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This dissertation consists of three parts. The first part focuses on a class of modern chan-

nel codes known as protograph-based low-density parity-check (LDPC) codes. Also known

as protograph LDPC codes, these powerful error-correcting codes have enabled communica-

tion systems of the past fifteen years to achieve very high throughputs. The first part of the

dissertation presents a new design method based on an upper bound on minimum distance to

obtain rate-compatible, protograph quasi-cyclic (QC) LDPC codes called Protograph-based

Raptor-like LDPC codes (PBRL codes). A major contribution here is a very-low-complexity

PBRL design algorithm that is provably efficient.

The second part of the dissertation continues the focus on protograph LDPC codes,

first exploring how the decoding complexity of PBRL codes can be reduced and whether

the extending structure that provides rate-compatibility to a PBRL code is optimal or not.

Then, this part considers the problem of design of PBRL codes for any increment ordering.

The degree-1 extending structure yields naturally to the design of PBRL codes that decode

efficiently even when increments arrive out-of-order. This part finally considers the following

question: What is the shortest block-length required to obtain a protograph QC-LDPC code

with a girth of at least 6 or 8 from a (3, L) complete protograph? An affirmative answer is

given for girth of at least 6 and directions are explored for girth of at least 8.

ii



Finally, the dissertation turns to communication theory and tackles a rate allocation

problem previously studied in literature, but with an important twist. Consider a cross-

layer coding scheme with packet-level erasure coding and physical-layer channel coding. It

is known from previous work that some erasure coding is necessary even in the limit of large

physical-layer codeword block-lengths if the physical-layer fading channel does not provide

diversity that grows with block-length. However, is erasure coding still required in the limit

of large block-lengths if the physical layer allows for diversity to grow with block-length?

The theoretical answer turns out to be a resounding “no” in the case of Rayleigh fading that

allows diversity to increase linearly with block-length.
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CHAPTER 1

Quasi-Cyclic Protograph-Based Raptor-Like LDPC

Codes for Short Block-Lengths

Protograph-based Raptor-like low-density parity-check codes (PBRL codes) [CVDW15] are

a family of easily encodable rate-compatible LDPC codes. PBRL codes have an excellent

performance across all design rates. Quasi-cyclic (QC) [Bla03] PBRL code families permit

high-speed decoder implementations. PBRL codes designed thus far, for both long and

short block-lengths, have been based on optimizing the iterative decoding threshold of the

protograph of the PBRL family at various design rates.

This chapter1 introduces a design method to obtain better QC PBRL code families at

short block-lengths (of a few hundred bits) for low frame error rate (FER) requirements.

We first select a protomatrix for the highest design rate. To add a new row to lower the

rate, we keep all the previously obtained rows of the PBRL protomatrix fixed and select the

new row that maximizes an upper bound on the minimum distance of any QC-LDPC code

that can be obtained from the protomatrix. The new QC PBRL code families outperform

the original PBRL codes at short block-lengths by providing a significantly better low-FER

performance.

The chapter uses the new design method to produce new short block-length PBRL codes

designed for parameters in the 5G wireless standard. The new codes perform significantly
1Parts of this chapter were presented at the 2017 IEEE International Symposium on Information Theory

(ISIT) [RDW17]. Almost all of the material in this chapter has been submitted as a journal paper (under
revision) to IEEE Transactions on Information Theory [RDW18].
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better in the low-FER regime than the proposed PBRL codes in the 5G wireless standard.

1.1 Introduction

Rate-compatible (RC) channel codes are at the core of systems with incremental redundancy

(IR). IR at the physical layer of a system allows efficient transmission over a time-varying

channel. RC codes operate in phases: First, the transmitter of the system sends the highest-

rate codeword of a certain size over the channel. If the receiver is unable to decode the

received noisy codeword, the transmitter then sends additional codeword symbols to the

receiver to allow the receiver attempt another decoding round, but now with a longer received

codeword. The process continues until either a maximum number of transmissions have been

attempted or the decoder succeeds in decoding the received codeword.

RC channel codes that use soft decisions at the receiver were first introduced by Hage-

nauer in [Hag88]. Here, the author proposed using a punctured convolutional code (See Cain

et al. [CCG79].) as the highest-rate code, with the transmitter sending symbols that are

initially punctured as IR. These codes are called RC punctured convolutional (RCPC) codes.

More recently, RC punctured turbo (RCPT) codes, introduced by Narayanan and Stüber in

[NS97], have been demonstrated to have excellent throughput performances. RCPC codes

and RCPT codes are schemes that are both based on punctured convolutional codes.

This chapter focuses on RC codes based on low-density parity-check (LDPC) codes, which

were introduced by Gallager in [Gal63]. Optimized LDPC code ensembles have iterative

decoding thresholds very close to channel capacity over various discrete memoryless channels

(See Richardson and Urbanke [RU01] and [RU08].) As demonstrated by Richardson et al. in

[RSU01], despite possessing a sub-optimal iterative decoder, irregular LDPC codes designed

according to optimized degree distributions of the underlying Tanner graph [Tan81] have

frame error rate (FER) performances very close to capacity at sufficiently long block-lengths.

Their excellent performance comes at a cost, though, as decoders of unstructured LDPC

codes have a high implementation complexity. Therefore, LDPC codes with some structure
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in their parity-check matrix are generally preferred in practice.

Protograph-based LDPC codes are one class of structured LDPC codes. A protograph is

a small Tanner graph that can be used to obtain LDPC codes of various block-lengths with

the same structural connections as the protograph. First described by Thorpe in [Tho03],

LDPC codes based on protographs are amenable to tractable analysis and design procedures.

It is possible to obtain the iterative decoding threshold of a protograph LDPC code ensemble

using only the protograph, as shown by Divsalar et al. [DDJA09], Liva and Chiani [LC07],

and others. The ensemble weight enumerators of a protograph can also be obtained, as

shown by Abu-Surra et al. [ASDR11] and others.

Protograph-based quasi-cyclic LDPC (QC-LDPC) codes [Fos04], a class of protograph

codes, have parity-check matrices composed of circulant permutation matrices (CPMs) and

permit very-low-complexity decoder implementations [DDJA09]. The presence of CPMs in

protograph QC-LDPC codes facilitates analysis relating the connections in the protograph

to the girth and minimum distance of the corresponding code. Fossorier [Fos04], Karimi and

Banihashemi [KB13], and others analyze the girth of a protograph QC-LDPC code by exam-

ining the protograph. More pertinent to this chapter are [SV12] and [BS13]. Smarandache

and Vontobel [SV12] derive an upper bound on the minimum distance of any QC-LDPC

code that can be obtained from a protograph. Butler and Siegel [BS13] extend the results

of [SV12] to QC-LDPC codes based on punctured protographs.

1.1.1 Rate-Compatible LDPC (RC-LDPC) Codes: Prior Work

Rate-compatible LDPC (RC-LDPC) codes are generally designed via one of the two fol-

lowing approaches. The first approach constructs the lowest-rate code and then punctures

symbols to obtain corresponding codes of higher rates. The second approach, called extend-

ing, constructs the highest-rate code and then constructs additional symbol as combinations

of existing symbols to obtain the lower-rate codes.

Some notable works that start with a low-rate code and use the puncturing approach
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include [HKM04, HKKM06, KRM09, EKHB09, VF09]. Although these works construct

RC-LDPC code families with good performance, Yazdani and Banihashemi [YB04] have

observed that finite-length RC-LDPC code families obtained solely using puncturing a low-

rate code do not perform competitively at relatively high rates. Further, compared with

the objectives of our chapter to design practical codes with high-throughput decoders, Ha

et al. [HKM04], Ha et al. [HKKM06], Kim et al. [KRM09], and Vellambi and Fekri [VF09]

do not explicitly design structured RC-LDPC code families with high-throughput decoders.

El-Khamy et al. [EKHB09] construct codes based on protographs, but they start with a

low-rate code and use puncturing.

This chapter constructs RC code families using the extending method. Works that have

explored this approach previously include [YB04, Dol05, NND12, NN13, CVDW15]. Yazdani

and Banihashemi [YB04] show that a combination of both extending and puncturing can

improve over puncturing approaches. Dolinar [Dol05], Nguyen et al. [NND12], Nguyen and

Nosratinia [NN13], and Chen, Vakilinia et al. [CVDW15] all construct QC protograph-based

RC-LDPC code families.

This chapter builds upon the work of Chen, Vakilinia et al. in [CVDW15]. In [CVDW15],

the authors introduce protograph-based Raptor-like LDPC codes (PBRL codes). PBRL code

families are a class of easily encodable RC-LDPC codes. If constructed using circulants, QC

PBRL codes also lead to high-throughput decoder implementations. PBRL code families

of [CVDW15], despite possessing a simple structure, have an excellent iterative decoding

threshold and performance across all design rates. In [CVDW15], the authors design PBRL

protographs for long and short block-lengths by optimizing the iterative decoding thresh-

old of the protograph at each successively lower rate. They show that PBRL QC-LDPC

code families can outperform other QC RC-LDPC codes in the literature (including the

ones of [NND12] and [NN13]), both at short (≈ 1000 information bits) and long (≈ 16000

information bits) block-lengths.
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1.1.2 Contributions

This chapter considers the design of structured, i.e. quasi-cyclic, RC-LDPC codes for very

short block-lengths (fewer than 500 information bits) and for low FER requirements. The

previous literature mentioned in Section 1.1.1 use iterative decoding threshold as the design

metric in their RC-LDPC code design. While the iterative decoding threshold is an effective

design metric for predicting the waterfall performance at long block-lengths [RU01], it is

not a good indicator of short block-length performance or performance generally at low

FERs. In particular, a good threshold does not preclude low-weight codewords, stopping sets

[DPT+02, TJVW04], trapping sets [Ric03], and absorbing sets [ZDN+06], which can lead to

poor waterfall performance for short block-length codes and high error floors generally. This

chapter proposes the use of an upper bound on the minimum distance as a potential metric

for short block-length RC-LDPC code design.

Consider how an upper bound on minimum distance dmin relates to the size of the smallest

codewords, stopping sets, trapping sets, and absorbing sets. An upper bound on dmin is

an upper bound on the size (weight) of the smallest weight codeword for any linear code

including LDPC codes. Consider the graph induced by the variable nodes corresponding to

a codeword, which we refer to as the graph induced by the codeword. An upper bound on

dmin is also an upper bound on the size of the smallest stopping set because the variable

nodes of the graph induced by any codeword form a stopping set [TJVW04].

An (a, b) trapping set is a set of a variable nodes with b ≥ 0 odd-degree check nodes in

the sub-graph induced by the a variable nodes. Note that the induced graph of a weight-

dmin codeword has zero odd-degree check nodes and is therefore a trivial trapping set with

a = dmin and b = 0. Removing a single variable node and its edges from the induced graph

of the codeword generates a trapping set with a = dmin − 1 and b equal to the degree of the

removed variable node. Thus for each variable node v with degree dv present in the graph

induced by the smallest-weight codeword, there exists an a = dmin − 1, b = dv trapping set
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so that dmin − 1 is an upper bound on the minimum size of b = dv trapping sets. Thus, the

dmin of the code provides an upper bound on the size of numerous trapping sets, and when

dmin is small, these will affect the error floor performance.

An (a, b) absorbing set is an (a, b) trapping set where each variable node has strictly more

even degree check nodes than odd degree check nodes as neighbors in the induced sub-graph.

Similar to trapping sets, codewords are trivial absorbing sets and removing any degree-dv

variable node from the induced graph of the codeword generates a trapping set that is also

an absorbing set whenever dv is less than half the number of check nodes in the induced

graph of the codeword.

As discussed above, the variable nodes of the graph induced by any codeword form a

trivial stopping set, trapping set, and absorbing set. Thus dmin is an upper bound on the

size of the smallest of each of these sets. Moreover, we have shown how nontrivial trapping

sets and absorbing sets of size dmin − 1 are natural consequences of the minimum-weight

codeword.

Still, there are limitations to the analysis above. Indeed, dmin − 1 may not be an upper

bound on the size a of a trapping set or absorbing set with a other values of b. Furthermore,

maximizing an upper bound on a quantity does not guarantee maximizing the quantity

itself. However, we conjecture and support with results that show that selecting the rows of

a PBRL incremental redundancy matrix to maximize an upper bound on dmin leads to a low-

complexity design procedure that produces short block-length PBRL codes with better low-

FER performance than existing design techniques of Section 1.1.1, which make no attempt

at all to directly address low-FER performance of short block-length LDPC codes.

Our contributions are as follows:

Permanent-Bound-Based Design Method

One contribution of this chapter is a new PBRL design approach. Given a set of design

rates, we design protographs for PBRL ensembles by maximizing, at each rate, the upper
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bounds on the minimum distance that were derived in [SV12] and [BS13]. The resulting

PBRL QC-LDPC code families outperform the ones designed by optimizing the iterative

decoding threshold by providing a better low-FER performance slope at each design rate.

The new approach has the advantage that it is oblivious to the channel that the RC code is

to be deployed, which is not the case with the method of optimizing the iterative decoding

threshold.

We note that the upper bounds derived in [SV12] and [BS13] have been used previously,

for example, by Mitchell et al. [MSC14] to design QC-LDPC block codes based on small

protographs.

Reduction in Complexity of Computing the Upper Bounds for PBRL Protoma-

trices

The complexity of evaluating the upper bounds of [SV12] and [BS13], in general, increases

exponentially with the size of the overall protograph. A second contribution of this chapter

is to leverage the structure of PBRL protographs to identify a significant reduction in this

complexity. In particular, we show in Theorems 3, 4, and 5 and Lemma 3 that the structure

of a PBRL protomatrix, given a few conditions that are satisfied for most designs, facilitates

computation of the upper bounds with complexity that grows only linearly with the size of

the overall PBRL protomatrix when the size of the highest-rate code protomatrix is fixed.

Further, this reduction in complexity yields a very low-complexity PBRL search procedure

that has a constant run-time for each row added to lower the design rate. The constant

complexity is in contrast to the threshold-based optimization proposed in [CVDW15] where

the complexity of the PBRL search procedure grows with each new added row.

Equivalence Between the Design Method and an Integer Linear Program (ILP)

The results on complexity reduction lead to an equivalent way of representing the design of

a row of the PBRL protomatrix. We show that the exhaustive search for a new row that
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maximizes the upper bounds of [SV12] or [BS13] is equivalent to an integer linear program

(ILP).

1.1.3 Organization

The chapter is organized as follows: Section 1.2 introduces notation and background. Section

1.3 presents the permanent-bound-based PBRL design method. Section 1.4 shows that

the structure of a PBRL protomatrix allows for a significant reduction in the complexity

of computing the permanent-based upper bounds. Based on the results of Section 1.4,

Section 1.5 establishes the equivalence between the new design procedure for a row of a

PBRL protomatrix and an integer linear program (ILP). Section 1.6 provides example PBRL

protomatrices designed for short block-lengths according to the new design method. Section

1.7 presents the results obtained from simulations of the new QC PBRL code families and

compares the results against PBRL codes designed by optimizing the iterative decoding

threshold.

1.2 Preliminaries and Notation

1.2.1 LDPC Codes, Protographs, and PBRL Codes

LDPC Codes and Tanner Graphs

An LDPC code [Gal63] is a linear code [Bla03] with a sparse parity-check matrix. Associated

with any parity-check matrix is what is called the Tanner graph of the code. A Tanner graph

is a bipartite graph whose two sets of nodes represent the rows and columns, respectively, of

a parity-check matrix. The nodes representing the rows are called check nodes and the nodes

representing the columns are called variable nodes. Two nodes (a variable-check node pair)

are connected in a Tanner graph by an edge whenever the entry located at the corresponding

row/column is non-zero. The degree of a node in a Tanner graph is the number of edges
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emanating from the node. The girth of a graph is the length of the shortest cycle present in

the graph.

Protographs

A protograph [Tho03], or a projected graph, is a small bipartite Tanner graph with nc

check nodes and nv variable nodes forming the two node sets. The biadjacency matrix

of a protograph is called its protomatrix. In this chapter, we use the terms protograph and

protomatrix interchangeably. The protomatrix can contain entries that are greater than 1.

These entries correspond to multiple edges between the same variable-check node pair in the

protograph.

Protograph-Based LDPC Codes

Given a protograph, we define a two-step copy-and-permute process, also known as lifting,

to obtain an LDPC code as follows. The protograph is first replicated M times, yielding

M disconnected copies of the graph. Then, the connections to the check nodes of the set of

M edges (across the M replicas) obtained from an edge of a variable-check node pair in the

original protograph are permuted among the M copies of the corresponding variable-check

node pair. The same is performed independently for every set of M edges. The second step

of lifting connects the M copies of the protograph such that the resulting LDPC code has

the same degree distribution as the protograph. The resulting LDPC code has Mnc check

nodes and Mnv variable nodes; M is called the lifting factor.

Of the nv variable nodes in a protograph, some of the nodes can be designated to be

“punctured”. The number of such punctured nodes is denoted np and the remaining nt =

nv−np nodes are called “transmitted” nodes. The design rate of a protograph is R = nv−nc
nt

.

Upon lifting a protograph, all the nodes that are copied from a punctured variable node in

the protograph are punctured in the resulting graph and all the nodes that are copied from

a transmitted variable node in the protograph are transmitted in the resulting graph. The
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rate r of a protograph-based LDPC code obtained from a protograph with design rate R

satisfies r ≥ R. We call a protograph (protomatrix) a punctured protograph (punctured

protomatrix) if it contains punctured variable nodes and call it an unpunctured protograph

(unpunctured protomatrix) otherwise.

With the lifting factor being M , the set of all LDPC codes obtainable via all possible

edge permutations (in the second step of lifting) from a protograph is collectively called the

ensemble of a protograph.

A quasi-cyclic (QC) protograph LDPC code is obtained from a protograph by restricting

the permutations used during the lifting process to a sub-class known as circulants. Circulant

permutations lead to LDPC codes with parity-check matrices that have blocks of circulant

permutation matrices (CPMs) and zero matrices (if there are 0’s in the protomatrix) of size

M ×M .

PBRL Codes

A protograph-based Raptor-like (PBRL) ensemble is defined by its protomatrix P , which has

the following general form:

P =

PHRC 0

PIRC I


nc×nv

(1.1)

Here, 0 and I refer to the all-zeros and identity matrices of appropriate size. The highest-

rate code (HRC) of the rate-compatible protomatrix is represented by PHRC, which is of

size ncH × nvH . We refer to this sub-matrix as the “HRC part”. The variable nodes of the

protomatrix containing the identity matrix in (1.1) represent the incremental redundancy

symbols of P . We denote the sub-matrix of the incremental redundancy variable nodes by

PIR. The check nodes that connect to the degree-1 variable nodes in PIR have connections to

the variable nodes in the HRC part. These connections are represented by the sub-matrix

PIRC, which we refer to as the “IRC part”.
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Highest-rate code Incremental redundancy code

Figure 1.1: A PBRL protograph (no punctured nodes) with a highest-rate code of design
rate 2/3 and its incremental redundancy nodes from sub-matrix PIR. The sub-matrix PIR
lowers the design rate as its degree-1 variable nodes are included one at a time. The figure
is a reproduction of Fig. 1 of [CVDW15]. The protomatrix corresponding to this protograph
is given in (1.2).

The HRC part of the PBRL protograph, upon lifting, is structurally identical to the

precode part of a Raptor code of Shokrollahi [Sho06]. Similarly, the degree-1 variable nodes

of PIR are efficiently encoded as modulo-2 sums of the precode symbols in a manner similar

to the Luby transform (LT) code in a Raptor code.

Our convention throughout this dissertation is that the np punctured variable nodes of a

PBRL protomatrix are present in the first nvH columns of the PBRL protomatrix.

Example 1. Fig. 1.1 shows an example PBRL protograph, with black circles representing

variable nodes and squares with an XOR symbol representing check nodes. Rate-compatibility

starts with the highest-rate code. PIR lowers the design rate as its degree-1 variable nodes are
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included one at a time. The protomatrix corresponding to the protograph of Fig. 1.1 is

P =



1 1 2 1 2 1 0 0 0 0 0 0 0

2 2 1 2 1 2 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 0 1 0 0 1 0 0 0 0 0

0 1 0 0 1 1 0 0 1 0 0 0 0

1 0 0 1 0 1 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0 0

0 1 0 1 0 1 0 0 0 0 0 1 0

1 0 1 0 1 0 0 0 0 0 0 0 1



(1.2)

The HRC part has a design rate of 4/6 and the seven IR variable nodes lead to the lower

design rates of 4/(6 + i). We refer the reader to Section II of [CVDW15] for a more detailed

introduction to features of PBRL codes.

Other Notation and Assumptions

In this chapter, we denote the set of integers {1, 2, . . . , `} by [`]. The cardinality of a set S

is represented by |S|. The indexing of rows and columns of a matrix starts from 1. Given

a vector x, xi denotes the scalar value at position i ≥ 1 of x. If P is a protomatrix of size

nc × nv and S ⊆ [nv], denote by PS the sub-matrix of P formed by the columns indexed

by elements of S. For convenience, we always assume the columns of P that are indexed

by S to appear in PS in the same order that they appear in P . If i ∈ S, we let S \ i be

shorthand for S \ {i}. For a set of non-negative integers, let min∗ be a function that returns

the smallest non-zero value if the set has at least one positive value or return +∞ if the set

is {0}. In this chapter, all unpunctured protomatrices of size nc × nv are assumed to have

a positive design rate, i.e. nv > nc. Likewise, we assume that all punctured protomatrices

of size nc × nv with np punctured variable nodes have a positive design rate less than 1, i.e.
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nv > nc, nv − nc < nv − np. If P is a PBRL protomatrix of size nc × nv (punctured or

unpunctured) with an HRC part of size ncH × nvH , we assume that PHRC also has a positive

design rate less than 1. Therefore, for a punctured PBRL protomatrix np < ncH ≤ nc. For

simplicity, we call the permanent of a square matrix of size `× ` a “permanent of size `× `”.

1.2.2 Bounding dmin of Protograph QC-LDPC Codes

A key feature of QC-LDPC codes based on protomatrices is that the minimum distance of

any such code obtained from a protomatrix is upper bounded by a constant that depends

only on the protomatrix and not on the block-length of the code. In order to state the upper

bounds, which were derived in [SV12] and [BS13], we need to define the permanent of a

square matrix.

Definition 1 (Permanent). The permanent of an ` × ` square matrix A with elements

A(i, j), i ∈ [`], j ∈ [`] over some commutative ring is defined as

perm(A) =
∑
σ

∏̀
j=1

A(j, σ(j)) =
∑
σ

∏̀
j=1

A(σ(j), j), (1.3)

where σ refers to a permutation of [`] and the summation is over all permutations of [`]. The

permanent, although it looks deceptively similar to the determinant, is harder to compute than

the determinant [Von13]. While the arithmetic complexity of computing the determinant is

O (`3), the most efficient algorithm known to compute the permanent of any square matrix,

due to Ryser [Rys63], is of complexity Θ
(
` · 2`

)
.

Theorem 1 (Upper bound for unpunctured protomatrices; Theorem 8 of Smarandache and

Vontobel [SV12]). Let P be an unpunctured protomatrix of size nc×nv. Any QC-LDPC code

C obtained from the protomatrix P has a minimum distance dmin(C) that is upper bounded

as

dmin(C) ≤ min∗
S⊆[nv ],|S|=nc+1

∑
i∈S

perm
(
PS\i

)
. (1.4)
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Note that permanents computed from sub-matrices of a protomatrix are always non-negative.

Theorem 2 (Upper bound for punctured protomatrices; Theorem 9 of Butler and Siegel

[BS13]). Let P be a protomatrix of size nc × nv. Let the index set of punctured variable

nodes, a subset of [nv], be denoted P. Denote by C ′ any punctured QC-LDPC code that

can be obtained from P using P, and denote the unpunctured version of the code C ′ (with

protograph P ) by C. Then, provided that C and C ′ have the same dimensionality, i.e. the

same number of codewords in their codebooks, C ′ has a minimum distance dmin(C ′) that is

upper bounded as

dmin(C ′) ≤ min∗
S⊆[nv ],|S|=nc+1

∑
i∈S\P

perm
(
PS\i

)
. (1.5)

1.3 Permanent-Bound-Based PBRL Design

The design of a PBRL protomatrix, as proposed by Chen, Vakilinia et al. in [CVDW15],

consists of two steps: First, we choose the HRC part, PHRC, as a protomatrix by itself. Then,

we obtain the IRC part, PIRC, one row at a time. In [CVDW15], the authors first choose an

HRC part with a degree distribution and an acceptable iterative decoding threshold. They

then design each row of PIRC successively to optimize the iterative decoding threshold of the

PBRL protomatrix at the rate induced by adding that row, keeping all previously obtained

rows fixed. The best performing families of high-throughput RC-LDPC codes at both short

and long block-lengths are the PBRL codes as designed with the heuristics proposed by

Chen, Vakilinia et al. in [CVDW15].

While the work in [CVDW15] used iterative decoding threshold as the design metric

at both short and long block-lengths, it is well known in literature on LDPC codes that

threshold is not indicative of how a finite block-length code performs in the low-FER regime.

Further, at very short block-lengths the waterfall region of an LDPC code may not yield

low FERs such as 10−6. The authors in [CVDW15] proposed constraints on the connections
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in PIRC in their threshold-based designs to obtain a better slope in low-FER performance

at block-lengths such as 1000 information bits and longer, but their work does not address

even shorter block-lengths such as fewer than 500 information bits. In this chapter, we use

the upper bounds of Theorems 1 and 2, which are applicable for QC-LDPC codes based on

protographs, to design PBRL protomatrices for short block-length and practical RC-LDPC

codes for low FERs.

Minimum distance, by itself, does not fully predict the low-FER performance of LDPC

codes under iterative decoding. However, if one LDPC code has a better graphical structure

and minimum distance properties compared to another one that has a similar or better

threshold and both codes have the same block-length, then it has been observed in prior

works such as [MSC14] that the former usually performs better in terms of the slope of

FER performance at low FERs once the channel parameter improves beyond the initial

waterfall region. The channel parameter at which the code with the better graphical structure

and minimum distance properties performs better than the one with the similar or better

threshold will depend upon the difference in their thresholds as threshold indicates the

channel parameter at which an LDPC code can start decoding correctly, regardless of its

block-length. We show through examples in this chapter that designing QC RC-LDPC codes

using the minimum distance upper bounds without taking into consideration the threshold

yields better low-FER performance at very short block-lengths when compared to code

families designed solely based on optimizing the threshold.

With Theorems 1 and 2 in hand, we propose the following PBRL design procedure

that replaces iterative decoding threshold from [CVDW15] with the upper bounds on the

minimum distance as the design criterion for every row of PIRC:

1. HRC selection: Choose an HRC matrix of size ncH ×nvH with a desired degree distribu-

tion and complexity constraint. A common complexity constraint is to limit the weight

of each column and row in the protomatrix. Note that the selection of a desirable HRC

part is a code design problem by itself. In order to avoid high error floors, one usu-
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ally needs to limit the number of degree-2 variable nodes in the protomatrix. Design

examples in Sections 1.6 and 1.7 provide HRC parts that lead to good performance in

both waterfall and error floor regions.

2. IRC design: Select the next row of the protomatrix from a set of candidate rows to

maximize the upper bound on the minimum distance via Theorem 2 or 1 (depend-

ing upon whether there are punctured variable nodes or not). If there are multiple

candidates with the best upper bound, then select one at random.

3. Go to Step 2) if another row of PIRC is required. Otherwise, exit.

It is not known, in general, whether the upper bounds of (1.4) or (1.5) are achievable.

But our design procedure yields better QC RC-LDPC code families at short block-lengths

than the design based on optimizing the iterative decoding thresholds.

For a punctured protomatrix, care must be taken to ensure that not too many variable

nodes are punctured. Otherwise, the dimensionality requirement in Theorem 2 may be

violated.

The structure of PBRL protomatrices and the upper bounds of (1.4) and (1.5) lead to

the following observation that will be utilized in the rest of the chapter:

Lemma 1. Let a PBRL protomatrix P be of size nc×nv. Let the HRC part, as a protomatrix

by itself, have a positive and finite upper bound dHRC, computed using (1.4) or (1.5). Then

the upper bounds for each new row i = ncH +1, ncH +2, . . . , nc added to obtain P , irrespective

of the chosen candidates for the rows, are non-decreasing and are lower bounded by dHRC.

