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by
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ABSTRACT

For modem constellation identification it is desired to remove channel impairments
without recovering symbol phase. Previously this has been accomplished with some
success using blind equalization. This thesis investigated ways of improving
equalization to make constellation identification easier and more accurate.

Two blind equalization algorithms proposed by Godard were compared. The algorithm
whose objective function operates on the square of the equalizer output magnitude was
found superior to the algorithm which operates on simply the equalizer output
magnitude. The superior algorithm was found to operate equally well with either real or
complex equalizing filter taps. It was found that one set of equalizer parameters could
provide acceptable performance for all constellations of interest. Further study revealed
that with severe impairments, initial Hilbert filtering could not be neglected without a
considerable degradation in performance.

Even the superior blind equalization algorithm did not remove enough distortion to make
constellation identification an easy task. However, dramatic improvement for linear
impairments was obtained by performing a type of decision directed adaptive
equalization which used only the symbol magnitude in its objective function, thus still
avoiding the recovery of symbol phase.

Thesis Supervisor: Dr. Arun Netravali

Title: Adjunct Professor
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1. Introduction

This thesis addresses the problem of quickly and accurately identifying the

constellations of 2400 baud Quadrature Amplitude Modulation (QAM) modems.

Constellation identification is useful for channel utilization analysis. Bit rates can be

inferred from constellations, and particular constellations are associated with certain

higher level transmission protocols. For example, V.29 constellations are used in

transmission of Group 3 facsimile. Previous work by Benvenuto has shown how signals

can be identified as 2400 baud before attempting constellation identification. l l

Pulse shaping and channel impairments must be removed through adaptive

equalization before the modem constellation can be identified. Removing these

distortions is central to the problem identifying a modem constellation. When the

transmitted data sequence is unavailable, the first step in removing distortion is blind

equalization. This thesis studies the most widely used blind equalization algorithm,

Godard's Constant Modulus Algorithm[2 1 (CMA), to see how it can be used most

effectively for constellation identification.

In the constellation identification work of Benvenuto and Goeddel,[3 1 no further

equalization was performed before identification. However, when faced with timing

offset and severe channel impairments blind equalization alone does not remove enough

distortion to make constellation identification an easy task. This thesis concludes by

showing how constellation identification can be made easier by the addition of a

magnitude based decision directed adaptive equalizer.
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Section 2 describes 2400 baud Quadrature Amplitude Modulation. Section 3 presents

the technique of modem identification based on analysis of the received symbol

magnitudes introduced by Benvenuto and Goeddel.[3 1 Section 4 explores the theory and

mathematics of CMA. Section 5 presents the results of an empirical study of CMA and

discusses the implications for constellation identification. Section 6 introduces

magnitude based decision directed adaptive equalization and studies its performance.
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2. 2400 Baud Quadrature Amplitude Modulation

2.1 Transmission

A 2400 baud modem transmits 2400 complex symbols each second. The set of

symbols a QAM modem can transmit is known as its constellation. Figure 1 shows the

constellation for the 9600 bits/second mode of the 2400 baud CCITT V.29 modem[4 ].

0
o

0
O0 0

0
o

Imaginary Part

(0. 5)

)(0.3) 0 (3.3)

0(1.1)

o
0

)

Figure 1. Constellation for 9600 bits/second mode of the CCITT V.29 modem

The set of possible symbols or constellation points that can be transmitted will be

referred to as a}. In this case there are sixteen members in {a}. The nth transmitted

constellation point will be referred to as a(n).

Each symbol in the constellation will be modeled as equally likely. Often data is

scrambled before it is modulated to insure that each symbol is equally likely to be

transmitted. The sequence of transmitted symbols will be considered stationary. Each

symbol can be thought of as corresponding to a particular bit pattern. The number of

bits associated with each symbol is log2 the number of symbols in the constellation. In
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advanced modems, some bits are used for error checking and error recovery producing

an apparent data rate which is less than the actual number of bits being transmitted. This

procedure is called redundant coding. A common type of redundant coding is trellis

coding.

Figure 2 shows a typical transmitter for a QAM modem.[5] First the bits are coded as

symbols. Then the sequence of complex symbols is convolved with a pulse shaper which

bandlimits the sequence. The sequence is bandlimited before transmission so that it is

not degraded by the lowpass characteristic of the channel. After pulse shaping, the

sequence is modulated by a carrier frequency moving all power to positive frequencies.

eJOcarrier n

Line

DlS complex symbols a(n)

Figure 2. Quadrature Amplitude Modulation Transmitter

Since no power is present at negative frequencies, the imaginary part of the symbol

sequence can be recovered from the real part at the receiver by a Hilbert transform. [6]

Thus only the real part of the sequence needs to be transmitted. Finally the digital

sequence is converted to an analog signal and transmitted.
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2.2 Impairments

During tra smission, the signal is subjected to any of several impairments including

loss, amplitude distortion, envelope delay distortion, additive noise, nonlinear distortion,

phase jitter, frequency offset, and timing offset. Loss is a reduction in the power of the

signal. It compensated for by scaling the received signal to have the desired power.

Amplitude distortion is the deviation of the magnitude of the channel frequency

response from being flat. For simplicity, amplitude distortion is commonly measured as

being the greatest of two differences: 1) the loss at 404 Hz minus the loss at 1004 Hz and

2) the loss at 2804 Hz minus the loss at 1004 Hz.[ 71 Envelope delay distortion is the

deviation of the phase of the channel frequency response from being linear.

Numerically, delay is calculated as the negative of the derivative with respect to

frequency of the phase of the frequency response. For simplicity, envelope delay

distortion is commonly measured as the difference between the delay, as defined above,

at 2804 Hz and the delay at 1804 Hz. Both amplitude distortion and envelope delay

distortion are linear impairments and can be removed with an appropriate FIR filter.

Additive noise is power in the signal which did not intentionally originate at the

transmitter. The level of this distortion is measured by the ratio of the power of the

intended signal to the power of the unintended noise after it has been processed by a C-

message weighted filter.[7]

Nonlinear distortion occurs when the signal experiences a nonlinear operation. The

operation is modeled as the first three terms of its Taylor series expansion. For example,
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if the signal x(n) experiences nonlinear distortion, the resulting signal is modeled as

(xx(n) + x(n)2 +yx(n)3. The first order component is not measured as nonlinear

distortion. The second and third order components are measured as the differences in

power between the output signal and the respective components.

Phase jitter is concerned with the rapid deviation of phase in the time domain from its

correct value. It is measured as the peak to peak number of degrees of deviation

experienced by a 120 Hz tone. Frequency offset is a shift in the transmitted spectrum

measured in Hz. Timing offset is the difference in the clock used in the D/A converter

used by the transmitting modem and the A/D converter used by the receiving modem. It

is also measured in Hz.

2.3 Reception

In order to correctly interpret a symbol transmitted as described above, a receiver

must sample the analog input signal at the correct rate, adjust the gain to the desired

value, recover the imaginary part of the signal, remove the pulse shaping introduced at

the transmitter and distortion introduced by the channel, and demodulate the sequence

using the correct carrier frequency. Figure 3 shows a typical QAM receiver which

accomplishes these tasks.[8 1

Timing recovery compensates for timing offset, enabling the analog signal to be

sampled at the correct rate. A Hilbert transform recovers the imaginary part of the

signal. A finite impulse response filter achieved removes pulse shaping and linear

channel distortions including amplitude distortion and envelope delay distortion. This
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FIR filter is implemented in an adaptive equalizer. Finally, a phase locked loop is used to

identify the correct carrier frequency for demodulation. The phase locked loop

compensates for frequency offset. In more advanced receivers, filters in the phase locked

loop can also remove certain types of phase jitter. Additive noise and nonlinear

distortion are not explicitly removed by any component of the receiver.

To
Symbol
Icdentifier

Figure 3. A Quadrature Amplitude Modulation Receiver
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3. Constellation Identification through Symbol Magnitude Analysis

3.1 2400 Baud QAM Constellations and their Magnitudes

There are eight 2400 baud QAM constellations currently of interest for traffic

analysis. Three of these are from CCITT Recommendation V.29,[4 ] three more are from

CCITT Recommendation V.32,[9 ] and two are from CCITI Recommendation V.33.[10° ]

Figure 4 shows the three constellations used by the CCITT V.29 modem. Circles have

been drawn over the constellation points to highlight each distinct symbol magnitude.

The three constellations have one, two, and four magnitudes. The set of magnitudes

associated with a particular constellation will be referred to as lal}. The magnitudes

within each V.29 constellation are equally likely; each magnitude in a particular V.29

constellation contains the same number of symbols.

Imaginary Part Imaginary Part

(0,3) P

Real Part S

(03)

Real Part

f

a b c

Figure 4. Constellations used by the CCITT V.29 modem: (a) 9600 bits/second, (b)
7200 bits/second, and (c) 4800 bits/second.

