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AbstractThe increased data rates and reliability required to support emerging multimediaapplications require new communications technology. We present results regardingtwo techniques used in high data rate transmission | trellis coding and Tomlinson-Harashima precoding.New trellis code design metrics, periodic e�ective length and periodic product dis-tance, identify robust codes for correlated fading permuted with periodic interleaving.These codes are useful for a variety of communication scenarios including broadcastand point-to-point multicarrier modulation over frequency selective channels, singlecarrier modulation over channels with Rayleigh fading, and frequency hopped singlecarrier transmissions.Simulations of a 16-QAM rate-1/4, 64-state trellis code designed using the newmetrics demonstrate very robust performance. The new code achieves a bit error rateof 10�6 at an equivalent AWGN SNR of 4.75 dB on a severely frequency selectivechannel. Codes designed for independent Rayleigh fading or AWGN fail completelyon this channel at this SNR.We introduce techniques useful in trellis code searches based on common designmetrics. One technique identi�es trellis codes that have the same metric withoutcomputing the metrics. This technique can reduce search complexity signi�cantly.Also, we propose a new labeling strategy, which is to maximize the constellationedge length pro�le. Labeled constellations with maximum edge length pro�le producetrellis codes with the largest possible values of Euclidean distance, product distance,or periodic product distance. Some Ungerboeck and Gray labelings maximize theedge length pro�le, but others do not.We apply Ungerboeck's mutual information comparison technique to single carriertransmissions with Rayleigh fading and broadcast multicarrier transmissions withiv



frequency selective fading. Two bits of redundancy are su�cient for uncorrelatedRayleigh fading. The number of bits of redundancy useful for broadcast multicarriertransmissions depends on how high the subchannel SNRs can be.We derive expressions characterizing the achievable rates possible with Tomlinson-Harashima precoding (THP). Precoding techniques use nonlinear, channel-dependentsignal processing in the transmitter to achieve the same SNR as a decision feedbackequalizer, but without error propagation. We use our achievable rate expressions tocompare THP performance with channel capacity and to demonstrate the importanceof symbol rate optimization for good THP performance.
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Chapter 1IntroductionPopular demand is increasing for multimedia applications such as videoconferencingand digital video. These services require robust, high data rate communication overfading and dispersive channels. One physical layer technique that can provide robustcommunication over fading channels is multicarrier modulation. However, to performwell in a fading environment, multicarrier modulation must be combined with a welldesigned channel code. Chapters 2{6 of this dissertation provide a complete designstrategy that produces trellis codes with very robust performance in the presence ofcorrelated fading or interference. While multicarrier modulation was the initial ap-plication of interest, the resulting trellis codes provide reliable performance whereverperiodic interleaving is used to mitigate correlated fading or interference.A separate question addressed in this dissertation involves high data rate sin-gle carrier transmission over a wireline channel (e.g. twisted pair or coaxial cable).Wireline single carrier systems use some form of equalization to compensate for thedispersion introduced by the wire. Decision feedback equalization (DFE) allows reli-able transmission at rates approaching channel capacity, assuming error propagationin the DFE feedback loop can be neglected. However, error propagation cannot beneglected when combining a DFE with a trellis code. Precoding uses signal processingin both the transmitter and receiver to achieve the error variances of DFE withoutintroducing error propagation. Chapter 7 examines a commonly used form of pre-coding, Tomlinson-Harashima precoding (THP). This chapter quanti�es how closelyTHP can approach the channel capacity at any speci�ed SNR on a given dispersivechannel. 1



Chapter 1. Introduction 21.1 A Road MapChapter 2 begins the investigation of trellis code design with a discussion of the variousdesign metrics used to select codes for various channel environments. Chapter 3formally introduces trellis codes and their principal building block, convolutionalcodes. Chapter 4 investigates how a constellation should be labeled to maximize themetrics of Chapter 2. All formal de�nitions are listed in Appendix A. This list ofde�nitions should be a useful reference while reading Chapters 2{4.Chapter 5 reviews multicarrier modulation and relevant capacity calculations foradditive white Gaussian noise, Rayleigh fading, and intersymbol interference channels.This chapter then draws on information theory to investigate the number of pointsa constellation should have for a given rate under speci�ed communication scenarios.The scenarios considered are single carrier transmission over additive white Gaus-sian noise channels, single carrier transmission over Rayleigh fading channels, andmulticarrier modulation over intersymbol interference channels.Chapter 6 uses the ideas of Chapters 2{5 to design three trellis codes. Simulationsof the three trellis codes in a multicarrier modulation system over �ve channels showthe utility of the new metrics introduced in Chapter 2. The code designed with thenew metrics achieves an error rate of 10�6 on a severely frequency selective channelon which the two codes designed to be best according to the commonly used metricsfail completely.Chapter 7 presents an achievable rate characterization for Tomlinson-Harashimaprecoding (THP). An exact expression is derived for the zero-forcing THP. Upper andlower bounds are provided for the minimum mean square error THP. The achievablerates for the zero-forcing and minimum mean square error formulations of THP arecompared to each other and to channel capacity for some example channels. Theimportance of correctly choosing the symbol rate is demonstrated.Figure 1.1 shows the dependence among chapters. Readers may safely go straightto Chapter 7 if the achievable rate characterization of THP is of primary interest.Chapters 2{6 are best read in order. However, Chapter 5 | Capacity and Constella-tion Size | may be read independently.
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Figure 1.1: Dependence among chapters.



Chapter 1. Introduction 41.2 ContributionsThe main contributions of this dissertation are a trellis code design strategy for corre-lated fading and/or interference and an achievable rate characterization of Tomlinson-Harashima precoding. The details of these contributions are listed below by chapter.Chapter 2) Introduces the new metrics periodic e�ective code length and code periodicproduct distance. These metrics identify trellis codes that perform wellover channels with correlated fading.Chapter 3) Identi�es a systematic method for identifying trellis codes that are equiv-alent according to the metrics of Chapter 2. This method reduces searchcomplexity signi�cantly since the metric is computed for only one codein a set of equivalent codes.Chapter 4) Introduces the labeling strategy of maximizing the edge length pro�leof the labeled constellation. Also demonstrated is a close relationshipbetween Ungerboeck labeling and Gray Coding.Chapter 5) Applies Ungerboeck's mutual information comparison technique to ex-amine the potential of various constellations on fading channels.Chapter 6) Designs and simulates codes using standard metrics and the new designmetrics presented in Chapter 2. Simulations on �ve example channelsdemonstrate the robustness of codes designed according to the new met-rics.Chapter 7) Derives new expressions characterizing the achievable rates possible withTomlinson-Harashima precoding (THP). These expressions are used tocompare THP performance with the channel capacity and to demonstratethe importance of symbol rate optimization for good THP performance.



Chapter 2Design MetricsThe search for a good trellis code requires the ability to compare several codes todetermine which is best. The ultimate measure of a channel code is its ability tosupport an intended application. Since errors a�ect di�erent applications in di�erentways, error rates are computed di�erently for di�erent applications. Depending onthe application, the error rate may be measured in bits, bytes, blocks, or packets.Computing the error rate of interest for each candidate trellis code is prohibitivelycomplex. This chapter introduces metrics that are closely related to the error ratesof interest, but which can be computed with relatively low complexity. These metricsmight be the sole basis for selection of a code, or they might be used to identify ahandful of candidate codes, with the �nal selection based on simulations.2.1 A General Encoder and Channel ModelThree di�erent sets of metrics are derived, each appropriate for a di�erent communi-cation scenario. Each of these scenarios is a special case of the communication systemshown in Figure 2.1. This �gure shows a binary information sequence b = fbig en-coded as a sequence x = fxig of real or complex values. Each xi is scaled by thegain ai to produce the sequence y = fyig. The scaled values yi are then distorted byadditive white Gaussian noise (AWGN) terms ni to produce the sequence z = fzigthat is available to the receiver.In the discussion that follows, xi; ai; yi; ni; and zi are assumed to be complexnumbers. However, the same concepts and metrics apply when they are real. The5
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bi xi � +yi ziEncoder

ai ni
Figure 2.1: Encoder and channel model.variance of the real and imaginary parts of the AWGN are assumed to be constantand both equal to �2 so that the noise power isEjnij2 = 2�2: (2.1)Actual variations in the noise power can be reected in ai.The average power of each transmitted symbol is assumed to be the same so thatthe signal power is Ejxij2 = Ejxj2: (2.2)Practical transmitters must obey a power constraint, which is reected in the con-straint that Ejxj2 � Ex: (2.3)In general, increasing Ejxj2 lowers all of the error rates mentioned above. IncreasingEjxj2 certainly improves each of the three sets of metrics presented below. As aresult, it is assumed in the following discussion that the power constraint in (2.3) ismet with equality: Ejxj2 = Ex: (2.4)An important measure of channel quality is the signal to noise ratio (SNR) de�ned



Chapter 2. Design Metrics 7to be SNR = Ejxj2Ejnj2 = Ex2�2 : (2.5)The following discussion assumes that the receiver has perfect knowledge of �2and the sequence of scale factors faig. In practice, these values must be estimatedby the receiver. The details of channel estimation are beyond the scope of this dis-sertation. However, in many situations, the values change slowly enough that lowcomplexity estimation techniques provide the receiver with accurate estimates. Formore information about channel estimation techniques, see [1]. For an example ofchannel estimation speci�c to multicarrier modulation, see [2].The communications scenarios considered below are distinguished from each otherby the behavior of the sequence faig. For the AWGN channel considered in Sec-tion 2.2, the ai values are all equal to the same constant. For the Rayleigh Fadingchannel considered in Section 2.3, the magnitude of each ai has a Rayleigh probabilitydensity function (PDF), and ai ? aj for i 6= j (2.6)where ? indicates independence. For the arbitrary independent fading considered inSection 2.4, (2.6) still applies, but no particular PDF is considered. For the correlatedfading channel considered in Section 2.5, adjacent values of ai are strongly correlatedso (2.6) does not apply.In each of these cases, the receiver must estimate the input information sequence bbased on its observation of the sequence z of received values. In this dissertation, thereceiver chooses the sequence b most likely to have produced the observed sequencez. This method of reception, commonly referred to as maximum likelihood sequencedetection, minimizes the probability of a sequence error, but does not necessarilyminimize the bit error rate (BER). Maximum likelihood sequence detection for trelliscodes is performed with the Viterbi algorithm [3]. For an example of an algorithmthat minimizes BER, see [4].Consider transmission of a length L sequence (row vector) x corresponding to aninformation sequence b. For a given sequence of scale factors a, the sequences of



Chapter 2. Design Metrics 8scaled outputs y is computed as y = x Diag(a): (2.7)The length L complex sequence (or row vector) y is a point in 2L-dimensional space.For the channel described in Figure 2.1, the most likely information sequence b̂ is theone whose scaled output sequence ŷ is closest in Euclidean distance to the receivedsequence z. This is the sequence that would be identi�ed by the Viterbi algorithm.Figure 2.2 shows the set of possible scaled output sequences y as points in 2L-dimensional Euclidean space. As an example of an error, the �gure shows the pointy corresponding to the actual b and a di�erent point ŷ that is closer than y to thereceived point z = y + n.
* yŷz n

Figure 2.2: The possible values of y are shown as �'s. When thereceived value z produced by a noise vector n added tothe transmitted y is closer to ŷ that the transmitted y,an error occurs.In general, the probability of a sequence error such as the one demonstrated inFigure 2.2 depends on the position of all the possible points ŷ. However, as �2decreases, the probability of a sequence error is closely approximated by considering



Chapter 2. Design Metrics 9only the points ŷ nearest to the point y corresponding to the transmitted x.The pairwise probability of error associated with the pair of points fy; ŷg is theprobability that z = y+n is closer to ŷ than y. The region in which such a pairwiseerror occurs is always the halfspace containing ŷ bounded by the hyperplane thatbisects the line segment connecting y and ŷ. This halfspace is the shaded region inFigure 2.3.
y

**ŷ z
Figure 2.3: Decision Regions for y and ŷ. In the shaded region,z = y + n is closer to ŷ than y.Equivalently, this pairwise error occurs when the projection of z onto the linecontaining y and ŷ lies on the same side of the bisecting hyperplane as ŷ. Figure 2.3shows the projection of such a z onto the line.The one dimensional noise n along the line containing y and ŷ resulting from thisprojection has variance �2 (by symmetry since the noise variance in every dimensionis �2). Thus the probability of making the pairwise error between b and b̂ conditionedon a is P (b! b̂ j a) = P (y! ŷ) (2.8)= Q�ky � ŷk22� � ; (2.9)where k � k2 is Euclidean distance (the 2-norm) and Q(t) is the probability in the tail



Chapter 2. Design Metrics 10of a zero mean unit variance Gaussian PDF:Q(t) = 1p2� Z 1t e�u2=2du: (2.10)All of the metrics presented below are derived by considering the possible pairs(y; ŷ) or (x; x̂) to �nd the pairs that are most likely to be mistaken for each other.2.2 The AWGN ChannelThe simplest scenario considered is the AWGN channel, which has ai = 1 for all i.This implies that x = y in Figure 2.1. The pairwise probability of error for thisscenario is P (b! b̂) = P (x! x̂) (2.11)= Q�kx� x̂k22� � : (2.12)The ordered pair (b; b̂) that has the largest pairwise probability of error is exactlythe pair that has the smallest value of kx� x̂k2. For this reason, the primary metricused to evaluate a code for use on an AWGN channel is the smallest value of kx� x̂k2for two valid output sequences of the code. This metric is usually referred to as thecode Euclidean distance or free Euclidean distance.De�nition 1 The (normalized) squared Euclidean distance ed2 of the error sequenceb! b̂ is ed2 = kx� x̂k22Ex (2.13)De�nition 2 The code Euclidean distance ced of a code is the smallest ed of anerror sequence b! b̂ associated with that code.Ungerboeck identi�ed trellis codes with large Euclidean distances in [5]. A sec-ondary metric for the AWGN channel is the number of Euclidean nearest neighbors.De�nition 3 The number of Euclidean nearest neighbors Nced is the number of se-quences x̂ that are ced away from a transmitted sequence x.



Chapter 2. Design Metrics 112.3 Independent Rayleigh FadingIn wireless communications, scatterers and reectors often cause the transmitted sig-nal to arrive at the receiver from many di�erent directions, with each direction havinga di�erent associated complex gain. By the central limit theorem, the scale factorsfaig resulting from the sum of the complex gains along these many paths are approx-imately complex Gaussian random variables, each having covariance matrix"E[arar] E[arai]E[aiar] E[aiai]# = "2 00 2# : (2.14)The random variable q = a2r + a2i has an exponential PDF:p(q) = e�q=2222 q � 0: (2.15)The random variable r = pq has a Rayleigh PDF:p(r) = r e�r2=222 r � 0: (2.16)Because the PDF of r is Rayleigh, channels with fading sequences a of this type aresaid to exhibit Rayleigh fading. In this section, the metrics for Rayleigh fading assumea is a sequence of IID complex Gaussian random variables. Often, adjacent values aiand ai+1 are in fact strongly correlated. However, it is assumed that interleaving atthe transmitter and de-interleaving at the receiver disperse correlated fading enoughfor adjacent ai's to be uncorrelated at the decoder.Dispersing the correlated symbols improves performance in complexity-constrainedsystems. However, ignoring the correlation in a leads to suboptimal performance evenafter this dispersal. Section 2.5 derives metrics that account for the correlation afterinterleaving.The pairwise sequence error probability (2.9) for the pair (b; b̂) conditioned onthe sequence a of scale factors can be written in terms of x and a asP (b! b̂ j a) = Q0@sPLi=1 jaij2 kxi � x̂ik224�2 1A : (2.17)



Chapter 2. Design Metrics 12When a is a sequence of IID random variables, the marginal pairwise sequenceerror can be computed by integrating (2.17) over the PDF for each ai. When thisPDF is the complex Gaussian with covariance matrix of (2.14), integrating (2.17)over the Rayleigh PDF for each ri = jaij produces the marginal pairwise sequenceerror probabilityP (b! b̂) = Z 1r1=0� � �Z 1rL=0Q0@sPLi=1 r2i kxi � x̂ik224�2 1A r1 e�r21=222 dr1 : : : rL e�r2L=222 drL:(2.18)Unfortunately, (2.18) does not have a closed form solution. As a result, it doesnot lead to a useful design metric. Wilson & Leung [6] and Divsalar & Simon [7, 8]obtained a closed form expression that upper bounds (2.18). This upper bound isderived again here because of the importance of the metrics that result. (See also [9]for an exhaustive review of the literature on fading channel code design metrics.)To obtain a closed form expression, a Cherno� bound (see page 318 of [10]) isapplied to the zero mean unit variance Gaussian distribution in order to bound Q(t):Q(t) � e�stes2=2 for any s (2.19)= e�t2=2 for s = t (2.20)Applying (2.20) to (2.18) yieldsP (b! b̂) � LYi=1 Z 1ri=0 e�(r2i kxi�x̂ik22=8�2) ri e�r2i =222 dri (2.21)= LYi=1 Z 1ri=0 ri2 e�r2i =22�1+ 2kxi�x̂ik224�2 �dri (2.22)= LYi=1 �1 + 2kxi � x̂ik224�2 ��1 (2.23)=Yi2A�1 + 2kxi � x̂ik224�2 ��1 where A = fi j xi 6= x̂ig (2.24)�Yi2A�2kxi � x̂ik224�2 ��1 when 2kxi � x̂ik224�2 � 1: (2.25)



Chapter 2. Design Metrics 13For practical codes with the values of xi drawn from a �nite alphabet, there is aminimum nonzero value for kxi � x̂ik22. For these codes, the approximation of (2.25)is valid regardless of the speci�c sequences x in the code as long as 2=�2 is largeenough.The approximation in (2.25) is equivalent to (7) in [7] and (9.22) in [8]. Also, (3.5)in [6] is a sum of pairwise error probabilities equivalent to (2.25). In [7] Divsalar andSimon based two metrics on (2.25), e�ective code length and code product distance.De�nition 4 The e�ective length el of the error sequence b ! b̂ is the cardinalityof the set fi j xi � x̂i 6= 0g.De�nition 5 The e�ective code length ecl of a code is the smallest el associatedwith that code.De�nition 6 The product distance pd of the error sequence b! b̂ is de�ned to bepd =Yi2A kxi � x̂ik22Ex where A = fi j xi 6= x̂ig: (2.26)De�nition 7 The code product distance of order i of a code, cpdi, is the smallestproduct distance of an error sequence having el= i associated with that code.Rewriting (2.25) in terms of these metrics yieldsP (b! b̂) � �2Ex4�2 ��el 1pd : (2.27)The marginal pairwise sequence error probability decreases exponentially with el andis inversely proportional to pd. Du & Vucetic have designed numerous rate k=k + 1trellis codes using the metrics of ecl and cpd [11, 12, 13, 14]. As with Euclideandistance for the AWGN channel, the number of el nearest neighbors and pd nearestneighbors are secondary considerations in the code selection process.2.4 Arbitrary Independent FadingThe previous section demonstrated that the code product distance and the e�ectivecode length are informative metrics in the context of independent Rayleigh fading.



Chapter 2. Design Metrics 14However, the sequence of scale factors a do not always obey a Rayleigh PDF, asdemonstrated with the following two examples.Signal power from interfering transmitters at time index i lowers the signal tonoise ratio for xi, which is equivalent to lowering ai for the purposes of computingcode design metrics. The e�ective values of ai due to interference often do not followa Rayleigh distribution. For example, narrow band frequency hopping where somehops have severe interference and others have no interference produces a bimodaldistribution of ai values very di�erent from Rayleigh.With multicarrier modulation, blocks in the sequence a correspond to the discreteFourier transform (DFT) of a frequency selective channel. When neither transmitternor receiver is moving (an HDTV transmission, for example) the frequency response is�xed for an extended period of time. The scale factors associated with this frequencyresponse need not have a Rayleigh distribution.In these cases of interference and fading, e�ective code length and code productdistance are still informative metrics, even though the derivation of the previous sec-tion does not apply. E�ective code length is essentially a measure of the diversityprovided by the code [9, 15]. Whenever transmission is over a channel with inde-pendent scale factors, increasing diversity (and thus e�ective code length) improvesperformance.Two motivations for the usefulness of product distance outside the context ofRayleigh fading are given below. Both of these arguments apply Lagrange multipli-ers to solve relevant constrained minimization problems. The code product distanceessentially measures how evenly Euclidean distance is distributed to the \diversitybranches" of the code. To see this, consider the following primal maximization prob-lem: Maximize NYi=1 diSubject to NXi=1 di � s � 0



Chapter 2. Design Metrics 15where s is a constant. The Lagrangian dual problem [16] isMinimize maxd  NYi=1 di � � NXi=1 di � s!!Subject to � > 0The solution to the dual problem (and thus the primal as well) must satisfyNXi=1 di = s (2.28)and di = QNi=1 di� for all i: (2.29)The only choice of (d1; : : : ; dN) and � that satis�es these conditions isdi = sN for i = 1; 2; : : : ; N (2.30)and � = � sN �N�1 : (2.31)In other words, an even distribution of distance maximizes the product. As thedistribution of distance becomes more skewed, the product decreases.Ordentlich [17] provides a second argument motivating the product distance. Thisargument �xes the pair (b; b̂) and seeks the fading sequence a that maximizes thepairwise sequence error probabilityP (b! b̂ j a) = Q0@sPLi=1 jaij2 kxi � x̂ik224�2 1A : (2.32)If no constraints are placed on a, this leads to the uninteresting result that a is theall zeros vector and the probability of error is the same as when the transmitter sendsnothing. To make the analysis meaningful, the fading sequences are constrained to



Chapter 2. Design Metrics 16support at least some minimum amount of information transmission. That is, all thefading sequences considered must induce at least some speci�ed mutual information[10] on the channel. The total mutual information I for a speci�ed fading sequencea is I = LXi=1 log2�1 + jaij2Ejxij2Ejnij2 � (2.33)= LXi=1 log2�1 + jaij2Ex2�2 � by (2.1) and (2.4): (2.34)Considering only the values of ai that a�ect the pairwise error probability (2.32), theconstraint on a is Xi2A log2�1 + jaij2Ex2�2 � � R el (2.35)where A = fi j xi 6= x̂ig and R is the desired per symbol information rate. Neglectingthe 1 in (2.35) produces the approximate constraintXi2A log2� jaij2Ex2�2 � � R el for high SNR: (2.36)The above approximation is not as accurate as the approximation that produced(2.25) since even at large values of Ex=�2, there are some fading sequences that easilysatisfy (2.35) but not (2.36). These sequences are incorrectly removed from the setover which minimization is performed. Nonetheless, this is an informative exercise aslong as the limitations of its interpretation are made clear.The resulting constrained minimization problem can be expressed asMinimize Xi2A jaij2 kxi � x̂ik22Subject to c�Xi2A log2(jaij2) � 0



Chapter 2. Design Metrics 17where c = el ��R� log2� Ex2�2�� : (2.37)The Lagrangian dual problem [16] isMaximize mina  Xi2A jaij2 kxi � x̂ik22 + � c�Xi2A log2(jaij2)!!Subject to � > 0The solution to the dual (and thus the primal) isjaij2 = �kxi � x̂ik22 (2.38)� =  2cYi2A kxi � x̂ik22!1=el (2.39)The worst case fading sequence aworst identi�ed in (2.38) applied to (2.32) producesP (b! b̂ j aworst) = Q rel�4�2 ! : (2.40)Using (2.39) and (2.37) to substitute for lambda in (2.40) producesP (b! b̂ j aworst) = Q�p2R�1 pd1=el el� : (2.41)Note that (2.41) is independent of SNR. This is because the mutual informationconstraint (2.36) induces a constant geometric mean SNR. If all the pairs (b; b̂) witha given el are considered, the pair (or pairs) with the smallest pd have the largestworst case error probability according to (2.41). Thus, increasing the code productdistance improves this worst case performance.Applying the Cherno� bound of (2.20) to (2.41) producesP (b! b̂ j aworst) � e2R�2 pd1=el el : (2.42)



Chapter 2. Design Metrics 18Comparing (2.42) with (2.27) reveals that both expressions are made smaller by largervalues of pd. However, (2.42) decreases exponentially in pd1=el while (2.27) is onlyinversely proportional to pd. Thus increasing pd improves performance in both cases,but the improvement is more dramatic for the worst case situation. This makes sensebecause the even spread of distance is more crucial for the extreme variations foundin the worst case fades than in the relatively gentle Rayleigh distribution.2.5 Correlated Fading or InterferenceThe e�ective length el and product distance pd are informative only when the scalefactors ai are uncorrelated. The arguments that justi�ed el and pd in the previoussections are not compelling when the scale factors are strongly correlated. In par-ticular, if ai � aj because they are strongly correlated, no diversity is achieved byspreading distance between the two corresponding symbols.The contribution of these two symbols to the pairwise probability of error remainsthe same as long as kxi � x̂ik22 + kxj � x̂jk22 (2.43)remains the same. This section introduces new metrics closely related to el and pdthat are informative in the context of correlated fading.De�ne the autocorrelation function of the fading sequence to beRa(k) = E[aia�i+k] (2.44)where a�i+k denotes the complex conjugate of ai+k. Often adjacent scale factors arestrongly correlated, and the correlation Ra(k) decreases as the separation k betweenscale factors increases.The rate of decrease in correlation depends on the Doppler frequency for portablewireless transmissions and on the coherence bandwidth for multicarrier modulation(MCM) systems. MCM systems commonly have coherence bandwidths wide enoughthat large groups of adjacent scale factors are strongly correlated. Similarly, portablewireless systems often have Doppler frequencies low enough that several consecutivesymbols are strongly correlated.



