µ

⎞
⎟⎟⎟⎟⎟
⎠

Σ =

⎛
⎜⎜⎜⎜⎜
⎝

2µ µ µ

µ 2µ µ

µ µ 2µ

⎞
⎟⎟⎟⎟⎟
⎠

. (5.25)

Eq. (5.22) shows the 3-dimensional LLR probability distribution vector with the assumption

that the all-zero codeword is transmitted. The Eq. (5.23) follows from the assumption that each bit

is independently sent over the channel. For a GF (4) NB-LDPC code for SLC Flash systems the

two bits are independently combined to give a GF (4) element and the MI is the average of the MI

for each bit. The Eq. (5.24) is an extension of the binary JN to GF (4). The Eq. (5.25) follows

from the stability condition of DE along with the Gaussian approximation which requires the mean

and co-variance matrix of the normally distributed messages to be in form of the Eq. (5.25) under

the assumption that the GF (4) labels are chosen at random and uniformly [144]. This property is

in compliance with GF (2) where σ2 = 2µ.

The channel LLR p.d.f. for a GF (4) NB-LDPC code for SLC over BI-AWGN channel is a
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jointly Gaussian vector with the mean vector and co-variance matrix as in the Eq. (5.27).

f chL (l) = N (µch,Σch) (5.26)

µch =

⎛
⎜⎜⎜⎜⎜
⎝

2/σ2

2/σ2

4/σ2

⎞
⎟⎟⎟⎟⎟
⎠

Σch =

⎛
⎜⎜⎜⎜⎜
⎝

4/σ2 0 4/σ2

0 4/σ2 4/σ2

4/σ2 4/σ2 8/σ2

⎞
⎟⎟⎟⎟⎟
⎠

(5.27)

By assuming that the all-zero codeword is transmitted, y1 and y2 in Eq. (5.28) are i.i.dN (1, σ2)

random variables.

l

⎛
⎜⎜⎜⎜⎜
⎝

LLRch
01 = log(P (Y =y1y2∣X=00)

P (Y =y1y2∣X=01))

LLRch
10 = log(P (Y =y1y2∣X=00)

P (Y =y1y2∣X=10))

LLRch
11 = log(P (Y =y1y2∣X=00)

P (Y =y1y2∣X=11))

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

2y2
σ2

2y1
σ2

2(y1+y2)
σ2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(5.28)

Eq. (5.29) shows the channel LLR p.d.f. vector for NBSLC
1 . It also shows that LLR11 = LLR01

+ LLR10 due to the independence of noise affecting each transmitted bit.

f chL (l) = p21δ(l − [
L12
L12
2L12

]) + p1p2δ(l − [
L12
L21
0

]) (5.29)

+ p2p1δ(l − [
L21
L12
0

]) + p22δ(l − [
L21
L21
2L21

])

5.6.3 RCA-EXIT for Non-binary LDPC Codes for MLC

In this chapter we assume i.i.d. Gaussian threshold voltages for each charge level in SLC or MLC

Flash memory cells. These models are equivalent to 2-level or 4-level Pulse-Amplitude Modulation

with additive white Gaussian (N (0, σ2)) noise (AWGN). For the SLC model, since the levels are

at +1 and −1, the average energy (Eavg) of this model is 1. Similar to Fig. 5.5, the shifted 4-level

MLC threshold voltage distribution is a mixture of four identically distributed Gaussian random

variables. The voltage levels are at {+ 3√
5
,+ 1√

5
,− 1√

5
,− 3√

5
} and correspond to the Gray labeled

assignment {00,01,11,10} respectively. In this model Eavg = 1, similar to the SLC model.

We use GF (4) NB-LDPC threshold analysis to find the best code for the MLC Flash models.
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The J functional for MLC under the assumption of uniform input is

J(fL(l)) = 2 − ∫ log2(1 +
3

∑
i=1
e−li)fL(l)dl . (5.30)

The channel LLR p.d.f. is described as follows:

f chL (l) = 1

4
(N (µch00,Σch

00) +N (µch01,Σch
01) (5.31)

+N (µch10,Σch
10) +N (µch11,Σch

11))

µch00 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2/5σ2

18/5σ2

8/5σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σch
00 =

⎛
⎜⎜⎜⎜⎜
⎝

4/σ2 12/σ2 8/σ2

12/σ2 36/σ2 24/σ2

8/σ2 24/σ2 16/σ2

⎞
⎟⎟⎟⎟⎟
⎠

(5.32)

µch01 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2/5σ2

2/5σ2

8/5σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σch
01 =

⎛
⎜⎜⎜⎜⎜
⎝

4/σ2 −4/σ2 −8/σ2

−4/σ2 4/σ2 8/σ2

−8/σ2 8/σ2 16/σ2

⎞
⎟⎟⎟⎟⎟
⎠

µch10 = µch00 µch11 = µch01 Σch
10 = Σch

00 Σch
11 = Σch

01

The p.d.f. vectors in Eq. (5.32) are obtained by using the idea in [144] for cosets over GF (q)

and the assumption that the non-binary labels are selected at random and uniformly.

