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Abstract

The increased data rates and reliability required to support emerging multimedia
applications require new communications technology. We present results regarding
two techniques used in high data rate transmission  trellis coding and Tomlinson-
Harashima precoding.

New trellis code design metrics, periodic effective length and periodic product dis-
tance, identify robust codes for correlated fading permuted with periodic interleaving.
These codes are useful for a variety of communication scenarios including broadcast
and point-to-point multicarrier modulation over frequency selective channels, single
carrier modulation over channels with Rayleigh fading, and frequency hopped single
carrier transmissions.

Simulations of a 16-QAM rate-1/4, 64-state trellis code designed using the new
metrics demonstrate very robust performance. The new code achieves a bit error rate
of 1079 at an equivalent AWGN SNR of 4.75 dB on a severely frequency selective
channel. Codes designed for independent Rayleigh fading or AWGN fail completely
on this channel at this SNR.

We introduce techniques useful in trellis code searches based on common design
metrics. One technique identifies trellis codes that have the same metric without
computing the metrics. This technique can reduce search complexity significantly.
Also, we propose a new labeling strategy, which is to maximize the constellation
edge length profile. Labeled constellations with maximum edge length profile produce
trellis codes with the largest possible values of Euclidean distance, product distance,
or periodic product distance. Some Ungerboeck and Gray labelings maximize the
edge length profile, but others do not.

We apply Ungerboeck’s mutual information comparison technique to single carrier

transmissions with Rayleigh fading and broadcast multicarrier transmissions with

v



frequency selective fading. Two bits of redundancy are sufficient for uncorrelated
Rayleigh fading. The number of bits of redundancy useful for broadcast multicarrier
transmissions depends on how high the subchannel SNRs can be.

We derive expressions characterizing the achievable rates possible with Tomlinson-
Harashima precoding (THP). Precoding techniques use nonlinear, channel-dependent
signal processing in the transmitter to achieve the same SNR as a decision feedback
equalizer, but without error propagation. We use our achievable rate expressions to
compare THP performance with channel capacity and to demonstrate the importance

of symbol rate optimization for good THP performance.
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Chapter 1
Introduction

Popular demand is increasing for multimedia applications such as videoconferencing
and digital video. These services require robust, high data rate communication over
fading and dispersive channels. One physical layer technique that can provide robust
communication over fading channels is multicarrier modulation. However, to perform
well in a fading environment, multicarrier modulation must be combined with a well
designed channel code. Chapters 2—6 of this dissertation provide a complete design
strategy that produces trellis codes with very robust performance in the presence of
correlated fading or interference. While multicarrier modulation was the initial ap-
plication of interest, the resulting trellis codes provide reliable performance wherever
periodic interleaving is used to mitigate correlated fading or interference.

A separate question addressed in this dissertation involves high data rate sin-
gle carrier transmission over a wireline channel (e.g. twisted pair or coaxial cable).
Wireline single carrier systems use some form of equalization to compensate for the
dispersion introduced by the wire. Decision feedback equalization (DFE) allows reli-
able transmission at rates approaching channel capacity, assuming error propagation
in the DFE feedback loop can be neglected. However, error propagation cannot be
neglected when combining a DFE with a trellis code. Precoding uses signal processing
in both the transmitter and receiver to achieve the error variances of DFE without
introducing error propagation. Chapter 7 examines a commonly used form of pre-
coding, Tomlinson-Harashima precoding (THP). This chapter quantifies how closely
THP can approach the channel capacity at any specified SNR on a given dispersive

channel.
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1.1 A Road Map

Chapter 2 begins the investigation of trellis code design with a discussion of the various
design metrics used to select codes for various channel environments. Chapter 3
formally introduces trellis codes and their principal building block, convolutional
codes. Chapter 4 investigates how a constellation should be labeled to maximize the
metrics of Chapter 2. All formal definitions are listed in Appendix A. This list of
definitions should be a useful reference while reading Chapters 2-4.

Chapter 5 reviews multicarrier modulation and relevant capacity calculations for
additive white Gaussian noise, Rayleigh fading, and intersymbol interference channels.
This chapter then draws on information theory to investigate the number of points
a constellation should have for a given rate under specified communication scenarios.
The scenarios considered are single carrier transmission over additive white Gaus-
sian noise channels, single carrier transmission over Rayleigh fading channels, and
multicarrier modulation over intersymbol interference channels.

Chapter 6 uses the ideas of Chapters 2—5 to design three trellis codes. Simulations
of the three trellis codes in a multicarrier modulation system over five channels show
the utility of the new metrics introduced in Chapter 2. The code designed with the
new metrics achieves an error rate of 107% on a severely frequency selective channel
on which the two codes designed to be best according to the commonly used metrics
fail completely.

Chapter 7 presents an achievable rate characterization for Tomlinson-Harashima
precoding (THP). An exact expression is derived for the zero-forcing THP. Upper and
lower bounds are provided for the minimum mean square error THP. The achievable
rates for the zero-forcing and minimum mean square error formulations of THP are
compared to each other and to channel capacity for some example channels. The
importance of correctly choosing the symbol rate is demonstrated.

Figure 1.1 shows the dependence among chapters. Readers may safely go straight
to Chapter 7 if the achievable rate characterization of THP is of primary interest.
Chapters 2—6 are best read in order. However, Chapter 5 — Capacity and Constella-

tion Size  may be read independently.



Chapter 1. Introduction

Chapter 1

Introduction

Chapter 2
Design Metrics

Chapter 3
Trellis Codes

Chapter 7
TH Precoding

Chapter 4

Constellation Labeling

Chapter 5

Constellation Size

Chapter 6

A Code Search

Chapter 8

Conclusion

Figure 1.1: Dependence among chapters.




Chapter 1. Introduction 4

1.2 Contributions

The main contributions of this dissertation are a trellis code design strategy for corre-

lated fading and/or interference and an achievable rate characterization of Tomlinson-

Harashima precoding. The details of these contributions are listed below by chapter.

Chapter 2)

Chapter 3)

Chapter 4)

Chapter 5)

Chapter 6)

Chapter 7)

Introduces the new metrics periodic effective code length and code periodic
product distance. These metrics identify trellis codes that perform well

over channels with correlated fading.

Identifies a systematic method for identifying trellis codes that are equiv-
alent according to the metrics of Chapter 2. This method reduces search
complexity significantly since the metric is computed for only one code

in a set of equivalent codes.

Introduces the labeling strategy of maximizing the edge length profile
of the labeled constellation. Also demonstrated is a close relationship

between Ungerboeck labeling and Gray Coding.

Applies Ungerboeck’s mutual information comparison technique to ex-

amine the potential of various constellations on fading channels.

Designs and simulates codes using standard metrics and the new design
metrics presented in Chapter 2. Simulations on five example channels
demonstrate the robustness of codes designed according to the new met-

rics.

Derives new expressions characterizing the achievable rates possible with
Tomlinson-Harashima precoding (THP). These expressions are used to
compare THP performance with the channel capacity and to demonstrate

the importance of symbol rate optimization for good THP performance.



Chapter 2
Design Metrics

The search for a good trellis code requires the ability to compare several codes to
determine which is best. The ultimate measure of a channel code is its ability to
support an intended application. Since errors affect different applications in different
ways, error rates are computed differently for different applications. Depending on
the application, the error rate may be measured in bits, bytes, blocks, or packets.
Computing the error rate of interest for each candidate trellis code is prohibitively
complex. This chapter introduces metrics that are closely related to the error rates
of interest, but which can be computed with relatively low complexity. These metrics
might be the sole basis for selection of a code, or they might be used to identify a

handful of candidate codes, with the final selection based on simulations.

2.1 A General Encoder and Channel Model

Three different sets of metrics are derived, each appropriate for a different communi-
cation scenario. Each of these scenarios is a special case of the communication system
shown in Figure 2.1. This figure shows a binary information sequence b = {b;} en-
coded as a sequence x = {x;} of real or complex values. Each x; is scaled by the
gain a; to produce the sequence y = {y;}. The scaled values y; are then distorted by
additive white Gaussian noise (AWGN) terms n; to produce the sequence z = {z;}
that is available to the receiver.

In the discussion that follows, z;,a;,y;, n;, and z; are assumed to be complex

numbers. However, the same concepts and metrics apply when they are real. The
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a; n;
b; Li Yi \l/ Zj
——=| Encoder @ @

Figure 2.1: Encoder and channel model.

variance of the real and imaginary parts of the AWGN are assumed to be constant

and both equal to ¢ so that the noise power is
E|n;|* = 20°. (2.1)

Actual variations in the noise power can be reflected in a;.
The average power of each transmitted symbol is assumed to be the same so that

the signal power is
B|z;|* = B|x|. (2.2)

Practical transmitters must obey a power constraint, which is reflected in the con-
straint that

Elz|” < &,. (2.3)

In general, increasing F|x|? lowers all of the error rates mentioned above. Increasing
E|z|* certainly improves each of the three sets of metrics presented below. As a
result, it is assumed in the following discussion that the power constraint in (2.3) is

met with equality:
Elz|” = &,. (2.4)

An important measure of channel quality is the signal to noise ratio (SNR) defined
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to be

E|z|? &

SNR = = —.
En?2 202

(2.5)

The following discussion assumes that the receiver has perfect knowledge of o2
and the sequence of scale factors {a;}. In practice, these values must be estimated
by the receiver. The details of channel estimation are beyond the scope of this dis-
sertation. However, in many situations, the values change slowly enough that low
complexity estimation techniques provide the receiver with accurate estimates. For
more information about channel estimation techniques, see [1]. For an example of
channel estimation specific to multicarrier modulation, see [2].

The communications scenarios considered below are distinguished from each other
by the behavior of the sequence {a;}. For the AWGN channel considered in Sec-
tion 2.2, the a; values are all equal to the same constant. For the Rayleigh Fading
channel considered in Section 2.3, the magnitude of each a; has a Rayleigh probability
density function (PDF), and

a; L a; for i # j (2.6)

where L indicates independence. For the arbitrary independent fading considered in
Section 2.4, (2.6) still applies, but no particular PDF is considered. For the correlated
fading channel considered in Section 2.5, adjacent values of a; are strongly correlated
so (2.6) does not apply.

In each of these cases, the receiver must estimate the input information sequence b
based on its observation of the sequence z of received values. In this dissertation, the
receiver chooses the sequence b most likely to have produced the observed sequence
z. This method of reception, commonly referred to as maximum likelihood sequence
detection, minimizes the probability of a sequence error, but does not necessarily
minimize the bit error rate (BER). Maximum likelihood sequence detection for trellis
codes is performed with the Viterbi algorithm [3]. For an example of an algorithm
that minimizes BER, see [4].

Consider transmission of a length L sequence (row vector) x corresponding to an

information sequence b. For a given sequence of scale factors a, the sequences of
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scaled outputs y is computed as
y = x Diag(a). (2.7)

The length L complex sequence (or row vector) y is a point in 2L-dimensional space.
For the channel described in Figure 2.1, the most likely information sequence b is the
one whose scaled output sequence y is closest in Euclidean distance to the received
sequence z. This is the sequence that would be identified by the Viterbi algorithm.
Figure 2.2 shows the set of possible scaled output sequences y as points in 2L-
dimensional Euclidean space. As an example of an error, the figure shows the point
y corresponding to the actual b and a different point y that is closer than y to the

received point z =y + n.

o ° z g
r< 1l o
o ° Y
o
o y
° 4 d *
°
° °
o Y PY
° °
. °
°
°
° * ®
) o L] Y

Figure 2.2: The possible values of y are shown as e’s. When the
received value z produced by a noise vector n added to
the transmitted y is closer to y that the transmitted y,
an error OCcurs.

In general, the probability of a sequence error such as the one demonstrated in
Figure 2.2 depends on the position of all the possible points y. However, as o?

decreases, the probability of a sequence error is closely approximated by considering
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only the points y nearest to the point y corresponding to the transmitted x.

The pairwise probability of error associated with the pair of points {y,y} is the
probability that z =y +n is closer to y than y. The region in which such a pairwise
error occurs is always the halfspace containing y bounded by the hyperplane that
bisects the line segment connecting y and y. This halfspace is the shaded region in
Figure 2.3.

<>
Sk

Figure 2.3: Decision Regions for y and y. In the shaded region,
zZ =y +n is closer to y than y.

Equivalently, this pairwise error occurs when the projection of z onto the line
containing y and y lies on the same side of the bisecting hyperplane as y. Figure 2.3
shows the projection of such a z onto the line.

The one dimensional noise n along the line containing y and y resulting from this
projection has variance o2 (by symmetry since the noise variance in every dimension

is 02). Thus the probability of making the pairwise error between b and b conditioned

P(b—b|a) =Py — y)A (2.8)
_ Q <||y ;—O-y||2> 7 (29)

where || - [|2 is Euclidean distance (the 2-norm) and Q)(¢) is the probability in the tail
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of a zero mean unit variance Gaussian PDF:

mnzéﬁ[ewmm. (2.10)

All of the metrics presented below are derived by considering the possible pairs

(y,¥) or (x,%) to find the pairs that are most likely to be mistaken for each other.

2.2 The AWGN Channel

The simplest scenario considered is the AWGN channel, which has a; = 1 for all i.
This implies that x = y in Figure 2.1. The pairwise probability of error for this

scenario is

~

P(b— b) = P(x — %) (2.11)
—Q (7”" ;‘”2) _ (2.12)

The ordered pair (b, 13) that has the largest pairwise probability of error is exactly
the pair that has the smallest value of ||x L x||,. For this reason, the primary metric
used to evaluate a code for use on an AWGN channel is the smallest value of ||x L X||s
for two valid output sequences of the code. This metric is usually referred to as the

code Fuclidean distance or free Euclidean distance.

Definition 1 The (normalized) squared Euclidean distance ED? of the error sequence
b — b is
1 % 2
pp? — XL Xl (2.13)
Ex
Definition 2 The code Fuclidean distance CED of a code is the smallest ED of an

error sequence b — b associated with that code.

Ungerboeck identified trellis codes with large Euclidean distances in [5]. A sec-

ondary metric for the AWGN channel is the number of Fuclidean nearest neighbors.

Definition 3 The number of Fuclidean nearest neighbors Negp is the number of se-

quences X that are CED away from a transmitted sequence X.
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2.3 Independent Rayleigh Fading

In wireless communications, scatterers and reflectors often cause the transmitted sig-
nal to arrive at the receiver from many different directions, with each direction having
a different associated complex gain. By the central limit theorem, the scale factors
{a;} resulting from the sum of the complex gains along these many paths are approx-

imately complex Gaussian random variables, each having covariance matrix

Elagay| FElaga,] _ V2 02 ‘ (2.14)
Elaaz]  Elaa] 0 ~
The random variable ¢ = a2 + a? has an exponential PDF:
0= 2.15)
plg) = qg > 0. 2.15
22
The random variable r = ,/q has a Rayleigh PDF:
77.2/2,)/2
pir) =" >0 (2.16)
Y

Because the PDF of r is Rayleigh, channels with fading sequences a of this type are
said to exhibit Rayleigh fading. In this section, the metrics for Rayleigh fading assume
a is a sequence of IID complex Gaussian random variables. Often, adjacent values a;
and a;4q are in fact strongly correlated. However, it is assumed that interleaving at
the transmitter and de-interleaving at the receiver disperse correlated fading enough
for adjacent a;’s to be uncorrelated at the decoder.

Dispersing the correlated symbols improves performance in complexity-constrained
systems. However, ignoring the correlation in a leads to suboptimal performance even
after this dispersal. Section 2.5 derives metrics that account for the correlation after
interleaving.

The pairwise sequence error probability (2.9) for the pair (b,f)) conditioned on

the sequence a of scale factors can be written in terms of x and a as

402

. L A2 s L 2112
P(b b | a) — Q \/Zz_l |al‘ ||Tz l‘lHQ ) (217)
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When a is a sequence of IID random variables, the marginal pairwise sequence
error can be computed by integrating (2.17) over the PDF for each a;. When this
PDF is the complex Gaussian with covariance matrix of (2.14), integrating (2.17)
over the Rayleigh PDF for each r; = |a;| produces the marginal pairwise sequence

error probability

o0 oo Lo 2. 1 4112 —r2 /292 —1r2 /22
~ . ; i L X 1 L
P(b_>b) = / / Q \/Zl_l 7“14”372 < ||2 ne 5 dTl...irLe 5 dry,.
ri= rr—= o
1m0 et ! T 2a8)

Unfortunately, (2.18) does not have a closed form solution. As a result, it does
not lead to a useful design metric. Wilson & Leung [6] and Divsalar & Simon [7, 8]
obtained a closed form expression that upper bounds (2.18). This upper bound is
derived again here because of the importance of the metrics that result. (See also [9]
for an exhaustive review of the literature on fading channel code design metrics.)

To obtain a closed form expression, a Chernoff bound (see page 318 of [10]) is

applied to the zero mean unit variance Gaussian distribution in order to bound Q(¢):

Q(t) < e *te*’? for any s (2.19)
—e '/ fors =1 (2.20)

Applying (2.20) to (2.18) yields

Lo roe T2
~ 2 5112 /972 i i
P(b—=b) < | | / e (rillei—aill3/80%) 1= g, (2.21)

Lo oo ooy, 7 lmim a3
:H/ T (=5 >er~ (2.22)

L 2 ~ 2N\ —1
V2w L @[3
= 1+—= 2.23
Il (1+ 2 (2.23)
2 S 2\ 1
= 1+M where A = {i | z; # 2;}
‘ 402
icA (2.24)
2 S~ 2N L 2 512
N V@i L dill v | L 2|5

ieA (2.25)



Chapter 2. Design Metrics 13

For practical codes with the values of z; drawn from a finite alphabet, there is a
minimum nonzero value for ||z; L i;||3. For these codes, the approximation of (2.25)
is valid regardless of the specific sequences x in the code as long as y?/0? is large
enough.

The approximation in (2.25) is equivalent to (7) in [7] and (9.22) in [8]. Also, (3.5)
in [6] is a sum of pairwise error probabilities equivalent to (2.25). In [7] Divsalar and

Simon based two metrics on (2.25), effective code length and code product distance.

Definition 4 The effective length EL of the error sequence b — b is the cardinality
of the set {i | x; L &; # 0}.

Definition 5 The effective code length ECL of a code is the smallest EL associated
with that code.

Definition 6 The product distance PD of the error sequence b — b is defined to be

i L aill3
PD = H ||Zr£737||2 where A = {i | x; # T;}. (2.26)
icA T

Definition 7 The code product distance of order i of a code, CPD;, is the smallest

product distance of an error sequence having EL= 1 associated with that code.

Rewriting (2.25) in terms of these metrics yields

—_— 2.27
402 PD ( )

- 2.\ 1
P —b) < <7 )
The marginal pairwise sequence error probability decreases exponentially with EL and
is inversely proportional to PD. Du & Vucetic have designed numerous rate k/k + 1
trellis codes using the metrics of ECL and cpD [11, 12, 13, 14]. As with Euclidean
distance for the AWGN channel, the number of EL nearest neighbors and PD nearest

neighbors are secondary considerations in the code selection process.

2.4 Arbitrary Independent Fading

The previous section demonstrated that the code product distance and the effective

code length are informative metrics in the context of independent Rayleigh fading.
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However, the sequence of scale factors a do not always obey a Rayleigh PDF, as
demonstrated with the following two examples.

Signal power from interfering transmitters at time index 7 lowers the signal to
noise ratio for x;, which is equivalent to lowering a; for the purposes of computing
code design metrics. The effective values of a; due to interference often do not follow
a Rayleigh distribution. For example, narrow band frequency hopping where some
hops have severe interference and others have no interference produces a bimodal
distribution of a; values very different from Rayleigh.

With multicarrier modulation, blocks in the sequence a correspond to the discrete
Fourier transform (DFT) of a frequency selective channel. When neither transmitter
nor receiver is moving (an HDTV transmission, for example) the frequency response is
fixed for an extended period of time. The scale factors associated with this frequency
response need not have a Rayleigh distribution.

In these cases of interference and fading, effective code length and code product
distance are still informative metrics, even though the derivation of the previous sec-
tion does not apply. Effective code length is essentially a measure of the diversity
provided by the code [9, 15]. Whenever transmission is over a channel with inde-
pendent scale factors, increasing diversity (and thus effective code length) improves
performance.

Two motivations for the usefulness of product distance outside the context of
Rayleigh fading are given below. Both of these arguments apply Lagrange multipli-
ers to solve relevant constrained minimization problems. The code product distance
essentially measures how evenly Euclidean distance is distributed to the “diversity
branches” of the code. To see this, consider the following primal maximization prob-

lem:

N
Maximize H d;
i=1
N
Subject to Zdi 1s<0

i=1
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where s is a constant. The Lagrangian dual problem [16] is

N N
Minimize mglx (H d; L)\ (Z d; L s) >

=1 =1

Subject to A >0

The solution to the dual problem (and thus the primal as well) must satisfy

> di=s (2.28)

and

d; = =L for all g (2.29)
The only choice of (dy,...,dy) and A that satisfies these conditions is
fori=1,2,...,N (2.30)

and

A= (%)Nl . (2.31)

In other words, an even distribution of distance maximizes the product. As the
distribution of distance becomes more skewed, the product decreases.

Ordentlich [17] provides a second argument motivating the product distance. This
argument fixes the pair (b,f)) and seeks the fading sequence a that maximizes the

pairwise sequence error probability

. L A2 s L 7112
P(b I | a) — Q \/Zz_l |al4 ||2,EZ l‘l||2 ) (232)
g

If no constraints are placed on a, this leads to the uninteresting result that a is the
all zeros vector and the probability of error is the same as when the transmitter sends

nothing. To make the analysis meaningful, the fading sequences are constrained to
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support at least some minimum amount of information transmission. That is, all the
fading sequences considered must induce at least some specified mutual information
[10] on the channel. The total mutual information I for a specified fading sequence

ais

a;|?E|z;?
I—ZlogQ <1+ £|? ) (2.33)

— Zlog2 <1 + | o ) by (2.1) and (2.4). (2.34)

Considering only the values of a; that affect the pairwise error probability (2.32), the

constraint on a is

a; 281;
> log, <1 4! 2' : ) > REL (2.35)

- o
i€A

where A = {i | x; # 2;} and R is the desired per symbol information rate. Neglecting

the 1 in (2.35) produces the approximate constraint

Y log, <|“2;f> > REL for high SNR. (2.36)
i€A

The above approximation is not as accurate as the approximation that produced
(2.25) since even at large values of £, /02, there are some fading sequences that easily
satisfy (2.35) but not (2.36). These sequences are incorrectly removed from the set
over which minimization is performed. Nonetheless, this is an informative exercise as
long as the limitations of its interpretation are made clear.

The resulting constrained minimization problem can be expressed as

Minimize Y [a;|” [|2; L &]13
€A
Subject to ¢ L ZlogQ(\aZ-F) <0
icA
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where

¢ =EL- (R 1 log, <2%2>> : (2.37)

The Lagrangian dual problem [16] is

Maximize min (Z la; | |z L &5 + A (c il Zlog2(|ai2)>)

€A 1€EA

Subject to A >0

The solution to the dual (and thus the primal) is

A
ol = (2.38)
|z L Zill5

1/EL

)= (2011 o L :mn%) (2.39)
icA

The worst case fading sequence a,,or identified in (2.38) applied to (2.32) produces

R EL A
P(b — b | aworst) - Q < 402 ) . (240)

Using (2.39) and (2.37) to substitute for lambda in (2.40) produces

P(b = b |ays) =Q (\/2”1 PD!/" EL) : (2.41)

Note that (2.41) is independent of SNR. This is because the mutual information
constraint (2.36) induces a constant geometric mean SNR. If all the pairs (b, b) with
a given EL are considered, the pair (or pairs) with the smallest PD have the largest
worst, case error probability according to (2.41). Thus, increasing the code product
distance improves this worst case performance.

Applying the Chernoff bound of (2.20) to (2.41) produces

P(b = b | ayes) < 2 " (2.42)
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Comparing (2.42) with (2.27) reveals that both expressions are made smaller by larger
values of PD. However, (2.42) decreases exponentially in PD'/* while (2.27) is only
inversely proportional to PD. Thus increasing PD improves performance in both cases,
but the improvement is more dramatic for the worst case situation. This makes sense
because the even spread of distance is more crucial for the extreme variations found

in the worst case fades than in the relatively gentle Rayleigh distribution.

2.5 Correlated Fading or Interference

The effective length EL and product distance PD are informative only when the scale
factors a,; are uncorrelated. The arguments that justified EL and PD in the previous
sections are not compelling when the scale factors are strongly correlated. In par-
ticular, if a; &~ a; because they are strongly correlated, no diversity is achieved by
spreading distance between the two corresponding symbols.

The contribution of these two symbols to the pairwise probability of error remains

the same as long as
s L @il + lloy L3535 (2.43)

remains the same. This section introduces new metrics closely related to EL and PD
that are informative in the context of correlated fading.

Define the autocorrelation function of the fading sequence to be
Ra(k) = Bloialy] (2.44)

where a?,, denotes the complex conjugate of a;,;. Often adjacent scale factors are

itk
strongly correlated, and the correlation R,(k) decreases as the separation k between
scale factors increases.