Chapter 2. Design Metrics 19So far, this chapter has considered a general class of codes that map binary se-quences to points in Euclidean space. In this dissertation, the primary interest is ina special case of such codes called trellis codes. Trellis codes are formally introducedin the following chapter, but an observation about them is required here.A practical trellis code (one with a relatively small number of delay elements) hasmany error sequences for which all the nonzero values of jxi� x̂ij occur within a smallnumber of adjacent symbols. For example, Theorem 1 in the next chapter states thatecl � j�kk+ 1 (2.45)where b�c is the oor function, k is the number of input bits per symbol, and � isthe number of memory elements used by the encoder. The proof of this theoremdemonstrates that there is always an error sequence for which the nonzero values ofjxi � x̂ij occur within b�=kc + 1 adjacent symbols.Consider applying such a trellis code directly to a fading channel for which anygroup of f > ecl adjacent scale factors are strongly correlated. Whenever the nonzerovalues of jxi�x̂ij all occur within f , they are multiplied by scale factors ai with similarvalues because of the strong correlation in the fading.For practical trellis codes to have low error rates on channels with correlated fad-ing, adjacent trellis encoder outputs must not be transmitted on adjacent symbolsxi; xi+1; : : : ; xf . An interleaver is used to change the ordering of the trellis encoderoutputs before transmission, as illustrated in Figure 2.4. The receiver uses a deinter-leaver to return the symbols to their original order before decoding.There are several types of interleavers, but this dissertation restricts its attentionto the class of interleavers known as periodic interleavers. A periodic interleaver isspeci�ed by two parameters, the block size B and the period P . Figure 2.5 shows aperiodic interleaver with B = 512 and P = 8 implemented by writing the trellis en-coder outputs ci column-by-column into a matrix and reading the interleaver outputsxi row-by-row out of this matrix. Figure 2.6 shows the associated deinterleaver.
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EncoderTrellis Interleaverbi ci xiEncoder

Figure 2.4: The encoder of Figure 2.1 can be composed of a trellisencoder followed by an interleaver.
c2c512 ...c1 x1x2... x512

26664c1 c9 : : : c505c2 c10 c506... . . . ...c8 c16 : : : c512
37775 26664 x1 x2 : : : x64x65 x66 x128... . . . ...x449 x450 : : : x512

37775
Figure 2.5: Write-by-column, read-by-row implementation of aperiodic interleaver with period P = 8 and block sizeB = 512. The left matrix shows write labeling, and theright matrix shows read labeling.z2z512 ...z1 v1v2... v512

26664 z1 z2 : : : z64z65 z66 z128... ... . . . ...z449 z450 : : : z512
37775 26664v1 v9 : : : v505v2 v10 v506... ... . . . ...v8 v16 : : : v512

37775
Figure 2.6: Write-by-row, read-by-column implementation of adeinterleaver for the interleaver shown above.



Chapter 2. Design Metrics 21The periodic interleaver-deinterleaver pair shown in Figures 2.5 and 2.6 dispersesany group of P = 8 consecutive trellis encoder outputs so that they are multipliedby scale factors ai separated by at least B=P = 512=8 = 64 symbols. As an example,consider the eight consecutive deinterleaver outputs v1 : : : v8 produced by the inter-leaver, deinterleaver pair shown in Figures 2.5 and 2.6. The values of v1 : : : v8 areexpressed in terms of c�a+n in (2.46). Note that no two scale factors ai; aj in theseequations have indices separated by less than 64.v1 = c1 � a1 + n1v2 = c2 � a65 + n65v3 = c3 � a129 + n129v4 = c4 � a193 + n193 (2.46)v5 = c5 � a257 + n257v6 = c6 � a321 + n321v7 = c7 � a385 + n385v8 = c8 � a449 + n449Periodic interleaving lowers the probability of error sequences consisting of a smallnumber of nearby terms by separating these terms so that they are multiplied byuncorrelated scale factors. However, there are other error sequences that must alsobe considered. Periodic interleaving does not remove the correlation in the fadingsequence a, it merely permutes the correlation pattern. There are exactly as manystrongly correlated scale factors after interleaving as before.Suppose that any three adjacent scale factors ai; ai+1; ai+2 are strongly correlated.Then an interleaver with period 8 would cause c1; c9; and c17 to be multiplied byapproximately equal scale factors as shown below:v1 = c1 � a1 + n1 (2.47)v9 = c9 � a2 + n2 (2.48)v17 = c17 � a3 + n3: (2.49)



Chapter 2. Design Metrics 22Thus el and pd are not quite the right metrics even when periodic interleaving isapplied to correlated fading channels.Lapidoth examined the performance of convolutional codes combined with peri-odic interleaving in [18]. He used a periodic version of the block erasure channelmodel introduced by McEliece & Stark in [19]. Figure 2.7 illustrates the block era-sure channel, showing a block of 512 encoder outputs divided into subblocks of lengthf . In the block erasure model, each subblock is either entirely erased (so that thereceiver sees no information related to the subblock) or the subblock arrives withoutany distortion at the receiver (i.e., zi = xi in unerased subblocks).x1 : : : x64 x65 : : : x128 x129 : : : x192 x193 : : : x256 x257 : : : x320 x321 : : : x384 x385 : : : x448 x449 : : : x512Figure 2.7: A block of 512 symbols is shown divided into subblocksof f = 64 symbols.In the periodic block erasure channel, one erasure pattern describes which sub-blocks are erased for every block, and so the subblock erasures occur periodically.Lapidoth proposed searching for combinations of convolutional codes and interleaversthat could perform without errors with the largest possible number of erased sub-blocks in the erasure pattern. An e�cient algorithm for testing whether a code hasthis property is provided in Theorem 1 of [18].Let U be the erasure pattern expressed as a sequence of bits where a 1 indicatesa subblock erasure. The number of bits in U is the ratio M of the block size tothe subblock size. For a periodically interleaved system, M = P . De�ne jU j to bethe number of erased subblocks per block (the Hamming weight of U). Lapidothshowed in [18] that error free communication of k bits per symbol with a rate k=nconvolutional code is impossible ifjU j > �M �1� kn�� : (2.50)



Chapter 2. Design Metrics 23Simply put, when jU j is large enough to satisfy (2.50) there are not enough unerasedbits at the receiver to recover the entire information sequence.The block erasure channel does not capture the full behavior of fading channelswith additive noise. This dissertation develops a more detailed model | the blockfading channel model | to design metrics for correlated fading. As in the previousmodel, the block fading model starts by dividing the transmitted sequence x intoblocks of length f , where f depends on the Doppler frequency or coherence bandwidthof the channel. This model then includes the e�ects of fading and AWGN on everysymbol. Once again ni is complex AWGN. The fading scale factors now have thefollowing behavior: ai = aj if they are in the same block, and ai ? aj otherwise.The block fading channel model captures two important characteristics commonto channels with correlated fading:1. Scale factors separated by more than f are completely uncorrelated.2. Adjacent scale factors are strongly correlated.The block fading channel model does not accurately reect the gradual decreasein correlation that occurs in Ra(k) as k increases. However, this e�ect can be safelyneglected in the context of trellis codes with periodic interleaving, as explained below.Periodic interleaving ensures that any two scale factors ai; aj multiplying symbolsoccurring even in a relatively long error sequence of 4f or 5f symbols are either withina few symbols of being adjacent or are separated by almost f symbols. Thus, thescale factors of interest for such an error sequence are either strongly correlated oralmost independent as in the block fading channel model.The Ra(k) behavior neglected by the block fading channel model becomes impor-tant only when scale factors separated by, say, f=2 or f=3 symbols are involved inthe same error sequence. This e�ect occurs only for error sequences so long that thepairwise errors are too small to warrant consideration in the design of a metric.In e�ect, the block fading channel model has the independent symbol-by-symbolfading property described in Sections 2.3 and 2.4 for the supersymbols Xi de�nedbelow: Xi = hxt+1 xt+2 : : : xt+fi where t = (i� 1)f: (2.51)



Chapter 2. Design Metrics 24Happily, the metrics introduced in those earlier sections have natural counterpartsfor the block fading channel. The el for an error sequence on block fading channelis the cardinality of the set A = fi j Xi 6= X̂ig. The associated product distance iscomputed as pd =Yi2A kXi � X̂ik22Ex : (2.52)Recall that the block fading channel was motivated in the context of periodicinterleaving, where the trellis code outputs are ci rather than xi. It is useful toexpress the metrics in terms of ci usingkXi � X̂ik22 = f�1Xj=0 kci+jP � ĉi+jPk2: (2.53)Note that there are P supersymbols in a block of B = Pf symbols. For multi-carrier modulation transmissions between a stationary transmitter and receiver, thefrequency response and consequently the fading pattern a is the same for each block.Thus supersymbols with the same index modulo P have the same fading. In thiscase, the channel is modeled by periodic block fading, corresponding to the periodicblock erasures studied by Lapidoth.The e�ective length and product distance metrics for this case are de�ned in termsof the P element periodic distance vectorh ~d21 ~d22 : : : ~d2Pi ; (2.54)where ~di = E�1x �kXi � X̂ik22 + kXi+P � X̂i+Pk22 + � � �� : (2.55)Using (2.53) to sum these terms yields~d2i = 1Xj=0 kci+jP � ĉi+jPk2Ex : (2.56)



Chapter 2. Design Metrics 25Using the periodic distance vector, periodic versions of e�ective length and productdistance are now de�ned.De�nition 8 The periodic e�ective length pel of an error sequence is the number ofnonzero elements of the periodic distance vector.De�nition 9 The periodic e�ective code length pecl of a code is the smallest pelfor an error sequence associated with that code.De�nition 10 The periodic product distance ppd of an error sequence is the productof the nonzero elements of the periodic distance vector.De�nition 11 The code periodic product distance of order i of a code, cppdi, is thesmallest ppd of an error sequence with pel= i.Consider pecl in the context of the periodic block erasure channel. If an erasurepattern U causes errors, then it must hold thatpecl � jU j: (2.57)Otherwise, unerased nonzero elements would exist in every periodic distance vector,allowing error-free detection. From (2.50), error-free transmission is impossible whenjU j = �P �1� kn��+ 1: (2.58)The number of subblocks M per block in (2.50) is taken to be the interleaver periodP . Using (2.58) to substitute for jU j in 2.57 produces a useful bound on pecl:pecl � �P �1� kn��+ 1: (2.59)Considering the periodic distance vector as an aliased version of the original sequenceof distances, it follows thatpecl � ecl (2.60)� j�kk+ 1 by (2.45). (2.61)



Chapter 2. Design Metrics 26When periodic interleaving is employed, blocks are often decoded independently.(The trellis is terminated at the end of each block.) For such block-based decoding,these periodic metrics are informative even when supersymbols Xi and Xi+P do nothave the same fading.2.6 SummaryThis chapter began with a review of the metric of Euclidean distance for AWGNchannels. For independent Rayleigh fading channels, the standard derivation of thee�ective length and product distance metrics was presented. The Rayleigh metricswere then motivated for use whenever fading is independent regardless of the PDF ofthe fading scale factors.Channels with correlated fading were then examined. It was demonstrated thate�ective length and product distance are not appropriate metrics in the context ofcorrelated fading. Instead, periodic e�ective length and periodic product distanceare the metrics to be used to design trellis codes for periodically interleaved channelswith correlated fading.



Chapter 3Trellis CodesUngerboeck's famous 1982 paper [5] introduced trellis codes, which simpli�ed thedesign of codes in Euclidean space, rather than in binary space. The name trellis coderefers to the structure of the �nite state machine encoder (also used for maximumlikelihood sequence decoding of such a code via the Viterbi algorithm [20]).The standard trellis code encoder, shown in Figure 3.1, comprises a convolutionalencoder followed by a signal mapper. The rate k=n convolutional encoder mapssequences of k-bit symbols bi to sequences of n-bit symbols. The signal mapper mapsthe n-bit symbols to points xk from an alphabet of 2n complex values. The set of 2npoints that constitute this alphabet is known as a constellation.
k bits signalmapperrate knconvolutionalencoder n bits xibi

Figure 3.1: Encoder for a Trellis Code.The design of a trellis code involves selecting a labeled constellation and convolu-tional encoder to maximize some subset of the metrics presented in Chapter 2. Thelabeling for the constellation describes how the signal mapper maps convolutionalencoder outputs to constellation points. 27



Chapter 3. Trellis Codes 28This chapter presents the background material necessary to discuss these designchoices in detail. An important tool in the search for trellis codes is the ability deter-mine when di�erent trellis codes have equivalent performance. This chapter concludeswith an exploration of how di�erent convolutional codes can lead to equivalent trelliscodes.Section 3.1 introduces convolutional codes. Section 3.2 explores convolutionalcodes in the context of the vector space of output symbols. This representation willbe useful in Section 3.6 and in the next chapter for demonstrating how convolutionalcodes and constellations that look very di�erent can be components of equivalenttrellis codes.Section 3.3 explores the error sequences produced by maximum likelihood sequencedetection performed on a convolutional code. Section 3.4 gives an example of howa convolutional code error sequence maps to a symbol error sequence in a trelliscode. This section also de�nes for trellis codes a \worst case" distance sequencecorresponding to each error sequence of the underlying convolutional code.Section 3.5 de�nes three ways that trellis codes can be considered equivalent.The weakest de�nition is distance equivalence, but even distance equivalent codesare identical in the metrics introduced in Chapter 4. Only one code in a set ofdistance equivalent codes needs to be evaluated in a code search program based onthese metrics. Section 3.6 shows how certain changes of basis in the vector spaceintroduced in Section 3.2 always produce distance equivalent codes.3.1 Convolutional CodesAs shown in Figure 3.1, every trellis code has a convolutional code as a major com-ponent. As a result, the structure of trellis codes is closely related to that of convolu-tional codes. This study of trellis codes begins with an introduction to convolutionalcodes.The central reference for convolutional codes used in this dissertation is the 1970paper by Forney [21]. The following de�nition paraphrases the one in [21] and spe-cializes to the binary �eld.



Chapter 3. Trellis Codes 29De�nition 12 A rate k=n convolutional encoder is a time invariant �nite state ma-chine with k-bit inputs and n-bit outputs.Without loss of generality, the following discussion is concerned only with convolu-tional encoders that do not employ feedback. The justi�cation for this restriction isgiven in Section 3.5.The �nite state machine of a feedback free encoder is simply a feedback free shiftregister. Figure 3.2 shows a feedback free rate 1=4 convolutional code with 6 memoryelements. Addition in the �gure is modulo 2 (the exclusive-or operation). The inputbits bi pass through a shift register with 6 memory elements. The four output bitsequences ci;1, ci;2, ci;3, and ci;4 are modulo 2 sums of selected subsets of the currentand 6 previous input bit values.
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Figure 3.2: A feedback free rate 1/4 convolutional encoder.Convolutional codes such as the one whose encoder is shown in Figure 3.2 are oftendescribed by the bit patterns that identify the subsets of bi values to be summed. Thefour patterns for Figure 3.2 are the rows of the following matrix:2666640 1 0 0 0 1 11 1 1 1 1 1 01 1 1 1 0 0 10 1 0 0 1 0 1
377775 : (3.1)



Chapter 3. Trellis Codes 30The D transform of the sequence fbig is de�ned to be b(D) =P biDi. Sequencesare referred to in terms of their D transforms. The relationship between an input se-quence b(D) and output bit sequence ci(D) may be described in terms of the generatorpolynomial gi(D) by the equation:ci(D) = b(D)gi(D): (3.2)The generator polynomial gi(D) for the rate 1/4 encoder shown in Figure 3.2 is theD transform of the ith row of (3.1). The four generator polynomials for this encoderare shown below: g1(D) = D +D5 +D6 (3.3)g2(D) = 1 +D +D2 +D3 +D4 +D5 (3.4)g3(D) = 1 +D +D2 +D3 +D6 (3.5)g4(D) = D +D4 +D6: (3.6)A convolutional encoder is often described by the encoder matrix whose entriesare the generator polynomials. The encoder matrix for the rate 1/4 encoder shownin Figure 3.2 is hg1(D) g2(D) g3(D) g4(D)it ; (3.7)where the values of g1(D); : : : ; g4(D) are those given in (3.3){(3.6). A rate k=n encoderwould have k rows in its encoder matrix.Often, convolutional codes are identi�ed by octal representations of the coe�cientsof the polynomials in the generator matrix. The rate 1/4 encoder shown in Figure 3.2whose polynomial coe�cients are the rows of (3.1) is identi�ed by the four octalnumbers 043 176 171 045: (3.8)For consistency with the notation commonly used in the literature, this method willbe used throughout the dissertation to identify convolutional codes.



Chapter 3. Trellis Codes 313.2 An Important Vector SpaceFor any rate k=n convolutional code, consider the n-dimensional vector space S com-posed of all the n-bit vectors. (S is also an additive group in Zn2 .) The scalars of thisvector space are bits. Addition in S is the componentwise exclusive-or of the vectorsbeing added. Addition and subtraction are equivalent in S since each vector is itsown additive inverse. Vectors in S will be denoted by boldface letters, eg. vi.The convolutional encoder in Figure 3.2 is a mapping from input bit sequencesb(D) to output sequences C(D) whose elements are in S. The four g(D) polynomialscan be combined into one polynomialG(D) whose coe�cients are in S. The rate 1=nencoder equation is then expressed concisely as follows:C(D) = 266664c1(D)c2(D)c3(D)c4(D)
377775 = b(D)G(D): (3.9)For the rate 1=4 encoder shown in Figure 3.2G(D) = 2666640110

377775 + 2666641111
377775D + 2666640110

377775D2 + 2666640110
377775D3 + 2666640101

377775D4 + 2666641100
377775D5 + 2666641011

377775D6:(3.10)In this representation of a feedforward rate 1=n convolutional code, each outputvector Ci is a linear combination of coe�cients of G(D). For a general rate k=nconvolutional code, each Ci is still a linear combination of vectors, but the vectorsare now the coe�cients of the k polynomials G1(D), G2(D), : : : , Gk(D):C(D) = b1(D)G1(D) + b2(D)G2(D) + : : : ;+bk(D)Gk(D): (3.11)In this way, a rate k=n convolutional encoder is the sum (in S) of the outputs of krate 1=n encoders.



Chapter 3. Trellis Codes 323.3 Error SequencesIn this dissertation, decoding is assumed to be maximum likelihood sequence detec-tion. Consequently, the sequences chosen by the receiver are always valid outputsequences (i.e., sequences that could have been produced by the encoder).Suppose that a rate k=n convolutional encoder produces the output sequenceC(D)from input sequences b1(D); : : : ; bk(D), but the receiver mistakenly chooses Ĉ(D),as though the input sequences were b̂1(D); : : : ; b̂k(D). The output error sequenceE(D) = C(D)�Ĉ(D) is computed through the element by element vector subtraction(in S) of C(D) and Ĉ(D).Each output error sequence E(D) corresponds to k input bit error sequences,e1(D); : : : ; ek(D). For a particular pair of output sequences (C(D); Ĉ(D)),E(D) = C(D)� Ĉ(D) (3.12)= kXj=1 bj(D)Gj(D)� kXj=1 b̂j(D)Gj(D) (3.13)= kXj=1(bj(D)� b̂j(D))Gj(D) (3.14)= kXj=1 ej(D)Gj(D): (3.15)Note that many combinations of b1(D); : : : ; bk(D) and b̂1(D); : : : ; b̂k(D) produce thesame input error sequences e1(D); : : : ; ek(D) and thus the same output error sequenceE(D).Every output error sequence is a valid encoder output sequence; it is the outputsequence produced by the input bit sequences e1(D); : : : ; ek(D). Conversely, everyvalid output sequence is also an error sequence. To see this, select any valid outputsequence C(D) = kXj=1 bj(D)Gj(D); (3.16)



Chapter 3. Trellis Codes 33and take b̂1(D); : : : ; b̂k(D) to be all zeros sequences. ThenC(D) = kXj=1 bj(D)Gj(D) (3.17)= kXj=1(bj(D)� b̂j(D))Gj(D) (3.18)= kXj=1 ej(D)Gj(D) (3.19)= E(D): (3.20)3.4 Distance SequencesWhen a convolutional code is used as part of a trellis code, each nonzero vector in theerror sequence E(D) corresponds to the selection of an incorrect constellation point(i.e., a symbol error). Consider the following example of a symbol error sequence fora trellis code using the rate 1=4 encoder in Figure 3.2.Let the correct input bit sequence b(D) be all zeros, which produces the all zerooutput sequence C(D) = 0. Suppose that b̂(D) has an incorrect �rst bit (b0 = 1) butall zeros thereafter. Thus b̂(D) = 1 and the incorrectly chosen output sequence isĈ(D) = 2666640110
377775+ 2666641111

377775D + 2666640110
377775D2 + 2666640110

377775D3 + 2666640101
377775D4 + 2666641100

377775D5 + 2666641011
377775D6:(3.21)With output vectors Ci mapped to constellation points using the labeled 16-QAM constellation shown in Figure 3.3, Figure 3.4 shows the �rst seven constellationpoints or symbols produced by b(D) (top row) and b̂(D) (bottom row). All the otherconstellation points produced by b(D) and b̂(D) are identical.For any speci�ed transmitted and received sequences b(D) and b̂(D), the squaredEuclidean distance between the correct and incorrect ith symbol will be referred toas d2i (b ! b̂). Table 3.1 shows the Euclidean distances for the example shown inFigure 3.4, assuming that nearest neighbors in the constellation are separated by a
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0011 0001 0111

0010 0000 0100 0110

1010 1000 1100 1110

1011 1001 1101 1111

0101

Figure 3.3: 16-QAM Constellation with Gray coding.Output symbols for all zeros input sequence
Output symbols for all zeros except initial bit

Figure 3.4: A trellis code error event. Correct output symbols(top) and incorrect output symbols (bottom). Thebottom sequence shows the symbol errors with respectto the top sequence as line segments.i 0 1 2 3 4 5 6d2i (b! b̂) 4 8 4 4 2 2 5Table 3.1: Euclidean distances for symbol errors in Figure 3.4.



Chapter 3. Trellis Codes 35distance of 1.The terminology required to demonstrate the validity of (2.45) in the previouschapter has now been introduced. The result is restated below as a theorem.Theorem 1 The e�ective code length (see De�nition 5 on page 13) of a trellis code Tconsisting of a feed-forward rate k=n convolutional encoder with � memory elementsmust satisfy the following bound: ecl � j�kk+ 1: (3.22)Proof: The feed forward convolutional encoder employs a separate shift register foreach input bit sequence bj(D) (j = 1; : : : ; k). Identify an index �j corresponding to ashift register with the least number of memory elements. This shift register can haveat most b�=kc memory elements.Consider a transmitted sequence in which each bi(D) is the all zeros sequence.For j 6= �j let b̂j(D) also be the all zeros sequence Let the sequence b̂�j(D) be allzeros except an initial one. For this error sequence, d2i (b! b̂) is only nonzero for theinitial symbol and the b�=kc following symbols during which the initial 1 in b̂�j(D)passes through the shift register. Thus the e�ective code length cannot be larger thanb�=kc + 1 and the theorem is proved. �The sequence of distances depends on the encoder output sequence C(D) as well asthe error sequence E(D). A particular error vector E can lead to di�erent Euclideandistances depending on the constellation point that was transmitted. Consider theerror vector E4 of the example discussed above (the coe�cient of D4 in (3.21)):E4 = 2666640101
377775 : (3.23)The symbol errors associated with this error vector are shown in Figure 3.5. Half ofthe constellation points have d2 = 2 as in the example. The other half have d2 = 10.The symbol errors will also be referred to as edges. The error vector that produces
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0011 0001 0111

0010 0000 0100 0110

1010 1000 1100 1110

1011 1001 1101 1111

0101

Figure 3.5: Symbol errors (edges) associated with the error vector(edge label) [0101]T.a symbol error will be referred to as the label of that edge. Note that the mappingof an error vector to its associated symbol errors (or a label to its edges) dependsintimately on the choice of constellation labeling. The next chapter explores howconstellation labeling a�ects the mapping of labels to edges.As demonstrated in Figure 3.5, a particular edge label can correspond to morethan one distance. Thus an error sequence E(D) can correspond to several distinctdistance sequences fd2i (b ! b̂)g for di�erent pairs (b; b̂). The metrics presented inChapter 2 are computed from the distance sequences, but only the worst distancesequence (the one producing the lowest metric value) for each error sequence is ofinterest. It is useful to de�ne a worst case distance sequence for each E(D) byselecting the smallest possible distances for each error vector Ei.De�nition 13 For a speci�ed labeled constellation, d2min(E) is the smallest squaredEuclidean distance of an edge with label E.Note that d2min is a Euclidean distance, not a Hamming distance. It is the distanceassociated with one element of a sequence and not the entire sequence.De�nition 14 For a speci�ed labeled constellation and error sequence E(D),d2i (E(D)) , d2min(Ei) (3.24)
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The term distance sequence always refers to fd2i (E(D))g as described in De�ni-tion 14 unless it is speci�cally stated to refer to fd2i (b! b̂)g. (Note that Appendix Aprovides a list of all formal de�nitions.) The above de�nition allows code evaluationto restrict attention to the possible sequences E(D) rather than consider all possiblecombinations of (b(D), b̂(D)). However, it is possible that this de�nition is too pes-simistic. Perhaps the distance sequence fd2i (E(D))g is worse than any actual distancesequence fd2i (b! b̂)g.The question of whether or not fd2i (E(D))g is pessimistic is equivalent to askingwhether for every E(D) there is a pair (b(D), b̂(D)) such thatE(D) = kXj=1(bj(D)� b̂j(D))Gj(D) (3.25)andd2i (b! b̂) = d2i (E(D)) for all i: (3.26)For rate k=(k + 1) convolutional codes used with Ungerboeck labeling, Unger-boeck showed in [5] that such a a pair (b(D),b̂(D)) exists for every E(D). However,Ungerboeck's proof is speci�c to rate k=(k + 1) codes and his labeling scheme. Ingeneral, such a pair may not exist. For certain code rates and labeled constellationsthere may be pathological sequences E(D) for which no pair (b(D), b̂(D)) satis�esconditions (3.25) and (3.26). Such pathological cases do not exist for the rates andlabeled constellations used in the code searches of Chapter 6.When such pathological cases do exist, there is a risk associated with this pes-simistic de�nition of distance sequence. A code search based on this de�nition mightnot �nd the best code available. A better code might exist whose performance ishidden by the pessimistic de�nition of distance sequences.Ungerboeck's code searches used a still more pessimistic de�nition of distancesequence based on the structure of set partitioning. With this de�nition, there are se-quences E(D) for which no pair (b(D), b̂(D)) exists that satis�es conditions (3.25) and(3.26). Those searches produced excellent codes, but Ungerboeck's search proceduredid not guarantee that there do not exist better codes at the same complexity.