5.7 LDPC Degree Distributions Optimization for Flash

By assuming that the LLR values at any iteration of the DE algorithm are normally distributed with

the variance (σ2) twice the absolute value of the mean (µ), the approximation of the DE is obtained

by considering the µ as a surrogate of the entire LLR distribution.

The degree-distribution optimization algorithm for a rate-r code starts with finding the thresh-

old for an initial (e.g. regular) degree distribution that results in a rate-r code. While the rate is kept

constant, the parameters of λ(x) and ρ(x) are slightly changed and the new threshold is calculated.

If the new threshold is smaller than the previous threshold, the new degree distribution is selected

and slightly changed to find a degree distribution with lower threshold; otherwise, the previously

lowest degree distribution is slightly changed to find a degree distribution which gives a lower
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threshold. Once there is no more improvement in threshold by changing the degree distribution,

the degree distribution with the lowest threshold is considered to be optimal. Table 5.2 shows the

degree distributions we obtained using this approach.

5.7.1 MMI vs. RCA-EXIT for Word-Line-Voltage Optimization

For a fixed degree distribution, RCA-EXIT analysis can determine the word-line voltages that

minimize the Eb/N0 threshold for a multiple-read Flash channel. This is an alternative approach

to MMI word-line voltages. Fig. 5.11 shows the plot of the threshold Eb/N0 for each word-line

voltage q1 = q for the 2-read SLC model in Fig. 5.3b for two degree distributions. Also shown is

the curve showing the MMI word-line voltage (qMMI) for each Eb/N0. For a fixed degree distri-

bution and q, we find the minimum required Eb/N0 such that the threshold calculation algorithm

converges as was explained in 5.6.1. The optimal value of q and its corresponding Eb/N0 are

shown in Fig. 5.11 by the pair (q∗,Eb/N∗
0 ). Eb/N∗

0 is the absolute minimum required Eb/N0 for

the RCA-EXIT to converge for at least one quantization threshold q. The thresholdEb/N0 at qMMI

is less than 1% away from the optimal Eb/N∗
0 .

It is difficult to simultaneously optimize both degree distribution and word-line voltage. Thus,

even if the final word-line voltage will be selected to explicitly minimize the threshold, the MMI

word-line voltage at a given Eb/N0 is an excellent approximation when optimizing degree dis-

tributions. We use the qMMI to optimize the degree distribution until the RCA-EXIT no longer

converges at an Eb/N0 and then adjust the q to obtain the final small improvement in Eb/N0.

5.7.2 Optimized Degree Distributions for Each Precision Level

Table 5.3 shows the thresholds achieved by the various SLC degree distributions with various levels

of precision. As expected, for a specified number of reads, the degree distributions optimized for

that number of reads has the lowest threshold. However, this table quantifies the relatively small

performance loss in threshold that is required for the same code to be used with multiple decoding

attempts using increased precision.
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Table 5.2: Optimized degree distributions for the Gaussian model of SLC Flash with 1,2,3, and 5

reads. MLC Flash with 3 reads, and both SLC and MLC with full soft information.

# Reads Coefficients

SLC λ2 λ3 λ7 λ8 λ27 ρ61

1 read 0.07 0.25 0.11 0.13 0.44 1

SLC λ2 λ3 λ7 λ25 ρ57

2 reads 0.1 0.21 0.25 0.44 1

SLC λ2 λ3 λ6 λ7 λ26 ρ56

3 reads 0.1 0.21 0.11 0.12 0.46 1

SLC λ2 λ3 λ5 λ8 λ25 ρ56

5 reads 0.11 0.21 0.09 0.14 0.45 1

SLC λ2 λ3 λ6 λ8 λ26 ρ56

soft 0.11 0.21 0.21 0.14 0.47 1

MLC
λ2 λ3 λ4 λ7 λ8 λ11

0.16 0.31 0.1 0.18 0.1 0.15

3 reads
ρ5 ρ6 ρ8 ρ22

0.45 0.16 0.1 0.29

MLC
λ2 λ3 λ4 λ7 λ9 λ11

0.15 0.3 0.1 0.09 0.22 0.14

soft
ρ5 ρ6 ρ8 ρ9 ρ22

0.44 0.07 0.1 0.11 0.27
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Figure 5.11: Threshold Eb/N0 vs q for a regular and the optimized rate-0.9 binary LDPC codes for