Proof. Let us consider the design of the first row of the IRC part and assume that the

protomatrix has no punctured columns. Assume that there is no non-zero integer in the

new (ncH + 1)th row of the overall protomatrix except the required 1 from sub-matrix PIR at

entry (ncH + 1, nvH + 1) of P . For any set S of ncH + 2 column indices that does not include

index nvH + 1, the sum of the ncH + 2 permanents, computed according to the upper bound

16



of (1.4), is zero. For any other set that includes index nvH + 1, the sum of the permanents is

equal to one of the sums of ncH + 1 permanents computed to find the upper bound for the

HRC part. Now, if the new row is designed to have non-zero entries in the first nvH columns,

the upper bound can only increase or remain the same.

Similar arguments follow if the protomatrix has punctured columns. This completes the

proof as the above arguments can then be successively applied to each new row.

We end the section by discussing the complexity of computing the upper bound of (1.4)

for any general protomatrix of size nc × nv with no punctured columns (similar arguments

follow if the protomatrix has punctured columns). The number of sets S that need to be

considered is
(
nv
nc+1

)
. For every such set we need to compute nc + 1 permanents, each of size

nc × nc. Therefore, the overall number of permanents that need to be computed in order

to obtain the upper bound of (1.4) is
(
nv
nc+1

)
· (nc + 1). As the complexity of computing the

permanent of a square matrix of size ` × ` is Θ
(
` · 2`

)
, the design will eventually become

prohibitively slow as we add more rows to the PBRL protomatrix. In the next section

we show how we can take advantage of the general structure of a PBRL protomatrix to

significantly reduce the complexity of computing the upper bounds, thereby reducing the

complexity of our design procedure.

1.4 Reduced-Complexity Design Procedure

In Sections 1.4.1, 1.4.2, and 1.4.3 below, for a given PBRL protomatrix, we leverage the

general structure of the protomatrix of a PBRL ensemble in (1.1) to reduce the complexity

of computing the upper bounds in (1.4) or (1.5). Additionally, in Section 1.4.4 below, we

reduce the complexity of the design procedure by using computations completed for all the

previous rows to facilitate very-low-complexity computation of the bound while designing

the next row.
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1.4.1 Unpunctured PBRL Protographs

This subsection deals with the case when the PBRL protomatrix has no punctured variable

nodes. The following result leads to a significant reduction in both the number of permanents

that need to be computed and the size of each permanent to be computed while computing

the upper bound of (1.4) for an unpunctured PBRL protomatrix.

Theorem 3. Let an unpunctured PBRL protomatrix P be of size nc × nv. Assume that the

upper bound in (1.4) for P is a positive integer (this is satisfied whenever the HRC part has

an upper bound that is a positive integer, as a result of Lemma 1). Then, the same upper

bound can be obtained by computing exactly
(

nvH
ncH+1

)
·(nc + 1) permanents, each of complexity

at most the complexity of computing the permanent of an (ncH + 1)× (ncH + 1) matrix.

Before we provide the proof, we comment on the reduction in complexity of computing

(1.4). The complexity of computing each permanent would, crucially, now depend only on

the number of check nodes in the HRC part, ncH , and not on nc. Also, the dominating factor

in the expression for number of permanents to be computed is the binomial coefficient, which

again would now depend only on the size of the HRC part, ncH × nvH , and not on the size

of the entire protomatrix. As a result of this theorem, the complexity of computing the

upper bound for an unpunctured PBRL protomatrix grows only linearly with the size of the

protomatrix nc × nv. We remark that such a reduction in complexity will be a recurring

theme throughout this section.

Proof. We provide the proof in three cases. The proof is an argument that if P has a positive

and a finite upper bound (1.4), then due to the identity matrix structure in the columns of

PIR in a PBRL protomatrix it suffices to consider sets S that always contain the indices of

all the columns of PIR.
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Case 1

Let us first consider the case when S ⊆ [nv], |S| = nc + 1, and S contains the indices of the

last nv − nvH columns, i.e. of the columns in PIR. Note that nv − nvH = nc − ncH . There are(
nvH
ncH+1

)
such sets. The nc + 1 chosen columns indexed by any such set S form a matrix with

structure that can be written as:

PS =
[
c1 c2 · · · cncH+1 | PIR

]
(nc×(nc+1))

(1.6)

where the first ncH + 1 columns are chosen from the initial nvH columns of P and PIR has

the following structure:

PIR =

0

I


(nc×(nv−nvH ))

(1.7)

Because each column in PIR contains only a single 1, when the removed column is from

the PIR part of PS the complexity of computing the required permanent perm
(
PS\i

)
is the

complexity of computing the permanent of an (ncH + 1)× (ncH + 1) sub-matrix.

When the removed column index i ∈ S is not an element of {nvH + 1, nvH + 2, . . . , nv},

the complexity of computing the permanent of the remainder square matrix PS\i is the

complexity of computing the permanent of an ncH × ncH sub-matrix. This is because the

product ∏nc
j=1 PS\i(σ(j), j) is zero for permutations σ that select elements not in the first ncH

rows for the first ncH columns of PS\i.

Case 2

Now let us consider the general set S of nc + 1 column indices in [nv]. First, let us assume

that
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∑
i∈S

perm
(
PS\i

)
> 0, (1.8)

which implies that at least one of the nc + 1 permanents is positive. Denote by Pi∗ , PS\i∗

one such nc×nc sub-matrix of PS with a positive permanent. Assume the following definition

of a permanent of a square matrix A of size nc × nc:

perm (A) =
∑
σ

nc∏
j=1

A(σ(j), j) (1.9)

There exists a permutation denoted σ∗ that has a positive product in (1.9) when computed

for the matrix Pi∗ . Consider all columns indexed by j ∈ [nc] such that σ∗(j) > ncH . There are

nc−ncH = nv−nvH such columns. Replace all these columns of Pi∗ by the columns of the sub-

matrix PIR (whenever possible), in the following manner: Replace column j whose σ∗(j) >

ncH with the column in PIR whose only non-zero element, 1, is present in row σ∗(j), unless

the column from PIR is already in the nc + 1 columns indexed by set S under consideration.

Denote by P1 the newly obtained matrix of size nc×nc. P1 has a permanent that is positive

and is at most the value of the permanent of Pi∗ due to the following reasons: Permutation

σ∗ yields a positive product with P1 because the replacements (whenever possible) only lead

to non-zero entries at locations (σ∗(j), j) : σ∗(j) > ncH . Furthermore, each permutation σ

that yields a positive product ∏Pi∗(σ(j), j) in Pi∗ (including σ∗) yields a product with P1

that is upper bounded by the product computed with Pi∗ .

Let us denote by PŜ the matrix
[
ĉ1 ĉ2 · · · ĉncH+1 | PIR

]
, where ĉ1, ĉ2, . . . , ĉncH+1 are the

columns in PS chosen from the first nvH columns of the protomatrix P and that either were

in Pi∗ and not replaced to obtain P1 or was the one column of PS not in Pi∗ . It is now
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straight-forward to see from the composition of the matrices PS and PŜ that

∑
i∈S

perm
(
PS\i

)
≥
∑
i∈Ŝ

perm
(
PŜ\i

)
> 0. (1.10)

Case 3

We now consider the final case of the general set of nc + 1 columns whose nc + 1 permanents

sum to zero. Recall that the statement of the theorem assumes that P has a positive upper

bound in (1.4). Therefore, we may ignore such a case unless these columns contain PIR, in

which case we would compute the sum of nc + 1 permanents according to the complexity as

shown already in Case 1.

This completes the proof as the three cases show it suffices to consider subsets S ⊆ [nv]

that always contain the indices of all the columns of PIR.

1.4.2 PBRL Protographs with One Punctured Variable Node

Theorem 3 provides a considerable reduction in the complexity of the new design procedure

to obtain unpunctured PBRL protomatrices. We now consider PBRL protomatrices with

exactly one punctured variable node. First, we start by providing an example that shows

that the proof technique of replacing columns followed in Theorem 3 for the general set S

of nc + 1 column indices may not necessarily be directly applicable for PBRL protomatrices

with punctured variable nodes if S contains the index of a punctured column.

Example 2. Let us consider the following PBRL protomatrix whose HRC part is of size

ncH = 2 and nvH = 6 with the first column punctured:


1 1 2 1 2 1 0

0 2 1 2 1 2 0

1 1 0 0 0 0 1

 (1.11)
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Let S = {1, 2, 3, 4}, the set of indices of the first four columns of the protomatrix. The sum∑
i∈S\P perm

(
PS\i

)
from (1.5) for this set has three terms in it and is equal to 17. The

permanent of the 3 × 3 sub-matrix comprised of columns 1, 3, and 4 is equal to 5. If we

follow the same replacement strategy as in Theorem 3, we need to replace column 1 by the

only incremental redundancy variable node, i.e. column 7. The new set of column indices

Ŝ = {2, 3, 4, 7} has no column that is punctured and the summation ∑
i∈Ŝ\P perm

(
PŜ\i

)
,

which now has four terms, is equal to 19.

We show in the following result that, by dealing with the set S that contains the index of

exactly one punctured variable node more carefully, the complexity of computing the upper

bound for protomatrices with a single punctured column can be reduced by a magnitude

similar to Theorem 3.

Theorem 4. Let a PBRL protomatrix P be of size nc × nv with np = 1 punctured column.

Without loss of generality assume that P = {1}. Assume that there exists at least one non-

zero entry in the first ncH rows of all of the first nvH columns of P (this is a requirement

that will be satisfied in any practical design since otherwise there will be an all-zeros column

in the HRC part, but we are stating this explicitly as we will use this assumption in the

proof). Assume that the upper bound in (1.5) for P is a positive integer. Then, the same

upper bound can be obtained with at most
(

nvH
ncH+1

)
· (nc + 1) permanents, each of size at most

(ncH + 1)× (ncH + 1).

Proof. If S ⊆ [nv], |S| = nc + 1, S ∩ P = φ, and S does not contain the indices of all the

columns of PIR, then the arguments in Theorem 3 for ignoring such a set S while computing

the upper bound for the protomatrix still hold. Similarly, if S includes the indices of all

the columns of PIR and any subset of columns from the first nvH columns of P , then the

computational complexity arguments for computing the sum of at most nc + 1 permanents

for such a set of columns hold the same way as observed in Theorem 3.

Now consider any set S ⊆ [nv], |S| = nc + 1, and S ∩ P 6= φ. Similar to Theorem 3,
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assume that

∑
i∈S\P

perm
(
PS\i

)
> 0 (1.12)

as otherwise such a set S can be ignored (unless it contains the indices of all the columns of

PIR) because of the assumption that the upper bound for the protomatrix is a positive integer.

This implies that there exists an nc × nc sub-matrix PS\i with the punctured column whose

permanent is non-zero. Note that every permanent in the summation in (1.12) includes the

punctured column. In the rest of the proof, the permanent of a matrix A is assumed to

be computed with the equation perm (A) = ∑
σ

∏A(σ(j), j). We now prove the theorem

through the following three cases:

Case 1

Consider the case when there exists a sub-matrix PS\i, i ∈ S \P with a non-zero permanent

wherein there exists a permutation σ∗ that yields a non-zero product in the computation

of the permanent such that σ∗(1) ≤ ncH . For this case, since the non-zero element from

the punctured column contributing to the non-zero product for this permutation is chosen

from the first ncH rows of the sub-matrix, the replacement strategy of Theorem 3 can be

employed to obtain a new set Ŝ containing the indices of the punctured column and all the

columns of PIR such that ∑i∈S\P perm
(
PS\i

)
≥ ∑i∈Ŝ\P perm

(
PŜ\i

)
> 0. In particular, both∑

i∈S\P perm
(
PS\i

)
and ∑i∈Ŝ\P perm

(
PŜ\i

)
have the same number of terms.

Case 2

Consider the nc × nc sub-matrix PS\1, the sub-matrix without the punctured column. This

sub-matrix is not part of the summation in (1.12). But, if this sub-matrix has a non-zero

permanent (assumption for this case), then for a permutation σ∗ whose product is non-zero

in PS\1 there are ncH columns whose contributing non-zero elements to the product are from
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the first ncH rows. Since we have assumed that there exists at least one non-zero entry in

the first ncH rows of the punctured column, there exists a column j in PS\1 with σ∗(j) ≤ ncH

that can be replaced by the punctured column and the product for the permutation σ∗ for

this new sub-matrix, which is one of PS\i for some i ∈ S \ P , is still non-zero. Now, this

implies we arrive at Case 1 with the new sub-matrix and therefore the replacement strategy

follows for this new sub-matrix that is included in the summation in (1.12). Note that this

shows Case 2 implies Case 1.

Case 3

For the last case, assume the complement of the union of Cases 1 and 2 for the set S. Denote

the nc+1 columns by c1, c2, . . . , cnc+1 with c1 denoting the punctured column with index 1 in

the original protomatrix. Consider a sub-matrix P1 that has a non-zero permanent in (1.12).

According to the assumptions for this case, any permutation that has a non-zero product∏nc
j=1 P1(σ(j), j) in this sub-matrix has σ(1) > ncH . Pick a permutation σ∗ that has a non-

zero product with P1. Replace each column j 6= 1 of this sub-matrix whose σ∗(j) > ncH by

the column of PIR whose only non-zero element, 1, is in row σ∗(j) if the latter is already not

indexed in S. Call the new nc×nc sub-matrix P ′1. This sub-matrix has a positive permanent

that is upper-bounded by the permanent of P1. Denote by Ŝ the index set of nc + 1 columns

that lead to the nc columns of P ′1 and the one column indexed in S and was not part of the

sub-matrix P1. It follows that

∑
i∈S\P

perm
(
PS\i

)
≥

∑
i∈Ŝ\P

perm
(
PŜ\i

)
> 0. (1.13)

Now, if the column indexed in S that was not part of P1 is the column from PIR whose

only non-zero element is in row σ∗(1), then the proof is complete as Ŝ would then have the

indices of all the columns of PIR. If this is not the case, then we can replace the index of the

punctured column in Ŝ with the index of the column in PIR whose only non-zero element is
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in row σ∗(1) to obtain a set Ŝ1 (without the index of the punctured column) that satisfies

∑
i∈Ŝ\P

perm
(
PŜ\i

)
≥
∑
i∈Ŝ1

perm
(
PŜ1\i

)
> 0. (1.14)

This is because of the assumption of complement of Case 2. That is, for the set of columns

indexed by S, the permanent of the sub-matrix not containing the punctured column is

assumed to be zero. This implies that for Ŝ the permanent of the sub-matrix not containing

the punctured column is still zero. Therefore, for Ŝ1 the permanent is zero for the sub-matrix

not containing the column from PIR that has its only non-zero element in row σ∗(1). Thus

the proof is complete.

We note that in Example 2 the set S = {1, 2, 3, 4} belongs to Case 1 of the proof. For the

sub-matrix indexed by columns 1, 2, and 3, which has a non-zero permanent, there exists a

σ∗ with a non-zero product such that σ∗(1) ≤ ncH = 2.

1.4.3 Protographs with More than One Punctured Variable Node

We now consider PBRL protographs that have more than one punctured variable node.

We first provide an example that shows that the assumptions in Theorem 4 adapted to

more than one punctured column are not sufficient to make the replacement steps followed

so far for a set S to provide a set Ŝ with the indices of all the columns of PIR such that∑
i∈S\P perm

(
PS\i

)
≥ ∑i∈Ŝ\P perm

(
PŜ\i

)
> 0.

Example 3. Consider the following protomatrix with its first two columns punctured (i.e.
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P = {1, 2}):

P =



1 1 5 5 5 5 0 0

1 1 5 5 5 5 0 0

1 1 5 5 5 5 0 0

0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 1


(1.15)

Let S = {1, 2, 3, 4, 5, 7}; ∑i∈S\P perm
(
PS\i

)
= 900. The column index from the incremental

redundancy part that is missing in S is 8. According to the replacement steps followed in

proofs so far, in order to replace one of the column indices in S to obtain Ŝ that contains

both 7 and 8, either of columns 1 or 2 must be replaced as columns 3, 4, and 5 do not have

a non-zero integer in row 5. Since columns 1 and 2 are identical, assume without loss of

generality that Ŝ = {1, 3, 4, 5, 7, 8}. Now, ∑i∈Ŝ\P perm
(
PŜ\i

)
= 1200, which is larger than

900.

The following theorem provides one set of sufficient conditions under which the replace-

ment strategy used to prove Theorems 3 and 4 is successful when a PBRL protograph has

more than one punctured variable node.

Theorem 5. Let a PBRL protomatrix P of size nc × nv have np > 1 punctured variable

nodes. Without loss of generality assume that P = {1, 2, . . . , np}. Assume that every entry

in the first ncH rows of all the punctured columns is non-zero (this is a stricter requirement

than assumed in Theorem 4) and that there exists at least one non-zero entry in the first ncH

rows of every one of the unpunctured columns in the first nvH columns of P . Also, assume

that at most one punctured column has a non-zero integer entry in every row of IRC part.

Furthermore, assume that the upper bound in (1.5) for P is a positive integer. Then, the

same upper bound can be obtained with at most
(

nvH
ncH+1

)
· (nc + 1) permanents, each of size

at most (ncH + 1)× (ncH + 1).
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Proof. The proof is presented in Appendix 1.9.1.

Our replacement strategy throughout the proofs so far has been of the following manner:

If S does not contain the index of the column in PIR with its only non-zero element in

row `, we seek columns (either punctured or unpunctured) indexed in S that have a non-

zero element in row ` for replacement. Example 3 has only two such columns, both being

punctured and identical. The example leads to the conclusion that this replacement strategy

is not sufficient to show (if true) the complexity reduction that is possible if the PBRL

protomatrix has more than one punctured column without the stricter conditions imposed

in Theorem 5 when compared to Theorem 4. In fact, we can confirm that by considering

only those sets that contain the indices of all the columns in PIR we obtained the same upper

bound for the protomatrix in Example 3 as the one obtained by considering all possible sets

of size nc + 1 = 6.

Based on other computational results we have obtained for protomatrices with more than

one punctured column, it is our conjecture that the complexity reduction achieved so far in

Theorems 3 and 4 holds true for the case when the protomatrix has more than one punctured

column without having to impose stricter conditions than Theorem 4.

Note that the first assumption of Theorem 5 that every entry in the first ncH rows of all

the punctured columns is non-zero is problematic for a code obtained from the HRC part.

This is because such a code will never be able to pass useful information from any check

node to any variable node during any iteration of the decoding process. In other words, the

log-likelihood ratio values from all the check nodes to all the variable nodes will always be

equal to zero. Therefore, PBRL codes satisfying this assumption are useless at the highest

rate, but can be used as a code that corrects errors at lower rates provided that there is at

least one check node that is connected to at most one punctured variable node.
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1.4.4 Further Reduction in Complexity of the Design Procedure

In Sections 1.4.1, 1.4.2, and 1.4.3 we showed how the upper bounds of (1.4) and (1.5) for

a PBRL protomatrix can be computed efficiently by only considering sets S that always

contain the indices of all the columns of PIR. These results yield a reduction in complexity

of the design procedure while adding a new row to a PBRL protomatrix by reducing the

amount and the complexity of computations required to obtain the upper bound for any

candidate row under consideration. It turns out that the complexity of the overall design

procedure can be further reduced the following way: Computations used in the design of a

particular row of the IRC part can be reused while computing the upper bound for candidates

considered in the design of the next row.

Consider a PBRL protomatrix P of size nc × nv. Let P , ∅ if P has no punctured

columns. Let n′c , nc − 1 and n′v , nv − 1. If nc > ncH , let P ′ denote the sub-matrix of the

first n′c rows and n′v columns of P . P ′ is a PBRL protomatrix by itself. For any set S ⊆ [nv]

with |S| = nc + 1 let

sumP,S ,
∑
i∈S\P

perm
(
PS\i

)
. (1.16)

Lemma 2. Let P be a PBRL protomatrix of size nc > ncH and nv > nvH . Let S ⊆ [nv],

|S| = nc + 1, and S contain the indices of all the columns in PIR of P . Let S ′ = S \ nv.

Then,

sumP,S = sumP ′,S′ + perm
(
PS\nv

)
. (1.17)

Proof. As PS (i1, nc + 1) = 0 for all i1 6= nc and PS (i1, nc + 1) = 1 when i1 = nc and

PS (i1, i2) = P ′S′ (i1, i2), ∀i1 ∈ [n′c] , i2 ∈ [nc], expanding the permanent of PS\i when i 6=
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nv, i ∈ S \ P along nth
c column of the sub-matrix PS\i yields

perm
(
PS\i

)
= 1 · perm

(
P ′S′\i

)
.

Furthermore when S contains the indices of all the columns of PIR, perm
(
PS\nv

)
depends

only on elements P (i, j) such that i ∈ [ncH ] or i = nc and j ∈ S \ {nvH + 1, nvH + 2, . . . , nv}.

Lemma 3. Let P be a PBRL protomatrix with nc > ncH and nv > nvH . Assume that P

satisfies the assumptions of Theorem 3 if np = 0, satisfies the assumptions of Theorem 4

if np = 1, and satisfies the assumptions of Theorem 5 if np > 1. Let sumP,S be as defined

in Lemma 2. If we know the values of sumP ′,S′ for every S ′ ⊆ [n′v] such that |S ′| = nc and

{nvH + 1, nvH + 2, . . . , n′v} ⊆ S ′, then the upper bound for P can be computed with exactly(
nvH
ncH+1

)
additional permanents beyond what has already been computed for P ′, each of size

(ncH + 1)× (ncH + 1).

Proof. Due to Theorems 3, 4, and 5 and Lemma 2.

Remark 1. The result of Lemma 3 implies the following for the design procedure: We can

reuse the values of sumP ′,S′ for all S ′ such that |S ′| = nc for which {nvH + 1, nvH + 2, . . . , n′v} ⊆

S ′ and compute only one additional permanent from columns in P for each set S = S ′ ∪

{nv} in order to obtain the upper bound for protomatrix P . The value of this permanent

perm
(
PS\nv

)
depends upon only the entries in the first ncH rows and nth

c row of P and the

ncH + 1 columns indexed in S from the first nvH columns of P . Denote by γ a candidate

vector of length nvH to be considered in the design of any row of the IRC part, PIRC. Denote

by Pt the matrix formed by appending γ as row ncH + 1 to PHRC. The result of Lemma 3

means that we need to compute
(

nvH
ncH+1

)
permanents out of sub-matrices of Pt for such a

candidate γ and the results of these computations can be used during the design of any row

of PIRC if γ is a candidate for that row. Therefore, the number of permanents to be computed
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for the design of PIRC depends upon the number of candidates considered in the overall design

procedure and not on the number of rows to be designed. The complexity of computing each

permanent for any such candidate is exactly the complexity of computing the permanent of

a matrix of size (ncH + 1)× (ncH + 1).

Summary of algorithm to implement the simplified design procedure: We now summarize

the overall, simplified design procedure to obtain a PBRL protomatrix of size nc × nv in

Algorithm 1. Algorithm 1 presents the overall procedure for finding a PBRL protomatrix

that maximizes (1.4) or (1.5) for each rate. It can be used to design a PBRL protomatrix

whenever the conditions of either Theorem 3, 4, or 5 are satisfied in the PBRL design.

The algorithm is presented in a way that the input is the HRC part and the output is the

obtained PBRL protomatrix P . It can be modified and re-written as a recursive program

that takes as its input a PBRL protomatrix and returns only one new row. The algorithm

computes
(

nvH
ncH+1

)
permanents of size (ncH + 1)× (ncH + 1) exactly once for every candidate

under consideration. This is done in lines 11 through 17 of Algorithm 1. Furthermore

the algorithm computes at most
(

nvH
ncH+1

)
(ncH + 1) permanents of size ncH × ncH that are

candidate independent and are permanents required to compute the upper bound for the

initial HRC matrix PHRC. This is done in lines 19 through 27 of the algorithm that is

presented. Lines 29 through 48 obtain the optimal candidate row at each design rate by

using simple vector additions and by reusing the permanent computations of lines 11 through

17 and lines 19 through 27.

The following are some of the variable identifiers introduced in Algorithm 1: Assume

that the candidates for each row of PIRC are sets of vectors of length nvH . Let the set of

candidates for row i ∈ [nc − ncH ] of PIRC be denoted Ci and let C = ∪iCi. Following Remark

1, let SumMatrix be a matrix that stores the required
(

nvH
ncH+1

)
permanents, row-wise, for

each candidate (there are, in total, |C| candidates). Let PunctPattern be a vector of length

nvH that specifies whether a variable node among the first nvH is punctured or transmitted,

with 0 indicating that the variable node is punctured. Other variable identifiers introduced
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Algorithm 1 Permanent-bound-based PBRL design
1: Function perm in the following, which computes the permanent of a square matrix, can

be implemented using Ryser’s algorithm [Rys63]
2: Inputs, Output: The main function Pbdesign of the algorithm takes as inputs PHRC, nc,

and {Ci, i ∈ [nc − ncH ]} and returns protomatrix P as the output
3: function MatrixOut = Enumerate(a, b)
4: Return a matrix of size

(
a
b

)
× b containing all b combinations (without repetition) of

[a]
5: end function
6: function P = Pbdesign(PHRC, nc, {Ci, i ∈ [nc − ncH ]}, PunctPattern)
7: C ← ∪iCi
8: Assign an index 1 ≤ i ≤ |C| to each γ in C
9: Combinations← Enumerate (nvH , ncH + 1)
10: SumMatrix← ZeroMatrix

(
|C|,

(
nvH
ncH+1

))
11: for i← 1 : |C| do
12: Pt ← append γi as new row to PHRC
13: for j ← 1 :

(
nvH
ncH+1

)
do

14: S ← row j of Combinations
15: SumMatrix(i, j) ← perm (PtS)
16: end for
17: end for
18: OptimalVector ← ZeroMatrix

(
1,
(

nvH
ncH+1

))
19: for i← 1 :

(
nvH
ncH+1

)
do

20: S ← row i of Combinations
21: for j ← 1 : ncH + 1 do
22: if PunctPattern(S(j)) == 0 then
23: Continue
24: end if
25: OptimalVector(i) ← OptimalVector(i) + perm

(
PHRCS\S(j)

)
26: end for
27: end for
28: P ← PHRC
29: for i← 1 : nc − ncH do
30: UBOptimal ← 0
31: for j ← 1 : |C| do
32: if γj /∈ Ci then
33: Continue
34: end if
35: TempVector ← OptimalVector + row j of SumMatrix
36: if UBOptimal == 0 then
37: UBOptimal ← min(TempVector)
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38: OptimalCandidate ← γj
39: OptimalCandidateSums ← TempVector
40: else if UBOptimal < min(TempVector) then
41: UBOptimal ← min(TempVector)
42: OptimalCandidate ← γj
43: OptimalCandidateSums ← TempVector
44: end if
45: end for
46: OptimalVector ← OptimalCandidateSums
47: P ← append OptimalCandidate as new row to P
48: end for
49: P ← append 0 and I matrices to P
50: Return P
51: end function

in the algorithm are self-explanatory.

We note that the computational complexity of Algorithm 1 is extremely low when com-

pared to the threshold-based PBRL design approach of [CVDW15]. This is because it usually

requires more than 500 iterations of message passing and real-valued function computations

in order to compute the threshold of a given PBRL protomatrix using the RCA approach

[CVDW15]. Moreover, one cannot reuse computations performed during a run of the RCA

algorithm at a higher rate to find the optimal row for the next lower rate.

1.5 Upper Bound on the Optimal Value of the Exhaustive Search

for a Row of IRC Part

In Section 1.4 we showed how the overall design procedure is simplified because of the

presence of the identity matrix structure in the columns of PIR in a PBRL protomatrix. In

particular, we presented Algorithm 1 that performs the following for a given HRC matrix

(assuming that the conditions of either of Theorems 3, 4, or 5 are satisfied during the design

process): First, compute an
(

nvH
ncH+1

)
-length vector of permanents of size (ncH + 1)×(ncH + 1)

for each candidate. Then, during the design of any row add the vector of permanents

corresponding to the candidate under consideration to a pre-computed vector of the same
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length obtained from the design of the previous row of the protomatrix. The minimum value

across this new resultant vector is the upper bound on minimum distance for the protomatrix

with the candidate under consideration as the new row.