Chapter 3. Trellis Codes 383.5 Equivalent CodesAs mentioned in the previous section, convolutional codes and trellis codes are foundthrough a computationally intensive exhaustive search. Papers listing the results ofcode searches often have a row or two marked with an asterisk indicating that thecode listed was the best code found, but that the search was too computationallyintensive to be completed.These code searches are based on metrics computed entirely from the distancesequence de�ned in the previous section. Thus an e�cient search should evaluateonly one code from a group of codes that all have the same distance sequences.Below, three ways that codes can be considered equivalent are de�ned. The weakestform of equivalence corresponds to codes that have the same distance vectors.The strongest form of equivalence is presented �rst. The de�nition applies bothto convolutional codes and trellis codes.De�nition 15 Two codes are strictly equivalent if they have the same mapping ofinput sequences to output sequences.Two strictly equivalent codes amount to di�erent implementations of exactly the sameencoder. Strictly equivalent codes always have the same probabilities of event errorand bit error.Note that two trellis codes can be strictly equivalent even if their respective con-volutional codes are not, since di�erently labeled constellations can make di�erentconvolutional codes produce the same constellation points.In [21], two convolutional codes are considered equivalent if they have the samerange of possible output sequences. This form of equivalence is referred to as rangeequivalence in this dissertation.De�nition 16 Two codes are range equivalent if they have the same set of possibleoutput sequences.De�nition 16 applies to trellis codes as well as convolutional codes. Range equiv-alence preserves the space of error events and thus the probability of an error event.However, two range equivalent codes may not have the same bit error probabilitysince the mapping of information bit sequences to output sequences is not necessarilypreserved.



Chapter 3. Trellis Codes 39Of most interest to the code searches in this thesis is distance equivalence. Thisform of equivalence is the weakest of the three.De�nition 17 Two trellis codes are distance equivalent if they have the same set ofdistance sequences fd2i (E(D))g.Two distance equivalent codes need not have the same bit error probability oreven the same error event probabilities. However, as long as for every E(D) thereis a pair (b(D), b̂(D)) that satis�es conditions (3.25) and (3.26), distance equivalentcodes have the same values for the metrics of Chapter 2. This fact makes distanceequivalence a valuable tool for code searches based on those metrics.Of course not all codes are distance equivalent. In certain cases the better codeamong two codes that are not distance equivalent is easily identi�ed. In these casesthe better code is called distance superior as de�ned below:De�nition 18 Trellis code T1 is distance superior to trellis code T2 if the distancessequences of T1 can be paired (one to one) with those of T2 such that each term inevery distance sequence of T1 is greater than or equal to the corresponding term inthe paired sequence of T2. There must be at least one strict inequality, otherwise thetrellis codes are distance equivalent.If T1 is distance superior to T2 it will have larger (better) values for all the code designmetrics that will be introduced in Chapter 5.For trellis codes, strict equivalence implies range equivalence, and range equiv-alence implies distance equivalence. This section concludes with three statementsabout range equivalent codes that justify the restriction to feedback free convolu-tional codes made in Section 3.1.Theorem 2 Two trellis codes are range equivalent if they use the same labeled con-stellation and have range equivalent convolutional codes.Proof: The equivalent sets of vector outputs fC(D)gmust yield equivalent sequencesof constellation points since the same labeled constellation is used. �Theorem 3 Every convolutional code is range equivalent to a feedback free code.



Chapter 3. Trellis Codes 40This is a central result of [21], to which the reader is referred for the proof. Forneyalso shows in [21] that for any given convolutional code one can always �nd a rangeequivalent feedback free code that uses as few or fewer memory elements.Corollary 1 Every trellis code is range equivalent to a trellis code using the sameconstellation and a feedback free convolutional code.This corollary follows immediately from the two previous theorems. It explainswhy attention could be restricted to feedback free encoders in Section 3.1 withoutloss of generality.3.6 Swapping Basis VectorsFor a �xed constellation labeling, certain operations on the convolutional encoderpolynomials always produce a trellis code that is distance equivalent to the original.Identifying such operations and excluding distance equivalent codes appropriately canreduce the duration of a code search signi�cantly.Consider a trellis code with a labeled constellation and a rate k=n feedback freeconvolutional code. The edge labels and the coe�cients of G1(D), : : : , Gk(D) areboth elements of the n-dimensional vector space S discussed in Section 3.2.This section examines what happens when the coe�cients of G1(D), : : : , Gk(D)are replaced with a di�erent set of coe�cients through a bijective (one-to-one andonto) mapping F : S ! S. The goal is to identify which mappings F producedistance equivalent codes so that the distance equivalent codes can be eliminatedfrom the code search.F is assumed to be a bijective mapping F : S ! S throughout this section.Mappings that implement a change of basis are considered �rst. Let fv1; : : : ;vng andfv̂1; : : : ; v̂ng be bases for S.De�nition 19 The mapping F implements a change of basis from fv1; : : : ;vng tofv̂1; : : : ; v̂ng if for any s 2 S and any subset A of f1; 2; : : : ; ng:F (s) =Xi2A v̂i when s =Xi2A vi: (3.27)



Chapter 3. Trellis Codes 41Lemma 1 The mapping F implements a change of basis () F obeys the additiveproperty for s1; s2 2 S: F (s1 + s2) = F (s1) + F (s2): (3.28)Proof: Let s1 = Xi2A1 vi and s2 = Xi2A2 vi (3.29)where A1 and A2 be subsets of f1; 2; : : : ; ng. De�neA1 � A2 , (A1[A2)� (A1\A2): (3.30)If F implements a change of basis as de�ned above, then:F (s1 + s2) = F  Xi2A1 vi +Xi2A2 vi! (3.31)= F  Xi2A1�A2 vi! since vi + vi = 0 (3.32)= Xi2A1�A2 v̂i by De�nition 19 (3.33)= Xi2A1 v̂i +Xi2A2 v̂i since v̂i + v̂i = 0 (3.34)= F  Xi2A1 vi!+ F  Xi2A2 vi! by De�nition 19 (3.35)= F (s1) + F (s2) proving =) : (3.36)



Chapter 3. Trellis Codes 42Now suppose that F obeys the additive property (3.28). Choose any basis fv1; : : : ;vngand de�ne v̂i = F (vi). Choose A to be any subset of f1; 2; : : : ; ng and lets =Xi2A vi: (3.37)
F (s) = F  Xi2A vi! (3.38)=Xi2A F (vi) by the additive property (3.39)=Xi2A v̂i by de�nition of v̂i (3.40)This proves the (= direction. �Now consider using F to map one trellis code to another. The constellationlabeling remains the same, but F is used to change the coe�cients of the convolutionalencoder polynomials. For a given labeled constellation, certain mappings alwaystransform a trellis code into a di�erent trellis code that is distance equivalent to theoriginal. The next theorem shows that these special mappings must implement achange of basis.Theorem 4 If the bijective mapping F : S ! S applied to the encoder polynomialcoe�cients of any trellis code with a given labeled constellation always produces atrellis code that is distance equivalent to the original, then F implements a change ofbasis.Proof: Suppose that F does not implement a change of basis. Then by Lemma 1the additive property does not hold. Thus there are three distinct nonzero vectorss1; s2; s3 2 S such that s1 + s2 = s3 (3.41)F (s1) + F (s2) 6= F (s3): (3.42)F (s1); F (s2); and F (s3) must be distinct because F is bijective and must be nonzero



Chapter 3. Trellis Codes 43or F trivially does not preserve distance sequences.Consider the rate 1=n convolutional code G(D) = s3D2+s2D+s1 and apply F toits coe�cients to produce Ĝ(D) = F (s3)D2+F (s2)D+F (s1). Now consider all errorsequences E(D) for which d2i (E(D)) is zero for i outside the index range i = 0; : : : ; 4and is nonzero for the indices 0 and 4:d20 > 0 (3.43)d24 > 0 (3.44)d2i = 0 for i > 4 (3.45)d2i = 0 for i < 0: (3.46)There are only two such sequences, shown below for the two codes G(D) and Ĝ(D).E(1)(D) = (D2 +D + 1)G(D) (3.47)= s3D4 + (s2 + s3)D3 + (s1 + s2 + s3)D2 + (s1 + s2)D + s1Ê(1)(D) = (D2 +D + 1)Ĝ(D) (3.48)= F (s3)D4 + (F (s2) + F (s3))D3 + (F (s1) + F (s2) + F (s3))D2+ (F (s1) + F (s2))D + F (s1)E(2)(D) = (D2 + 1)G(D) (3.49)= s3D4 + s2D3 + (s1 + s3)D2 + s2D + s1Ê(2)(D) = (D2 + 1)Ĝ(D) (3.50)= F (s3)D4 + F (s2)D3 + (F (s1) + F (s3))D2 + F (s2)D + F (s1)The D2 term of E(1)(D) must be zero by (3.41). Thus d22(E(1)(D)) = 0. However,the D2 term of Ê(1)(D) must be nonzero by (3.42). Thus d22(Ê(1)(D)) 6= 0. The D2term of Ê(2)(D) is also nonzero since F (s1) and F (s3) are distinct. Thus G(D) hasa distance sequence that satis�es (3.43){(3.46) and has d22 = 0, but Ĝ(D) does not.Thus the codes are not distance equivalent, and the theorem is proved. �So the only mappings that can always produce distance equivalent codes are thosethat implement a change of basis. Note that the choice of initial basis is not important.Since the choice of basis fv1; : : : ;vng in Lemma 1 was arbitrary, all mappings F that



Chapter 3. Trellis Codes 44implement a change of basis are found by selecting one arbitrary initial basis andconsidering only changes of basis with respect to that initial basis.The exercise of checking all possible changes of basis might appear tedious. How-ever, when the edge labels and their corresponding minimum distances are considered,relatively few mappings F need to be considered. A procedure for e�ciently identify-ing the mappings of interest is presented below, and the mappings are found for theexample of the 16-QAM constellation in Figure 3.3 on page 34.For QAM and PSK constellations, every point can be reached from every otherpoint by traversing one or more minimum d2min edges. Thus a basis must exist amongthe labels of these edges. For example, all Gray coded constellations (including theconstellation in Figure 3.3) have a basis formed by the Hamming weight one edgelabels, which are the only minimum d2min edge labels for Gray coded constellations.Choose n linearly independent edge labels corresponding to minimum d2min edgesto be the basis fv1; : : : ;vng. The only vectors that can replace these vectors in achange of basis that produces distance equivalent codes must be labels of minimumd2min edges. Otherwise, G(D) with exactly one nonzero coe�cient equal to an vimapping to a larger d2min is an example where the mapping does not yield a distanceequivalent code.The restriction to minimum distance edge labels greatly reduces the number ofpossible bases that must be considered. In fact, typical good labelings such as Graycoding and many Ungerboeck labelings will have exactly n minimum d2min labels,forcing F to be a permutation of fv1; : : : ;vng. Each candidate basis fv̂1; : : : ; v̂ng ischecked using the following theorem.Theorem 5 A bijective mapping F : S ! S that changes bases from fv1; : : : ;vng tofv̂1; : : : ; v̂ng always produces a distance equivalent code ()d2min Xi2A vi! = d2min Xi2A v̂i! (3.51)for every subset A of f1; 2; : : : ; ng.Proof: If (3.51) does not hold, there is a vector s 2 S such that d2min(s) 6= d2min(F (s)).Then the rate 1=n codeG(D) = s is not distance equivalent toG(D) = F (s), provingthe =) direction.



Chapter 3. Trellis Codes 45Because the mapping F is a change of basis, it obeys the additive property (3.28).Thus applying F to the coe�cients of the convolutional code polynomials is equivalentto applying F to the outputs of the convolutional encoder.Recall that the set of error sequences is the same as the set of valid encoder outputsequences. Thus the error sequences for the code obtained by the application of F arefound by applying F to the original error sequences. If (3.51) holds, then these newerror sequences map to the same distance sequences as the original error sequences.Thus the codes are distance equivalent and the(= direction of the theorem is proved.� In summary, the following procedure identi�es all mappings F that always pro-duce distance equivalent codes when applied to a trellis code with a speci�ed labeledconstellation:1. Identify the edge labels of the minimum d2min edges.2. Choose a basis for S from among these labels.3. Use Theorem 5 to check all possible bases comprising edge labels identi�ed instep 1.To clarify how this procedure works, it is applied to the labeled 16-QAM con-stellation in Figure 3.3. Because the constellation is Gray coded, the only minimumdistance edge labels are those containing three 0s and one 1. There are exactly enoughminimum distance edge labels to form a basis. Select the following basis:v1 = 2666640001
377775 v2 = 2666640010

377775 v3 = 2666640100
377775 v4 = 2666641000

377775 : (3.52)Consider swapping v2 and v3. That is, F maps vi to v̂i withv̂1 = 2666640001
377775 v̂2 = 2666640100

377775 v̂3 = 2666640010
377775 v̂4 = 2666641000

377775 : (3.53)



Chapter 3. Trellis Codes 46The minimum squared distances associated with the edge labels expressed in termsof the two bases are given in Table 3.2. As shown in the table, the condition ofTheorem 5 is satis�ed and thus the mapping from the basis in (3.52) to the basis in(3.53) always produces distance equivalent codes when applied to the trellis code inFigure 3.3.There are 4! = 24 possible permutations of the four original basis vectors (includ-ing the identity). Of these mappings, eight always produce distance equivalent codes.These eight mappings consist of any combination of the following three operations:1. Swap v1 for v4.2. Swap v2 for v3.3. Swap v1 for v2, and swap v3 for v4.Let's apply these operations to the encoder of Figure 3.2. These operations areall equivalent to permuting rows of (3.1). Thus the eight distance equivalent codesare simply eight of the 24 permutations of the the octal words in (3.8). These eightpermutations are shown in Table 3.3.Note that the 16 remaining permutations consist of two groups of eight distanceequivalent codes. A rate 1=4 code search using the Gray coded 16-QAM constellationcan restrict its attention to three of the 24 permutations of any set of four codepolynomials g1(D); : : : ; g2(D). Thus code search complexity is reduced by a factor of8. The Ungerboeck labeled 16-QAM constellation in [5] also has eight mappings thatmaintain distance equivalence. However, they cannot be expressed as simple permu-tations of code polynomials g1(D); : : : ; g2(D). This is because the vectors havingexactly one bit cannot be swapped since they have di�erent values of dmin. The fourminimum distance edge labels (the swappable basis vectors) are given below:v1 = 2666640001
377775 v2 = 2666640101

377775 v3 = 2666640111
377775 v4 = 2666641011

377775 : (3.54)



Chapter 3. Trellis Codes 47
E Original Basis d2min(E) d2min(Ê) New Basis Ê0001 v1 1 1 v̂1 00010010 v2 1 1 v̂2 01000011 v2 + v1 2 2 v̂2 + v̂1 01010100 v3 1 1 v̂3 00100101 v3 + v1 2 2 v̂3 + v̂1 00110110 v3 + v2 4 4 v̂3 + v̂2 01100111 v3 + v2 + v1 5 5 v̂3 + v̂2 + v̂1 01111000 v4 1 1 v̂4 10001001 v4 + v1 4 4 v̂4 + v̂1 10011010 v4 + v2 2 2 v̂4 + v̂2 11001011 v4 + v2 + v1 5 5 v̂4 + v̂2 + v̂1 11011100 v4 + v3 2 2 v̂4 + v̂3 10101011 v4 + v2 + v1 5 5 v̂4 + v̂2 + v̂1 11011101 v4 + v3 + v1 5 5 v̂4 + v̂3 + v̂1 10111110 v4 + v3 + v2 5 5 v̂4 + v̂3 + v̂2 11101111 v4 + v3 + v2 + v1 8 8 v̂4 + v̂3 + v̂2 + v̂1 1111Table 3.2: The values of d2min for two edge labelings, one using theoriginal basis of (3.52) and the other using the new basisof (3.53).

043 176 171 045045 176 171 043043 171 176 045045 171 176 043176 043 045 171171 043 045 176176 045 043 171171 045 043 176Table 3.3: The eight permutations of the convolutional code (3.8)that result in distance equivalent trellis codes when usedwith the constellation in Figure 3.3.



Chapter 3. Trellis Codes 48The distance equivalent permutations of code polynomials g1(D), : : : , g2(D) as-sociated with the Gray coded constellations allow a search program to loop throughdistinct groups of polynomials and then check the interesting permutations. The dis-tance equivalent codes associated with Ungerboeck labeled constellations do not havesuch an obvious code search implementation.3.7 SummaryThis chapter introduced trellis codes, beginning with a discussion of convolutionalcodes. Feedback-free convolutional encoders were represented in terms of the vectorspace spanned by the coe�cients of the encoder polynomials.With maximum likelihood sequence detection, the possible error sequences are thepossible convolutional encoder output sequences. When the convolutional encoder isused in conjunction with a labeled constellation to form a trellis code, each errorsequence E(D) can produce multiple sequences of symbol error distances dependingon the input bit sequence that was transmitted. A worst case distance sequencefd2i (E(D))g was de�ned for each E(D).There are three ways that two trellis codes can be considered equivalent. Theweakest form of equivalence is distance equivalence, but even distance equivalentcodes have the same values of the metrics presented in Chapter 2 for the rates andconstellations examined in Chapter 6. Certain changes of basis result in distanceequivalent codes, a fact that allows a signi�cant decrease in search complexity.



Chapter 4Constellation LabelingThe design of a trellis code involves the selection of a labeled constellation and theselection of a convolutional code to maximize some subset of the metrics presentedin Chapter 2. This chapter investigates how a constellation of a given size and shapecan be labeled so that the best possible metrics can be obtained. A single labeling isshown to work well for all the metrics of Chapter 2.Section 4.1 de�nes three ways that labeled constellations can be considered equiv-alent corresponding to the three ways that trellis codes can be equivalent presentedin Section 3.5 of the previous chapter.Section 4.2 de�nes ways that one labeled constellation can be considered supe-rior to another: distance superiority and superiority in pro�le. Section 4.3 identi�es4-PSK, 8-PSK, and 16-QAM labeled constellations that are superior in pro�le to alllabeled constellations of the same size and shape, except those that are distance equiv-alent. These labeled constellations are used in the trellis code searches of Chapter6. Two common constellation labeling strategies, Gray coding and Ungerboeck la-beling, are considered in Section 4.4. These strategies are compared with each otherin the context of the ideas presented in the previous sections of this chapter.The section begins with a demonstration of how Ungerboeck labeling and Graycoding are often equivalent. For all 2n-PSK and square 4n-QAM constellations, a pairof strictly equivalent constellations (i.e., constellations that produce strictly equivalenttrellis codes) can be found such that one is Gray coded but the other is Ungerboecklabeled. 49



Chapter 4. Constellation Labeling 50Not all constellations have equivalent labelings with both strategies. As exam-ples, the 8-QAM and 32-QAM constellations are considered. This section demon-strates that although Ungerboeck labeling is possible for these two constellations,Gray coding is not.Furthermore, constellations of the same size and shape that are Ungerboeck la-beled are not necessarily distance equivalent. Likewise, two Gray labeled constella-tions of the same size and shape need not be distance equivalent. Examples of thisphenomenon are given for Ungerboeck labeled 16-QAM and Gray labeled 16-PSKconstellations. The distance-superior 16-QAM labeling is also an isometric labelingof the half integer grid.The examples mentioned in the previous paragraph demonstrate that not all Graycoded or Ungerboeck labeled constellations can be superior in pro�le to any other la-beling. With either strategy, some labelings are distance superior to others. However,the section concludes by proving that the \right" Gray coding will always produce alabeled constellation that is superior in pro�le to all others whenever such a dominantlabeling exists.4.1 Equivalent Labeled ConstellationsThe three ways that constellations can be considered equivalent correspond to thethree ways that trellis codes can be equivalent de�ned in Section 3.5.De�nition 20 Two labeled constellations C1 and C2 are strictly, range, or distanceequivalent if for any trellis code that uses labeled constellation C1 there is respectivelya strictly, range, or distance equivalent trellis code that uses labeled constellation C2.As will be discussed in Chapter 5, the primary consideration in designing a trelliscode is minimization of the maximum pairwise error probability. For AWGN channels,even those with variations in SNR due to fading or frequency selectivity, this isaccomplished with metrics that depend only on the distance sequences of the trelliscode.Distance equivalent trellis codes have the same distance sequences and thus thesame values for these metrics. If C1 and C2 are distance equivalent, then for every trellis



Chapter 4. Constellation Labeling 51code that uses C1 there is a distance equivalent trellis code that uses C2. Thus a codesearch need consider only one member of a set of distance equivalent constellations.The previous chapter showed that certain changes of basis applied to the convo-lutional code polynomials produce distance equivalent trellis codes. In this section,changes of basis applied to the constellation edge labels are shown to produce distanceequivalent constellations.Theorem 6 Any two labeled constellations C1 and C2 whose edge labels are relatedby a change of basis are distance equivalent.Proof: Let F be the mapping that implements the change of basis relating the edgelabels of C1 to those of C2. Select any trellis code T1 having constellation C1 and afeedback-free rate k=n convolutional encoder with polynomialsG1; : : : ;Gk. Constructa trellis code T2 by using constellation C2 with the convolutional encoder that resultsfrom applying F to the coe�cients of G1; : : : ;Gk.Consider any set of input bit error sequences e1(D); : : : ; ek(D). The output errorsequence produced by T1 is E(1)(D) = kXj=1 ej(D)Gj(D) (4.1)= 1Xi=0 E(1)i Di: (4.2)The corresponding output error sequence produced by T2 isE(2)(D) = kXj=1 ej(D)F (Gj(D)) (4.3)= kXj=1 F (ej(D)Gj(D)) (4.4)= 1Xi=0 F (E(1)i )Di: (4.5)Equality in (4.4) follows from the additive property of F (see Lemma 3.28).