The rate of decrease in correlation depends on the Doppler frequency for portable
wireless transmissions and on the coherence bandwidth for multicarrier modulation
(MCM) systems. MCM systems commonly have coherence bandwidths wide enough
that large groups of adjacent scale factors are strongly correlated. Similarly, portable
wireless systems often have Doppler frequencies low enough that several consecutive

symbols are strongly correlated.
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So far, this chapter has considered a general class of codes that map binary se-
quences to points in Euclidean space. In this dissertation, the primary interest is in
a special case of such codes called trellis codes. Trellis codes are formally introduced
in the following chapter, but an observation about them is required here.

A practical trellis code (one with a relatively small number of delay elements) has
many error sequences for which all the nonzero values of |z; L #;| occur within a small
number of adjacent symbols. For example, Theorem 1 in the next chapter states that

BOL < L%J +1 (2.45)
where |-]| is the floor function, &k is the number of input bits per symbol, and v is
the number of memory elements used by the encoder. The proof of this theorem
demonstrates that there is always an error sequence for which the nonzero values of
|z; L &;| occur within |v/k] 4+ 1 adjacent symbols.

Consider applying such a trellis code directly to a fading channel for which any
group of f > ECL adjacent scale factors are strongly correlated. Whenever the nonzero
values of |z; L ;| all occur within f, they are multiplied by scale factors a; with similar
values because of the strong correlation in the fading.

For practical trellis codes to have low error rates on channels with correlated fad-
ing, adjacent trellis encoder outputs must not be transmitted on adjacent symbols
Ti, Tit1, .-, 2. An interleaver is used to change the ordering of the trellis encoder
outputs before transmission, as illustrated in Figure 2.4. The receiver uses a deinter-
leaver to return the symbols to their original order before decoding.

There are several types of interleavers, but this dissertation restricts its attention
to the class of interleavers known as periodic interleavers. A periodic interleaver is
specified by two parameters, the block size B and the period P. Figure 2.5 shows a
periodic interleaver with B = 512 and P = 8 implemented by writing the trellis en-
coder outputs ¢; column-by-column into a matrix and reading the interleaver outputs

x; row-by-row out of this matrix. Figure 2.6 shows the associated deinterleaver.
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Encoder
b; Trellis Ci x;
Interleaver
Encoder
Figure 2.4: The encoder of Figure 2.1 can be composed of a trellis
encoder followed by an interleaver.
cE —| _ - - - = 71
C1 Cg ... C505 I I9 T64
Cg —= — I9
C2 C10 C506 Tes T66 L128
C C C i i T
sy —=| LO8 €16 512 | T449 T450 512 SV
Figure 2.5: Write-by-column, read-by-row implementation of a
periodic interleaver with period P = 8 and block size
B = 512. The left matrix shows write labeling, and the
right matrix shows read labeling.
2] —= _ _ _ - = V1
21 22 <64 U1 Vg U505
2y —= — U9
265 %66 2128 V2 V10 U506
zZ zZ Z v v v
25192 = | 449 450 512_ | 8 16 512_ = U519

Figure 2.6: Write-by-row, read-by-column implementation of a
deinterleaver for the interleaver shown above.



Chapter 2. Design Metrics 21

The periodic interleaver-deinterleaver pair shown in Figures 2.5 and 2.6 disperses
any group of P = 8 consecutive trellis encoder outputs so that they are multiplied
by scale factors a; separated by at least B/P = 512/8 = 64 symbols. As an example,
consider the eight consecutive deinterleaver outputs v; ... wvg produced by the inter-
leaver, deinterleaver pair shown in Figures 2.5 and 2.6. The values of v;...vg are
expressed in terms of ¢ x a+n in (2.46). Note that no two scale factors a;, a; in these

equations have indices separated by less than 64.

v =c Xa+m

Vg = €y X Gg5 + Ngs

U3 = €3 X @129 + T129

Vg = C4 X (193 + N193 (2.46)
Us = C5 X Qg57 + Nasy

Vg = Cg X G321 + N3a1

U7 = C7 X (385 + N385

Vg = Cg X G449 + N4a9

Periodic interleaving lowers the probability of error sequences consisting of a small
number of nearby terms by separating these terms so that they are multiplied by
uncorrelated scale factors. However, there are other error sequences that must also
be considered. Periodic interleaving does not remove the correlation in the fading
sequence a, it merely permutes the correlation pattern. There are exactly as many
strongly correlated scale factors after interleaving as before.

Suppose that any three adjacent scale factors a;, a; 1, a; 9 are strongly correlated.
Then an interleaver with period 8 would cause ¢y, c9, and ¢;7; to be multiplied by

approximately equal scale factors as shown below:

V] =C1 X ay+ny (247)
Vg = Cg X Q9 + N9 (248)

V17 = C17 X Q3 + Ng3. (249)
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Thus EL and PD are not quite the right metrics even when periodic interleaving is
applied to correlated fading channels.

Lapidoth examined the performance of convolutional codes combined with peri-
odic interleaving in [18]. He used a periodic version of the block erasure channel
model introduced by McEliece & Stark in [19]. Figure 2.7 illustrates the block era-
sure channel, showing a block of 512 encoder outputs divided into subblocks of length
f. In the block erasure model, each subblock is either entirely erased (so that the
receiver sees no information related to the subblock) or the subblock arrives without

any distortion at the receiver (i.e., z; = x; in unerased subblocks).
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Figure 2.7: A block of 512 symbols is shown divided into subblocks
of f = 64 symbols.

In the periodic block erasure channel, one erasure pattern describes which sub-
blocks are erased for every block, and so the subblock erasures occur periodically.
Lapidoth proposed searching for combinations of convolutional codes and interleavers
that could perform without errors with the largest possible number of erased sub-
blocks in the erasure pattern. An efficient algorithm for testing whether a code has
this property is provided in Theorem 1 of [18§].

Let U be the erasure pattern expressed as a sequence of bits where a 1 indicates
a subblock erasure. The number of bits in U is the ratio M of the block size to
the subblock size. For a periodically interleaved system, M = P. Define |U| to be
the number of erased subblocks per block (the Hamming weight of U). Lapidoth
showed in [18] that error free communication of k£ bits per symbol with a rate k/n

convolutional code is impossible if

U] > {M <1 1 %)J | (2.50)
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Simply put, when |U] is large enough to satisfy (2.50) there are not enough unerased
bits at the receiver to recover the entire information sequence.

The block erasure channel does not capture the full behavior of fading channels
with additive noise. This dissertation develops a more detailed model the block
fading channel model — to design metrics for correlated fading. As in the previous
model, the block fading model starts by dividing the transmitted sequence x into
blocks of length f, where f depends on the Doppler frequency or coherence bandwidth
of the channel. This model then includes the effects of fading and AWGN on every
symbol. Once again n; is complex AWGN. The fading scale factors now have the
following behavior: a; = a; if they are in the same block, and a; L a; otherwise.

The block fading channel model captures two important characteristics common

to channels with correlated fading:
1. Scale factors separated by more than f are completely uncorrelated.
2. Adjacent scale factors are strongly correlated.

The block fading channel model does not accurately reflect the gradual decrease
in correlation that occurs in R, (k) as k increases. However, this effect can be safely
neglected in the context of trellis codes with periodic interleaving, as explained below.

Periodic interleaving ensures that any two scale factors a;, a; multiplying symbols
occurring even in a relatively long error sequence of 4f or 5f symbols are either within
a few symbols of being adjacent or are separated by almost f symbols. Thus, the
scale factors of interest for such an error sequence are either strongly correlated or
almost independent as in the block fading channel model.

The R, (k) behavior neglected by the block fading channel model becomes impor-
tant only when scale factors separated by, say, f/2 or f/3 symbols are involved in
the same error sequence. This effect occurs only for error sequences so long that the
pairwise errors are too small to warrant consideration in the design of a metric.

In effect, the block fading channel model has the independent symbol-by-symbol
fading property described in Sections 2.3 and 2.4 for the supersymbols X; defined

below:

Xi= |Tis1 Tepo . Tygg where t = (i L 1)f. (2.51)
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Happily, the metrics introduced in those earlier sections have natural counterparts
for the block fading channel. The EL for an error sequence on block fading channel
is the cardinality of the set A = {i | X; # X;}. The associated product distance is

computed as

X; L X2
pp =[] “87”2 (2.52)

ieA z

Recall that the block fading channel was motivated in the context of periodic
interleaving, where the trellis code outputs are ¢; rather than xz;. It is useful to

express the metrics in terms of ¢; using

-1
1X: LX)15 = lleivip L éigipll® (2.53)

j=0

Note that there are P supersymbols in a block of B = Pf symbols. For multi-
carrier modulation transmissions between a stationary transmitter and receiver, the
frequency response and consequently the fading pattern a is the same for each block.
Thus supersymbols with the same index modulo P have the same fading. In this
case, the channel is modeled by periodic block fading, corresponding to the periodic
block erasures studied by Lapidoth.

The effective length and product distance metrics for this case are defined in terms

of the P element periodic distance vector
A (2.54)
where
di= & (I1X L X3+ | Xivp L Kicplf+---). (2.55)

Using (2.53) to sum these terms yields

T

JZQ _ i ||Ci+jp fc; éZ'+]'P||2 ‘ (256)
=0
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Using the periodic distance vector, periodic versions of effective length and product

distance are now defined.

Definition 8 The periodic effective length PEL of an error sequence is the number of

nonzero elements of the periodic distance vector.

Definition 9 The periodic effective code length PECL of a code is the smallest PEL

for an error sequence associated with that code.

Definition 10 The periodic product distance PPD of an error sequence is the product

of the nonzero elements of the periodic distance vector.

Definition 11 The code periodic product distance of order i of a code, CPPD;, is the

smallest PPD of an error sequence with PEL= 1.

Consider PECL in the context of the periodic block erasure channel. If an erasure

pattern U causes errors, then it must hold that
PECL < |U]|. (2.57)

Otherwise, unerased nonzero elements would exist in every periodic distance vector,

allowing error-free detection. From (2.50), error-free transmission is impossible when

U| = {P (u%)J +1. (2.58)

The number of subblocks M per block in (2.50) is taken to be the interleaver period
P. Using (2.58) to substitute for |U| in 2.57 produces a useful bound on PECL:

PECL < {P (1 1 %)J + 1. (2.59)

Considering the periodic distance vector as an aliased version of the original sequence

of distances, it follows that

PECL < ECL (2.60)
v

< LJ Y1 by (245). (2.61)
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When periodic interleaving is employed, blocks are often decoded independently.
(The trellis is terminated at the end of each block.) For such block-based decoding,
these periodic metrics are informative even when supersymbols X; and X;,p do not

have the same fading.

2.6 Summary

This chapter began with a review of the metric of Euclidean distance for AWGN
channels. For independent Rayleigh fading channels, the standard derivation of the
effective length and product distance metrics was presented. The Rayleigh metrics
were then motivated for use whenever fading is independent regardless of the PDF of
the fading scale factors.

Channels with correlated fading were then examined. It was demonstrated that
effective length and product distance are not appropriate metrics in the context of
correlated fading. Instead, periodic effective length and periodic product distance
are the metrics to be used to design trellis codes for periodically interleaved channels

with correlated fading.



Chapter 3

Trellis Codes

Ungerboeck’s famous 1982 paper [5] introduced trellis codes, which simplified the
design of codes in Euclidean space, rather than in binary space. The name trellis code
refers to the structure of the finite state machine encoder (also used for maximum
likelihood sequence decoding of such a code via the Viterbi algorithm [20]).

The standard trellis code encoder, shown in Figure 3.1, comprises a convolutional
encoder followed by a signal mapper. The rate k/n convolutional encoder maps
sequences of k-bit symbols b; to sequences of n-bit symbols. The signal mapper maps
the n-bit symbols to points x; from an alphabet of 2" complex values. The set of 2"

points that constitute this alphabet is known as a constellation.

b; rate £ Z;
n .
) signal
7§, convolutional L =
q mapper
k bits encoder n bits

Figure 3.1: Encoder for a Trellis Code.

The design of a trellis code involves selecting a labeled constellation and convolu-
tional encoder to maximize some subset of the metrics presented in Chapter 2. The
labeling for the constellation describes how the signal mapper maps convolutional

encoder outputs to constellation points.

27
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This chapter presents the background material necessary to discuss these design
choices in detail. An important tool in the search for trellis codes is the ability deter-
mine when different trellis codes have equivalent performance. This chapter concludes
with an exploration of how different convolutional codes can lead to equivalent trellis
codes.

Section 3.1 introduces convolutional codes. Section 3.2 explores convolutional
codes in the context of the vector space of output symbols. This representation will
be useful in Section 3.6 and in the next chapter for demonstrating how convolutional
codes and constellations that look very different can be components of equivalent
trellis codes.

Section 3.3 explores the error sequences produced by maximum likelihood sequence
detection performed on a convolutional code. Section 3.4 gives an example of how
a convolutional code error sequence maps to a symbol error sequence in a trellis
code. This section also defines for trellis codes a “worst case” distance sequence
corresponding to each error sequence of the underlying convolutional code.

Section 3.5 defines three ways that trellis codes can be considered equivalent.
The weakest definition is distance equivalence, but even distance equivalent codes
are identical in the metrics introduced in Chapter 4. Only one code in a set of
distance equivalent codes needs to be evaluated in a code search program based on
these metrics. Section 3.6 shows how certain changes of basis in the vector space

introduced in Section 3.2 always produce distance equivalent codes.

3.1 Convolutional Codes

As shown in Figure 3.1, every trellis code has a convolutional code as a major com-
ponent. As a result, the structure of trellis codes is closely related to that of convolu-
tional codes. This study of trellis codes begins with an introduction to convolutional
codes.

The central reference for convolutional codes used in this dissertation is the 1970
paper by Forney [21]. The following definition paraphrases the one in [21] and spe-
cializes to the binary field.
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Definition 12 A rate k/n convolutional encoder is a time invariant finite state ma-

chine with k-bit inputs and n-bit outputs.

Without loss of generality, the following discussion is concerned only with convolu-
tional encoders that do not employ feedback. The justification for this restriction is
given in Section 3.5.

The finite state machine of a feedback free encoder is simply a feedback free shift
register. Figure 3.2 shows a feedback free rate 1/4 convolutional code with 6 memory
elements. Addition in the figure is modulo 2 (the exclusive-or operation). The input
bits b; pass through a shift register with 6 memory elements. The four output bit
sequences ¢; 1, Cj2, Ci3, and ¢; 4 are modulo 2 sums of selected subsets of the current

and 6 previous input bit values.

BB

DD

O
=
O
O
O
O
O

@ @ F= s
AV, = Cid

Figure 3.2: A feedback free rate 1/4 convolutional encoder.

Convolutional codes such as the one whose encoder is shown in Figure 3.2 are often
described by the bit patterns that identify the subsets of b; values to be summed. The

four patterns for Figure 3.2 are the rows of the following matrix:

01 0O0O0T11
1 111110
(3.1)
1 111001
01 001O01
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The D transform of the sequence {b;} is defined to be b(D) = 3" b;D". Sequences
are referred to in terms of their D transforms. The relationship between an input se-
quence b(D) and output bit sequence ¢;(D) may be described in terms of the generator

polynomial g;(D) by the equation:
¢;(D) = b(D)gi(D). (32)

The generator polynomial g;(D) for the rate 1/4 encoder shown in Figure 3.2 is the
D transform of the i row of (3.1). The four generator polynomials for this encoder

are shown below:

g1(D)=D+ D°+ D° (3.3)
92(D) =1+ D+ D* + D* + D* + D" (3.4)
93(D) =1+ D+ D* + D* + D° (3.5)
94(D) = D+ D" + DS, (3.6)

A convolutional encoder is often described by the encoder matriz whose entries
are the generator polynomials. The encoder matrix for the rate 1/4 encoder shown

in Figure 3.2 is

T

91(D) g2(D) gs(D) gu(D)| , (3.7)

where the values of g, (D), ..., g4(D) are those given in (3.3)—(3.6). A rate k/n encoder
would have k rows in its encoder matrix.

Often, convolutional codes are identified by octal representations of the coefficients
of the polynomials in the generator matrix. The rate 1/4 encoder shown in Figure 3.2
whose polynomial coefficients are the rows of (3.1) is identified by the four octal

numbers
043 176 171 045. (3.8)

For consistency with the notation commonly used in the literature, this method will

be used throughout the dissertation to identify convolutional codes.
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3.2 An Important Vector Space

For any rate k/n convolutional code, consider the n-dimensional vector space & com-
posed of all the n-bit vectors. (S is also an additive group in Z.) The scalars of this
vector space are bits. Addition in S is the componentwise exclusive-or of the vectors
being added. Addition and subtraction are equivalent in & since each vector is its
own additive inverse. Vectors in § will be denoted by boldface letters, eg. v;.

The convolutional encoder in Figure 3.2 is a mapping from input bit sequences
b(D) to output sequences C(D) whose elements are in S. The four g(D) polynomials
can be combined into one polynomial G (D) whose coefficients are in S. The rate 1/n

encoder equation is then expressed concisely as follows:

Cl(D)
D
co) - || Zypyam). (3.9)
c3(D)
ca(D)
For the rate 1/4 encoder shown in Figure 3.2
0 1 0 0 0 1 1
1 1 1 1 1 1 0
G(D) = + D+ D? + D? + D* + D’ + DS,
1 1 1 1 0 0 1
(3.10)
0 1 0 0 1 0 1

In this representation of a feedforward rate 1/n convolutional code, each output
vector C; is a linear combination of coefficients of G(D). For a general rate k/n
convolutional code, each C; is still a linear combination of vectors, but the vectors
are now the coefficients of the £ polynomials G;(D), Gy(D), ..., Gi(D):

C(D) = by (D)G1(D) + by(D)Go(D) + ..., +b(D) G (D). (3.11)

In this way, a rate k/n convolutional encoder is the sum (in S) of the outputs of k

rate 1/n encoders.
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3.3 Error Sequences

In this dissertation, decoding is assumed to be maximum likelihood sequence detec-
tion. Consequently, the sequences chosen by the receiver are always valid output
sequences (i.e., sequences that could have been produced by the encoder).

Suppose that a rate k/n convolutional encoder produces the output sequence C(D)
from input sequences by (D), ..., by(D), but the receiver mistakenly chooses C(D),
as though the input sequences were El(D), .. .,I;k(D). The output error sequence
E(D) = C(D)—C(D) is computed through the element by element vector subtraction
(in S) of C(D) and C(D).

Each output error sequence E(D) corresponds to k input bit error sequences,
e1(D), ..., ex(D). For a particular pair of output sequences (C(D), C(D)),

E(D) = C(D) - C(D) (3.12)
= > bi(D)Gy(D) = 3 b;(D)Gy(D) (3.13)
= 2_(0:(D) ~ b;(D))G4(D) (3.14)
= Zej(D)Gj(D)- (3.15)

Note that many combinations of by (D), ..., by(D) and by (D),. .., by(D) produce the
same input error sequences e (D), ..., ex(D) and thus the same output error sequence
E(D).

Every output error sequence is a valid encoder output sequence; it is the output
sequence produced by the input bit sequences e;(D),. .., ex(D). Conversely, every
valid output sequence is also an error sequence. To see this, select any valid output

sequence

C(D) = 3" b,(D)G, (D), (3.16)
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and take by (D), ..., by(D) to be all zeros sequences. Then

C(D) = zk:bj(D)Gj(D) (3.17)
= (55(D) = b;(D))G;(D) (3.18)
= Zej(D)Gj(D) (3.19)
=E(D). (3.20)

3.4 Distance Sequences

When a convolutional code is used as part of a trellis code, each nonzero vector in the
error sequence E(D) corresponds to the selection of an incorrect constellation point
(i.e., a symbol error). Consider the following example of a symbol error sequence for
a trellis code using the rate 1/4 encoder in Figure 3.2.

Let the correct input bit sequence b(D) be all zeros, which produces the all zero
output sequence C(D) = 0. Suppose that b(D) has an incorrect first bit (by = 1) but

all zeros thereafter. Thus 5(D) =1 and the incorrectly chosen output sequence is

DS,
(3.21)

C(D) =

>
O = = O
— = =
O = = O
S = = O
_ o = O
o O = o=
— = O

With output vectors C; mapped to constellation points using the labeled 16-
QAM constellation shown in Figure 3.3, Figure 3.4 shows the first seven constellation
points or symbols produced by b(D) (top row) and b(D) (bottom row). All the other
constellation points produced by b(D) and b(D) are identical.

For any specified transmitted and received sequences b(D) and b(D), the squared

Euclidean distance between the correct and incorrect ‘"

symbol will be referred to
as d?(b — I;) Table 3.1 shows the Euclidean distances for the example shown in

Figure 3.4, assuming that nearest neighbors in the constellation are separated by a
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0011 0001 0101 O111
[ [ [ L

0010 o000 0100 0110
[ o o L

1010 1000 1100 1110
[ [ o [

1011 1001 1101 1111
| | [ |

Figure 3.3: 16-QAM Constellation with Gray coding.

Output symbols for all zeros input sequence

OHONONON IONONONCRINONONONONI IONCHOHOIIONONONOI N ICHONONCII IONONONG;
ON NONOGAION NONCEINON NONOCIIION NONOIION NONOCINICN NONCIIION NONC
OO0 OO0l OO||OOOO|I|lOOOO|I|lOOOOIlOOOO]I|lOO OO
OHONONON IONONONCRINONONONONI IONCHOHOIIONONONOI N ICHONONCII IONONONG;
Output symbols for all zeros except initial bit
OO0 O0OO0||OO0OO0OOIIOOOO||lOO 0O OoO||0O0 OAIIONOCHONON ICHONONG)
oRCaSy MO ONGMINONCESE MEONCESE REC O O|l0O O OO O O
ONONONCGRINGNO) OlloOO0OO||l0O0O0OO|]|lOOOO||0O0O Ol o/0O O O
ONONONOAINONONGO) OO0 O0OO0O|[|lOO0O0OO||OO00OO0O||000O0 ONONG)

Figure 3.4: A trellis code error event. Correct output symbols
(top) and incorrect output symbols (bottom). The
bottom sequence shows the symbol errors with respect
to the top sequence as line segments.

i 0[1[2]3]4
d2b—b)[|4]8]4]4a]2]2]5

Table 3.1: Euclidean distances for symbol errors in Figure 3.4.
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distance of 1.
The terminology required to demonstrate the validity of (2.45) in the previous

chapter has now been introduced. The result is restated below as a theorem.

Theorem 1 The effective code length (see Definition 5 on page 13) of a trellis code T
consisting of a feed-forward rate k/n convolutional encoder with v memory elements

must satisfy the following bound:
v
< |= . .
BCL < LJH (3.22)

Proof: The feed forward convolutional encoder employs a separate shift register for
each input bit sequence b;(D) (j = 1,...,k). Identify an index j corresponding to a
shift register with the least number of memory elements. This shift register can have
at most |v/k| memory elements.

Consider a transmitted sequence in which each b;(D) is the all zeros sequence.
For j # j let @(D) also be the all zeros sequence Let the sequence 35(D) be all
zeros except an initial one. For this error sequence, d2(b — b) is only nonzero for the
initial symbol and the |v/k]| following symbols during which the initial 1 in IA)j(D)
passes through the shift register. Thus the effective code length cannot be larger than
\v/k| + 1 and the theorem is proved. O

The sequence of distances depends on the encoder output sequence C(D) as well as
the error sequence E(D). A particular error vector F can lead to different Euclidean
distances depending on the constellation point that was transmitted. Consider the

error vector Ey of the example discussed above (the coefficient of D* in (3.21)):

(3.23)

—_ o = O

The symbol errors associated with this error vector are shown in Figure 3.5. Half of
the constellation points have d*> = 2 as in the example. The other half have d? = 10.

The symbol errors will also be referred to as edges. The error vector that produces
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0011 0001 0101 O111
0010 0110

1010 1000 1100 1110

1011 1111

Figure 3.5: Symbol errors (edges) associated with the error vector
(edge label) [0101]".

a symbol error will be referred to as the label of that edge. Note that the mapping
of an error vector to its associated symbol errors (or a label to its edges) depends
intimately on the choice of constellation labeling. The next chapter explores how
constellation labeling affects the mapping of labels to edges.

As demonstrated in Figure 3.5, a particular edge label can correspond to more
than one distance. Thus an error sequence E(D) can correspond to several distinct
distance sequences {d2(b — b)} for different pairs (b,b). The metrics presented in
Chapter 2 are computed from the distance sequences, but only the worst distance
sequence (the one producing the lowest metric value) for each error sequence is of
interest. It is useful to define a worst case distance sequence for each E(D) by

selecting the smallest possible distances for each error vector E;.

Definition 13 For a specified labeled constellation, d?

"MIN

(E) is the smallest squared
FEuclidean distance of an edge with label E.

Note that d?

o 18 a BEuclidean distance, not a Hamming distance. It is the distance

associated with one element of a sequence and not the entire sequence.