In this section, we show that the problem of selecting an optimal candidate for a row of a

PBRL protomatrix can be cast as an integer linear program (ILP) whenever the assumptions

of either of Theorems 3, 4, or 5 are satisfied. Apart from being an interesting equivalent view

of the design process, the ILPs let us obtain bounds on the optimal value of the minimum

distance upper bound that can be obtained by choosing the best possible candidate from a

feasible set of candidates for a new row. This equivalent formulation of the exhaustive search

to find an optimal row also shows that the search, in general, is a computationally complex

problem.

1.5.1 Linear Programming (LP) Upper Bound

For a PBRL protomatrix P of size nc × nv, assume the definitions of n′c, n′v, sumP,S, and P ′

as previously stated in Section 1.4.4.

Let x be a vector of length nvH that denotes the new PIRC row being designed for a PBRL

protomatrix P . Following the results of Section 1.4.4, let b be a vector of length
(

nvH
ncH+1

)
that contains the

(
nvH
ncH+1

)
values of sumP ′,S′ , one for each possible S ′. Let A be a matrix of

size
(

nvH
ncH+1

)
× nvH whose rows comprise the following: For the set Si = S ′i ∪ {nv} with S ′i

corresponding to bi = sumP ′,S′i
, let S̄i = Si \ {nvH + 1, nvH + 2, . . . , nv}. That is, S̄i contains

the ncH + 1 indices in Si that are chosen, without repetition, from indices {1, 2, . . . , nvH}.

Now, entry A(i, j) is defined as

A(i, j) ,


perm

(
PHRCS̄i\j

)
, j ∈ S̄i,

0, j /∈ S̄i,
(1.18)

where the permanents computed here are of size ncH × ncH .
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With a candidate vector x as the new row, the minimum distance upper bound, assuming

that either of Theorems 3, 4, or 5 holds for the design process, can thus be computed as

min Ax+ b, (1.19)

where the minimum is over the elements of the vector Ax + b. The exhaustive search over

all feasible vectors x can now be represented as

max
x

minAx+ b,

s.t. x a feasible vector. (1.20)

Upon choosing an optimal vector x∗ from the feasible set, the new b vector for the design of

the next row is obtained as b← Ax∗ + b; matrix A remains unchanged.

The search can now be equivalently re-written as

−min β,

s.t. − (Ax+ b) ≤ β · 1,

x a feasible vector, (1.21)

where β is a real scalar and 1 is a vector of all ones of appropriate size.

The constraints that define the feasible set of x determine whether exhaustive search

(1.21) is a convex optimization problem or not (See [BV09] for convex optimization). In

order for the search process (1.21) to be exact, we require that the design process satisfy the

conditions of either of Theorems 3, 4, or 5 according to the presence of np = 0, np = 1, or

np > 1 punctured variable nodes, respectively. Theorems 3 and 4 impose constraints only

on the HRC part of the PBRL protomatrix, whereas Theorem 5 contains assumptions about

the candidates that can be chosen for each row of the IRC part. For simplicity, we deal only

with the former two cases in the following.
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Theorems 3 and 4 do not implicitly assume constraints about x, but we can impose

reasonable constraints that suit the design for PBRL families that support short block-

lengths. In particular, as we will further see in design examples of Section 1.6, we can

impose constraints such as the following:

wmin ≤
nvH∑
i=1

xi ≤ wmax, (1.22)

wi,min ≤ xi ≤ wi,max, 1 ≤ i ≤ nvH , (1.23)

xi ∈ Z, 1 ≤ i ≤ nvH , (1.24)

where the constraint that xi take on integer values is necessary for the design process and

prevents (1.21) from being a convex optimization problem by forcing the feasible set to be

non-convex. The above constraints are only a representative of the types of linear inequality

constraints that can be imposed. These constraints turn search process (1.21) into the

following integer linear program (ILP):

−min β,

s.t. − (Ax+ b) ≤ β · 1,

Cx ≤ d,

xi ∈ Z, 1 ≤ i ≤ nvH , (1.25)

where C is a matrix and d is a vector that we have introduced to represent the linear

constraints on x. Relaxing the integer constraint on values of xi now would lead to a

(convex) linear program whose optimal value, which can be computed efficiently, provides

an upper bound on the optimal value of the optimization problem in (1.25). In Section 1.6,

we present numerical examples of computation of the optimal values of the LP relaxation

alongside numerical results obtained through the design process of Algorithm 1.

Remark 2. A significance of the optimal values of the LP relaxation derived in this section
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is the following. The LP upper bounds are a by-product of the existing permanent-based

upper bounds that this chapter is based on. The bounds obtained by solving the LP relaxation

represent a new set of minimum distance upper bounds that one can obtain for the specific

class of PBRL protomatrices (under the reduced complexity scenarios) without even having

to construct a PBRL protomatrix.

1.6 Numerical Design Examples

In this section we design PBRL protomatrices according to the new design method we have

proposed. We assume the following HRC matrix for designs in this section:

PHRC,1 =

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2

 (1.26)

We consider both a punctured and an unpunctured version of PHRC,1 in our examples. The

punctured version has the first variable node punctured. Hence the design rate we start with

is either 6/8 (unpunctured) or 6/7 (punctured).

The HRC matrix in (1.26) has a minimum distance upper bound of 12 when none of

its variable nodes are punctured and an upper bound of 8 when its first column is punc-

tured. One can verify via Lemma 1, therefore, that any unpunctured or punctured PBRL

protomatrix that can be obtained from PHRC,1 will satisfy the conditions of Theorems 3 or

4, respectively. Hence, Lemma 3 applies in this case and we can use Algorithm 1 to design

PBRL protomatrices using PHRC,1 when at most one of its columns is punctured.

Remark 3 (Design constraints). We constrain the last nc − ncH rows of the protomatrix

to have a weight of exactly 4 and do not allow any non-zero integer other than 1. These

constraints facilitate good performance at short block-lengths because limiting both the density

and the number of multiple edges in the protograph helps the resulting LDPC codes have good

girth upon lifting and avoid having too many short cycles. Explicit constraints are necessary
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because increasing the value of any element in any position of a protomatrix with a finite

permanent bound of (1.4) or (1.5) either results in an increase in the bound or the bound

stays the same. In other words, the problem of selecting an optimal row is trivial without

such constraints.

Remark 4. Our design method, which maximizes an upper bound on code minimum distance,

does not depend upon the channel over which we use the codes. For designing codes for

comparison according to the original PBRL design method that involves computing iterative

decoding thresholds, we assume the binary-input additive white Gaussian noise channel (BI-

AWGNC). The threshold values computed in this chapter are the result of at least 1000

iterations of the reciprocal channel approximation (RCA) method (See [CVDW15]).

Unpunctured design

We design two unpunctured ensembles using the HRC matrix given in (1.26) with the design

constraints in Remark 3. The design rates we consider decrease from 6/8 to 6/15. The first

ensemble, P1, is obtained using the new permanent bound design (PBD) method proposed

in this chapter. For comparison, the second ensemble, P2, is designed by optimizing the

iterative decoding thresholds (referred to as “threshold-based” in results) over BI-AWGNC.

The IRC parts of P1 and P2 that we obtained are:

P1,IRC =



1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

1 0 0 0 0 0 1 1

0 1 1 1 0 0 0 0

1 0 0 0 1 1 0 0

1 0 1 0 0 0 0 1

0 1 0 1 0 0 1 0



, P2,IRC =



1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

1 0 0 0 0 0 1 1

0 0 1 0 1 0 1 0

1 0 0 1 1 0 0 0

1 0 1 0 0 1 0 0

1 0 1 0 0 0 1 0



(1.27)
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Punctured design

Similarly, we design two punctured ensembles using the HRC matrix in (1.26) via the design

constraints in Remark 3. The first variable node is punctured2, and the design rates decrease

from 6/7 to 6/15. The resulting ensembles are called P3 (PBD) and P4 (threshold-based):

P3,IRC =



1 1 1 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 0 0 1 0 0 1

1 0 1 0 0 1 0 0

1 1 0 1 0 0 0 0

1 0 0 0 1 1 0 0

1 0 0 0 1 0 0 1

1 1 0 0 1 0 0 0



, P4,IRC =



1 0 1 0 1 0 0 0

1 0 1 0 0 0 1 0

1 1 0 0 1 0 0 0

1 0 0 1 0 0 1 0

1 0 0 0 1 1 0 0

1 0 0 0 0 0 1 1

1 0 0 1 1 0 0 0

1 1 0 0 0 0 1 0



(1.28)

Unconstrained design via original PBRL design method

For further comparison, we design an ensemble, called P5, using the same HRC matrix with

its first variable node punctured according to the original PBRL design method. The design

rates decrease from 6/7 to 6/15. For this ensemble we only have the following restriction in

the IRC part: We do not permit any integer greater than 1. The design yielded the following
2A punctured variable node improves the iterative decoding threshold (See [DDJA09] and [CVDW15]).

Also, following the observations of [CVDW15] we constrain every row of PIRC to connect to the punctured
variable node in all of our punctured designs in this section.
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P5 (threshold-based, unconstrained, punctured)
P4 (threshold-based, constrained, punctured)
P2 (threshold-based, constrained, unpunctured)
P3 (new PBD method, constrained, punctured)
P1 (new PBD method, constrained, unpunctured)

Figure 1.2: Comparison of minimum distance upper bounds of ensembles Pi, i ∈ [5], obtained
from HRC matrix PHRC,1 in (1.26)

IRC part (note that some rows of PIRC have a weight larger than 3):

P5,IRC =



1 0 1 0 1 0 0 0

1 0 1 0 1 0 1 0

1 1 1 0 1 0 1 0

1 1 1 0 1 0 1 0

1 1 1 0 1 0 1 0

1 0 1 1 1 0 0 0

1 1 1 0 1 0 1 0

1 0 1 1 0 0 0 0



(1.29)

We now compare the five ensembles Pi, i ∈ [5], according to two design metrics. Fig. 1.2

shows the upper bound on the minimum distance obtained at each design rate for the five

ensembles. P1, the unpunctured, constrained ensemble obtained via the new PBD method,

has the best upper bound at almost every design rate. At the other end of the spectrum,

P5, the unconstrained, punctured ensemble designed to optimize the threshold at each rate,
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Figure 1.3: Iterative decoding thresholds over BI-AWGNC for ensembles Pi, i ∈ [5], obtained
from HRC matrix PHRC,1

has the smallest upper bounds.

The iterative decoding thresholds at each design rate (over BI-AWGNC) for all five

ensembles are shown in Fig. 1.3. As expected, ensemble P5 has the best threshold at each

design rate. But surprisingly, both the unpunctured and punctured constrained ensembles

obtained via the new PBD method, P1 and P3, have almost the same threshold at each

design rate as their counterpart ensembles P2 and P4, which were obtained by optimizing

the iterative decoding threshold at each design rate. While this appears to be the case for

the examples in this section, the examples of Section 1.7.3 show that such a property is not

obtained always.

1.6.1 Comparison of LP Upper Bound and Optimal Values of Min-

imum Distance Upper Bound at Each Design Rate

We provide here an example of evaluating the relaxed version of the ILP in (1.25). This

leads to an important conclusion regarding the optimality of the relaxed problem. For the
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punctured design P3,IRC with HRC part (1.26) and its first column punctured, the matrix

A is of size 56 × 8 and the vector b is of size 56 × 1. The design constraints introduced in

Remark 3 and the requirement that the punctured variable node have a connection to every

row of the IRC part lead to the following linear inequality constraints for the ILP in (1.25)

to design every row:

8∑
i=1

xi ≤ 3, 0 ≤ xi ≤ 1, 1 ≤ i ≤ 8, x1 = 1 (1.30)

We solve the relaxed version of the ILP by removing the integer constraint xi ∈ Z of

(1.25). For every design rate we obtain two upper bounds by solving the LP relaxation, with

the two upper bounds differing in how vector b is updated. The first set of upper bounds,

called UB1, at rates 6/8 through 6/15 is obtained by continuously updating b as Ax∗ + b,

where x∗ is the optimal vector as obtained by solving the LP relaxation at each step. Note

that the x∗ that is provided by the relaxation can have non-integer values at some positions.

For example, the vector x∗ for the LP relaxation at design rate 6/8 is

[1, 0.2353, 0.3529, 0.2353, 0.3529, 0.2353, 0.3529, 0.2353].

The second set of upper bounds, called UB2, is obtained by updating b with the x∗ provided

by the actual design process. That is, we compute the upper bound for the current design

rate using the LP relaxation and update b for the next design rate using as x∗ the optimal

vector obtained in P3,IRC at the current design rate.

The results of the two upper bounds on the optimal value of the permanent bound

obtained using the LP relaxations and the actual optimal value at each design rate obtained

through the design of P3,IRC are shown in Fig. 1.4. A significant result of our experiment is

that we observed that the x∗ that we obtained while solving the LP relaxation contained

non-integer values for most design rates and while computing both the upper bounds. This

shows that the ILP, in general, does not possess a problem structure that would lead to
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Figure 1.4: Comparison of optimal values of the upper bound from the design procedure
that yielded P3,IRC and from the LP relaxations of (1.25)

the conclusion that the LP relaxation is an exact formulation of the ILP. Nonetheless, the

complexity reduction identified in this chapter allows Algorithm 1 to operate efficiently for

most PBRL designs even though the algorithm is an exhaustive search.

1.7 Simulation Results and Discussion

In this section, Section 1.7.1 presents simulation results of carefully designed RC code families

from the five protograph families Pi, i ∈ [5], obtained from PHRC,1 in Section 1.6. Further,

we also present similar results in Section 1.7.3 for three ensembles that we designed using

another HRC matrix that we call PHRC,2:

PHRC,2 =

3 1 3 1 2 1 2 1

1 3 1 3 1 2 1 2

 (1.31)

PHRC,2 is irregular in its degree distribution, whereas PHRC,1 (in (1.26)) is regular.

Remark 5 (Lifting and simulation parameters). Codes simulated in this section are all quasi-

cyclic. Lifting was performed for the protomatrix of the lowest rate 6/15 using the circulant-

PEG (C-PEG) algorithm combined with the ACE algorithm of Tian et al. [TJVW04]. The

ACE algorithm guarantees that all cycles of length up to 2dACE have an approximate cycle

extrinsic degree (ACE) value of at least ηACE (See [TJVW04] for ACE). The lifting algorithm
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that produced the codes in this chapter was constrained to satisfy a target girth of at least

6 and a target (2dACE, ηACE) pair value that is as high as possible for a given protomatrix.

The lifting factor used is 33, which resulted in k = 198 information bits for all code families.

Simulation results shown were obtained using a maximum of 100 iterations of full-precision,

flooding, LLR-domain belief propagation [RL09] over BI-AWGNC. At least 100 errors were

collected for each frame error rate (FER) point in any simulated Eb/N0 vs. FER graph.

1.7.1 Frame Error Rates of QC Code Families from Pi, i ∈ [5]

First, we note that the (2dACE, ηACE) values that we obtained during lifting of the lowest-

rate protographs Pi, i ∈ [5], are as follows: P1 : (16, 10), P2 : (16, 8), P3 : (16, 9), P4 : (16, 8),

P5 : (16, 4). The target cycle length 2dACE was set to 16 in all cases, which is sufficiently large

that the impact of the ACE values on low-FER performance is dominated by the guaranteed

extrinsic message degree ηACE. The best ACE values were achieved by the new PBD designs

P1 with ηACE = 10 and P3 with ηACE = 9. The constrained, threshold-based PBRL designs

had the next best ACE values with ηACE = 8, and the smallest ACE value was achieved by

the unconstrained, threshold-based design of P5 with ηACE = 4.

The FER performance of the QC PBRL code families obtained from these ensembles are

shown in Figs. 1.5 and 1.6. Note that the low-FER performance for the lowest rate (rate

6/15) codes is consistent with the ACE ordering described in the previous paragraph. The

QC-LDPC code family obtained from constrained, punctured, PBD ensemble P3 outperforms

all the other code families at FERs 10−4, 10−5, and 10−6 and at all rates (including at rates

6/11, 6/12, and 6/13, which are omitted from the figures to avoid clutter). This ensemble

has the advantages of a good, if not the best, threshold due to the punctured variable node

(See Fig. 1.3.) and a good upper bound on the minimum distance at all rates (See Fig. 1.2).

P1, which has the best ACE value at rate 6/15, performs better than P3 at even lower FERs

at rate 6/15.

The QC PBRL code family from the constrained, unpunctured, PBD ensemble P1, which

43



1 2 3 4 5 6
10

−8

10
−6

10
−4

10
−2

10
0

Eb/N0 (dB)

F
ra
m
e
er
ro
r
ra
te

(F
E
R
)

 

 
P5 (threshold-based, unconstrained, punctured)
P4 (threshold-based, constrained, punctured)
P2 (threshold-based, constrained, unpunctured)
P3 (new PBD method, constrained, punctured)
P1 (new PBD method, constrained, unpunctured)

Rate 6/15
Rate 6/9

Figure 1.5: Comparison of FER performance of codes obtained from ensembles Pi, i ∈ [5],
at rates 6/15 and 6/9

has the best minimum distance upper bound at all but two rates, performs well at lower

rates but not at higher rates. For example, at a higher rate of 6/10, the code from P1 has

an FER performance curve that is above the codes from P3, P4, and P5. At this rate, the

minimum distance upper bound of P1 becomes closer to that of the other ensembles (See

Fig. 1.2.) and performance is affected by the fact that P1 possesses a threshold that is not

competitive enough (See Fig. 1.3.) to deliver a waterfall curve that is competitive against

the punctured ensembles. However, the slope of the FER curve of the rate-6/10 code from

P1 at low FERs, as shown in Fig. 1.6, is suggestive of a performance that is better than that

of the threshold-based ensembles P2, P4, and P5 at lower FERs.

The ensembles with the three best thresholds across all rates are P3, P4, and P5, which

are all punctured. Of the three, the code family obtained from P3 resulted from the new

design method. It can be seen from the results in Figs. 1.5 and 1.6 that, even though P5

has the best threshold across all design rates (See Fig. 1.3.) the codes from the P5 ensemble

have a frame error rate slope that is not competitive when compared to P3. Code family
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Figure 1.6: Comparison of FER performance of codes obtained from ensembles Pi, i ∈ [5],
at rates 6/14 and 6/10

P4 is also not competitive with respect to P3 at low FERs despite both ensembles having

virtually the same set of thresholds across all design rates. Here we see the benefit of having

a better permanent bound when thresholds are similar.

The gap to BI-AWGNC capacity at an FER of 10−6 is shown in Fig. 1.7. The QC

PBRL code family of ensemble P3 achieves the best performance at all design rates. The

performance of this code family is about 1.5 dB away at all rates from the refined normal

approximation of [PPV10]. The figure shows that this code family is the only one of the five

to have a constant gap to BI-AWGNC capacity at all the design rates.

Recall from Fig. 1.3 that the newly designed PBRL protomatrices P1 and P3 have more or

less the same threshold as the threshold-based PBRL protomatrices P2 and P4, respectively.

Thus, both designs could have been equally chosen if threshold were the design metric.

However, looking at Fig. 1.2, we see that for lower rates P1 has a better permanent bound

than P2, and that P3 has a better permanent bound than P4. Looking at Fig. 1.7 we see that

the PBD method did a better job of identifying rate-compatible ensembles that produce QC
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Figure 1.7: Comparison of gap to BI-AWGNC capacity at a frame error rate (FER) of 10−6

and information block size of k = 198 for QC codes from the ensembles Pi, i ∈ [5], and the
refined normal approximation of [PPV10]

code families with improved low-FER performance at short block-lengths.

1.7.2 Empirical Codeword Weight and Non-Convergence Spectra

In order to better understand the performance gains we obtain through the PBD method,

we analyzed the empirical codeword weight spectrum and the non-convergence set spectrum

of the codes we constructed. An undetectable error in the iterative decoding process occurs

when the decoder converges to an incorrect codeword. A detectable error occurs when the

decoder does not converge to any codeword within the given maximum number of iterations.

For every simulation instance, iterative decoding terminates with one of three outcomes:

the decoder converges to the correct codeword (no error), or the decoder does not converge

(detectable error), or the decoder converges to an incorrect codeword (undetectable error).

In case the decoder converges to an undetectable error, we make note of the weight of

the incorrect codeword to which the decoder converged. The empirical frequencies with
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Figure 1.8: Comparison of frequency of convergence to incorrect codewords of the rate-6/12
code from ensembles P3, P4, and P5 at an Eb/N0 of 3.5dB

which the decoder incorrectly converges to the possible (codeword) weights is the empirical

codeword weight spectrum.

A detectable error usually occurs due to non-codewords in an LDPC code such as stopping

sets, trapping sets, etc. It is a difficult problem to enumerate or identify all non-codewords,

but we capture the essence of these graphical objects through what we call the empirical

non-convergence set spectrum. For each simulation instance, we track the weight of the

smallest set of variable nodes that fail to converge to their correct values and report this

weight for simulations that culminated in non-convergence. We call the smallest such non-

empty set in every simulation instance the non-convergence set. In case a detectable error

occurs, it means that the decoder has operated over its maximum number of iterations and

at the end of every iteration the decoder encountered some variable nodes that are in error.

The empirical frequencies with which the decoder “gets stuck” in non-convergence sets of

various weights is the empirical non-convergence set spectrum.

Figs. 1.8 and 1.9 depict the empirical codeword weight spectrum and non-convergence set

spectrum for the rate-6/12 code obtained from the punctured ensembles P3, P4, and P5 at

an Eb/N0 of 3.5dB. It is seen from these figures that the code from ensemble P3 possesses the

most favorable spectra of the three in terms of the graphical structures that dictate low-FER

performance. P3 was obtained using the PBD method, which maximizes an upper bound on

the minimum distance.
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Table 1.1: Minimum Distance Upper Bounds (in parenthesis) and Empirical Smallest Code-
word Weights Obtained from Simulations of Code Families from Pi, i ∈ [5], at Five Design
Rates

Ensemble
Design rate

6/10 6/11 6/12 6/14 6/15

P1 11 (19) 13 (24) 17 (28) 21 (36) 24 (40)
P2 11 (19) 14 (24) 16 (24) 21 (28) 22 (28)
P3 13 (20) 15 (24) 18 (28) 20 (36) 21 (36)
P4 12 (12) 14 (16) 16 (20) 18 (24) 21 (28)
P5 12 (12) 12 (12) 12 (12) 16 (16) 20 (20)

Note that the permanent bound is an upper bound on the distance, and the actual

minimum distance of the code will often be below this bound. Table 1.1 shows the minimum

distance upper bounds (in parenthesis) along with the empirical smallest codeword weights

obtained from simulation for the five code families at five design rates.

Any upper bound on the minimum distance is also an upper bound on the size of the

smallest stopping set of the code and more generally on the smallest size of other non-

convergence sets. This is a critical relationship at short block-lengths because the more

small stopping sets (and other such objects) there are in a code, the more often the decoder

gets stuck in configurations that lead to detectable errors. The point of the new code design
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method for short block-lengths is not that the designed codes will have the permanent bound

as their distance. The goal is merely that by seeking to maximize this bound we achieve a

better codeword weight spectrum and better non-convergence set spectrum than would be

obtained by focusing only on threshold as a design metric.

Remark 6. Note that PBRL ensembles P1 and P2 have exactly the same permanent bound

for rates 6/8, 6/9, 6/10, and 6/11 in Fig. 1.2. However, comparing the FER performance for

the codes from these two ensembles at rates 6/9 and 6/10 in Figs. 1.5 and 1.6, respectively, we

see that the codes from P1 perform better than those from P2. To understand this difference,

recall that the permanent bound that we compute is based entirely on the protograph and

that two codes with the same upper bound, and indeed even the same protograph, can have

different actual minimum distances and more generally different codeword weight spectra and

non-convergence set spectra.

In the case of P1 and P2 in particular, we note that these two codes do share the same

protograph for all rates greater than or equal to 6/11. However, P1 and P2 do not yield

identical codes for these rates because they were lifted differently. Our code design approach

only lifts the lowest-rate code, which implies the lifting of all higher rates. To investigate this

further, we ran a simulation to determine the empirical minimum distance for these rate-

6/10 codes and found that both codes had an empirical minimum distance of 11 but that

the code from P1 had a superior non-convergence set spectrum. In this case, the difference

in performance between P1 and P2 cannot be attributed to the protograph, but rather to a

better lifting. It is possible that a better lifting was facilitated by P1’s superior permanent

bound at the lowest rate.

While the above remark shows that two codes can have the same permanent bound (and

even the same protograph) but different performance after lifting, we emphasize that our

experiments have shown that when two codes have different permanent bounds, the code

with the superior permanent bound, provided its threshold is competitive, has displayed a

better low-FER performance.

49



1.7.3 Simulation Results for Ensembles Obtained using PHRC,2

We first provide a brief overview of the ensembles obtained using PHRC,2 (in (1.31)). For any

ensemble that has a property of “constrained”, we follow the same constraint we imposed

while designing ensembles using PHRC,1 in Section 1.6. That is, we constrain the last nc−ncH
rows of the protomatrix to have a weight of exactly 4 and do not allow any non-zero integer

other than 1 in these rows. Similarly, an ensemble that is “punctured” has its first column

punctured and PIRC is connected to the punctured column in every row.

The following are the IRC parts of the punctured and constrained ensembles obtained

using PHRC,2, where P6 is based on PBD method and P7 is threshold-based:

P6,IRC =



1 0 0 0 1 1 0 0

1 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0

1 0 0 1 0 0 0 1

1 0 0 0 1 1 0 0

1 0 0 1 0 0 1 0

1 0 0 0 0 1 1 0

1 0 0 0 1 0 0 1



, P7,IRC =



1 1 0 1 0 0 0 0

1 1 1 0 0 0 0 0

1 0 1 1 0 0 0 0

1 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0

1 0 1 0 0 1 0 0

1 0 1 0 0 0 0 1

1 1 0 1 0 0 0 0



(1.32)

The following is the IRC part of the threshold-based, punctured, and unconstrained ensemble
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P8:

P8,IRC =



1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 0 0 1 0

1 1 1 1 1 0 0 0

1 0 1 0 0 0 1 0



(1.33)

The following are the IRC parts of the unpunctured and constrained ensembles obtained

using PHRC,2, where P9 is based on PBD method and P10 is threshold-based:

P9,IRC =



1 0 0 0 1 1 0 0

0 1 0 0 0 0 1 1

0 0 1 1 1 0 0 0

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 0 1 0 0 1 1



, P10,IRC =



1 1 1 0 0 0 0 0

1 0 0 1 1 0 0 0

0 0 1 1 0 0 1 0

1 1 0 0 0 1 0 0

0 1 1 1 0 0 0 0

1 0 0 1 0 0 0 1

0 1 0 1 0 1 0 0



(1.34)

Figs. 1.10 and 1.11 depict the minimum distance upper bounds and the iterative decoding

thresholds of the corresponding ensembles. Unlike the results in Fig. 1.3, the constrained

ensembles designed using the PBD method (P6 and P9) do not have thresholds similar to

their threshold-based counterparts (resp. P7 and P10). In fact, the threshold difference,

which is around 0.14dB across the range of design rates, is generally considered to be quite

significant when comparing two codes designed for the BI-AWGNC.