Chapter 4. Constellation Labeling 52Every edge labeled Ei in C1 is labeled F (Ei) in C2, and so dmin(Ei) in C1 is equal todmin(F (Ei)) in C2 for every i. Thus T1 and T2 are distance equivalent and the theoremis proved. �The construction of T2 above can also be used to demonstrate how constella-tions related by a change of basis that share the same zero labeled point are strictlyequivalent.Theorem 7 Two labeled constellations C1 and C2 whose edge labels are related by achange of basis are strictly equivalent () they label the same point with the zerolabel.Proof: Consider the trellis code T2 constructed in the previous proof. Now replaceinput error sequences ej(D) with input bit sequences bj(D) and output error sequencesE(D) with encoder output sequences C(D) in the previous proof.If two constellations with edge labels related by a change of basis label the samepoint with zero, then the point labels as well as the edge labels are related by thatchange of basis. Thus Ci labels the same point in C1 that output F (Ci) labels in C2.Thus T1 and T2 are strictly equivalent, and the =) direction is proved.The all zeros input sequence maps to the output sequence that consists entirely ofsymbols equal to the constellation point having the zero label. Two constellations withdi�erent points having the zero label cannot be strictly equivalent since the all zerosinput sequence does not map to the same output sequence for both constellations.This proves the (= direction. �The design of a trellis code includes the selection of a labeled constellation. Thechoice of labeling for a given constellation is simpli�ed by the fact that many di�er-ent labelings produce strictly equivalent constellations. Consider a labeled 16-QAMconstellation such as the one in Figure 3.3 of the Chapter 3. Maintaining the samezero labeled point, any change of basis produces a strictly equivalent constellation.The number of these mappings is the same as the number of bases for the space offour bit vectors, which is 15� 14� 12� 8 = 20 160.The number of labelings that produce distance equivalent constellations is, ofcourse, even larger. For distance equivalence there is freedom to place the zero labelon any of the points. Thus the number of distance equivalent labelings is at least the



Chapter 4. Constellation Labeling 53number of strictly equivalent labelings above multiplied by the size of the constella-tion. Thus for the 16-QAM constellation, there are at least 16 � 20 160 = 322 560distance equivalent constellations.That still leaves 16!=322 560 = 64 864 800 distinct labelings that do not necessarilyproduce distance equivalent codes. These remaining distinct labelings are the subjectof the next section.4.2 The Edge Length Pro�leIn the previous section many di�erent labeled constellations were shown to producedistance equivalent and even strictly equivalent trellis codes. In this section, labeledconstellations that do not produce distance equivalent codes are compared. The goalis to remove inferior labelings from consideration and thus reduce search complexity.Two ways in which one constellation can be superior to another are discussedbelow. This discussion refers to three constellations C1, Ĉ1, and C2 of the same sizeand the same shape. The size of a constellation C is the number of points in C and isdenoted by jCj. C1, Ĉ1, and C2 have edge labels E(1)i , Ê(1)i , and E(2)i , respectively.De�nition 21 C1 is distance superior to C2 (or C2 is distance inferior to C1) if forevery trellis code T2 designed using C2 there is a distance superior (see De�nition 18)trellis code T1 de�ned using C1.Lemma 2 C1 is distance superior to C2 if there exists a constellation Ĉ1 distanceequivalent to C1 such that for i = 1; : : : ; jC1j:dmin(Ê(1)i ) � dmin(E(2)i ) ; (4.6)with at least one strict inequality.Proof: By (4.6), any trellis code T2 designed with C2 is distance inferior to thetrellis code T̂1 that uses the convolutional code of T2 with the constellation Ĉ1. T2must also be distance inferior to some trellis code T1 designed using C1 since C1 isdistance equivalent to Ĉ1. Thus for any trellis code T2 using C2 there is a distancesuperior trellis code T1 using C1. �



Chapter 4. Constellation Labeling 54The metrics (to be introduced in Chapter 5) that will used for designing trelliscodes are larger (better) for distance superior trellis codes. Thus any trellis codedesigned using C2 is inferior in these metrics to some code designed using C1. Theinferior constellation C2 may be removed from consideration in a trellis code searchbased on these metrics.Any set of possible constellation labelings is partially ordered under De�nition 2since distance superiority obeys the transitive property. However, there may be twoconstellation labelings that are not distance equivalent with neither being distancesuperior. Thus De�nition 2 does not necessarily provide a complete ordering for theset of possible labelings. Even when one labeling is distance superior to another,demonstrating this using Lemma 2 requires e�ort.A weaker form of superiority that is easily applied to any pair of labelings uses alabeled constellation's edge length pro�le.De�nition 22 The edge length pro�le fpig of a labeled constellation is de�ned to bethe list of d2min(E) values for all nonzero edge labels E listed in increasing order.To demonstrate, an example edge length pro�le is constructed for the labeled16-QAM constellation shown in Figure 3.3 of Chapter 2. Table 3.2 shows the d2min(E)values listed lexicographically according to E for that constellation. The correspond-ing edge length pro�le is given in Table 4.1. Superiority based on the edge lengthpro�le is de�ned in terms of fp(1)i g and fp(2)i g, the edge length pro�les for C1 and C2respectively.i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15pi 1 1 1 1 2 2 2 2 4 4 5 5 5 5 8Table 4.1: Edge length pro�le for 16-QAM constellation inFigure 3.3.De�nition 23 C is superior in pro�le to Ĉ if p(1)i � p(2)i for i = 1; : : : ; jC1j with atleast one strict inequality.Often, if C1 is superior in pro�le to C2, then C1 is also distance superior to C2.In fact, no example has been found where C1 is superior in pro�le to C2 and not



Chapter 4. Constellation Labeling 55distance superior to C2. However, it remains to be shown whether superiority inpro�le always implies distance superiority. Furthermore, superiority in pro�le stillmay not completely order the set of possible labelings.The code searches in this dissertation restrict attention to labelings that are supe-rior in pro�le to all others. The next section identi�es these constellations for 4-PSK,8-PSK, and 16-QAM.4.3 Superior in pro�le constellationsThis section derives labeled constellations that are superior in pro�le to all otherlabeled constellations of the same size and shape (except those that are distanceequivalent). This section considers only 4-PSK, 8-PSK, and 16-QAM constellations.However, the strategy of optimizing the edge length pro�le can be applied to largerconstellations as well.The derivations are given in order of di�culty rather than constellation size.4-PSK has the simplest derivation while 16-QAM requires more discussion, and 8-PSKis the most involved of the three derivations. Three lemmas about labeled constella-tions are used extensively in the following discussion. These lemmas are direct resultsof the fact that no two constellation points have the same label.Lemma 3 All the edges emanating from a given point must have di�erent labels.Proof: Edge labels are computed as the di�erence of the labels of the two connectedconstellation points. Since all the constellation points have di�erent labels, all theedges emanating from a given point must have di�erent labels. �A path consists of one or more sequentially connected edges. The next lemmaconcerns the sums of edge labels along di�erent paths emanating from the sameconstellation point.De�nition 24 A path's edge label sum is the sum of the edge labels in that path.Lemma 4 Two di�erent paths emanating from the same initial constellation pointhave the same edge label sum if they end at the same �nal constellation point.



Chapter 4. Constellation Labeling 56Proof: Each edge label is the di�erence of the associated point labels. All theintermediate point labels along a path cancel in the edge label sum leaving only thedi�erence of the initial point and the �nal point regardless of the particular pathtaken.The two paths share the same initial point, and every constellation point has adi�erent label. Thus the edge label sums are the same if and only if the �nal pointsare the same. �Lemma 5 If all points in a constellation are connected by paths consisting only ofedges with the minimum edge length, then the set of edge labels of the minimum lengthedges must contain a basis for the set of all edge labels.Proof: Fix an initial point. Every other point can be reached by a path consistingonly of minimum length edges. Thus every edge label can be expressed as the edgelabel sum of minimum length edges. Hence a subset of the minimum length edgelabels is a basis. �Lemma 5 applies to all PSK and QAM constellations considered in this disserta-tion.4.3.1 4-PSKThis section upper bounds the edge length pro�le for 4-PSK and identi�es the label-ings that achieve this bound.To construct the edge length pro�le bound, the set of edges emanating from anysingle point are considered. Regardless of how the constellation is labeled, each edgein this set has a distinct label by Lemma 3, and every edge label appears exactly onceamong this set of edges. As a result, the d2min of each edge label is upper bounded bythe squared length of one of the edges in the set. Thus these edges produce an upperbound on the edge length pro�le.For any labeled constellation of the same size and shape, no element in its edgelength pro�le can be larger than the corresponding element in the bounding edgelength pro�le described above. Figure 4.1(a) shows the edges used to construct thisedge length pro�le bound for the 4-PSK constellation.
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(a) Edges for length pro�le bound.

v2v1 v2 v1(b) Labeling that achieves the bound.Figure 4.1: 4-PSK constellation shown with edges for edge lengthpro�le bound (left) and edge labeling that achieves thebound.The bounding edge length pro�le resulting from the edges in Figure 4.1(a) is shownbelow in Table 4.2, assuming nearest neighbors are separated by 1.i 1 2 3pi 1 1 2Table 4.2: A bounding 4-PSK edge length pro�le.To achieve this bound on the edge length pro�le, there can only be two edge labelswith d2min = 1. The only way to have only two such edge labels and satisfy Lemma 3is for the edge labels to alternate around the ring as shown in Figure 4.1(b).The remaining choices are selecting the basis vectors v1 and v2 and selectingthe point to be labeled 00. All possibilities for these two choices produce distanceequivalent constellations. Thus any 4-PSK constellation that has edge labels as inFigure 4.1(b) is superior in pro�le to all but distance equivalent 4-PSK constellations.4.3.2 16-QAMThe 16-QAM constellation is considered next since a simple edge length pro�le boundis easily achieved as with 4-PSK. Figure 4.2 shows the edges used to construct anedge length pro�le bound for the 16-QAM constellation using the same technique asfor 4-PSK.
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Figure 4.2: Edges emanating from one point are used to construct a16-QAM edge length pro�le that cannot be surpassed.The bounding edge length pro�le resulting from the edges in Figure 4.2 is shownbelow in Table 4.3. Recall that the nearest neighbor distance is assumed to be 1.Table 4.3 is exactly the edge length pro�le of Table 4.1. Thus this bounding pro�le isi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15pi 1 1 1 1 2 2 2 2 4 4 5 5 5 5 8Table 4.3: Bounding edge length pro�le for edges in Figure 4.2.achieved by the Gray coded constellation shown in Figure 3.3. All of the 16-QAM con-stellations that achieve this bound are distance equivalent, as shown by the followingargument, which is illustrated in Figure 4.3.There are exactly four d2min = 1 edge labels in a labeled constellation that achievesthe edge length pro�le of Table 4.3. The following argument shows that all square16-QAM constellations that have exactly four d2min = 1 edge labels are distance equiv-alent.Lemma 5 implies that the d2min = 1 edge labels must form a basis. Choose anybasis fv1;v2;v3;v4g to be the edge labels for the four minimum d2min edges. Theparticular choice of basis is unimportant since all choices lead to distance equivalentconstellations.Choose one of the four central points and label the four minimum d2min edgesconnected to this point. Step 1 (Figure 4.3(a)) shows a labeling for these four edges.



Chapter 4. Constellation Labeling 59Each of the four edge labels must be di�erent by Lemma 3. Only one of the 4! ways ofmatching the four basis vectors to the four edges is considered since the other choicescan be attained by the appropriate permutation of the basis.Now consider the edges labeled a and b in Step 2 (Figure 4.3(b)). Lemma 4 givesv2 + v3 = a + b: (4.7)Recall that each vector vi is its own additive inverse. If a = v1 then b mustequal v1 + v2 + v3 to satisfy (4.7). However, b would then be a �fth edge label withd2min = 1, and the edge length pro�le would not be achieved. Similarly, a = v4 wouldforce a �fth edge with d2min = 1. Lemma 3 prevents a = v2.This leaves a = v3, and (4.7) forces b = v2. The same reasoning provides labelsfor the six remaining unlabeled edges shown in Step 2. Step 3 (Figure 4.3(c)) showsthe resulting labeling for these edges.Step 3 introduces two new edges labeled c and d. Lemma 3 forces c = v4 andd = v3 or the introduction of additional edges with d2min = 1. The remaining unlabelededges in Step 3 have their labels forced exactly as in Step 2. The two unlabelededges in Step 4 (Figure 4.3(d)) also have their labeling forced as in Step 2. Step 5(Figure 4.3(e)) shows the constellation with all the minimum d2min edges labeled.Note that the edge labeling of Figure 4.3(e) was entirely forced after the initiallabeling of Step 1. Thus all 16-QAM constellations that achieve the edge lengthpro�le bound of Table 4.3 are distance equivalent, being related by a change of basis.Any 16-QAM constellation that achieves the length pro�le bound can be con-structed by choosing a point to have the zero label and selecting a basis v1; : : : ;v4.Figure 4.3(f) shows one example. This labeling is exactly the same as the Gray coded16-QAM constellation shown in Figure 3.3 of the previous chapter. It was achievedby choosing v1 = 1000 (4.8)v2 = 0100 (4.9)v3 = 0001 (4.10)v4 = 0010: (4.11)
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v1v3 v2v4

(a) Step 1.
v3 v2v1v4 ab

(b) Step 2.
v3v4 v2v2 v3v4 v1v4 v2v3v1 cd v1

(c) Step 3.
v3v4 v2v2 v3v4 v1 v1v4 v2v3v1 v4v3 v4 v1v3

v4
v4v2v3 v3(d) Step 4.

v3v4 v2v2 v3v4 v1 v1v4 v2v3v1 v4v3 v4 v1v3
v4
v4v2v3 v3 v3v4(e) Step 5.

0011 0001 01110010 0000 0100 01101010 1000 1100 11101011 1001 1101 1111
0101

(f) A point labeling.Figure 4.3: Steps for achieving the best possible edge length pro�lefor a 16-QAM constellation.



Chapter 4. Constellation Labeling 614.3.3 8-PSKIn this subsection, the set of labeled 8-PSK constellations that are superior in pro�leto all others is constructed. As with 4-PSK and 16-QAM, all these superior in pro�leconstellations are shown to be distance equivalent. The line of argument in thissubsection is slightly di�erent from that of the previous two. First, a set of distanceequivalent constellations is constructed. Then the constellations in this set are shownto superior in pro�le to all other 8-PSK constellations.The distance between nearest neighbors in an 8-PSK constellation is referred toas �1. Lemma 5 implies that there must be a basis containing only edge labelswith d2min = �1. The vector space of 3-bit vectors that label the edges of 8-PSKconstellations require three vectors to form a basis. Thus there must be three distinctlabels that have d2min = �1.All labelings that have the smallest possible number (three) of labels with d2min =�1 are now shown to be distance equivalent. The steps in this argument are shownin Figure 4.4.Choose any basis fv1;v2;v3g to be the three edge labels with d2min = �1. All thed2min = �1 edges will be labeled with one of the three basis vectors. In Step 1 (Fig-ure 4.4(a)) an arbitrary point is labeled 0 and the two minimum d2min edges emanatingfrom this point are labeled v1 and v3. (The other possible labels for these edges fromfv1;v2;v3g could be obtained by a permutation of the choice of initial basis and thuslead to distance equivalent constellations.)Consider the two edges labeled a and b in Step 2 (Figure 4.4(b)). By Lemma 3,a 6= v1 and b 6= v3. Thus a 2 fv2;v3g and b 2 fv1;v2g. If both a and b arechosen to be v2, it is impossible to label the rest of the d2min = �1 edges with labelsin fv1;v2;v3g and have a di�erent label for each point. It is also impossible to haveboth a = v3 and b = v1 since this would lead to the points labeled v1+a and v3+bhaving the same label. There remain two choices:1. a = v3 and b = v2.2. a = v2 and b = v1.These two choices produce distance equivalent constellations. For the moment,select the �rst choice. Step 3 (Figure 4.4(c)) shows the resulting labels and identi�es
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(a) Step 1.

0v1 v3a v3v1 bv1 + a v3 + b
(b) Step 2.0v1 v3 v2v3c dv1 + v3v1 + v3 + c v2 + v3 + dv2 + v3v3v1

(c) Step 3.
0 v3v1v3 v1 v3 v3 v2 + v3v1 + v2 + v3v1 + v3 v3 v1v2 v2

v1 + v2 v2(d) Step 4.0v1 v3 v3v1 v1v1 + v2v1 + v2 + c v1 + v3 + dv1 + v3v2c d(e) Alternate Step 3.
0v1 v3 v3v1 v1v1 + v2 v1 + v3v2v1v2 v1 + v2 + v3v3 v1 v2v2 + v3(f) Alternate Step 4.Figure 4.4: Steps for achieving the best possible edge length pro�lefor an 8-PSK constellation.



Chapter 4. Constellation Labeling 63the edges labeled c and d as the next edges to be considered. The point labeledv1 + v3 + c cannot be labeled v1 or v3. There are already points with those labels.Thus c cannot be v3 or v1, leaving only c = v2. The point in question is labeledv1 + v2 + v3.Now consider the point labeled v3+v2+d in Figure 4.4(c). The choice of d = v1is not possible since the point label v1 + v2 + v3 is no longer available. Similarly,d = v2 is not possible. The only choice is d = v3 producing the point label v2.In Step 4 (Figure 4.4(d)), there is one remaining point and one remaining pointlabel. The remaining point label v1 + v2 forces the two remaining edge labels to bev3 and v1.Now suppose that in Step 2 the second choice is made so that a = v2 and b = v1.This choice leads to the alternate Steps 3 and 4 shown in Figures 4.4(e) and 4.4(f).These alternate steps follows by symmetry from the original Steps 3 and 4.The resulting constellations shown in Step 4 and Alternate Step 4 (Figures 4.4(d)and 4.4(f)) are distance equivalent. To see this, consider changing the basis of theconstellation in Step 4 using the following mapping:v1 ! v3 (4.12)v2 ! v2 (4.13)v3 ! v1 (4.14)This produces exactly the edge labeling of Alternate Step 4 rotated by 45 degrees.Every 8-PSK constellation must have at least three edge labels with d2min = �1.The above construction demonstrates that all the constellations with exactly threesuch edge labels are distance equivalent. The last step is to show that this set oflabeled constellations is superior in pro�le to all other labeled 8-PSK constellations.Figure 4.5 shows the edges emanating from a single point in an 8-PSK constel-lation. The four possible distances between two points in an 8-PSK constellationare identi�ed in Figure 4.5 as �1;�2;�3; and �4. As with the 16-QAM constella-tion, these edges produce an edge length pro�le bound. Table 4.4 shows the edgelength pro�le bound corresponding to Figure 4.5. For comparison, Table 4.5 showsthe edge length pro�le of the d2min(E) values for the labeled constellation shown inFigure 4.4(d).



Chapter 4. Constellation Labeling 64�1 �2�3�4Figure 4.5: Edges for an 8-PSK edge length pro�le bound.i 1 2 3 4 5 6 7pi �1 �1 �2 �2 �3 �3 �4Table 4.4: Edge length pro�le bound for edges in Figure 4.5.The edge length pro�le bound of Table 4.4 bounds each element pi independently,and the edge length pro�le of Table 4.5 achieves the bounding values of Table 4.4 forp1; p2; p4; p6; and p7. Thus if p3 and p5 in Table 4.5 can be shown to be as large aspossible for any 8-PSK labeled constellation, then the set of distance equivalent con-stellations constructed above is superior in pro�le to all other 8-PSK constellations.Every 8-PSK constellation must have three edges with d2min = �1, hence p3 = �1for every 8-PSK constellation. Thus the value of p3 in Table 4.5 is as large as possible,and the bound on p3 in Table 4.4 is not achievable by any 8-PSK constellation.The last step is to show that p5 in Table 4.5 is also as large as possible for any8-PSK constellation. It was shown above that 8-PSK constellations must have atleast three edges with d2min = �1. All 8-PSK constellations with exactly three suchedges are distance equivalent and have the pro�le of Table 4.5. The only possibilityfor a p5 that is larger than the �2 in Table 4.5 is to have more than three edges withd2min = �1.If there are �ve or more edges with d2min = �1, then p5 = �1 < �2. Suppose thatthere are exactly four edge labels with d2min = �1. Since three of these edge labelsform a basis, there is at most one subset of three of these edge labels that sum tozero. Equivalently, at most one pair of these edge labels will sum to produce anotherone of these four edge labels.



Chapter 4. Constellation Labeling 65i 1 2 3 4 5 6 7E v1 v2 v3 v1 + v3 v2 + v3 v1 + v2 + v3 v1 + v2pi = d2min(E) �1 �1 �1 �2 �2 �3 �4Table 4.5: Edge length pro�le for constellation in Figure 4.4(d).There are at least two edge labels for edges with squared distance �2 by Lemma 4,but these edge labels could actually have d2min = �1. The �2 edges always have labelsthat are the sum of a pair of edge labels with d2min = �1. From the previous paragraph,only one of these edge labels can have d2min = �1. Thus there is at least one edge labelwith d2min = �2 if exactly four edge labels have d2min = �1. In this case, p5 = �2.Thus no 8-PSK labeling can achieve p5 > �2, and the edge length pro�le ofTable 4.5 cannot be surpassed. All the 8-PSK constellations that achieve the lengthpro�le of Table 4.5 must have exactly three edge labels with d2min = �1. As shownabove, all these constellations are distance equivalent.4.4 Gray Coding and Ungerboeck LabelingNoticeably missing from the �rst three sections of this chapter was any mention of thetwo most popular strategies for labeling constellations, Ungerboeck labeling and Graycoding. Using the concepts of distance equivalence and distance superiority, some newinsights can be gained about these standard labeling techniques. In Section 4.4.1 Graycoding and Ungerboeck labeling are introduced and formally de�ned.Section 4.4.2 shows how Ungerboeck labeling and Gray coding can often be strictlyequivalent. For all 2n-PSK and square 4n-QAM constellations, pairs of strictly equiv-alent labeled constellations are constructed such that one constellation meets thede�nition of Gray coding and the other meets the de�nition of Ungerboeck labeling.The superior-in-pro�le edge labelings identi�ed in Section 4.3 can be achieved by suchpairs of strictly equivalent constellations, one Gray coded and the other Ungerboecklabeled.Not all constellations have equivalent labelings with both strategies. As examples,the 8-QAM and 32-QAM constellations are considered. Section 4.4.3 demonstrates



Chapter 4. Constellation Labeling 66that although Ungerboeck labeling is possible for these two constellations, Gray cod-ing is not.Surprisingly, constellations of the same size and shape that are Ungerboeck labeledare not necessarily distance equivalent. Likewise, two Gray labeled constellations ofthe same size and shape need not be distance equivalent. Examples are given in Sec-tion 4.4.4 for Ungerboeck labeled 16-QAM and Gray labeled 16-PSK constellations.The examples mentioned in the previous paragraph demonstrate that not all Graycoded or Ungerboeck labeled constellations can be superior in pro�le to every other la-beling. With either strategy, some labelings are distance superior to others. However,Section 4.4.7 concludes that the \right" Gray coding will always produce a labeledconstellation that is superior in pro�le to all others whenever such a dominant labelingexists.4.4.1 De�nitionsGray coding was �rst introduced in the context of uncoded transmission. To minimizethe e�ect of noise on the BER, Gray coding enforces the rule that all nearest neighborsdi�er by exactly one bit. In this way, the most common symbol errors in uncodedtransmission (those between nearest neighbors) lead to one bit error.De�nition 25 A labeled constellation is Gray coded if and only if all nearest neigh-bors di�er by exactly one bit.This motivation for using Gray coding in the context of uncoded transmission doesnot apply to the context of coded transmission. As pointed out by Ungerboeck in [5],the strategy of combining Gray coded constellations with maximum Hamming dis-tance convolutional codes does not always provide the maximum Euclidean distance.Ungerboeck labeling was introduced by Ungerboeck in [5] as part of a technique fordesigning maximum Euclidean distance trellis codes.Ungerboeck labeling (also called set partitioning) partitions the constellation intoa hierarchy of collections of mutually exclusive, collectively exhaustive subsets withthe largest possible separation between nearest neighbors in the same subset. Follow-ing the approach set forth in [5], these subsets (often called cosets because of theiralgebraic structure) will be identi�ed by the appropriate number of least signi�cantbits.



Chapter 4. Constellation Labeling 67De�nition 26 A 2n-point constellation is called Ungerboeck labeled if for every m 2f1; : : : ; ng the minimum distance of two points sharing the same m least signi�cantbits is as large as possible.Ungerboeck labeling was invented for a code design technique that features theuse of uncoded bits. Since uncoded bits result in poor performance on the fadingchannels of interest in this dissertation, Ungerboeck labeling is not the obvious choicefor code designs for these channels.4.4.2 Strictly equivalent pairsIn this subsection, pairs of strictly equivalent labeled constellations such that onemeets the de�nition of Ungerboeck labeling and the other meets the de�nition ofGray coding are constructed for all 2n-PSK and square QAM constellations. The PSKand square QAM cases are proved separately, but both proofs use similar inductivearguments.Theorem 8 For any positive integer n, there is a pair of distance equivalent 2n-PSKconstellations such that one meets the de�nition of Gray coding and the other meetsthe de�nition of Ungerboeck labeling.Proof: The base case of 2-PSK obviously meets either de�nition. Now consider thefollowing inductive edge labeling strategy, illustrated in Figure 4.6. When going fromthe n � 1 case to the n case, label the 2n minimum distance edges by alternatingaround the ring between using a new basis vector vn and using the n � 1 case basisvectors fv1; : : : ;vn�1g in their original pattern around the ring.Choosing the n case basis fv1; : : : ;vng to be the vectors with exactly one bit equalto 1 (and all the rest 0s) labels the constellation to meet the Gray coding de�nition.Suppose that n�1 case basis fv̂1; : : : ; v̂n�1g provide an edge labeling for the 2n�1-PSK constellation that meets the de�nition for Ungerboeck labeling. Choose the ncase basis in the following way: For i 2 f1; : : : ; n� 1g setvi = (v̂i << 1) + 1: (4.15)That is, left shift v̂i by one bit and make the least signi�cant bit a 1. Set vn = 0 : : : 01.
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v1v1

(a) 2-PSK
v1 v2

v1v2 (b) 4-PSK
v3 v1 v3 v2v3v1v3v2 (c) 8-PSK

v1 v3 v2v3v1v3v2v3
v4 v4v4v4v4v4v4 v4

(d) 16-PSKFigure 4.6: Inductive edge labeling strategy for 2n-PSK.All the minimum distance edge labels have a 1 in the least signi�cant bit. Thus allpoints sharing the same least signi�cant bit are separated by paths consisting of aneven number (at least two) minimum distance edge labels. The resulting separationof at least 2�=2n�1 radians is the largest separation possible for 2n�1 points on a ring.The points that share m � 2 least signi�cant bits are either all in the n � 1case Ungerboeck labeled constellation or a �=2n�1 rotation of it. These points areseparated by the largest distance possible (2�=2n�m radians) because of the labelingstructure inherited from the n� 1 case.The Gray labeled and Ungerboeck labeled PSK constellations described abovedi�er only in the choice of basis. In either case, any point can be chosen to have thezero label. When the same point is chosen to have the zero label, the Ungerboeck



Chapter 4. Constellation Labeling 69labeled and Gray coded constellations are strictly equivalent by Theorem 7. �Theorem 9 For any positive integer n, there is a pair of distance equivalent square4n-QAM constellations such that one meets the de�nition of Gray coding and theother meets the de�nition of Ungerboeck labeling.Proof: The square QAM constellations under consideration all have the structure ofthe Z2 lattice | the 2-dimensional integer grid. The base case of 4-QAM is shownin Figure 4.7(a). Since 4-QAM is identical to 4-PSK, Theorem 8 applied to thisconstellation guarantees choices of v1 and v2 that satisfy each of the two de�nitions.Consider the following inductive edge labeling strategy illustrated in Figure 4.7for 4-, 16-, and 64-QAM. For all these square QAM constellations, the vertical edgesin any one row all have the same edge label, and the horizontal edges in any onecolumn all have the same edge label.The induction determines the labeling for these rows and columns. The top rowof minimum distance vertical edges are labeled with the new basis vector v2n�1.Thereafter, rows of vertical edges are alternately labeled with the vectors used on therows of vertical edges in the n�1 case (in the same pattern) and v2n�1. The columnsof horizontal edges are labeled in the same way, using the new basis vector v2n.Selecting the basis vectors v1; : : : ;v2n to be the vectors having exactly one bitequal to 1 produces a labeled constellation that meets the de�nition of Gray labeling.Suppose that fv̂1; : : : ; v̂2n�2g are the edge labels of a square 4n�1-QAM constel-lation that meets the de�nition for Ungerboeck labeling. For i 2 f1; : : : ; 2(n� 1)gset vi = (v̂i << 2) + 1 for i odd (4.16)vi = (v̂i << 2) + 3 for i even: (4.17)That is, left shift v̂i by two bits and make the two least signi�cant bits 01 for i oddand 11 for i even. Also set v2n�1 = 0 : : : 01 (4.18)v2n = 0 : : : 11: (4.19)
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v2v1 v2 v1(a) 4-QAM.
v3 v3 v3v1 v1 v1v3 v3 v3

v4v4v4v4
v2v2v2v2

v4v4v4v4
v3v1v3 (b) 16-QAM.v6v5

v1
v6v6v6v6v6v6v6

v6v6v6v6v6v6v6v6

v2v2v2v2v2v2
v2v2
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v3
v3 v3 v3 v3 v3 v3 v3 v3

(c) 64-QAM.Figure 4.7: Inductive edge labeling strategy for 4n-QAM.