Definition 14 For a specified labeled constellation and error sequence E(D),

d;(E(D)) £ dj,\(E:) (3.24)
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The term distance sequence always refers to {d?(E(D))} as described in Defini-
tion 14 unless it is specifically stated to refer to {d2(b — b)}. (Note that Appendix A
provides a list of all formal definitions.) The above definition allows code evaluation
to restrict attention to the possible sequences E(D) rather than consider all possible
combinations of (b(D), b(D)). However, it is possible that this definition is too pes-
simistic. Perhaps the distance sequence {d?(E(D))} is worse than any actual distance
sequence {d2(b — b)}.

The question of whether or not {d?(E(D))} is pessimistic is equivalent to asking
whether for every E(D) there is a pair (b(D), b(D)) such that

E(D) = Z(bj(D) —b;(D))G;(D) (3.25)
and
d2(b — b) = d2(E(D)) for all 4. (3.26)

For rate k/(k 4+ 1) convolutional codes used with Ungerboeck labeling, Unger-
boeck showed in [5] that such a a pair (b(D),b(D)) exists for every E(D). However,
Ungerboeck’s proof is specific to rate k/(k + 1) codes and his labeling scheme. In
general, such a pair may not exist. For certain code rates and labeled constellations
there may be pathological sequences E(D) for which no pair (b(D), b(D)) satisfies
conditions (3.25) and (3.26). Such pathological cases do not exist for the rates and
labeled constellations used in the code searches of Chapter 6.

When such pathological cases do exist, there is a risk associated with this pes-
simistic definition of distance sequence. A code search based on this definition might
not find the best code available. A better code might exist whose performance is
hidden by the pessimistic definition of distance sequences.

Ungerboeck’s code searches used a still more pessimistic definition of distance
sequence based on the structure of set partitioning. With this definition, there are se-
quences E(D) for which no pair (b(D), b(D)) exists that satisfies conditions (3.25) and
(3.26). Those searches produced excellent codes, but Ungerboeck’s search procedure

did not guarantee that there do not exist better codes at the same complexity.



Chapter 3. 'Irellis Codes 38

3.5 Equivalent Codes

As mentioned in the previous section, convolutional codes and trellis codes are found
through a computationally intensive exhaustive search. Papers listing the results of
code searches often have a row or two marked with an asterisk indicating that the
code listed was the best code found, but that the search was too computationally
intensive to be completed.

These code searches are based on metrics computed entirely from the distance
sequence defined in the previous section. Thus an efficient search should evaluate
only one code from a group of codes that all have the same distance sequences.
Below, three ways that codes can be considered equivalent are defined. The weakest
form of equivalence corresponds to codes that have the same distance vectors.

The strongest form of equivalence is presented first. The definition applies both

to convolutional codes and trellis codes.

Definition 15 Two codes are strictly equivalent if they have the same mapping of

mput sequences to output sequences.

Two strictly equivalent codes amount to different implementations of exactly the same
encoder. Strictly equivalent codes always have the same probabilities of event error
and bit error.

Note that two trellis codes can be strictly equivalent even if their respective con-
volutional codes are not, since differently labeled constellations can make different
convolutional codes produce the same constellation points.

In [21], two convolutional codes are considered equivalent if they have the same
range of possible output sequences. This form of equivalence is referred to as range

equivalence in this dissertation.

Definition 16 Two codes are range equivalent if they have the same set of possible

output sequences.

Definition 16 applies to trellis codes as well as convolutional codes. Range equiv-
alence preserves the space of error events and thus the probability of an error event.
However, two range equivalent codes may not have the same bit error probability
since the mapping of information bit sequences to output sequences is not necessarily

preserved.
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Of most interest to the code searches in this thesis is distance equivalence. This

form of equivalence is the weakest of the three.

Definition 17 Two trellis codes are distance equivalent if they have the same set of
distance sequences {d?(E(D))}.

Two distance equivalent codes need not have the same bit error probability or
even the same error event probabilities. However, as long as for every E(D) there
is a pair (b(D), b(D)) that satisfies conditions (3.25) and (3.26), distance equivalent
codes have the same values for the metrics of Chapter 2. This fact makes distance
equivalence a valuable tool for code searches based on those metrics.

Of course not all codes are distance equivalent. In certain cases the better code
among two codes that are not distance equivalent is easily identified. In these cases

the better code is called distance superior as defined below:

Definition 18 Trellis code T is distance superior to trellis code Ty if the distances
sequences of Ty can be paired (one to one) with those of Ty such that each term in
every distance sequence of 11 is greater than or equal to the corresponding term in
the paired sequence of Ty. There must be at least one strict inequality, otherwise the

trellis codes are distance equivalent.

If 77 is distance superior to Ty it will have larger (better) values for all the code design
metrics that will be introduced in Chapter 5.

For trellis codes, strict equivalence implies range equivalence, and range equiv-
alence implies distance equivalence. This section concludes with three statements
about range equivalent codes that justify the restriction to feedback free convolu-

tional codes made in Section 3.1.

Theorem 2 Two trellis codes are range equivalent if they use the same labeled con-

stellation and have range equivalent convolutional codes.

Proof: The equivalent sets of vector outputs {C(D)} must yield equivalent sequences

of constellation points since the same labeled constellation is used. []

Theorem 3 FEvery convolutional code is range equivalent to a feedback free code.
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This is a central result of [21], to which the reader is referred for the proof. Forney
also shows in [21] that for any given convolutional code one can always find a range

equivalent feedback free code that uses as few or fewer memory elements.

Corollary 1 FEvery trellis code is range equivalent to a trellis code using the same

constellation and a feedback free convolutional code.

This corollary follows immediately from the two previous theorems. It explains
why attention could be restricted to feedback free encoders in Section 3.1 without

loss of generality.

3.6 Swapping Basis Vectors

For a fixed constellation labeling, certain operations on the convolutional encoder
polynomials always produce a trellis code that is distance equivalent to the original.
Identifying such operations and excluding distance equivalent codes appropriately can
reduce the duration of a code search significantly.

Consider a trellis code with a labeled constellation and a rate k/n feedback free
convolutional code. The edge labels and the coefficients of G;(D), ..., Gg(D) are
both elements of the n-dimensional vector space S discussed in Section 3.2.

This section examines what happens when the coefficients of G (D), ..., Gg(D)
are replaced with a different set of coefficients through a bijective (one-to-one and
onto) mapping F' : § — S. The goal is to identify which mappings F' produce
distance equivalent codes so that the distance equivalent codes can be eliminated
from the code search.

F is assumed to be a bijective mapping F' : § — & throughout this section.
Mappings that implement a change of basis are considered first. Let {vy,...,v,} and
{V1,...,Vn} be bases for S.

Definition 19 The mapping F implements a change of basis from {vi,...,v,} to
{Vi,...,vp} if for any s € S and any subset A of {1,2,...,n}:

F(s) = Z\?i when s = Zvi. (3.27)

1€EA i€A
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Lemma 1 The mapping F' implements a change of basis <= F obeys the additive

property for s1,89 € S:
F(Sl + 52) == F(Sl) + F(SQ).

Proof: Let

S| — E A and Sy — g V;

€A i€As

where A; and A, be subsets of {1,2,...,n}. Define
Ay @ Ay 2 (A JAs) — (A Ay

If F" implements a change of basis as defined above, then:

F(sy+s9)=F (Z v, + Zvl>

€A i€As

F( Z vi) since v; +v; =0

€A1 B A

= Z Vi by Definition 19

€A1 B A

:Z{;i+2{;i since v; + v; =0

€A 1€ Ag

= F (Z vi) + F (Z vi) by Definition 19

€A i€A2

= F(s1) + F(s2) proving = .

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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Now suppose that F' obeys the additive property (3.28). Choose any basis {vy,...,v,}
and define v; = F(v;). Choose A to be any subset of {1,2,...,n} and let

s=) i (3.37)

1€EA

F(s)=F (Z vi> (3.38)

icA

= Z F(v;) by the additive property (3.39)
icA

=) v by definition of v; (3.40)
€A

This proves the <= direction. [

Now consider using F' to map one trellis code to another. The constellation
labeling remains the same, but F' is used to change the coefficients of the convolutional
encoder polynomials. For a given labeled constellation, certain mappings always
transform a trellis code into a different trellis code that is distance equivalent to the
original. The next theorem shows that these special mappings must implement a

change of basis.

Theorem 4 If the bijective mapping F' : S — S applied to the encoder polynomaial
coefficients of any trellis code with a given labeled constellation always produces a
trellis code that is distance equivalent to the original, then F implements a change of

basis.

Proof: Suppose that F' does not implement a change of basis. Then by Lemma 1
the additive property does not hold. Thus there are three distinct nonzero vectors
S1, 82,83 € & such that

S| + So = S3 (341)
F(s)) + F(sy) # F(s3). (3.42)

F(s1), F(s2), and F(s3) must be distinct because F' is bijective and must be nonzero
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or F' trivially does not preserve distance sequences.

Consider the rate 1/n convolutional code G(D) = s3D*+s,D +s; and apply F to
its coefficients to produce G(D) = F(s3) D>+ F(sy) D+ F(s;). Now consider all error
sequences E(D) for which d?(E(D)) is zero for i outside the index range i =0,. .., 4

and is nonzero for the indices 0 and 4:

3.43
3.44
3.45
3.46

dy >0
di >0
d? =0 fori>4
d? =0 for i < 0.

(3.43)
(3.44)
(3.45)
(3.46)

There are only two such sequences, shown below for the two codes G(D) and G(D).

EY(D) = (D*+ D +1)G(D) (3.47)
=s3D" + (83 +83)D* + (51 + 89 +53) D + (81 +82)D + 5y
EW(D) = (D*+ D +1)G(D)
= F(s3)D" + (F(s9) + F(s3)) D* + (F(s)) + F(sy) + F(s3)) D?
+ (F(s1) + F(s2)) D+ F(s1)

(3.48)

E@ (D) = (D? +1)G(D) (3.49)
= S3_D4 + S2D3 + (S1 + S3)D2 + SQD + S
E® (D) = (D*+1)G(D) (3.50)

= F(s3)D* + F(sy)D® + (F(s1) + F(s3)) D* + F(sy) D + F(s)

The D? term of EM (D) must be zero by (3.41). Thus d2(EM (D)) = 0. However,
the D2 term of E( (D) must be nonzero by (3.42). Thus d2(EM (D)) # 0. The D2
term of E®)(D) is also nonzero since F(s;) and F(s;3) are distinct. Thus G(D) has
a distance sequence that satisfies (3.43)—(3.46) and has d2 = 0, but G(D) does not.
Thus the codes are not distance equivalent, and the theorem is proved. [

So the only mappings that can always produce distance equivalent codes are those
that implement a change of basis. Note that the choice of initial basis is not important.

Since the choice of basis {vy,...,v,} in Lemma 1 was arbitrary, all mappings F' that
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implement a change of basis are found by selecting one arbitrary initial basis and
considering only changes of basis with respect to that initial basis.

The exercise of checking all possible changes of basis might appear tedious. How-
ever, when the edge labels and their corresponding minimum distances are considered,
relatively few mappings F' need to be considered. A procedure for efficiently identify-
ing the mappings of interest is presented below, and the mappings are found for the
example of the 16-QAM constellation in Figure 3.3 on page 34.

For QAM and PSK constellations, every point can be reached from every other

2

point by traversing one or more minimum d

edges. Thus a basis must exist among
the labels of these edges. For example, all Gray coded constellations (including the

constellation in Figure 3.3) have a basis formed by the Hamming weight one edge

2

labels, which are the only minimum d,,

edge labels for Gray coded constellations.
Choose n linearly independent edge labels corresponding to minimum d?,, edges
to be the basis {vq,...,v,}. The only vectors that can replace these vectors in a
change of basis that produces distance equivalent codes must be labels of minimum
2

S edges. Otherwise, G(D) with exactly one nonzero coefficient equal to an v,

mapping to a larger d2, is an example where the mapping does not yield a distance
equivalent code.

The restriction to minimum distance edge labels greatly reduces the number of
possible bases that must be considered. In fact, typical good labelings such as Gray
coding and many Ungerboeck labelings will have exactly n minimum d?, labels,

forcing F' to be a permutation of {vq,...,v,}. Each candidate basis {vq,...,v,} is

checked using the following theorem.

Theorem 5 A bijective mapping F : S — S that changes bases from {vi,...,v,} to

{V1,...,V} always produces a distance equivalent code <=
42 (Z vi> =&, (Z v> (3.51)
i€A icA

for every subset A of {1,2,...,n}.

Proof: If (3.51) does not hold, there is a vector s € § such that d2,(s) # d2(F(s)).

MIN MIN

Then the rate 1/n code G(D) = s is not distance equivalent to G(D) = F'(s), proving
the = direction.
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Because the mapping F' is a change of basis, it obeys the additive property (3.28).
Thus applying F' to the coefficients of the convolutional code polynomials is equivalent
to applying F' to the outputs of the convolutional encoder.

Recall that the set of error sequences is the same as the set of valid encoder output
sequences. Thus the error sequences for the code obtained by the application of F" are
found by applying F' to the original error sequences. If (3.51) holds, then these new
error sequences map to the same distance sequences as the original error sequences.
Thus the codes are distance equivalent and the <= direction of the theorem is proved.
O

In summary, the following procedure identifies all mappings F' that always pro-
duce distance equivalent codes when applied to a trellis code with a specified labeled

constellation:
1. Identify the edge labels of the minimum d2,, edges.
2. Choose a basis for S from among these labels.

3. Use Theorem 5 to check all possible bases comprising edge labels identified in
step 1.

To clarify how this procedure works, it is applied to the labeled 16-QAM con-
stellation in Figure 3.3. Because the constellation is Gray coded, the only minimum
distance edge labels are those containing three Os and one 1. There are exactly enough

minimum distance edge labels to form a basis. Select the following basis:

0 0 0 1
0 0 1 0 (3.52)
Vi = Vo = Vg = Vg4 = .
o Tl o Yo
1 0 0 0
Consider swapping vy and v3. That is, F' maps v; to v; with
0 0 0 1
. 0 ) 1 . 0 ) 0 (3.53)
Vi = Vo = Vo — V4 = .
o o T h Yo
1 0 0 0
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The minimum squared distances associated with the edge labels expressed in terms
of the two bases are given in Table 3.2. As shown in the table, the condition of
Theorem 5 is satisfied and thus the mapping from the basis in (3.52) to the basis in
(3.53) always produces distance equivalent codes when applied to the trellis code in
Figure 3.3.

There are 4! = 24 possible permutations of the four original basis vectors (includ-
ing the identity). Of these mappings, eight always produce distance equivalent codes.

These eight mappings consist of any combination of the following three operations:
1. Swap v, for vy.
2. Swap vy for vj.
3. Swap v; for vy, and swap v3 for vy.

Let’s apply these operations to the encoder of Figure 3.2. These operations are
all equivalent to permuting rows of (3.1). Thus the eight distance equivalent codes
are simply eight of the 24 permutations of the the octal words in (3.8). These eight
permutations are shown in Table 3.3.

Note that the 16 remaining permutations consist of two groups of eight distance
equivalent codes. A rate 1/4 code search using the Gray coded 16-QQAM constellation
can restrict its attention to three of the 24 permutations of any set of four code
polynomials g, (D), ..., g2(D). Thus code search complexity is reduced by a factor of
8.

The Ungerboeck labeled 16-QAM constellation in [5] also has eight mappings that
maintain distance equivalence. However, they cannot be expressed as simple permu-
tations of code polynomials g1(D),...,g2(D). This is because the vectors having
exactly one bit cannot be swapped since they have different values of dy;y. The four

minimum distance edge labels (the swappable basis vectors) are given below:

v, = Vo = V3 = V4= (3.54)

_ o O O
- O = O
=)
L=
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E Original Basis | d%(F) || d2x(E) | New Basis E
0001 vy 1 1 Vi 0001
0010 Vo 1 1 Vo 0100
0011 vy + vy 2 2 Vo + V4 0101
0100 V3 1 1 V3 0010
0101 V3 + Vi 2 2 V3 + Vi 0011
0110 V3 + Vo 4 4 V3 + Vo 0110
0111 V3 + vy + vy 5 5 V3 + Vo + V3 0111
1000 7 1 1 V4 1000
1001 vy + vy 4 4 V4 + Vi 1001
1010 V4 + Vo 2 2 V4 + Vo 1100
1011 Vit Ve + vy 5 5 Vi + Vo + V3 1101
1100 vy + V3 2 2 V4 + V3 1010
1011 V44 Vo + vy 5) 5) Vi + Vo + vy 1101
1101 V44 V3 + vy 5) 5) Vi + V3 + vy 1011
1110 Vit V3 + vy 5) 5) Vi + V3 + vy 1110
1111 | vy + vy + v + vy 8 8 V4 + Vs + vy 4+ vy | 1111

Table 3.2: The values of d?

of (3.53).

"MIN

043
045
043
045
176
171
176
171

for two edge labelings, one using the
original basis of (3.52) and the other using the new basis

176
176
171
171
043
043
045
045

171
171
176
176
045
045
043
043

045
043
045
043
171
176
171
176

Table 3.3: The eight permutations of the convolutional code (3.8)
that result in distance equivalent trellis codes when used
with the constellation in Figure 3.3.
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The distance equivalent permutations of code polynomials g1 (D), ..., go(D) as-
sociated with the Gray coded constellations allow a search program to loop through
distinct groups of polynomials and then check the interesting permutations. The dis-
tance equivalent codes associated with Ungerboeck labeled constellations do not have

such an obvious code search implementation.

3.7 Summary

This chapter introduced trellis codes, beginning with a discussion of convolutional
codes. Feedback-free convolutional encoders were represented in terms of the vector
space spanned by the coefficients of the encoder polynomials.

With maximum likelihood sequence detection, the possible error sequences are the
possible convolutional encoder output sequences. When the convolutional encoder is
used in conjunction with a labeled constellation to form a trellis code, each error
sequence E(D) can produce multiple sequences of symbol error distances depending
on the input bit sequence that was transmitted. A worst case distance sequence
{d?(E(D))} was defined for each E(D).

There are three ways that two trellis codes can be considered equivalent. The
weakest form of equivalence is distance equivalence, but even distance equivalent
codes have the same values of the metrics presented in Chapter 2 for the rates and
constellations examined in Chapter 6. Certain changes of basis result in distance

equivalent codes, a fact that allows a significant decrease in search complexity.



Chapter 4
Constellation Labeling

The design of a trellis code involves the selection of a labeled constellation and the
selection of a convolutional code to maximize some subset of the metrics presented
in Chapter 2. This chapter investigates how a constellation of a given size and shape
can be labeled so that the best possible metrics can be obtained. A single labeling is
shown to work well for all the metrics of Chapter 2.

Section 4.1 defines three ways that labeled constellations can be considered equiv-
alent corresponding to the three ways that trellis codes can be equivalent presented
in Section 3.5 of the previous chapter.

Section 4.2 defines ways that one labeled constellation can be considered supe-
rior to another: distance superiority and superiority in profile. Section 4.3 identifies
4-PSK, 8-PSK, and 16-QAM labeled constellations that are superior in profile to all
labeled constellations of the same size and shape, except those that are distance equiv-
alent. These labeled constellations are used in the trellis code searches of Chapter
6.

Two common constellation labeling strategies, Gray coding and Ungerboeck la-
beling, are considered in Section 4.4. These strategies are compared with each other
in the context of the ideas presented in the previous sections of this chapter.

The section begins with a demonstration of how Ungerboeck labeling and Gray
coding are often equivalent. For all 2"-PSK and square 4"-QAM constellations, a pair
of strictly equivalent constellations (i.e., constellations that produce strictly equivalent
trellis codes) can be found such that one is Gray coded but the other is Ungerboeck
labeled.

49
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Not all constellations have equivalent labelings with both strategies. As exam-
ples, the 8QAM and 32-QAM constellations are considered. This section demon-
strates that although Ungerboeck labeling is possible for these two constellations,
Gray coding is not.

Furthermore, constellations of the same size and shape that are Ungerboeck la-
beled are not necessarily distance equivalent. Likewise, two Gray labeled constella-
tions of the same size and shape need not be distance equivalent. Examples of this
phenomenon are given for Ungerboeck labeled 16-QAM and Gray labeled 16-PSK
constellations. The distance-superior 16-QAM labeling is also an isometric labeling
of the half integer grid.

The examples mentioned in the previous paragraph demonstrate that not all Gray
coded or Ungerboeck labeled constellations can be superior in profile to any other la-
beling. With either strategy, some labelings are distance superior to others. However,
the section concludes by proving that the “right” Gray coding will always produce a
labeled constellation that is superior in profile to all others whenever such a dominant

labeling exists.

4.1 Equivalent Labeled Constellations

The three ways that constellations can be considered equivalent correspond to the

three ways that trellis codes can be equivalent defined in Section 3.5.

Definition 20 Two labeled constellations C; and Co are strictly, range, or distance
equivalent if for any trellis code that uses labeled constellation Cy there is respectively

a strictly, range, or distance equivalent trellis code that uses labeled constellation Cs.

As will be discussed in Chapter 5, the primary consideration in designing a trellis
code is minimization of the maximum pairwise error probability. For AWGN channels,
even those with variations in SNR due to fading or frequency selectivity, this is
accomplished with metrics that depend only on the distance sequences of the trellis
code.

Distance equivalent trellis codes have the same distance sequences and thus the

same values for these metrics. If C; and C, are distance equivalent, then for every trellis
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code that uses C; there is a distance equivalent trellis code that uses C5. Thus a code
search need consider only one member of a set of distance equivalent constellations.

The previous chapter showed that certain changes of basis applied to the convo-
lutional code polynomials produce distance equivalent trellis codes. In this section,
changes of basis applied to the constellation edge labels are shown to produce distance

equivalent constellations.

Theorem 6 Any two labeled constellations C1 and Cy whose edge labels are related

by a change of basis are distance equivalent.

Proof: Let F' be the mapping that implements the change of basis relating the edge
labels of C; to those of Cy. Select any trellis code 77 having constellation C; and a
feedback-free rate k/n convolutional encoder with polynomials Gy, . .., Gy. Construct
a trellis code T, by using constellation Cy with the convolutional encoder that results
from applying F' to the coefficients of Gy, ..., Gy.

Consider any set of input bit error sequences e; (D), ..., ex(D). The output error

sequence produced by 77 is

EW(D) = Xk: ¢;(D)G;(D) (4.1)
= i E!'D'. (4.2)

E?(D) = Z e;(D)F(G;(D)) (4.3)
= Z F(e;(D)G;(D)) (4.4)
= i FEM) D, (4.5)

Equality in (4.4) follows from the additive property of F' (see Lemma 3.28).
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Every edge labeled E; in C; is labeled F'(E;) in Cy, and so dyx(E;) in C; is equal to
dyix(F(E;)) in Cy for every i. Thus 77 and T; are distance equivalent and the theorem
is proved. [

The construction of 7, above can also be used to demonstrate how constella-
tions related by a change of basis that share the same zero labeled point are strictly

equivalent.

Theorem 7 Two labeled constellations C; and Cy whose edge labels are related by a
change of basis are strictly equivalent <= they label the same point with the zero

label.

Proof: Consider the trellis code 75 constructed in the previous proof. Now replace
input error sequences e;(D) with input bit sequences b;(D) and output error sequences
E(D) with encoder output sequences C(D) in the previous proof.

If two constellations with edge labels related by a change of basis label the same
point with zero, then the point labels as well as the edge labels are related by that
change of basis. Thus C; labels the same point in C; that output F(C;) labels in C,.
Thus T} and 75 are strictly equivalent, and the = direction is proved.

The all zeros input sequence maps to the output sequence that consists entirely of
symbols equal to the constellation point having the zero label. Two constellations with
different points having the zero label cannot be strictly equivalent since the all zeros
input sequence does not map to the same output sequence for both constellations.

This proves the <= direction. []

The design of a trellis code includes the selection of a labeled constellation. The
choice of labeling for a given constellation is simplified by the fact that many differ-
ent labelings produce strictly equivalent constellations. Consider a labeled 16-QAM
constellation such as the one in Figure 3.3 of the Chapter 3. Maintaining the same
zero labeled point, any change of basis produces a strictly equivalent constellation.
The number of these mappings is the same as the number of bases for the space of
four bit vectors, which is 15 x 14 x 12 x 8 = 20 160.

The number of labelings that produce distance equivalent constellations is, of
course, even larger. For distance equivalence there is freedom to place the zero label

on any of the points. Thus the number of distance equivalent labelings is at least the



Chapter 4. Constellation Labeling 53

number of strictly equivalent labelings above multiplied by the size of the constella-
tion. Thus for the 16-QAM constellation, there are at least 16 x 20160 = 322 560
distance equivalent constellations.

That still leaves 16!/322 560 = 64 864 800 distinct labelings that do not necessarily
produce distance equivalent codes. These remaining distinct labelings are the subject

of the next section.

4.2 The Edge Length Profile

In the previous section many different labeled constellations were shown to produce
distance equivalent and even strictly equivalent trellis codes. In this section, labeled
constellations that do not produce distance equivalent codes are compared. The goal
is to remove inferior labelings from consideration and thus reduce search complexity.
Two ways in which one constellation can be superior to another are discussed
below. This discussion refers to three constellations Cy, él, and C, of the same size
and the same shape. The size of a constellation C is the number of points in C and is
denoted by |C|. C, Cy, and C, have edge labels EEI), Egl), and El@), respectively.