We now present simulation results from the punctured ensembles P6, P7, and P8 to

demonstrate the effectiveness of the PBD method for low FER requirements. Although the
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Figure 1.10: Comparison of minimum distance upper bounds of ensembles Pi, 6 ≤ i ≤ 10,
obtained from HRC matrix PHRC,2 in (1.31)

threshold differences in Fig. 1.11 are not promising, the simulated gap-to-capacity results in

Fig. 1.12 show that PBD ensemble P6 is the best-performing punctured ensemble considering

all design rates, albeit with a worse, but negligible, performance at the lowest design rates

when compared to ensemble P7. Across results from both Section 1.7.1 and the current

section, we observe that QC-LDPC code families designed using the PBD method possess

the best slope in FER curves at the lowest FERs. Fig. 1.13 shows this to be true in the case of

ensembles P6, P7, and P8 at rate 6/15. The figure also shows that the rate-6/15 code obtained

from ensemble P6 possesses the best empirical smallest codeword weight. This comparison

suggests that designing threshold-based PBRL codes with the heuristic of constraining the

row weights of PIRC is a competitive alternative way to design short block-length PBRL

codes for low FER requirements. We note that this specific constraint was not considered in

the original work on PBRL codes [CVDW15], although the authors of [CVDW15] explored

similar constraints involving individual edge weights. Overall, this comparison also validates

our premise that the permanent bound identifies a better protomatrix when it comes to
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Figure 1.11: Iterative decoding thresholds over BI-AWGNC for ensembles Pi, 6 ≤ i ≤ 10,
obtained from HRC matrix PHRC,2

factors that affect low-FER performance at short block-lengths. Of course, designs that

include both threshold and the permanent bound have the potential to be even more effective

in those cases where the threshold difference is significant, but our initial results found that

looking at the permanent bound alone can be sufficient for short block-lengths.

1.7.4 New Short Block-Length PBRL Codes for the 5G Standard

In order to show the effectiveness of our new design method for short block-length appli-

cations, we consider the short block-length PBRL codes for k = 192 information bits as

53



0.35 0.4 0.45 0.5 0.55 0.6 0.65

Rate

0

1

2

3

4

5

G
a
p
to

B
I-
A
W

G
N
C

ca
p
a
ci
ty

(d
B
)

P6 (new PBD method, constrained, punctured

P7 (threshold-based, constrained, punctured

P8 (threshold-based, unconstrained, punctured)

Normal approximation for FER 10−6, k = 198

Figure 1.12: Comparison of gap to BI-AWGNC capacity at a frame error rate (FER) of 10−6

and information block size of k = 198 for RC families from ensembles P6, P7, and P8 and
the refined normal approximation of [PPV10]

specified in the 5G standard [Tec17]. The HRC matrix for this family of RC-LDPC codes is



1 1 1 1 0 0 1 1 0 0

1 0 0 1 1 1 0 1 1 0

1 1 0 1 1 0 1 0 1 1

0 1 1 0 1 1 1 0 0 1


, (1.35)

where the first two variable nodes are punctured and the highest design rate is 6/8.

As the first two variable nodes are punctured, we used the full-complexity search proce-

dure for the best set of rows based on the minimum distance upper bound until rate 6/15.

Our design constrained each added row to the PBRL protomatrix to have exactly the same

weight as the corresponding row of the PBRL protomatrix provided in the standard speci-

fication [Tec17]. Further, as for the connections between the punctured variable nodes and
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PIRC, we retained the same connections as used in the standard. We then used our CPEG-

ACE lifting algorithm to obtain a new set of k = 192 bits, QC PBRL codes with the same

block-lengths as in the 5G standard.

Figs. 1.14 and 1.15 show simulation results over BI-AWGNC comparing the codes in the

5G standard and our newly obtained codes with the same parameters. Fig. 1.14 shows that

the permanent-bound-based designs offer a better low-error-rate performance, once again

confirming the premise of this chapter and the potential for the new design approach to be

practically useful. A key point to note is that our design took only a few hours.

1.8 Concluding Remarks

This chapter proposed a new method to design PBRL QC-LDPC codes for short block-

lengths and low FERs. The metric used in the design is an upper bound on the minimum

distance of any QC-LDPC code that can be obtained from a protomatrix. By maximizing
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Figure 1.14: Comparison of FER performance of original 5G PRBL LDPC codes and the
new PBD method 5G PBRL LDPC codes at k = 192 information bits

this upper bound at each design rate of the rate-compatible family of codes, the chapter

obtained a significant improvement in the low-FER performance regime over PBRL codes

designed according to the original method of optimizing the iterative decoding threshold.

The chapter observed the combination of the original method of optimizing the iterative

decoding threshold with a constraint on the row weights of the incremental check nodes to

be an alternative way to design short block-length PBRL QC-LDPC codes. However, it

is seen that the new design method produces QC-LDPC codes with better slope of FER

performance at the lowest FERs when compared to the threshold-based methods.

Furthermore, the chapter identified a key reduction that is possible in the complexity of

computing the minimum distance upper bounds. This reduction in complexity yielded a very

low-complexity PBRL search procedure that has a constant run-time for each row added to

lower the design rate. The constant complexity is in contrast to the original, threshold-based

PBRL search procedure where the complexity of the search procedure grows with each new

added row. Finally, the chapter established the equivalence between the newly proposed

design method and an ILP and showed that the relaxation of this ILP is not exact.
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Figure 1.15: Comparison of FER performance of original 5G PRBL LDPC codes and the
new PBD method 5G PBRL LDPC codes at k = 192 information bits

1.9 Appendix

1.9.1 Proof of Theorem 5

Proof. The cases when S contains the index of no punctured column or contains the index of

exactly one punctured column are handled by the proofs of Theorems 3 and 4, respectively.

Therefore, let us assume that S contains the indices of npS ≥ 2 punctured columns (out of

np > 1). Let PIR,` denote the column in PIR that contains its only non-zero entry, 1, in row

`. Also, assume that ∑i∈S\P perm
(
PS\i

)
> 0.

Let us consider a sub-matrix Pi∗ , PS\i∗ with i∗ ∈ S \ P such that perm (Pi∗) > 0. This

means that there exists a permutation σ∗ such that ∏nc
j=1 Pi∗ (σ∗(j), j) > 0. If for such a

permutation σ∗(j) > ncH and j > npS , then this means we can replace an index in S of

an unpunctured column with an index of a column in PIR to obtain a new set Ŝ such that∑
i∈S\P perm

(
PS\i

)
≥ ∑

i∈Ŝ\P perm
(
PŜ\i

)
> 0, unless the latter is already present in S. In
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the same way, we can now iteratively obtain newer sets until we arrive at a set Ŝ1 such that

the following is true: For every sub-matrix PŜ1\i, i ∈ Ŝ1 \P with perm
(
PŜ1\i

)
> 0, for every

permutation σ such that ∏nc
j=1 PŜ1\i (σ(j), j) > 0, the conditions PŜ1\i (σ(j), j) > 0, j > npS ,

and σ(j) > ncH are satisfied only if PIR,σ(j) is already indexed in set Ŝ1.

Now, if Ŝ1 contains the indices of all the columns of PIR, then the proof is complete as∑
i∈S\P perm

(
PS\i

)
≥ ∑

i∈Ŝ1\P perm
(
PŜ1\i

)
> 0. If that is not the case, then we proceed to

do further replacements, but using the properties of Ŝ1 and the assumptions in the statement

of the theorem. Note that Ŝ1 contains the indices of all the punctured columns that were

indexed in S.

Consider a column PIR,`∗ whose index is not contained in Ŝ1. For any sub-matrix

PŜ1\i, i ∈ Ŝ1 \ P with perm
(
PŜ1\i

)
> 0, every permutation σ with a non-zero product∏nc

j=1 PŜ1\i (σ(j), j) has σ(j) = `∗ only when j ≤ npS . Pick any such sub-matrix and one such

permutation σ∗ for that sub-matrix. There is only one j∗ ≤ npS with PŜ1\i (σ
∗(j∗), j∗) > 0

and σ∗(j∗) = `∗ as we have assumed that only one punctured column has a non-zero entry

in every row of PIRC. Note that j∗ ≤ npS is the local index (i.e. within the sub-matrix) of a

column in the chosen PŜ1\i that is originally a punctured column in P . Let the index of this

punctured column in P be i∗1.

Now, similar to Case 2 of the proof of Theorem 4, assume that the matrix PŜ1\i∗1
, which is

not part of ∑i∈Ŝ1\P perm
(
PŜ1\i

)
, has a positive permanent. As the HRC part has a positive

design rate less than 1, npS ≤ np < ncH . Then, with the assumptions of the theorem that only

one punctured column has a non-zero entry in every row of PIRC, that all punctured columns

have all entries in their first ncH rows as non-zero integers, and the fact that npS ≤ np < ncH ,

we can find a sub-matrix PŜ1\i, i ∈ Ŝ1 \ P with a positive permanent such that there exists

a permutation σ with a non-zero product ∏nc
j=1 PŜ1\i (σ(j), j) and σ(j) = `∗ > ncH for some

j > npS . But, Ŝ1 is a set that cannot have this property and therefore our assumption that

PŜ1\i∗1
has a non-zero permanent is incorrect.

Now, with the assumption that PŜ1\i∗1
can only have a permanent that is equal to zero,
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we can replace i∗1 ∈ S with the index of PIR,`∗ to obtain a new set Ŝ2 that has one fewer index

missing of columns in the incremental redundancy part of P such that

∑
i∈Ŝ1\P

perm
(
PŜ1\i

)
≥

∑
i∈Ŝ2\P

perm
(
PŜ2\i

)
> 0. (1.36)

Now, Ŝ2 is another set of nc + 1 column indices that has the relationship with S that

∑
i∈S\P

perm
(
PS\i

)
≥

∑
i∈Ŝ2\P

perm
(
PŜ2\i

)
> 0. (1.37)

If Ŝ2 contains the indices of all the columns of PIR, then the proof is complete. Otherwise we

can follow through the same steps that we have applied to set S so far, and by iteratively

repeating these steps we can arrive at a set Ŝ∗ that contains the indices of all the columns

of PIR such that

∑
i∈S\P

perm
(
PS\i

)
≥

∑
i∈Ŝ∗\P

perm
(
PŜ∗\i

)
> 0. (1.38)
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CHAPTER 2

Linear Rate-Compatible Codes with Degree-1

Extending Variable Nodes Under Iterative Decoding

2.1 Introduction and Notation

Chapter 1 of this dissertation introduced a new design method for PBRL codes. This chapter1

studies decoding properties of PBRL codes and questions whether the extending structure

based on degree-1 variable nodes is optimal or not in the threshold sense. Though the

objective of this chapter is to focus on PBRL codes at its core, the discussion applies to a

more general class of codes; we first introduce this general class of codes in the following.

2.1.1 Rate-Compatible Extension with Degree-1 Variable Nodes

Let Hm×n denote the parity-check matrix of a binary linear code of length n. The m rows

of the parity-check matrix are called the check nodes and the n columns are called the

variable nodes, as defined usually in literature on LDPC codes (See [RU01] and Chapter

1). The degree of a node is the number of edges emanating from a node in the Tanner

graph representation of the parity-check matrix. Our focus in this chapter is on LDPC codes

[Gal63], although some of the results in this chapter are applicable for any linear code with

the structured considered in this chapter.
1Almost all of this chapter was presented at the 2018 IEEE International Symposium on Information

Theory (ISIT) [RWD18].
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We consider linear codes that possess a special structure in their parity-check matrix H.

This structure is essentially a generalization of the PBRL structure to binary linear codes.

Specifically, let HHRC denote the parity-check matrix of the code of the highest rate in an

RC code with extension. Let every variable node that is transmitted to lower the rate of the

code be of degree 1. The parity-check matrix of the RC code at subsequent lower rates has

the following general structure:

H =

HHRC 0

HIRC I


m×n

(2.1)

Here, 0 and I represent the all-zeros and identity matrices of appropriate sizes. Let the size of

HHRC be mH×nH . IR variable node i, nH +1 ≤ i ≤ n, is generated as the linear combination

(XOR) of HRC variable nodes that check node mH + i is connected to in H. The sub-matrix

HIRC represents the connections involved in generating the IR symbols, where IRC stands for

"incremental redundancy code". Let us call any parity-check matrix with the structure in

(2.1) a Raptor-like parity-check matrix, or simply a raptor-like (RL) matrix. For simplicity,

we use the term “IRC check node” to describe a check node connected to any IR variable

node.

The variable nodes in the initial transmission (the first nH columns of H) could also

contain punctured nodes. The rate r of a parity-check matrix of sizem×n with n0 punctured

variable nodes satisfies r ≥ (n−m)/ (n− n0), with equality whenever the matrix is full-rank.

Two well-known classes of codes with RL matrices are Shokrollahi’s Raptor codes [Sho06]

and PBRL codes. Raptor codes with a specific degree distribution to form random connec-

tions in HIRC and a good-enough HHRC achieve the capacity of any binary erasure channel

(BEC) [Sho06]. These codes also have good performance over any memoryless symmetric

channel [ES06]. PBRL codes, designed for simplicity and low encoding complexity for physi-

cal layer transmission, have been shown to have an excellent iterative decoding threshold and

performance over BEC, binary symmetric channel (BSC), and binary-input additive white-
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Gaussian noise channel (BI-AWGNC). PBRL codes have a good frame error rate (FER)

performance across the entire family of design rates over both short and long block-lengths:

see [CVDW15] and Chapter 1 for BI-AWGNC and [VDW15] for BEC.

2.1.2 Iterative Decoders and Convergence

In this chapter, we consider transmission over the BEC, BSC, and BI-AWGNC with iterative

decoding at the receiver (See [RU01] for iterative decoding). The input to the iterative

decoder is the following set of log-likelihood ratios (LLRs):

L̂vi = log
(
P [vi = 0 | yi]
P [vi = 1 | yi]

)
, 1 ≤ i ≤ n, (2.2)

where vi is the input to the channel and yi is the output of the channel corresponding to vi.

For the BEC, the iterative decoder that we consider is the peeling decoder [LMSS01], for

which we do not need the description in terms of the LLR values. The output from a BEC

is either the transmitted bit or an erasure. A peeling decoder process performs the following

operation repeatedly: If there is a check node with all but one known variable node value, set

the missing variable node to be the XOR of its known message bits. The process terminates

if there are no such check nodes.

For decoders that operate based on LLR values, we consider two specific methods: belief

propagation (BP) and min-sum decoding [RL09]. Let the message during iteration ` from

variable node vi, 1 ≤ i ≤ n, to its neighboring check node cj, cj ∈ Nvi , be denoted L`vi→cj ,

where Nvi denotes the set of neighboring checks of vi. Similarly, let the message during

iteration ` from check node cj, 1 ≤ j ≤ m, to its neighboring variable node vi be denoted

L`cj→vi , vi ∈ Ncj . Every iteration ` ≥ 1 proceeds with check nodes processing and trans-

mitting messages and ends with variable nodes processing and transmitting messages. The
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initialization messages are

L0
vi→cj = L̂vi , cj ∈ Nvi , 1 ≤ i ≤ n . (2.3)

For both BP and min-sum decoding, the variable-to-check update function is given as

L`vi→cj =
∑

cs∈Nvi\cj

L`cs→vi + L̂vi . (2.4)

Let φ(x) be defined as

φ(x) = log
(
ex + 1
ex − 1

)
, x ∈ (0,∞) . (2.5)

Note that φ(x) takes values in (0,∞) and satisfies φ(x) = φ−1(x). In the case of BP, the

check-to-variable update function is given as follows:

L`cj→vi =
∏

vs∈Ncj \vi

sign
(
L`−1
vs→cj

)
·

φ

 ∑
vs∈Ncj \vi

φ
(
|L`−1

vs→cj |
) (2.6)

The check-to-variable update function of the min-sum decoder is an approximation of (2.6):

L`cj→vi =
∏

vs∈Ncj \vi

sign
(
L`−1
vs→cj

)
· min
vs∈Ncj \vi

|L`−1
vs→cj | (2.7)

The convergence of the iterative decoder in a finite number of iterations, in practical

implementations, is checked the following way: At the end of each iteration ` ≥ 1, the

variable nodes compute their overall LLR value as

L`vi =
∑

cj∈Nvi

L`cj→vi + L̂vi . (2.8)
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Each variable node then makes the following hard decision:

X̂i =


0, if L`vi ≥ 0,

1, if L`vi < 0.
(2.9)

Definition 2 (Practical convergence criterion). The decoder is said to have converged at the

end of iteration ` if the hard decisions X̂i, 1 ≤ i ≤ n, identify a codeword of Hm×n.

Other Notation: We use ∞i as shorthand to denote a constant value of ±∞ associated

with an index i.

2.1.3 Organization

Section 2.2 discusses convergence properties of RL codes under iterative decoding and pro-

vides results from simulations of PBRL codes. Section 2.3 discusses the closeness of iterative

decoding thresholds of PBRL ensembles to thresholds of protograph-based RC extension

using the optimal degrees for extending nodes. Section 2.4 concludes the chapter.

2.2 Convergence in Iterative Decoding of Raptor-Like Matrices

In this section, we discuss convergence results for iterative decoding of RL matrices and

provide simulation data from PBRL codes to substantiate these results. The results of

Section 2.2.1 show that the practical convergence criterion (Definition 2) need only check

whether HRC variable nodes have converged to a codeword. Since the message can be

recovered using the HRC symbols, it is sufficient to recover the HRC codeword. Simulation

results in Section 2.2.2 show that checking only the HRC variable nodes for convergence in

a practical setting does not lead to a deterioration in FER performance of PBRL codes.

As an initial observation, if an RL matrix is used over the BEC with a peeling decoder,

it is apparent that if the HRC variable nodes have been recovered then the IR variable nodes
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are also recovered eventually by the peeling process. If the iterative decoder for BEC is

implemented analogous to LLR-based BP, then it is clear that once the HRC nodes are

recovered with a ±∞ value of overall LLR L`vi , any unrecovered IR node will be recovered

in the next iteration.

2.2.1 Convergence

The first result is an observation regarding the magnitude of messages from IRC check nodes

to HRC variable nodes.

Lemma 4. Consider the BP or the min-sum decoder. Let cj be a check node with neighbors

v1, v2, . . . . If v1 is of degree 1, then the outgoing message from cj to any of its neighbors

other than v1 during any iteration ` is bounded in magnitude.

Proof. In the case of the check-to-variable update equation (2.6) in BP, since φ(x) is positive

and monotonically decreasing with x, for any vi 6= v1 and for any ` ≥ 1

φ

 ∑
vs∈Ncj \vi

φ
(
|L`−1

vs→cj |
) ≤ φ

(
φ
(
|L`−1

v1→cj |
))

(2.10)

= |L`−1
v1→cj | = |L̂v1|. (2.11)

The proof for min-sum decoding is similar.

Using Lemma 4, we now show a result in the infinite iterations case for convergence as

defined in Definition 2.

Theorem 6. Let the HRC variable nodes of an RL matrix under BP or min-sum decoding

satisfy lim`→∞ L
`
vi

= ∞i, 1 ≤ i ≤ nH , for some set of ∞i values for 1 ≤ i ≤ nH . Then, the

IR variable nodes will also satisfy lim`→∞ L
`
vi

= ∞i, nH + 1 ≤ i ≤ n, for a set of ∞i values

for nH + 1 ≤ i ≤ n.
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Proof. The IRC check nodes are limited in the magnitude of messages that they can send in

any iteration to HRC variable nodes (Lemma 4). Because of the assumption that lim`→∞ L
`
vi

=

∞i, 1 ≤ i ≤ nH , the outgoing messages to the IRC check nodes from HRC variable nodes also

satisfy lim`→∞ L
`
vi→cj =∞i, cj ∈ Nvi , cj an IRC check node, 1 ≤ i ≤ nH . Therefore, the mag-

nitude of messages from IRC check nodes to IR variable nodes under both BP and min-sum

decoding satisfy lim`→∞ L
`
cj→vi = ∞i, cj an IRC check node, nH + 1 ≤ i ≤ n, vi ∈ Ncj , for

some set of∞i values for nH+1 ≤ i ≤ n. This implies that lim`→∞ L
`
vi

=∞i, nH+1 ≤ i ≤ n.

In fact, the sign of ∞i, nH + 1 ≤ i ≤ n, can be determined as the product of the signs

of ∞i that the variable nodes that IR node i is the XOR of. Therefore, if the HRC variable

nodes converge in the sense stated in the theorem to a codeword, then the IR nodes will

converge to satisfy the IRC check nodes.

The convergence to a codeword in the sense that all hard decisions as defined in (2.9)

satisfy all parity checks in the graph is used as a stopping criterion in practical decoding.

From a theoretical perspective, there is another type of convergence that is usually defined

in obtaining the iterative decoding threshold of a degree distribution of an LDPC code via

density evolution [RU01]. Assuming that the all-zeros codeword is transmitted, the latter

criterion requires L`vi→cj → +∞ for all variable nodes of an infinite Tanner graph. This

form of convergence can never be satisfied for variable nodes of degree 1 as we can see that

L`vi→cj = L̂vi ,∀`. The following observation combines the two forms of convergence to show

a result similar to Theorem 6:

Theorem 7. Let the HRC variable nodes of an RL matrix under iterative BP or min-sum

decoding satisfy lim`→∞ L
`
vi→cj = ∞i for all neighboring HRC check nodes cj of vi for some

set of ∞i values for 1 ≤ i ≤ nH . Then, the overall LLR values of the IR variable nodes will

satisfy lim`→∞ L
`
vi

=∞i, nH + 1 ≤ i ≤ n, for some ∞i values.

Proof. Consider an HRC variable node vi. The condition lim`→∞ L
`
vi→cj = ∞i for all neigh-
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boring HRC check nodes cj of vi means that for every such check node cj

lim
`→∞

∑
cs∈Nvi\cj

L`cs→vi =∞i. (2.12)

For vi, denote the set of neighboring HRC check nodes NH
vi
. Now, since the messages from

the IRC check nodes to the HRC variable nodes are bounded in magnitude,

lim
`→∞

∑
cs∈NHvi \cj

L`cs→vi =∞i. (2.13)

Let |NH
vi
| , dHvi , the degree of variable node vi in the highest rate code. Since

L`vi =
∑
cj∈NHvi

∑
cs∈NHvi \cj

L`cs→vi
dHvi − 1

+
∑

cj∈Nvi\NHvi

L`cj→vi + L̂vi , (2.14)

we can see that L`vi → ∞i as ` → ∞. By now applying Theorem 6, we arrive at the

result.

Theorem 7, in fact, shows the following general result:

Corollary 1. Let the non-degree-1 variable nodes of a parity-check matrix under iterative

BP or min-sum decoding satisfy lim`→∞ L
`
vi→cj = ∞i for all neighboring check nodes cj of

vi that do not have as neighbors any degree-1 variable node, for some set of ∞i values for

1 ≤ i ≤ n. Then, the overall LLR values of all the variable nodes will satisfy lim`→∞ L
`
vi

=

∞i, 1 ≤ i ≤ n, for a set of ∞i values.

The results of this section have shown that, in the case of infinite iterations it suffices to

consider the convergence of only the HRC variable nodes. We end the discussion by providing

a further thought on why it may be sufficient to be concerned only with the convergence of

the HRC variable nodes from the perspective of reducing the average number of iterations
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in the implementation of a decoder. Let Ai be the event that a codeword is selected by the

hard decisions of (2.9) satisfying all (i.e. both HRC and IRC) check nodes and that variable

node i is decoded in error. It can be seen that


n⋃

i=nH+1
Ai

 =⇒
{
nH⋃
i=1

Ai

}
. (2.15)

That is, if a codeword satisfies all (i.e. both HRC and IRC) parity checks and there is an

error in the IR variable nodes, then there must also be an error in the HRC variable nodes.

Therefore, if the HRC variable nodes satisfy the HRC parity checks in some iteration ` and

those HRC variable nodes identify the correct HRC codeword, then the IR nodes will be

correct if all (i.e. both HRC and IRC) parities check according to the hard decision of (2.9)

in some later iteration `+ i and the HRC hard decisions remain as they were in iteration `.

This means that for those RL matrices with a very low probability of converging to the

wrong HRC codeword overall, one would save on the number of iterations performed while

decoding the received LLR values if the implementation does not wait until all the parities

check and accepts the HRC hard decisions if they converge to a codeword according to the

hard decisions of (2.9). As an aside, note that it is also true that if there are errors in the

HRC variable nodes upon decoding to a codeword by checking all parities of H, then it does

not necessarily mean that there is an error in the IR nodes.

2.2.2 Convergence and Frame Error Rates of PBRL Codes

We consider the specific PBRL ensemble referred to as P3 in Chapter 1 over BI-AWGNC

for the results presented in this section, but we observe the same behavior with other PBRL

ensembles as well. Ensemble P3 has an HRC protograph PHRC of rate 6/7 and an overall

protograph P with the lowest rate of 6/15. The design rates of the ensemble are 6/(7+i), 0 ≤

i ≤ 8.

Fig. 2.1 shows the FER under BP decoding of a code at rate 6/9 from ensemble P3. A
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Figure 2.1: Comparison of FER between criteria C1 and C2 for a rate-6/9 PBRL code from
ensemble referred to as P3 in Chapter 1

frame is said to have been decoded in error if either the decoder converges to an incorrect

codeword or fails to converge to a codeword within a set maximum number of iterations.

With a maximum of 100 iterations, the figure shows the performance of the code under two

convergence criteria considered after each iteration. The first criterion, called C1, accepts

a set of hard decisions only if all the parities of the code check and the second, called C2,

requires only the HRC check nodes to be satisfied to accept a decoding decision. We see

that there is no difference in the performance between the two criteria. This figure, and

performances we have observed with other PBRL codes, show that it may suffice to consider

the convergence of only the HRC variable nodes after each iteration.

Fig. 2.2 shows the histogram of number of iterations required for convergence to a code-

word under the criteria C1 and C2 for the same code at rate 6/9 and an Eb/N0 of 4dB. The

figure shows only iterations 1 through 10 on the x-axis for clarity of presentation. At Eb/N0

of 4dB, the average number of iterations was observed to be 3.67 under criterion C1 and

3.30 under C2. As another example, the code at rate 6/12 of the ensemble converged in an

average of 5.39 iterations under C1 and 4.44 iterations under C2 at an Eb/N0 of 3dB. The

savings in the average number of iterations presented here for the two codes are small when

compared to the maximum of 100 allowed iterations. However, even a small improvement
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Figure 2.2: Number of decoding convergences to a codeword with criteria C1 and C2 for the
code whose performance is shown in Fig. 2.1; Eb/N0 = 4dB

is crucial when it comes to high-throughput decoder implementations in practice where the

maximum number of iterations is typically a number such as 10.

Complexity Savings: Convergence criterion C2 has two advantages over C1. One benefit

is that we do not need to compute the overall LLR values Lvi of the IR variable nodes after

each iteration. The second benefit is the increased throughput due to fewer average number

of iterations performed at the decoder with no deterioration in the performance of the code.

2.3 Comparison of Thresholds of PBRL Protographs to

Optimally Extended Protographs

A parity-check matrix with a lower-triangular sub-matrix instead of the identity matrix in

an RL code defined by (2.1) can be transformed into an RL matrix by elementary row

operations of the last m−mH rows of H. Therefore, when it comes to maximum-likelihood

(ML) decoding over a binary-input memoryless symmetric output channel, removing the

requirement of the identity matrix structure does not provide any benefit while constructing

an extended RC code. That is, an RC code with extending variable nodes of higher degrees

is equivalent under ML decoding and in the sub-space spanned by the code to an RL code
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Figure 2.3: Iterative decoding threshold over BI-AWGNC: threshold-optimal PBRL exten-
sion vs. threshold-optimal RC extension of PHRC in (2.16)

(with only degree-1 extending variable nodes) with a possibly different HIRC.

In this section, we explore whether allowing a lower-triangular sub-matrix in the extended

RC protograph (and hence in the lifted code) provides significant benefits for a protograph

ensemble in terms of the iterative decoding threshold. The PBRL design procedure, as

proposed in [CVDW15], obtains a PBRL rate-compatible protograph the following way:

Given an HRC protograph, the objective is to add rows to the protograph to lower the rate

by keeping all previously obtained rows fixed. This is done while optimizing the iterative

decoding threshold of the protograph over the channel under consideration.