Chapter 4. Constellation Labeling 71All minimum distance edge labels have a 1 in the least signi�cant bit. Thus theshortest path between two points sharing the same signi�cant bit must have at leasttwo minimum distance edges. Let the distance between nearest neighbors be 1. Allthe points sharing the same least signi�cant bit are separated by a distance of at leastp2, which is the largest separation possible for half the points in a Z2 lattice.The horizontal minimum distance edges all have a 1 in the next to least signi�cantbit, and the vertical minimum distance edges all have a 0 in the next to least signi�cantbit. Thus points that share the two least signi�cant bits must either be in the samerow or in a row that is not adjacent. In either case, the two points are separated bya distance of at least 2, which is the largest separation possible for one fourth of thepoints in a Z2 lattice.The points that share m � 2 least signi�cant bits all belong to a scaled, shiftedn�1 case Ungerboeck labeled constellation. These points are separated by the largestdistance possible because of the labeling structure inherited from the n� 1 case.The Gray labeled and Ungerboeck labeled square QAM constellations describedabove di�ered only in the choice of basis. In either case, any point can be chosen tohave the zero label. When the same point is chosen in both cases to have the zerolabel, the Ungerboeck labeled and Gray coded constellations are strictly equivalentby Theorem 7. �The 4-QAM, 8-PSK, and 16-QAM labelings found in Section 4.3 are the same asthose produced by the labeling strategies presented in the two proofs above. Thusboth Gray coded and Ungerboeck labeled constellations exist that are superior inpro�le to all but distance equivalent labeled constellations for these cases.4.4.3 Constellations that cannot be Gray codedThe previous subsection demonstrated that strictly equivalent Ungerboeck labeledand Gray coded constellations can be found for all 2n-PSK and square 4n-QAM con-stellations. However, the two labeling strategies are not entirely equivalent. Unger-boeck labeling can be applied to constellations where Gray coding is not possible.Two examples are given below.An 8-QAM constellation (also called 8-AMPM or 8-Cross) is shown in Figure 4.8(a)with Ungerboeck labeling. This constellation cannot be labeled with Gray coding. As



Chapter 4. Constellation Labeling 72shown in Figure 4.8(b), some points have four nearest neighbors, but there are onlythree 3-bit edge labels that have Hamming weight one. By Lemma 3 it is impossibleto label every minimum distance edge with a Hamming weight one label.
000

100

010

110

001

111

011

101(a) Ungerboeck labeling. (b) Four nearest neighbors.Figure 4.8: An 8-QAM constellation that can be Ungerboecklabeled but not Gray coded.A common 32-QAM constellation is shown in Figure 4.9(a) with Ungerboeck la-beling. As with the 8-QAM constellation above, this constellation cannot be labeledwith Gray coding. However, the 32-QAM demonstration is more involved.The Gray coding de�nition is based on the edge labels, and is entirely independentof which point is labeled zero for a given edge labeling. There are four symmetricpoints at the center of the 32-QAM constellation. Without loss of generality, thetop left center point is chosen to have the zero label (00000). Having selected thiszero label, the Hamming weights of all the labels are forced to be either those shownin Figure 4.9(b) or a reection of those weights about the diagonal from top left tobottom right.Without loss of generality, assign the �ve Hamming weight 1 points in Figure4.9(b) with labels as shown in Figure 4.9(c). All the labels shown in Figure 4.9(d)are forced by the choice of the Hamming weight 1 labels and the following two re-quirements:1. Every minimum distance edge label must have Hamming weight one.(Otherwise the constellation is not Gray coded.)
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0000000001
01000 01101 01100 0100101111 01010 01011 0111000101 10100

11100

10111
11110

11001
10101

1011010011 10010 1000010001 1111100100 001100001111010 00111 00010 110111110111000(a) Ungerboeck labeling.

3 2 3 43 2 1 2 3 22 1 0 1 2 12321234 3 2 3 4 35434(b) Forced Hamming weights.
000010000000010 00100 1000001000

(c) Labels with Hamming weights 0 and 1.

00011 00001 0100101000000000001000110 00100 01100 1100011001
11100 10100100001000100101

?
(d) A point that can't be labeled.Figure 4.9: A 32-QAM constellation that can be Ungerboecklabeled but not Gray coded.



Chapter 4. Constellation Labeling 742. Every point must have a di�erent label.(Otherwise the constellation is not useful for a trellis code.)The point labeled \?" must have one of the �ve labels Hamming distance 1away from 00100, the point immediately above it, to satisfy requirement 1 above.However, all �ve of these labels have already been used. Thus the two requirementslisted above cannot be simultaneously satis�ed, and the 32-QAM constellation cannotbe Gray coded.4.4.4 A Distance Inferior Ungerboeck LabelingAs demonstrated in the previous subsection, there are not always two strictly equiv-alent constellations, one Gray coded and the other Ungerboeck labeled, for everyconstellation size and shape. This section demonstrates a more surprising fact aboutthese labeling strategies. An Ungerboeck labeled constellation of a given size andshape need not be distance equivalent to a another Ungerboeck labeled constellationof the same size and shape. Similarly, a Gray coded constellation need not be distanceequivalent to another Gray coded constellation of the same size and shape.Figure 4.10 shows two Ungerboeck labeled 16-QAM constellations that are notdistance equivalent; the labeling in Figure 4.10(a) is distance superior to that ofFigure 4.10(b). To show this, a labeling is found that is distance equivalent to Fig-ure 4.10(a) but has values of d2min(E) that are greater than or equal to those ofFigure 4.10(b) for every edge label E (with two strict inequalities).Table 4.6 shows the edge length pro�le of the constellation in Figure 4.10(a). Itis the best possible 16-QAM edge length pro�le identi�ed in Table 4.3, achieved byapplying the edge labeling of Figure 4.3(e) withv1 = 1011 (4.20)v2 = 0001 (4.21)v3 = 0111 (4.22)v4 = 0101: (4.23)Table 4.6 shows the edge labels E for each d2min(E) for the labeling shown inFigure 4.10(a). Also shown are the edge labels Ê for each d2min(Ê) for the distance
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0100 0000 00100110
111000011010 11001000 1001
0101

1101 1011
0111

1111
0011(a) Distance Superior.

00001111 00011010 1110 01011011 01000110 1101 1000011111000011 0010 1001
(b) Distance Inferior.Figure 4.10: Two Ungerboeck labeled 16-QAM constellations, onedistance superior to the other.

d2min(E) 1 1 1 1 2 2 2 2 4 4 5 5 5 5 8E 1 5 7 b 2 6 a e 4 c 3 9 d f 8Ê b f 1 d e a 6 2 4 c 5 3 7 9 8Table 4.6: Edge length pro�le for Figure 4.10(a). The original edgelabels E and those resulting from a change of basis Êare given in hexadecimal notation.d2min(E) = d2min(Ê) 1 1 1 1 2 2 2 2 4 4 1 5 5 1 8E b f 1 d e a 6 2 4 c 5 3 7 9 8Table 4.7: Edge lengths for Figure 4.10(b) ordered so that edges Ecorrespond to edges Ê in Table 4.6.



Chapter 4. Constellation Labeling 76equivalent labeling that results from the change of basis vi ! v̂i withv̂1 = 1101 (4.24)v̂2 = 1011 (4.25)v̂3 = 0001 (4.26)v̂4 = 1111: (4.27)Table 4.7 shows the values of d2min for the Ungerboeck labeled constellation ofFigure 4.10(b). The edge labels E in Table 4.7 have the same order as the edge labelsÊ in Table 4.6. Comparing these two tables con�rms that the labeled constellationin Figure 4.10(a) is distance superior to the one shown in Figure 4.10(b) even thoughboth are Ungerboeck labeled.4.4.5 Isometric LabelingsIn [22] (see also [23]), Forney introduced the concept of geometrically uniform codes.Many good codes are geometrically uniform. A full treatment of geometric uniformityis beyond the scope of this dissertation. However, the constellation labeling requiredfor a trellis code to be geometrically uniform is of interest.For a trellis code to be geometrically uniform, the constellation must have anisometric labeling. In [22] and [23] the de�nition of isometric labeling applies only tothe coset labels for a constellation that has been partitioned into cosets. Below is aparaphrasing of Proposition 2 in [22], which de�nes isometric labeling.De�nition 27 The coset labels of a constellation are an isometric labeling if andonly if for any selected coset label v, exclusive-oring all the coset labels with v hasthe same e�ect as applying a geometric isometry (some combination of translations,rotations, and reections) to the constellation.Isometric labelings make sense in the context of geometrically uniform signal setsin which all points are related by isometries that leave the constellation invariant.The 16-QAM constellation is not geometrically uniform since the corner points arenot related to the central points by such an isometry. However, the entire half-integer grid (of which the 16-QAM constellation may be considered a subset) is a
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(a) Distance Superior.
v1 v3 v2v3v1v2

v4 v4v4v4v3v3v3 v3v4
v4(b) Distance Inferior.Figure 4.11: Two Gray coded 16-PSK constellations, one distancesuperior to the other.geometrically uniform signal set.Consider replicating the labelings of Figures 4.10(a) and 4.10(b) over the entirehalf integer grid. Replication of the distance superior labeling of Figure 4.10(a)would produce an isometric labeling of the half integer grid. However, replicationof the distance inferior labeling of Figure 4.10(b) would not. This suggests that theremay be a connection between labelings which maximize the edge length pro�le andisometric labelings. However, the concept of isometric labeling applies only to thecoset labelings of certain constellations. The edge length pro�le is easily computedfor the full labeling of any constellation.4.4.6 A Distance Inferior Gray CodingAs demonstrated in Section 4.3, all Gray coded 16-QAM constellations are distanceequivalent, but two Gray coded 16-PSK constellations are not necessarily distanceequivalent. Figure 4.11 shows two edge labelings that produce Gray coded 16-PSKconstellations whenever v1; : : : ;v4 are chosen to be the four Hamming weight one4-bit vectors. The edge labeling in Figure 4.11(a) is distance superior to the labelingin Figure 4.11(b) as demonstrated in Table 4.8, for which the distances �i are de�nedin Figure 4.12.
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Edge Label d2minFigure 4.11(a) Figure 4.11(b)v1 �1 �1v2 �1 �1v3 �1 �1v4 �1 �1v1 + v2 �8 �6v1 + v3 �4 �2v1 + v4 �2 �2v2 + v3 �4 �2v2 + v4 �2 �2v3 + v4 �2 �2v1 + v2 + v3 �5 �5v1 + v2 + v4 �7 �5v1 + v3 + v4 �3 �3v2 + v3 + v4 �3 �3v1 + v2 + v3 + v4 �6 �6Table 4.8: The edge lengths for the labelings of Figures 4.11(a) and4.11(b) with the four strict inequalities underlined.

�4 �5�7�6 �8
�1�2 �3

Figure 4.12: Distances between points in a 16-PSK constellation.



Chapter 4. Constellation Labeling 794.4.7 Superior in pro�le Gray coded constellationsThe previous subsection identi�ed distance inferior labelings that met the de�nitionsof Gray coding and Ungerboeck labeling. In this subsection it is shown that if anylabeling for a 2n-point PSK or square QAM constellation is superior in pro�le to allother labelings (except distance equivalent ones), then a Gray coded constellationexists that has this optimality property.Theorem 10 For a given 2n-point PSK or square QAM constellation, if a labelingexists that is superior in pro�le to all but distance equivalent labelings, then there isa Gray coded labeling that is strictly equivalent to that superior-in-pro�le labeling.Proof: A Gray coded constellation of the speci�ed size and shape exists by theinductive constructions of Section 4.4.2. This constellation is an example of a label-ing that has only n minimum d2min edge labels. Thus the superior-in-pro�le labeledconstellation must have at most n minimum d2min edge labels as well. It cannot havefewer than n since the minimum d2min edge labels must contain a basis by Lemma 5.Thus the superior-in-pro�le constellation must have exactly n minimum d2min edgelabels.Changing the basis comprising the minimum d2min edge labels of the superior-in-pro�le labeled constellation to the n vectors having Hamming weight 1 produces adistance equivalent Gray coded constellation. This Gray coded constellation is strictlyequivalent to the superior-in-pro�le labeling by Theorem 7. �Note that not all Gray codings necessarily have this optimality property, since notall Gray codings are distance equivalent.4.5 SummaryThis chapter investigated how best to label a constellation of a given size and shapefor use in a trellis code. Constellations related by a change of basis are distanceequivalent and lead to distance equivalent trellis codes that have the same values ofthe design metrics discussed in Chapter 5.The edge length pro�le was introduced, and 4-PSK, 8-PSK, and 16-QAM con-stellations superior in pro�le to all others were identi�ed. These superior-in-pro�le



Chapter 4. Constellation Labeling 80constellations have Ungerboeck labeled and Gray coded representations that are dis-tance equivalent. In fact, for all 2n-PSK and 4n-QAM constellations, a pair of distanceequivalent constellations, one Ungerboeck labeled and the other Gray coded, can al-ways be identi�ed.However, Gray coding and Ungerboeck labeling are not entirely equivalent. Forsome constellations such as 8-QAM and 32-QAM, Ungerboeck labeling is possiblewhile Gray coding is not.It was demonstrated that two constellations of the same size and shape need not bedistance equivalent simply because they are both Ungerboeck labeled or because theyare both Gray coded. Thus one Ungerboeck labeled constellation may be distancesuperior to another Ungerboeck labeled constellation of the same size but strictlyequivalent to a Gray coded constellation. From this observation, it appears that theedge length pro�le is more informative about the potential trellis code performancethan whether it is Ungerboeck labeled or Gray coded.This chapter restricted attention to the three constellations used in the codesearches of Chapter 6. However, the edge length pro�le based constellation label-ing strategy outlined in this chapter can be extended to larger constellations andconstellations in more than two dimensions.



Chapter 5Capacity and Constellation SizeThe metrics presented in Chapter 2 are used in Chapter 6 to search for good trel-lis codes with 4-PSK (or 4-QAM), 8-PSK, and 16-QAM constellations. Chapter 4demonstrated how to label these constellations properly, but did not address thechoice of constellation size and shape.This chapter compares the information rates possible using square QAM constel-lations and PSK constellations of various sizes to the information rate achieved bythe optimal complex Gaussian input distribution. The performance of these constel-lations is also compared with appropriate limiting cases. The limiting case of M �MQAM constellations is the uniform distribution on a square. The limiting case ofM -PSK constellations is the uniform distribution on a ring.The capacity C is the maximum information rate that can be reliably transmittedover a channel [10]. It is computed by maximizing the mutual information I(x; y)over the set of possible input distributions Px:C = maxPx I(x; y) (5.1)The mutual information I(x; y) for a given input distribution Px is the maximumrate that can be transmitted reliably using a coding scheme for which the marginaldistribution of transmitted values is Px. For all the channels considered in this disser-tation, the Px that maximizes I(x; y) (i.e. achieves capacity C) is Gaussian. Considera suboptimal Px that is a uniform distribution over some particular constellation.Computing I(x; y) for this suboptimal Px indicates how well codes designed with81



Chapter 5. Capacity and Constellation Size 82that constellation can perform relative to the optimal Gaussian codebooks.Ungerboeck examined I(x; y) in [5] for a variety of QAM and PSK constella-tions on the AWGN channel. This chapter begins with a review in Section 5.1 ofUngerboeck's analysis of constellation mutual informations on the AWGN channel.(Ungerboeck's analysis did not include the comparisons with the limiting case distri-butions found here.) Section 5.2 applies this method of analysis to AWGN channelswith independent Rayleigh fading.Four examples of AWGN channels with ISI employing multicarrier modulation areexplored in Section 5.3. This section demonstrates that the high SNR subchannelsdetermine the constellation size required for good performance on a given ISI channel.In the limit of high SNR= �Ex=�2, the mutual information achievable with a par-ticular constellation C is simply log2(jCj) where jCj is the number of points in theconstellation. As seen in the plots that follow, the mutual information achievablewith a particular constellation is almost exactly that of its limiting case distribution(uniform on the square for QAM or on the ring for PSK) for very low SNR. The areaof interest is the transition region between the low SNR and high SNR behavior.Some care is required in the interpretation of the results presented in this chap-ter. The mutual information curves that follow indicate how well a constellation canperform in the context of a code with unconstrained complexity and decoding delay.In general, constraints on complexity or decoding delay might make a di�erent con-stellation size than indicated by these mutual information curves desirable. However,the next chapter presents an example where these mutual information curves are auseful guide to choosing the correct constellation size.5.1 AWGN ChannelIn this section Ungerboeck's mutual information analysis of QAM and PSK is re-viewed for AWGN channels. Additional insight is provided by computing the mutualinformation curves for the limiting case distributions of these constellations. For theAWGN channel, the mutual information associated with any input distribution Px



Chapter 5. Capacity and Constellation Size 83can be written as I(x; y) = I(x; x+ n) (5.2)= h(x + n)� h(x+ njx) (5.3)= h(x + n)� h(n) (5.4)= h(x + n)� log2(2�e�2) (5.5)where �2 is the variance of the complex Gaussian noise in any one dimension. Thedi�erential entropy h(q) [10] of the random variable q is de�ned to beh(q) = � Z f(q) log2 (f(q)) dq (5.6)where f(q) is the probability density function for q.I(x; y) is found by computing h(x + n) where x and n are both complex randomvariables. When Px is a complex Gaussian with covariance matrix"E[xrxr] E[xrxi]E[xixr] E[xixi]# = " �Ex 00 �Ex# ; (5.7)the di�erential entropy has a well known expression that leads to the well knowncomplex AWGN channel capacity.h(x + n) = log2(2�e(�2 + �Ex)) (5.8)C = log2�1 + �Ex�2� (5.9)For the other input distributions studied here | QAM, PSK, uniform square,and uniform ring | numerical integration is required to compute h(x + n). Thesenumerical integrations were performed using Mathematica.5.1.1 QAM Constellations on AWGN ChannelsIn this subsection the performance on AWGN channels ofM�M square constellations(M = 2, 3, 4, 6, and 8) is compared with the performance of the uniform square inputdistribution and the optimal Gaussian input distribution. Figure 5.1 shows the �ve



Chapter 5. Capacity and Constellation Size 84QAM constellations that are considered along with the limiting case of the uniformdistribution on a square.
4−QAM 9−QAM 16−QAM

36−QAM 64−QAM Uniform Square

Figure 5.1: Five QAM constellations and the limiting case of theuniform distribution on a square.For the constellations shown in Figure 5.1, the real and imaginary parts of x areindependent. The real and imaginary parts of n are independent regardless of theconstellation choice. For both x and n, the real and imaginary parts have identicaldistributions. Thus the two dimensional integral computing h(x+n) equals twice theone dimensional integral that computes h(xr + nr).These one dimensional integrals were computed numerically to produce the curvesshown in Figure 5.2. Figure 5.2 shows curves of mutual information vs. SNR for the�ve constellations and the uniform distribution on a square shown in Figure 5.1 for arange of SNRs. For comparison, the AWGN capacity (5.9) is shown as well.For a given constellation C, compare its mutual information IC with channel ca-pacity in Figure 5.2 at the information rate of log2(jCj)� 1. As Ungerboeck observedin [5], a given square QAM constellation C at information rate of log2(jCj)� 1 has amutual information within 1{2 dB of the capacity curve. Thus a QAM constellationof size 2R+1 has the potential to yield a code with performance close to optimal at
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Figure 5.2: Mutual information as a function of SNR for �ve QAMconstellations, uniform distribution on a square, andGaussian distribution for the AWGN channel.



Chapter 5. Capacity and Constellation Size 86rate R.The curves of Figure 5.2 suggest that the trend will continue for larger constellationsizes. That is, for any rateR transmission, a constellation of size 2R+1 will have mutualinformation performance within 1{2 dB of capacity. Ozarow and Wyner con�rmedthat intuition in [24] by deriving mutual information bounds on the rates achievableby PAM constellations on the real AWGN channel. These bounds immediately applyto the M �M QAM constellations studied here for the complex AWGN channel byconsidering the real and imaginary components as independent channels.No uniform QAM constellation will ever outperform the limiting case of the uni-form square input distribution. However, comparing IC with Isquare at the informationrate of log2(jCj)� 1, the performance di�erence is only 0.1 dB. Thus a QAM constel-lation with 2R+1 points will give performance very close to that of the uniform squareinput at rate R.Compare Isquare to the channel capacity curve at high SNR. These two lines becomeasymptotically parallel with a well known separation along the y-axis of log2(�e=6) =0:50923 bits. This corresponds to a separation along the x-axis of 1.53 dB. Thisdistance has come to be known as the \shaping gain" [25] since it is the amount of gainthat can be obtained over square QAM at high SNR by improving the constellationshape.In the last few years, impressive progress has been made in the quest for the 1.53dB of shaping gain. Some of the highlights can be found in [25, 26, 27]. To obtain alarge part of the 1.53 dB of possible shaping gain, the marginal input distribution mustbe made less like the uniform and more like a Gaussian. As in [25], this requirementcan be stated geometrically as follows.Consider each valid sequence of constellation points as a single point in a higherdimensional space. If the constellation points are chosen uniformly from a square,then the sequences are uniformly distributed in the volume of an N -cube in thehigher dimensional space. However, if the constellation points are chosen from aGaussian distribution, then the sequences are approximately uniformly distributed inthe volume of an N -sphere.The codes designed in the next chapter transmit one information bit per symbol.At this rate, the possible shaping gain is only about 0:2 dB and need not distract



Chapter 5. Capacity and Constellation Size 87attention from the other issues that truly dominate performance in this region. Fur-thermore, recent work indicates that shaping gain and coding gain are separable. Thusexisting good shaping schemes likely could be combined with the periodic metrics forcodes designed to operate at higher bit rates.5.1.2 PSK Constellations on AWGN ChannelsIn this subsection, the performance on AWGN channels of M -PSK constellations (M= 4, 8, 16, and 32) is compared with the performance of the uniform ring input distri-bution and the optimal Gaussian input. Figure 5.3 shows the four PSK constellationsthat are considered along with the limiting case of the uniform distribution on a ring.
4−PSK 8−PSK 16−PSK

32−PSK Uniform Ring

Figure 5.3: Four PSK constellations and the limiting case of theuniform distribution on a ring.For PSK constellations with more than four points, the computation of h(x + n)cannot be accomplished with a one dimensional numerical integration. By convertingto polar coordinates, symmetry allows integration over only �=M radians for an M -PSK constellation. This is an easily computed numerical integration over a smooth,non-oscillatory surface. The value of h(x + n) is then obtained by multiplying theresult of this integration by 2M .



Chapter 5. Capacity and Constellation Size 88To compute the mutual information for the uniform ring input, the formula derivedby Wyner in [28] is applied. This formula is given below (in nats).Iring = � Z 10 f(x) ln�f(x)x � dx + ln�2snre � (5.10)where f(x) = 2xsnre�snr(1+x2)I0(2xsnr) (5.11)and I0 is the modi�ed Bessel function of order zero. This integral has no closed formsolution, and again numerical integration is required.Figure 5.4 shows the mutual information curves for the four PSK constellationsshown in Figure 5.3. For comparison, the AWGN channel capacity and the mutualinformation for the uniform distribution on a ring are also shown.Examine the performance of the 8-PSK constellation at log2 8 � 1 = 2 bits. AsUngerboeck observed in [5], the 8-PSK mutual information at 2 bits is only 1.2 dBaway from the capacity curve. However, unlike the situation with QAM constellations,Figure 5.4 shows the loss from capacity to be increasing steadily with constellationsize.Similar to the QAM scenario, the PSK constellations never outperform the limitingcase (here the uniform ring input distribution). The performance di�erence betweenIC for any of the PSK constellations and Iring is negligible at the information rate oflog2(jCj) � 1. In fact, the di�erence is negligible for rates less than half a bit belowlog2(jCj). Thus for a �xed constellation size, PSK constellation performance remainsclose to Iring at higher rates than those for which QAM constellation performanceremains close to Isquare.Unfortunately, the limiting case curve Iring for the PSK constellations is muchfarther from capacity than Isquare for the QAM constellations. Compare the channelcapacity curve to Iring at high SNR. These two lines do not become asymptoticallyparallel. Instead, the slope of Iring becomes half that of the channel capacity curve.
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Figure 5.4: Channel capacity and mutual information for four PSKconstellations and the uniform distribution on a ring asa function of SNR for the AWGN channel.