Definition 21 C; is distance superior to Cy (or Cy is distance inferior to Cy) if for
every trellis code Ty designed using Cy there is a distance superior (see Definition 18)
trellis code T defined using Cy.

Lemma 2 C; is distance superior to Co if there exists a constellation C, distance
equivalent to Cy such that fori=1,...,|Cq|:

Qe (ELV) > dyi (EY) (4.6)

) )

with at least one strict inequality.

Proof: By (4.6), any trellis code Ty designed with C, is distance inferior to the
trellis code Tl that uses the convolutional code of 15 with the constellation él. T
must also be distance inferior to some trellis code 77 designed using C; since C; is
distance equivalent to él. Thus for any trellis code T using Cy there is a distance

superior trellis code T using C;. [
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The metrics (to be introduced in Chapter 5) that will used for designing trellis
codes are larger (better) for distance superior trellis codes. Thus any trellis code
designed using C, is inferior in these metrics to some code designed using C;. The
inferior constellation C; may be removed from consideration in a trellis code search
based on these metrics.

Any set of possible constellation labelings is partially ordered under Definition 2
since distance superiority obeys the transitive property. However, there may be two
constellation labelings that are not distance equivalent with neither being distance
superior. Thus Definition 2 does not necessarily provide a complete ordering for the
set of possible labelings. Even when one labeling is distance superior to another,
demonstrating this using Lemma 2 requires effort.

A weaker form of superiority that is easily applied to any pair of labelings uses a

labeled constellation’s edge length profile.

Definition 22 The edge length profile {p;} of a labeled constellation is defined to be

the list of d%(E) values for all nonzero edge labels E listed in increasing order.

To demonstrate, an example edge length profile is constructed for the labeled
16-QAM constellation shown in Figure 3.3 of Chapter 2. Table 3.2 shows the d? (E)
values listed lexicographically according to F for that constellation. The correspond-
ing edge length profile is given in Table 4.1. Superiority based on the edge length
profile is defined in terms of {pz(-l)} and {p§2)}, the edge length profiles for C; and C,

respectively.

e || 1121341567819 ]10 (1112|1314 |15
pi (|1 (111|222 (2|4| 4| 5| 5| 5| 5| 8

Table 4.1: Edge length profile for 16-QAM constellation in
Figure 3.3.

Definition 23 C is superior in profile to C if pl(l) > pl@) for i =1,...,|C;| with at

least one strict inequality.

Often, if C; is superior in profile to Cy, then C; is also distance superior to C,.

In fact, no example has been found where C; is superior in profile to C; and not
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distance superior to C,. However, it remains to be shown whether superiority in
profile always implies distance superiority. Furthermore, superiority in profile still
may not completely order the set of possible labelings.

The code searches in this dissertation restrict attention to labelings that are supe-

rior in profile to all others. The next section identifies these constellations for 4-PSK,

8-PSK, and 16-QAM.

4.3 Superior in profile constellations

This section derives labeled constellations that are superior in profile to all other
labeled constellations of the same size and shape (except those that are distance
equivalent). This section considers only 4-PSK, 8-PSK, and 16-QAM constellations.
However, the strategy of optimizing the edge length profile can be applied to larger
constellations as well.

The derivations are given in order of difficulty rather than constellation size.
4-PSK has the simplest derivation while 16-QAM requires more discussion, and 8-PSK
is the most involved of the three derivations. Three lemmas about labeled constella-
tions are used extensively in the following discussion. These lemmas are direct results

of the fact that no two constellation points have the same label.

Lemma 3 All the edges emanating from a given point must have different labels.

Proof: Edge labels are computed as the difference of the labels of the two connected
constellation points. Since all the constellation points have different labels, all the

edges emanating from a given point must have different labels. [

A path consists of one or more sequentially connected edges. The next lemma
concerns the sums of edge labels along different paths emanating from the same

constellation point.
Definition 24 A path’s edge label sum is the sum of the edge labels in that path.

Lemma 4 Two different paths emanating from the same initial constellation point

have the same edge label sum if they end at the same final constellation point.
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Proof: Each edge label is the difference of the associated point labels. All the
intermediate point labels along a path cancel in the edge label sum leaving only the
difference of the initial point and the final point regardless of the particular path
taken.

The two paths share the same initial point, and every constellation point has a
different label. Thus the edge label sums are the same if and only if the final points

are the same. [

Lemma 5 If all points in a constellation are connected by paths consisting only of
edges with the minimum edge length, then the set of edge labels of the minimum length

edges must contain a basis for the set of all edge labels.

Proof: Fix an initial point. Every other point can be reached by a path consisting
only of minimum length edges. Thus every edge label can be expressed as the edge
label sum of minimum length edges. Hence a subset of the minimum length edge
labels is a basis. [

Lemma 5 applies to all PSK and QAM constellations considered in this disserta-

tion.

4.3.1 4-PSK

This section upper bounds the edge length profile for 4-PSK and identifies the label-
ings that achieve this bound.

To construct the edge length profile bound, the set of edges emanating from any
single point are considered. Regardless of how the constellation is labeled, each edge
in this set has a distinct label by Lemma 3, and every edge label appears exactly once
among this set of edges. As a result, the d2  of each edge label is upper bounded by
the squared length of one of the edges in the set. Thus these edges produce an upper
bound on the edge length profile.

For any labeled constellation of the same size and shape, no element in its edge
length profile can be larger than the corresponding element in the bounding edge
length profile described above. Figure 4.1(a) shows the edges used to construct this
edge length profile bound for the 4-PSK constellation.
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Vo
1 1
A
(a) Edges for length profile bound. (b) Labeling that achieves the bound.

Figure 4.1: 4-PSK constellation shown with edges for edge length
profile bound (left) and edge labeling that achieves the
bound.

The bounding edge length profile resulting from the edges in Figure 4.1(a) is shown

below in Table 4.2, assuming nearest neighbors are separated by 1.

i [112]3
il 1]1]2

Table 4.2: A bounding 4-PSK edge length profile.

To achieve this bound on the edge length profile, there can only be two edge labels
with d2,, = 1. The only way to have only two such edge labels and satisfy Lemma 3
is for the edge labels to alternate around the ring as shown in Figure 4.1(b).

The remaining choices are selecting the basis vectors vy and vy and selecting
the point to be labeled 00. All possibilities for these two choices produce distance
equivalent constellations. Thus any 4-PSK constellation that has edge labels as in

Figure 4.1(b) is superior in profile to all but distance equivalent 4-PSK constellations.

4.3.2 16-QAM

The 16-QAM constellation is considered next since a simple edge length profile bound
is easily achieved as with 4-PSK. Figure 4.2 shows the edges used to construct an
edge length profile bound for the 16-QQAM constellation using the same technique as
for 4-PSK.
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Figure 4.2: Edges emanating from one point are used to construct a
16-QAM edge length profile that cannot be surpassed.

The bounding edge length profile resulting from the edges in Figure 4.2 is shown
below in Table 4.3. Recall that the nearest neighbor distance is assumed to be 1.
Table 4.3 is exactly the edge length profile of Table 4.1. Thus this bounding profile is

e || 1121341567819 ]10 1112|1314 |15
pi |1 (1112|212 (2|4| 4| 5| 5| 5| 5| 8

Table 4.3: Bounding edge length profile for edges in Figure 4.2.

achieved by the Gray coded constellation shown in Figure 3.3. All of the 16-QAM con-
stellations that achieve this bound are distance equivalent, as shown by the following

argument, which is illustrated in Figure 4.3.

2

There are exactly four d,

= 1 edge labels in a labeled constellation that achieves
the edge length profile of Table 4.3. The following argument shows that all square
16-QAM constellations that have exactly four d2,, = 1 edge labels are distance equiv-
alent.

Lemma 5 implies that the d%,, = 1 edge labels must form a basis. Choose any
basis {vy, Vs, v3, v4} to be the edge labels for the four minimum d%, edges. The
particular choice of basis is unimportant since all choices lead to distance equivalent
constellations.

Choose one of the four central points and label the four minimum d?,, edges

connected to this point. Step 1 (Figure 4.3(a)) shows a labeling for these four edges.
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Each of the four edge labels must be different by Lemma 3. Only one of the 4! ways of
matching the four basis vectors to the four edges is considered since the other choices
can be attained by the appropriate permutation of the basis.

Now consider the edges labeled a and b in Step 2 (Figure 4.3(b)). Lemma 4 gives
Vo + V3 = a+b. (47)

Recall that each vector v; is its own additive inverse. If a — v; then b must
equal v + vy + v3 to satisfy (4.7). However, b would then be a fifth edge label with

d?, =1, and the edge length profile would not be achieved. Similarly, a = v4 would
force a fifth edge with d?,, = 1. Lemma 3 prevents a = v,.

This leaves a = v3, and (4.7) forces b = vy. The same reasoning provides labels
for the six remaining unlabeled edges shown in Step 2. Step 3 (Figure 4.3(c)) shows
the resulting labeling for these edges.

Step 3 introduces two new edges labeled ¢ and d. Lemma 3 forces ¢ = v4 and
d = v; or the introduction of additional edges with d2,, = 1. The remaining unlabeled
edges in Step 3 have their labels forced exactly as in Step 2. The two unlabeled
edges in Step 4 (Figure 4.3(d)) also have their labeling forced as in Step 2. Step 5
(Figure 4.3(e)) shows the constellation with all the minimum d2  edges labeled.

Note that the edge labeling of Figure 4.3(e) was entirely forced after the initial
labeling of Step 1. Thus all 16-QAM constellations that achieve the edge length
profile bound of Table 4.3 are distance equivalent, being related by a change of basis.

Any 16-QAM constellation that achieves the length profile bound can be con-
structed by choosing a point to have the zero label and selecting a basis vy, ..., vy.
Figure 4.3(f) shows one example. This labeling is exactly the same as the Gray coded
16-QAM constellation shown in Figure 3.3 of the previous chapter. It was achieved

by choosing

v = 1000 (4.8)
vy = 0100 (4.9)
vs = 0001 (4.10)
v, = 0010. (4.11)
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(e) Step 5. (f) A point labeling.

Figure 4.3: Steps for achieving the best possible edge length profile
for a 16-QAM constellation.
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4.3.3 8-PSK

In this subsection, the set of labeled 8-PSK constellations that are superior in profile
to all others is constructed. As with 4-PSK and 16-QAM, all these superior in profile
constellations are shown to be distance equivalent. The line of argument in this
subsection is slightly different from that of the previous two. First, a set of distance
equivalent constellations is constructed. Then the constellations in this set are shown
to superior in profile to all other 8-PSK constellations.

The distance between nearest neighbors in an 8-PSK constellation is referred to
as A;. Lemma 5 implies that there must be a basis containing only edge labels
with d?, = A;. The vector space of 3-bit vectors that label the edges of 8-PSK
constellations require three vectors to form a basis. Thus there must be three distinct
labels that have d2, = A;.

All labelings that have the smallest possible number (three) of labels with d2,, =
A; are now shown to be distance equivalent. The steps in this argument are shown
in Figure 4.4.

Choose any basis {vy, vy, v3} to be the three edge labels with d2,, = A;. All the
d2. = A, edges will be labeled with one of the three basis vectors. In Step 1 (Fig-
ure 4.4(a)) an arbitrary point is labeled 0 and the two minimum d2,, edges emanating
from this point are labeled vy and v3. (The other possible labels for these edges from
{v1, Vg, v3} could be obtained by a permutation of the choice of initial basis and thus
lead to distance equivalent constellations.)

Consider the two edges labeled a and b in Step 2 (Figure 4.4(b)). By Lemma 3,
a# vy and b # v3. Thus a € {vy,v3} and b € {vy,vy}. If both a and b are
chosen to be vy, it is impossible to label the rest of the dZ,, = A; edges with labels
in {vy, vy, v3} and have a different label for each point. It is also impossible to have
both a = v3 and b = v, since this would lead to the points labeled v; +a and v3+b

having the same label. There remain two choices:
1. a=v3and b = v,.
2. a=vyand b = vy.

These two choices produce distance equivalent constellations. For the moment,

select the first choice. Step 3 (Figure 4.4(c)) shows the resulting labels and identifies
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Vi + V3 Vo + V3
Vi + Vy + V3
vitvz+ec vy +vz+d
o Vi + Vg
(c) Step 3. (d) Step 4.
0
Vi + Vo
Vi + vy Vi + V3
Vi+vy+c vi+vy+d
) Vo + V3
(e) Alternate Step 3. (f) Alternate Step 4.

Figure 4.4: Steps for achieving the best possible edge length profile
for an 8-PSK constellation.

Vo + V3

Vi + V3

Vi + Vy + V3
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the edges labeled ¢ and d as the next edges to be considered. The point labeled
vi + v3 4+ ¢ cannot be labeled v; or vi3. There are already points with those labels.
Thus ¢ cannot be v3 or vy, leaving only ¢ = vy. The point in question is labeled
V] + vy + vs.

Now consider the point labeled v + v, +d in Figure 4.4(c). The choice of d = v,
is not possible since the point label v; + vy 4+ v3 is no longer available. Similarly,
d = v, is not possible. The only choice is d = v3 producing the point label v,.

In Step 4 (Figure 4.4(d)), there is one remaining point and one remaining point
label. The remaining point label v; 4+ vy forces the two remaining edge labels to be
vy and vj.

Now suppose that in Step 2 the second choice is made so that a = vy and b = v;.
This choice leads to the alternate Steps 3 and 4 shown in Figures 4.4(e) and 4.4(f).
These alternate steps follows by symmetry from the original Steps 3 and 4.

The resulting constellations shown in Step 4 and Alternate Step 4 (Figures 4.4(d)
and 4.4(f)) are distance equivalent. To see this, consider changing the basis of the

constellation in Step 4 using the following mapping:

Vi — V3 (412)
Vo — Vo (413)
V3 — Vi (414)

This produces exactly the edge labeling of Alternate Step 4 rotated by 45 degrees.

Every 8-PSK constellation must have at least three edge labels with d2,, = A;.
The above construction demonstrates that all the constellations with exactly three
such edge labels are distance equivalent. The last step is to show that this set of
labeled constellations is superior in profile to all other labeled 8-PSK constellations.

Figure 4.5 shows the edges emanating from a single point in an 8-PSK constel-
lation. The four possible distances between two points in an 8-PSK constellation
are identified in Figure 4.5 as Ay, Ay, A3, and A,. As with the 16-QAM constella-
tion, these edges produce an edge length profile bound. Table 4.4 shows the edge
length profile bound corresponding to Figure 4.5. For comparison, Table 4.5 shows
the edge length profile of the d?,,(E) values for the labeled constellation shown in
Figure 4.4(d).
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Figure 4.5: Edges for an 8-PSK edge length profile bound.

7 1 2 3 4 5 6 7
Di || A1 | Ay | Ay | Ay | Ag | Az | Ay

Table 4.4: Edge length profile bound for edges in Figure 4.5.

The edge length profile bound of Table 4.4 bounds each element p; independently,
and the edge length profile of Table 4.5 achieves the bounding values of Table 4.4 for
D1, P2, P4, Pe, and p7. Thus if p3 and ps in Table 4.5 can be shown to be as large as
possible for any 8-PSK labeled constellation, then the set of distance equivalent con-

stellations constructed above is superior in profile to all other 8-PSK constellations.

2
MIN

Every 8-PSK constellation must have three edges with ds, . = Ay, hence p3 = A,
for every 8-PSK constellation. Thus the value of p3 in Table 4.5 is as large as possible,
and the bound on p; in Table 4.4 is not achievable by any 8-PSK constellation.

The last step is to show that ps; in Table 4.5 is also as large as possible for any
8-PSK constellation. It was shown above that 8-PSK constellations must have at
least three edges with d%,, = A;. All 8-PSK constellations with exactly three such
edges are distance equivalent and have the profile of Table 4.5. The only possibility
for a ps that is larger than the A, in Table 4.5 is to have more than three edges with
dZ. = Ay

If there are five or more edges with d?, . = Ay, then ps = A; < Ay. Suppose that

= A;. Since three of these edge labels

form a basis, there is at most one subset of three of these edge labels that sum to

there are exactly four edge labels with d2

zero. Equivalently, at most one pair of these edge labels will sum to produce another

one of these four edge labels.
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l 1 2 3 4 Y 6 7
FE V1 Vo V3 Vi+Vy | Vog+ Vg | Vi+Vy+ Vg | V] + Vo
pPi = dl%/IIN (E) AI AI AI AQ AQ A3 A4

Table 4.5: Edge length profile for constellation in Figure 4.4(d).

There are at least two edge labels for edges with squared distance Ay by Lemma 4,

but these edge labels could actually have d2,, = A;. The A, edges always have labels

2

o = Aj. From the previous paragraph,

that are the sum of a pair of edge labels with d
only one of these edge labels can have d? . = A;. Thus there is at least one edge label
with d2,, = A, if exactly four edge labels have d?,, = A;. In this case, ps = As.
Thus no 8-PSK labeling can achieve ps > A,, and the edge length profile of
Table 4.5 cannot be surpassed. All the 8-PSK constellations that achieve the length
profile of Table 4.5 must have exactly three edge labels with d?. . = A;. As shown

MIN

above, all these constellations are distance equivalent.

4.4 Gray Coding and Ungerboeck Labeling

Noticeably missing from the first three sections of this chapter was any mention of the
two most popular strategies for labeling constellations, Ungerboeck labeling and Gray
coding. Using the concepts of distance equivalence and distance superiority, some new
insights can be gained about these standard labeling techniques. In Section 4.4.1 Gray
coding and Ungerboeck labeling are introduced and formally defined.

Section 4.4.2 shows how Ungerboeck labeling and Gray coding can often be strictly
equivalent. For all 2"-PSK and square 4"-QAM constellations, pairs of strictly equiv-
alent labeled constellations are constructed such that one constellation meets the
definition of Gray coding and the other meets the definition of Ungerboeck labeling.
The superior-in-profile edge labelings identified in Section 4.3 can be achieved by such
pairs of strictly equivalent constellations, one Gray coded and the other Ungerboeck
labeled.

Not all constellations have equivalent labelings with both strategies. As examples,
the 8-QAM and 32-QAM constellations are considered. Section 4.4.3 demonstrates
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that although Ungerboeck labeling is possible for these two constellations, Gray cod-
ing is not.

Surprisingly, constellations of the same size and shape that are Ungerboeck labeled
are not necessarily distance equivalent. Likewise, two Gray labeled constellations of
the same size and shape need not be distance equivalent. Examples are given in Sec-
tion 4.4.4 for Ungerboeck labeled 16-QAM and Gray labeled 16-PSK constellations.

The examples mentioned in the previous paragraph demonstrate that not all Gray
coded or Ungerboeck labeled constellations can be superior in profile to every other la-
beling. With either strategy, some labelings are distance superior to others. However,
Section 4.4.7 concludes that the “right” Gray coding will always produce a labeled
constellation that is superior in profile to all others whenever such a dominant labeling

exists.

4.4.1 Definitions

Gray coding was first introduced in the context of uncoded transmission. To minimize
the effect of noise on the BER, Gray coding enforces the rule that all nearest neighbors
differ by exactly one bit. In this way, the most common symbol errors in uncoded

transmission (those between nearest neighbors) lead to one bit error.

Definition 25 A labeled constellation is Gray coded if and only if all nearest neigh-
bors differ by exactly one bit.

This motivation for using Gray coding in the context of uncoded transmission does
not apply to the context of coded transmission. As pointed out by Ungerboeck in [5],
the strategy of combining Gray coded constellations with maximum Hamming dis-
tance convolutional codes does not always provide the maximum Euclidean distance.
Ungerboeck labeling was introduced by Ungerboeck in [5] as part of a technique for
designing maximum Euclidean distance trellis codes.

Ungerboeck labeling (also called set partitioning) partitions the constellation into
a hierarchy of collections of mutually exclusive, collectively exhaustive subsets with
the largest possible separation between nearest neighbors in the same subset. Follow-
ing the approach set forth in [5], these subsets (often called cosets because of their
algebraic structure) will be identified by the appropriate number of least significant
bits.
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Definition 26 A 2"-point constellation is called Ungerboeck labeled if for every m €
{1,...,n} the minimum distance of two points sharing the same m least significant

bits is as large as possible.

Ungerboeck labeling was invented for a code design technique that features the
use of uncoded bits. Since uncoded bits result in poor performance on the fading
channels of interest in this dissertation, Ungerboeck labeling is not the obvious choice

for code designs for these channels.

4.4.2 Strictly equivalent pairs

In this subsection, pairs of strictly equivalent labeled constellations such that one
meets the definition of Ungerboeck labeling and the other meets the definition of
Gray coding are constructed for all 2”-PSK and square QAM constellations. The PSK
and square QAM cases are proved separately, but both proofs use similar inductive

arguments.

Theorem 8 For any positive integer n, there is a pair of distance equivalent 2"-PSK
constellations such that one meets the definition of Gray coding and the other meets

the definition of Ungerboeck labeling.

Proof: The base case of 2-PSK obviously meets either definition. Now consider the
following inductive edge labeling strategy, illustrated in Figure 4.6. When going from
the n — 1 case to the n case, label the 2" minimum distance edges by alternating
around the ring between using a new basis vector v,, and using the n — 1 case basis
vectors {vy,..., v, 1} in their original pattern around the ring.

Choosing the n case basis {vy,...,v,} to be the vectors with exactly one bit equal
to 1 (and all the rest 0s) labels the constellation to meet the Gray coding definition.

Suppose that n—1 case basis {Vy,..., Vv, 1} provide an edge labeling for the 2"~'-
PSK constellation that meets the definition for Ungerboeck labeling. Choose the n

case basis in the following way: For ¢ € {1,...,n— 1} set
v, = (v, << 1)+ 1. (4.15)

That is, left shift v; by one bit and make the least significant bit a 1. Set v,, = 0...01.
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Vi vy

Vi V1

Vo Vi

(a) 2-PSK (b) 4-PSK

(c) 8-PSK (d) 16-PSK

Figure 4.6: Inductive edge labeling strategy for 2"-PSK.

All the minimum distance edge labels have a 1 in the least significant bit. Thus all
points sharing the same least significant bit are separated by paths consisting of an
even number (at least two) minimum distance edge labels. The resulting separation
of at least 27 /2"~ ! radians is the largest separation possible for 2"~! points on a ring.

The points that share m > 2 least significant bits are either all in the n — 1
case Ungerboeck labeled constellation or a 7/2"! rotation of it. These points are
separated by the largest distance possible (27/2"~™ radians) because of the labeling
structure inherited from the n — 1 case.

The Gray labeled and Ungerboeck labeled PSK constellations described above
differ only in the choice of basis. In either case, any point can be chosen to have the

zero label. When the same point is chosen to have the zero label, the Ungerboeck
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labeled and Gray coded constellations are strictly equivalent by Theorem 7. [

Theorem 9 For any positive integer n, there is a pair of distance equivalent square
4"-QQAM constellations such that one meets the definition of Gray coding and the
other meets the definition of Ungerboeck labeling.

Proof: The square QAM constellations under consideration all have the structure of
the Z? lattice — the 2-dimensional integer grid. The base case of 4-QAM is shown
in Figure 4.7(a). Since 4-QAM is identical to 4-PSK, Theorem 8 applied to this
constellation guarantees choices of v; and v, that satisfy each of the two definitions.

Consider the following inductive edge labeling strategy illustrated in Figure 4.7
for 4-, 16-, and 64-QAM. For all these square QAM constellations, the vertical edges
in any one row all have the same edge label, and the horizontal edges in any one
column all have the same edge label.

The induction determines the labeling for these rows and columns. The top row
of minimum distance vertical edges are labeled with the new basis vector vg,_ ;.
Thereafter, rows of vertical edges are alternately labeled with the vectors used on the
rows of vertical edges in the n — 1 case (in the same pattern) and vy, ;. The columns
of horizontal edges are labeled in the same way, using the new basis vector vy,.

Selecting the basis vectors vy,..., vy, to be the vectors having exactly one bit
equal to 1 produces a labeled constellation that meets the definition of Gray labeling.

Suppose that {vy,..., V9, o} are the edge labels of a square 4" '-QAM constel-
lation that meets the definition for Ungerboeck labeling. For i € {1,...,2(n —1)}

set

v, = (Vi <<2)+1 for i odd (4.16)
v, = (V; <<2)+3 for i even. (4.17)

That is, left shift v; by two bits and make the two least significant bits 01 for ¢ odd

and 11 for 7 even. Also set

Von—1 — 0...01 (418)
Vo, = 0...11. (4.19)
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All minimum distance edge labels have a 1 in the least significant bit. Thus the
shortest path between two points sharing the same significant bit must have at least
two minimum distance edges. Let the distance between nearest neighbors be 1. All
the points sharing the same least significant bit are separated by a distance of at least
v/2, which is the largest separation possible for half the points in a Z? lattice.

The horizontal minimum distance edges all have a 1 in the next to least significant
bit, and the vertical minimum distance edges all have a 0 in the next to least significant
bit. Thus points that share the two least significant bits must either be in the same
row or in a row that is not adjacent. In either case, the two points are separated by
a distance of at least 2, which is the largest separation possible for one fourth of the
points in a Z? lattice.