Here, we begin with the HRC protograph

PHRC =

2 1 2 1 2 1

1 2 1 2 1 2

 (2.16)

and optimize the entries of PIRC by considering values of 0 and 1. The HRC protograph

(2.16) has a design rate of 4/6 when there are no punctured variable nodes and has a design

rate of 4/5 when the first column is punctured; we consider both cases. We assume BI-

AWGNC and BSC here; the results for BEC are similar and are omitted. For each channel,

we obtain the following optimized protograph ensembles: P
(p)
RL, P

(u)
RL , P

(p)
T , P

(u)
T , where the
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Figure 2.4: Iterative decoding threshold over BSC: threshold-optimal PBRL extension vs.
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subscript identifies whether the protograph is raptor-like (RL) or lower-triangular (T) and

the superscript indicates whether the first column is punctured (p) or unpunctured (u).

Figs. 2.3 and 2.4 depict the resulting thresholds. The results show that when the pro-

tograph (2.16) has no punctured variable nodes there is no benefit (in terms of threshold)

in allowing extending variable nodes with higher degree. With the presence of a punctured

variable node there is some benefit, but the threshold values of P (p)
RL and P

(p)
T are close to

each other. The figures show that there is a rate at which the difference in thresholds

is noticeable. We observed that if we increased the size of the HRC protograph by using

more variable nodes and the same number of check nodes, the rate at which this noticeable

difference occurs increases and the thresholds of P (p)
RL and P (p)

T are close at the other rates.

2.4 Concluding Remarks

This chapter discussed properties of raptor-like codes. We showed that the practical con-

vergence criterion after each iteration need only check whether the HRC variable nodes have

converged. We provided evidence from PBRL codes that such a decoder shows no deteriora-

tion in performance in terms of the frame error rate, converges in a fewer iterations, and has

a lower complexity. We also presented iterative decoding threshold results that demonstrate
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that PBRL codes are very close in terms threshold to extension using the threshold-optimal

lower-triangular connections for the incremental variable nodes of the protograph.
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CHAPTER 3

Universal Rate-Compatible LDPC Code Families for

Any Increment Ordering

Recall from Chapters 1 and 2 that an RC code family supports successively lower code rates

by sending specific increments of additional redundancy at each rate. That is, the order

of the increments is fixed. However, in some multi-hop communication systems and also in

recently proposed inter-frame coding, the order in which the decoder of the RC code receives

the increments is not predetermined. A different ordering of the increments at the decoder

may change the codes of various rates.

This chapter1 seeks RC codes that are universally good over all increment orderings.

We call RC codes satisfying this requirement universal for any increment ordering (UIO)

codes. It turns out that PBRL codes (See Chapters 1 and 2) are well suited to tackle this

requirement. We design PBRL code ensembles for UIO codes using protograph thresholds

as components of two design metrics. One metric seeks codes that, at each code rate, have

exactly the same frame error rate for all increment orderings. The other metric sacrifices

strictly identical performance for every ordering to seek codes that achieve the best possible

throughput in a variable-length setting with random increment ordering, as would occur

with inter-frame coding. Simulation results of UIO-PBRL codes from the new ensembles

show that our designs satisfy the two metrics.
1Almost all of this chapter was presented at the 2016 9th International Symposium on Turbo Codes and

Iterative Information Processing (ISTC) [RVDW16].
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3.1 Introduction

This chapter, which continues the exploration PBRL codes, is motivated by Zeineddine and

Mansour’s recently proposed inter-frame coding [ZM16], which works as follows: A certain

number of message packets is to be transmitted. They are each coded separately using an

RC code and the highest-rate parts are sent out. Along with this, linear combinations of

increments are also transmitted, where each of the increments for a combination comes from

the RC code for a different packet. At the receiver, whenever a channel packet is decoded

successfully, all increments of its RC code become known and are used to reveal (from the

linear combinations) new increments for the remaining packets. These new increments lower

the rate of their corresponding RC-coded packets, hopefully allowing some of them to be

decoded so that the process iterates and recovers all the message packets.

The decoder of the RC codes in an inter-frame code [ZM16] is not guaranteed to see

a specific ordering of its increments at each code rate. Therefore, in order to support a

practical implementation of the scheme, which was not considered in [ZM16], we need an

RC code that performs well over all increment orderings. We call RC codes satisfying this

requirement universal for any increment ordering (UIO) codes. It was noted in [ZM16] that

such codes had yet to be investigated in literature.

As an aside, [ZM16] also assumes an unrealistic distribution of successful decodings as

a function of rate-compatible code block-length. The work of Wang et al. [WRW17] builds

on the work [ZM16] and provides a practical inter-frame code construction. The authors

of [WRW17] use a convolutional code as the highest-rate code for all component codes and

increments of the component codes are linearly combined using a degree distribution de-

signed carefully using differential evolution. The authors of [WRW17] incorporate the actual

observed empirical distribution of success decodings as a function of the rate-compatible

convolutional code block-length.

This chapter designs UIO codes with PBRL LDPC structure via two design metrics.
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The first metric seeks codes that have, at each rate, the same FER performance for every

increment ordering. This metric reflects the key assumption of the throughput analysis of

inter-frame coding in [ZM16] that at each rate the RC codes in an inter-frame code will

perform exactly the same for any increment ordering. That is, their analysis considered only

the number of increments received. Our design for this metric results in a threshold penalty

of at most 0.4 dB compared to the original PBRL ensemble of Chen et al. [CVDW15] for

rate-compatibility in the usual sense, which was designed to have the best threshold at each

rate.

The second metric sacrifices identical performance for every increment ordering to obtain

RC codes with the best possible throughput. Here the focus is on enabling early successful

decoding by minimizing the average protograph threshold over all orderings at each rate.

This led to the best throughput in simulations where increments are provided to the decoder

in a random order, as would occur with inter-frame coding.

While inter-frame coding is a motivation to consider rate-compatibility for any increment

ordering, there are other scenarios where UIO codes may be deployed. A receiver may

receive the incremental packets of an RC code from different relays where the relays might

be susceptible to complete failure. In this case, a UIO code can guarantee an FER if a certain

number of incremental packets are received, irrespective of what the incremental packets are

from the point of view of the original RC code.

3.1.1 Design choices and remarks

We focus on design rates 8/i, i ∈ [10, 16] in this chapter. We design binary codes for binary-

input additive white Gaussian noise channel (BI-AWGNC), with protograph iterative de-

coding thresholds computed using reciprocal channel approximation (RCA). For a review of

RCA as a one-dimensional approximation to density evolution of Richardson et al. [RSU01],

see Chen et al. [CVDW15] and Divsalar et al. [DDJA09]. We focus on long block-lengths

(k = 16384 information bits) to obtain codes that operate fairly close to their ensemble
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thresholds. We assume that the incremental bits are delivered in chunks corresponding to

each protograph variable node. The design heuristic provided in this chapter is applicable to

any memoryless symmetric channel, and the derived codes may be based also on non-binary

Galois fields.

Remark 7. A PBRL ensemble is completely specified by PHRC, and PIRC or a combination

of its rows (See Chapter 1). It is implicitly assumed that the overall protograph is formed by

appropriately including the necessary 0 and I matrices. Also, the degree-1 variable nodes in

PIRC do not depend upon each other. This facilitates the design of UIO-PBRL codes for the

first metric.

Remark 8. The threshold values computed in this chapter are the result of at least 1000

iterations of the RCA method (See [CVDW15]). Codes simulated are quasi-cyclic and have

a first-step lifting factor of 4 and a second-step lifting factor of 512. First-step lifting used

Hu et al.’s progressive edge-growth (PEG) algorithm [HEA05], and second-step lifting used

the circulant-PEG (C-PEG) algorithm. The ACE algorithm of Tian et al. [TJVW03] was

also used in both steps. Simulation results shown were obtained using a maximum of 200

iterations of full-precision, flooding, LLR-domain belief propagation. At least 100 errors were

collected for each FER point in any simulated Eb/N0 vs. FER graph.

The chapter is organized as follows: Section 3.2 presents ensembles for UIO-PBRL codes

designed for the two metrics and shows simulation results of the new UIO-PBRL codes

satisfying the requirements of the metrics. Section 3.3 concludes the chapter.

3.2 PBRL Ensembles for UIO-RC Codes

3.2.1 Long block-length PBRL ensemble of Chen et al. in [CVDW15]

Let us first recall how a PBRL ensemble for rate-compatibility in the usual sense is designed.

First, we select an PHRC with a degree distribution that has a good threshold and permits
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a low error floor. Then, each row of PIRC is chosen by keeping all previous rows fixed and

selecting edges for that row to obtain the best threshold possible while meeting constraints

designed to preserve good error floor performance. The specific constraints and the complex-

ity of the RCA algorithm dictate the overall complexity of this search. Note that, although

this is a greedy search, one can obtain excellent thresholds and FER performance at all rates

as demonstrated by Chen et al. in [CVDW15].

Let us first see how an original PBRL code from [CVDW15] behaves under different

orderings of its increments. Consider the PBRL ensemble of [CVDW15] that was designed

for long block-lengths with the best threshold at each rate. PHRC and PIRC ((13) and (14) in

[CVDW15]), up to rate 8/16, are

PHRC =


3 2 1 1 1 1 1 1 0 0 1

1 1 2 2 2 2 2 2 2 1 1

2 0 0 0 0 0 0 0 1 2 0

 ,

PIRC =



2 1 2 1 0 0 0 0 1 0 0

1 2 1 0 1 0 0 0 0 1 0

2 0 0 2 0 1 0 0 0 0 0

1 1 0 0 0 0 1 0 0 2 0

2 2 0 0 0 0 0 1 0 0 0

1 0 0 0 0 2 0 0 0 2 0



.

(3.1)

The design heuristics to obtain good thresholds for all code rates through the search in

[CVDW15] led to the puncturing of the first protograph variable node in (3.1). We adopt

the same principle in this chapter; our ensembles also have the first variable node punctured.

For the PBRL ensemble of (3.1), Table 3.1 shows the statistics of thresholds at each rate

obtained by including various combinations of rows (corresponding to different orderings of

the increments) of PIRC with PHRC. The number of ensembles at rate 8/(10 + i), 0 ≤ i ≤ 6

is
(

6
i

)
. From the table, we see a range of thresholds for all but the highest and lowest rates,
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Table 3.1: Statistics of RCA Thresholds (Eb/N0) over BI-AWGNC Considering PHRC and
Various Combinations of Rows of PIRC in (3.1) for Rates 8/i, 10 ≤ i ≤ 16. “Sh” Is the
Shannon Limit.

Rate Sh (dB) Min. Max. Ave. Std. Dev. Max-Min

8/10 2.04 2.179 2.179 2.179 0 0
8/11 1.459 1.579 2.044 1.809 0.16 0.465
8/12 1.059 1.199 1.897 1.49 0.195 0.698
8/13 0.762 0.897 1.528 1.172 0.174 0.631
8/14 0.53 0.662 1.153 0.86 0.135 0.491
8/15 0.342 0.462 0.668 0.568 0.083 0.206
8/16 0.187 0.308 0.308 0.308 0 0

with the maximum gap being 0.698 dB. The ensemble in (3.1) shows considerable variation

in threshold for different orderings of the increments. Simulation results of the code obtained

from this ensemble in [CVDW15] at rate 8/11, shown in Fig. 3.1, illustrate how the threshold

variation manifests itself in FER performance.

3.2.2 Design metric 1: UIO-PBRL codes that have, at each rate,

identical FER performance for every ordering

This subsection seeks codes that have, at each rate, identical FER performance for every

increment ordering. This metric requires that the thresholds of various ensembles at each

rate formed using the different possible sets of rows of PIRC be as close as possible to each

other. This means that the rows of PIRC need to be chosen such that the threshold gap at

each rate (as in Table 3.1) is as small as possible. Also, to be considered a good ensemble,

the minimum threshold at each rate should be as small as possible. A small threshold gap

at each rate mandates some symmetry in the ensemble, and the minimum threshold at each

rate depends upon the degree distribution.

We restrict the maximum non-zero value in PIRC to be equal to 2 in order to reduce

the search complexity. Given an PHRC, initial attempts to produce an PIRC included making
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Figure 3.1: Dependence of a PBRL code on the ordering of its increments

sure that each row of PIRC has the same weight and that all rows have the same number of

different types of non-zero values. We restricted the first column of PIRC to either have all

ones or all twos. The all-twos designs led to codes with poor FER performance. Our initial

exhaustive search led to the following:

PHRC =


3 1 1 1 1 1 1 2 2 2 0

1 1 2 2 2 2 2 1 1 1 0

2 0 0 0 0 0 0 0 0 0 1

 ,

PIRC =



1 0 0 0 0 1 1 1 1 1 0

1 0 0 0 1 0 1 1 1 1 0

1 0 0 0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0 1 1 0

1 0 0 0 1 1 1 1 0 1 0

1 0 0 0 1 1 1 1 1 0 0



.

(3.2)
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Table 3.2: Statistics of RCA Thresholds (Eb/N0) for Ensemble in (3.2)

Rate Sh (dB) Min. Max. Ave. Std. Dev. Max-Min

8/10 2.04 2.393 2.393 2.393 0 0
8/11 1.459 1.892 1.896 1.894 0.0022 0.004
8/12 1.059 1.494 1.502 1.498 0.0026 0.008
8/13 0.762 1.148 1.158 1.1539 0.0026 0.01
8/14 0.53 0.856 0.862 0.8596 0.002 0.006
8/15 0.342 0.640 0.642 0.641 0.0011 0.002
8/16 0.187 0.506 0.506 0.506 0 0

Notice that every row in PIRC is “equivalent” in that within PIRC two rows can be exchanged

and the matrix is still the same with a simple column exchange thereafter. Table 3.2 shows

the statistics of the ensemble in (3.2). The maximum of all threshold gaps is 0.01 dB

compared with 0.698 dB in Table 3.1.

Now, keeping PIRC the same as in (3.2), we present an ensemble with zero gap between

the thresholds at each rate:

PHRC =


3 1 1 1 1 1 1 1 1 1 0

1 1 2 2 2 2 2 2 2 2 0

2 0 0 0 0 0 0 0 0 0 1

 ,

PIRC =



1 0 0 0 0 1 1 1 1 1 0

1 0 0 0 1 0 1 1 1 1 0

1 0 0 0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0 1 1 0

1 0 0 0 1 1 1 1 0 1 0

1 0 0 0 1 1 1 1 1 0 0



.

(3.3)

By the virtue of apparent symmetry in the ensemble in (3.3) (taking into consideration

PHRC and PIRC together), it is clear that the threshold gap, Max.−Min., is zero at each rate.
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Table 3.3: RCA Thresholds (Eb/N0, decibel) for Ensemble in (3.3)

Rate 8/10 8/11 8/12 8/13 8/14 8/15 8/16
Sh 2.04 1.459 1.059 0.762 0.53 0.342 0.187
Thr. 2.462 1.934 1.518 1.156 0.842 0.606 0.474
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Figure 3.2: Gap to BI-AWGNC capacity – Ensembles in (3.1), (3.2), (3.3)

Table 3.3 presents the computed threshold at each rate.

Fig. 3.2 plots the gap to capacity of the original PBRL ensemble for long block-lengths

in (3.1) and the ensemble in (3.3). Also plotted are the gaps to capacity of the worst-case

threshold (Max.) for the PBRL ensembles in (3.1) and (3.2)

We simulated a code from the ensemble in (3.3), and the results are shown in Figs. 3.3

and 3.4. A zero threshold gap at each rate certainly seems to be a predictor of exactly the

same performance for every increment ordering. We observed the same at every rate, and

the results at other rates are not included for brevity. Note that the length of the code drawn

from the ensemble may play a role in the actual performance due to local graph effects. We

intend to investigate if similar results hold for much shorter block-lengths.
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Figure 3.3: Simulations of a UIO-PBRL code that show that the code has exactly the same
performance irrespective of the ordering of its increments

3.2.3 Design metric 2: UIO-PBRL codes with the best through-

put over all increment orderings for inter-frame coding

The metric of minimizing threshold gap does not necessarily maximize the throughput in

inter-frame coding. Our second design metric seeks codes that attempt to maximize through-

put in inter-frame coding by decoding as early as possible. The simulations in this subsection

are carried out according to how an RC code in an inter-frame code operates. The decoder

starts decoding at the highest rate. If it is unsuccessful, a randomly chosen increment be-

comes available to the decoder. The process is repeated until the decoder decodes successfully

or fails at the lowest rate. The throughput, in simulations, is the ratio of total number of

information bits delivered successfully to the total number of codeword bits sent over the

channel.

First, we compare the throughput of the original PBRL code for 16384 information bits
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Figure 3.4: Strictly identical performance at rate 8/12 for all 15 orderings

(ensemble in (3.1)) and a UIO-PBRL code designed according to the first metric with the

same PHRC as in (3.1). The results, in Fig. 3.5, show that the original PBRL code has a

higher throughput than the UIO-PBRL code at most channel SNRs. We do not provide

the ensemble for this UIO-PBRL code for brevity. It has a maximum threshold gap of 0.02

dB and a gap of 0 dB at rates 8/10, 8/11, 8/15, and 8/16. As each increment ordering is

equiprobable, one metric that affects throughput is the average threshold at each rate. We

found that the average threshold at each rate for the ensemble of the UIO-PBRL code is

greater than or equal to the average threshold of the ensemble of the original PBRL code

(Table 3.1).

Based on this, we modified the PBRL design process to obtain an ensemble with low

average thresholds. For this design, the PHRC is the same as in (3.1). The original PBRL

search designs PIRC one row at a time to avoid exponentially high complexity. We retained

this general procedure but widened our search space as follows: As each row is added, we
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Figure 3.5: Throughput comparison

considered the 3 best ensembles in terms of the threshold at that rate. That is, starting with

the PHRC at rate 8/10, we obtained 3 ensembles at rate 8/11, 9 at rate 8/12, and so on. We

discarded isomorphic ensembles in obtaining the 3 best ensembles at each rate for a given

matrix from the previous rate. From the resulting 729 ensembles, we obtained the ensemble

in (3.4) with the best average threshold for all rates except 8/16 (Table 3.4).

PIRC =



2 0 2 2 1 0 0 0 0 0 0

1 0 2 2 0 1 0 0 0 0 0

2 0 2 0 0 1 1 0 0 0 0

1 0 1 2 0 0 0 1 0 0 0

2 0 1 0 1 0 1 0 0 0 0

1 0 2 0 0 0 1 1 0 0 0



. (3.4)

Fig. 3.5 shows that this approach has led to the best throughput at each channel SNR.

Note that the two design metrics seem to be conflicting with each other. Also shown here is
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Table 3.4: Average RCA Threshold (Eb/N0, db) at Each Rate for Ensemble in (3.4) Compared
Against Original PBRL Ensemble in [CVDW15]

Rate 8/11 8/12 8/13 8/14 8/15 8/16
Avg. Thr., (3.4) 1.717 1.328 0.998 0.727 0.515 0.394

cf. Table 3.1, (3.1) 1.809 1.49 1.172 0.86 0.568 0.308

the throughput of the original PBRL code [CVDW15] when its incremental packets arrive

in order. Since the ensemble of this code has the best possible threshold at each rate, the

throughput of this code when its increments are appended in order is the maximum that

is possible for a PBRL code. Our code for metric 2 comes close to the best throughput at

many channel SNR values.

3.3 Concluding Remarks

We designed rate-compatible codes with universally good performance for any increment

ordering. The chapter used two design metrics to obtain such codes, which are called UIO

codes. One metric requires, at each rate, the same performance for all increment orderings.

The other metric sacrifices identical performance for every ordering to seek codes that have

the best average threshold at each rate.
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CHAPTER 4

On the Girth of (3,L) Quasi-Cyclic LDPC Codes based

on Complete Protographs

This chapter1 turns from PBRL codes away to general protograph LDPC codes. Consider

the problem of constructing (3, L) QC-LDPC codes from complete protographs. A complete

protograph is a small bipartite graph with two disjoint vertex sets such that every vertex in

the variable-node set is connected to every vertex in the check-node set by a unique edge.

This chapter analyzes the required lifting factor for achieving girths of six or eight in the

resulting quasi-cyclic codes with constraints on lifting. The required lifting factors provide

lower bounds on the block-length of such codes.

4.1 Introduction and Background

A protograph [Tho03] defines the family of codes that can be obtained from it by lifting and

many properties of the codes in the family depend on the graphical structure of the chosen

protograph. In this chapter, we consider the case where the protograph is a simple (has no

loops or multiple links between two vertices) and complete (every vertex in the variable-node

set is connected to every vertex in the check-node set) bipartite graph. QC-LDPC codes

obtained from simple and complete protographs are called conventional QC-LDPC codes

in [KB13]. The authors of [KB13] consider simple QC-LDPC codes in general, including the
1Almost all of this chapter was presented at the 2015 IEEE International Symposium on Information

Theory (ISIT) [RDW15a]. An open-source version appeared in [RDW15b].
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subset which are conventional.

The performance of LDPC codes is dictated, to a certain extent, by the girth of the

codes. Also, in the regime of short-to-moderate block-lengths, the minimum distance of an

LDPC code affects its performance in the error-floor region if the variable-node degrees are

small [RDVW14]. In this regard, the minimum distance of a protograph QC-LDPC code and

its girth are interrelated as suggested by the work in [SV12]. The works in [KB13, Fos04]

derive lower bounds on the required lifting factors (and thus block-lengths) for obtaining

various girths for QC codes constructed from protographs and provide the foundations for

this chapter. Works including [Fos04, KB13, KCY13, WYD08, HNK+06] have focused on

obtaining these bounds because they are of practical importance and have demonstrated

code construction techniques to obtain codes with as high a girth as possible.

We focus on the case of (3, L) protograph QC-LDPC codes. These are regular codes that

perform well over many rates. The chapter is organized as follows: Section 4.2 introduces

notation. Section 4.3 completely characterizes the lifting requirements to construct a (3, L)

code with girth 6 when the lifting factor is equal to L and gives an explicit construction

that achieves a girth of 6 for any possible value of L. Section 4.4 derives a bound (under a

constrained setting) on the lifting factor required to obtain a girth of at least 8. This bound

improves on the bounds in [KB13, Fos04]. Section 4.5 concludes the chapter.

4.2 Definitions and Notation

The protomatrices considered in this chapter have the form

Hprotomatrix =


1 1 1 · · ·

1 1 1 · · ·

1 1 1 · · ·


3×L

. (4.1)
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At places, the terms protograph and protomatrix are used interchangeably. Associated with

any protomatrix, the process of lifting to obtain a QC code is the replacement of every non-

zero entry z in the protomatrix by a sum of z circulant permutation matrices (CPMs) of

size N ×N with distinct support and every 0 in the protomatrix by an N ×N matrix of all

zeros. If the protomatrix is of size J × L then lifting yields a parity-check matrix H of size

JN × LN . Because our protomatrices are simple and complete, lifting replaces every entry

in the protomatrix with an N ×N CPM.

Definition 3 (Permutation-shift matrix [KB13]). The permutation-shift matrix P of a QC-

LDPC code constructed from a J×L protomatrix with entries at most equal to 1 is the J×L

matrix of permutation shift indices that are chosen for the non-zero entries of the protomatrix

during the process of lifting. With the lifting factor being N , an element 0 ≤ x ≤ N − 1 in

P corresponds to a CPM in the parity-check matrix H obtained via x circular shifts of the

rows of the identity matrix of size N ×N . The orientation (left or right) of the permutation

shifts is unspecified in this chapter without loss of generality (WLOG).

The cyclic group of integers modulo N , {0, 1, . . . , N−1}, is denoted Z/N . This is the set

of first N non-negative integers with addition modulo-N as the associated binary operation,

represented by xi + xj. Similarly, xi− xj = xi + (−xj) represents adding the inverse of xj to

xi. The order of a group is its cardinality. A permutation π is a bijective map of a finite set

of elements onto itself.

Definition 4. A permutation π of Z/N is said to have a fixed point if π(i) = i for any

i = 0, 1, . . . , N − 1.

4.3 On the Minimum Lifting Factor for Girth Greater Than or

Equal To 6

We consider the special case of this problem with the constraint that the lifting factor N

satisfies N = L. This is the least value of N for which one can possibly obtain a girth of g >
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4 [Fos04, KB13]. By looking at this special case we arrive at a combinatorial interpretation

to the problem of obtaining codes with girth at least 6 from complete protomatrices of size

J × L. Since N = L, we may use N and L interchangeably.

Works including [Fos04] have constructed codes via computer searches to show empirically

the existence of codes with girth g ≥ 6 for some odd values of N = L (including analytical

constructions for all primes; see [Fan00] also). We show analytically that for all odd values of

N = L, there exist (3, L) codes with girth g ≥ 6. [HNK+06] has established this result and

our contribution is a proof via combinatorial structures called complete mappings [Pai47]. We

provide an algebraic construction that produces codes with girth g = 6 for any odd N = L.

This construction includes, as a special case, the array-code based proof of [HNK+06] for

the (3, L) case.

Lemma 5 ([Fos04]). With the lifting factor being N , in any QC-LDPC code with a pro-

tomatrix with no entry larger than 1, a cycle of length ` (` even) in the Tanner graph of

the code can be equivalently described by a sequence of edges (e1, e2, . . . , e`) in the protograph

whose corresponding permutation shifts in P that are given as x1, x2, . . . , x` satisfy

∑̀
i=1

(−1)i+1xi = 0 mod N, (4.2)

where ei 6= ei+1 for all i ∈ {1, 2, . . . , ` − 1} and e1 6= e`. Consecutive pairs of consecutive

edges {ei, ei+1} for all i ∈ {1, 2, . . . , ` − 1} and {e`, e1} alternatingly lie in the same row or

same column of the protomatrix.

The elements of P are assumed to be in Z/N and thus “mod N" may not be mentioned

at most places that involve operations with elements from P .

Lemma 6 (Extension of [Fos04], Theorem 2.2). With a lifting factor of N = L, any

permutation-shift matrix P that could lead to g > 4 for a (3, L) code with a complete pro-
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tomatrix may be written WLOG as

P =


0 0 0 · · · 0

0 1 2 · · · N − 1

π(0) = 0 π(1) π(2) · · · π(N − 1)

 , (4.3)

where π has only one fixed point at π(0) = 0.

Proof. Irrespective of the 3L indices that are chosen for P , one can always apply circular

shifts to the row blocks and the column blocks of H (after lifting) to obtain an isomorphic

graph for which the first row and column have all-zero indices in P , as observed in [Fos04].

For girth g > 4, [Fos04] shows that no non-zero element can repeat in the same row or the

same column. Thus the non-zero entries in each of rows 2 and 3 are all unique within the

respective rows and the ordering of row 2 in (4.3) can be obtained WLOG by rearranging

the columns once we have 0’s in row 1 and column 1. To ensure that no column repeats a

nonzero value, the permutation cannot have any fixed point except π(0) = 0.

The preceding lemma implies that, WLOG, only L− 1 non-zero permutation shifts need

to be specified and these belong to the third row. As an example where repetition in the

same column prevents g > 4, the case of L = 2 leads to g = 4 as there is only one non-zero

element in Z/2. The probability that a permutation of a finite number of elements (N − 1)

has no fixed points asymptotically, as N →∞, equals 1
e
[MN08]. If we search randomly for

permutations of N − 1 non-zero elements to achieve a girth of g > 4, then the number of

permutations to be considered when constructing a code for large values of N − 1 is very

high but only approximately 36.8% of them will pass the preliminary test of not having a

fixed point.

Definition 5 (Complete mapping [Pai47, Slo]). A complete mapping of the cyclic group

(Z/N,+) is a permutation π which satisfies π(0) = 0 and that (0, π(1)−1, π(2)−2, . . . , π(N−

1)− (N − 1)) is also a valid permutation.
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Theorem 8. With a lifting factor of N = L, the parity-check matrix H of a code with a

complete protomatrix of size 3×L has a girth g > 4 if and only if the permutation π of Z/N

that specifies the third row of P in (4.3) is a complete mapping.

Proof. Consider any two columns of the shift matrix of (4.3) and form a 2× 2 sub-matrix of

rows 2 and 3 out of the chosen columns as

xi xj

xk x`

 , xk = π(xi), x` = π(xj).

From the general condition of (4.2) in Lemma 5, xi, xj, xk, x` lead to cycle(s) of length four

if and only if (iff)

xi − xk + x` − xj = 0. (4.4)

Rewriting the above, the girth is greater than 4 iff

(x` − xj)− (xk − xi) 6=0, (4.5)

which means that x` − xj 6= xk − xi should be satisfied for any xi, xj, xk, x` as considered

above. This is possible iff

(π(row 2)− row 2) (4.6)

describes a permutation (i.e. the sequence contains each distinct element in the group exactly

once), which occurs iff row 3 is a complete mapping.