Chapter 5. Capacity and Constellation Size 90In [28], Wyner derived a high SNR approximation of Iring that is useful here:Iring � 12 log2�4�snre � from [28] (5.12)= 12 log2(snr) + 12 log2�4�e � (5.13)� 12C + 1:1044 bits (5.14)where C is the AWGN channel capacity of (5.9).Thus when restricted to use a PSK constellation, a constellation of size 2R+1 iscertainly su�cient to provide performance close to that of the uniform ring input.However, this input allows transmission only at rates about half those possible forQAM constellations of the same size at given large SNR.Given this analysis, it is necessary to comment on situations where it might be de-sirable to use a PSK constellation despite its inferior mutual information performancein Figure 5.4. A PSK constellation can be received without regard for amplitude am-biguity at the receiver. Furthermore, with di�erential encoding, the transmissioncan also be made insensitive to slowly varying phase ambiguity. Finally, a constantamplitude transmission such as PSK allows the use of economical, power e�cientampli�ers.Often, the use of nonlinear ampli�ers places dual constraints of both averagepower and peak power on the transmitted signal. Shamai has derived the optimalinput distributions for transmission under concurrent average power and peak powerconstraints in [29]. The optimal distributions under these dual constraints are al-ways concentric circles. Under certain conditions when peak power is the dominantconstraint, the optimal distribution is the uniform distribution on the peak powerring.5.2 Independent Rayleigh FadingConsider again the independent Rayleigh fading channel discussed in Section 2.3. Theapparent independence is the result of interleaving. Thus, the fading is sometimesslow enough that the fading scale factors ai can be estimated. As has been the case
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x channel ay = ax + nFigure 5.5: Model of a fading channel with perfect channel stateinformation at the receiver.throughout this dissertation, estimation error is neglected; it is assumed that thescale factors ai are known exactly at the receiver, as illustrated in the fading channelmodel shown in Figure 5.5.Applying the chain rule for mutual information (Theorem 2.5.2 in [10]):I(x; y; a) = I(x; a) + I(x; yja) (5.15)= I(x; yja) since x ? a (5.16)Using the de�nition of conditional mutual information in [10] and the fact that scalingpreserves information,I(x; yja) = Za I(x; ax + n)p(a)da by de�nition (5.17)= Za I(x; x + na )p(a)da: (5.18)For any �xed scalar a, the mutual information I(x; x + n=a) is given by (5.5)I �x; x + na� = h�x+ na�� log2�2�e�2jaj2 � (5.19)Note that I(x; x + n=a) = I(x; x + n=jaj). The conditional mutual information in(5.18) depends on the magnitude r = jaj, which has the Rayleigh PDF given in(2.16), but not on the phase of a. Thus,I(x; y; a) = Z 1r I(x; x+ n=r)r er2=222 dr : (5.20)



Chapter 5. Capacity and Constellation Size 92The integral in (5.20) is approximated for complex Gaussian inputs x in [30](but see also [31] for an important correction) where it is considered an \averagecapacity." However, for the channel described in Figure 5.5 it is in fact the usualShannon capacity since complex Gaussian inputs maximize the mutual informationin (5.20).Reliable transmission at this capacity does not require that the transmitter knowthe fading sequence a. If the transmitter does know the fading sequence a, an evenhigher capacity is achievable as shown in [32]. However, this dissertation restrictsattention to the case where the transmitter does not have this information.See [33] for a discussion of how decoding delay constraints a�ect the achievabilityof the capacity obtained by maximizing (5.20). If the decoding delay is small enoughrelative to the time constant of the fading, then no capacity is achievable. Thepossibility of a severe fade lasting longer than the acceptable coding delay precludescompletely reliable transmission at any positive rate. In these cases, the probabilityof outage as a function of data rate becomes the performance measure of choice.The approximations in [30, 31] are useful for analysis. However, for the visualcomparisons of this chapter, computing (5.20) numerically provides better accuracy.For the PSK and QAM constellations, such analytic approximations are unavailable.With the numerical integration of (5.20) in mind, the I(x; x+n) curves shown in theprevious section were computed at closely spaced SNR values so that interpolatedcurves could be used as kernels for numerical integrations computing the mutualinformations for those constellations in the presence of Rayleigh fading.Figures 5.6 and 5.7 show the mutual information curves for the QAM and PSKconstellations used on an AWGN channel with Rayleigh fading. For both QAM andPSK constellations, the mutual information curves deviate from the limiting casemutual information curves at lower rates than on the AWGN channel.Examining Figure 5.6, the performance loss from Isquare at log2(jCj)� 1 is around0.5 dB for the 4-QAM constellation and grows as the constellation size grows. Forthe 64-QAM constellation, the loss is around 1.5 dB at I64-QAM = 5 bits. Thisperformance loss is relatively small, but does indicate that larger constellations maybe useful in the Rayleigh fading environment. For the QAM constellations, a size2R+2 constellation is required for performance to be within 0.1 dB of Isquare at rateR for an AWGN channel with independent Rayleigh fading. This is twice the size
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Figure 5.6: Mutual information on an AWGN channel withindependent Rayleigh fading as a function of averageSNR for �ve QAM constellations, uniform distributionon a square, and Gaussian distribution.
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Figure 5.7: Mutual information on an AWGN channel withindependent Rayleigh fading as a function of averageSNR for four PSK constellations, uniform distributionon a ring, and Gaussian distribution.



Chapter 5. Capacity and Constellation Size 95required for an AWGN channel without Rayleigh fading.Ho, Cavers, and Varaldi suggested in [34] that larger constellation sizes wouldbe useful for Rayleigh fading channels. Speci�cally, they claimed that going froman 8-PSK to a 16-QAM constellation for transmission of 2 bits/symbol (i.e., goingfrom 2R+1 to 2R+2) provided a 5 dB performance improvement on a Rayleigh fadingchannel. Figures 5.6 and 5.7 support the increase from 2R+1 to 2R+2, but show onlyabout 1 dB of improvement at R = 2 bits going from 8-PSK to 16-QAM. Perhapsthe mutual information analysis underestimates the improvement possible going from8-PSK to 16-QAM since limits on complexity and decoding delay are neglected.Still, the 5 dB claim by Ho et al. requires careful interpretation. This claim wasbased on a comparison of a standard 8-PSK trellis code with 8 states (3 memoryelements in the encoder) to a specially designed 16-QAM code with 16 states (4memory elements). The 16-QAM code was designed so that its decoding complexitywas comparable to that of the 8-PSK code despite having an extra memory element.Thus, in a sense, this was a fair comparison.There is no question that the 16-QAM code has good performance. However, sincedi�erent code design strategies were applied to the two constellations, the comparisonis not entirely conclusive about whether or not 8-PSK codes with similar performanceexist. On this point, the di�erent number of memory elements used by the twoencoders is an important consideration.As discussed in Chapter 2, e�ective code length ecl has a large impact on per-formance in independent Rayleigh fading scenarios. Theorem 1 in Chapter 3 showedthat ecl � j�kk+ 1; (5.21)where k is the number of information bits transmitted per symbol and � is the numberof memory elements in the encoder.The codes compared by Ho et al. both achieved their respective ecl bounds;the 8-PSK code had ecl= 2 while the 16-QAM code had ecl= 3. The di�erentecl values imply a large performance gap between the two codes. The remainingquestion is whether a code with 4 memory elements could be designed for 8-PSK tohave ecl= 3 and to be similar in decoding complexity to the 16-QAM code. Such



Chapter 5. Capacity and Constellation Size 96a code might have a performance much better than that of the 8-PSK code with 3memory elements considered in [34]In the next chapter Rayleigh fading channel codes are designed with a �xed num-ber of memory elements for transmission of 1 bit per symbol using three di�erentconstellation sizes. The same code design strategy is used for all three constellations.In this search, all three constellations had the same ecl, each achieving the boundof (5.21). Consistent with Figures 5.6 and 5.7 and with the claims of [34], there wasimprovement (in terms of code product distance cpd) when the constellation was in-creased in size from 2R+1 to 2R+2. However, no further improvement in the Rayleighfading metrics was seen when the constellation was further increased to 2R+3.5.3 Multicarrier Modulation for IntersymbolInterferenceIn this section the broadcast scenario where one information sequence is transmittedto several receivers is considered. Figure 5.8 shows an example of such a scenariowhere digital video signals are broadcast to many television sets. The physical pathbetween the transmitter and each receiver is di�erent, hence a di�erent impulse re-sponse is associated with each receiver. In practical broadcast scenarios, the trans-mitter usually does not know the impulse responses of the various receivers.A common way to deal with the multiplicity of impulse responses is for eachreceiver to use equalization to convert the intersymbol interference (ISI) channel ap-proximately to an AWGN channel. However, these equalization schemes work bestwhen some type of channel speci�c precoding is performed by the transmitter, asexplored in Chapter 7. This type of transmitter specialization is di�cult when thetransmitter is broadcasting to several receivers.This section explores the e�ect of constellation size on mutual information whenmulticarrier modulation (MCM) is used for broadcast transmission over multiple im-pulse responses. Tutorials on the details of MCM can be found in [35] and [36]. Forthis dissertation, the trellis code design problem presented by MCM is of primaryinterest. This problem can be understood without exploring all the details of MCM.MCM operates on blocks of N encoder outputs x1; : : : ; xN as shown in Figure 5.9.
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Figure 5.8: A digital video signal is broadcast to several televisionsets.The block x1; : : : ; xN is a block of frequency domain subsymbols, which are constella-tion points. This block is converted to a block of time domain samples by an inverseFourier transform (IDFT). The block of time domain samples (along with a cyclicpre�x not shown in Figure 5.9) is transmitted over an ISI channel with AWGN. Thereceiver performs a DFT on the received block (after removing the cyclic pre�x) toproduce the received block of frequency domain symbols y1; : : : ; yN , which are scaledconstellation points distorted by AWGN.26664x1x2...xN
37775 idft channel dft 26664 y1y2...yN

37775Figure 5.9: Multicarrier modulation system.The combined e�ect of IDFT, ISI channel, and DFT produces the set of N par-allel subchannels shown in Figure 5.10. The complex scale factors are the values ofthe DFT of the channel impulse response. The complex noise terms ni are complex



Chapter 5. Capacity and Constellation Size 98AWGN with independent real and imaginary parts each having variance �2. Fig-ure 5.10 is equivalent to Figure 5.5 with the values of ai repeating every N symbols.

� +

� +x1 y1 (frequency 1)n1a1
� +xi yi (frequency i)ai ni

xN yN (frequency N)nNaN ...
...

Figure 5.10: Parallel subchannels in frequency.The mutual information per block for the channel shown in Figure 5.10 isI = NXi=1 I �xi; xi + niai� (5.22)= NXi=1 log2�1 + jaij2Ejxij2�2 � for Gaussian xi: (5.23)In a point to point communication scenario where the transmitter knows the valuesa1; : : : ; aN , the mutual information in (5.23) can be maximized by using the water-�lling distribution of Ejxij2 [37]. In practice, a constant value of Ejxij2 is usuallymaintained except for su�ciently poor subchannels where Ejxij2 is set to zero. Whenthe transmitter knows a1; : : : ; aN , often denser constellation are used on channels withlarger values of jaij2=�2 as in [38].In the point-to-multipoint scenario illustrated in Figure 5.8 (or a point-to-pointscenario where the transmitter does not know the values of a1; : : : ; aN), specializationof Ejxij2 or the constellation size is not possible. Usually, one symbol power Ejxij2 =



Chapter 5. Capacity and Constellation Size 99Ex and one constellation is used for all the symbols [39, 40]. In this case, the mutualinformation per block is I = NXi=1 log2�1 + jaij2Ex2�2 � (5.24)for the optimal case of Gaussian inputs xi. This is less than or equal to the capacityachieved by water�lling, but water�lling is not possible when the values a1; : : : ; aNare not known.Shannon's fundamental coding theorems [41, 37] ensure that for each set of valuesa1; : : : ; aN there is a code with Ejxij2 = Ex that achieves reliable transmission atthe per block rate given in (5.24). However, this fact alone is not enough since thetransmitter does not know a1; : : : ; aN and thus cannot choose between di�erent codesmeant for di�erent cases of a1; : : : ; aN . Fortunately, Root and Variaya's compoundGaussian channel results [42] show that there must exist a \universal" code thatreliably transmits at rate NR per block over all sets of values a1; : : : ; aN for whichR � 1N NXi=1 log2�1 + jaij2Ex2�2 � : (5.25)The \universal" code would require at least 2NR points in its constellation totransmit reliably in the case where all the values of ai are zero except for one extremelylarge value. This case is not of practical concern, and the plots that follow do showthat reasonable constellation sizes can support transmission over a wide range offrequency selective channels. Mutual information curves for the previously consideredQAM and PSK constellations are now shown for four examples of ISI channels.For these four ISI channels, Figures 5.11 and 5.12 show the subchannel SNRsExjaij2=2�2 for MCM with N = 512. Figure 5.13 shows the corresponding four im-pulse responses. The Notch channel (studied by Sari in [39]) has a mild notch ata normalized frequency of 0.15. The Ramp channel (was used in by Cio� in [36])shows a monotonic decrease in SNR except for a notch at DC. The 1/2 and 1/3 Bandlow pass �lters (LPFs) were designed using the Remez exchange algorithm of Parksand McClellen. They are included here as examples of extremely severe frequencyselectivity.
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(a) Frequency response of Notch channel.
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(b) Frequency response of Ramp channel.Figure 5.11: Frequency response (subchannel SNRs) for Notch andRamp channels with an overall equivalent AWGNSNR of 6 dB.
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(a) Frequency response of 1/2 Band LPF channel.
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(b) Frequency response of 1/3 Band LPF channel.Figure 5.12: Frequency response (subchannel SNRs) for 1/2 Bandand 1/3 Band LPF channels with an overallequivalent AWGN SNR of 6 dB.
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(a) Impulse response of Notch channel.
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(b) Impulse response of Ramp channel.
 0
 1
 2
 3
 4
 5

(c) Impulse response of 1/2 Band LPF channel.
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(d) Impulse response of 1/3 Band LPF channel.Figure 5.13: Impulse responses for the Notch, 1/2 Band LPF, and1/3 Band LPF channels.



Chapter 5. Capacity and Constellation Size 103Figures 5.14{5.17 show the QAM mutual information curves for multicarrier mod-ulation with 512 subchannels on the four channels studied. Figures 5.18{5.21 showthe PSK mutual information curves for these channels. As in the Rayleigh fading mu-tual information integrals, the AWGN mutual information curves of Figures 5.2 and5.4 are used as kernels in summation of (5.22) to compute the mutual informationsof the various constellations on these channels.To plot the mutual information curves in a way that allows comparison betweenchannels, those channels having the same maximum achievable rate for a given trans-mitter subchannel power level are considered equivalent. These channels will in gen-eral have di�erent input SNRs and di�erent output SNRs. The SNR assigned to theseequivalent channels for plotting purposes is the SNR of an AWGN channel with thesame capacity. This SNR is called the equivalent AWGN SNR.If the values a1; : : : ; aN are the same, then the mutual information curves are thosefor the AWGN channel shown in Section 5.1. When there is variation in the values ofa1; : : : ; aN , some of the subchannel SNRs will be above the equivalent AWGN SNRand some will be below. The overall loss from the mutual information of the limitingcase (uniform square or ring) will be an average of the losses on each subchannel. Theloss from the limiting case increases with SNR so that the increased loss on the highSNR (higher than the equivalent AWGN SNR) subchannels dominates the decreasedloss on the lower SNR subchannels. Thus the mutual information curves will be belowthose for the AWGN channel.The amount by which the mutual information curves are below those for theAWGN channels depends a great deal on the speci�cs of the values a1; : : : ; aN . Ingeneral, more variation causes more degradation in the mutual information curves.The channels are ordered so that the SNR variation is increasing. For the Notchchannel, the mutual information curves are similar to those for Rayleigh fading seenin the previous section. For the Ramp channel, further degradation is apparent, andfor the low pass �lter channels the degradation is dramatic.To further explore the reasons for this degradation, consider the 4-QAM (equiv-alently 4-PSK) constellation used on the subchannels of the 1/2 Band LPF channelat an equivalent AWGN SNR of 6 dB. These subchannel SNRs are shown in Figure5.12(a). Since the channel is essentially a step in the frequency domain, the subchan-nels fall into two categories. There is a set of low SNR subchannels (less than �20 dB)



Chapter 5. Capacity and Constellation Size 104for which the 4-QAM constellation performs close to the limiting case. Actually, thesesubchannels are so poor that they support practically no information transmission.However, there is also a set of high SNR subchannels (above 15 dB) for which the4-QAM constellation's limitation to 2 bits is a severe handicap. (Compare the 4-QAMmutual information to capacity at 15 dB in Figure 5.2.) This is generally the case.A constellation's mutual information performance under SNR variation is limited bythe high SNR subchannels rather than the low SNR subchannels. In general, theconstellation size required to handle large SNR variations is determined by how highthe SNR can be rather than by how low it can be.
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Figure 5.14: Mutual information (using MCM) on the Notchchannel as a function of equivalent AWGN SNR for�ve QAM constellations, uniform distribution on asquare, and Gaussian distribution.
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Figure 5.15: Mutual information (using MCM) on the Rampchannel as a function of equivalent AWGN SNR for�ve QAM constellations, uniform distribution on asquare, and Gaussian distribution.
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Figure 5.16: Mutual information (using MCM) on the 1/2 BandLPF channel as a function of equivalent AWGN SNRfor �ve QAM constellations, uniform distribution on asquare, and Gaussian distribution.
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Figure 5.17: Mutual information (using MCM) on the 1/3 BandLPF channel as a function of equivalent AWGN SNRfor �ve QAM constellations, uniform distribution on asquare, and Gaussian distribution.
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Figure 5.18: Mutual information (using MCM) on the Notchchannel as a function of equivalent AWGN SNR forfour PSK constellations, uniform distribution on aring, and Gaussian distribution.



Chapter 5. Capacity and Constellation Size 110

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

B
IT

S

SNR [dB]

4−PSK

8−PSK

16−PSK

32−PSK

Channel Capacity           
Uniform Ring Input         
Square Constellations      

Figure 5.19: Mutual information (using MCM) on the Rampchannel as a function of equivalent AWGN SNR forfour PSK constellations, uniform distribution on aring, and Gaussian distribution.
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Figure 5.20: Mutual information (using MCM) on the 1/2 BandLPF channel as a function of equivalent AWGN SNRfor four PSK constellations, uniform distribution on aring, and Gaussian distribution.
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Figure 5.21: Mutual information (using MCM) on the 1/3 BandLPF channel as a function of equivalent AWGN SNRfor four PSK constellations, uniform distribution on aring, and Gaussian distribution.



Chapter 5. Capacity and Constellation Size 1135.4 SummaryIn this chapter the mutual information performance of M �M QAM and M -PSKconstellations was explored for AWGN channels, Rayleigh fading channels, and mul-ticarrier modulation in ISI channels. A QAM constellation of size 2R+1 is withinabout 1.5 dB of the optimal Gaussian input sequence for the AWGN channel. A PSKconstellation of size 2R supports about half the rate of a QAM constellation of thesame size for large R.An M �M QAM constellation will never outperform the limiting case of the uni-form input on a square. The PSK constellations will never outperform the limitingcase of a uniform distribution on a ring. For the AWGN channel, the QAM constel-lations are very close to their limiting case curve (Isquare) for rates more than one bitbelow log2 of the constellation size. The PSK constellations are very close to theirlimiting case curve (Iring) for rates more than half a bit below log2 of the constellationsize.For independent Rayleigh fading, lower rates are required for performance closeto the limiting case curves. The QAM constellations are very close to Isquare for ratesmore than 2 bits below log2 of the constellation size. The PSK constellations are veryclose to Iring for rates more than 1 bit below log2 of the constellation size.The third type of communication channel explored was the ISI channel decom-posed into parallel subchannels (without ISI) by MCM. For these channels, the con-stellation size required for performance close to Isquare or Iring depends largely on theamount of SNR variation. For a particular channel, the constellation size must bechosen large enough that the subchannels with the highest SNRs can be used e�-ciently. Thus it is the high SNR subchannels that determine what constellation sizeis required.



Chapter 6A Code Search ExampleThis chapter brings together the ideas of the previous four chapters to design a trel-lis code for periodically interleaved broadcast multicarrier modulation (MCM). Theperiodic metrics | periodic e�ective code length and code periodic product distance| derived at the end of Chapter 2 are well suited for this scenario, since periodicinterleaving is used to disperse the strongly correlated adjacent subchannel gains. Forcomparison, codes are also designed using the other metrics presented in Chapter 2(code Euclidean distance, e�ective code length, and code product distance).The codes designed in this chapter use 6 memory elements (� = 6) and transmit1 information bit per symbol (k = 1). These parameters allow comparison withthe standard rate-1/2, � = 6 code [43]. This standard code was used with a 4-PSKconstellation for broadcast MCM with periodic interleaving by Sari [39] (see also [44])and others.Section 6.1 identi�es the standard code mentioned above as the k = 1, � = 6code that maximizes ced. Section 6.2 �nds codes that maximize ecl and cpd, andSection 6.3 identi�es codes that maximize the periodic metrics. The codes found ineach of these three sections are simulated using MCM with periodic interleaving on�ve di�erent frequency selective channels in Section 6.4.Three di�erent constellations are considered in the trellis code searches that follow:4-PSK, 8-PSK, and 16-QAM. For each constellation, a Gray labeling that achievesthe maximum possible edge length pro�le (as demonstrated in Section 3 of Chapter 4)is employed. Figure 6.1 shows these three labeled constellations.In each case a strictly equivalent Ungerboeck labeling exists by Theorems 8 and 9114
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(a) 4-PSK Gray coded constellation. 001
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(b) 8-PSK Gray coded constellation.0011 0001 01110010 0000 0100 01101010 1000 1100 11101011 1001 1101 1111
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(c) 16-QAMGray coded constellation.Figure 6.1: The three superior-in-pro�le labeled constellations usedfor the code searches and simulations of this chapter.



Chapter 6. A Code Search Example 116of Chapter 4. A strictly equivalent code results regardless of the choice between theGray coding shown in Figure 6.1 and the associated Ungerboeck labeling.Gray coding allows the code searches to avoid distance equivalent codes by avoid-ing certain permutations of encoder polynomials according to the procedure outlinedon page 45 of Chapter 3. In fact, the example application on pages 45{45 of thatprocedure is for the Gray coded 16-QAM constellation in Figure 6.1(c).The metrics derived in Chapter 2 are based on distance sequences fd2i (b ! b̂)g.The searches in this chapter reduce complexity by considering only a worst casedistance sequence fd2i (E(D))g for each E(D) (see De�nition 14 in Chapter 3). For theconstellations considered in this chapter, the resulting metrics are the same whethercomputed using fd2i (b ! b̂)g or fd2i (E(D))g because for every E(D) there is a pair(b(d); b̂(D)) that satis�es the conditions (3.25) and (3.26) on page 37.For the 4-PSK and 16-QAM labeled constellations in Figure 6.1, one such set ofpairs is obtained by �xing b(D) = 0 and considering all sequences b̂(D). For theseconstellations every edge emanating from the zero labeled constellation point has theminimum distance associated with its edge label. (See the achievable edge lengthpro�le bounds shown in Figures 4.1(a) and 4.5.)For the 8-PSK constellation in Figure 6.1, only two edge labels, 001 and 100, havemore than one possible distance associated with them. Let X represent an unspeci�edbit. Constellation points labeled X1X have the minimum distance for edge label 001but not 100. Similarly, points labeled X0X have the minimum distance for edge label100 but not 001. For any E(D), an input sequence b(D) can be found that sendsCi=X1X whenever Ei=001 and Ci=X0X whenever Ei=100. Thus for every E(D)there is a pair (b(d); b̂(D)) that satis�es (3.25) and (3.26) on page 37.A catastrophic convolutional code has an error sequence with a �nite el thatproduces an in�nite number of information bit errors. Catastrophic codes give poorperformance even when they have large values for the metrics presented in Chapter 2.The code searches in this chapter remove catastrophic codes from consideration usingthe invariant factors test resulting from Theorem 1 of [21] (see also [45]).Reversing the time order of the generator polynomials reverses the time order ofthe distance sequences, but does not a�ect the metrics presented in Chapter 2. Anencoder is removed from consideration if it is the time reversal of an encoder alreadyexamined in the code search.



Chapter 6. A Code Search Example 1176.1 Euclidean DistanceIn this section, a code is sought that maximizes code Euclidean distance (ced) withsecondary consideration given to the number of Euclidean nearest neighbors (Nced).These metrics were de�ned on page 1. For each 2n point constellation (n = 2; 3; 4),an exhaustive search of feedback-free rate 1=n convolutional codes was performed(excluding catastrophic codes, distance equivalent permutations, and time reversals).For each code considered by the search, ced and Nced were computed with anadaptation of the bidirectional search algorithm proposed initially by Bahl et al. [46]for computing the free Hamming distance of a convolutional code. In [47], Larsencorrected some oversights in [46], and the corrected algorithm has come to be knownas the \Larsen algorithm." The basic approach of this algorithm applies wheneverthe metric J(E(D)) can be expressed as the sum of positive values that are functionsof the error sequence elements Ei: J = 1Xi=1 f(Ei): (6.1)As originally described in [46, 47], f(Ei) was the Hamming weight of Ei, butthe algorithm applies equally well (computing ced) when f(Ei) = d2min(Ei). In [5],Ungerboeck follows this approach except that f(Ei) was de�ned so thatf(Ei) < d2min(Ei) (6.2)for certain values of Ei, yielding pessimistic metrics for some codes.Tables 6.1{6.3 present the codes with largest ced for 4-PSK (rate 1/2), 8-PSK(rate 1/3), and 16-QAM (rate 1/4), respectively. All three tables actually show thesame two trellis codes as having the maximum ced. It turns out that for k = 1 and� = 6, forcing the constellation to be 8-PSK or 16-QAM reduces ced. In these twocases, the maximum ced trellis codes use 4-PSK subsets of the larger constellations.Recall that the previous chapter suggested using a constellation having at least2R+1 points for the AWGN channel, but showed that the larger constellations shouldperform at least as well. This observation holds for large complexity and large delay.However, for �xed � and k, the code searches of this section demonstrate that



Chapter 6. A Code Search Example 118# polynomial ced2 Nced1 133 171 20.0 112 135 163 20.0 11Table 6.1: Rate-1/2 64-state 4-PSK codes with maximumEuclidean distance. All codes shown use the full 4-PSKconstellation.# polynomial Actual Constellation ced2 Nced1 133 42 171 4-PSK 20:0 112 135 56 163 4-PSK 20:0 113 107 32 127 8-PSK 18:0 1Table 6.2: Rate-1/3 64-state 8-PSK codes with maximumEuclidean distance.# polynomial Actual Constellation ced2 Nced1 171 133 133 171 4-PSK 20:0 112 135 163 163 135 4-PSK 20:0 11...3 117 135 135 157 2� 4 QAM 16:44 1...4 117 155 145 137 16-QAM 14:4 2Table 6.3: Rate-1/4 64-state 16-QAM codes with maximumEuclidean distance.# ecl pecl log2(�)cpd cppd4 cppd5 cppd6 cppd7 cppd81 6 5 16.0 1 9:0 9:17 9:0 11:172 6 4 16.0 9:17 10:59 9:0 10:0 11:17Table 6.4: Other properties of the codes in Table 6.1.