The points that share m > 2 least significant bits all belong to a scaled, shifted
n—1 case Ungerboeck labeled constellation. These points are separated by the largest
distance possible because of the labeling structure inherited from the n — 1 case.

The Gray labeled and Ungerboeck labeled square QAM constellations described
above differed only in the choice of basis. In either case, any point can be chosen to
have the zero label. When the same point is chosen in both cases to have the zero
label, the Ungerboeck labeled and Gray coded constellations are strictly equivalent
by Theorem 7. [J

The 4-QAM, 8-PSK, and 16-QAM labelings found in Section 4.3 are the same as
those produced by the labeling strategies presented in the two proofs above. Thus
both Gray coded and Ungerboeck labeled constellations exist that are superior in

profile to all but distance equivalent labeled constellations for these cases.

4.4.3 Constellations that cannot be Gray coded

The previous subsection demonstrated that strictly equivalent Ungerboeck labeled
and Gray coded constellations can be found for all 2"-PSK and square 4"-QAM con-
stellations. However, the two labeling strategies are not entirely equivalent. Unger-
boeck labeling can be applied to constellations where Gray coding is not possible.
Two examples are given below.

An 8-QAM constellation (also called 8-AMPM or 8-Cross) is shown in Figure 4.8(a)
with Ungerboeck labeling. This constellation cannot be labeled with Gray coding. As
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shown in Figure 4.8(b), some points have four nearest neighbors, but there are only
three 3-bit edge labels that have Hamming weight one. By Lemma 3 it is impossible

to label every minimum distance edge with a Hamming weight one label.

010 000
[ [
011 001
[ J [ [
100 110
[ o
101 111
[ [ [ [
(a) Ungerboeck labeling. (b) Four nearest neighbors.

Figure 4.8: An 8-QAM constellation that can be Ungerboeck
labeled but not Gray coded.

A common 32-QAM constellation is shown in Figure 4.9(a) with Ungerboeck la-
beling. As with the 8-QAM constellation above, this constellation cannot be labeled
with Gray coding. However, the 32-QAM demonstration is more involved.

The Gray coding definition is based on the edge labels, and is entirely independent
of which point is labeled zero for a given edge labeling. There are four symmetric
points at the center of the 32-QAM constellation. Without loss of generality, the
top left center point is chosen to have the zero label (00000). Having selected this
zero label, the Hamming weights of all the labels are forced to be either those shown
in Figure 4.9(b) or a reflection of those weights about the diagonal from top left to
bottom right.

Without loss of generality, assign the five Hamming weight 1 points in Figure
4.9(b) with labels as shown in Figure 4.9(c). All the labels shown in Figure 4.9(d)
are forced by the choice of the Hamming weight 1 labels and the following two re-

quirements:

1. Every minimum distance edge label must have Hamming weight one.

(Otherwise the constellation is not Gray coded.)
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10011 10110 10111 10010 3 2 3 4
o o o o o o o o
10001 01000 01101 01100 01001 10000 3 2 1 2 3 2
o o o o o o o o o o o o
11110 01111 01010 01011 01110 11111 2 1 0 1 2 1
o o o o o o o o o o o o
10101 00100 00001 00000 00101 10100 3 2 1 2 3 2
o o o o o o o o o o o o
11010 00011 00110 00111 00010 11011 4 3 2 3 4 3
o o o o o o o o o o o o
11000 11101 11100 11001 4 3 4 5
o o o o o o
(a) Ungerboeck labeling. (b) Forced Hamming weights.
00101
o o o o PS PY P PS
00001
00011 00001 01001 11001 10001
¢ & & & o o ® o o o o o
o ‘o 00300 9" o 1(200 00010 00000 01000 11000 10000
o o o o o o
00100
00110 00100 01100 11100 10100
0
o o o o o o P PS ® PS PS PS
o o o o PS PS Y PS
(c) Labels with Hamming weights 0 and 1. (d) A point that can’t be labeled.

Figure 4.9: A 32-QAM constellation that can be Ungerboeck
labeled but not Gray coded.
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2. Every point must have a different label.

(Otherwise the constellation is not useful for a trellis code.)

The point labeled “?” must have one of the five labels Hamming distance 1
away from 00100, the point immediately above it, to satisfy requirement 1 above.
However, all five of these labels have already been used. Thus the two requirements
listed above cannot be simultaneously satisfied, and the 32-QAM constellation cannot
be Gray coded.

4.4.4 A Distance Inferior Ungerboeck Labeling

As demonstrated in the previous subsection, there are not always two strictly equiv-
alent constellations, one Gray coded and the other Ungerboeck labeled, for every
constellation size and shape. This section demonstrates a more surprising fact about
these labeling strategies. An Ungerboeck labeled constellation of a given size and
shape need not be distance equivalent to a another Ungerboeck labeled constellation
of the same size and shape. Similarly, a Gray coded constellation need not be distance
equivalent to another Gray coded constellation of the same size and shape.

Figure 4.10 shows two Ungerboeck labeled 16-QAM constellations that are not
distance equivalent; the labeling in Figure 4.10(a) is distance superior to that of
Figure 4.10(b). To show this, a labeling is found that is distance equivalent to Fig-
ure 4.10(a) but has values of d?

MIN

(E) that are greater than or equal to those of
Figure 4.10(b) for every edge label E (with two strict inequalities).

Table 4.6 shows the edge length profile of the constellation in Figure 4.10(a). It
is the best possible 16-QAM edge length profile identified in Table 4.3, achieved by
applying the edge labeling of Figure 4.3(e) with

vy = 1011 (4.20)
vy = 0001 (4.21)
vy = 0111 (4.22)
v, = 0101. (4.23)

Table 4.6 shows the edge labels E for each d?,(E) for the labeling shown in

MIN

~

Figure 4.10(a). Also shown are the edge labels E for each d?,(E) for the distance
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1000 1101 1100 1001 1010 0001 1110 0101
L L L [ J [ J [ L L
1111 1010 1011 1110 1111 0000 1011 0100
[ [ [ [ [ [ [ [
0100 0001 0000 0101 0110 1101 0010 1001
[ [ [ [ [ [ [ [
0011 0110 0111 0010 0011 1100 0111 1000
[ [ [ [ [ [ [ [
(a) Distance Superior. (b) Distance Inferior.

Figure 4.10: Two Ungerboeck labeled 16-QAM constellations, one
distance superior to the other.

—_

EZ E1[1]1 2[2[2]2[4[4][5]5]5]5]8

E 1/5|7|b|2|6|a|e[d4]c|3|9|d]| |8

=

E |b|f|l1|d|eja|6|2|4|c|d5|3]7|9]|38

Table 4.6: Edge length profile for Figure 4.10(a). The original edge
labels E and those resulting from a change of basis E
are given in hexadecimal notation.

[

d2

MIN

(E) = &2\ (E) 111222244 |1|5[5]1]8
E blfjl|d|e|la|6|2|4|c|DH[3|7|9]|8

Table 4.7: Edge lengths for Figure 4.10(b) ordered so that edges F
correspond to edges E in Table 4.6.
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equivalent labeling that results from the change of basis v; — v; with

v, = 1101 (4.24)
vy = 1011 (4.25)
¥3 = 0001 (4.26)
v, = 1111. (4.27)

Table 4.7 shows the values of d?,, for the Ungerboeck labeled constellation of
Figure 4.10(b). The edge labels E in Table 4.7 have the same order as the edge labels
E in Table 4.6. Comparing these two tables confirms that the labeled constellation
in Figure 4.10(a) is distance superior to the one shown in Figure 4.10(b) even though
both are Ungerboeck labeled.

4.4.5 Isometric Labelings

In [22] (see also [23]), Forney introduced the concept of geometrically uniform codes.
Many good codes are geometrically uniform. A full treatment of geometric uniformity
is beyond the scope of this dissertation. However, the constellation labeling required
for a trellis code to be geometrically uniform is of interest.

For a trellis code to be geometrically uniform, the constellation must have an
isometric labeling. In [22] and [23] the definition of isometric labeling applies only to
the coset labels for a constellation that has been partitioned into cosets. Below is a

paraphrasing of Proposition 2 in [22], which defines isometric labeling.

Definition 27 The coset labels of a constellation are an isometric labeling if and
only if for any selected coset label v, exclusive-oring all the coset labels with v has
the same effect as applying a geometric isometry (some combination of translations,

rotations, and reflections) to the constellation.

[sometric labelings make sense in the context of geometrically uniform signal sets
in which all points are related by isometries that leave the constellation invariant.
The 16-QAM constellation is not geometrically uniform since the corner points are
not related to the central points by such an isometry. However, the entire half-

integer grid (of which the 16-QAM constellation may be considered a subset) is a
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V4TV V3T vy

(a) Distance Superior. (b) Distance Inferior.

Figure 4.11: Two Gray coded 16-PSK constellations, one distance
superior to the other.

geometrically uniform signal set.

Consider replicating the labelings of Figures 4.10(a) and 4.10(b) over the entire
half integer grid. Replication of the distance superior labeling of Figure 4.10(a)
would produce an isometric labeling of the half integer grid. However, replication
of the distance inferior labeling of Figure 4.10(b) would not. This suggests that there
may be a connection between labelings which maximize the edge length profile and
isometric labelings. However, the concept of isometric labeling applies only to the
coset labelings of certain constellations. The edge length profile is easily computed

for the full labeling of any constellation.

4.4.6 A Distance Inferior Gray Coding

As demonstrated in Section 4.3, all Gray coded 16-QAM constellations are distance
equivalent, but two Gray coded 16-PSK constellations are not necessarily distance
equivalent. Figure 4.11 shows two edge labelings that produce Gray coded 16-PSK
constellations whenever vy, ..., v, are chosen to be the four Hamming weight one
4-bit vectors. The edge labeling in Figure 4.11(a) is distance superior to the labeling
in Figure 4.11(b) as demonstrated in Table 4.8, for which the distances A; are defined
in Figure 4.12.
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Edge Label d? ..

Figure 4.11(a) | Figure 4.11(b)

vy A Ay

Vo A Ay

V3 Ay AN

Vy Ay A,

Vi + Vg Ag Ag

Vi + V3 Ay Ay

Vi +Vy Ay Ay

Vo + V3 Ay Ay

Vo +Vy Ay Ay

V3 + V4 Ay Ay

Vi +Vy+ V3 As As

Vi + Vo +Vy Aq As

Vi + V3 +Vy Aj Ay

Vo + V3 +Vy Aj Ay

Vi +Vvy+ V3 + vy Ag Ag

Table 4.8: The edge lengths for the labelings of Figures 4.11(a) and
4.11(b) with the four strict inequalities underlined.

Figure 4.12: Distances between points in a 16-PSK constellation.
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4.4.7 Superior in profile Gray coded constellations

The previous subsection identified distance inferior labelings that met the definitions
of Gray coding and Ungerboeck labeling. In this subsection it is shown that if any
labeling for a 2"-point PSK or square QAM constellation is superior in profile to all
other labelings (except distance equivalent ones), then a Gray coded constellation

exists that has this optimality property.

Theorem 10 For a given 2"-point PSK or square QAM constellation, if a labeling
exists that is superior in profile to all but distance equivalent labelings, then there is

a Gray coded labeling that is strictly equivalent to that superior-in-profile labeling.

Proof: A Gray coded constellation of the specified size and shape exists by the
inductive constructions of Section 4.4.2. This constellation is an example of a label-
ing that has only » minimum d?,, edge labels. Thus the superior-in-profile labeled
constellation must have at most n minimum d2,, edge labels as well. Tt cannot have
edge labels must contain a basis by Lemma 5.
Thus the superior-in-profile constellation must have exactly n minimum d,, edge
labels.

Changing the basis comprising the minimum d?

fewer than n since the minimum d2_

edge labels of the superior-in-
profile labeled constellation to the n vectors having Hamming weight 1 produces a
distance equivalent Gray coded constellation. This Gray coded constellation is strictly
equivalent to the superior-in-profile labeling by Theorem 7. [

Note that not all Gray codings necessarily have this optimality property, since not

all Gray codings are distance equivalent.

4.5 Summary

This chapter investigated how best to label a constellation of a given size and shape
for use in a trellis code. Constellations related by a change of basis are distance
equivalent and lead to distance equivalent trellis codes that have the same values of
the design metrics discussed in Chapter 5.

The edge length profile was introduced, and 4-PSK, 8-PSK, and 16-QAM con-

stellations superior in profile to all others were identified. These superior-in-profile
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constellations have Ungerboeck labeled and Gray coded representations that are dis-
tance equivalent. In fact, for all 2”-PSK and 4"-(QQAM constellations, a pair of distance
equivalent constellations, one Ungerboeck labeled and the other Gray coded, can al-
ways be identified.

However, Gray coding and Ungerboeck labeling are not entirely equivalent. For
some constellations such as 8-QAM and 32-QAM, Ungerboeck labeling is possible
while Gray coding is not.

It was demonstrated that two constellations of the same size and shape need not be
distance equivalent simply because they are both Ungerboeck labeled or because they
are both Gray coded. Thus one Ungerboeck labeled constellation may be distance
superior to another Ungerboeck labeled constellation of the same size but strictly
equivalent to a Gray coded constellation. From this observation, it appears that the
edge length profile is more informative about the potential trellis code performance
than whether it is Ungerboeck labeled or Gray coded.

This chapter restricted attention to the three constellations used in the code
searches of Chapter 6. However, the edge length profile based constellation label-
ing strategy outlined in this chapter can be extended to larger constellations and

constellations in more than two dimensions.
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The metrics presented in Chapter 2 are used in Chapter 6 to search for good trel-
lis codes with 4-PSK (or 4-QAM), 8-PSK, and 16-QAM constellations. Chapter 4
demonstrated how to label these constellations properly, but did not address the
choice of constellation size and shape.

This chapter compares the information rates possible using square QAM constel-
lations and PSK constellations of various sizes to the information rate achieved by
the optimal complex Gaussian input distribution. The performance of these constel-
lations is also compared with appropriate limiting cases. The limiting case of M x M
QAM constellations is the uniform distribution on a square. The limiting case of
M-PSK constellations is the uniform distribution on a ring.

The capacity C' is the maximum information rate that can be reliably transmitted
over a channel [10]. Tt is computed by maximizing the mutual information I(x;y)

over the set of possible input distributions P,:
C= rr}jaxl(x; Y) (5.1)

The mutual information I(z;y) for a given input distribution P, is the maximum
rate that can be transmitted reliably using a coding scheme for which the marginal
distribution of transmitted values is P,. For all the channels considered in this disser-
tation, the P, that maximizes I(z;y) (i.e. achieves capacity C) is Gaussian. Consider
a suboptimal P, that is a uniform distribution over some particular constellation.

Computing I(z;y) for this suboptimal P, indicates how well codes designed with

81
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that constellation can perform relative to the optimal Gaussian codebooks.

Ungerboeck examined I(z;y) in [5] for a variety of QAM and PSK constella-
tions on the AWGN channel. This chapter begins with a review in Section 5.1 of
Ungerboeck’s analysis of constellation mutual informations on the AWGN channel.
(Ungerboeck’s analysis did not include the comparisons with the limiting case distri-
butions found here.) Section 5.2 applies this method of analysis to AWGN channels
with independent Rayleigh fading.

Four examples of AWGN channels with ISI employing multicarrier modulation are
explored in Section 5.3. This section demonstrates that the high SNR subchannels
determine the constellation size required for good performance on a given ISI channel.

In the limit of high SNR= £, /0?, the mutual information achievable with a par-
ticular constellation C is simply log,(|C|) where |C| is the number of points in the
constellation. As seen in the plots that follow, the mutual information achievable
with a particular constellation is almost exactly that of its limiting case distribution
(uniform on the square for QAM or on the ring for PSK) for very low SNR. The area
of interest is the transition region between the low SNR and high SNR behavior.

Some care is required in the interpretation of the results presented in this chap-
ter. The mutual information curves that follow indicate how well a constellation can
perform in the context of a code with unconstrained complexity and decoding delay.
In general, constraints on complexity or decoding delay might make a different con-
stellation size than indicated by these mutual information curves desirable. However,
the next chapter presents an example where these mutual information curves are a

useful guide to choosing the correct constellation size.

5.1 AWGN Channel

In this section Ungerboeck’s mutual information analysis of QAM and PSK is re-
viewed for AWGN channels. Additional insight is provided by computing the mutual
information curves for the limiting case distributions of these constellations. For the

AWGN channel, the mutual information associated with any input distribution P,
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can be written as

I(z;y) = I(z;2 4+ n) (5.2)
= h(x +n) — h(z + n|z) (5.3)
= h(x +n) — h(n) (5.4)
= h(z +n) — log,(2mec?) (5.5)

where o2 is the variance of the complex Gaussian noise in any one dimension. The

differential entropy h(q) [10] of the random variable ¢ is defined to be

hg) = / £(g)10g, (f(q)) da (5.6)

where f(q) is the probability density function for g.
I(x;y) is found by computing h(x 4+ n) where z and n are both complex random

variables. When P, is a complex Gaussian with covariance matrix

Elwgra) Blraz]| [ 0 (5.7)
Elrzy]  Elrm] 0 & |

the differential entropy has a well known expression that leads to the well known
complex AWGN channel capacity.
h(z +n) = log,(2me(0? + &,)) (5.8)

C = log, (1 + 5—2) (5.9)
o

For the other input distributions studied here — QAM, PSK, uniform square,
and uniform ring  numerical integration is required to compute h(x + n). These

numerical integrations were performed using Mathematica.

5.1.1 QAM Constellations on AWGN Channels

In this subsection the performance on AWGN channels of M x M square constellations
(M = 2,3, 4,6, and 8) is compared with the performance of the uniform square input

distribution and the optimal Gaussian input distribution. Figure 5.1 shows the five
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QAM constellations that are considered along with the limiting case of the uniform

distribution on a square.

4-QAM 9-QAM 16-QAM

36-QAM 64-QAM Uniform Square

Figure 5.1: Five QAM constellations and the limiting case of the
uniform distribution on a square.

For the constellations shown in Figure 5.1, the real and imaginary parts of x are
independent. The real and imaginary parts of n are independent regardless of the
constellation choice. For both x and n, the real and imaginary parts have identical
distributions. Thus the two dimensional integral computing h(z+n) equals twice the
one dimensional integral that computes h(zy + ny).

These one dimensional integrals were computed numerically to produce the curves
shown in Figure 5.2. Figure 5.2 shows curves of mutual information vs. SNR for the
five constellations and the uniform distribution on a square shown in Figure 5.1 for a
range of SNRs. For comparison, the AWGN capacity (5.9) is shown as well.

For a given constellation C, compare its mutual information /- with channel ca-
pacity in Figure 5.2 at the information rate of log,(|C|) — 1. As Ungerboeck observed
in [5], a given square QAM constellation C at information rate of log,(|C|) — 1 has a
mutual information within 1-2 dB of the capacity curve. Thus a QAM constellation

of size 2%+! has the potential to yield a code with performance close to optimal at
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Figure 5.2: Mutual information as a function of SNR for five QAM
constellations, uniform distribution on a square, and
Gaussian distribution for the AWGN channel.
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rate R.
The curves of Figure 5.2 suggest that the trend will continue for larger constellation

28+1 will have mutual

sizes. That is, for any rate R transmission, a constellation of size
information performance within 1 2 dB of capacity. Ozarow and Wyner confirmed
that intuition in [24] by deriving mutual information bounds on the rates achievable
by PAM constellations on the real AWGN channel. These bounds immediately apply
to the M x M QAM constellations studied here for the complex AWGN channel by
considering the real and imaginary components as independent channels.

No uniform QAM constellation will ever outperform the limiting case of the uni-
form square input distribution. However, comparing /¢ with Iyqyare at the information
rate of log,(|C|) — 1, the performance difference is only 0.1 dB. Thus a QAM constel-
lation with 2%+ points will give performance very close to that of the uniform square
input at rate R.

Compare Igqyare to the channel capacity curve at high SNR. These two lines become
asymptotically parallel with a well known separation along the y-axis of log,(me/6) =
0.50923 bits. This corresponds to a separation along the x-axis of 1.53 dB. This
distance has come to be known as the “shaping gain” [25] since it is the amount of gain
that can be obtained over square QAM at high SNR by improving the constellation
shape.

In the last few years, impressive progress has been made in the quest for the 1.53
dB of shaping gain. Some of the highlights can be found in [25, 26, 27]. To obtain a
large part of the 1.53 dB of possible shaping gain, the marginal input distribution must
be made less like the uniform and more like a Gaussian. As in [25], this requirement
can be stated geometrically as follows.

Consider each valid sequence of constellation points as a single point in a higher
dimensional space. If the constellation points are chosen uniformly from a square,
then the sequences are uniformly distributed in the volume of an N-cube in the
higher dimensional space. However, if the constellation points are chosen from a
Gaussian distribution, then the sequences are approximately uniformly distributed in
the volume of an N-sphere.

The codes designed in the next chapter transmit one information bit per symbol.

At this rate, the possible shaping gain is only about 0.2 dB and need not distract
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attention from the other issues that truly dominate performance in this region. Fur-
thermore, recent work indicates that shaping gain and coding gain are separable. Thus
existing good shaping schemes likely could be combined with the periodic metrics for

codes designed to operate at higher bit rates.

5.1.2 PSK Constellations on AWGN Channels

In this subsection, the performance on AWGN channels of M-PSK constellations (M
=4, 8, 16, and 32) is compared with the performance of the uniform ring input distri-
bution and the optimal Gaussian input. Figure 5.3 shows the four PSK constellations

that are considered along with the limiting case of the uniform distribution on a ring.

4-PSK 8-PSK 16-PSK

32-PSK Uniform Ring

Figure 5.3: Four PSK constellations and the limiting case of the
uniform distribution on a ring.

For PSK constellations with more than four points, the computation of h(z + n)
cannot be accomplished with a one dimensional numerical integration. By converting
to polar coordinates, symmetry allows integration over only 7/M radians for an M-
PSK constellation. This is an easily computed numerical integration over a smooth,
non-oscillatory surface. The value of h(x + n) is then obtained by multiplying the
result of this integration by 2M.
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To compute the mutual information for the uniform ring input, the formula derived

by Wyner in [28] is applied. This formula is given below (in nats).

Ling = — /Ooo f(#)In <@) dz + In (QS:R> (5.10)

where
f(z) = 2zsNRe N0+ [ (22:5NR) (5.11)

and [ is the modified Bessel function of order zero. This integral has no closed form
solution, and again numerical integration is required.

Figure 5.4 shows the mutual information curves for the four PSK constellations
shown in Figure 5.3. For comparison, the AWGN channel capacity and the mutual
information for the uniform distribution on a ring are also shown.

Examine the performance of the 8-PSK constellation at log, 8 — 1 = 2 bits. As
Ungerboeck observed in [5], the 8-PSK mutual information at 2 bits is only 1.2 dB
away from the capacity curve. However, unlike the situation with QAM constellations,
Figure 5.4 shows the loss from capacity to be increasing steadily with constellation
size.

Similar to the QAM scenario, the PSK constellations never outperform the limiting
case (here the uniform ring input distribution). The performance difference between
I for any of the PSK constellations and I, is negligible at the information rate of
log,(|C]) — 1. In fact, the difference is negligible for rates less than half a bit below
log,(|C]). Thus for a fixed constellation size, PSK constellation performance remains
close to Ing at higher rates than those for which QAM constellation performance
remains close to Isquare-

Unfortunately, the limiting case curve I,, for the PSK constellations is much
farther from capacity than Isguare for the QAM constellations. Compare the channel
capacity curve to I, at high SNR. These two lines do not become asymptotically

parallel. Instead, the slope of I, becomes half that of the channel capacity curve.
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Figure 5.4: Channel capacity and mutual information for four PSK
constellations and the uniform distribution on a ring as
a function of SNR for the AWGN channel.
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In [28], Wyner derived a high SNR approximation of I,;,, that is useful here:

1 4TSNR
Ling ~ 5 log, < t ) from [28] (5.12)
1 1 47
1
~ 5C 4+ 1.1044 bits (5.14)

where C' is the AWGN channel capacity of (5.9).

Thus when restricted to use a PSK constellation, a constellation of size 2%+ is
certainly sufficient to provide performance close to that of the uniform ring input.
However, this input allows transmission only at rates about half those possible for
QAM constellations of the same size at given large SNR.

Given this analysis, it is necessary to comment on situations where it might be de-
sirable to use a PSK constellation despite its inferior mutual information performance
in Figure 5.4. A PSK constellation can be received without regard for amplitude am-
biguity at the receiver. Furthermore, with differential encoding, the transmission
can also be made insensitive to slowly varying phase ambiguity. Finally, a constant
amplitude transmission such as PSK allows the use of economical, power efficient
amplifiers.

Often, the use of nonlinear amplifiers places dual constraints of both average
power and peak power on the transmitted signal. Shamai has derived the optimal
input distributions for transmission under concurrent average power and peak power
constraints in [29]. The optimal distributions under these dual constraints are al-
ways concentric circles. Under certain conditions when peak power is the dominant
constraint, the optimal distribution is the uniform distribution on the peak power

ring.