Part \
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Figure 5 shows the three constellations used by the CCITT V.32 modem. The

constellation with three magnitudes and the constellation with five magnitudes both do

not have equally likely magnitudes. In both cases some magnitudes contain four symbols

while others contain eight.

Figure 6 shows the two constellations used by the CCITT V.33 modem. The 14,400

bits/second constellation has 16 symbol magnitudes, and the 12,000 bits/second

constellation has 9 magnitudes. The circles have been omitted from these two figures

because of their number and proximity. Neither of these constellations have equally

likely magnitudes. The 14,400 bit/second constellation has four, eight, and twelve

constellation points associated with various magnitudes. The 12,000 bits/second

constellation has four and eight constellation points associated with various magnitudes.

Figure 7 shows the seven distinct probability mass functions for the magnitudes in the

CCITT 2400 baud modem constellations shown in the previous figures. Symbol

magnitudes have been scaled to have an RMS value of one. If an incoming sequence

known to be 2400 baud QAM is properly equalized, hypothesis testing" l ] can be used to

identify which of the seven PMF's best describes the received sequence. The result of

this hypothesis test is then used along with other information such as training tones to

identify the constellation being transmitted. The V.29 and V.32 4800 bits/second

modems are differentiated by their distinct training tones. A form of hypothesis testing

which deals with nonideal equalization has been implemented by Goeddel.[3 1
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Figure 6. Constellations used by the CCITT V.33 modem: (a) 14,400 bits/second
with redundant coding and (b) 12,000 bits/second with redundant coding.

I

Figure 5. Constellations used by the CCITT V.32 modem: (a) 9600 bits/second with
redundant coding, (b) 9600 bits/second with nonredundant coding, and (c)
4800 bits/second with nonredundant coding.

Real
Part

_ - r . e Z _ Z Z Z ___-
1 - 7 ; 



I i I I I I I I I

-13-

1

Probability

0

0.5

Probability

0

I -

l
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.

Symbol Magnitudes: V.29 and V.32 4800 bits/second

i I T I l tI II
I I ~ I I I I I - -I

0 0.2 0.4 0.6 0.8 1 1.2

6

1.4 1.6
Symbol Magnitudes: V.29 7200 bits/second

Probability

0.5 -
0.25 -

0

0.25

Probability

0

0.25

Probability 0.125

0

T T I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.

Symbol Magnitudes: V.32 9600 bits/second

1'1 0 1 11 1ii I I I lI 'I0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.
Symbol Magnitudes: V.29 9600 bits/second

-1I I I r l I T TI I I I I I II
0 0.2 0.4 0.6 0.8

6

6

1 1.2 1.4 1.6
Symbol Magnitudes: V.32 9600 bits/second, redundant coding

A I Q'7CU. IOI/J-
0 125 -

Probability 0.625 -
0 t TT

I I I I

0 0.2 0.4 0.6 0.8
I I I I
1 1.2 1.4 1.6

Symbol Magnitudes: V.33 12000 bits/second, redundant coding

0.09375 -

Probabilit 0.0625 -
312 -n

(

t T r[
I I I I

) 0.2 0.4 0.6 0.8

T ITTrT T T'
I i

1 1.2
I I

1.4 1.6
Symbol Magnitudes: V.33 14400 bits/second, redundant coding

Figure 7. Seven Distinct PMF's for Transmitted Magnitudes of 2400 Baud Modems

-

-

I I I I i I I --

-· -· · -· -· --

I I



- 14-

3.2 Receiver Requirements for Symbol Magnitude Recovery

Since only the symbol magnitude is necessary for constellation identification, several

components of the QAM receiver (see Figure 3) can be neglected. Demodulation affects

only symbol phase since it consists entirely of multiplying the received symbol by a

complex number of unity magnitude. Thus, the entire demodulation procedure including

the phase locked loop can be avoided. It is convenient that demodulation can be avoided

since the carrier frequency is commonly either 1700 or 1800 Hz; this 100 Hz ambiguity

would complicate demodulation.

Timing offset causes equalizer filter taps to migrate and distorts received phase.

Fortunately, for commonly encountered levels of timing offset, the filter taps do not drift

enough to severely degrade performance. As discussed above, phase distortion does not

interfere with constellation identification. Thus, timing recovery is unnecessary for

constellation identification. The only parts of the QAM receiver which are absolutely

necessary for constellation identification are the A/D converter operating with a preset

clock, gain control, the Hilbert transform, and an equalizer. Of these, the only procedure

which is not straightforward is equalization.

Standard QAM modems initiate equalization with a training period during which the

transmitting modem sends a deterministic sequence of symbols expected by the receiving
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modem. The receiving modem calculates an error based on the distance between the

complex number it receives and the symbol it expected to receive. This error is used to

update the equalizing FIR filter.[1 2] Since the modem is unknown when performing

constellation identification, the training sequence is unavailable. Blind equalizers, first

introduced by Sato[l3 ], perform initial equalization on signals without using a training

sequence. The Sato algorithm was developed for pulse amplitude modulation signals

(PAM). For QAM modem signals, the most widely used blind equalization algorithm

was developed by Godard.[2] This algorithm seeks to minimize a mean square error

involving the magnitude of the equalizer output and a constant based on moments of the

constellation.
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4. The Constant Modulus Blind Equalization Algorithm

4.1 Derivation of the Constant Modulus Algorithm

An FIR adaptive equalizer seeks to find the FIR filter or tapped delay line which best

approximates the inverse of the pulse shaping and channel response experienced by the

signal. Let c(n) be the n N dimensional vector of filter taps, and let x(n) be the n N

dimensional vector of input samples [x(n), x(n-l), . -. x(n-N+l)]T. In general both c and x

are complex vectors. The nh equalizer output z(n) is computed as shown in Eq. (1).

z(n) = x(n)Tc(n). (1)

If the equalizer has converged to a c which is a good approximation of the inverse of

pulse shaping and channel response, z(n) will be a good approximation of the transmitted

symbol a(n). CMA updates the vector c(n) by minimizing the following objective

function:

J(n) = E[( lz(n)lP - Rp)2. (2)

The constant p is usually either 1 or 2. Larger values of p are possible but not easily

implemented. The value of p is more than simply a parameter, CMA with p = 1 and CMA

with p=2 are entirely different algorithms. The relative performance of these two

algorithms will be explored in Section 5. The value of the constant Rp is determined by

the modem constellation as discussed below. CMA adjusts c(n) in the direction opposite

the gradient of J(n). Thus the equalizer is updated by the following equation:



- 17-

c(n+1) = c(n) - aVeJ(n). (3)

The step size a (al) controls the rate of convergence and the quality of the steady

state-solution. The gradient of J(n) with respect to the complex vector c is computed in

the following way:1

Vc J(n) = VR[c] J(n) + jVhn[c] J(n). (4)

Computing Vc J(n) using Eq. (4) produces

V J(n) = 2E[(lz(n)IP - Rp) Iz(n) IP2 z(n) x(n)*]. (5)

As with all stochastic gradient algorithms, the expectation is replaced by the

instantaneous value in the update equation. CMA can adapt c(n) so that the expected

value of the update is zero. However, if there is more than one magnitude in the

constellation, it cannot adapt c(n) so that the instantaneous value of the update is zero.

Thus CMA will wander about the correct c in the steady state without ever completely

achieving it. The smaller the step size a, the more negligible this wandering will be.

However a large step size speeds initial convergence. For many applications this

dilemma could be addressed with a dynamically decreasing step size as suggested by

Harris.[ 2] Unfortunately, in the presence of uncorrected timing offset, a large step size is

necessary even after initial convergence to allow the equalizing filter to adjust to the

1. It should be noted that a complex derivative with respect to each complex component of c(n) is not
being taken. In fact this complex derivative does not exist in the Cauchy-Riemann sense.[11
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migrating position of the symbol. Even if CMA were to achieve the optimal c during a

given iteration, timing offset will change the symbol alignment so that eventually a

shifted version of the previously optimal filter will be required. The step size must

remain large enough to perform this shifting operation.

Rp should be chosen so that the gradient of J(n) with respect to the vector c is zero

when c is the perfect inverse of the channel filter. When this c is the perfect inverse of

the channel response each received symbol z(n) is precisely the transmitted symbol a(n).

Substituting a(n) for z(n) and setting the gradient to zero results in the following value for

%:

Rp - E[la(n) 12 J (6)
E[la(n)IP]

Rp is dependent only on moments of I al. Thus it can be computed from the modem

constellation.

The minimum value of J(n) for a particular constellation can be computed from Eq.