Chapter 6. A Code Search Example 119trellis codes using constellations with 2R+2 and 2R+3 points are sometimes unable tomatch the ced achieved by trellis codes using a 2R+1 point constellation. Thus forpractical complexity trellis codes, a constellation can be \too big" for the AWGNchannel. Note, however, that this search was restricted to trellis codes; a di�erentcoding structure might use the constellation more e�ectively.As discussed above, the 4-PSK codes listed in Table 6.1 are the best found interms of ced. The only choice is between codes #1 and #2 in that table; no othercodes with ced = 20 were found. Since both codes have the same Nced, the othermetrics shown in Table 6.4 are used to di�erentiate between the two codes. Code #1is selected for simulation because of its larger value of pecl (and because of its statusas an often simulated code).This code (Code #1 in Table 6.1) is commonly used for 4-PSK constellations [43].In particular, it has been studied for transmission of one bit per symbol in the contextof broadcast MCM [39, 44], which is the environment simulated in this chapter.6.2 E�ective Length and Product DistanceIn this section, a code is sought that maximizes e�ective code length (ecl) withsecondary consideration given to the code product distance (cpd). These metrics werede�ned on page 13. As in the previous section, exhaustive searches of feedback-freeconvolutional codes were performed for the rate associated with each constellation.The searches excluded catastrophic codes, distance equivalent permutations, and timereversals.Once again, the bidirectional search algorithm can be applied to compute the met-rics of interest. The computation of ecl is accomplished by the standard algorithmwith f(Ei) de�ned as the indicator function of Ei 6= 0. The cpd is computed bycontinuing to explore error sequences with el = ecl until the cpd is identi�ed. Thecomputation of ecl and cpd in this way is described fully in [48].



Chapter 6. A Code Search Example 120From Theorem 1 on page 35, the maximum possible ecl isecl � j�kk+ 1 (6.3)= 61 + 1 (6.4)= 7: (6.5)The search identi�ed trellis codes for all three constellations that achieved ecl = 7.Tables 6.5, 6.6, and 6.7 present the codes with ecl = 7 having the largest cpd for4-PSK (rate 1/2), 8-PSK (rate 1/3), and 16-QAM (rate 1/4) respectively. The largestvalue for the cpd was produced by a trellis code using the 8-PSK constellation. Thetables list log2(cpd) rather than cpd because the pairwise error expression in (2.27)on page 2.27 is exponential in el and log2(pd) (rather than pd).This situation is another example where a metric (cpd) became worse for a largerconstellation, contrary to the intuition of the previous chapter. For the largest constel-lation (16-QAM), the best cpd for an ecl = 7 code was produced by a convolutionalencoder that used only 8 of the 16 available points. This cpd was still lower thanthat found with 8-PSK.Note that the largest cpd was found with the 2R+2 point constellation. All of thecode searches by Du and Vucetic [11, 12, 13, 14] seeking to maximize cpd consideredonly 2R+1 point constellations. The code searches in this section suggest that largervalues of cpd might be obtained with larger (2R+2 point) constellations.Five rate-1/3 8-PSK codes were found that had ecl = 7 and had the maximumcpd of 211:54. From these �ve codes, code #1 in Table 6.6 was chosen because ithad the the largest ced. Table 6.8 shows the periodic metrics for the �ve codes inTable 6.66.3 Periodic MetricsIn this section, a code is sought that maximizes the periodic e�ective code length(pecl) with secondary consideration given to the code periodic product distancescppdi. The periodic metrics assume a period P for the periodic interleaver. Theperiod P = 8 used to compute the metrics in this section is consistent with the P = 8



Chapter 6. A Code Search Example 121# polynomial ecl Necl log2(cpd) ced2 Nced1 45 173 7 5 9.0 18:0 22 123 155 7 5 9.0 18:0 33 133 175 7 6 9.0 18:0 14 135 157 7 6 9.0 18:0 25 55 163 7 6 9.0 18:0 36 75 123 7 7 9.0 18:0 57 75 113 7 8 9.0 18:0 3Table 6.5: Rate-1/2 64-state 4-PSK codes with largest ced amongthose with maximum ecl and cpd. All codes shown usethe full 4-PSK constellation.# polynomial ecl Necl log2(cpd) ced2 Nced1 135 66 177 7 1 11.54 14.34 12 133 65 177 7 1 11.54 13.51 13 153 66 177 7 1 11.54 12.69 14 166 55 177 7 2 11.54 12.34 15 156 65 177 7 1 11.54 12.34 1Table 6.6: Rate-1/3 64-state 8-PSK codes with largest ced amongthose with maximum ecl and cpd. All codes shown usethe full 8-PSK constellation.# polynomial Actual ecl Necl log2(cpd) ced2 NcedConstellation1 135 177 177 153 2� 4QAM 7 1 10.09 12:44 12 135 177 173 157 16-QAM 7 1 9.03 10:4 13 135 177 167 157 16-QAM 7 1 9.03 10:4 14 135 167 173 177 16-QAM 7 1 9.03 10:4 15 135 157 167 177 16-QAM 7 1 9.03 10:4 16 133 177 175 167 16-QAM 7 1 9.03 10:4 17 133 167 177 175 16-QAM 7 1 9.03 10:4 1Table 6.7: Rate-1/4 64-state 16-QAM codes with largest cedamong those with maximum ecl and cpd.



Chapter 6. A Code Search Example 122# pecl log2(�)cppd5 cppd6 cppd7 cppd81 6 1 7:17 5:46 2:912 6 1 6:18 4:58 0:003 6 1 6:24 5:08 �0:234 5 10:21 8:41 2:55 1:505 6 1 6:17 4:45 1:10Table 6.8: Periodic metrics for Rate-1/3 64-state 8-PSK codeslisted in Table 6.6periodic interleaving used in the simulations in the next section.The two bounds on pecl derived on page 25 are repeated here for convenience.pecl � �P �1� kn��+ 1 : (6.6)pecl � j�kk+ 1 (6.7)Recalling that our search is for � = 6 and k = 1, (6.7) impliespecl � 7 (6.8)for all the codes considered. Since n varies with constellation size, the bound resultingfrom (6.6) varies with constellation as follows (assuming k = 1):pecl � 5 for 4-PSK (6.9)pecl � 6 for 8-PSK (6.10)pecl � 7 for 16-QAM: (6.11)The primary goal of this section's search is to maximize pecl. Thus the rate-1/4 16-QAM trellis codes are considered �rst to see if the bound in (6.11) can beachieved. This search, as with the previous searches, excludes catastrophic codes,distance equivalent permutations, and time reversals. The algorithm proposed byLapidoth in Theorem 1 of [18] was used to check whether each candidate code hadpecl � 7. This was done by checking that no erasure pattern U with jU j < 7 results



Chapter 6. A Code Search Example 123in an error on the periodic block erasure channel with M = P = 8.Many rate-1/4 16-QAM codes were found that had pecl = 7. The 4-PSK and8-PSK constellations were never considered since they cannot produce a code withpecl = 7.The code periodic product distances cppd7 and cppd8 are used to select a codefrom among those with pecl = 7. The bidirectional search algorithm used to computeced, ecl, and cpd does not immediately apply to the computation of cppdi. Instead,a computationally intensive direct trellis search was used. Further investigation couldlead to a more e�cient method for computing cppd. However, the values of cppd7and cppd8 were required only for codes that had pecl = 7, and so a more e�cientalgorithm was not required for this search.It is not obvious how to weigh the relative importance of cppd7 and cppd8. How-ever, some codes can be immediately removed from consideration using the followingde�nition, which is speci�c to the current situation.De�nition 28 A rate-1/4, � = 6, 16-QAM trellis code with pecl = 7 is dominatedif there exists another rate-1/4, � = 6, 16-QAM trellis code with pecl = 7 that haslarger values of both cppd7 and cppd8.A code that is not dominated is called Pareto optimal [16]. When all of the dominatedtrellis codes are removed from consideration, only eleven Pareto optimal codes remain.These eleven undominated codes are listed in Table 6.9 along with their periodicmetrics.Normalizing cppdi by taking the ith root (or dividing log2 cppdi by i) is suggestedby (2.41) on page 17. Because of this, the last column in Table 6.9 lists the smallervalue (choosing between i = 7 and i = 8) of i�1 log2 cppdi. Table 6.10 lists the othermetrics for these eleven codes.With only eleven Pareto optimal codes from which to choose, it is realistic at thispoint to simulate each code and choose the one with the best error rate of interest.However, only one code is selected for simulation in Section 6.4.Figure 6.2 plots log2 cppd8 vs. log2 cppd7 for the eleven Pareto optimal codes.There are several strategies for selecting one of the eleven codes, but two of the codesstand out as desirable.Code #9 has the largest minimum value of log2 cppdi (minimizing over i = 7; 8).
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# polynomial pecl log2(�) Min i�1 log2(cppdi)cppd7 cppd8 for i 2 f7; 8g1 33 177 127 35 7 5:20 �0:87 �:1082 31 173 163 57 7 4:99 �0:58 �:0733 105 177 157 131 7 4:84 0:75 :0944 107 175 143 127 7 4:39 1:75 :2195 43 176 171 45 7 4:07 2:46 :3086 43 175 155 103 7 3:67 2:62 :3287 63 175 135 103 7 3:39 2:82 :3528 55 173 107 61 7 2:98 2:88 :3609 71 103 137 145 7 2:94 3:50 :42010 73 105 135 143 7 2:77 3:76 :39611 43 121 135 143 7 2:07 3:77 :296Table 6.9: Rate-1/4 64-state 16-QAM codes with undominatedpairs (cppd7, cppd8) given the maximum pecl of 7.

# ced2 Nced ecl Necl log2(cpd)1 10.4 1 7 1 5:712 10.4 1 7 1 5:033 12.8 1 7 1 6:394 12.8 1 7 1 4:395 11.2 1 7 2 4:076 12.4 1 7 2 4:077 12.8 2 7 2 3:398 10.8 1 7 1 3:079 10.8 1 7 2 3:0710 11.6 1 7 2 4:0711 10.8 1 7 2 2:07Table 6.10: Other properties of rate-1/4 64-state 16-QAM codeslisted in Table 6.9.
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Figure 6.2: log2(cddp8) vs. log2(cddp7) for codes in Table 6.9.



Chapter 6. A Code Search Example 126This code also has the largest minimum value of i�1 log2 cppdi.However, Code #5 maximizes bothP log2 cppdi andP i�1 log2 cppdi. Code #5was chosen for simulation, partly because it has a larger value of log2 cppd7 thanCode #9. Because events with periodic event lengths of 7 have inherently less diver-sity, it was decided to place slightly more emphasis on cppd7.Code #1 maximizes log2 cppd7 outright, but its low value of log2 cppd8 makes itclearly undesirable.As clear from this example, maximizing the periodic metrics is complicated bythe tradeo� between values of cppdi for various indexes. However, the same tradeo�exists even for the regular product distance. In that case, the issue is completelyignored and only the minimum e�ective length products are considered. In fact,there is an in�nite number of possible e�ective lengths. Thus the tradeo� problemfor regular product distance is actually more complicated than in the periodic casewhere only a few periodic e�ective lengths (two for the example above) are possible.6.4 SimulationsThe major elements of the simulation setup have already been described in the pre-vious chapters. Multicarrier modulation was used to decompose intersymbol inter-ference channels into 512 subchannels as illustrated in Figures 5.9 and 5.10 on pages97{98. In these simulations, the overhead introduced by the cyclic pre�x was ne-glected.Periodic interleaving and deinterleaving was performed with P = 8 and B = 512,as illustrated on page 20. Maximum likelihood sequence detection was done usingthe Viterbi algorithm, while assuming that the receiver had perfectly estimated thechannel frequency response.Five channels were simulated: the AWGN channel and the four channels whoseimpulse and frequency responses were plotted on page 102 and pages 100{101 respec-tively.Each of Figures 6.3, 6.4, and 6.5 plots the BER performance of one code on all �vechannels. All the BER curves in this section are plotted vs. the equivalent AWGNSNR discussed on page 103. Each point plotted represents a simulation that ran until50 trellis error events occurred. Each trellis event involved at least 2 bit errors, so



Chapter 6. A Code Search Example 127each plotted point represents at least 100 bit errors.Figures 6.3{6.5 show simulation results for the codes identi�ed in Sections 6.1{6.3respectively. Figure 6.5 shows that the code designed in Section 6.3 to maximize theperiodic metrics performs consistently well on all �ve channels. Figures 6.3{6.4 showthat the other two codes have good performance on some channels but not others.Note in Figure 6.5 that the best BER curve is the curve for the 1/3 Band LPFchannel (on which the other two codes failed completely). This BER curve is similarto that of the maximum ced code on the AWGN channel (see Figure 6.3). Thisemphasizes the fact that, from a mutual information point of view, the 1/3 BandLPF channel is no worse than the other channels studied.Figures 6.6{6.10 each plot the BER performance of all three codes on one of the�ve channels. The channels are examined in the following order in these �gures:AWGN, Notch, Ramp, 1/2 Band LPF, and 1/3 Band LPF.Figure 6.6 shows that for the AWGN channel the maximum ced and ecl codesperform almost identically, while the periodic metric code is 1 dB worse in perfor-mance than the other two at BER= 10�6.Figure 6.7 shows all three codes having similar performance on the Notch channel.For the Ramp channel in Figure 6.8, the maximum ecl and pecl codes performalmost identically, but the maximum ed code is more than 2 dB worse in performancethan the other two at BER= 10�6.With the 1/2 Band LPF channel, the periodic metric code has the best BERperformance. The maximum ecl code is 1 dB worse at BER= 10�6. The maximumced code doesn't achieve a BER below 0.1 for the entire SNR range simulated. Thisshows the limitations of ced as a metric for severely frequency selective channels.It is also consistent with Figure 5.20 on page 111. Figure 5.20 predicts a loss of atleast 15 dB when the 4-PSK constellation is used to send one bit per symbol on thischannel.Finally, the 1/3 Band LPF channel demonstrates the very robust performance ofthe code designed to maximize the periodic metrics. The periodic metric code has aBER of 10�6 with an equivalent AWGN SNR of less than 5 dB, while the other twocodes have a BER above 0.2 even at 9 dB of AWGN SNR.



Chapter 6. A Code Search Example 128

0 1 2 3 4 5 6 7 8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
IT

 E
R

R
O

R
 R

A
T

E

EQUIVALENT AWGN SNR [dB]

AWGN             
Notch            
Ramp             
1/2 Band LPF     
1/3 Band LPF     

Figure 6.3: BER vs. equivalent AWGN SNR on �ve MCMchannels for maximum ced code (Table 6.1 #1).
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Figure 6.4: BER vs. equivalent AWGN SNR on �ve MCMchannels for code optimizing ecl, cpd, and ced inthat order (Table 6.6 #1).
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Figure 6.5: BER vs. equivalent AWGN SNR on �ve MCM channelsfor code optimizing pecl and cppd (Table 6.9 #5).



Chapter 6. A Code Search Example 131

0 1 2 3 4 5 6 7 8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
IT

 E
R

R
O

R
 R

A
T

E

EQUIVALENT AWGN SNR [dB]

pecl, cppdced ecl, cpd, ced
Figure 6.6: BER vs. equivalent AWGN SNR on the AWGNchannel for all three codes.
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Figure 6.7: BER vs. equivalent AWGN SNR on the Notch channelfor all three codes.
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Figure 6.8: BER vs. equivalent AWGN SNR on the Ramp channelfor all three codes.
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Figure 6.9: BER vs. equivalent AWGN SNR on the 1/2 Band LPFchannel for all three codes.
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Figure 6.10: BER vs. equivalent AWGN SNR on the 1/3 BandLPF channel for all three codes.



Chapter 6. A Code Search Example 1366.5 SummaryThis chapter concludes �ve chapters of investigation into how a trellis code shouldbe designed for robust broadcast multicarrier modulation. The metrics presentedin Chapter 2 were applied to a speci�c transmission scenario where k = 1 bits aretransmitted per symbol and a complexity of � = 6 memory elements is tolerable. Thesearches used the superior-in-pro�le constellations identi�ed in Chapter 4 and werecompleted e�ciently by avoiding the distance equivalent codes identi�ed in Chapter 3.The prediction in Chapter 6 of poor performance by 4-PSK and 8-PSK on thelowpass �lter channels was con�rmed by the simulations in Section 6.4. However, theinformation-theoretic analysis of Chapter 6 could not have predicted that the metricsof ced and cpd actually decreased when the constellation size was increased beyondan optimal size.Section 6.4 clearly demonstrated the superiority of the periodic metrics in design-ing codes for severely frequency selective channels.



Chapter 7Achievable Rates forTomlinson-Harashima PrecodingThis chapter examines Tomlinson-Harashima precoding (THP) on discrete time chan-nels having intersymbol interference and additive white Gaussian noise. An exactexpression for the maximum achievable information rate of the zero-forcing (ZF)Tomlinson-Harashima precoder (THP) is derived as a function of the channel im-pulse response, the input power constraint, and the additive white Gaussian noisevariance. Information rate bounds are provided for the minimum mean square error(MMSE) THP. The performance of ZF-THP and MMSE-THP relative to each otherand to channel capacity is explored in general and for some example channels.Consider power-constrained additive white Gaussian noise (AWGN) communica-tion channels with intersymbol interference (ISI). One approach for transmission oversuch channels is to combine a coding scheme designed for ISI-free AWGN channelswith signal processing that makes the channel appear ISI-free. This processing mightbe a linear equalizer, a decision feedback equalizer (DFE), or some form of precod-ing. In each case, the processing can be optimized to satisfy a zero-forcing (ZF) or aminimum mean square error (MMSE) criterion.Any real application of the signal processing techniques discussed above eitherpreserves the channel capacity or introduces some loss in capacity. Invertible signalprocessing, such as a linear equalizer using an invertible �lter, will preserve the channelcapacity if used with appropriate channel coding and decoding techniques.137



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 138Decision feedback equalization also preserves capacity since the input to the deci-sion device can be processed to undo the decision feedback. The resulting signal canthen be �ltered by the inverse of the feedforward �lter, assuming that the feedforward�lter is invertible. In practice, the symbol-by-symbol decisions made at the output ofa linear equalizer or a decision feedback equalizer may preclude reliable transmissionat rates approaching capacity.For analysis purposes, the decisions in the feedback section of a DFE are assumedto be always correct. The structure resulting from this assumption, the ideal DFE, isnot invertible since the correct decisions are not available to undo the ideal decisionfeedback. In fact, the ideal DFE is a di�erent ISI channel with its own capacity thatcan be below [49], equal [50], or above [51] the original channel capacity, dependingon the choice of �lters and whether interleaving is employed. Note that the dataprocessing inequality does not apply to the ideal DFE because of the extra informationin the correct decisions.In practice, the decisions used in the feedback section of an actual DFE are notalways correct. Once an incorrect decision is made, its presence in the feedbacksection causes additional errors. This e�ect, known as error propagation [52], isignored by the ideal analysis discussed above. Error propagation is exacerbated whenDFE is combined with coded modulation techniques using dense constellations. Asthe constellation distances become smaller, symbol-by-symbol decisions become lessaccurate. Decisions are required by the DFE long before the redundancy in the codedmodulation can improve their accuracy.Precoding su�ers no e�ect analogous to error propagation, but provides errorvariances similar to those of the ideal DFE. It can be combined easily with codedmodulation schemes as in [53, 54, 55, 56, 57] and other papers. Tomlinson [58] andHarashima [59, 60] independently introduced the concept of precoding. The structurethat they presented will be referred to as the Tomlinson-Harashima Precoder (THP).There are other precoding structures [55, 56, 57], but this dissertation is concernedonly with quantifying the capacity loss introduced by THP.Price [61] and Harashima et al. [60] showed that ZF-THP achieves the maximumpossible mutual information at high SNR for pulse amplitude modulation (PAM) in-puts. Miyakawa et al. [59] computed the rates achievable with ZF-THP for a speci�c



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 139coaxial cable channel using high SNR approximations. Mazo and Salz [62] character-ized the power di�erence between the inputs and outputs of a THP transmitter andextended the ZF-THP from real-valued signals and �lters to complex-valued signalsand �lters. Cio� and Dudevoir [63] introduced the MMSE-THP and compared itsoutput SNR with that of the ZF-THP.Unlike linear equalization and DFE, THP employs nonlinear processing that isnot invertible. Thus some loss from channel capacity is expected in a communicationsystem employing THP. This dissertation quanti�es that loss from capacity for anygiven ISI channel and AWGN variance. An exact formula is derived for the ZF-THP information rate. Upper and lower bounds are provided for the MMSE-THPinformation rate. These information rate characterizations do not rely on high SNRapproximations; they are valid for any SNR.The loss from capacity at a particular SNR depends on the speci�c channel impulseresponse. Several impulse responses will be studied as examples. For channels withsevere ISI, the MMSE-THP can provide a signi�cant performance improvement overthe ZF-THP for low to mid-range SNR. When the SNR becomes su�ciently large,these two techniques become identical. At high SNR the only loss from capacityincurred by THP is the shaping loss described by Forney [64].In Section 7.1, Tomlinson-Harashima precoding will be reviewed. Section 7.2presents the information rate characterizations for ZF-THP and MMSE-THP. Initiallythe analysis is con�ned to real-valued inputs and impulse responses. However, thesection concludes by extending the results to the complex case. Section 7.3 appliesthe rate characterizations to �ve example impulse responses.7.1 Tomlinson-Harashima Precoding7.1.1 The Channel ModelIn this dissertation, impulse responses will be denoted by their formal D-transforms.For example, the channel impulse response fhkg will be referred to as H(D), whereH(D) =Pk hkDk. For an AWGN channel with ISI, the input sequence fxkg is �lteredby the channel H(D). White Gaussian noise nk is added to produce the channeloutput. The input sequence must obey an average power constraint 1N PNk=1E[x2k] �



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 140P , where N is the number of symbols in a codeword. In this dissertation, the inputsequence fxkg will usually be independent and identically distributed. In this case,the power constraint is simply E[x2k] � P .7.1.2 The Modulo Operator �tH(D) �t[�]ReceiverTransmitterxk+ + F (D) zknkChannel1� B(D)�t[�]wk vk
Figure 7.1: Communication system using Tomlinson-HarashimaPrecodingFigure 7.1 shows the general THP system. Here �t is a mapping from the realnumbers R to (�t=2; t=2] where t is a positive real number. Speci�cally,�t[vk] = xk = vk + ak (7.1)where ak is the unique integer multiple of t for which xk 2 (�t=2; t=2]. If wk is anindependent, identically distributed (i.i.d.) sequence with a uniform distribution on(�t=2; t=2], then xk will also be i.i.d. with a uniform distribution on (�t=2; t=2].This can be seen by considering the conditional distribution of xk in Figure 7.1 givenany particular value at the output of the �lter 1 � B(D). Since this conditionaldistribution is always uniform over (�t=2; t=2], the marginal distribution of xk willalso be uniform over (�t=2; t=2].For i.i.d. PAM wk, as the alphabet size increases E[x2] converges to t2=12, thesecond moment of a uniform distribution on (�t=2; t=2] [62]. In this dissertation t ischosen based on this large alphabet PAM approximation of E[x2]. Thus, to satisfythe power constraint, E[x2k] � P , with equality,t = p12P: (7.2)Smaller values of t than this choice give a lower achievable information rate. Larger



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 141values of t cause the power constraint to be violated by an i.i.d. PAM wk sequence.Thus, larger values of t would require wk to be carefully constructed to satisfy E[x2] �P .7.1.3 Selection of F (D) and B(D)The system in Figure 7.2 is equivalent to that shown in Figure 7.1. The sequenceak is a sequence of integer multiples of t chosen so that xk 2 (�t=2; t=2] for allk. The noise n̂k in Figure 2 is nk �ltered by F (D). B(D) and F (D) are linear timeinvariant �lters chosen to minimize either zero-forcing or minimum mean square erroroptimality criteria. Figure 7.2 will be useful in the information rate derivations thatfollow.
ykB(D) �t[�]xkwk zkH(D)F (D)� B(D)1B(D) wk + ak+ +̂nkak

Figure 7.2: Communication system equivalent to Figure 7.1.B(D) must be causal and monic (b0 = 1) so that the feedback �lter 1 � B(D)requires only previous values of xk. B(D) is closely related to the feedback �lter of aDFE. The �lter F (D) corresponds to the combination of the sampled matched �lterand feedforward �lter in a DFE.Choosing B(D) and F (D) to satisfy a zero-forcing criterion produces the schemeoriginally proposed by Tomlinson [58] and Harashima [60]. In the context of THP,zero-forcing implies forcing yk = 0 (see Figure 7.2) for all k. Spectral factoriza-tion techniques [65] satisfy this criterion by producing an allpass F (D) such thatH(D)F (D) is causal, monic, and minimum phase. B(D) is chosen to equalH(D)F (D).These are exactly the same values of B(D) and F (D) used in a zero-forcing DFE.The (unbiased) MMSE-THP [63] is obtained by choosing F (D) and B(D) tominimize var(n̂k + yk) under the constraints that B(D) and H(D)F (D) are monic.