5.2 Independent Rayleigh Fading

Consider again the independent Rayleigh fading channel discussed in Section 2.3. The
apparent independence is the result of interleaving. Thus, the fading is sometimes

slow enough that the fading scale factors a; can be estimated. As has been the case
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x ———
—— CHANNEL
—— y=ar+n

Figure 5.5: Model of a fading channel with perfect channel state
information at the receiver.

throughout this dissertation, estimation error is neglected; it is assumed that the
scale factors a; are known exactly at the receiver, as illustrated in the fading channel
model shown in Figure 5.5.

Applying the chain rule for mutual information (Theorem 2.5.2 in [10]):

I(z3y.a) = I(z;a) + I(2; y|a) (5.15)
= I(x;y|a) since x — a (5.16)

Using the definition of conditional mutual information in [10] and the fact that scaling

preserves information,

I(x;yla) = /[(aj; az +n)p(a)da by definition (5.17)

a

= /[(m;x—l— E)p(a)da. (518)

For any fixed scalar a, the mutual information I(x;x + n/a) is given by (5.5)

I (x T+ g) —h (:c v g) ~ log, <M> (5.19)

al?

Note that I(x;x + n/a) = I(z;x + n/lal). The conditional mutual information in
(5.18) depends on the magnitude r = |a|, which has the Rayleigh PDF given in
(2.16), but not on the phase of a. Thus,

r et /27’

I(z;y,a) = /OO I(x;:r+n/r)7dr. (5.20)
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The integral in (5.20) is approximated for complex Gaussian inputs x in [30]
(but see also [31] for an important correction) where it is considered an “average
capacity.” However, for the channel described in Figure 5.5 it is in fact the usual
Shannon capacity since complex Gaussian inputs maximize the mutual information
in (5.20).

Reliable transmission at this capacity does not require that the transmitter know
the fading sequence a. If the transmitter does know the fading sequence a, an even
higher capacity is achievable as shown in [32]. However, this dissertation restricts
attention to the case where the transmitter does not have this information.

See [33] for a discussion of how decoding delay constraints affect the achievability
of the capacity obtained by maximizing (5.20). If the decoding delay is small enough
relative to the time constant of the fading, then no capacity is achievable. The
possibility of a severe fade lasting longer than the acceptable coding delay precludes
completely reliable transmission at any positive rate. In these cases, the probability
of outage as a function of data rate becomes the performance measure of choice.

The approximations in [30, 31] are useful for analysis. However, for the visual
comparisons of this chapter, computing (5.20) numerically provides better accuracy.
For the PSK and QAM constellations, such analytic approximations are unavailable.
With the numerical integration of (5.20) in mind, the I(z;x +n) curves shown in the
previous section were computed at closely spaced SNR values so that interpolated
curves could be used as kernels for numerical integrations computing the mutual
informations for those constellations in the presence of Rayleigh fading.

Figures 5.6 and 5.7 show the mutual information curves for the QAM and PSK
constellations used on an AWGN channel with Rayleigh fading. For both QAM and
PSK constellations, the mutual information curves deviate from the limiting case
mutual information curves at lower rates than on the AWGN channel.

Examining Figure 5.6, the performance loss from Igquare at log,(|C|) — 1 is around
0.5 dB for the 4-QAM constellation and grows as the constellation size grows. For
the 64-QAM constellation, the loss is around 1.5 dB at lgs.gam = 5 bits. This
performance loss is relatively small, but does indicate that larger constellations may
be useful in the Rayleigh fading environment. For the QAM constellations, a size
2842 constellation is required for performance to be within 0.1 dB of Isquare at rate
R for an AWGN channel with independent Rayleigh fading. This is twice the size
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Figure 5.6: Mutual information on an AWGN channel with
independent Rayleigh fading as a function of average
SNR for five QAM constellations, uniform distribution
on a square, and Gaussian distribution.
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Figure 5.7: Mutual information on an AWGN channel with
independent Rayleigh fading as a function of average
SNR for four PSK constellations, uniform distribution
on a ring, and Gaussian distribution.
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required for an AWGN channel without Rayleigh fading.

Ho, Cavers, and Varaldi suggested in [34] that larger constellation sizes would
be useful for Rayleigh fading channels. Specifically, they claimed that going from
an 8-PSK to a 16-QAM constellation for transmission of 2 bits/symbol (i.e., going
from 2%+! to 2%+2) provided a 5 dB performance improvement on a Rayleigh fading
channel. Figures 5.6 and 5.7 support the increase from 2%+! to 2%+2, but show only
about 1 dB of improvement at R = 2 bits going from 8-PSK to 16-QAM. Perhaps
the mutual information analysis underestimates the improvement possible going from
8-PSK to 16-QAM since limits on complexity and decoding delay are neglected.

Still, the 5 dB claim by Ho et al. requires careful interpretation. This claim was
based on a comparison of a standard 8-PSK trellis code with 8 states (3 memory
elements in the encoder) to a specially designed 16-QAM code with 16 states (4
memory elements). The 16-QAM code was designed so that its decoding complexity
was comparable to that of the 8-PSK code despite having an extra memory element.
Thus, in a sense, this was a fair comparison.

There is no question that the 16-QAM code has good performance. However, since
different code design strategies were applied to the two constellations, the comparison
is not entirely conclusive about whether or not 8-PSK codes with similar performance
exist. On this point, the different number of memory elements used by the two
encoders is an important consideration.

As discussed in Chapter 2, effective code length ECL has a large impact on per-
formance in independent Rayleigh fading scenarios. Theorem 1 in Chapter 3 showed
that

mow < | 7] +1, (5.21)
where k£ is the number of information bits transmitted per symbol and v is the number
of memory elements in the encoder.

The codes compared by Ho et al. both achieved their respective ECL bounds;
the 8-PSK code had EcL= 2 while the 16-QAM code had EcL= 3. The different
ECL values imply a large performance gap between the two codes. The remaining
question is whether a code with 4 memory elements could be designed for 8-PSK to

have ECL= 3 and to be similar in decoding complexity to the 16-QAM code. Such
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a code might have a performance much better than that of the 8-PSK code with 3
memory elements considered in [34]

In the next chapter Rayleigh fading channel codes are designed with a fixed num-
ber of memory elements for transmission of 1 bit per symbol using three different
constellation sizes. The same code design strategy is used for all three constellations.
In this search, all three constellations had the same ECL, each achieving the bound
of (5.21). Consistent with Figures 5.6 and 5.7 and with the claims of [34], there was
improvement (in terms of code product distance CPD) when the constellation was in-
creased in size from 28+1 to 242 However, no further improvement in the Rayleigh

fading metrics was seen when the constellation was further increased to 2%+3.

5.3 Multicarrier Modulation for Intersymbol

Interference

In this section the broadcast scenario where one information sequence is transmitted
to several receivers is considered. Figure 5.8 shows an example of such a scenario
where digital video signals are broadcast to many television sets. The physical path
between the transmitter and each receiver is different, hence a different impulse re-
sponse is associated with each receiver. In practical broadcast scenarios, the trans-
mitter usually does not know the impulse responses of the various receivers.

A common way to deal with the multiplicity of impulse responses is for each
receiver to use equalization to convert the intersymbol interference (ISI) channel ap-
proximately to an AWGN channel. However, these equalization schemes work best
when some type of channel specific precoding is performed by the transmitter, as
explored in Chapter 7. This type of transmitter specialization is difficult when the
transmitter is broadcasting to several receivers.

This section explores the effect of constellation size on mutual information when
multicarrier modulation (MCM) is used for broadcast transmission over multiple im-
pulse responses. Tutorials on the details of MCM can be found in [35] and [36]. For
this dissertation, the trellis code design problem presented by MCM is of primary
interest. This problem can be understood without exploring all the details of MCM.

MCM operates on blocks of N encoder outputs xy, ..., zy as shown in Figure 5.9.
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Figure 5.8: A digital video signal is broadcast to several television
sets.

The block x1, ...,z is a block of frequency domain subsymbols, which are constella-
tion points. This block is converted to a block of time domain samples by an inverse
Fourier transform (IDFT). The block of time domain samples (along with a cyclic
prefix not shown in Figure 5.9) is transmitted over an ISI channel with AWGN. The
receiver performs a DFT on the received block (after removing the cyclic prefix) to
produce the received block of frequency domain symbols y1, ..., yy, which are scaled
constellation points distorted by AWGN.

X1 Y1
X2 Ya
] ——=1 IDFT CHANNEL — DFT e ]
TN Yn

Figure 5.9: Multicarrier modulation system.

The combined effect of IDFT, ISI channel, and DFT produces the set of N par-
allel subchannels shown in Figure 5.10. The complex scale factors are the values of

the DFT of the channel impulse response. The complex noise terms n; are complex
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AWGN with independent real and imaginary parts each having variance o?. Fig-

ure 5.10 is equivalent to Figure 5.5 with the values of a; repeating every N symbols.

ay nq

T M% Y1 (frequency 1)
a; n;

T M% Yi (frequency i)
an nn

TN M% YN (frequency N)

Figure 5.10: Parallel subchannels in frequency.

The mutual information per block for the channel shown in Figure 5.10 is

N
n;
i=1 !
N 2 2
= Z log, (1 + %) for Gaussian ;. (5.23)
i=1

In a point to point communication scenario where the transmitter knows the values
ai,...,ay, the mutual information in (5.23) can be maximized by using the water-
filling distribution of E|z;|* [37]. In practice, a constant value of F|x;|* is usually
maintained except for sufficiently poor subchannels where F|x;|? is set to zero. When
the transmitter knows aq, . .., ay, often denser constellation are used on channels with
larger values of |a;|*/0? as in [38].

In the point-to-multipoint scenario illustrated in Figure 5.8 (or a point-to-point
scenario where the transmitter does not know the values of a1, ..., ay), specialization

of E|z;|* or the constellation size is not possible. Usually, one symbol power E|z;|* =
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&, and one constellation is used for all the symbols [39, 40]. In this case, the mutual

information per block is

. a,|%€
I=Y log, <1 + ;0_2 "”) (5.24)
i=1

for the optimal case of Gaussian inputs x;. This is less than or equal to the capacity
achieved by waterfilling, but waterfilling is not possible when the values ay,...,ayx
are not known.

Shannon’s fundamental coding theorems [41, 37] ensure that for each set of values
ai,...,ay there is a code with E|z;|* = &, that achieves reliable transmission at
the per block rate given in (5.24). However, this fact alone is not enough since the
transmitter does not know aq, ..., ay and thus cannot choose between different codes
meant for different cases of ay,...,ay. Fortunately, Root and Variaya’s compound

Gaussian channel results [42] show that there must exist a “universal” code that

reliably transmits at rate N R per block over all sets of values aq,...,ay for which
N
1 ‘CL¢|2(€'I
R<— ;mgQ <1 + 5o ) : (5.25)

The “universal” code would require at least 2V® points in its constellation to
transmit reliably in the case where all the values of a; are zero except for one extremely
large value. This case is not of practical concern, and the plots that follow do show
that reasonable constellation sizes can support transmission over a wide range of
frequency selective channels. Mutual information curves for the previously considered
QAM and PSK constellations are now shown for four examples of ISI channels.

For these four ISI channels, Figures 5.11 and 5.12 show the subchannel SNRs
Eqla;|?/20* for MCM with N = 512. Figure 5.13 shows the corresponding four im-
pulse responses. The Notch channel (studied by Sari in [39]) has a mild notch at
a normalized frequency of 0.15. The Ramp channel (was used in by Cioffi in [36])
shows a monotonic decrease in SNR except for a notch at DC. The 1/2 and 1/3 Band
low pass filters (LPFs) were designed using the Remez exchange algorithm of Parks
and McClellen. They are included here as examples of extremely severe frequency

selectivity.
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(a) Frequency response of Notch channel.
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(b) Frequency response of Ramp channel.

Figure 5.11: Frequency response (subchannel SNRs) for Notch and
Ramp channels with an overall equivalent AWGN
SNR of 6 dB.



Chapter 5. Capacity and Constellation Size 101

30 T T T T

ol

10

Subchannel SNR
s
o

| |
w N
o o
T T

-40 ' '

| iy

Normalized Frequency

(a) Frequency response of 1/2 Band LPF channel.

Subchannel SNR

% - 01 7 MOQ[V\[\QD[\[\[\O/}/\AA({S

(b) Frequency response of 1/3 Band LPF channel.

Figure 5.12: Frequency response (subchannel SNRs) for 1/2 Band
and 1/3 Band LPF channels with an overall
equivalent AWGN SNR of 6 dB.
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Figure 5.13: Tmpulse responses for the Notch, 1/2 Band LPF, and
1/3 Band LPF channels.
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Figures 5.14 5.17 show the QAM mutual information curves for multicarrier mod-
ulation with 512 subchannels on the four channels studied. Figures 5.18 5.21 show
the PSK mutual information curves for these channels. As in the Rayleigh fading mu-
tual information integrals, the AWGN mutual information curves of Figures 5.2 and
5.4 are used as kernels in summation of (5.22) to compute the mutual informations
of the various constellations on these channels.

To plot the mutual information curves in a way that allows comparison between
channels, those channels having the same maximum achievable rate for a given trans-
mitter subchannel power level are considered equivalent. These channels will in gen-
eral have different input SNRs and different output SNRs. The SNR assigned to these
equivalent channels for plotting purposes is the SNR of an AWGN channel with the
same capacity. This SNR is called the equivalent AWGN SNR.

If the values ay, ..., ay are the same, then the mutual information curves are those
for the AWGN channel shown in Section 5.1. When there is variation in the values of
ai,...,ay, some of the subchannel SNRs will be above the equivalent AWGN SNR
and some will be below. The overall loss from the mutual information of the limiting
case (uniform square or ring) will be an average of the losses on each subchannel. The
loss from the limiting case increases with SNR so that the increased loss on the high
SNR (higher than the equivalent AWGN SNR) subchannels dominates the decreased
loss on the lower SNR subchannels. Thus the mutual information curves will be below
those for the AWGN channel.

The amount by which the mutual information curves are below those for the
AWGN channels depends a great deal on the specifics of the values a,...,ay. In
general, more variation causes more degradation in the mutual information curves.

The channels are ordered so that the SNR variation is increasing. For the Notch
channel, the mutual information curves are similar to those for Rayleigh fading seen
in the previous section. For the Ramp channel, further degradation is apparent, and
for the low pass filter channels the degradation is dramatic.

To further explore the reasons for this degradation, consider the 4-QAM (equiv-
alently 4-PSK) constellation used on the subchannels of the 1/2 Band LPF channel
at an equivalent AWGN SNR of 6 dB. These subchannel SNRs are shown in Figure
5.12(a). Since the channel is essentially a step in the frequency domain, the subchan-

nels fall into two categories. There is a set of low SNR subchannels (less than —20 dB)
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for which the 4-QAM constellation performs close to the limiting case. Actually, these
subchannels are so poor that they support practically no information transmission.
However, there is also a set of high SNR subchannels (above 15 dB) for which the
4-QAM constellation’s limitation to 2 bits is a severe handicap. (Compare the 4-QAM
mutual information to capacity at 15 dB in Figure 5.2.) This is generally the case.
A constellation’s mutual information performance under SNR variation is limited by
the high SNR subchannels rather than the low SNR subchannels. In general, the
constellation size required to handle large SNR variations is determined by how high

the SNR can be rather than by how low it can be.
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Figure 5.14: Mutual information (using MCM) on the Notch
channel as a function of equivalent AWGN SNR for
five QAM constellations, uniform distribution on a
square, and Gaussian distribution.
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Figure 5.15: Mutual information (using MCM) on the Ramp
channel as a function of equivalent AWGN SNR for
five QAM constellations, uniform distribution on a
square, and Gaussian distribution.
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Figure 5.16: Mutual information (using MCM) on the 1/2 Band

LPF channel as a function of equivalent AWGN SNR
for five QAM constellations, uniform distribution on a
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Figure 5.17: Mutual information (using MCM) on the 1/3 Band
LPF channel as a function of equivalent AWGN SNR
for five QAM constellations, uniform distribution on a
square, and Gaussian distribution.
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Figure 5.18: Mutual information (using MCM) on the Notch
channel as a function of equivalent AWGN SNR for
four PSK constellations, uniform distribution on a
ring, and Gaussian distribution.
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Figure 5.19: Mutual information (using MCM) on the Ramp
channel as a function of equivalent AWGN SNR for
four PSK constellations, uniform distribution on a
ring, and Gaussian distribution.
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Figure 5.20: Mutual information (using MCM) on the 1/2 Band

LPF channel as a function of equivalent AWGN SNR
for four PSK constellations, uniform distribution on a
ring, and Gaussian distribution.



Chapter 5. Capacity and Constellation Size

112

— — Channel Capacity
-— Uniform Ring Input
— Square Constellations

10 15 20 25 30 35 40
SNR [dB]

Figure 5.21: Mutual information (using MCM) on the 1/3 Band

LPF channel as a function of equivalent AWGN SNR
for four PSK constellations, uniform distribution on a
ring, and Gaussian distribution.
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5.4 Summary

In this chapter the mutual information performance of M x M QAM and M-PSK
constellations was explored for AWGN channels, Rayleigh fading channels, and mul-
ticarrier modulation in ISI channels. A QAM constellation of size 28+ is within
about 1.5 dB of the optimal Gaussian input sequence for the AWGN channel. A PSK
constellation of size 2% supports about half the rate of a QAM constellation of the
same size for large R.

An M x M QAM constellation will never outperform the limiting case of the uni-
form input on a square. The PSK constellations will never outperform the limiting
case of a uniform distribution on a ring. For the AWGN channel, the QAM constel-
lations are very close to their limiting case curve (Isquare) for rates more than one bit
below log, of the constellation size. The PSK constellations are very close to their
limiting case curve (Iying) for rates more than half a bit below log, of the constellation
size.

For independent Rayleigh fading, lower rates are required for performance close
to the limiting case curves. The QAM constellations are very close to Isquare for rates
more than 2 bits below log, of the constellation size. The PSK constellations are very
close to Iy for rates more than 1 bit below log, of the constellation size.

The third type of communication channel explored was the ISI channel decom-
posed into parallel subchannels (without ISI) by MCM. For these channels, the con-
stellation size required for performance close to Isyare OF Iying depends largely on the
amount of SNR variation. For a particular channel, the constellation size must be
chosen large enough that the subchannels with the highest SNRs can be used effi-
ciently. Thus it is the high SNR subchannels that determine what constellation size

is required.
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A Code Search Example

This chapter brings together the ideas of the previous four chapters to design a trel-
lis code for periodically interleaved broadcast multicarrier modulation (MCM). The
periodic metrics — periodic effective code length and code periodic product distance

derived at the end of Chapter 2 are well suited for this scenario, since periodic
interleaving is used to disperse the strongly correlated adjacent subchannel gains. For
comparison, codes are also designed using the other metrics presented in Chapter 2
(code Euclidean distance, effective code length, and code product distance).

The codes designed in this chapter use 6 memory elements (¥ = 6) and transmit
1 information bit per symbol (kK = 1). These parameters allow comparison with
the standard rate-1/2, v = 6 code [43]. This standard code was used with a 4-PSK
constellation for broadcast MCM with periodic interleaving by Sari [39] (see also [44])
and others.

Section 6.1 identifies the standard code mentioned above as the £k = 1, v = 6
code that maximizes CED. Section 6.2 finds codes that maximize ECL and cpPD, and
Section 6.3 identifies codes that maximize the periodic metrics. The codes found in
each of these three sections are simulated using MCM with periodic interleaving on
five different frequency selective channels in Section 6.4.

Three different constellations are considered in the trellis code searches that follow:
4-PSK, 8-PSK, and 16-QAM. For each constellation, a Gray labeling that achieves
the maximum possible edge length profile (as demonstrated in Section 3 of Chapter 4)
is employed. Figure 6.1 shows these three labeled constellations.

In each case a strictly equivalent Ungerboeck labeling exists by Theorems 8 and 9

114
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(c) 16-QAM Gray coded constellation.

Figure 6.1: The three superior-in-profile labeled constellations used
for the code searches and simulations of this chapter.
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of Chapter 4. A strictly equivalent code results regardless of the choice between the
Gray coding shown in Figure 6.1 and the associated Ungerboeck labeling.

Gray coding allows the code searches to avoid distance equivalent codes by avoid-
ing certain permutations of encoder polynomials according to the procedure outlined
on page 45 of Chapter 3. In fact, the example application on pages 45-45 of that
procedure is for the Gray coded 16-QAM constellation in Figure 6.1(c).

The metrics derived in Chapter 2 are based on distance sequences {d(b — b)}.
The searches in this chapter reduce complexity by considering only a worst case
distance sequence {d?(E(D))} for each E(D) (see Definition 14 in Chapter 3). For the
constellations considered in this chapter, the resulting metrics are the same whether
computed using {d2(b — b)} or {d?(E(D))} because for every E(D) there is a pair
(b(d), b(D)) that satisfies the conditions (3.25) and (3.26) on page 37.

For the 4-PSK and 16-QAM labeled constellations in Figure 6.1, one such set of
pairs is obtained by fixing (D) = 0 and considering all sequences b(D). For these
constellations every edge emanating from the zero labeled constellation point has the
minimum distance associated with its edge label. (See the achievable edge length
profile bounds shown in Figures 4.1(a) and 4.5.)

For the 8-PSK constellation in Figure 6.1, only two edge labels, 001 and 100, have
more than one possible distance associated with them. Let X represent an unspecified
bit. Constellation points labeled X1X have the minimum distance for edge label 001
but not 100. Similarly, points labeled X0X have the minimum distance for edge label
100 but not 001. For any E(D), an input sequence b(D) can be found that sends
C;=X1X whenever E;=001 and C;=X0X whenever E;=100. Thus for every E(D)
there is a pair (b(d),b(D)) that satisfies (3.25) and (3.26) on page 37.

A catastrophic convolutional code has an error sequence with a finite EL that
produces an infinite number of information bit errors. Catastrophic codes give poor
performance even when they have large values for the metrics presented in Chapter 2.
The code searches in this chapter remove catastrophic codes from consideration using
the invariant factors test resulting from Theorem 1 of [21] (see also [45]).

Reversing the time order of the generator polynomials reverses the time order of
the distance sequences, but does not affect the metrics presented in Chapter 2. An
encoder is removed from consideration if it is the time reversal of an encoder already

examined in the code search.
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6.1 FEuclidean Distance

In this section, a code is sought that maximizes code Euclidean distance (CED) with
secondary consideration given to the number of Euclidean nearest neighbors (Negp).
These metrics were defined on page 1. For each 2" point constellation (n = 2,3, 4),
an exhaustive search of feedback-free rate 1/n convolutional codes was performed
(excluding catastrophic codes, distance equivalent permutations, and time reversals).

For each code considered by the search, CED and N, were computed with an
adaptation of the bidirectional search algorithm proposed initially by Bahl et al. [46]
for computing the free Hamming distance of a convolutional code. In [47], Larsen
corrected some oversights in [46], and the corrected algorithm has come to be known

3

as the “Larsen algorithm.” The basic approach of this algorithm applies whenever
the metric J(E(D)) can be expressed as the sum of positive values that are functions

of the error sequence elements E;:

J =2 f(E), (6.1)

As originally described in [46, 47|, f(E;) was the Hamming weight of E;, but
the algorithm applies equally well (computing CED) when f(E;) = d?(E;). In [5],
Ungerboeck follows this approach except that f(E;) was defined so that

F(E) < diyin () (6-2)

for certain values of E;, yielding pessimistic metrics for some codes.

Tables 6.1 6.3 present the codes with largest CED for 4-PSK (rate 1/2), 8-PSK
(rate 1/3), and 16-QAM (rate 1/4), respectively. All three tables actually show the
same two trellis codes as having the maximum CED. It turns out that for £ =1 and
v = 6, forcing the constellation to be 8-PSK or 16-QAM reduces CED. In these two
cases, the maximum CED trellis codes use 4-PSK subsets of the larger constellations.

Recall that the previous chapter suggested using a constellation having at least
2841 points for the AWGN channel, but showed that the larger constellations should
perform at least as well. This observation holds for large complexity and large delay.

However, for fixed v and k, the code searches of this section demonstrate that
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‘ # ‘ polynomial I CED? ‘ Negn ‘
1133 171 ] 20.0 11
2 | 135 163 | 20.0 11

Table 6.1: Rate-1/2 64-state 4-PSK codes with maximum
Euclidean distance. All codes shown use the full 4-PSK

constellation.

‘ # ‘ polynomial I Actual Constellation ‘ CED? ‘ Negn ‘
11133 42 171 4-PSK 20.0 11
2 1135 56 163 4-PSK 20.00 11
3 1107 32 127 8-PSK 18.0 1

Table 6.2: Rate-1/3 64-state 8-PSK codes with maximum
Euclidean distance.

| # | polynomial | Actual Constellation | CED? | Negp, |
1171 133 133 171 4-PSK 20.0 11
135 163 163 135 4-PSK 20.0 11
3 [117 135 135 157 | 2 x 4 QAM 1644 [ 1
4 [117 155 145 137 | 16-QAM [ 144 | 2

Table 6.3: Rate-1/4 64-state 16-QAM codes with maximum
Euclidean distance.