(2) by substituting a(n) for z(n) and multiplying out the square. This results in the

following equation:

J(n)m = (E[ I a(n) 2] - 2RpE[ I a(n) I P + R 2). (7)

Table 1 shows the values of Rp and J(n)n, for both p= 1 and p= 2 for all eight of the

constellations being studied. In each case, the constellation has been scaled so that the

root mean square value of the symbol magnitudes is one. Note that J(n),, is nonzero for
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all constellations with more than one magnitude. Notice also that while the values of Rp

differ for various constellations, they are relatively close.

TABLE 1. Values of Rp and J(n)mln computed from constellations

Type Number of RI J(n)mm R2 J(n),

Magnitudes p = 1 p = 2

V.29 1 1.000 0.000 1.000 0.000
V.32 1 1.000 0.000 1.000 0.000
V.29 2 1.063 0.032 1.405 0.142

V.32 3 1.056 0.029 1.320 0.106
V.29 4 1.076 0.040 1.418 0.148
V.32 5 1.057 0.029 1.310 0.102
V.33 9 1.065 0.033 1.381 0.132
V.33 16 1.061 0.032 1.343 0.115

If CMA is used with an incorrect value of Rp, c(n) will still converge to a filter that

correctly recovers the modem constellation within a scale factor, if the value of Rp is not

too far from the correct value. This is shown empirically in Section 5. Thus, to the

extent that a scaled output is acceptable, it is not imperative that RP be exactly the value

computed from the constellation. If the value Rp' = qRp is used, the resulting output will

be the transmitted symbols scaled by qP.

4.2 Solutions of CMA with p=2 for One and Two Real Taps

Discussions of convergence properties of CMA assuming an infinite tap FIR filter

appear in papers by several authors including Godard and Foschini.[3]
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In this subsection the solutions of CMA will be derived for two cases involving

perfectly transmitted symbols. The first case is an equalizer with one real tap. The

second case is an equalizer with two real taps. These two caser are gross simplifications

of reality, since equalizers often have sixty or more taps. However, these cases do

provide some understanding of how CMA behaves. For these two cases it is shown that

that solutions occur in expected places. Also, a known restriction on the moments of

constellation is confirmed which must hold if CMA is to perform well. Finally, some

insight into CMA behavior is provided by examining the error surface which results from

the analysis with two real taps.

First, the case of one real tap will be considered. With p=2, the equalizing filter c

equal to the scalar k, and each received symbol z(n) precisely equal to the transmitted

symbol a(n), Eq. (2) becomes:

J = k4E[Ia(n)14] - 2R 2k2E[Ia(n) 12 + R2 . (8)

Setting the first derivative with respect to k of Eq. (8) equal to zero and solving yields

k _ I a(n) 01 O (9)
E[ I a(n) 14]

The second derivative with respect to k of Eq. (8) identifies the nonzero solutions as

minimums of the objective function J(n) and the zero solution as a maximum. If R2 has

the value given in Eq. (6), the nonzero solutions are equal to ±1. This is exactly what is

expected of a one tap equalizer filter applied to a distortion-free signal.
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Next, the case when cT = [kl, k2] will be considered. Both taps are real and the delay

separating the two taps is equal to the time interval between two adjacent symbols. With

p= 2 and perfect transmission, Eq. (2) can be written as follows:

J = 1 (k + k2)E[ a(n) 4] + 2kL2k2E2 [ a(n)12] _ 2 + k2)R2 E[la(n) 12 + R. (10)

It is assumed in Eq. (10) that a(n) and a(n-l) are independent, identically distributed, and

have first and second moments equal to zero.2 Setting the partial derivatives of Eq. (10)

with respect to k and k2 equal to zero and solving produces nine critical points.

Substituting Eq. (6) for R2 yields the following values for the critical points:

(kk 2) =(0,0), (0, 1), (1,0), and k, =k 2 E[a(n) + 22a(n) (11)

The expected minimums for a two tap equalizing filter receiving perfectly transmitted

data are (0,+ 1) and (±1,0). However, the second order partial derivatives of Eq. (10)

reveal that these four points will be minimums only when the following condition is

satisfied:

2E2[1a(n)12 ] > E[lIa(n)14 ]. (12)

This condition is satisfied by all modem constellations of interest. This can be confirmed

by consulting the values for R2 listed in Table 1. When E[ I a(n) 12] is one, R2 is identically

E[la(n)14]. Thus, R2 <2 in Table 1 satisfies Eq. (12). Godard derives Eq. (12) as a general

2. It might seem odd that a second moment is equal to zero. Recall that (a(n)) is a set of complex
numbers with symmetry about the origin.
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condition which the constellation must satisfy if CMA is to have an absolute minimum

with zero intersymbol interference.

When Eq. (12) is satisfied, (0, ±+) and (±1, 0) are the only minimums. The point (0, 0) is

a local maximum, and the other four critical points are saddle points. The error surface

resembles an orange juicer with its center at the origin. A trough running around the

local maximum at the origin goes through the four absolute minimums and the four

saddle points. Outside of the trough, the error monotonically increases with distance

from the origin. The equalizer filter will take the most direct path from its initial

condition to the trough. It will then move along the trough until it reaches one of the four

minimums.

4.3 Equivalence of Baseband and Passband Implementations of CMA

Figure 8 shows two alternative placements of the CMA blind equalizer. B and cp are

the FIR filters produced by the baseband and passband structures respectively, and co is

the carrier frequency. These two structures perform exactly the same equalization. The

baseband structure will produce an FIR filter which is identical to the FIR filter produced

by the passband structure, except that it is modulated down by the carrier frequency.

Since the incoming sequence is also modulated down by the carrier, the final output

produced by these two structures is identical.
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Baseband Passband

p-jocn ,-jcocn

incoming incoming
sequence y(n) sequence y(n)

a b

Figure8. Baseband (a) and Passband (b) implementations of CMA. A/D
conversion, gain control, and imaginary part recovery have already been
performed on the incoming sequence y(n).

Passband and baseband equivalence will be shown through the following inductive

argument. If the current filters are related by modulation, then the updates will also be

related by modulation. Thus each succeeding pair of filters will also be related by

modulation. The relationship between the passband and baseband filters can be

expressed in the following way:

cp(n) = McB(n), (13)

where M is the following diagonal matrix:

r-

(14)

·-
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N is the number of elements in the vector c(n). The update for the passband structure can

be written directly from Eq. (5) by replacing x(n) with y(n) and z(n) with y(n)Tcp(n).

V. Jp(n) = E[(I y(n)Tcp(n) I - Rp) Iy(n)Tcp(n) Ip- 2 y(n)Tcp(n) y(n)*]. (15)

The baseband update equation follows from Eq. (5) as well. Replacing x(n) with

y(n)TMe , replacing z(n) with ej~y(n)TMcB(n), and simplifying produces:

Vc JB(n) = E[(I y(n)TMcB(n) I p - Rp) I y(n)TMCB(n) I P- (ny(n)TMcB (n)T*M]. (16)

Replacing McB(n) with cp(n) and recognizing M' as M -1 yields:

V. JB(n) = M-E[( I y(n)Tcp(n) I P - Rp) Iy(n)Tcp(n) I1 2 y(n)Tcp(n) y(n)*]. (17)

Comparing Eq. (17) with Eq. (15) reveals

V JB(n) = M-Vc Jp(n). (18)

Equivalently:

Vc Jp(n) = MVcJB(n). (19)

Thus, if cp is initialized as MCB, that relationship will be maintained exactly with each

update of the two structures. This exact relationship was observed in C implementations

of the two structures.

The exact equivalence of passband and baseband CMA structures is useful because it

allows many results for passband structures to be applied to baseband structures without

further experiments. Baseband structures are often used for constellation identification.
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Identification is performed on digital data that has been sampled at 8 kHz. In order for

the sampling rate to be an integer multiple of the symbol rate it is necessary to upsample

to 9.6 kHz. Upsampling involves a lowpass filter which can be used also to recover the

imaginary part of the signal. Demodulation followed by lowpass filtering is equivalent to

Hilbert filtering followed by demodulation. Thus, to avoid unnecessary Hilbert filtering,

the signal is demodulated to baseband before the CMA equalizer.

If the signal is equalized using baseband CMA, half as many taps are required per

symbol to properly represent the frequency domain in the Nyquist sense because the

bandwith of the signal has been halved. However, the following paragraph will show

that passband CMA can use a real cp. Eq. (13) shows that CB is related to cp by the

complex diagonal matrix M-1. Thus, if cp is real, B will in general be complex. As a

result there is a conservation of filter resolution. While cB may contain half the taps of cp,

they must be complex and thus contain twice as much information.