Theorem 9. There exists a (3, L) quasi-cyclic LDPC code with a complete protograph lifted

by a factor N = L satisfying girth g > 4 iff L is odd.

Proof. From [Pai47], there exists a complete mapping of a finite abelian group of order N iff

the group does not possess exactly one element of order 2. When N is even, this condition
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is violated as one can verify that N
2 is the only order-2 element in the finite abelian group

Z/N . On the contrary, in finite groups Z/N of odd orders there exists no element of order 2,

according to Lagrange’s theorem on the order of elements in a finite group. This argument

in conjunction with Theorem 8 completes this proof.

The number of complete mappings of Z/N is documented in [Slo]. The first few terms

of this sequence as a function of N , from N = 1, 3, 5, . . . , are 1, 1, 3, 19, 225, 3441, 79259,

2424195, 94471089, 4613520889. For odd N = L all the complete mappings that yield

codes with girth g ≥ 6 lead to g = 6 since girth g ≥ 8 requires a higher lifting factor

(see Section 4.4). For odd N = L, random search might identify a complete mapping and

hence a g = 6 code, but the probability of any randomly selected mapping being complete

decreases quickly with increasing L. For instance, when L = 15 corresponding to a design

rate R = L−3
L

= 0.8 this probability is 2424195
14! = 0.000028 and when L = 17 and R = 0.8235

this probability is 0.000004 and so on. In the following we present a family of complete

mappings and thus a family of codes for any odd N = L,L ≥ 3 that have g = 6.

Corollary 2 (Product construction). Consider the following mapping for row 3 in (4.3)

with h ∈ {2, 3, . . . , N − 1}:

πp(i) = hi mod N, 0 ≤ i ≤ N − 1, (4.7)

where hi mod N is multiplication modulo-N of integers h and i. For N = L odd and N ≥ 3,

if h and h − 1 are each coprime with N , then πp is a complete mapping of Z/N and thus

leads to a (3, L) code with girth 6.

Proof. Note that since h is chosen to be coprime with respect to N , (hi mod N : 0 ≤ i ≤

N−1) is a valid permutation of Z/N . This is because hi−hj = h(i− j) 6= 0 mod N, ∀i 6= j

as h is not a factor of N . We need to further show that (4.4) from Theorem 8 has no solution.
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Writing (4.5), which is obtained from (4.4), for this permutation:

(x` − xj)− (xk − xi) 6= 0

⇐⇒ h(xj − xi)− (xj − xi) 6= 0, as xk = hxi, x` = hxj

⇐⇒ (h− 1)(xj − xi) 6= 0,

which is satisfied for this permutation for all xj 6= xi since h− 1 ≥ 1 is chosen to be coprime

with respect to N .

There exists such an h for every odd N ≥ 3. An example is h = N − 1 for which

P =


0 0 0 · · · 0 0

0 1 2 · · · N − 2 N − 1

0 N − 1 N − 2 · · · 2 1

 . (4.8)

Also, (3, L) array codes [Fan00, Fos04], for any odd L ≥ 3 (not necessarily prime), are a

special case of the preceding construction with h = 2 and thus have g = 6 [HNK+06].

Corollary 3. If N = L is even then there exists a (3, L) complete-protomatrix-based code

with girth equal to 4 whose Tanner graph has exactly N cycles of length four.

Proof. This follows from [Pai47], which proves that in case the order of a finite abelian group

is even then there exists an “almost complete" mapping π of the group such that the sequence

(0, π(1) − 1, π(2) − 2, . . . , π(N − 1) − (N − 1)) has exactly N − 1 distinct elements. Thus,

one element appears twice. This implies that there exists a mapping for the third row such

that only one 2× 2 block from the second and the third rows leads to N length-4 cycles.

As shown in [HNK+06], it can also be observed that if L is even then there exists a (3, L)

complete-protomatrix-based code with a girth of 6 if the lifting factor is N = L+ 1.

One can generalize the discussion so far to see that for the (J, L) case there could be a

code with g > 4 when the lifting factor is N = L only if there exist J − 2 distinct complete
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mappings of Z/N . This condition is necessary but not sufficient because the rows produced

by the J − 2 complete mappings also have to satisfy the following condition: Every pair

of the
(
J−2

2

)
rows indexed by {{i, j} : 3 ≤ i < j ≤ J} are such that row j is a complete

mapping of row i.

Consider the computer-search based Table 4.1 of [Fos04] (reproduced below). When

N = L = 9, the computer search could not find a (J, 9) code with girth g = 6 when J ≥ 4.

Using the previous paragraph, we can confirm that such a code does not exist. There are

225 complete mappings of Z/9. We can corroborate the result in this table since not even

one pair out of
(

225
2

)
pairs of complete mappings can satisfy the requirement that one row

in the pair is a complete mapping of the other.

Table 4.1: Smallest Value of N for which a (J, L) Code with Girth g ≥ 6 was Found in [Fos04]
Using Computer Search

L 4 5 6 7 8 9 10 11 12
J

3 5 5 7 7 9 9 11 11 13
4 − 5 7 7 9 10 11 11 13
5 − − 7 7 9 10 11 11 13

4.4 Towards a Tighter Bound on the Required Lifting Factor for

Girth ≥ 8 while L ≥ 4

Assuming L ≥ 4, it is known that the lifting factor N has to satisfy N > 2(L− 1) to obtain

a girth of g ≥ 8 for our (3, L) codes [Fos04]. In this section, we derive an improved bound on

this required lifting factor under a constraint by using an additive combinatorics formulation

of the problem. It is conjectured, for future investigation, that the bound holds without this

imposed constraint.

The following lemma states the necessary and sufficient conditions of [Fos04] for the

permutation-shift matrix P of a complete-protomatrix-based (3, L) code to achieve g ≥ 8.
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Lemma 7. For L ≥ 4, let L′ = L − 1 and the lifting factor be N . The permutation-shift

matrix

P =


0 0 0 . . . 0

0 x1 x2 . . . xL′

0 xL′+1 xL′+2 . . . x2L′

 (4.9)

leads to a girth of g ≥ 8 iff all the following conditions hold: With i, j ∈ {1, 2, . . . , 2L′},

1. xi 6= xj for all i 6= j and xi 6= 0 for all i.

Fixing i ≥ L′ + 1 and j = i− L′ (so that xi and xj are in the same column of P , with xi in

the third row):

2. xi − xj 6= −xk, where k ∈ {1, 2, . . . , L′} \ {j},

3. xi − xj 6= xk, where k ∈ {L′ + 1, L′ + 2, . . . , 2L′} \ {i},

4. xi − xj 6= xk − x`, where k ∈ {L′ + 1, L′ + 2, . . . , 2L′} \ {i}, ` ∈ {1, 2, . . . , L′} \ {j}, k 6=

`+ L′,

5. xi − xj 6= xk − x`, where k ∈ {L′ + 1, L′ + 2, . . . , 2L′} \ {i}, k = `+ L′.

Proof. Condition 1 is Theorem 2.4 of [Fos04], which yields the necessary condition N >

2(L− 1) = 2L′ for achieving g ≥ 8. Conditions 2 and 3 apply (4.2) to the first column and

any other two columns of the shift matrix in (4.9). Condition 4 similarly considers any three

columns apart from the first (all-zeros) column. Condition 5 avoids length-4 cycles from

rows 2 and 3 of P .

Definition 6 (Girth-8 table). A girth-8 table (G8 table) of a (3, L) complete-protomatrix-

based QC-LDPC code whose permutation-shift matrix is P , using the notation of Lemma 7,

is a table of L′ × L′ differences:

A valid G8 table is one which leads to a girth of g ≥ 8.

96



+\- x1 x2 . . . xL′

xL′+1 d1 = xL′+1 − x1 xL′+1 − x2 . . . xL′+1 − xL′

xL′+2 xL′+2 − x1 d2 . . . xL′+2 − xL′
...

...
... . . . ...

x2L′ x2L′ − x1 x2L′ − x2 . . . dL′

Lemma 8. A G8 table is valid iff

1. The set of row and column headers together has 2L′ distinct non-zero elements,

2. The diagonal elements d1, d2, . . . , dL′ are all different from the inverses of the column

headers,

3. The diagonal elements are all different from the row headers,

4. None of the diagonal elements is equal to any of the off-diagonal elements of the table,

5. The diagonal elements are all distinct.

Proof. These conditions are the equivalent conditions of Lemma 7 in the same order. Note

that a valid G8 table has no 0 anywhere in it. Conditions 4 and 5, which are mathematically

the same albeit for the choice of elements involved but stated separately for clarity, according

to Lemma 7, justify uniquely identifying the diagonal elements as d1, d2, . . . , dL′ .

Theorem 10. Let the L′ rows of any valid G8 table be considered as sets of L′ elements

each and denoted A1, A2, . . . , AL′. If there exist two rows i 6= j such that |Ai ∩ Aj| = 0 or

|Ai ∩Aj| = L′ − 1 then such a valid G8 table corresponds to a lifting factor of N ≥ 3L′ − 1.

Proof. In general, |Ai ∩ Aj| ≤ L′ − 1, i 6= j since every row has a diagonal element that is

distinct from the elements in the rest of the table. The proof, which is given in the rest of

this section, applies conditions 1, 4 and 5 from Lemma 7.

The case where ∃ i 6= j : |Ai ∩ Aj| = 0 is considered first. If so, then |Ai| + |Aj| = 2L′

and the rest of the L′−2 rows contribute at least one distinct element each as their diagonal
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elements have to be distinct and thus the number of distinct non-zero elements is at least

3L′ − 2 and N ≥ 3L′ − 1.

For the second case, assume WLOG that the rows i, j are the first two rows of the

G8 table, corresponding to A1 and A2, or the table can be rearranged accordingly (this

corresponds to permuting the columns of P ). Denote the L′ distinct elements of A1 (in order

from left to right) as

d1 = xL′+1 − x1, f1, f2, . . . , fL′−1.

Any Ai, i 6= 1 can be derived from A1 through an offset. For example, A2 can be obtained

from A1 by adding ∆ = xL′+2 − xL′+1 to d1, f1, f2, . . . , fL′−1 in that order.

The supposition |A1 ∩ A2| = L′ − 1 implies that A1, A2 differ in only d1 6= d2. Since d1

does not repeat or “lead to" a new element (or else |A1 ∩A2| < L′ − 1), while adding ∆ 6= 0

to it and since the only new element that is formed in this second row is d2 = f1 + ∆, this

means that d1 + ∆ = fi for some i ∈ {1, 2, . . . , L′ − 1}. Also ∀k ∈ {2, 3, . . . , L′ − 1} there

exists a unique `k ∈ {1, 2, . . . , L′− 1} \ {k} such that fk + ∆ = f`k , fk + ∆ 6= d1, fk + ∆ 6= d2.

Definition 7 (Circular representation). We choose to represent the elements of Z/N as

unique points on a circle in order from 0 through N − 1 in the anticlockwise direction such

that N − 1 appears on the circle before crossing 0 when counting from 0 (as integers). With

this representation, addition corresponds to moving along the anticlockwise direction.

4.4.1 Case 1

Figs. 4.1 and 4.2 show one possible case for the structure of the elements in A1 ∪ {d2}

with respect to the circular representation. The figures capture one possible case, with no

wrap around and wrap around shown separately. In both the figures, the L′ + 1 elements

d1, . . . , f1, d2 form a single chain from d1 to d2, through L′ intervals of ∆ = xL′+2 − xL′+1

points each, as shown in Figs. 4.1 and 4.2. WLOG the chain begins at d1 and progresses
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Figure 4.1: One possible arrangement of elements of row 1 for Theorem 10 – without wrap
around
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Figure 4.2: Another possible arrangement of elements of row 1 for Theorem 10 – with wrap
around

anticlockwise or else the two rows can be exchanged to yield this.

Lemma 9. For a valid G8 table that falls in the case illustrated by Figs. 4.1 and 4.2, there

exists a third row whose L′ elements are all different from the L′ + 1 elements in the chain

(d1, fi1 , fi2 , . . . , fiL′−2 , f1, d2), where {i1, i2, . . . , iL′−2} = {2, 3, . . . , L′ − 1}.

Proof. Any row beyond the first two rows of the G8 table relates to A1 by an offset ∆′ 6= ∆.

If d1 or d2 repeat in such a row then the G8 table is not valid. With {i1, i2, . . . , iL′−1} =

{1, 2, . . . , L′ − 1} and with iL′−1 = 1, we need to show that for a valid G8 table that falls in

Case 1, for any k 6= ` ∈ {1, 2, . . . , L′ − 1}, fik + ∆′ 6= fi` and d1 + ∆′ 6= fi` .
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Assume for a contradiction that ∃ k 6= ` : fik + ∆′ = fi` . Define n∆ = ∆ + ∆ + · · ·+ ∆︸ ︷︷ ︸
n times

,

where n is any non-negative integer. If n is negative, define n∆ = −∆−∆− · · · −∆︸ ︷︷ ︸
−n times

. If

` > k, then fi` = fik + (`− k)∆ and hence ∆′ = (`− k)∆. Since 1 ≤ `− k < L′ − 1 we can

also obtain that d2 = fiL′−(`−k) + (` − k)∆. This shows that d2 would be an element of the

new row, yielding a contradiction. The same argument in the opposite direction will show

that d1 will repeat as d1 = fik−` + ∆′ if ` < k. Similarly, one can show that, if d1 + ∆′ = fi`

then d2 will repeat.

To summarize, there exist at least (L′ + 1) + L′ + (L′ − 3) = 3L′ − 2 distinct non-zero

elements in a G8 table that is valid and falls in Case 1, which means N ≥ 3L′ − 1: L′ + 1

elements from A1∪{d2}, L′ elements in a third row and the term L′−3 appears from counting

at least one distinct non-zero entry (on the diagonal) from each of the remaining rows.

4.4.2 Case 2

The situation where a single chain is not present within the set A1 ∪{d2} is considered now.

This is because, introducing only one new element when creating the second row from the

first row, i.e. d2, can also arise from the situation shown by the example in Fig. 4.3 (refer to

the following description).

2
d

1
f

1
d



1

2

Elements of 

Elements of '

Elements of '

S

S

S

' 10

4

L

k





𝓁 = 2 

Figure 4.3: Alternative arrangement of elements of row 1 for Theorem 10

The elements of A1 ∪ {d2} could be in `+ 1 disjoint sets:
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1. Set S with elements {d1, fi1 , . . . , fiL′−2−k` , f1︸ ︷︷ ︸
L′−1−k` elements

, d2}.

2. ` other sets denoted S ′j, 1 ≤ j ≤ ` each comprising k elements such that within each

set adding n∆, n ∈ Z to any element yields another element within the set itself.

While this case is introduced here, the proof that the theorem holds for it is given in the

Appendix. This concludes the proof of Theorem 10.

Although Theorem 10 only applies under specific constraints on the girth-8 table, we

conjecture that the bound N ≥ 3L′ − 1 applies without these imposed constraints that

∃ i 6= j ∈ {1, 2, . . . , L′} such that |Ai ∩ Aj| equals 0 or L′ − 1.

4.5 Concluding Remarks

This chapter considered the problem of constructing (3, L) quasi-cyclic low-density parity-

check (LDPC) codes from complete protographs. An application of complete mappings from

finite group theory provides explicit constructions of (3, L) QC-LDPC codes that achieve

girth g = 6 with the minimum possible lifting factor of L when L is odd. Identifying the

minimum lifting factor required to obtain a girth of g ≥ 8 is posed as a problem in additive

combinatorics using the construct of a girth-8 table (G8 table). An improved bound on the

lifting factor is obtained under certain constraints on the cardinality of girth-8-table row-set

intersections. We conjecture that this improved bound applies in general.

4.6 Appendix

4.6.1 Proof of Case 2

We prove here that Theorem 10 holds for Case 2 which was introduced in Section 4.4.2. The

` sets being referred to in Case 2 (from Fig. 4.3) have the same number of elements, denoted

k here, or else adding ∆ will create a new element for the second row, apart from d2 which
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is already being created from f1 ∈ S. To show that the theorem holds for this case, we focus

on the k` elements from the ` sets. For this case, a “linear” relationship within the elements

of the `+ 1 sets holds as follows. For the elements in S,

d1 + ∆ =fi1 ,

fi1 + ∆ =fi2 ,
...

fiL′−2−k` + ∆ =f1,

f1 + ∆ =d2.

For the elements in the ` sets S ′j,

∀x ∈ S ′j, 1 ≤ j ≤ `, x+ n∆ ∈ S ′j,∀n ∈ Z. (4.10)

Observe that if the elements from the group Z/N are chosen for A1 according to Case 2,

then the following holds:

∀x ∈ Z/N, x+ k∆ = x. (4.11)

Each column of the G8 table has a diagonal element that appears only once in the table.

By adding offsets to the k` elements in (A1 ∪ {d2}) \ S to obtain the k` corresponding

diagonal elements (and their respective rows), we have the following crucial observation.

Lemma 10. For each column corresponding to an element in (A1 ∪ {d2})\S, when obtaining

a new diagonal element, at least k new non-zero elements are obtained in the corresponding

row. Considering all k` such rows, a total of k2` distinct elements, that are different from

the elements in A1 ∪ {d2}, is guaranteed for any valid G8 table that falls under Case 2.

Proof. Consider x1 ∈ (A1 ∪ {d2}) \ S and assume that x1 ∈ S ′i1 for some 1 ≤ i1 ≤ `. There
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is an offset ∆1 6= ∆ such that x1 + ∆1 = dx1 , where dx1 is the diagonal element in the

column containing x1. Note that the row containing dx1 also contains every element in

S ′i1 + ∆1 = {s + ∆1 : s ∈ S ′i1}. No element in S ′i1 + ∆1 appears in A1 ∪ {d2} as this would

force either S ′i1 + ∆1 = S ′j, j 6= i1 so that dx1 ∈ A1 ∪ {d2} or S ⊆ S ′i1 + ∆1 so that d1 and d2

appear in the row containing dx1 due to (4.10). Either of these results would lead to a G8

table that is not valid.

Now consider a second element x2 ∈ (A1 ∪ {d2}) \ S, x2 6= x1 and x2 ∈ S ′i2 , where

1 ≤ i2 ≤ ` is not necessarily different from i1. There is an offset ∆2 /∈ {∆,∆1} such that

x2 + ∆2 = dx2 , where dx2 is the diagonal element in the column containing x2. Note that the

row containing dx2 also contains every element in S ′i2 + ∆2. Following the same reasoning as

with x1, no element in S ′i2 + ∆2 appears in A1 ∪ {d2}. Also,
(
S ′i1 + ∆1

)
∩
(
S ′i2 + ∆2

)
= ∅ or

else S ′i1 + ∆1 = S ′i2 + ∆2 due to (4.10) and in particular dx2 ∈ S ′i1 + ∆1 which would lead to

a G8 table that is not valid.

Continuing by induction yields k2` distinct elements that are not in the first row and are

different from d2.

Thus we have for any valid G8 table in Case 2 that

N ≥ L′ + 2 + k2`, (4.12)

where L′ + 2 arises from counting the elements in A1 ∪ {d2, 0}.

Lemma 11. In the context of Case 2, where |S| = L′ − k`+ 1,

L′ − k`+ 1 ≤ k. (4.13)

Proof. Due to (4.11).

Case 2 is only possible when L′ ≥ 5, k ≥ 3 and ` ≥ 1. We consider two ranges for k as
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follows: If k ≥
√

2L′ − 3, then

N ≥L′ + 2 + k2`

≥L′ + 2 + k2

≥L′ + 2 + 2L′ − 3 = 3L′ − 1. (4.14)

If k <
√

2L′ − 3, we first use (4.13) in (4.12) to get

N ≥L′ + 2 + k2`

≥L′ + 2 + kL′ − k2 + k (4.15)

which yields a quadratic expression in k for every L′. This is concave in k and it can be

verified that the maximum of the right-hand side is obtained at kmax = L′+1
2 . Under the

supposition that k <
√

2L′ − 3, we can also trivially verify that k <
√

2L′ − 3 < kmax for

L′ ≥ 5 and thus to minimize the right-hand side, we have to set k to the smallest feasible

value, which is k = 3. This yields

N ≥L′ + 2 + 3L′ − 9 + 3

=4L′ − 4 > 3L′ − 1, ∀L′ ≥ 5, (4.16)

which completes the proof for Case 2 and thus of Theorem 10.
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CHAPTER 5

Allocating Redundancy Between Erasure Coding and

Channel Coding when Fading Channel Diversity

Grows with Codeword Length

This chapter1 turns towards communication theory and tackles a rate allocation problem

studied previously in literature, but with an important twist. Consider a cross-layer coding

scheme with packet-level erasure coding and physical-layer channel coding. It is known from

previous work that some erasure coding is necessary even in the limit of large physical-layer

codeword block-lengths if the physical-layer fading channel does not provide diversity that

grows with block-length. However, is erasure coding still required in the limit of large block-

lengths if the physical layer allows for diversity to grow with block-length? The theoretical

answer turns out to be a resounding “no” in the case of Rayleigh fading that allows diversity

to increase linearly with block-length.

5.1 Introduction

A transmitter desires to communicate a message composed of a certain number of informa-

tion packets over a fading channel. It uses an inter-packet erasure code to produce erasure-
1Material in Section 5.6 of this chapter was presented at the 2016 International Zurich Seminar on

Communications (IZS) [WVR+16]. The chapter appeared (subject to minor differences) as a journal article
in IEEE Transactions on Communications [RMW17]. Tong Mu, of Stanford University, collaborated on work
that resulted in this chapter when she was at UCLA.
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Figure 5.1: Wireless broadcasting to heterogeneous receivers

coded packets and then transmits each resultant packet using a physical-layer channel code.

Throughout the chapter, the term codeword refers to the channel codewords that are trans-

mitted, one for each erasure-coded packet. The receiver decodes each received codeword and

then recovers the overall message by decoding the erasure code. Coding schemes such as this

are generally categorized under cross-layer designs.

Consider the wireless communication system of Fig. 5.1 in which incremental redundancy

from the transmitter gradually lowers the rate of the transmission until the receiver(s) can

successfully decode the packetized message. A coding scheme such as the one described

above is practically useful in such wireless applications [Tec15] and might be implemented

using, for instance, “rateless” erasure codes such as Raptor codes [Sho06] with powerful

channel codes such as low-density parity-check (LDPC) codes [Gal63]. Additionally, in the

context of a wireless broadcast, an optimization goal is to design the stream of incremental

redundancy so that each receiver in the broadcast may decode all the packets in the message

as early as possible, given its signal-to-noise ratio. To accomplish this, for each overall code

rate an optimization objective can be to minimize the value of the average signal-to-noise

ratio at which successful decoding of the whole message is possible at the receivers.

Optimization problems for cross-layer schemes and the results of the optimization depend

upon the channel model and network configuration under consideration. The importance of

cross-layer designs in the context of communication over a fading channel is well established

by Luby et al. [LGSW07] who show that systems without a packet-erasure code are highly

suboptimal when packets are sent over fading channels.

Courtade and Wesel [CW11], in their work on cross-layer design, summarized a large
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portion of literature in optimizing cross-layer schemes including four notable works: An

early work is that of Vehkapera and Medard [VM05], where the authors maximize throughput

under an overall code-length criterion for a non-fading channel. Xiao et al. [XMA11] consider

cross-layer optimization to minimize the expected delay of a network-coded system over a

non-fading physical layer. Berger et al. [BZW+08] consider cross-layer optimization of rates

over a fading channel with the fade value remaining constant over each channel codeword.

At the other end of the spectrum, Cui et al. [CHK09] consider a fading channel wherein each

channel codeword symbol faces an independent fade. Apart from these, Cao and Blostein

[CB10] consider optimizing over a discrete set of overall rates. The authors examine both

slow and fast fading in this simplified and pragmatic version of the problem.

More recent literature has focused on studying various other physical-layer channel mod-

els and multi-user scenarios. These works include Sun’s work [Sun11] on a relay-aided sys-

tem employing network coding and channel coding. Here, the author solves the redundancy-

allocation problem using the block-fading model, wherein each codeword faces only one block

fade irrespective of its block-length, similar to Berger et al. [BZW+08]. Guo et al. [GHW+12]

study a scheme in a practical setting using LDPC codes, demonstrating the benefit of such

a scheme over others. Koller et al. [KHKC11], [KHKC14] also study network-coded unicast

and broadcast systems, but over the binary symmetric channel. They find that additional re-

dundancy can be more beneficial when used to produce longer channel codewords as opposed

to sending additional network-coded packets.

Beyond cross-layer designs such as the one considered in this chapter and in the works

referred to so far, recent works have also focused on efficient cross-layer code designs that do

not treat codewords that are not decoded successfully as erasures. Instead, these schemes

supply additional redundancy to codewords that are not successfully decoded and facili-

tate further decoding attempts. These works include the inter-frame coding approach of

Zeineddine and Mansour [ZM16] and the packet-combining scheme proposed by Lin et al. in

[LXXL11].
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5.1.1 Contributions

This chapter considers transmission of a packetized message using the cross-layer coding

scheme that combines inter-packet erasure coding and physical-layer channel coding (as ex-

plained in Section 5.1). Let the probability that the receiver fails to decode the message be

called the message error probability. Given an overall rate, we formulate an optimization

problem to minimize the signal-to-noise ratio (SNR) required to achieve a certain message

error probability by optimizing the redundancies allocated to the two component codes. This

chapter extends Courtade and Wesel’s work [CW11] on minimizing the power for transmit-

ting a packetized message over a fading channel.

Proportional diversity

The initial work [CW11] assumes a block-fading channel with a constant number of fades per

codeword, irrespective of the block-length of the codeword. In this chapter, we assume that

the number of fades per codeword grows linearly with the codeword length. This assumption

generalizes the work of [CW11], allowing us to analyze systems with time-varying fading (e.g.

from mobility) where the coherence time of fading naturally remains a constant irrespective

of the codeword length.

Outage approximations for non-integer number of fades

The proportional-diversity model introduces the complication of a non-integer number of

fades when the codeword ends before the final segment of fading completes. To handle this,

we develop two Gaussian approximations to the outage probability and use Monte-Carlo

evaluations to demonstrate that the approximations are a good fit and thus can be used to

obtain numerical results efficiently.
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Analytical proof that erasure code rate converges to one

We provide an analytical proof that for any system where diversity grows with codeword

length the optimal erasure code rate is equal to its maximum possible value (e.g. a rate of 1

for an erasure code with no overhead) for the lowest overall code rates. This is in contrast

to the result in [CW11] for systems with a fixed value of diversity (i.e. no mobility) where

the optimal erasure code rate decreases to a limiting value less than its maximum allowable

value. Thus, [CW11] shows that erasure coding is beneficial even at lowest overall code rates

for a system with fixed diversity, whereas our result shows that with time-varying fading

that allows diversity to increase with codeword length, erasure coding provides no benefit

at the lowest overall rates. The approach in our analytical proof of the optimal value of

the optimization problem at low overall rates is completely different from any analysis in

[CW11].

Numerical characterization

By numerically solving the new optimization problem over a wide range of overall rates, we

show that the optimal erasure code rate might decrease at first with decreasing overall rate

but then remains roughly constant for a large rate range before climbing up again for very

low values of overall code rate. For systems where diversity within a transmitted codeword

grows quickly with the codeword length, the optimal erasure code rate remains constant for

most overall code rates of interest before increasing to its maximum possible value for the

lowest overall rates.

A related optimization problem

In addition to considering the optimization framework of [CW11] in which the transmission

power is minimized under the constraint of a fixed message error probability, this chapter also

considers an alternative framework in which the probability of message error is minimized

with a constant transmission power.
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Remark 9. An important contribution of this chapter is the insight it provides for systems

with rate-compatibility. The mechanics of each instance of the optimization assume a fixed

value of the overall rate. However, the central insights of our work come from examining how

these optimization results evolve as the overall rate decreases, as would happen in a system

with incremental redundancy. Such systems are often implemented with rate-compatible codes

that allow redundancy to be added to either the physical-layer channel code or the packet-level

erasure code or both. This chapter makes observations that guide the design choice regarding

where to place the incremental redundancy in systems with time-varying fading, e.g. systems

with mobility.