# | ECL | PECL log,(+)

CPD | CPPDy | CPPD; | CPPDg | CPPD7 | CPPDg
1 6 5 | 16.0 o0 9.0 9.17 9.0 11.17
2 6 4 |16.0 9.17 10.59 9.0 10.0 11.17

Table 6.4: Other properties of the codes in Table 6.1.
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trellis codes using constellations with 2%+2 and 2%+3 points are sometimes unable to

2+1 point constellation. Thus for

match the CED achieved by trellis codes using a
practical complexity trellis codes, a constellation can be “too big” for the AWGN
channel. Note, however, that this search was restricted to trellis codes; a different
coding structure might use the constellation more effectively.

As discussed above, the 4-PSK codes listed in Table 6.1 are the best found in
terms of CED. The only choice is between codes #1 and #2 in that table; no other
codes with CED = 20 were found. Since both codes have the same Ng.,, the other
metrics shown in Table 6.4 are used to differentiate between the two codes. Code #1
is selected for simulation because of its larger value of PECL (and because of its status
as an often simulated code).

This code (Code #1 in Table 6.1) is commonly used for 4-PSK constellations [43].
In particular, it has been studied for transmission of one bit per symbol in the context

of broadcast MCM [39, 44], which is the environment simulated in this chapter.

6.2 Effective Length and Product Distance

In this section, a code is sought that maximizes effective code length (ECL) with
secondary consideration given to the code product distance (CPD). These metrics were
defined on page 13. As in the previous section, exhaustive searches of feedback-free
convolutional codes were performed for the rate associated with each constellation.
The searches excluded catastrophic codes, distance equivalent permutations, and time
reversals.

Once again, the bidirectional search algorithm can be applied to compute the met-
rics of interest. The computation of ECL is accomplished by the standard algorithm
with f(E;) defined as the indicator function of E; # 0. The cPD is computed by
continuing to explore error sequences with EL = ECL until the cpD is identified. The

computation of ECL and CPD in this way is described fully in [48].
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From Theorem 1 on page 35, the maximum possible ECL is

BCL < {%J +1 (6.3)
- % +1 (6.4)
_7 (6.5)

The search identified trellis codes for all three constellations that achieved ECL = 7.
Tables 6.5, 6.6, and 6.7 present the codes with ECL. = 7 having the largest cpPD for
4-PSK (rate 1/2), 8-PSK (rate 1/3), and 16-QAM (rate 1/4) respectively. The largest
value for the cPD was produced by a trellis code using the 8-PSK constellation. The
tables list log,(CPD) rather than cPD because the pairwise error expression in (2.27)
on page 2.27 is exponential in EL and log,(PD) (rather than pD).

This situation is another example where a metric (CPD) became worse for a larger
constellation, contrary to the intuition of the previous chapter. For the largest constel-
lation (16-QAM), the best cPD for an ECL = 7 code was produced by a convolutional
encoder that used only 8 of the 16 available points. This ¢cPD was still lower than
that found with 8-PSK.

Note that the largest cPD was found with the 2%+2 point constellation. All of the
code searches by Du and Vucetic [11, 12, 13, 14] seeking to maximize CPD considered
only 2%F! point constellations. The code searches in this section suggest that larger

2142 point) constellations.

values of CPD might be obtained with larger (

Five rate-1/3 8-PSK codes were found that had EcL = 7 and had the maximum
cpD of 254 From these five codes, code #1 in Table 6.6 was chosen because it
had the the largest CED. Table 6.8 shows the periodic metrics for the five codes in

Table 6.6

6.3 Periodic Metrics

In this section, a code is sought that maximizes the periodic effective code length
(PECL) with secondary consideration given to the code periodic product distances
cprpPD;. The periodic metrics assume a period P for the periodic interleaver. The

period P = 8 used to compute the metrics in this section is consistent with the P =8
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| # | polynomial | ECL | Ny, | log,(cPD) | CED? | Negy |
1 45 173 7 5 9.0 18.0p 2
2 | 123 155 7 5 9.0 18.0f 3
31133 175 7 6 9.0 18.00 1
4 1135 157 7 6 9.0 18.0p 2
5 55 163 7 6 9.0 18.0p 3
6 75 123 7 7 9.0 18.0f 5
7T 75 113 7 8 9.0 18.0p 3
Table 6.5: Rate-1/2 64-state 4-PSK codes with largest CED among
those with maximum ECL and cpD. All codes shown use
the full 4-PSK constellation.
‘ # | polynomial I ECL ‘ Ny, ‘ log,(CPD) ‘ CED? ‘ Newn ‘
11135 66 177 7 1 11.54 14.34 1
2 | 133 65 177 7 1 11.54 13.51 1
3 153 66 177 7 1 11.54 12.69 1
4 1166 b5 177 7 2 11.54 12.34 1
5 | 156 65 177 7 1 11.54 12.34 1
Table 6.6: Rate-1/3 64-state 8-PSK codes with largest CED among
those with maximum ECL and cPD. All codes shown use
the full 8-PSK constellation.
# polynomial Actual ECL | Ngo | logy(CPD) | CED? | Negp
Constellation
1 | 135 177 177 153 | 2 X 4QAM 7 1 10.09 12.44 1
2 | 135 177 173 157 16-QAM 7 1 9.03 10.4 1
3| 135 177 167 157 16-QAM 7 1 9.03 10.4 1
4 | 135 167 173 177 16-QAM 7 1 9.03 10.4 1
5 | 135 157 167 177 16-QAM 7 1 9.03 10.4 1
6 | 133 177 175 167 16-QAM 7 1 9.03 10.4 1
71133 167 177 175 16-QAM 7 1 9.03 10.4 1

Table 6.7: Rate-1/4 64-state 16-QAM codes with largest CED

among those with maximum ECL and CPD.
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# | PECL log, (+)

CPPD5 | CPPDg | CPPD; | CPPDg
1 6 oo 7.17 5.46 2.91
2 6 o0 6.18 4.58 0.00
3 6 o0 6.24 0.08 | —0.23
4 5) 10.21 8.41 2.95 1.50
5) 6 e 6.17 4.45 1.10

Table 6.8: Periodic metrics for Rate-1/3 64-state 8-PSK codes
listed in Table 6.6

periodic interleaving used in the simulations in the next section.

The two bounds on PECL derived on page 25 are repeated here for convenience.

k
PECL [P|1——]|+1. (6.6)

n

v
PECL < bJ +1 (6.7)
Recalling that our search is for v = 6 and k£ = 1, (6.7) implies

PECL < 7 (6.8)

for all the codes considered. Since n varies with constellation size, the bound resulting

from (6.6) varies with constellation as follows (assuming k = 1):

PECL < 5 for 4-PSK (6.9)
PECL < 6 for 8-PSK (6.10)
PECL < 7 for 16-QAM. (6.11)

The primary goal of this section’s search is to maximize PECL. Thus the rate-
1/4 16-QAM trellis codes are considered first to see if the bound in (6.11) can be
achieved. This search, as with the previous searches, excludes catastrophic codes,
distance equivalent permutations, and time reversals. The algorithm proposed by
Lapidoth in Theorem 1 of [18] was used to check whether each candidate code had
PECL > 7. This was done by checking that no erasure pattern U with |U| < 7 results
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in an error on the periodic block erasure channel with M = P = 8.

Many rate-1/4 16-QAM codes were found that had PEcL = 7. The 4-PSK and
8-PSK constellations were never considered since they cannot produce a code with
PECL = 7.

The code periodic product distances CPPD; and CPPDg are used to select a code
from among those with PECL = 7. The bidirectional search algorithm used to compute
CED, ECL, and CcPD does not immediately apply to the computation of CPPD;. Instead,
a computationally intensive direct trellis search was used. Further investigation could
lead to a more efficient method for computing cPPD. However, the values of cPPD;
and cPPDg were required only for codes that had PECL = 7, and so a more efficient
algorithm was not required for this search.

It is not obvious how to weigh the relative importance of cPPD; and CPPDg. How-
ever, some codes can be immediately removed from consideration using the following

definition, which is specific to the current situation.

Definition 28 A rate-1/4, v =6, 16-QAM trellis code with PECL = 7 is dominated
if there exists another rate-1/4, v = 6, 16-QAM trellis code with PECL = 7 that has
larger values of both CPPD; and CPPDg.

A code that is not dominated is called Pareto optimal [16]. When all of the dominated
trellis codes are removed from consideration, only eleven Pareto optimal codes remain.
These eleven undominated codes are listed in Table 6.9 along with their periodic
metrics.

Normalizing cPPD; by taking the ith root (or dividing log, CPPD; by 1) is suggested
by (2.41) on page 17. Because of this, the last column in Table 6.9 lists the smaller
value (choosing between i = 7 and 7 = 8) of i~ !log, cPPD;. Table 6.10 lists the other
metrics for these eleven codes.

With only eleven Pareto optimal codes from which to choose, it is realistic at this
point to simulate each code and choose the one with the best error rate of interest.
However, only one code is selected for simulation in Section 6.4.

Figure 6.2 plots log, CPPDg vs. log, CPPD; for the eleven Pareto optimal codes.
There are several strategies for selecting one of the eleven codes, but two of the codes
stand out as desirable.

Code #9 has the largest minimum value of log, CPPD; (minimizing over i = 7, 8).
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# polynomial PECL log, (+) Min i !log,(CPPD;)
CPPD; | CPPDg for i € {7,8}

1 33 177 127 35 7 5.20 | —0.87 —.108

21 31 173 163 57 7 4.99 | —0.58 —.073
31105 177 157 131 7 4.84 0.75 .094
41107 175 143 127 7 4.39 1.75 219

o 43 176 171 45 7 4.07 2.46 308

6| 43 175 155 103 7 3.67 2.62 328

71 63 175 135 103 7 3.39 2.82 352

81 55 173 107 61 7 2.98 2.88 .360

91 71 103 137 145 7 2.94 3.50 420
10| 73 105 135 143 7 2.77 3.76 .396
11| 43 121 135 143 7 2.07 3.77 .296

Table 6.9: Rate-1/4 64-state 16-QAM codes with undominated
pairs (CPPD7, CPPDg) given the maximum PECL of 7.

| # | cED? | New | ECL | Nuo. | logy(cPD) |

11 104 1 7 1 5.71
21 104 1 7 1 5.03
31 128 1 7 1 6.39
41 128 1 7 1 4.39
5] 11.2 1 7 2 4.07
61 124 1 7 2 4.07
71 128 2 7 2 3.39
81| 10.8 1 7 1 3.07
91 10.8 1 7 2 3.07
10 11.6 1 7 2 4.07
111 108 1 7 2 2.07

Table 6.10: Other properties of rate-1/4 64-state 16-QAM codes
listed in Table 6.9.
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Figure 6.2: log,(CDDPg) vs. log,(CDDP7) for codes in Table 6.9.
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This code also has the largest minimum value of ~' log, CPPD;.

However, Code #5 maximizes both 3 log, cPPD; and Y_ i ! log, cPPD;. Code #5
was chosen for simulation, partly because it has a larger value of log, cPPD; than
Code #9. Because events with periodic event lengths of 7 have inherently less diver-
sity, it was decided to place slightly more emphasis on CPPD7.

Code #1 maximizes log, CPPD; outright, but its low value of log, CPPDg makes it
clearly undesirable.

As clear from this example, maximizing the periodic metrics is complicated by
the tradeoff between values of cPPD; for various indexes. However, the same tradeoff
exists even for the regular product distance. In that case, the issue is completely
ignored and only the minimum effective length products are considered. In fact,
there is an infinite number of possible effective lengths. Thus the tradeoff problem
for regular product distance is actually more complicated than in the periodic case

where only a few periodic effective lengths (two for the example above) are possible.

6.4 Simulations

The major elements of the simulation setup have already been described in the pre-
vious chapters. Multicarrier modulation was used to decompose intersymbol inter-
ference channels into 512 subchannels as illustrated in Figures 5.9 and 5.10 on pages
97-98. In these simulations, the overhead introduced by the cyclic prefix was ne-
glected.

Periodic interleaving and deinterleaving was performed with P =8 and B = 512,
as illustrated on page 20. Maximum likelihood sequence detection was done using
the Viterbi algorithm, while assuming that the receiver had perfectly estimated the
channel frequency response.

Five channels were simulated: the AWGN channel and the four channels whose
impulse and frequency responses were plotted on page 102 and pages 100 101 respec-
tively.

Each of Figures 6.3, 6.4, and 6.5 plots the BER performance of one code on all five
channels. All the BER curves in this section are plotted vs. the equivalent AWGN
SNR discussed on page 103. Each point plotted represents a simulation that ran until

50 trellis error events occurred. Each trellis event involved at least 2 bit errors, so
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each plotted point represents at least 100 bit errors.

Figures 6.3 6.5 show simulation results for the codes identified in Sections 6.1 6.3
respectively. Figure 6.5 shows that the code designed in Section 6.3 to maximize the
periodic metrics performs consistently well on all five channels. Figures 6.3 6.4 show
that the other two codes have good performance on some channels but not others.

Note in Figure 6.5 that the best BER curve is the curve for the 1/3 Band LPF
channel (on which the other two codes failed completely). This BER curve is similar
to that of the maximum CED code on the AWGN channel (see Figure 6.3). This
emphasizes the fact that, from a mutual information point of view, the 1/3 Band
LPF channel is no worse than the other channels studied.

Figures 6.6-6.10 each plot the BER performance of all three codes on one of the
five channels. The channels are examined in the following order in these figures:
AWGN, Notch, Ramp, 1/2 Band LPF, and 1/3 Band LPF.

Figure 6.6 shows that for the AWGN channel the maximum CED and ECL codes
perform almost identically, while the periodic metric code is 1 dB worse in perfor-
mance than the other two at BER= 10"6.

Figure 6.7 shows all three codes having similar performance on the Notch channel.
For the Ramp channel in Figure 6.8, the maximum ECL and PECL codes perform
almost identically, but the maximum ED code is more than 2 dB worse in performance
than the other two at BER= 10°.

With the 1/2 Band LPF channel, the periodic metric code has the best BER
performance. The maximum ECL code is 1 dB worse at BER= 10"%. The maximum
CED code doesn’t achieve a BER below 0.1 for the entire SNR range simulated. This
shows the limitations of CED as a metric for severely frequency selective channels.
It is also consistent with Figure 5.20 on page 111. Figure 5.20 predicts a loss of at
least 15 dB when the 4-PSK constellation is used to send one bit per symbol on this
channel.

Finally, the 1/3 Band LPF channel demonstrates the very robust performance of
the code designed to maximize the periodic metrics. The periodic metric code has a
BER of 10 % with an equivalent AWGN SNR of less than 5 dB, while the other two
codes have a BER above 0.2 even at 9 dB of AWGN SNR.
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BIT ERROR RATE
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Fooi| X 1/2 Band LPF
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0 1 2 3 4 5 6 7 8
EQUIVALENT AWGN SNR [dB]

Figure 6.3: BER vs. equivalent AWGN SNR on five MCM
channels for maximum CED code (Table 6.1 #1).
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BIT ERROR RATE
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Figure 6.4: BER vs. equivalent AWGN SNR on five MCM
channels for code optimizing ECL, CPD, and CED in
that order (Table 6.6 #1).
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BIT ERROR RATE
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EQUIVALENT AWGN SNR [dB]

Figure 6.5: BER vs. equivalent AWGN SNR on five MCM channels
for code optimizing PECL and cPPD (Table 6.9 #5).
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BIT ERROR RATE
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Figure 6.6: BER vs. equivalent AWGN SNR on the AWGN
channel for all three codes.
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BIT ERROR RATE
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Figure 6.7: BER vs. equivalent AWGN SNR on the Notch channel
for all three codes.
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Figure 6.8: BER vs. equivalent AWGN SNR on the Ramp channel
for all three codes.
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Figure 6.9: BER vs. equivalent AWGN SNR on the 1/2 Band LPF
channel for all three codes.
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Figure 6.10: BER vs. equivalent AWGN SNR on the 1/3 Band
LPF channel for all three codes.
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6.5 Summary

This chapter concludes five chapters of investigation into how a trellis code should
be designed for robust broadcast multicarrier modulation. The metrics presented
in Chapter 2 were applied to a specific transmission scenario where k£ = 1 bits are
transmitted per symbol and a complexity of ¥ = 6 memory elements is tolerable. The
searches used the superior-in-profile constellations identified in Chapter 4 and were
completed efficiently by avoiding the distance equivalent codes identified in Chapter 3.

The prediction in Chapter 6 of poor performance by 4-PSK and 8-PSK on the
lowpass filter channels was confirmed by the simulations in Section 6.4. However, the
information-theoretic analysis of Chapter 6 could not have predicted that the metrics
of CED and cPD actually decreased when the constellation size was increased beyond
an optimal size.

Section 6.4 clearly demonstrated the superiority of the periodic metrics in design-

ing codes for severely frequency selective channels.



Chapter 7

Achievable Rates for

Tomlinson-Harashima Precoding

This chapter examines Tomlinson-Harashima precoding (THP) on discrete time chan-
nels having intersymbol interference and additive white Gaussian noise. An exact
expression for the maximum achievable information rate of the zero-forcing (ZF)
Tomlinson-Harashima precoder (THP) is derived as a function of the channel im-
pulse response, the input power constraint, and the additive white Gaussian noise
variance. Information rate bounds are provided for the minimum mean square error
(MMSE) THP. The performance of ZF-THP and MMSE-THP relative to each other
and to channel capacity is explored in general and for some example channels.

Consider power-constrained additive white Gaussian noise (AWGN) communica-
tion channels with intersymbol interference (ISI). One approach for transmission over
such channels is to combine a coding scheme designed for ISI-free AWGN channels
with signal processing that makes the channel appear ISI-free. This processing might
be a linear equalizer, a decision feedback equalizer (DFE), or some form of precod-
ing. In each case, the processing can be optimized to satisfy a zero-forcing (ZF) or a
minimum mean square error (MMSE) criterion.

Any real application of the signal processing techniques discussed above either
preserves the channel capacity or introduces some loss in capacity. Invertible signal
processing, such as a linear equalizer using an invertible filter, will preserve the channel

capacity if used with appropriate channel coding and decoding techniques.

137
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Decision feedback equalization also preserves capacity since the input to the deci-
sion device can be processed to undo the decision feedback. The resulting signal can
then be filtered by the inverse of the feedforward filter, assuming that the feedforward
filter is invertible. In practice, the symbol-by-symbol decisions made at the output of
a linear equalizer or a decision feedback equalizer may preclude reliable transmission
at rates approaching capacity.

For analysis purposes, the decisions in the feedback section of a DFE are assumed
to be always correct. The structure resulting from this assumption, the ideal DFE, is
not invertible since the correct decisions are not available to undo the ideal decision
feedback. In fact, the ideal DFE is a different ISI channel with its own capacity that
can be below [49], equal [50], or above [51] the original channel capacity, depending
on the choice of filters and whether interleaving is employed. Note that the data
processing inequality does not apply to the ideal DFE because of the extra information
in the correct decisions.

In practice, the decisions used in the feedback section of an actual DFE are not
always correct. Once an incorrect decision is made, its presence in the feedback
section causes additional errors. This effect, known as error propagation [52], is
ignored by the ideal analysis discussed above. Error propagation is exacerbated when
DFE is combined with coded modulation techniques using dense constellations. As
the constellation distances become smaller, symbol-by-symbol decisions become less
accurate. Decisions are required by the DFE long before the redundancy in the coded
modulation can improve their accuracy.

Precoding suffers no effect analogous to error propagation, but provides error
variances similar to those of the ideal DFE. It can be combined easily with coded
modulation schemes as in [53, 54, 55, 56, 57| and other papers. Tomlinson [58] and
Harashima [59, 60] independently introduced the concept of precoding. The structure
that they presented will be referred to as the Tomlinson-Harashima Precoder (THP).
There are other precoding structures [55, 56, 57|, but this dissertation is concerned
only with quantifying the capacity loss introduced by THP.

Price [61] and Harashima et al. [60] showed that ZF-THP achieves the maximum
possible mutual information at high SNR for pulse amplitude modulation (PAM) in-
puts. Miyakawa et al. [59] computed the rates achievable with ZF-THP for a specific
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coaxial cable channel using high SNR approximations. Mazo and Salz [62] character-
ized the power difference between the inputs and outputs of a THP transmitter and
extended the ZF-THP from real-valued signals and filters to complex-valued signals
and filters. Cioffi and Dudevoir [63] introduced the MMSE-THP and compared its
output SNR with that of the ZF-THP.

Unlike linear equalization and DFE, THP employs nonlinear processing that is
not invertible. Thus some loss from channel capacity is expected in a communication
system employing THP. This dissertation quantifies that loss from capacity for any
given ISI channel and AWGN variance. An exact formula is derived for the ZF-
THP information rate. Upper and lower bounds are provided for the MMSE-THP
information rate. These information rate characterizations do not rely on high SNR
approximations; they are valid for any SNR.

The loss from capacity at a particular SNR depends on the specific channel impulse
response. Several impulse responses will be studied as examples. For channels with
severe ISI, the MMSE-THP can provide a significant performance improvement over
the ZF-THP for low to mid-range SNR. When the SNR becomes sufficiently large,
these two techniques become identical. At high SNR the only loss from capacity
incurred by THP is the shaping loss described by Forney [64].

In Section 7.1, Tomlinson-Harashima precoding will be reviewed. Section 7.2
presents the information rate characterizations for ZF-THP and MMSE-THP. Initially
the analysis is confined to real-valued inputs and impulse responses. However, the
section concludes by extending the results to the complex case. Section 7.3 applies

the rate characterizations to five example impulse responses.

7.1 Tomlinson-Harashima Precoding

7.1.1 The Channel Model

In this dissertation, impulse responses will be denoted by their formal D-transforms.
For example, the channel impulse response {h;} will be referred to as H(D), where
H(D) =", hyD*. For an AWGN channel with ISI, the input sequence {z;} is filtered
by the channel H(D). White Gaussian noise ny is added to produce the channel

output. The input sequence must obey an average power constraint Z,]cvzl El22] <
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P, where N is the number of symbols in a codeword. In this dissertation, the input
sequence {xy} will usually be independent and identically distributed. In this case,

the power constraint is simply E[z?] < P.

7.1.2 The Modulo Operator I

Transmitter | Channel p ! Receiver
wg?&rt['] Tk E H(D) aé—ie F(D) T[] —Z>k
- B(D)JL_____________j

Figure 7.1: Communication system using Tomlinson-Harashima
Precoding

Figure 7.1 shows the general THP system. Here ['; is a mapping from the real
numbers R to (—t/2,t/2] where t is a positive real number. Specifically,

Ft[vk] = T = U + ag (71)

where ay is the unique integer multiple of ¢ for which =, € (—t/2,t/2]. If wy is an
independent, identically distributed (i.i.d.) sequence with a uniform distribution on
(—t/2,t/2], then z; will also be i.i.d. with a uniform distribution on (—t/2,%/2].
This can be seen by considering the conditional distribution of z; in Figure 7.1 given
any particular value at the output of the filter 1 — B(D). Since this conditional
distribution is always uniform over (—¢/2,¢/2], the marginal distribution of z; will
also be uniform over (—t/2,¢/2].

For i.i.d. PAM wy, as the alphabet size increases E[x?] converges to t?/12, the
second moment of a uniform distribution on (—#/2,¢/2] [62]. In this dissertation ¢ is
chosen based on this large alphabet PAM approximation of FE[z?]. Thus, to satisfy
the power constraint, E[z?] < P, with equality,

t =V12P. (7.2)

Smaller values of ¢ than this choice give a lower achievable information rate. Larger
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values of ¢ cause the power constraint to be violated by an i.i.d. PAM w, sequence.

Thus, larger values of ¢ would require wy, to be carefully constructed to satisfy E[z?] <
P.

7.1.3 Selection of F(D) and B(D)

The system in Figure 7.2 is equivalent to that shown in Figure 7.1. The sequence
ar is a sequence of integer multiples of ¢ chosen so that xz € (—t/2,t/2] for all
k. The noise ny in Figure 2 is ny filtered by F(D). B(D) and F(D) are linear time
invariant filters chosen to minimize either zero-forcing or minimum mean square error
optimality criteria. Figure 7.2 will be useful in the information rate derivations that

follow.
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Figure 7.2: Communication system equivalent to Figure 7.1.

B(D) must be causal and monic (by = 1) so that the feedback filter 1 — B(D)
requires only previous values of ;. B(D) is closely related to the feedback filter of a
DFE. The filter F(D) corresponds to the combination of the sampled matched filter
and feedforward filter in a DFE.

Choosing B(D) and F(D) to satisfy a zero-forcing criterion produces the scheme
originally proposed by Tomlinson [58] and Harashima [60]. In the context of THP,
zero-forcing implies forcing y, = 0 (see Figure 7.2) for all k. Spectral factoriza-
tion techniques [65] satisfy this criterion by producing an allpass F'(D) such that
H(D)F(D) is causal, monic, and minimum phase. B(D) is chosen to equal H(D)F (D).
These are exactly the same values of B(D) and F(D) used in a zero-forcing DFE.