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 142As with the ZF-THP, spectral factorization techniques provide the desired �lters,which are exactly the values of B(D) and F (D) used in an unbiased MMSE-DFE.Unlike the ZF-THP, H(D)F (D) need not be causal or minimum phase, and F (D)need not be allpass.7.1.4 THP and DFE Transfer FunctionsFollowing [55], it is interesting to compare the THP transfer function with ak = 0 inFigure 7.2 with the transfer function of the DFE shown in Figure 7.3.
+H(D) + F (D)nkChannel Decision1�B(D)zk ŵkwk

Figure 7.3: Communication System Using a Decision FeedbackEqualizerWith the ideal assumption that ŵk = wk, the DFE transfer function isZ(D)W (D) = H(D)F (D) + 1� B(D): (7.3)With ak = 0 in Figure 7.2 (and neglecting the receiver �t[�] operator) the transferfunction of the THP is Z(D)W (D) = H(D)F (D)B(D) : (7.4)As noted in [55], the zero-forcing choices of B(D) and F (D) make the two transferfunctions (7.3) and (7.4) identical; they both equal 1. However, this equivalence holdsonly for the zero-forcing case; the MMSE choices of B(D) and F (D) produce transferfunctions that are not identical.



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 1437.2 Information Rates for THPThis section characterizes the maximum information rates achievable by both ZF-THP and MMSE-THP. The notation used in this section is that shown in Figures 7.1and 7.2. For simplicity, initial analyses are con�ned to real xk and real coe�cients ofH(D). However, the section concludes with an extension to the complex case.7.2.1 Zero-ForcingAs discussed on page 141, the ZF-THP has F (D) and B(D) chosen so that yk = 0.Recall that n̂k is nk �ltered by F (D). Since F (D) is an allpass �lter, n̂k is white.While the original AWGN channel with ISI has memory, the overall ZF-THP systemis a memoryless channel with input w and output z given byz = �t[w + a+ n̂z]: (7.5)The index k will be suppressed as above when it is not needed for clarity. Furthermore,n̂z and n̂m will be used to denote explicitly the �ltered Gaussian noise produced bythe ZF and MMSE choices of F (D) respectively. The a term in (7.5) is an integermultiple of t and does not a�ect the output of �t[�]. Thusz = �t[w + n̂z]: (7.6)The ZF-THP memoryless channel has mutual informationI(w; z) = h(z)� h(zjw) (7.7)= h(�t[w + n̂z])� h(�t[n̂z]) (7.8)� log2(t)� h(�t[n̂z]) (7.9)where h(�) denotes di�erential entropy. The upper bound of (7.9) follows from themaximum di�erential entropy of a random variable with support constrained to aninterval. This bound can be achieved by choosing w to be i.i.d. uniform over theinterval (�t=2; t=2] giving CZF-THP = log2(t)� h(�t[n̂z]): (7.10)



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 1447.2.2 Minimum Mean Square ErrorAs discussed in the introduction, precoding and equalization in general seek to makethe channel ISI-free. However, the channel produced by the MMSE-THP still hasnonzero ISI since yk 6= 0. The MMSE choice of F (D) also produces a non-white n̂k.Consistent with the goal of producing an ISI-free channel, ideal interleaving will beassumed in the following analysis to produce a memoryless channel. Ideal interleavingindicates interleaving deep enough thatn̂i ? n̂j; yi ? yj; wi ? yj (7.11)when indices i and j are associated with the same codeword. The symbol ? is usedto indicate statistical independence. Ideal interleaving in this context is information-lossy since information contained by future and past values of z about the currentvalues of w and n̂ is neglected. Thus higher information rates would be possiblewithout interleaving.With interleaving, the inputs and outputs associated with any particular codewordbehave as those of a memoryless channel with peak limited input w and outputz = �t[w + a+ y + n̂m] (7.12)= �t[w + y + n̂m]: (7.13)The mutual information of this channel is given below.I(w; z) = h(z)� h(z j w) (7.14)= h(�t[w + y + n̂m])� h(�t[y + n̂m] j w): (7.15)An upper bound on the capacity of the channel produced by MMSE-THP withideal interleaving can be found from the following two inequalities:h(�t[w + y + n̂m]) � log2(t) (7.16)h(�t[y + n̂m] j w) � h(�t[y + n̂m] j w; y) (7.17)= h(�t[n̂m j w; y] (7.18)= h(�t[n̂m]): (7.19)



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 145For (7.19), note that n̂m is independent of (w; y). The above inequalities giveCmmse-thp � log2(t)� h(�t[n̂m]): (7.20)Note that the upper bound was obtained in part by neglecting the ISI term y. Thetightness of this bound depends largely on the variance of y.A lower bound on Cmmse-thp can be found by assigning w an i.i.d. uniform distri-bution on (�t=2; t=2]. For such a w, the output z is i.i.d. uniform on (�t=2; t=2]. Aswith x, this is seen by noting that all the relevent conditionals are uniforms. Thush(z) = log2(t): (7.21)Removing conditioning always increases entropy, soh(�t[y + n̂m] j w) � h(�t[y + n̂m]): (7.22)The region of support of �t[y+n̂m] is (�t=2; t=2]. Thus an upper bound on h(�t[y+n̂m]) is the maximum di�erential entropy for a distribution with region of support(�t=2; t=2] and variance equal to var(y + n̂m). A truncated Gaussian distribution[66] achieves this maximum di�erential entropy. Let T (�2; t) be a zero mean Gaussiantruncated to (�t=2; t=2] with variance (after truncation) of �2. Then,h(�t[y + n̂m]) � h(T (�2; t)): (7.23)Combining (7.21) and (7.23) produces the desired lower bound on Cmmse-thp,Cmmse-thp � log2(t)� h(T (�2; t)): (7.24)Following [66], h(T (�2; t)) (in bits) is computed as follows:h(T (�2; t)) = 12 log2(2�2e) + log2(2 erf(t=2))� t log2(e) exp(�t2=82)4p2� erf(t=2) :The variance 2 of the Gaussian before truncation can be found from �2 by solving



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 146the equation �2 = 2 � t exp(�t2=82)2 p2� erf(t=2) ; (7.25)where erf(t) = 1p2� Z t0 exp(�u2=2)du:Note that �t[y + n̂m] = �t[y + �t[n̂m]]: A truncated Gaussian with �2 = var(y +�t[n̂m)]) produces a slightly tighter bound, but requires the computation of var(�t[n̂m]).This tighter bound was used in the plots shown in Section 5.In situations where the receiver complexity is to be minimized, the feedforward�lter F (D) can be moved to the transmitter as discussed in [67]. In this case, n̂kis simply nk=s, where s is the real scalar for which sF (D) does not change thetransmitter power. The bounds derived above apply to this case directly, since thevariance of n̂k has not changed.7.2.3 Extension to Complex ValuesIn [62] the real-valued ZF-THP of Tomlinson and Harashima was extended to acomplex-valued ZF-THP suitable for QAM transmission. An analogous extensionfollows for the MMSE-THP. Figures 7.1 and 7.2 are valid block diagrams for thegeneral complex THP provided that �t is rede�ned to be the appropriate many toone mapping in the space of complex numbers. Let v be the complex number withreal part vr and imaginary part vi. Then�t[v] = v + a = x ; (7.26)where ar and ai are chosen so that xr and xi are in the interval (�t=2; t=2]. To avoidconfusion, a superscript will be used henceforth to denote the dimensionality of �t.For a complex v, �2t [v] = �1t [vr] + i�1t [vi]: (7.27)



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 147This mapping is the natural extension of the real-valued THP. Other mappings arepossible and may even be desirable [56, 57, 64], but they will not be discussed here.Let the input power constraint be E[jxj2] � 2P . The following bounds for thecomplex case result from arguments that parallel the arguments presented above forthe real case. CZF-THP = 2 log2(t)� h(�2t [n̂z]) (7.28)Cmmse-thp � 2 log2(t)� h(�2t [n̂m]) (7.29)Cmmse-thp � 2 log2(t)� h(T (�2r; t))� h(T (�2i ; t)) (7.30)= 2 log2(t)� 2h(T (�2r; t)) (7.31)In (7.30) and (7.31), �2r = var(yr+�1t [n̂m,r]) and �2i = var(yi+�1t [n̂m,i]). Similar tothe real case, the lower bound on Cmmse-thp assumes thatwr and wi are are independentof each other and that both are uniform on (�t=2; t=2]. As a result, �2r = �2i .7.3 Performance ComparisonsIn this section, the rate characterizations derived in the previous section are usedto examine how much loss from channel capacity is experienced by THP. The wellknown \shaping loss" is demonstrated to be the only loss experienced by THP athigh SNR. Information rates achieved by MMSE-THP and ZF-THP are comparedwith each other and to capacity for AWGN with no ISI. THP information rates areexplored for three di�erent ISI channel examples. Finally, a downsampled version ofthe third ISI channel is examined to show that lower symbol rates can improve THPperformance at low SNR.7.3.1 Shaping LossThe relationships between the original channel capacity, the capacity using MMSE-THP, and the capacity using ZF-THP generally depend on the ISI. However, regard-less of the particular ISI, the achievable information rates of both the MMSE-THPand ZF-THP structures converge in the limit of high SNR to 0.255 bits (the shaping



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 148loss) less than the maximum achievable information rate for an i.i.d. input sequence.In the limit of high SNR, it is well known that the �lters B(D) and F (D) usedin the ZF-DFE are exactly those used in the MMSE-DFE. Since the �lters used in aDFE are the same as those used in the corresponding THP, the ZF-THP and MMSE-THP structures become identical in the limit of high SNR. This behavior is evidentin the bounds presented previously since the upper and lower bounds on Cmmse-thpconverge to CZF-THP in the limit of high SNR. In the limit of high SNR, all threeexpressions, (7.10), (7.20), and (7.24) converge tolog2(t)� 12 log2(2�eE[n̂2]): (7.32)From [50] the maximum information rate achievable on a real AWGN channelwith ISI using an i.i.d. input sequence can be expressed as12 log2(1 + SNRmmse-u); (7.33)with SNRmmse-u = t2=12E[n̂2] + E[y2] ; (7.34)where n̂ and y are those occurring in the MMSE-THP. Subtracting (7.32) from (7.33)yields 12 log2 �e6 = 0:255 bits;plus terms that go to zero for high SNR.Thus at high SNR the di�erence between the THP information rate and themaximum achievable rate using an i.i.d. input sequence is exactly the well knownshaping loss of 0.255 bits (1.53 dB of SNR loss on an AWGN channel). Forney [64]identi�ed this loss as being a result of the peak limitation introduced by precoding.The above derivation demonstrates that this is the only loss introduced by Tomlinson-Harashima precoding at high SNR.
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Figure 7.4: Information Rates on the AWGN Channel7.3.2 THP on the AWGN ChannelFigure 7.4 shows information rate curves of interest for the AWGN channel withno ISI. For this channel, the ZF-THP and MMSE-THP are exactly the same withB(D) = F (D) = 1. The capacity for the channel produced by this structure isCthp = log2(t)� h(�t[n]): (7.35)The well known AWGN channel capacity is the same as the mutual information foran i.i.d. Gaussian xk. It is C = 12 log2�1 + t212E[n2]� ; (7.36)where t2=12 is the average transmitter energy. The solid line plotted in Figure 7.4 is



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 150the mutual information for xk that is i.i.d. with a uniform distribution on the modulointerval (�t=2; t=2], which isIiid-uniform = h(x + n)� 12 log2(2�eE[n̂2]): (7.37)Using THP with w i.i.d. uniform over modulo interval produces x with a uniformdistribution over the modulo interval. Thus (7.37) is a lower bound on the capacityof the THP structure without the receiver modulo operation for the AWGN channel.Note that the iid-uniform mutual information converges to the original channelcapacity at low SNR. This indicates that the receiver modulo operation is responsiblefor all of the loss from capacity at low SNR for the AWGN channel. At high SNRthis behavior is reversed. As shown in the previous subsection, all of the loss fromchannel capacity at high SNR can be explained by the peak constraint imposed bythe transmitter modulo operation.7.3.3 Example Channels with ISIThree ISI channels are used in the following study of THP performance: the Two-Tap channel, the Ramp channel, and the Step channel. The impulse and frequencyresponses of these channels are shown in Figures 7.5 and 7.6 respectively. All threeimpulse responses shown are minimum phase. Thus the ZF-THP will cancel all thetaps except the �rst. These cancelled taps can be viewed as an opportunity for theMMSE-THP to improve upon the ZF-THP performance.Figures 7.7{7.9 show THP performance as a function of input SNR for the threeimpulse responses. For each of these channels the ZF-THP capacity is plotted aswell as the upper and lower bounds on the MMSE-THP capacity. These informationrates are compared with curves showing the original channel capacity and the mutualinformation for an i.i.d. Gaussian xk with E[x2] = t2=12. The iid-gaussian curveis displayed to indicate the loss due to the fact that the THP transmitter producesapproximately i.i.d. inputs.Capacity was approximated by discrete water�lling using an 8192-point FFT.The THP information rates required the di�erential entropy and the variance of themodulo of a Gaussian random variable. These values were computed by numericalintegration using Mathematica. The variances of n̂ + y and n̂ were computed using
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Figure 7.8: Information Rates on the Ramp Channel.
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Figure 7.9: Information Rates on the Step Channel.standard spectral factorization and partial fractions techniques [65, 63, 50, 45]. Thevariance of y was then computed as the di�erence of these two variances.At low SNR, the MMSE-THP outperforms the ZF-THP for all three ISI channelsstudied here. The MMSE-THP may not strictly dominate the ZF-THP. This is unlikethe DFE, where ideal MMSE-DFE performance strictly dominates ideal ZF-DFEperformance. However, it does follow from a comparison of CZF-THP to the lowerbound on Cmmse-thp that the ZF-THP capacity can be only negligibly higher (0.08bits) than the MMSE-THP capacity. By virtue of the MMSE cost function,var(n̂m + ym) � var(n̂z): (7.38)Thus �2 in (7.24) is always less than or equal to the variance of n̂z in (7.10). Maximiz-ing the di�erence between (7.24) and (7.10) with the error variances set equal provides



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 156the H(D) independent bound of 0.08 bits. For t=� > 2 the di�erence between (7.24)and (7.10) is negligible.As the ISI becomes more severe, the performance gap between MMSE-THP andZF-THP at low SNR becomes more pronounced. Also, the MMSE upper boundbecomes less tight because the neglected y term becomes more signi�cant. Thisupper bound behavior is quite evident in Figure 7.9.7.3.4 Symbol Rate OptimizationFor any �xed symbol rate, performance can be improved by adding a transmitter �lterthat maintains the power constraint but shapes the transmitter power spectrum tobe optimal [50, 63]. The information rates derived in Section 3 apply to the resultingsystem simply by replacing H(D) with the cascade of the transmit optimization �lterand H(D).The symbol rate should also be optimized. Certainly this requires that the symbolrate be high enough to use the available bandwidth. However, in the context of THP,the symbol rate can be too high. As an example, consider the Step channel with asymbol rate half as high as considered previously. The e�ective impulse response wasobtained by lowpass �ltering and downsampling the original Step channel impulseresponse. Figure 7.10 shows this impulse response (converted to minimum phase)and the corresponding frequency response.
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Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 158Figures 7.11, 7.12, 7.13, 7.14 compare the original Step channel with the channelproduced by halving the symbol rate. To allow a fair comparison of information rateper unit time, the downsampled Step channel rate values were divided by 2. For afair comparison of energy use per unit time, the SNR values for the downsampledStep channel were decreased by 3 dB. Thus information rate and transmitter powerare normalized to be per symbol at the original symbol rate.Figure 7.11 shows that the discrete time channel produced by the lower symbolrate has a higher i.i.d. Gaussian input information rate than the original Step channelat low SNR. For low SNR, the i.i.d. Gaussian input is closer to the optimal water�llingspectrum with the lower symbol rate than with the original symbol rate. For largeSNR values, the original symbol rate provides much better performance than thelower symbol rate.Figure 7.12 demonstrates that for a large region of low SNR, the lower symbolrate provides a dramatic improvement in the ZF-THP information rate. Most of thisperformance improvement is due to the milder ISI produced by the lower symbolrate rather than a more optimal transmit spectrum. When the SNR becomes largeenough, the original symbol rate again provides higher information rates.Figure 7.13 compares the MMSE-THP bounds for the two channels. At low SNRthe lower symbol rate provides some improvement, but this improvement is not assubstantial as in the ZF-THP case. Note that the MMSE-THP upper bound is tighterfor the channel produced by the lower symbol rate due to a smaller residual ISI term.Figure 7.14 shows all of the curves in the previous three �gures. This �guresummarizes the low SNR advantages of the lower symbol rate. Note that the gapbetween MMSE-THP and ZF-THP performance is much smaller for the lower symbolrate.
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Figure 7.12: ZF-THP information rates for Step channel withoriginal and halved symbol rates. Information rateand transmitter power are normalized to be persymbol at the original symbol rate.



Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 161

−40 −20 0 20 40
0

1

2

3

4

5

6

7

Input SNR

B
its

Step Channel MMSE−THP Bounds     
Downsampled MMSE−THP Bounds      
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Chapter 7. Achievable Rates for Tomlinson-Harashima Precoding 1637.4 SummaryThe maximum achievable information rate of the zero-forcing THP was derived as afunction of the channel impulse response, the input power constraint, and the AWGNvariance. Bounds were provided for the minimum mean square error (MMSE) THP.The tightness of the upper bound depends on the variance of the residual ISI term.Regardless of the ISI for a particular channel, the performance of both the MMSE-THP and the ZF-THP become identical at high SNR. Both structures su�er exactlythe shaping loss of 0.255 bits or 1.53 dB due to the peak constraint at the transmitter.At high SNR there is no additional loss due to the many-to-one mapping by thereceiver modulo operation. For the AWGN channel at low SNR, the situation isreversed; the loss from capacity is due entirely to the receiver modulo with no lossdue to the peak constraint.At low SNR, there is a performance di�erence between the MMSE-THP and theZF-THP for channels with ISI. In general the MMSE-THP performs better than theZF-THP, and the performance gap becomes more pronounced as ISI becomes moresevere. In some cases of severe ISI a lower symbol rate (perhaps used with a di�erentcarrier frequency) can improve the achievable rate of THP and decrease the gapbetween MMSE-THP and ZF-THP performance.



Chapter 8Conclusion
8.1 Thesis SummaryChapters 2{6 present a trellis code design strategy for channels with correlated fading.Chapter 7 characterize achievable rates for Tomlinson-Harashima precoding.Chapter 2 began the investigation of trellis code design with a discussion of thedesign metrics used to select codes for various channel environments. This chapterintroduced periodic e�ective code length and code periodic product distance as metricsfor selecting a trellis code for channels with correlated fading.Chapter 3 formally introduced trellis codes and their principal building block,convolutional codes. A method was presented for identifying trellis codes that areequivalent in the metrics of Chapter 2. This method reduces search complexity sig-ni�cantly since metrics are then computed for only one in a set of equivalent codes.Chapter 4 investigated how a constellation should be labeled to obtain the largestvalues of the metrics of Chapter 2. A labeling strategy was introduced: that ofmaximizing the edge length pro�le of the labeled constellation. The edge lengthpro�le was demonstrated to be a better indicator of performance than whether theconstellation is Ungerboeck labeled or Gray coded or neither. Some Ungerboeck andGray labelings maximize the edge length pro�le, but others do not.Chapter 5 applied Ungerboeck's mutual information comparison technique to sin-gle carrier transmissions with Rayleigh fading and broadcast multicarrier transmis-sions with frequency selective fading. Two bits of redundancy are su�cient for un-correlated Rayleigh fading. The number of bits of redundancy useful for broadcast164



Chapter 8. Conclusion 165multicarrier transmissions depends on how high the subchannel SNRs can be.Chapter 6 brought together the ideas of Chapters 2{5 to design three trellis codesbased on the three sets of metrics introduced in Chapter 2. These three trellis codeswere simulated in a multicarrier modulation system over �ve channels. The codedesigned with the new metrics of periodic e�ective code length and code periodicproduct distance performed well even on a severely frequency selective channel onwhich the codes designed according to the other metrics failed completely.Chapter 7 presented an achievable rate characterization for Tomlinson-Harashimaprecoding. An exact expression was derived for the zero-forcing THP. Upper andlower bounds were provided for the minimum mean square error THP. The achievablerates for the zero-forcing and minimum mean square error formulations of THP werecompared to each other and to channel capacity for some example channels. Theimportance of correctly choosing the symbol rate was demonstrated. Correct symbolrate selection was shown to be especially important for the zero-forcing THP.8.2 Future WorkThe new code design strategy outlined in Chapters 2{5 was used in Chapter 6 todesign one code, a rate-1/4, 16-QAM trellis code with six memory elements. Onedirection for future work is the design of codes at other rates and complexity levels.Of particular interest are codes that transmit two or three bits per symbol ratherthan one. Such codes requires larger constellations such as 32-QAM and 64-QAM.Chapter 6 simulated the newly designed code for multicarrier modulation overchannels that were not changing over time. It would also be interesting to simu-late performance for correlated Rayleigh fading channels and for frequency hoppedtransmissions with strong interference on certain hops.The achievable rate analysis for THP raises the question of whether a similaranalysis might be possible for the combined coding and precoding method of Laroia[57]. However, because the Laroia approach combines coding and precoding, simplycomputing a mutual information is not appropriate for this case.



Appendix AFormal De�nitionsDe�nition 1 The (normalized) squared Euclidean distance ed2 of the error sequenceb! b̂ is ed2 = kx� x̂k22Ex (A.1)De�nition 2 The code Euclidean distance ced of a code is the smallest ed of anerror sequence b! b̂ associated with that code.De�nition 3 The number of Euclidean nearest neighbors Nced is the number of se-quences x̂ that are ced away from a transmitted sequence x.De�nition 4 The e�ective length el of the error sequence b ! b̂ is the cardinalityof the set fijxi � x̂i 6= 0g.De�nition 5 The e�ective code length ecl of a code is the smallest el associatedwith that code.De�nition 6 The product distance pd of the error sequence b! b̂ is de�ned to bepd =Yi2A kxi � x̂ik22Ex where A = fi j xi 6= x̂ig: (A.2)De�nition 7 The code product distance of order i of a code, cpdi, is the smallestproduct distance of an error sequence having el= i associated with that code.166



Appendix A. Formal De�nitions 167De�nition 8 The periodic e�ective length pel of an error sequence is the number ofnonzero elements of the periodic distance vector.De�nition 9 The periodic e�ective code length pecl of a code is the smallest pelfor an error sequence associated with that code.De�nition 10 The periodic product distance ppd of an error sequence is the productof the nonzero elements of the periodic distance vector.De�nition 11 The code periodic product distance of order i of a code, cppdi, is thesmallest ppd of an error sequence with pel= i.De�nition 12 A rate k=n convolutional encoder is a time invariant �nite state ma-chine with k-bit inputs and n-bit outputs.De�nition 13 For a speci�ed labeled constellation, d2min(E) is the smallest squaredEuclidean distance of an edge with label E.De�nition 14 For a speci�ed labeled constellation and error sequence E(D),d2i (E(D)) , d2min(Ei) (A.3)De�nition 15 Two codes are strictly equivalent if they have the same mapping ofinput sequences to output sequences.De�nition 16 Two codes are range equivalent if they have the same set of possibleoutput sequences.De�nition 17 Two trellis codes are distance equivalent if they have the same set ofdistance sequences fd2i (E(D))g.De�nition 18 Trellis code T1 is distance superior to trellis code T2 if the distancessequences of T1 can be paired (one to one) with those of T2 such that each term inevery distance sequence of T1 is greater than or equal to the corresponding term inthe paired sequence of T2. There must be at least one strict inequality, otherwise thetrellis codes are distance equivalent.



Appendix A. Formal De�nitions 168De�nition 19 The mapping F implements a change of basis from fv1; : : : ;vng tofv̂1; : : : ; v̂ng if for any s 2 S and any subset A of f1; 2; : : : ; ng:F (s) =Xi2A v̂i when s =Xi2A vi: (A.4)De�nition 20 Two labeled constellations C1 and C2 are strictly, range, or distanceequivalent if for any trellis code that uses labeled constellation C1 there is respectivelya strictly, range, or distance equivalent trellis code that uses labeled constellation C2.De�nition 21 C1 is distance superior to C2 (or C2 is distance inferior to C1) if forevery trellis code T2 designed using C2 there is a distance superior (see De�nition 18)trellis code T1 de�ned using C1.De�nition 22 The edge length pro�le fpig of a labeled constellation is de�ned to bethe list of d2min(E) values for all nonzero edge labels E listed in increasing order.De�nition 23 C is superior in pro�le to Ĉ if p(1)i � p(2)i for i = 1; : : : ; jC1j with atleast one strict inequality.De�nition 24 A path's edge label sum is the sum of the edge labels in that path.De�nition 25 A labeled constellation is Gray coded if and only if all nearest neigh-bors di�er by exactly one bit.De�nition 26 A 2n-point constellation is called Ungerboeck labeled if for every m 2f1; : : : ; ng the minimum distance of two points sharing the same m least signi�cantbits is as large as possible.De�nition 27 The coset labels of a constellation are an isometric labeling if andonly if for any selected coset label v, exclusive-oring all the coset labels with v hasthe same e�ect as applying a geometric isometry (some combination of translations,rotations, and reections) to the constellation.De�nition 28 A rate-1/4, � = 6, 16-QAM trellis code with pecl = 7 is dominatedif there exists another rate-1/4, � = 6, 16-QAM trellis code with pecl = 7 that haslarger values of both cppd7 and cppd8. (An undominated code is Pareto optimal.)
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