The passband channel operates on a real signal and its output is a real signal. Any

attempt to recover the original real passband signal from the impaired real signal should

only require a real filter. Thus cp can be real. The adequacy of a real filter for passband

equalization was first observed by Treichler and Larimore.[4 1 Performance comparisons

will be made in Section 5 for passband CMA with a real equalizing filter and with a

complex equalizing filter. In these tests, cp is initialized as a real filter. It is maintained

as a real filter by neglecting the imaginary part of Eq. (5).
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If Cp is allowed to be complex, it can recover even the Hilbert filter. Thus, the Hilbert

filter in Figure 3 might be neglected. The effect on performance of neglecting the Hilbert

filter will be explored empirically in Section 5.
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5. Empirical Study of CMA

This section presents the results of an empirical study of CMA. Subsection 5.1

discusses the data used for testing. Subsection 5.2 explains methods of comparing

performance. Subsection 5.3 discusses equalizer filter length and initialization.

Subsection 5.4 describes how unknown symbol position affected the testing procedure.

Subsection 5.5 presents the results of tests comparing the following four implementations

of CMA: 1) p = 2 with a preceding Hilbert filter and a complex equalizing filter, 2) p= 2

with a preceding Hilbert filter and a real equalizing filter, 3) p= 2 without a preceding

Hilbert filter, but with a complex equalizing filter, and 4) p= 1 with a preceding Hilbert

filter and complex equalizing filter. Subsection 5.6 demonstrates the feasibility of using

one blind equalizer to receive all seven of the constellation magnitude distributions

shown in Figure 7.

5.1 Modem Signals Used in Tests

Only the sixteen point V.29 constellation transmitted by the Codex LSI 96/V.29

modem was used in for the tests described in subsection 5.5. All nine signals listed in

Table 2 were used for the tests described in subsection 5.6.

Eight different channel conditions were used in the tests presented in this section.

One test channel had no impairments. Six of the channels had only one impairment but

at a level which represented the 100"h percentile of domestic telephone connections. An

impairment level is said to represent a certain percentile if that percentage of domestic

telephone connections had the impairment at a less severe level in a traffic quality

survey.[l l A channel with impairments at a level more severe than the 100"' pecentile is
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TABLE 2. Modems Used to Generate Input Signals

Type Constellation Number of
Size Magnitudes Modem

V.29 4 1 AT&T Dataphone I
V.32 4 1 Concord Data Systems V.32
V.29 8 2 AT&T Dataphone I
V.32 16 3 Concord Data Systems V.32
V.29 16 4 Codex LSI96/V.29

AT&T Dataphone I
V.32 32 5 Concord Data Systems V.32
V.33 64 9 Codex Model 2660
V.33 128 16 Codex Model 2660

rare. It is reasonable to consider the 10th percentile level as representative of a worst

case.

The six impairments used in 100ho percentile channels were additive noise, phase

jitter, envelope delay distortion, amplitude distortion, nonlinear distortion, and frequency

offset. The eighth channel had all six impairments at the 85' percentile level. The levels

of severity which represent the O10o percentile channel[l] and the 85' percentile channel[2 ]

are listed in Table 3.

Random data sequences were generated by a Firebird 2000 Data Error Analyzer.

Impairments were added to the modem signals using an AEA Model 1A Telephone

Channel Simulator. The impaired signals were sampled at 8000 Hz and encoded with i-

law PCM. Interpolation and decimation were used to change the sampling rate from
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TABLE 3. 85% and 100% Levels for Six Impairments

Impairment 851 Percentile 100Ch Percentile
Additive Noise 30 dB 25 dB
Phase Jitter ±50 +100

Envelope Delay Distortion 1535 jseconds 2500 pseconds
Amplitude Distortion 6 dB 10 dB

Nonlinear Distortion 2nd order -46 dB -27 dB
3"d order -44 dB -32 dB

Frequency Offset (no offset) 5 HZ

8000 to 9600 Hz. For successful equalization the sampling rate should be an integer

multiple of the symbol rate which is 2400 Hz. The signals were originally sampled at

8000 Hz because 8000 Hz digital sequences ill often be encountered in the

constellation identification application.

The sequence of real numbers resulting from the sampling rate change was then

normalized to have a root mean square value of 0.5. The resulting complex sequence

recovered by a Hilbert filter preceding the equalizer has an RMS value of 0.707. The

values of Rp which were used in the equalizer tests were calculated for complex signals

with an RMS value of 1. These tests confirm that, as noted in Section 4, it is not critical

that R be exactly the value computed from the constellation. CMA will still converge

producing output symbols which have an RMS value of 1.

For tests where the real sequence was processed by a Hilbert filter before the CMA

equalizer, a 255 tap Hilbert filter was used. This filter was generated by truncating the
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ideal Hilbert filter. Performance was close to that of an ideal Hilbert filter. Truncation

introduces a Gibbs phenomenon at the discontinuities of the filter. However, these

discontinuities occur at zero Hz and +4800 Hz where modem signals have no power.

Appendix A shows a plot of the magnitude and phase of the Hilbert filter.

5.2 Measuring Performance

The quality of a receiver is usually measured by the percentage of bits received

correctly. However, this measure could not be used here since demodulation is not being

performed. The equalizer output values have arbitrary phase and cannot be decoded.

Since only the symbol magnitudes will ultimately be used to identify the constellation,

performance will be measured by how well the received magnitudes correspond to the

magnitudes in the signal constellation. Specifically, relative quality was compared using

the Euclidean distance of a received symbol magnitude from the closest magnitude

belonging to the modem's constellation. A smaller distance indicates better equalization.

Since distance is nonnegative, a mean and variance of zero indicates perfect equalization.

The mean distance from closest magnitude was estimated by averaging 200

consecutive distances. To study this estimator, the sequence of distances is modeled as

stationary and uniformly distributed. For a uniform distribution with a minimum of zero,

the standard deviation is about 58% of the value of the mean. If the standard deviation of

one distance is 58% of the mean, the standard deviation of this estimator will be about

4% of the mean. Making central limit theorem approximations, this estimator will be

within 8% of the actual mean distance with 95% confidence. This estimator will be



- 31 -

referred to as the average error.

The average error discussed above is used to assess performance in terms of

convergence time and steady state solution. Convergence time is computed as the

number of 200 symbol windows up to and including the first window which has an

average error below a threshold. Steady state performance is simply measured as the

lowest observed value of the 200 symbol average error.

Figure 9 illustrates how the 200 symbol average error describes convergence

behavior. The top graph shows the value of every tenth equalizer output magnitude.

The two horizontal lines show the locations of the two magnitudes of the transmitted

symbols as given in Table 1. The bottom graph shows the average error plotted against

symbol interval. As discussed, the average error is calculated every 200 symbol

intervals. It is clear that as the average error decreases the received symbol magnitudes

become more aligned with the two expected symbol magnitudes. Two separate bands of

magnitudes appear after 5400 symbol intervals or 2.25 seconds. The average error

crosses 0.08 at this time. For this V.29 constellation, 0.08 is the threshold used to

measure CMA convergence time.

1. These graphs describe performance of p = 2 CMA with a real filter operating on data which has been
processed by a Hilbert filter. For this test, a CCrIT V.29 modem was subjected to all six impairments
in Table 3 at the 85% level. The particular run shown above was obtained by using a step size of
0.0015 and starting with an initial offset of 6002 symbols. For this run, convergence time using a
threshold of 0.080 was 27 windows or 5400 samples. The minimum observed average error was
0.048308 which occurred at window 72 (not shown) or at 14400 samples.
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For the results shown in Figure 9, the transmitted magnitudes were far enough apart

to insure that if the average error is less than 0.08, the two magnitude bands are

completely separated. For the four most complex constellations being studied, some of

the magnitudes are so closely spaced that the magnitude bands overlap even for values of

the average error less than 0.08. When magnitude bands overlap, each overlapping

v
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magnitude is assumed to have been transmitted as the closest magnitude from the set

(lal) even if it is not the actual transmitted magnitude. This causes the observed average

error to be smaller than it would be if the bands were completely separated. The average

error that would be observed if the magnitude bands were completely separated will be

referred to as the ideal average error.

Thresholds for convergence time were computed as the observed average error that

would result from an ideal average error of 0.08. To carry out this computation it is

necessary to assume a distribution of the magnitudes. For simplicity, received

magnitudes were modeled as being uniformly distributed about each transmitted

magnitude in the set (lal). Table 4 lists the resulting thresholds.

TABLE 4. Observed Average Error Resulting from an Ideal Average Error of 0.08

Type Number of Average
Magnitudes Error

V.29 1 0.080
V.32 1 0.080
V.29 2 0.080
V.32 3 0.080
V.29 4 0.075
V.32 5 0.064
V.33 9 0.045
V.33 16 0.026

These thresholds cannot be assumed to be exactly equivalent. Thus, convergence

times should not be compared for different constellations. The motivation for calculating
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these thresholds was to obtain values which would allow a meaningful exploration of the

effect of step size on convergence time.