The (unbiased) MMSE-THP [63] is obtained by choosing F(D) and B(D) to
minimize VAR(7y + y) under the constraints that B(D) and H(D)F (D) are monic.
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As with the ZF-THP, spectral factorization techniques provide the desired filters,
which are exactly the values of B(D) and F(D) used in an unbiased MMSE-DFE.
Unlike the ZF-THP, H(D)F (D) need not be causal or minimum phase, and F (D)

need not be allpass.

7.1.4 THP and DFE Transfer Functions

Following [55], it is interesting to compare the THP transfer function with a; = 0 in
Figure 7.2 with the transfer function of the DFE shown in Figure 7.3.

w_ks_> H(D) ﬁé—}iﬁ F(D) ﬁ%ﬁ DecisionI
! ! | — B(D) .

_______________

Figure 7.3: Communication System Using a Decision Feedback
Equalizer

With the ideal assumption that w;, = wyg, the DFE transfer function is

Z(D)

——— =H(D)F(D 1— B(D). 7.3

WD) (D)F(D) + (D) (7.3)
With ax = 0 in Figure 7.2 (and neglecting the receiver I';[-] operator) the transfer
function of the THP is

_ H(D)F(D) (7.4)

As noted in [55], the zero-forcing choices of B(D) and F'(D) make the two transfer
functions (7.3) and (7.4) identical; they both equal 1. However, this equivalence holds
only for the zero-forcing case; the MMSE choices of B(D) and F (D) produce transfer

functions that are not identical.
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7.2 Information Rates for THP

This section characterizes the maximum information rates achievable by both ZF-
THP and MMSE-THP. The notation used in this section is that shown in Figures 7.1
and 7.2. For simplicity, initial analyses are confined to real z; and real coefficients of

H (D). However, the section concludes with an extension to the complex case.

7.2.1 Zero-Forcing

As discussed on page 141, the ZF-THP has F(D) and B(D) chosen so that y, = 0.
Recall that ny is ny filtered by F(D). Since F/(D) is an allpass filter, n; is white.
While the original AWGN channel with IST has memory, the overall ZF-THP system

is a memoryless channel with input w and output z given by
z = Tw + a+ nyl. (7.5)

The index k will be suppressed as above when it is not needed for clarity. Furthermore,
n, and ny will be used to denote explicitly the filtered Gaussian noise produced by
the ZF and MMSE choices of F'(D) respectively. The a term in (7.5) is an integer
multiple of ¢ and does not affect the output of T';[-]. Thus

z = T{w + ny). (7.6)

The ZF-THP memoryless channel has mutual information

I(w; z) = h(z) — h(z|w) (7.7)
= h(Ti{w + ny)) — h(T[n4]) (7.8)
< logy (1) — h(I's[7]) (7.9)

where h(-) denotes differential entropy. The upper bound of (7.9) follows from the
maximum differential entropy of a random variable with support constrained to an
interval. This bound can be achieved by choosing w to be i.i.d. uniform over the
interval (—t/2,t/2] giving

Cuerap = logy(t) — h(4[5))- (7.10)
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7.2.2 Minimum Mean Square Error

As discussed in the introduction, precoding and equalization in general seek to make
the channel ISI-free. However, the channel produced by the MMSE-THP still has
nonzero ISI since yx # 0. The MMSE choice of F(D) also produces a non-white 7.

Consistent with the goal of producing an ISI-free channel, ideal interleaving will be
assumed in the following analysis to produce a memoryless channel. Ideal interleaving

indicates interleaving deep enough that
ng — Mg,  Yi — Y5, Wi — Y, (7.11)

when indices ¢ and j are associated with the same codeword. The symbol — is used
to indicate statistical independence. Ideal interleaving in this context is information-
lossy since information contained by future and past values of z about the current
values of w and 7 is neglected. Thus higher information rates would be possible
without interleaving.

With interleaving, the inputs and outputs associated with any particular codeword

behave as those of a memoryless channel with peak limited input w and output

z=Tw+a+y+ nyl (7.12)
= Thjw + y + nyl. (7.13)

The mutual information of this channel is given below.

I(w;z) = h(z) — h(z | w) (7.14)
= Wy [w +y + ) — A(Ty + 1] | w). (7.15)

An upper bound on the capacity of the channel produced by MMSE-THP with

ideal interleaving can be found from the following two inequalities:

h(Ce[w +y + nu]) < logy (1) (7.16)
h(ely + ] | w) = W(T4ly + 7] | w, y) (7.17)
= h(Ty [ | w, y] (7.18)
= h(Ly[n]). (7.19)
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For (7.19), note that ny is independent of (w,y). The above inequalities give
Chuusp-rie < 1ogy () — h(Ty[fy]). (7.20)

Note that the upper bound was obtained in part by neglecting the ISI term y. The
tightness of this bound depends largely on the variance of .

A lower bound on Cyyse.rap can be found by assigning w an i.i.d. uniform distri-
bution on (—t/2,t/2]. For such a w, the output z is i.i.d. uniform on (—¢/2,¢/2]. As

with z, this is seen by noting that all the relevent conditionals are uniforms. Thus
h(z) = logy(1). (7.21)
Removing conditioning always increases entropy, so
hely + 0] | w) < h(Lily + ). (7.22)

The region of support of I'y[y+mny] is (—t/2,t/2]. Thus an upper bound on A(T";[y+
ny]) is the maximum differential entropy for a distribution with region of support
(—t/2,t/2] and variance equal to VAR(y + 7iy). A truncated Gaussian distribution
[66] achieves this maximum differential entropy. Let T (02, ) be a zero mean Gaussian

truncated to (—t/2,t/2] with variance (after truncation) of 0. Then,
h(T4ly + 7)) < A(T (07,1)). (7.23)
Combining (7.21) and (7.23) produces the desired lower bound on C\ygprup,
Cuserne > logy(t) — h(T (0%, 1)). (7.24)
Following [66], h(7T (c2,t)) (in bits) is computed as follows:

_ tlogy(e) exp(—t*/8v?)
4y\/2m erf(t/2y)

AT (07, 1)) = 5 logy(2m7%€) + Togy(2eri(t/27)

The variance 72 of the Gaussian before truncation can be found from o2 by solving
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the equation

t —12/8~?

2 V27 erf(t/2v)’

where

erf(t) = \/% /0 exp(—u?/2)du.

Note that ['y[y + fy] = [e[y + [y[fy]]. A truncated Gaussian with 02 = VAR(y +
[';[ny)]) produces a slightly tighter bound, but requires the computation of VAR(T';[72y]).
This tighter bound was used in the plots shown in Section 5.

In situations where the receiver complexity is to be minimized, the feedforward
filter F/(D) can be moved to the transmitter as discussed in [67]. In this case, 7y
is simply ny/s, where s is the real scalar for which sF(D) does not change the
transmitter power. The bounds derived above apply to this case directly, since the

variance of n; has not changed.

7.2.3 Extension to Complex Values

In [62] the real-valued ZF-THP of Tomlinson and Harashima was extended to a
complex-valued ZF-THP suitable for QAM transmission. An analogous extension
follows for the MMSE-THP. Figures 7.1 and 7.2 are valid block diagrams for the
general complex THP provided that ['; is redefined to be the appropriate many to
one mapping in the space of complex numbers. Let v be the complex number with

real part vy and imaginary part v;. Then
L] =v4+a=ux, (7.26)

where ay and q; are chosen so that xy and z; are in the interval (—t/2,¢/2]. To avoid
confusion, a superscript will be used henceforth to denote the dimensionality of I';.

For a complex v,

[2[o] = Tl + i} o] (7.27)
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This mapping is the natural extension of the real-valued THP. Other mappings are
possible and may even be desirable [56, 57, 64], but they will not be discussed here.

Let the input power constraint be E[|z[*] < 2P. The following bounds for the
complex case result from arguments that parallel the arguments presented above for

the real case.

Cor.rip = 2logy(t) — h(T7[R,]) (7.28)
Crusporie < 2108y (1) — h(I'[1y]) (7.29)
Cunserie > 210gy(t) — M(T (03, 1)) — W(T (07, 1)) (7.30)

= 2logy(t) — 2h(T (02,1)) (7.31)

In (7.30) and (7.31), 02 = VAR(yx+T} [y r]) and 02 = VAR(y,+ T} [7ay,]). Similar to
the real case, the lower bound on Clyysp-rup assumes that wy and w; are are independent

of each other and that both are uniform on (—¢/2,%/2]. As a result, o2 = o2.

7.3 Performance Comparisons

In this section, the rate characterizations derived in the previous section are used
to examine how much loss from channel capacity is experienced by THP. The well
known “shaping loss” is demonstrated to be the only loss experienced by THP at
high SNR. Information rates achieved by MMSE-THP and ZF-THP are compared
with each other and to capacity for AWGN with no ISI. THP information rates are
explored for three different ISI channel examples. Finally, a downsampled version of
the third ISI channel is examined to show that lower symbol rates can improve THP

performance at low SNR.

7.3.1 Shaping Loss

The relationships between the original channel capacity, the capacity using MMSE-
THP, and the capacity using ZF-THP generally depend on the ISI. However, regard-
less of the particular ISI, the achievable information rates of both the MMSE-THP
and ZF-THP structures converge in the limit of high SNR to 0.255 bits (the shaping
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loss) less than the maximum achievable information rate for an i.i.d. input sequence.

In the limit of high SNR, it is well known that the filters B(D) and F(D) used
in the ZF-DFE are exactly those used in the MMSE-DFE. Since the filters used in a
DFE are the same as those used in the corresponding THP, the ZF-THP and MMSE-
THP structures become identical in the limit of high SNR. This behavior is evident
in the bounds presented previously since the upper and lower bounds on Clyygprup
converge to Czp rgp in the limit of high SNR. In the limit of high SNR, all three
expressions, (7.10), (7.20), and (7.24) converge to

log, (£) — %logg(QﬂeE[ﬁQ]). (7.32)

From [50] the maximum information rate achievable on a real AWGN channel

with IST using an i.i.d. input sequence can be expressed as

1
3 logy (1 + SNRyysev), (7.33)
with
t2/12
SNR L A—— 7.34
MMSE-U E[’ﬁ,Q] _"_ E[yQ]J ( )

where 1 and y are those occurring in the MMSE-THP. Subtracting (7.32) from (7.33)
yields

Liog, ™ = 0.255 bits,

2 6
plus terms that go to zero for high SNR.

Thus at high SNR the difference between the THP information rate and the
maximum achievable rate using an i.i.d. input sequence is exactly the well known
shaping loss of 0.255 bits (1.53 dB of SNR loss on an AWGN channel). Forney [64]
identified this loss as being a result of the peak limitation introduced by precoding.
The above derivation demonstrates that this is the only loss introduced by Tomlinson-

Harashima precoding at high SNR.
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Figure 7.4: Information Rates on the AWGN Channel

7.3.2 THP on the AWGN Channel
Figure 7.4 shows information rate curves of interest for the AWGN channel with
no ISI. For this channel, the ZF-THP and MMSE-THP are exactly the same with

F(D) = 1. The capacity for the channel produced by this structure is

B(D) =
(7.35)

CTHP - 10{.{2 (t) o h(rt[n])

The well known AWGN channel capacity is the same as the mutual information for

an i.i.d. Gaussian x;. It is
1 2

C=-1 1 7.36

9 082 ( + 12E[n2]> ’ (7.36)

where #2/12 is the average transmitter energy. The solid line plotted in Figure 7.4 is
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the mutual information for zj; that isi.i.d. with a uniform distribution on the modulo
interval (—t/2,t/2], which is

1 .
@ip vnirory = h(z +n) — 5 10g2(27reE[n2]). (7.37)

Using THP with w i.i.d. uniform over modulo interval produces x with a uniform
distribution over the modulo interval. Thus (7.37) is a lower bound on the capacity
of the THP structure without the receiver modulo operation for the AWGN channel.

Note that the 11D-UNIFORM mutual information converges to the original channel
capacity at low SNR. This indicates that the receiver modulo operation is responsible
for all of the loss from capacity at low SNR for the AWGN channel. At high SNR
this behavior is reversed. As shown in the previous subsection, all of the loss from
channel capacity at high SNR can be explained by the peak constraint imposed by

the transmitter modulo operation.

7.3.3 Example Channels with ISI

Three ISI channels are used in the following study of THP performance: the Two-
Tap channel, the Ramp channel, and the Step channel. The impulse and frequency
responses of these channels are shown in Figures 7.5 and 7.6 respectively. All three
impulse responses shown are minimum phase. Thus the ZF-THP will cancel all the
taps except the first. These cancelled taps can be viewed as an opportunity for the
MMSE-THP to improve upon the ZF-THP performance.

Figures 7.7-7.9 show THP performance as a function of input SNR for the three
impulse responses. For each of these channels the ZF-THP capacity is plotted as
well as the upper and lower bounds on the MMSE-THP capacity. These information
rates are compared with curves showing the original channel capacity and the mutual
information for an i.i.d. Gaussian z; with E[z?] = t?/12. The 1ID-GAUSSIAN curve
is displayed to indicate the loss due to the fact that the THP transmitter produces
approximately i.i.d. inputs.

Capacity was approximated by discrete waterfilling using an 8192-point FFT.
The THP information rates required the differential entropy and the variance of the
modulo of a Gaussian random variable. These values were computed by numerical

integration using Mathematica. The variances of n + y and n were computed using
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Figure 7.7: Information Rates on the Two-Tap Channel.
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Figure 7.9: Information Rates on the Step Channel.

standard spectral factorization and partial fractions techniques [65, 63, 50, 45]. The
variance of y was then computed as the difference of these two variances.

At low SNR, the MMSE-THP outperforms the ZF-THP for all three ISI channels
studied here. The MMSE-THP may not strictly dominate the ZF-THP. This is unlike
the DFE, where ideal MMSE-DFE performance strictly dominates ideal ZF-DFE
performance. However, it does follow from a comparison of Cyp ryp to the lower
bound on Cyysprue that the ZF-THP capacity can be only negligibly higher (0.08
bits) than the MMSE-THP capacity. By virtue of the MMSE cost function,

var(ny + yu) < var(n,). (7.38)

Thus o2 in (7.24) is always less than or equal to the variance of 77, in (7.10). Maximiz-

ing the difference between (7.24) and (7.10) with the error variances set equal provides



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 156

the H(D) independent bound of 0.08 bits. For /o > 2 the difference between (7.24)
and (7.10) is negligible.

As the ISI becomes more severe, the performance gap between MMSE-THP and
ZF-THP at low SNR becomes more pronounced. Also, the MMSE upper bound
becomes less tight because the neglected y term becomes more significant. This

upper bound behavior is quite evident in Figure 7.9.

7.3.4 Symbol Rate Optimization

For any fixed symbol rate, performance can be improved by adding a transmitter filter
that maintains the power constraint but shapes the transmitter power spectrum to
be optimal [50, 63]. The information rates derived in Section 3 apply to the resulting
system simply by replacing H (D) with the cascade of the transmit optimization filter
and H (D).

The symbol rate should also be optimized. Certainly this requires that the symbol
rate be high enough to use the available bandwidth. However, in the context of THP,
the symbol rate can be too high. As an example, consider the Step channel with a
symbol rate half as high as considered previously. The effective impulse response was
obtained by lowpass filtering and downsampling the original Step channel impulse
response. Figure 7.10 shows this impulse response (converted to minimum phase)

and the corresponding frequency response.
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Figures 7.11, 7.12, 7.13, 7.14 compare the original Step channel with the channel
produced by halving the symbol rate. To allow a fair comparison of information rate
per unit time, the downsampled Step channel rate values were divided by 2. For a
fair comparison of energy use per unit time, the SNR values for the downsampled
Step channel were decreased by 3 dB. Thus information rate and transmitter power
are normalized to be per symbol at the original symbol rate.

Figure 7.11 shows that the discrete time channel produced by the lower symbol
rate has a higher i.i.d. Gaussian input information rate than the original Step channel
at low SNR. For low SNR, the i.i.d. Gaussian input is closer to the optimal waterfilling
spectrum with the lower symbol rate than with the original symbol rate. For large
SNR values, the original symbol rate provides much better performance than the
lower symbol rate.

Figure 7.12 demonstrates that for a large region of low SNR, the lower symbol
rate provides a dramatic improvement in the ZF-THP information rate. Most of this
performance improvement is due to the milder ISI produced by the lower symbol
rate rather than a more optimal transmit spectrum. When the SNR becomes large
enough, the original symbol rate again provides higher information rates.

Figure 7.13 compares the MMSE-THP bounds for the two channels. At low SNR
the lower symbol rate provides some improvement, but this improvement is not as
substantial as in the ZF-THP case. Note that the MMSE-THP upper bound is tighter
for the channel produced by the lower symbol rate due to a smaller residual ISI term.

Figure 7.14 shows all of the curves in the previous three figures. This figure
summarizes the low SNR advantages of the lower symbol rate. Note that the gap
between MMSE-THP and ZF-THP performance is much smaller for the lower symbol

rate.
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7.4 Summary

The maximum achievable information rate of the zero-forcing THP was derived as a
function of the channel impulse response, the input power constraint, and the AWGN
variance. Bounds were provided for the minimum mean square error (MMSE) THP.
The tightness of the upper bound depends on the variance of the residual ISI term.

Regardless of the ISI for a particular channel, the performance of both the MMSE-
THP and the ZF-THP become identical at high SNR. Both structures suffer exactly
the shaping loss of 0.255 bits or 1.53 dB due to the peak constraint at the transmitter.
At high SNR there is no additional loss due to the many-to-one mapping by the
receiver modulo operation. For the AWGN channel at low SNR, the situation is
reversed; the loss from capacity is due entirely to the receiver modulo with no loss
due to the peak constraint.

At low SNR, there is a performance difference between the MMSE-THP and the
ZF-THP for channels with ISI. In general the MMSE-THP performs better than the
ZF-THP, and the performance gap becomes more pronounced as ISI becomes more
severe. In some cases of severe ISI a lower symbol rate (perhaps used with a different
carrier frequency) can improve the achievable rate of THP and decrease the gap
between MMSE-THP and ZF-THP performance.



Chapter 8

Conclusion

8.1 Thesis Summary

Chapters 2 6 present a trellis code design strategy for channels with correlated fading.
Chapter 7 characterize achievable rates for Tomlinson-Harashima precoding.

Chapter 2 began the investigation of trellis code design with a discussion of the
design metrics used to select codes for various channel environments. This chapter
introduced periodic effective code length and code periodic product distance as metrics
for selecting a trellis code for channels with correlated fading.

Chapter 3 formally introduced trellis codes and their principal building block,
convolutional codes. A method was presented for identifying trellis codes that are
equivalent in the metrics of Chapter 2. This method reduces search complexity sig-
nificantly since metrics are then computed for only one in a set of equivalent codes.

Chapter 4 investigated how a constellation should be labeled to obtain the largest
values of the metrics of Chapter 2. A labeling strategy was introduced: that of
maximizing the edge length profile of the labeled constellation. The edge length
profile was demonstrated to be a better indicator of performance than whether the
constellation is Ungerboeck labeled or Gray coded or neither. Some Ungerboeck and
Gray labelings maximize the edge length profile, but others do not.

Chapter 5 applied Ungerboeck’s mutual information comparison technique to sin-
gle carrier transmissions with Rayleigh fading and broadcast multicarrier transmis-
sions with frequency selective fading. Two bits of redundancy are sufficient for un-

correlated Rayleigh fading. The number of bits of redundancy useful for broadcast
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multicarrier transmissions depends on how high the subchannel SNRs can be.

Chapter 6 brought together the ideas of Chapters 2 5 to design three trellis codes
based on the three sets of metrics introduced in Chapter 2. These three trellis codes
were simulated in a multicarrier modulation system over five channels. The code
designed with the new metrics of periodic effective code length and code periodic
product distance performed well even on a severely frequency selective channel on
which the codes designed according to the other metrics failed completely.

Chapter 7 presented an achievable rate characterization for Tomlinson-Harashima
precoding. An exact expression was derived for the zero-forcing THP. Upper and
lower bounds were provided for the minimum mean square error THP. The achievable
rates for the zero-forcing and minimum mean square error formulations of THP were
compared to each other and to channel capacity for some example channels. The
importance of correctly choosing the symbol rate was demonstrated. Correct symbol

rate selection was shown to be especially important for the zero-forcing THP.

8.2 Future Work

The new code design strategy outlined in Chapters 2-5 was used in Chapter 6 to
design one code, a rate-1/4, 16-QAM trellis code with six memory elements. One
direction for future work is the design of codes at other rates and complexity levels.
Of particular interest are codes that transmit two or three bits per symbol rather
than one. Such codes requires larger constellations such as 32-QAM and 64-QAM.

Chapter 6 simulated the newly designed code for multicarrier modulation over
channels that were not changing over time. It would also be interesting to simu-
late performance for correlated Rayleigh fading channels and for frequency hopped
transmissions with strong interference on certain hops.

The achievable rate analysis for THP raises the question of whether a similar
analysis might be possible for the combined coding and precoding method of Laroia
[57]. However, because the Laroia approach combines coding and precoding, simply

computing a mutual information is not appropriate for this case.



Appendix A

Formal Definitions

Definition 1 The (normalized) squared Euclidean distance ED* of the error sequence
b — b is

o llx—x|3
_ 112 Al
ED 3 (A.1)

Definition 2 The code Fuclidean distance CED of a code is the smallest ED of an

error sequence b — b associated with that code.

Definition 3 The number of Fuclidean nearest neighbors Negy, is the number of se-

quences X that are CED away from a transmitted sequence X.

Definition 4 The effective length EL of the error sequence b — b is the cardinality
of the set {i|z; — z; # 0}.

Definition 5 The effective code length ECL of a code is the smallest EL associated
with that code.

Definition 6 The product distance PD of the error sequence b — b is defined to be

] P
PD = H ”xlgixlnz where A = {i | x; # 2;}. (A.2)

€A

Definition 7 The code product distance of order i of a code, CPD;, is the smallest

product distance of an error sequence having EL= 1 associated with that code.
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Definition 8 The periodic effective length PEL of an error sequence is the number of

nonzero elements of the periodic distance vector.

Definition 9 The periodic effective code length PECL of a code is the smallest PEL

for an error sequence associated with that code.

Definition 10 The periodic product distance PPD of an error sequence is the product

of the nonzero elements of the periodic distance vector.

Definition 11 The code periodic product distance of order i of a code, CPPD;, is the

smallest PPD of an error sequence with PEL= 1.

Definition 12 A rate k/n convolutional encoder is a time invariant finite state ma-

chine with k-bit inputs and n-bit outputs.

Definition 13 For a specified labeled constellation, d>

"MIN

(E) is the smallest squared
FEuclidean distance of an edge with label E.

Definition 14 For a specified labeled constellation and error sequence E(D),

dj (B(D)) = dy, (E:) (A-3)

Definition 15 Two codes are strictly equivalent if they have the same mapping of

mput sequences to output sequences.

Definition 16 Two codes are range equivalent if they have the same set of possible

output sequences.

Definition 17 Two trellis codes are distance equivalent if they have the same set of
distance sequences {d?(E(D))}.

Definition 18 Trellis code T is distance superior to trellis code Ty if the distances
sequences of Ty can be paired (one to one) with those of Ty such that each term in
every distance sequence of 11 is greater than or equal to the corresponding term in
the paired sequence of Ty. There must be at least one strict inequality, otherwise the

trellis codes are distance equivalent.
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Definition 19 The mapping F implements a change of basis from {vq,...,v,} to
{Vi,...,vp} if for any s € S and any subset A of {1,2,...,n}:

F(s) = foi when s = Zvi. (A.4)
icA icA
Definition 20 Two labeled constellations C; and Co are strictly, range, or distance

equivalent if for any trellis code that uses labeled constellation Cy there is respectively

a strictly, range, or distance equivalent trellis code that uses labeled constellation Cs.

Definition 21 C; is distance superior to Cy (or Cy is distance inferior to Cy) if for
every trellis code Ty designed using Cy there is a distance superior (see Definition 18)
trellis code Ty defined using C;.

Definition 22 The edge length profile {p;} of a labeled constellation is defined to be

the list of d%(E) values for all nonzero edge labels E listed in increasing order.

Definition 23 C is superior in profile to C if pgl) > pl@) fori=1,...,|Ci| with at

least one strict inequality.
Definition 24 A path’s edge label sum is the sum of the edge labels in that path.

Definition 25 A labeled constellation is Gray coded if and only if all nearest neigh-
bors differ by exactly one bit.

Definition 26 A 2"-point constellation is called Ungerboeck labeled if for every m €
{1,...,n} the minimum distance of two points sharing the same m least significant

bits is as large as possible.

Definition 27 The coset labels of a constellation are an isometric labeling if and
only if for any selected coset label v, exclusive-oring all the coset labels with v has
the same effect as applying a geometric isometry (some combination of translations,

rotations, and reflections) to the constellation.

Definition 28 A rate-1/4, v = 6, 16-QAM trellis code with PECL = 7 is dominated
if there exists another rate-1/4, v = 6, 16-QAM trellis code with PECL = 7 that has

larger values of both CPPD; and CPPDg. (An undominated code is Pareto optimal.)
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