5.1.2 Organization

The chapter is organized as follows: Section 5.2 introduces notation. Section 5.3 sets up

the optimization problem and provides the approximations required to numerically solve the

problem. Section 5.4 proves that the optimal erasure code rate is equal to the maximum

possible erasure code rate value for any set of system parameters if the overall code rate

is small enough. Section 5.5 presents the results of numerically solving the optimization

problem and discusses the results. Section 5.6 discusses the related optimization problem of

minimizing the message error probability at a fixed transmit power. Section 5.7 concludes

the chapter.

5.2 Preliminaries and Notation

The notation followed here is the same as in [CW11]. Consider the complex fading channel

Y = HX +N (5.1)

in which X is the transmitted symbol, H is the fading coefficient, and Y is the received

symbol. The average transmit power is P , and the variance of the zero-mean, complex and

110



circularly-symmetric Gaussian noise, N , is 1. The receiver has perfect knowledge of the

fading random variable H. The fading parameter H is Rayleigh and E [HH∗] = 1. For this

Rayleigh fading channel, SNR at the receiver, denoted γ, is exponentially distributed with

parameter 1
P
. The channel capacity [nats/channel use] for an instantaneous SNR γ is

C(γ) = ln(1 + γ). (5.2)

A message composed of m packets with k nats of information per packet is to be trans-

mitted over this fading channel. The probability that the receiver fails to decode the message

(i.e. fails to decode one or more of the packets that comprise the message) is denoted by q.

Let there be T channel uses for an overall rate of mk/T [nats/channel use]. The transmitter

employs an erasure code of rate RE across the m packets and transmits each of the m
RE

erasure-coded packets using a channel code of rate RC [nats/channel use] so that

mk

T
= RERC . (5.3)

That is, there are m
RE

erasure-coded packets that are obtained from the m message packets

using the erasure code, and each channel codeword, of which there are m
RE

in total, is k
RC

symbols long. Note that RE has to satisfy RE ≤ 1. We constrain m
RE

to be an integer

throughout the chapter. We do not have such a constraint on k
RC

, but such a constraint

would not change anything that follows except for reducing further the feasible set for the

optimization problem.

The receiver decodes the erasure code and recovers the message successfully whenever

the channel decoder correctly decodes a sufficient number of the m
RE

codewords. The number

of packets that the decoder of the erasure code requires to recover the message, denoted

m̂ ≥ m, depends upon the erasure code. For Reed-Solomon erasure codes, m̂ = m; for

fountain codes such as a Raptor code, m̂ > m typically. Thus, m̂ is the fixed number of

packets that the decoder of the erasure code requires and RCTk
−1 = m

RE
≥ m̂ ≥ m.
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5.2.1 Proportional-Diversity (PD) Block-Fading Model

A common block-fading model, found for example in Goldsmith [Gol05] and Biglieri [Big05],

assumes that the number of fades per codeword is a constant irrespective of the codeword

length. This model applies, for example, to a static OFDM channel where the number of

fades is controlled by the coherence bandwidth of the frequency selective channel. Many

previous works on cross-layer optimization, which are referred to in Section 5.1, assume

this model. Another possible model, which we refer to as proportional-diversity block fading

(PD block fading) fixes the number of channel symbols (i.e. the fade length) in a codeword

that encounter the same fade value H = h. This model applies, for example, to a time-

varying fading channel where the fade length is controlled by the coherence time. We use

the parameter lf to denote the fade lengths. With the block-length being k
RC

, the number of

block fades F in a transmitted codeword of a system with PD block fading with fade lengths

lf is

F = k

RC lf
. (5.4)

The block fade values H are i.i.d. with respect to each other. The value F represents the

total fractional number of fades in the codeword, which is typically not an integer. The

integer number of distinct fades in the codeword is dF e. One way of understanding the

difference between [CW11] and the current chapter is that in [CW11] F is a constant fixed

integer value, whereas in the current chapter F is a real number that varies as a function of

RC according to (5.4).

In this chapter, we assume that k and lf are fixed constants known to both the transmitter

and the receiver. The assumption that lf is fixed is natural for time-varying channels where

the coherence time of fading remains constant and the symbol transmission rate is chosen to

be constant. For the probability of successfully decoding a codeword to exceed a specified

target, the transmitter must use a codeword length that can harvest a sufficient amount of
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diversity. For that subset of cases where F is an integer, the optimization problem solved

in [CW11] can be adapted to obtain the optimal erasure and channel code rates required

in the new PD framework. However, given a fixed k and lf , constraining RC so that F is

always an integer significantly restricts the set of values of RC that can be employed in the

system. For this reason, the fading model employed in this chapter both generalizes the

work in [CW11] and also does not restrict the values of RC that can be chosen for a system

that would employ the two-layer coding scheme.

5.3 The Optimization Problem

Given an overall rate of RERC = mk/T , the transmitter transmits m
RE

= RCTk
−1 erasure-

coded packets, each at a channel code rate of RC . We assume that the channel code for every

erasure-coded packet is the same. The message error probability q, which is the probability

that the erasure decoder at the receiver fails to acquire m̂ ≥ m packets, is approximated as

in [CW11] using the normal approximation to a binomial probability:

q ≈ Φ
(m̂− 1)−RCTk

−1(1− pe)√
RCTk−1pe(1− pe)

 . (5.5)

Here, pe is the probability that the receiver cannot decode a channel codeword (which is seen

as an erasure event by the erasure code), and Φ(·) is the cumulative distribution function

of the standard normal distribution. To be more precise, the binomial probability that is

approximated in (5.5) is the probability that the receiver fails to acquire m̂ unerased packets

out of a total of RCTk
−1 erasure-coded packets given that the erasure events (i.e. unsuccessful

channel-code decoding) are independent for each packet. The approximation is tight when

m̂ is sufficiently large and we assume reasonably large values (m̂ = 32, 64) for our purposes.

Let λ be the allowable message error probability for the transmission. That is, q ≤ λ must

be satisfied.

With the notation and terminology developed above, we define the optimization problem
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that we solve in this chapter as follows: For specified k, T , m, m̂, and lf ,

minRC P

s.t. q ≤ λ,

RC > 0 satisfying m̂ ≤ m

RE

,
m

RE

∈ Z.

(5.6)

Note that the overall rate mk/T is fixed by the specified parameters and that RE is obtained

as RE = mk/(TRC). Thus the optimization allocates the overall rate between RC and RE

to minimize P while maintaining a message error probability less than λ. The message error

probability q, as described in (5.5), is a function that depends on RC both explicitly and

through the variable pe. We begin by describing our model for pe and its dependence on the

parameters P , RC , k, and lf .

5.3.1 Probability of Codeword Decoding Error

The modeling and computation of pe are the most intricate parts of the optimization problem.

We model this probability that the channel decoder fails to decode a channel codeword using

the outage probability of the fading channel and by accounting for finite-length effects of

channel coding. For our PD block-fading channel model with a fade length of lf , we model

pe as the probability of the following event:


∑bF c
i=1 C (γi) + (F − bF c)C (γlast)

F
< (1 + ε)RC

 , (5.7)

where F is defined in (5.4). This event is the outage event for PD block fading when the

channel code rate is RC . The random variables in this expression are the values C(γi), one

for each fade. We account for the limitations of finite-length channel codes through the small

constant ε > 0 as practical channel codes must operate at rates below capacity. Also, it is

assumed for simplicity that every codeword begins with a new fading block of length lf even

if the codeword preceding it ended before a block fade of length lf completed.
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The outage probability for the regular block-fading channel can be computed using its

exact closed-form expressions as shown, for example, by Yilmaz in [Yil11]. However, we do

not have an exact closed-form expression to evaluate pe (the probability of (5.7)) for our

PD block-fading model. We therefore approximate pe. It turns out that two approximations

that we provide below are almost equal to each other, and are both quite close to the true

pe when the probability of the event in (5.7) is evaluated using a Monte-Carlo simulation.

Let us first rewrite (5.7) using the substitutions c = (1 + ε), Wi = ln(1 + γi), Wlast =

ln(1 + γlast) and simplifying:

pe = P

bF c∑
i=1

Wi + (F − bF c)Wlast <
ck

lf

 . (5.8)

The mean and variance of Wi (which are all i.i.d.) depend on the transmitter power P , so

we will refer to these as µ(P ) and Var(P ). These nonnegative constants, which will be used

in this chapter throughout, can be computed as shown in the work by Courtade and Wesel

[CW11]:

µ(P ) = e1/Pα(P ), (5.9)

Var(P ) = 2e1/Pβ(P ) + 2e1/P ln(P )α(P )− e2/Pα2(P ), (5.10)

where

α(P ) =
ˆ ∞
P−1

1
t
e−tdt, and (5.11)

β(P ) =
ˆ ∞
P−1

ln(t)
t
e−tdt. (5.12)

Note that the integrals required to obtain α(P ) and β(P ) are difficult to compute for a very

low value of P [CW11], but our numerical results exploring the effect of the diversity growth

factor in Section 5.5 are not in the low-SNR regime and hence this is not an issue.

Now, let us assume that ∑bF ci=1 Wi is a Gaussian random variable and also assume that
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(F − bF c)Wlast is a Gaussian random variable. The sum of these two Gaussian terms is

thus another Gaussian, WG, which stands for Gaussian approximation of weighted average

mutual information. Let mean(WG) and Var(WG) be the mean and variance of the overall

Gaussian random variable. We can now obtain the following Gaussian approximation to pe

by evaluating the cumulative distribution function of a standard normal distribution:

pe ≈ Φ
 ck
lf
−mean(WG)√
Var(WG)

 , where
mean(WG) = Fµ(P ),

Var(WG) = Var(P )
[
bF c+ (F − bF c)2

]
.

(5.13)

This approximation can be evaluated by computing µ(P ) and Var(P ) and evaluating Φ(·).

A simpler approximation is to use the Gaussian approximation to the outage probability

as if F were an integer in (5.7) even with non-integer values of F . This results in (5.14).

When F < 1 (i.e. RC >
k
lf
), the event in (5.7) evaluates to {C(γ) < (1 + ε)RC} since there

is only one fade in the whole codeword. Hence we obtain

pe ≈


Φ
[√

F cRC−µ(P )√
Var(P )

]
, F ≥ 1

Φ
[
cRC−µ(P )√

Var(P )

]
, F < 1

. (5.14)

Note that the approximation in (5.13) is equal to the approximation in (5.14) when F < 1,

i.e. when RC > k
lf
. Equation (5.14) is the key approximation that we will use in the rest

of this chapter. Its accuracy will be justified via Figs. 5.2 and 5.3. Moreover, we prove

in Appendix 5.8.1 that (5.14) is a well-behaved decoding error probability function of RC .

That is, the decoding error rate function for a codeword increases with the channel code

rate RC . This requirement is informally clear from (5.8): the left-hand side of the event in

(5.8) decreases in the number of random variables in it as RC increases and therefore the

probability that the weighted average mutual information is less than ck
lf
, which is a constant,
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Figure 5.2: Comparison of the two Gaussian approximations of pe with its Monte-Carlo
evaluation at 5dB. Also indicated in the figure is the value of E[C(γ)]/(1+ ε) for 5 dB, which
was computed using a numerical integration to find the expectation.

increases as RC increases.

Figs. 5.2 and 5.3 show the evaluation of the two approximations (5.13) and (5.14) and the

result from the Monte-Carlo evaluation of (5.8) for ε = 0.1, P = 5 and 10 dB, and various

values of k
lf
. The approximations closely follow the Monte-Carlo results.

Consider the behavior of pe with respect to the ratio k
lf
, which we call the diversity growth

factor (DGF). As DGF increases, the probability of outage pe approaches a step function.

This is because, looking at the equation in (5.7), the left-hand side is essentially an average

of roughly k
RC lf

random variables that are i.i.d. and of the form C(γ). As k
lf
→∞, by the law

of large numbers, the left-hand side converges to the expectation of C(γ), which is actually

the ergodic capacity of Rayleigh fading channel. In this limit, the outage event in (5.7) thus
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Figure 5.3: Comparison of the two Gaussian approximations of pe with its Monte-Carlo
evaluation at 10dB

becomes

{
E[C(γ)]

1 + ε
< RC

}
. (5.15)

This means that in the limit as k
lf
→ ∞, pe converges to a step function with the step

occurring at E[C(γ)]
1+ε . This value is indicated as a black vertical line in Figs. 5.2 and 5.3 for

the two power values 5 dB and 10 dB. Since the two approximations and the Monte-Carlo

evaluation of (5.8) are almost identical, we use (5.14) to evaluate (5.8) in the sequel.

5.3.2 Numerical Solution to the Optimization Problem

The optimization problem given in (5.6) can thus be re-written via the discussion so far as
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minRC P

s.t. Φ
(m̂− 1)−RCTk

−1(1− pe)√
RCTk−1pe(1− pe)

 ≤ λ,

m̂k

T
≤ RC ,

m

RE

∈ Z.

(5.16)

The lower bound to RC in the second constraint in (5.16) is due to m̂k
T
≤ mk

TRE
= RC .

Following Courtade and Wesel in [CW11], the optimization problem is equivalent to (using

F = k
RC lf

)

minRC P

s.t. p∗e(RC) =


Φ
[√

k
RC lf

cRC−µ(P )√
Var(P )

]
, RC ≤ k

lf

Φ
[
cRC−µ(P )√

Var(P )

]
, RC >

k
lf

,

m̂k

T
≤ RC ,

m

RE

∈ Z,

(5.17)

where p∗e(RC) is the value of channel codeword decoding error probability that leads to

equality in the message error probability constraint q ≤ λ in (5.16). This value is obtained

as derived in equations (12)-(13) in [CW11].

Thus, numerically solving the optimization problem involves the following steps: First,

for any fixed RC we obtain p∗e(RC) that satisfies q ≤ λ in (5.16) with equality. For this RC ,

the value of P that satisfies the first constraint in (5.17) with equality is obtained through a

bisection search in P of the right-hand side of the constraint. Then, we consider all possible

values of RC such that m
RE
∈ Z and find the value of RC that provides the smallest value of

P yielding a message error probability equal to the maximum allowable value λ.

We refer the reader to Section III of [CW11] for the derivation of the equations (12)-(13)

of [CW11] that allow computation of the value of p∗e(RC), but we provide those equations

from [CW11] for convenience below:

Let λ′ = −Φ−1(λ) > 0 and λ′′ = (λ′)2. Equation (12) of [CW11] is the following equation
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in Z:

Z2RCTk
−1
(
RCTk

−1 + λ′′
)

− ZRCTk
−1 (2(m̂− 1) + λ′′) + (m̂− 1)2 = 0 (5.18)

This equation is solved to find the larger root Z1. After this, (13) of [CW11] obtains p∗e(RC)

as follows:

p∗e(RC) = 1− Z1. (5.19)

Note that the change from fixed diversity in [CW11] to proportional diversity in the

current work does not affect the derivation of p∗e(RC) in (5.18) and (5.19) above. However,

the introduction of proportional diversity to the block-fading channel does change the right-

hand side of (5.17) from the corresponding expression in [CW11] by replacing the constant

term F in (19) of [CW11] with the fractional number of fades F = k
RC lf

in (5.17). Note

that k
RC lf

increases with decreasing RC , which (as we see below) changes the behavior of the

resulting optimal values of RC and RE.

For five example values of overall rate, Fig. 5.4 shows the objective function as a function

of 1/RE for a range of possible (RE, RC) pairs that support the specified overall rate. A star is

used to identify the (RE, RC) pair that optimizes the objective function for a specified overall

rate. Note that as T increases, the curve of the objective (minimum transmit power) vs. 1/RE

flattens so that a larger range of RE values provide optimal or near-optimal performance.

We note that the model for probability of decoding error for a codeword (5.7) loses

accuracy when the number of information bits in a message packet is small (on the order of

a few hundred bits), as shown in the recent work on finite block-length information theory

for Rayleigh fading channels by Durisi et al. [DKO+16]. In this chapter, the optimization

problem (5.16) depends upon only the ratios k
lf

and k
T
and not explicitly on k. Therefore, a

limitation of this chapter is that the results of the optimization problem may not be accurate
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Figure 5.4: Value of the objective function of the optimization problem at different feasible
RE, RC pairs in the feasible set

if used in the context of small values of k. For such small values of k, the accuracy issue

can be addressed by tuning ε as a function of k according to guidance from works such as

[DKO+16].

5.4 Analysis of the Optimal Value of the Erasure Code Rate at

Low-Enough Overall Rates

In this section, we show analytically that the optimal erasure code rate is equal to m
m̂

(ef-

fectively meaning that there is no erasure coding) for any sufficiently low overall code rate

regardless of the value of all other system parameters.

Theorem 11. Let the coding scheme use an arbitrary erasure code that requires m̂ : m ≤

m̂ ≤ m
RE

packets to decode the overall message. Let us assume a Rayleigh proportional-

diversity block-fading channel of fade lengths lf . Further, let the feasible set of RC values
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be constrained to RC ∈
[
m̂k
T
, k
lf

]
. Then, the optimal value of RE, which is a function of T ,

is equal to m
m̂

for any sufficiently large T given any set of parameters m, m̂, k, lf , λ, and

c = 1 + ε.

Proof. The proof is given in Appendix 5.8.2. We provide a proof sketch here as follows: For

a given T , finding the power level P that achieves the target message error probability λ for

a fixed RC first requires finding p∗e(RC) as described in Section 5.3.2. Then the transmitter

power level P that yields this p∗e(RC) as the probability of codeword decoding error is the

smallest transmit power that satisfies q ≤ λ. According to these steps, we find p∗e(RC) for

the lowest possible channel code rate RC = m̂k/T and then the required transmitter power

level P0(T ) that yields p∗e(RC = m̂k/T ). We then show that for any value of T that is

large enough, the power level P0(T ) cannot satisfy q ≤ λ for any other value of RC , which

implies that RC = m̂k/T is the value that provides the smallest transmit power and hence

the optimal RE is m
m̂
.

Remark 10. We note that Theorem 11 is not only an asymptotic result as T → ∞, but

rather a result that is also valid for all low-enough overall code rates mk/T .

Remark 11. The statement of the theorem imposes a technical constraint of RC ≤ k
lf
. While

our proof technique does not naturally handle the case when there is no such upper bound

on RC, our empirical results indicate that the optimal value of RC decreases as T increases

for large T . Thus the upper bound, while necessary for the proof, does not appear to be

practically important.

5.5 Numerical Results and Discussion

This section presents the results of numerically solving the optimization problem (5.17). For

our results we set ε = 0.1 and assume that m̂ = m, which is the case for Reed-Solomon codes.

Our target message error probability λ is 10−6. The optimizations were carried out using
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Figure 5.5: Optimal component code rates for systems with allowable message error prob-
ability λ of 10−6, m̂ = m, and ε = 0.1. Dashed lines represent optimal RC and solid lines
represent optimal RE.

a MATLAB script. We present results separately for moderate overall rates (mk/T > 0.5)

and for very low overall rates (mk/T < 0.15).

5.5.1 Moderate Overall Rates

Fig. 5.5 presents example results of the optimization routine for message consisting ofm = 32

packets. We consider four values of k
lf

here: 35, 18, 7, 3. The optimal RE value is roughly

constant across the overall code rates considered here, and the optimal RC is approaching

zero monotonically with decreasing overall rates. The results in Fig. 5.5 can be interpreted

in the following way if we start with a particular overall rate for the system and then employ

incremental redundancy: It is beneficial to use the additional incremental redundancy to the

physical-layer channel coding of each erasure-coded packet rather than adding additional

erasure-coded packets to lower the rate of the packet-level erasure code.
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Optimal solution: Optimal RE

is roughly 0.9412 (across all mk/T )

Figure 5.6: Optimal system at each mk/T compared against suboptimal systems with either
a fixed channel code rate or a fixed erasure code rate

To view the benefit in using the optimal RE and RC values at each overall rate in a

system where diversity grows with block-length, we plot in Fig. 5.6 the minimum required

power to operate with q ≤ λ in various fixed systems. We see in the figure that the optimal

system obtained by solving the optimization problem at each overall rate can outperform a

system with a fixed value of RC by as much as 2.25 dB. In general, the difference in power

levels depends upon the system parameters, mainly m, m̂, and k
lf
. The optimization routine

can determine if a fixed-rate (fixed channel code rate or fixed erasure code rate) solution is

good enough instead of using rate-compatibility at both layers of coding in a system that

employs incremental redundancy. In this example, the optimal RE value for the system

under consideration in Fig. 5.6 is shown to be roughly constant at around 0.94 in Fig. 5.5.

The presence of diversity growth in the channel has a significant impact on the optimal

value of RE. Fig. 5.7 illustrates how the diversity growth factor (DGF), k
lf
, affects how the

optimal RE value changes with overall rate and compares this behavior to that of fading
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Figure 5.7: Effect of diversity growth factor (DGF), k
lf
, on the optimal RE value: A low DGF

leads to an initially decreasing optimal erasure code rate as the overall code rate decreases.
A high DGF, on the other hand, indicates that it is better to make only the channel code
rateless and keep the erasure code rate roughly constant. Also shown here are the optimal RE

values for fixed-diversity systems with F fades per codeword irrespective of the block-length.

channels without diversity growth. The curves in Fig. 5.7 show the optimal RE value as

a function of the overall rate. Solid curves show this behavior for a block-fading channel

with diversity that grows with block-length while dashed curves show this behavior for a

block-fading channel with a fixed diversity that does not change with block-length. The

optimization problem for the fixed-diversity case, as solved in [CW11], is identical to (5.17)

but with k
RC lf

replaced by the fixed number of fading blocks per codeword.

As observed previously in [CW11], for channels with a fixed amount of diversity irre-

spective of the block-length, the optimal RE monotonically decreases as the overall rate

decreases, decreasing faster as the overall rate approaches zero. In contrast, channels with

diversity that grows with block-length have optimal RE values for which the rate of decrease
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Figure 5.8: Optimal value of the objective function in (5.17): Red line shows the result of the
optimization problem in (5.17) solved numerically. Blue line shows the result of performing
the bisection search using Monte-Carlo evaluation of (5.8) to obtain the required P that
yields p∗e(RC).

slows as overall rate approaches zero. Furthermore, as shown in Section 5.4, the optimal

erasure code rate will eventually approach 1 (as m = m̂) for the systems with diversity that

grows with block-length.

Note that there are two places in the curves for channels with diversity growth that

display local non-monotonic behavior. One example of this occurs with the k
lf

= 1 curve

in Fig. 5.7. For an overall rate above 0.55, the optimal RE for the k
lf

= 1 curve exactly

tracks the optimal RE curve for the F = 1 fixed-diversity curve. However, as the overall

rate decreases to below 0.55, the RE curve for the PD channel suddenly increases as overall

rate decreases. The k
lf

= 2 curve in Fig. 5.7 shows similar behavior in which the optimal RE

suddenly increases with decreasing overall rate when the overall rate drops below 1.5.

These points of local irregularity correspond to the change from one approximation to

another in the equation for p∗e(RC) in (5.17) as the optimal RC decreases to be below k
lf
.

126



0 0.5 1 1.5 2 2.5 3

60

80

100

120

140

Overall rate mk/T

O
p
ti
m
a
l
#

o
f
er
a
su
re
-c
o
d
ed

p
a
ck
et
s

m = m̂ = 64, ǫ = 0.1, λ = 10−6

 

 
(17), Monte-Carlo evaluation of
event in (8) to obtain P that
yields p∗e(RC)
(17) solved numerically

k/lf = 10

k/lf = 1

Figure 5.9: Optimal number of erasure-coded packets

However, we have confirmed that this discontinuity is more than an artifact of changing

approximation techniques. Fig. 5.8 shows the optimal value of the objective function as

obtained by solving the numerical optimization problem in (5.17) and by directly solving the

optimization problem without any approximation by using a Monte-Carlo evaluation of pe

in (5.8) to obtain P that yields p∗e(RC) through the bisection search.

Furthermore, Fig. 5.9 shows that the Monte-Carlo based optimization that uses no ap-

proximations displays the same discontinuity for the k
lf

= 1 case. Rather than being a result

of changing approximation techniques, this discontinuity is a result of the system changing

"phase" from a system with no diversity to a system with two branches of diversity. The

abrupt introduction of diversity suddenly adds much greater importance to the physical-

layer code that can harvest the newly available diversity. To allow the physical-layer code to

benefit from the new diversity, symbols are taken away from the erasure code and given to

the physical-layer code, creating the discontinuity seen in the k
lf

= 1 curve in Figs. 5.7 and

5.9 for the overall rate near 0.55.
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While Fig. 5.9 shows good agreement between the optimal number of erasure-coded

packets found by direct Monte-Carlo and by the Gaussian approximation (5.17) for the
k
lf

= 10 case, we see a gap between the optimal number of erasure-coded packets found by

direct Monte-Carlo and by the Gaussian approximation for the k
lf

= 1 case. This gap is not

unexpected since with only one fade the Gaussian approximation is not quite accurate for

computing pe. However, the flatness of the objective function for large values of T similar to

Fig. 5.4 allow the optimal objective functions shown in Fig. 5.8 to match well even though the

optimal number of erasure-coded packets found by direct Monte-Carlo and by the Gaussian

approximation method do not completely agree in Fig. 5.9.

5.5.2 Very Low Overall Rates

Now, consider what happens to optimal RE as the overall rate goes to zero (as T → ∞).

When the overall rate is very low, the minimum SNR required for reliable transmission is

correspondingly small. Thus, at these very low overall rates we use a low-SNR approximation

when performing the bisection search to obtain P that yields p∗e(RC) in (5.17). Specifically,

for a very low value of transmit power P , ln(1 + γ) ≈ γ with very high probability. Hence

for the Rayleigh fading channel, we assume that µ(P ) = E[ln(1 + γ)] ≈ E[γ] = P and that

Var(P ) = Var(ln(1 + γ)) ≈ Var(γ) = P 2.

For channels with diversity growth, Fig. 5.10 shows curves of optimal RE for overall

rates close to zero. It is seen from the results in Fig. 5.10 that regardless of the value of
k
lf
, the optimal value of RE is increasing towards 1 as the overall rate decreases. As shown

in Section 5.4, for channels with diversity growth, the optimal RE is equal to 1 for any

low-enough overall rate for any value of k
lf
.

This behavior is different than what was seen in [CW11] for channels with fixed diversity.

As shown in Section VI of [CW11], for the fixed-diversity case as overall rate decreases to

zero the optimal values of RE converge to values that are bounded away from zero but can

generally take any value in the region 0 < RE ≤ 1. For the fixed-diversity channels studied
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Figure 5.10: Increase of optimal RE with respect to decreasing overall rates at values of very
low overall rate in fading channels with diversity growth

Table 5.1: Asymptotic Values of Optimal RE for the Fixed-Diversity Systems from Fig. 5.7.
The Values Were Computed Using the Approach in Section VI of [CW11].

F 1 2 5 10
Opt. RE, T →∞ 0.2735 0.4267 0.6275 0.7529

in Fig. 5.7, the asymptotic optimal values of RE as overall rate goes to zero are provided in

Table 5.1.

However, even in [CW11] it was observed in the context of fixed-diversity channels that

whenever the number of block fades per channel codeword is large enough, erasure coding

becomes insignificant to the system in terms of the benefit it yields and optimal values of RE

are very close to 1. Thus, the low-rate results we present for channels with diversity growth

are consistent with the results observed in [CW11].

5.6 A Related Optimization Problem
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In this section, we discuss the results of numerically solving a related optimization problem

of minimizing the probability of message error given a fixed transmitter power. The mo-

tivation to consider this alternative optimization problem is to identify whether the trends

observed in the solution to the optimization problem of Section 5.3 also appear under this

alternative optimization problem. If the optimal erasure code rate behaves similarly, then

the conclusions of our work hold in a much broader context.