As the difference between observed and ideal average error increases, the resolution

of the average error as an indicator of the quality of equalization decreases. Figure 10

shows plots of observed average error versus ideal average error for the six transmitted

magnitude distributions shown in Figure 7 which have more than one magnitude. To

compute these curves, the same model was used as for Table 4; received magnitudes

were modeled as being uniformly distributed about transmitted magnitudes. As the

number of transmitted magnitudes in ( lal) increases, the observed average error deviates

from ideal for smaller ideal average errors. This behavior is easily understood since as

magnitudes become more closely spaced, the width of magnitude bands for which

overlapping will occur becomes smaller. For the constellations with nine and sixteen

transmitted magnitudes, the curve becomes almost flat after the ideal average error is

greater than 0.04 and 0.02 respectively. When the curve is flat, the average error

provides little information about the quality of the solution. The ramifications of this will

be discussed in subsection 5.6.

5.3 Equalizer Filter Length and Initialization

Modem signals characteristically have no power beyond 3300 Hz. Thus the

sampling rate of 9600 Hz is beyond what is required by the Nyquist sampling theorem.

This sampling rate is four times the symbol rate. Hence, there are four filter taps per

symbol. An equalizing filter with 97 taps spanning 24 symbol periods was used in all
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tests. This length was chosen because it was found satisfactory in previous work by

Jablon.

Foschini states that CMA will converge regardless of initialization when it is

operating on the full complex data sequence. In this thesis, whenever CMA was

presented with the full complex data sequence, the center tap was initialized to 1 and all

other taps were set to zero. This would be the correct equalizing filter if there were no

impairments, no pulse shaping, the input signal had the correct gain, and the symbol

timing was correct.

When the Hilbert filter is neglected and CMA is operating on only the real part of the

data sequence, the above initialization is not sufficient. Examining Eq. (5) reveals that if

the input vector x(n) is real and the current equalizing filter c(n) is real, the equalizer

update will also be real. Thus if c(n) is initialized to be a real filter, it will remain so.

This is not satisfactory. The desired output is a complex sequence of symbols, and the

only way to obtain a complex output sequence from a real input sequence is with a

complex filter. As used by Jablon, a better initialization is a crude approximation of a

Hilbert filter for the imaginary taps and an impulse for the real taps. In this thesis, when

the Hilbert filter is neglected, the equalizer filter is initialized as a crude Hilbert filter by

setting the center tap to 1 and the adjacent delayed and advanced taps to -0.64j and 0.64j

respectively.
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5.4 Effect of Symbol Position Ambiguity on Convergence

As mentioned above, there are four samples associated with each symbol. When the

center tap is initialized to 1 and all other taps are set to zero, one of the four samples is

effectively singled out as the sample that will be evaluated as the symbol. As shown in

Figure 11, convergence time is affected by which of the four samples is chosen to be

initially evaluated as the symbol.
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Figure 11 shows the convergence time of 28 runs of CMA using the same step size and

input file.2 Four consecutive sample positions were studied at seven different locations
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each separated by 200 samples. Convergence time was much longer for the fourth

position than for the other three. Thus, convergence time clearly is affected by which

sample is evaluated as the symbol. In many of the tests conducted for this research,

convergence time was observed to depend on initial sample position.

This phenomenon is a natural result of the intersymbol interference introduced by

pulse shaping. The Nyquist pulse is designed to introduce no intersymbol interference at

the center of symbol intervals, but considerable intersymbol interference is introduced at

the edge of symbol intervals. It is not known by the receiver which of the four samples is

closest to the center of the symbol interval.

To help compensate for this problem, initializing the equalizer with two adjacent

nonzero taps was explored. In some cases where a particularly bad initial sample would

have been chosen, convergence time was reduced by as much as one half. However, in

other cases performance was degraded. For the tests done in this section, the equalizers

were initialized as mentioned in the previous subsection. However, since performance

was recognized as dependent on the specific sample that was chosen as the symbol, a test

of performance with CMA beginning at a particular sample was not done without also

testing performance at three adjacent samples.

2. This graph describes performance of CMA with a real filter operating on data which has been
processed by a Hilbert filter. The data file used was V29.4.4.hcn which was generated by a CODEX
CCITT V.29 modem subjected to 100% envelope delay distortion. The step size used was 0.0024.
Convergence time was measured using a threshold of 0.075.
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5.5 CMA Structure Comparisons

The Codex LSI 96/V.29 modem transmitting a 16 point constellation under each of

the eight channels discussed in Subsection 5.1 was used to compare performance of four

implementations of CMA. The four implementations studied were 1) p= 2 with a

complex equalizing filter and a preceding Hilbert filter, 2) p= 2 with a real equalizing

filter and a preceding Hilbert filter, 3) p= 2 with a complex equalizing filter but no

preceding Hilbert filter, and 4) p= 1 with a complex equalizing filter and preceding

Hilbert filter.

The various structures and impairments were studied by performing equalization at

sixty different initial sample positions at each of several step sizes. The sixty initial

sample positions comprised four adjacent initial sample positions at 15 different

locations sequentially separated by 2000 samples. There is a small sampling rate

discrepancy introduced by nonidentical clocks used by the modems and the A/D

converter. This discrepancy was utilized to insure that a range of initial sample

alignments were studied by sequentially spacing the starting sample positions instead of

randomly choosing them.

A mean minimum average error was obtained from each set of sixty minimum

average errors. Mean convergence times were calculated in the same way. The two

structures using p = 2 with a preceding Hilbert filter behaved almost identically in terms

of mean minimum average error and mean convergence time. The structure which

neglects the Hilbert filter and the structure which used p= 1 both showed poorer steady-

state performance than the structures which used p= 2 with a preceding Hilbert filter.
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Figures 12-15 plot mean minimum average error as a function of step size for the four

structures being studied. Figure 12 shows the results for p =2 with a preceding Hilbert

filter and a complex equalizer filter. Figure 13 shows the results for p=2 with a

preceding Hilbert filter and a real equalizing filter. Performance is almost identical in

these two graphs. As suggested in Section 4, when performing equalization in the

passband, imaginary taps are completely unnecessary.

However, when complex taps are used, the imaginary taps do not remain low in

power compared to the real taps. Since CMA is oblivious to output phase, an optimal

equalizing filter multiplied by any complex constant of unity magnitude will also be

optimal by the CMA criterion. CMA naturally adapts to a solution which uses all

available taps instead of a solution which uses only half of them. The complex equalizer

effectively uses twice as many real taps as the real equalizer. This explains why

performance is identical when the step size used by the complex equalizer is half the step

size used by the real equalizer.

As listed in Table 4, the threshold used to measure convergence time for the sixteen

point V.29 constellation is 0.075. In both Figures 12 and 13, for step sizes near the center

of the graph, the mean minimum average error is below 0.075 for all channels except for

100h percentile nonlinear distortion. A linear equalizer cannot be expected to compensate

for severe nonlinearities. Severe nonlinear distortion remains an impediment to

constellation identification. However, performance was acceptable for the 85'h percentile

channel which contained nonlinear distortion, as well as the other five impairments being
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studied, at the 85h percentile level. Actually, the 85" percentile channel contains no

frequency offset since the 85h percentile level of this impairment is negligible.

Most of the curves in Figures 12 and 13 show mean minimum average error

gradually increasing with step size. As step size increases, the adaptation resolution of

the equalizer filter in the steady state will degrade. This results in a higher average error

in the steady state. At some point, smaller step sizes will not improve the resolution of

the filter. In fact, convergence will be slowed to the point that the steady state solution

begins to degrade because dynamic behavior such as timing offset cannot be tracked.

These points can be seen in Figures 12 and 13. For different impairments, the step size

yielding the smallest mean minimum average error can be different.

Figure 14 presents the results for p= 2 without a preceding Hilbert filter using a

complex equalizer. For each impairment, the mean minimum average error is

consistently higher than in the two previous figures. Performance was especially poor for

the 100 percentile envelope delay distortion, nonlinear distortion, and amplitude

distortion files, as well as the 85 percentile channel. For these cases the minimum

average error was always higher than the 0.075 level.

From a computational perspective, it is not clear that neglecting the preceding Hilbert

filter would be advantageous even if it were to perform as well as a receiver with the

Hilbert filter. When the Hilbert filter is neglected, CMA must use complex taps. This

replaces most of the computation avoided by neglecting the Hilbert filter. The Hilbert
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filter does introduce additional delay. However, this delay (which is on the order of 10

msec), is negligible for the constellation identification application.