2-read SLC model

The largest performance loss occurs when using a degree distribution optimized for 5 reads on

the SLC 1-read channel. Here, the loss is 0.17 dB. Any degree distribution except the one designed

for the single-read channel experiences the 0.17 dB loss. In contrast, if the degree distribution

optimized for the single-read SLC channel is used on the 5-read channel, only 0.11 dB of loss

is incurred. Thus there is reason to consider using the code designed for a single read. However,

using the degree distribution optimized for 5 reads would minimize the probability of losing a page

at the expense of additional decoder latency for those times when additional reads might have been

avoided by using the degree distribution optimized for one read. If it becomes feasible to switch

among codes as the Flash cells deteriorate over time, an optimized code for a higher number of

reads may replace the previously optimized code with lower amount of precision.

Fig. 5.12 compares the threshold of regular LDPC degree distributions with the optimized

irregular degree distribution (λ(x), ρ(x)) for each number of reads. There is roughly a gain of 0.4

dB for the optimized codes compared to the regular (x2, x29) and (x3, x39) codes.
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Table 5.3: Thresholds for optimized degree distributions on SLC flash with 1, 2, 3, and 5 reads as

well as soft information.

Target 1 read 2 reads 3 reads 5 reads Soft

1 read 4.752 3.995 3.728 3.542 3.398

2 reads 4.922 3.943 3.658 3.470 3.324

3 reads 4.923 3.958 3.640 3.441 3.295

5 reads 4.926 3.973 3.649 3.437 3.288

Soft 4.926 3.982 3.662 3.443 3.275

Shannon-Limit 4.400 3.733 3.495 3.328 3.198

For the same average energy, the optimized rate-0.45 non-binary codes used in the MLC model

have a much lower threshold compared to the rate-0.9 codes for the SLC model. MLC Flash

degree distributions provide thresholds more than 0.5 dB lower than degree distributions for rate-

0.9 binary LDPC codes on SLC Flash with the same number of reads (i.e. three reads that would

provide hard decisions for MLC and limited soft information for SLC). The MLC approach has a

potential threshold reduction of about 1.5 dB over the SLC when both systems have access to full

soft information. This is consistent with the MI analysis of [145] showing that a spectral efficiency

of 0.9 is too high for binary PAM.

5.8 Conclusions

This work explores the benefit of using soft information in an LDPC decoder for NAND Flash

memory. Using a small amount of soft information improves the performance of LDPC codes

significantly and demonstrates a clear performance advantage over conventional BCH codes.

In order to maximize the performance benefit of the soft information, we present an approach
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Figure 5.12: Threshold Eb/N0 vs number of reads for spectral efficiency of 0.9 bits per cell.

for optimizing word-line-voltage selection so that the resulting quantization maximizes the mutual

information between the input and output of the equivalent read channel. Furthermore, only a few

additional reads can harvest most of the performance improvement available through enhanced

precision.

Furthermore, in this work, the channel information has been quantized with various levels

of precision. However, the messages passed between the variable nodes and check nodes of the

decoder have been represented as floating point numbers in our simulations. It is an interesting area

of further investigation to consider limited-precision representations within the LDPC decoder in

conjunction with the limited-precision channel information that is available in the Flash memory

setting.

We have used RCA-EXIT analysis to optimize the degree distribution of binary and non-binary

LDPC codes with Eb/N0 thresholds of about 0.1 dB away from the Shannon-Limit for multiple-
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read models. While regular codes are usually used in Flash systems due to their simple decoder

implementation, the optimized irregular binary codes have 0.4 dB lower threshold than the regular

codes across different number of reads.

We have examined and validated the use of MMI word-line voltages in threshold-based degree

distribution optimization. For the same spectral efficiency, low-rate non-binary LDPC codes for

MLC Flash systems have lower thresholds compared to high-rate LDPC codes used in SLC sys-

tems. In addition, it is easier to design low-rate (e.g. rate-0.45) than high-rate (e.g. rate-0.9) LDPC

codes.
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