The optimization problem is written as

minRC q

s.t. RC > 0 satisfying m̂ ≤ m

RE

,
m

RE

∈ Z.
(5.20)

where q, which depends upon the number of erasure-coded packets RCTk
−1 that are trans-

mitted and the probability of codeword decoding error pe, is defined in (5.5). Note that the

fixed transmitter power P controls pe. The solution to this optimization problem is obtained

in a relatively straight-forward manner unlike the optimization problem of Section 5.3. For

a fixed value of the overall code rate, we compute the value of q for each RC (hence RE) that

is under consideration and the optimal RC value is the value that minimizes q. Note that

minimizing q, which is the value of the cumulative distribution function Φ(x) of a standard

normal distribution, is equivalent to minimizing the argument of the function.

For our numerical results discussed here, pe is computed according to (5.14), which is the

approximation that is also used in the results related to the optimization problem of Section

5.3. Fig. 5.11 shows the results of numerically solving the optimization problem (5.20).

Similar to the results of Section 5.5, a larger value of k
lf

results in a relatively higher optimal

erasure code rate across the range of overall code rates considered here. Furthermore, the

optimal erasure code rate increases to its maximum possible value (as a function of decreasing

overall code rate) beyond a certain value of the overall code rate. This behavior was observed

across different power levels and system parameters.

We note that minimizing the message error probability without any lower bound on the
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Figure 5.11: Optimal RE as a function of the overall code rate mk/T for the optimization
problem (5.20)

same is not a practical problem to be posed in real systems. This is because real systems only

require a certain target message error probability to be achieved. Our results in Fig. 5.11

do not have any such lower bound on the target message error probability. If there is such a

lower bound included as a constraint to the optimization problem (5.20), we obtain multiple

RE values that are optimal, which allows for a greater flexibility in system designs.

5.7 Concluding Remarks

This chapter explores the optimal allocation of redundancy between inter-packet (packet-

level) erasure coding and intra-packet (physical-layer) channel coding for fading channels

where diversity grows with codeword length. This is a practically important scenario for

time-varying channels for which a fixed coherence time will lead to a growth in diversity as

the number of transmitted symbols increases. As the overall rate goes to zero, the optimal
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packet-level erasure code rate goes to 1 (when m = m̂), indicating that no packet-level

erasure coding is necessary in the limit of extremely low rates and the resulting extremely

high diversity.

Perhaps a more practical result is that the optimal value of the erasure code rate RE

remains relatively flat for some interesting rate regions, especially when the diversity growth

factor k
lf

is sufficiently large. We presented an example demonstrating that for sufficiently

large values of k
lf

an optimized system can have an optimal erasure code rate that is a fixed

constant. In contrast, the optimal rate RC of the physical-layer channel code decreases

monotonically to zero as the overall rate goes to zero for channels with diversity growth.

Thus, when considering systems with incremental redundancy, optimal rate allocation for

fading channels with diversity growth requires a physical-layer code that is "rateless".

We recognize that implementation of a "rateless" code for the physical layer presents some

practical challenges as compared with "rateless" coding for correction of packet-level erasures.

In particular, rateless codes at the physical layer require that received packets that could not

be decoded must be stored until additional redundancy is received to facilitate a subsequent

decoding attempt. In contrast, with rateless packet-level erasure coding, packets that are

not successfully decoded are simply discarded and treated as erasures. However, the point of

this chapter is that rateless coding at the physical layer provides benefits not available with

rateless coding for packet-level erasures, so that system designers should at least consider

whether the benefit might be worth that additional implementation complexity.

5.8 Appendix

5.8.1 Proof that pe in (5.14) is a Strictly Increasing Function of RC

Lemma 12. The Gaussian approximation to the probability of codeword decoding error pe

in (5.14) is a strictly increasing function of RC.

Proof. First, note that the function is continuous as the expressions for the two cases eval-
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uate to the same value when RC = k
lf

and the two component functions are continuous.

Furthermore, Φ
[
cRC−µ(P )√

Var(P )

]
is a strictly increasing function in RC , as is clear from its ar-

guments. We now show that Φ
[√

k
RC lf

cRC−µ(P )√
Var(P )

]
is a strictly increasing function in RC by

observing that its derivative is positive for all values RC > 0:

d

dRC

Φ
√√√√ k

RC lf

cRC − µ(P )√
Var(P )

 = 1√
2π
e−

(√
k

RClf

cRC−µ(P )√
Var(P )

)2

2

d

dRC

√√√√ k

RC lf

cRC − µ(P )√
Var(P )

 (5.21)

=c1
d

dRC

[
cRC − µ(P )√

RC

]
(5.22)

=c1
cRC + µ(P )

2R
3
2
C

, (5.23)

where c1 > 0 collects the remaining terms that depend on positive constants µ(P ), Var(P ),

k, and lf , and a varying positive exponential term that has RC in the exponent.

5.8.2 Proof of Theorem 11

Proof. We will show that any value of RE other than m
m̂

(corresponding to an RC value of

m̂k/T ) is suboptimal for any T that is large enough.

Recall that the feasible set of RE values is such that m
RE
∈ Z and RE ∈

{
m
m̂
, m
m̂+1 ,

m
m̂+2 , . . .

}
.

For any fixed RE, the probability that a codeword cannot be decoded must be p∗e(RC) =

p∗e
(
mk
TRE

)
so that the overall probability of message error is equal to the allowable value λ.

This value of p∗e
(
mk
TRE

)
is achieved by using the lowest possible value of transmit power P

for this fixed value of RE.

First, let us consider an arbitrary value of T . When RE is fixed at RE0 ,
m
m̂
, we transmit

m̂ erasure-coded packets using a channel code for each packet. All m̂ channel codewords

must be decoded correctly by the channel decoder to recover the message. Let pn0 be the

probability of codeword error “needed” by the system to achieve a message error probability
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of q = λ at RE0 . The value of pn0 , using the exact expression rather than the approximation

in (5.5), can be obtained as follows:

λ =1− (1− pn0)m̂ (5.24)

⇐⇒ pn0 =1− m̂
√

1− λ. (5.25)

This value 0 < pn0 < 1 is the required probability of decoding error of the channel code in

order to meet the message error rate target of λ.

Given that RE = m
m̂
, RC = m̂k

T
. We now set the transmit power, which we call P0(T ),

using (5.14) with the assumption in the theorem that RC ≤ k
lf
, so that the channel code can

“provide” a probability of decoding error pp0 = pn0 :

pp0 = Φ
√ T

m̂lf

cm̂k
T
− µ(P0(T ))√
Var(P0(T ))

 . (5.26)

Now, we assume that T is large enough that P0(T ), which is the required transmit power

at this T and RE = m
m̂
, is very low. So we employ the same low-SNR approximation as

explained in Section 5.5 that µ(P ) ≈ P and the variance Var(P ) ≈ P 2. Using this low-SNR

approximation, we get:

pp0 = Φ
[√

T

m̂lf

cm̂k
T
− P0(T )
P0(T )

]
. (5.27)

By manipulating this expression, we can obtain that

P0(T ) =

√
T
m̂lf

cm̂k
T[

Φ−1 (pp0) +
√

T
m̂lf

] , (5.28)

where 0 < pp0 = pn0 < 1. Looking at the expression for pn0 in (5.25), one can expect λ to be

quite low so that pn0 is very close to zero and certainly less than 1
2 . This means that pp0 in

(5.27) is less than a half and hence the argument inside the Φ(·) function is negative. This
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implies that P0(T ) > cm̂k
T

and thus positive when obtained explicitly in (5.28) even when

Φ−1 (pp0) < 0 in the denominator of (5.28).

Now, for the same fixed T let us see whether P0(T ) can possibly work for any other value

of RE in the feasible set REi = m
m̂+i , i ≥ 1. P0(T ) is a transmit power level that will work for

the system at REi if the probability of decoding error provided by the channel code ppi(T )

is less than or equal to the probability of decoding error needed pni . Note that ppi(T ) does

depend upon T when i ≥ 1 unlike pp0 , which was set to be equal to pn0 to make sure that

the system works at RE0 . Essentially, we obtain ppi(T ) for i ≥ 1 by evaluating (5.14) at T ,

RC = (m̂+i)k
T

, and power level P0(T ) via the low-SNR approximation. Collecting all of this,

the system achieves q ≤ λ at T , P0(T ), and REi if and only if

∆i(T ) , pni − ppi(T ) ≥ 0. (5.29)

Lemma 13. At any value of T large enough, RE0 = m
m̂

is uniquely optimal if and only

if ∆i(T ) < 0 for all i ≥ 1. Moreover, the optimal transmit power in this case, for any

sufficiently large T , can be approximated by

P ∗ = P0(T ) =

√
T
m̂lf

cm̂k
T[

Φ−1 (pp0) +
√

T
m̂lf

] , (5.30)

where pp0 = 1− m̂
√

1− λ.

Proof. Follows from the arguments so far.

Continuing with the main proof, at any value REi , 0 < pni < 1 is any solution to the

following equation:

λ = 1−


m
REi∑
j=m̂

( m
REi

k

)
(1− pni)j(pni)

m
REi
−j

 (5.31)
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We now show that limT→∞ ppi(T ) = 1,∀i ≥ 1 so that

lim
T→∞

∆i(T ) = lim
T→∞

pni − ppi(T ) < 0,∀i. (5.32)

In particular, since we have assumed that the feasible set of RE values is finite because RC

is in a restricted interval and m
RE

can only assume integer values, there is a large-enough Topt

such that ∆i(T ) < 0, ∀i, T ≥ Topt.

The following proves that limT→∞ ppi(T ) = 1,∀i (we drop the dependence of ppi(T ) on

T to satisfy column spacing):

ppi =Φ
√ T

(m̂+ i)lf

c(m̂+i)k
T
− P0(T )

P0(T )

 (5.33)

=Φ


√

T

(m̂+ i)lf
·

c(m̂+i)k
T
−

√
T
m̂lf

cm̂k
T[

Φ−1(pp0)+
√

T
m̂lf

]
√

T
m̂lf

cm̂k
T[

Φ−1(pp0)+
√

T
m̂lf

]


(5.34)

=Φ


√

m̂

m̂+ i
·

(m̂+ i)
[
Φ−1 (pp0) +

√
T
m̂lf

]
−
√

T
m̂lf

m̂

m̂

 , (5.35)

which upon further manipulations becomes

ppi =Φ
[√

1
m̂(m̂+ i)

{
(m̂+ i)Φ−1 (pp0) + i

√
T

m̂lf

}]
(5.36)

→1 as T →∞,∀i (5.37)

This completes the proof of the main theorem.
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CHAPTER 6

Open Problems

This dissertation discussed aspects of rate-compatibility (Chapters 1, 2, 3, 5) and protograph

LDPC codes (Chapter 4). We now discuss open problems and possible future extensions of

some of the work in this dissertation.

Chapter 1 described a new design method based on permanent upper bounds on min-

imum distance to obtain PBRL codes for short block-length applications that require low

FERs. A limitation of the work in this chapter is that simulation results focused entirely on

the BI-AWGN channel. Future work could explore whether designs maximizing the perma-

nent bound also perform well on the binary symmetric and binary erasure channels with low

FER requirements. Similarly, simulation results were limited to full-precision belief propa-

gation decoding. Further work could explore how designs maximizing the permanent bound

perform with other decoder implementations. This chapter concentrated on QC PBRL codes

designed only according to the newly proposed design method. One could use the method of

optimizing the threshold once enough rows have been added according to the newly proposed

permanent-bound-based design method.

Chapter 2 discussed several properties of PBRL codes; there are open problems left to be

explored. One important question is whether the convergence property for infinite iterations

holds in some sense also under finite iterations. Another key question left unsolved is whether

one can provide theoretical guarantees as to how sub-optimal is the PBRL extension when

compared to the optimal lower-triangular extension.
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Chapter 3 described ways to handle rate-compatibility when the incremental symbols

are delivered out-of-order. The chapter presented PBRL codes for universal increment or-

dering. A key open problem is to show whether or not UIO-PBRL codes with random in-

crement ordering can have the same throughput as a PBRL code designed for conventional

rate-compatibility under in-order increment arrivals.

Chapter 4 settled the question of the shortest block-length required to achieve a girth

of 6 for (3, L) complete-protograph QC-LDPC codes. Our approach in Chapter 4 indicates

that additive combinatorics may help in tightening the existing bound on the shortest block-

length required to achieve a girth of 8.

Chapter 5 solved the problem of what the optimal rate allocation scheme is for a cross-

layer system with packet-level erasure coding and physical-layer channel coding when the

fading channel has diversity that grows with block-length. An open problem we identify

here is the development of a technique that can directly compute the least possible value of

optimal erasure code rate for a specified set of system parameters when the fading channel

has diversity growth. The answer to this question would let a system designer know the

range of low values of RE that need not be considered for any value of overall rate.

138



References

[ASDR11] S. Abu-Surra, D. Divsalar, and W. E. Ryan. Enumerators for protograph-based

ensembles of LDPC and generalized LDPC codes. IEEE Trans. Inf. Theory,

57(2):858–886, February 2011.

[Big05] Ezio Biglieri. Coding for Wireless Channels. Springer US, 2005.

[Bla03] Richard E Blahut. Algebraic Codes for Data Transmission. Cambridge Univ.

Press, Cambridge, England, 2003.

[BS13] B. K. Butler and P. H. Siegel. Bounds on the minimum distance of punctured

quasi-cyclic LDPC codes. IEEE Trans. Inf. Theory, 59(7):4584–4597, July 2013.

[BV09] Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

Univ. Press, Cambridge, England, 2009.

[BZW+08] C. R. Berger, Shengli Zhou, Yonggang Wen, P. Willett, and K. Pattipati. Op-

timizing joint erasure- and error-correction coding for wireless packet transmis-

sions. IEEE Trans. Wireless Commun., 7(11):4586–4595, November 2008.

[CB10] Yu Cao and S. D. Blostein. Cross-layer optimization of rateless coding over

wireless fading channels. In 25th Biennial Symp. Commun., pages 144–149, May

2010.

[CCG79] J. Cain, G. Clark, and J. Geist. Punctured convolutional codes of rate (n −

1)/n and simplified maximum likelihood decoding (Corresp.). IEEE Trans. Inf.

Theory, 25(1):97–100, January 1979.

139



[CHK09] Tao Cui, Tracey Ho, and Jorg Kliewer. Achievable rate and optimal physical

layer rate allocation in interference-free wireless networks. In Proc. IEEE Int.

Symp. Inform. Theory (ISIT), pages 2674–2678, June 2009.

[CVDW15] Tsung-Yi Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel. Protograph-based

raptor-like LDPC codes. IEEE Trans. Commun., 63(5):1522–1532, May 2015.

[CW11] T. A. Courtade and R. D. Wesel. Optimal allocation of redundancy between

packet-level erasure coding and physical-layer channel coding in fading channels.

IEEE Trans. Commun., 59(8):2101–2109, August 2011.

[DDJA09] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews. Capacity-approaching

protograph codes. IEEE J. Sel. Areas Commun., 27(6):876–888, August 2009.

[DKO+16] G. Durisi, T. Koch, J. Östman, Y. Polyanskiy, and W. Yang. Short-packet

communications over multiple-antenna rayleigh-fading channels. IEEE Trans.

Commun., 64(2):618–629, February 2016.

[Dol05] S. Dolinar. A rate-compatible family of protograph-based LDPC codes built by

expurgation and lengthening. In Proc. IEEE Int. Symp. Inform. Theory (ISIT),

pages 1627–1631, September 2005.

[DPT+02] Changyan Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke.

Finite-length analysis of low-density parity-check codes on the binary erasure

channel. IEEE Trans. Inf. Theory, 48(6):1570–1579, June 2002.

[EKHB09] M. El-Khamy, J. Hou, and N. Bhushan. Design of rate-compatible structured

LDPC codes for hybrid ARQ applications. IEEE J. Sel. Areas Commun.,

27(6):965–973, August 2009.

[ES06] O. Etesami and A. Shokrollahi. Raptor codes on binary memoryless symmetric

channels. IEEE Trans. Inf. Theory, 52(5):2033–2051, May 2006.

140



[Fan00] John L. Fan. Array codes as low-density parity-check codes. In Proc. 2nd Int.

Symp. Turbo Codes & Related Topics, pages 543–546, Brest, September 2000.

[Fos04] M. P. C. Fossorier. Quasi-cyclic low-density parity-check codes from circulant

permutation matrices. IEEE Trans. Inf. Theory, 50(8):1788–1793, August 2004.

[Gal63] Robert Gray Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge,

MA, USA, 1963.

[GHW+12] Zheng Guo, Jie Huang, Bing Wang, Shengli Zhou, Jun-Hong Cui, and P. Willett.

A practical joint network-channel coding scheme for reliable communication in

wireless networks. IEEE Trans. Wireless Commun., 11(6):2084–2094, June 2012.

[Gol05] Andrea Goldsmith. Wireless Communications. Cambridge University Press,

New York, 2005.

[Hag88] J. Hagenauer. Rate-compatible punctured convolutional codes (RCPC codes)

and their applications. IEEE Trans. Commun., 36(4):389–400, April 1988.

[HEA05] Xiao-Yu Hu, E. Eleftheriou, and D.-M. Arnold. Regular and irregular progressive

edge-growth tanner graphs. IEEE Trans. Inf. Theory, 51(1):386–398, January

2005.

[HKKM06] Jeongseok Ha, Jaehong Kim, D. Klinc, and S. W. McLaughlin. Rate-compatible

punctured low-density parity-check codes with short block lengths. IEEE Trans.

Inf. Theory, 52(2):728–738, February 2006.

[HKM04] Jeongseok Ha, Jaehong Kim, and S. W. McLaughlin. Rate-compatible punctur-

ing of low-density parity-check codes. IEEE Trans. Inf. Theory, 50(11):2824–

2836, November 2004.

[HNK+06] Manabu Hagiwara, Koji Nuida, Takashi Kitagawa, Marc Fossorier, and Hideki

Imai. On the minimal length of quasi cyclic LDPC codes with girth greater than

141



or equal to 6. In Proc. IEEE Int. Symp. Inform. Theory Applicat., October 2006.

CD-ROM.

[KB13] M. Karimi and A. H. Banihashemi. On the girth of quasi-cyclic protograph

LDPC codes. IEEE Trans. Inf. Theory, 59(7):4542–4552, July 2013.

[KCY13] Kyung-Joong Kim, Jin-Ho Chung, and Kyeongcheol Yang. Bounds on the size

of parity-check matrices for quasi-cyclic low-density parity-check codes. IEEE

Trans. Inf. Theory, 59(11):7288–7298, November 2013.

[KHKC11] C. Koller, M. Haenggi, J. Kliewer, and D. J. Costello. On the optimal block

length for joint channel and network coding. In Proc. IEEE Inform. Theory

Workshop, pages 528–532, October 2011.

[KHKC14] C. Koller, M. Haenggi, J. Kliewer, and Jr. Costello, D. J. Joint design of channel

and network coding for star networks connected by binary symmetric channels.

IEEE Trans. Commun., 62(1):158–169, January 2014.

[KRM09] J. Kim, A. Ramamoorthy, and S. W. Mclaughlin. The design of efficiently-

encodable rate-compatible LDPC codes. IEEE Trans. Commun., 57(2):365–375,

February 2009.

[LC07] Gianluigi Liva and M. Chiani. Protograph LDPC codes design based on EXIT

analysis. In Proc. IEEE Global Telecommun. Conf., pages 3250–3254, November

2007.

[LGSW07] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson. Reliable multime-

dia download delivery in cellular broadcast networks. IEEE Trans. Broadcast.,

53(1):235–246, March 2007.

142



[LMSS01] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A.

Spielman. Efficient erasure correcting codes. IEEE Trans. Inf. Theory,

47(2):569–584, February 2001.

[LXXL11] D. Lin, M. Xiao, Y. Xiao, and S. Li. Efficient packet combining based on packet-

level coding. Electron. Lett., 47(7):444–445, March 2011.

[MN08] J. Matousek and J. Nesetril. Invitation to Discrete Mathematics. OUP Oxford,

2008.

[MSC14] D. G. M. Mitchell, R. Smarandache, and D. J. Costello. Quasi-cyclic LDPC

codes based on pre-lifted protographs. IEEE Trans. Inf. Theory, 60(10):5856–

5874, October 2014.

[NN13] T. V. Nguyen and A. Nosratinia. Rate-compatible short-length protograph

LDPC codes. IEEE Commun. Lett., 17(5):948–951, May 2013.

[NND12] T. V. Nguyen, A. Nosratinia, and D. Divsalar. The design of rate-compatible

protograph LDPC codes. IEEE Trans. Commun., 60(10):2841–2850, October

2012.

[NS97] K. R. Narayanan and G. L. Stüber. A novel ARQ technique using the turbo

coding principle. IEEE Commun. Lett., 1(2):49–51, March 1997.

[Pai47] L. J. Paige. A note on finite abelian groups. Bulletin of the American Mathe-

matical Society, 53(6):590–593, June 1947.

[PPV10] Y. Polyanskiy, H. V. Poor, and S. Verdu. Channel coding rate in the finite

blocklength regime. IEEE Trans. Inf. Theory, 56(5):2307–2359, May 2010.

[RDVW14] S. V. S. Ranganathan, D. Divsalar, K. Vakilinia, and R. D. Wesel. Design

of high-rate irregular non-binary LDPC codes using algorithmic stopping-set

143



cancellation. In Proc. IEEE Int. Symp. Inform. Theory (ISIT), pages 711–715,

June 2014.

[RDW15a] S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel. On the girth of (3,L)

quasi-cyclic LDPC codes based on complete protographs. In Proc. IEEE Int.

Symp. Inform. Theory (ISIT), pages 431–435, June 2015.

[RDW15b] S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel. On the girth of

(3,L) quasi-cyclic LDPC codes based on complete protographs. April 2015.

arXiv:1504.04975v1 [cs.IT].

[RDW17] S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel. Design of improved quasi-

cyclic protograph-based raptor-like LDPC codes for short block-lengths. In Proc.

IEEE Int. Symp. Inform. Theory (ISIT), pages 1207–1211, June 2017.

[RDW18] S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel. Quasi-cyclic protograph-

based raptor-like LDPC codes for short block-lengths. 2018. Under revision,

IEEE Trans. Inf. Theory.

[Ric03] T. J. Richardson. Error floors of LDPC codes. In Proc. 41st Annu. Allerton

Conf. Commun., Control, and Computing, volume 5, pages 3125–3129, October

2003.

[RL09] William Ryan and Shu Lin. Channel Codes Classical and Modern. Cambridge

Univ. Press, Cambridge, England, 2009.

[RMW17] S. V. S. Ranganathan, T. Mu, and R. D. Wesel. Allocating redundancy between

erasure coding and channel coding when fading channel diversity grows with

codeword length. IEEE Trans. Commun., 65(8):3226–3237, August 2017.

144



[RSU01] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke. Design of capacity-

approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory,

47(2):619–637, February 2001.

[RU01] T. J. Richardson and R. L. Urbanke. The capacity of low-density parity-check

codes under message-passing decoding. IEEE Trans. Inf. Theory, 47(2):599–618,

February 2001.

[RU08] Tom Richardson and Rüdiger Urbanke. Modern Coding Theory. Cambridge

University Press, 2008.

[RVDW16] S. V. S. Ranganathan, K. Vakilinia, D. Divsalar, and R. D. Wesel. Univer-

sal rate-compatible LDPC code families for any increment ordering. In Proc.

9th Int. Symp. Turbo Codes & Iterative Inf. Processing (ISTC), pages 101–105,

September 2016.

[RWD18] S. V. S. Ranganathan, R. D. Wesel, and D. Divsalar. Linear rate-compatible

codes with degree-1 extending variable nodes under iterative decoding. In Proc.

IEEE Int. Symp. Inform. Theory (ISIT), pages 1166–1170, June 2018.

[Rys63] H. J. Ryser. Combinatorial mathematics, Carus Mathematical Monographs.

1963.

[Sho06] A. Shokrollahi. Raptor codes. IEEE Trans. Inf. Theory, 52(6):2551–2567, June

2006.

[Slo] N. J. A. Sloane. The on-line encyclopedia of integer sequences.

http://oeis.org/A003111. Number of Complete Mappings of The Cyclic Group

Z2n+1.

[Sun11] Fan Sun. Two-layer coding rate optimization in relay-aided systems. In IEEE

Veh. Technology Conf. (VTC Fall), pages 1–5, September 2011.

145



[SV12] R. Smarandache and P. O. Vontobel. Quasi-cyclic LDPC codes: Influence of

proto- and tanner-graph structure on minimum hamming distance upper bounds.

IEEE Trans. Inf. Theory, 58(2):585–607, February 2012.

[Tan81] R. Tanner. A recursive approach to low complexity codes. IEEE Trans. Inf.

Theory, 27(5):533–547, September 1981.

[Tec15] Technical Specification Group Services and System Aspects. 3GPP TS 23.246

V13.3.0. Multimedia broadcast/multicast service (mbms) - architecture and

functional description, 3rd Generation Partnership Project, December 2015.

[Tec17] Technical Specification Group Radio Access Network; NR. 3GPP TS 38.212

V2.0.0 (2017-12). Multiplexing and channel coding (release 15), 3rd Generation

Partnership Project, December 2017.

[Tho03] Jeremy Thorpe. Low-density parity-check (LDPC) codes constructed from pro-

tographs. IPN-PR 42-154, JPL, August 2003.

[TJVW03] Tao Tian, C. Jones, J. D. Villasenor, and R. D. Wesel. Construction of irregular

LDPC codes with low error floors. In Proc. IEEE Int. Conf. Commun., volume 5,

pages 3125–3129, May 2003.

[TJVW04] Tao Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel. Selective avoidance of

cycles in irregular LDPC code construction. IEEE Trans. Commun., 52(8):1242–

1247, August 2004.

[VDW15] K. Vakilinia, D. Divsalar, and R. D. Wesel. Protograph-based raptor-like LDPC

codes for the binary erasure channel. In Inform. Theory and Applicat. Workshop,

pages 240–246, February 2015.

[VF09] B. N. Vellambi and F. Fekri. Finite-length rate-compatible LDPC codes: a novel

puncturing scheme. IEEE Trans. Commun., 57(2):297–301, February 2009.

146



[VM05] M. Vehkapera and M. Medard. A throughput-delay trade-off in packetized sys-

tems with erasures. In Proc. IEEE Int. Symp. Inform. Theory (ISIT), pages

1858–1862, September 2005.

[Von13] P. O. Vontobel. The Bethe permanent of a nonnegative matrix. IEEE Trans.

Inf. Theory, 59(3):1866–1901, March 2013.

[WRW17] H. Wang, S. V. S. Ranganathan, and R. D. Wesel. Approaching capacity using

incremental redundancy without feedback. In Proc. IEEE Int. Symp. Inform.

Theory (ISIT), pages 161–165, June 2017.

[WVR+16] R. D. Wesel, K. Vakilinia, S. V. S. Ranganathan, T. Mu, and D. Divsalar.

Resource-aware incremental redundancy in feedback and broadcast. In Int.

Zurich Seminar Commun. (IZS), pages 63–67, March 2016.

[WYD08] Yige Wang, J. S. Yedidia, and S. C. Draper. Construction of high-girth QC-

LDPC codes. In Proc. 5th Int. Symp. Turbo Codes & Related Topics, pages

180–185, September 2008.

[XMA11] M. Xiao, M. Medard, and T. Aulin. Cross-layer design of rateless random net-

work codes for delay optimization. IEEE Trans. Commun., 59(12):3311–3322,

December 2011.

[YB04] M. R. Yazdani and A. H. Banihashemi. On construction of rate-compatible low-

density parity-check codes. IEEE Commun. Lett., 8(3):159–161, March 2004.

[Yil11] A. O. Yilmaz. Calculating outage probability of block fading channels based

on moment generating functions. IEEE Trans. Commun., 59(11):2945–2950,

November 2011.

147



[ZDN+06] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright. Gen03-

6: Investigation of error floors of structured low-density parity-check codes by

hardware emulation. In IEEE Globecom 2006, pages 1–6, November 2006.

[ZM16] H. Zeineddine and M. M. Mansour. Inter-frame coding for broadcast communi-

cation. IEEE J. Sel. Areas Commun., 34(2):437–452, February 2016.

148


	sudarsan_dissertation