Figure 15 plots minimum average error versus step size for the fourth structure

studied: p= 1 with a complex equalizing filter and a preceding Hilbert filter. This

structure did not perform as well as the first two structures discussed. Three channels

never achieved a mean minimum average error of 0.075: 100h percentile envelope delay

distortion, 100h percentile amplitude distortion, and the 85
h percentile channel.

From Figures 12-15 it is clear that p= 2 with a preceding Hilbert filter is superior to

alternatives for the conditions studied. Convergence time was studied for seven of the

eight channels to explore whether the real filter adapted more or less quickly than the

complex filter. Nonlinear distortion was not studied for convergence time because it did

not consistently achieve a minimum average error below the threshold used to measure

convergence time (0.075). Figures 16 and 17 plot mean convergence time versus step

size for a complex equalizing filter and a real equalizing filter respectively. Once again

there is almost no difference in performance between a real and a complex equalizer

filter.

Different channels had mean minimum convergence times at different step sizes.

However, in both figures there is a step size for which all channels had a reasonably

small mean convergence time of around 6000 samples. Increasing step size decreases

convergence time until the step size is large enough that the individual filter updates are
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weighted more heavily than their accuracy dictates. For the case of additive noise it is

not surprising that the decrease in convergence occurs at a smaller step size and more

abruptly than with the other impairments. Additive noise is not removed as easily by a

linear equalizer filter because it is not a linear impairment.

Figures 10-17 all indicate similar performance for the 100 percentile channels with

impairments of frequency offset and phase jitter, and the clear channel. The CMA

objective function given in Eq. (2) contains only the magnitude of the output symbol.

The impairments of frequency offset and phase jitter only affect the symbol phase. Thus

these impairments are invisible to CMA.
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Some insight into the differences between the three structures employing p = 2 CMA

can be gained by exploring the frequency domain representation of the equalizer filters

obtained by CMA after the convergence threshold of 0.075 has been crossed. Figure 18

shows the frequency domain representation
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of the equalizer filter obtained after 6000 symbols processing a signal transmitted over a

clear channel using CMA without a preceding Hilbert filter. The magnitude response
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was set to zero in the region of severe attenuation because phase becomes erratic as

magnitude approaches zero.

The observed gain of 2.8 in the passband of the filter is as expected. The input signal

had an RMS value of .5 and thus a power of 0.25. Half of this power was removed by

the equalizing filter, leaving 0.125. To increase the power to 1 a gain of about 2.8 is

necessary. 1

Figures 19 and 20 present the frequency domain representation of the equalizer filter

obtained after 6000 symbols of processing by CMA using complex taps and real taps

respectively. In both cases a preceding Hilbert filter was used. Both cases resulted from

processing the same clear channel data file processed for Figure 18. The observed

passband gain of 1.4 is expected since the input signal after Hilbert filtering has a power

of 0.5 and the output signal needs to have a power of one to agree with the value chosen

for R2

Figure 19 shows that when the complex tap filter is used with a preceding Hilbert

filter, the magnitude and phase responses for negative frequencies remain virtually the

same as the unity magnitude response and flat phase response of the initial tap setting.

1. Figures 18 19, and 20 all resulted from processing a sampled 16 point V.29 constellation transmitted
over a clear channel by the Codex LSI 96/V.29 modem used in earlier tests. In all three cases
processing started with the first sample in the data file. Figure 18 used a step size of 0.0015 with
complex taps but no Hilbert filter. The average error computed for the window following symbol 6000
was 0.0738. Figure 19 resulted from using a step size of 0.0015 with complex taps and a preceding
Hilbert filter. The average error computed for the window following symbol 6000 was 0.0750. Figure
20 resulted from using a step size of 0.003 with real taps and a preceding Hilbert filter. The average
error calculated for the window following symbol 6000 was 0.074 1.
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The Hilbert filter removed the input signal power for negative frequencies. Thus, there

was no energy present to drive filter adaptation at negative frequencies. Figure 20

demonstrates the conjugate symmetry all real filters must have. The response shown in

Figure 19 and the response shown in Figure 20 are similar for positive frequencies. This

is consistent with the similar convergence behavior displayed by p = 2 CMA with real or

complex taps.
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5.6 CMA Parameters and Constellation Type

CMA could be used alone in a constellation identification scheme, or performance

might be improved by eventually switching to magnitude decision direction as discussed

in the following section. In either case, computational complexity would be minimized if

one blind equalizer could remove channel impairments regardless of the constellation

being transmitted. One set of CMA parameters must work for all constellations for this

to be the case.

The two parameters of CMA which might depend on the constellation are R2 and the

adaptation step size a These parameters were introduced in Section 4. As shown in

Table 2, the values of R2 vary from 1.000 to 1.418 when the constellation magnitudes are

normalized to have an RMS value of one. Within this range of values, using one value of

R2 for all the constellations will merely cause the outputs for various constellations to be

scaled. The previous study showed empirically that p=2 CMA can converge when faced

with an input signal requiring a gain of 1.4. The scaling required to allow the use of one

R2 for all constellations will be less than 1.4. Constellation dependent scaling will not

interfere with identification since the scale factor is easily calculated by the following

equation:

scale factor = (20)

A study was performed for p=2 CMA with real taps and a preceding Hilbert filter

which revealed that one step size yields acceptable performance with respect to

convergence time and minimum average error for all constellations being studied. This
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study assessed mean minimum average error and mean convergence time as a function of

step size for the nine signals listed in Table 2 transmitting over the channel containing all

six impairments at the 85' percentile level. This channel was used because it was found

in the previous subsection (see Figure 16) to be the most sensitive to step size of the

seven channels which CMA successfully received. For each constellation at each step

size, equalization was performed at twenty different sample positions comprising four

adjacent sample positions at five different locations. The five locations were sequentially

spaced by 6000 samples.

Figure 21 shows mean minimum average error as a function of step size for eight of

nine the signals studied. For a step size of 0.003, all eight signals achieved a mean

minimum average error which is below their respective thresholds used for measuring

convergence as listed in Table 4. However, this was not always the best possible step

size.

The curves associated with V.33, nine and sixteen magnitude constellations, are flat.

The nine magnitude constellation achieved a mean minimum average error of about 0.04

regardless of step size, and the sixteen magnitude constellation achieved a mean

minimum average error of about 0.02 regardless of step size. Referring back to Figure 10

reveals that the values of mean minimum average error achieved by these two

constellations are in the flat regions of their respective observed average error versus

ideal average error curves. Unfortunately, these two constellations have magnitudes so

closely spaced that the average error criterion is useless as a measure of ultimate
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equalization quality.

The V.32 and V.29 single magnitude constellations are essentially flat for step sizes

above 0.002. For these two cases the average error is an accurate measure of ultimate

equalization quality. The flatness of the curves indicates the robust performance of CMA

when it is confronted with a single magnitude constellation. As will be discussed in the
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next section, this robust performance occurs because CMA operating on one magnitude

is actually magnitude decision directed equalization.

The two, three, and five magnitude constellations performed as theory would predict.

After the step size is large enough to permit convergence, mean minimum average error

increases linearly with step size.

The smallest mean minimum average error for the four magnitude V.29 constellation

transmitted by the Codex LSI 96/V.29 modem is noticeably higher than the others shown

in Figure 21. To explore the cause of this performance, the AT&T Dataphone I modem

was also tested using the V.29 four magnitude constellation. Figure 22 shows that the

higher minimum mean average error was not due to the constellation but rather the

particular modem used for transmission. The Dataphone I performance using the V.29

four magnitude constellation was similar to the performance of the two and three

magnitude constellations studied in Figure 21. It should be noted that the Codex LSI

96/V.29 was used for the structure comparisons performed in the previous subsection.

This fact combined with the severe impairment levels studied magnifies the worst case

nature of these comparisons.

Figure 23 shows mean convergence time as a function of step size for all nine of the

signals studied in the previous two figures. The thresholds listed in Table 4 were used to

measure convergence time in every case except the V.33 nine magnitude case. This

threshold was lowered from 0.045 to 0.040 because the 0.045 threshold was too quickly

achieved for reasons evident from Figure 10. Mean convergence time is less than 6500
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Figure 22. Mean Minimum Average Error vs. Step Size for the Codex LSI 96/V.29

and AT&T Dataphone I transmitting a 16 point V.29 constellation over
the 85% channel. Curves are labeled as in the previous figure.

symbols for all signals for two step sizes: 0.003 and 0.0035. Fortunately, minimum mean

average error was also acceptable for all signals at these step sizes. Thus one blind

equalizer with one step size can perform equalization for all the constellations being

studied. However, results for the V.33 nine and sixteen magnitude signals are not

conclusive since the average error criterion is not effective for these two cases.
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6. Magnitude Based Decision Direction

6.1 Derivation

The most effective way to remove linear impairments from a QAM data sequence is

data directed adaptive equalization. It employs the following objective function:

JDATA = E[ I z(n) - T(z(n)) 12]. (21)

The function T(z(n)) produces the transmitted symbol a(n) which was distorted by

transmission and then equalized to produce z(n). For actual data transmission, T(z(n)) is

not an available function. In fact, deriving a(n) from z(n) is exactly what the receiver is

trying to do. Modems use data directed adaptive equalization during start-up by

transmitting and receiving previously agreed upon data sequences.

Decision directed adaptive equalization is used by modems to update the equalizer

filter when unknown data is being received. Decision directed adaptive equalization uses

the following objective function:

JDEC = E[ I z(n) - CL(z(n)) 12]. (22)

The function CL(z(n)) maps the received value z(n) to the closest constellation symbol in

the set (a). Unlike T(z(n)), CL(z(n)) can always be computed by the receiver.

Whenever the closest constellation point is also the transmitted constellation point,

CL(z(n)) = T(z(n)) and the updates produced by data directed and decision directed adaptive

equalization are exactly the same. As long as CL(z(n)) = T(z(n)) most of the time, decision

directed adaptive equalization performs well. However, if decision directed adaptive
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equalization is attempted when the level of distortion prevents CL(z(n)) from usually

being equal to T(z(n)), performance will be poor. For this reason, decision directed

equalization is only used after some initial equalization has been performed by either

data directed equalization or blind equalization.

Decision directed adaptive equalization as discussed above requires recovery of the

transmitted phase. This would require timing recovery and carrier recovery which have

been avoided for modem identification so far. To allow better equalization than CMA

can acheive by itself, without requiring carrier and timing recovery, the following

objective function was explored:

JMDD = E[(I z(n) I - M(z(n)) )2]. (23)

The equalizer resulting from this objective function will be referred to as the magnitude

decision directed (MDD) adaptive equalizer. The function M(z(n)) produces the closest

magnitude from the set lal) to the magnitude of the equalizer output z(n). This objective

function is similar to JDEC. but it only involves the magnitude of the equalizer output.

Using the techniques and notation presented in Section 4, JMDD yields the following

update equation:

c(n+l) = c(n) - Vc JmDD. (24)

where:
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VC JMDD = 2E (I z(n) I - M(z(n))) I x(n)*] (25)

As with regular decision directed equalization (Eq. (22)), MDD can only be

successful if the level of distortion is originally low or has been lowered by some other

form of equalization. For constellation identification, MDD would be used after an

initial period of blind equalization by CMA. For the reasons discussed in Section 4, if

the MDD equalizer is operating on a passband signal, its filter can be real. If only a real

filter is being used, the complex part of Eq. (25) is neglected.

Note that M(z(n)) will be a different function for each constellation with a different

set of magnitudes. Table 5 lists the values M(z(n)) could produce for the various

constellations being studied when they have been scaled to have an RMS value of one. A

different MDD equalizer must be implemented for each type of constellation that might

be identified. Because of the speed with which MDD can converge, equalization could

be attempted sequentially for each different function M(z(n)).
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TABLE 5. Transmitted magnitudes used as possible values of M(z(n)) for the
constellations studied

Number of Possible Values of M(z(n))
Magnitudes for RMS = 1
1 1.000

2 0.603, 1.279
3 0.447, 1.000, 1.342
4 0.385, 0.816, 1.155, 1.361
5 0.316, 0.707, 0.949, 1.140, 1.304
9 0.218, 0.488, 0.655, 0.787, 0.900,

1.091, 1.175, 1.327, 1.528

16 0.156, 0.349, 0.469, 0.563, 0.644, 0.781,
0.841, 0.950, 1.000, 1.048, 1.093, 1.137,
1.220, 1.259, 1.334, 1.440

6.2 Testing Procedure for Comparing CMA and MDD

Only the constellations with two, three, four, and five magnitudes were studied in

detail to see how much equalization could be improved with MDD. One magnitude

constellations were not studied because no improvement can be expected. When CMA is

operating on only one magnitude, it is in fact performing a type of MDD. If MDD were

to operate on one magnitude, M(z(n)) in Eq. (23) would be a constant. If this constant is

called R, Eq. (2) reveals that Eq. (23) becomes p= 1 CMA when operating on one

magnitude.

The nine and sixteen magnitude constellations were not studied in detail because it

was discovered that CMA could not consistently remove enough distortion to allow

M(z(n)) to correctly guess IT(z(n))l most of the time. For the nine magnitude

constellation, MDD was observed to converge for clear channels whenever CMA could
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achieve an average error of 0.035. However, CMA only occasionally achieved this level

of equalization.

To attain robust MDD convergence despite poor CMA performance, a variation on

MDD was explored which performed equalization using only received values whose

magnitudes were in regions where the transmitted magnitudes were most separated. It

was found that if MDD could converge while operating on all of the received

magnitudes, neglecting a region of the received magnitudes would not in general impede

convergence. However, neglecting received values in regions where transmitted

magnitudes are closely spaced did not improve the robustness of performance for the

nine magnitude case.

The modems used to generate the test signals were listed previously in Table 2. The

CODEX LSI 96/V.29 was used as opposed to the AT&T Dataphone I for the four

magnitude constellation because its signal was the more difficult of the two for CMA to

equalize. Six of the eight channels that were discussed in subsection 5.1 were used for

these tests. The 100 percentile nonlinear distortion channel was not studied because

CMA could not remove enough distortion to allow MDD to converge. The 100h

pecentile frequency offset channel was not studied because a 5 Hz (see Table 3) offset is

not a meaningful impairment when demodulation is not being performed.

For each signal at each impairment, CMA with p= 2 and 97 real taps was studied over

a range of step sizes to find the step size that produced the smallest mean minimum

average error. Similarly, MDD with 97 real taps was studied to find the smallest mean
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minimum average error it could achieve for each signal at each impairment. For the

MDD tests, initial equalization was performed by CMA with p = 2, 97 real taps, and the

step size fixed at 0.003. MDD replaced CMA when the average error for a 200 symbol

window achieved a value less than or equal to a threshold. The thresholds empirically

arrived at were 0.08, 0.08, 0.074, and 0.06 for the two, three, four, and five magnitude

constellations respectively. For both CMA and MDD tests, each step size was studied by

performing equalization at twenty different initial sample positions. The twenty

positions comprised four adjacent positions at each of five locations separated by 6000

samples.

6.3 Performance Improvements Achieved by MDD

MDD improved equalization considerably. Tables 6, 7, 8, and 9 compare the

performance of CMA and MDD for the channels with transmitions of two, three, four,

and five magnitude constellations respectively. These tables show the lowest mean and

the associated standard deviation of the minimum average error acheived for any step

size by CMA alone. They also show the mean minimum average error and associated

standard deviation acheived by CMA followed by MDD for a step size fixed for that

constellation. The plots of minimum average error versus step size from which these

optimal values came can be found in Appendix B. Tables 6-9 show that MDD performs

better than CMA even when the CMA step size is tuned separately for different

impairments while forcing the MDD step size to remain the same for all impairments.

They also show that MDD can operate successfully on each particular constellation with
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TABLE 6. Mean and Standard Deviation of Minimum Average Error for CMA and
MDD receiving two magnitude V.29 using best step sizes for CMA and
0.01 for MDD step size

Impairment CMA Mean CMA Std. Dev. MDD Mean MDD Std. Dev.
Clear Channel 0.0354 0.00381 0.0126 0.00072
Additive Noise 0.0448 0.00153 0.0347 0.00112
Phase Jitter 0.0395 0.00231 0.0156 0.00035
EDD 0.0399 0.00088 0.0126 0.00040
Amplitude Dist. 0.0474 0.00130 0.0136 0.00041
85"' Percentile 0.0496 0.00357 0.0311 0.00099

TABLE 7. Mean and Standard Deviation of Minimum Average Error for CMA and
MDD receiving three magnitude V.32 using best step sizes for CMA and
0.015 for MDD step size

Impairment CMA Mean CMA Std. Dev. MDD Mean MDD Std. Dev.
Clear Channel 0.0411 0.00133 0.0128 0.00039
Additive Noise 0.0561 0.00183 0.0385 0.00058
Phase Jitter 0.0435 0.00337 0.0181 0.00177
EDD 0.0456 0.00173 0.0131 0.00022
Amplitude Dist. 0.0472 0.00271 0.0125 0.00064
85'h Percentile 0.0527 0.00198 0.0324 0.00100
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TABLE 8. Mean and Standard Deviation of Minimum Average Error for CMA and
MDD receiving four magnitude V.29 using best step sizes for CMA and
0.02 for MDD step size

Impairment CMA Mean CMA Std. Dev. MDD Mean MDD Std. Dev.
Clear Channel 0.0570 0.00512 0.0115 0.00054
Additive Noise 0.0610 0.00257 0.0398 0.00175
Phase Jitter 0.0563 0.00422 0.0160 0.00056
EDD 0.0539 0.00247 0.0124 0.00053
Amplitude Dist. 0.0678 0.00147 0.0154 0.00092
85' Percentile 0.0688 0.00182 0.0367 0.001 i 1

TABLE 9. Mean and Standard Deviation of Minimum Average Error for CMA and
MDD receiving five magnitude V.32 using best step sizes for CMA and
0.015 for MDD step size

Impairment CMA Mean CMA Std. Dev. MDD Mean MDD Std. Dev.
Clear Channel 0.0397 0.00116 0.0129 0.00031
Additive Noise 0.0470 0.00088 0.0378 0.00124
Phase Jitter 0.0392 0.00203 0.0180 0.00162
EDD 0.0397 0.00208 0.0130 0.00038
Amplitude Dist. 0.0409 0.00107 0.0132 0.00026
85h Percentile 0.0443 0.00081 0.0328 0.00112
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one step size regardless of the impairment.

The mean minimum average error is lowered dramatically by MDD when the channel

contains a linear impairment, no impairments, or phase jitter. Such dramatic

improvement was not observed when the channel containing all six impairments at the

85h percentile level or the channel containing 10o percentile noise were studied. This is

not surprising. As was mentioned earlier, a linear equalizer cannot be expected to

successfully remove the nonlinear impairments present in these two channels. Phase

jitter is a nonlinear impairment, but it can be received as well as a linear impairment

because it distorts only symbol phase. To MDD, distortions to symbol phase are

invisible. MDD does provides some improvement over CMA even for the two channels

containing noise and nonlinear distortion.

Constellation identification is easier when the average -error is smaller. However, an

identification algorithm cannot wait for a level of equalization that will never be

acheived. To explore how long it takes MDD to acheive the lowest average error it can

for each impairment, different thresholds were used for different impairments. Tables

10-13 show the mean and standard deviation of convergence times required by MDD.

Also listed are mean and standard deviation of time spent using CMA to achieve a low

enough average error to allow MDD to converge. Times are given in symbol intervals.

Recall that 2400 symbols are transmitted in a second.
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The longest mean convergence time was 7810 symbol intervals or about 3.25

seconds. From examining standard deviations it is clear that convergence will sometimes

take up to five seconds as in the case of four magnitude V.29 transmitting over the 85h

percentile channel. However, the vast majority of signals displayed convergence times

on the order of two seconds. Note that for those cases where the mean convergence time

was high, most of the time was spent by CMA trying to acheive sufficient equalization to

allow MDD to converge. In general, once MDD begins, convergence occurs in well

under a second.
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TABLE 10. Mean and Standard Deviation in symbol intervals for time spent in
CMA before switching to MDD at 0.08 and time until convergence for
two magnitude V.29. Convergence thresholds are given. MDD step size
was 0.010.

Time Before MDD Total Convergence Time
Impairmnt Mean Std. Dev. Mean Std Dev. Threshold
Clear Channel 1800 672 2410 691 0.020
Additive Noise 3490 1529 5050 2574 0.040
Phase Jitter 2400 863 3300 918 0.020
Envelope Delay Distortion 3780 687 5700 1832 0.020
Amplitude Distortion 6180 1829 7320 1881 0.020
85t Percentile 4030 1165 4680 1147 0.040

TABLE 11. Mean and Standard Deviation in symbol intervals for time spent in
CMA before switching to MDD at 0.08 and time until convergence for
three magnitude V.32. Convergence thresholds are given. MDD step
size was 0.015.

Time Before MDD Total Convergence Time
Impairment Mean Std. Dev. Mean Std Dev. Threshold
Clear Channel 2600 1404 3190 1412 0.020
Additive Noise 2530 911 3300 838 0.045
Phase Jitter 2570 1146 3180 1184 0.025
Envelope Delay Distortion 2690 821 3280 826 0.020
Amplitude Distortion 2030 754 2590 794 0.020
85* Percentile 3270 563 3830 556 0.04
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TABLE 12. Mean and Standard Deviation in symbol intervals for time spent in
CMA before switching to MDD at 0.074 and time until convergence for
four magnitude
size was 0.020.

V.29. Convergence thresholds are given. MDD step

Time Before MDD Total Convergence Time
Impairment Mean Std. Dev. Mean Std Dev. Threshold
Clear Channel 2050 1213 2590 1222 0.020
Additive Noise 2600 1243 3690 1864 0.045
Phase Jitter 1960 885 2650 910 0.020
Envelope Delay Distortion 3720 939 4360 931 0.020
Amplitude Distortion 6380 1380 7810 1335 0.020
85th Percentile 6470 2025 7510 2163 0.045

TABLE 13. Mean and Standard Deviation in symbol intervals for time spent in
CMA before switching to MDD at 0.060 and time until convergence for
five magnitude V.32. Convergence thresholds are given. MDD step size
was 0.015.

Time Before MDD Total Convergence Time
Impairment Mean Std. Dev. Mean Std Dev. ThreA;:ld
Clear Channel 2400 1401 3280 1405 0.020
Additive Noise 2330 900 4160 975 0.045
Phase Jitter 2460 1256 3520 1482 0.025
Envelope Delay Distortion 2350 802 3320 898 0.020
Amplitude Distortion 1820 765 2720 _ 821 0.020
85h Percentile 2940 594 4040 742 0.040
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Figures 24-27 present some examples of convergence behavior for the five magnitude

V.32 signal transmitting over a nonlinearly impaired channel and a linearly impaired

channel. Figures 24 and 25 present examples of convergence behavior of CMA alone

and CMA followed by MDD respectively for the case of 100h percentile additive noise.

The performance of MDD is only slightly better than the performance of CMA. Figures

26 and 27 present examples of convergence behavior of CMA alone and CMA followed

by MDD for the case of 100 percentile envelope delay distortion. The performance of

MDD is dramatically better than that of CMA.
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7. Conclusion

This thesis explored ways of improving equalization for 2400 baud QAM modems to

ease constellation identification. Because the carrier frequency is unknown, it is desired

to perform equalization without recovering symbol phase.

A study of Godard's CMA found that the p= 2 algorithm performed much better than

the p= 1 algorithm when the channel contained severe impairments. CMA with p= 2

performed equally well with a real equalizing filter or a complex equalizing filter.

Neglecting the preceding Hilbert filter was shown to degrade the performance of CMA

when severe impairments were present. It was observed that p = 2 CMA could acceptably

equalize several different modem constellations with one set of parameters.

Even p= 2 CMA with the preceding Hilbert filter did not remove enough distortion to

make constellation identification an easy task. It was shown that a magnitude decision

directed adaptive equalizer could dramatically improve equaiization of linear

impairments to signals with less than five magnitudes in their transmitted constellation.

Equalization for nonlinear impairments and for signals with nine and sixteen

magnitudes in the transmitted constellation remains a challenge.
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Appendix A
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Figure Al. Frequency Response of the 255 tap Hilbert filter used for the tests
discussed in Sections 5 and 6 resulting from a 256 point fft. The filter
was formed by truncation of the ideal digital Hilbert filter.
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Appendix B

This appendix contains plots for two, three, four, and five magnitude constellations

which show mean minimum average error as a function of step size for CMA alone and

for CMA followed by MDD. Also, mean convergence time was plotted as a function of

step size for CMA followed by MDD. Results plotted in this appendix were obtained by

tests described in Section 6. Each plot shows performance for six channels. The

channels plotted (with their labels in parentheses) are as follows: no impairments

(CLEAR), 99.9' percentile additive noise (NOISE), 99.9h percentile phase jitter

(JITTER), 99.9h percentile envelope delay distortion (EDD), 99.9' percentile amplitude

distortion (AMPLITUDE), and a channel (85%) containing 85' percentile levels of the

four impairments listed above in addition to 85h percentile nonlinear distortion.

When comparing the mean minimum average error plots for CMA alone and CMA

followed by MDD it is important to notice the difference in the range of the plots.

Clearly the addition of MDD lowers the minimum mean average error. In several cases

MDD acheived a relatively constant mean minimum average error over a considerable

range of step sizes.

The plots describing CMA followed by MDD confirm that considerably lower

minimum mean average errors are acheived when MDD is faced with linear impairments

than with nonlinear impairments such as noise and nonlinear distortion. Because of this

variable prformance, convergence time was measured using different thresholds for

different impairments. as discussed in Section 6.
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A box around a point in a plot of mean convergence time indicates that some

attempts at equalization did not achieve the convergence threshold. For these cases, the

value of mean convergence time was calculated using only those attempts which did

converge. This value has no real significance. The points are plotted as markers of

where convergence does not always occur. Several points where convergence did not

occur for every attempt were simply omitted.
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different channels is shown
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