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This dissertation consists of three parts. The first part considers the archetypical multiter-

minal source coding problem with logarithmic loss distortion constraints. A single-letter

description of the achievable rate distortion region is given for finite-alphabet sources.

In the course of doing so, the rate distortion region for the m-encoder CEO problem is

also characterized. Several applications and examples are given, and a variety of related

problems are discussed.

The second part of this dissertation considers the combinatorial problem of Coded Co-

operative Data Exchange. In this problem, data which is originally distributed in a network

is exchanged among nodes until universal recovery is achieved (i.e., all terminals recover

all data initially present in the network). This dissertation characterizes the minimum

number of exchanges which must take place in order to permit universal recovery. Explicit

algorithms and tight concentration results are given for several special cases of interest.

Finally, three new lemmas are provided, each of which is interesting in its own right.

Applications to multiterminal information theory are discussed.
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CHAPTER 1

Introduction

The fundamental tradeoff between the level to which data can be compressed, and the

fidelity to which it can later be reproduced, is known as rate distortion1. As with many

of the cornerstone results in information theory, the study of the rate distortion tradeoff

traces its roots back to Claude Shannon. Just over fifty years ago, Shannon proved the first

rate distortion theorem in his 1959 paper [Sha59]. It is surprising then, that apparently

simple extensions of this fundamental tradeoff to multiterminal settings are notoriously

difficult to describe.

To wit, characterizing the rate distortion region — the set of attainable rates and

distortions — for the two-encoder source coding problem depicted in Figure 1.1 is perhaps

the most well-known, long-standing open problem in the field of multiterminal source

coding. Indeed, it is commonly referred to as the multiterminal source coding problem (a

tradition to which we adhere in this dissertation). Although this problem was posed nearly

four decades ago, a complete description of the rate distortion region eluded researchers

for any nontrivial choice of source distribution and distortion measure until very recently.

In their seminal work [WTV08], Wagner et al. characterized the rate distortion region

for jointly Gaussian sources subject to mean square error distortion constraints. Notably,

they showed that the extension of the single-encoder vector quantization scheme to two en-

coders suffices to attain any point in the achievable rate distortion region. We remark that,

as Shannon showed in his 1959 paper, this type of vector quantization encoding scheme

attains any point of the optimal rate distortion tradeoff in the single-encoder setting. The

1The term rate refers to the compression ratio, while distortion refers to the reproduction fidelity.
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Encoder 1

Encoder 2

Decoder

Y1

Y2

R1

R2

Ŷ1

Ŷ2

Ed(Ŷ1, Y1) ≤ D1

Ed(Ŷ2, Y2) ≤ D2

Figure 1.1: The two-encoder lossy source coding network.

two-encoder extension of this scheme (where both encoders perform vector quantization)

is commonly called the Berger-Tung scheme, for the researchers who first proposed and

analyzed it (see [Ber77] and [Tun78]).

While the importance of [WTV08] is undeniable, the proofs contained therein relied

heavily on the maximum entropy properties of the Gaussian distribution and the vast body

of literature specific to Gaussian multiterminal problems (e.g., [Ooh97, PTR04, Ooh05]).

Due to the inherent dependence on the peculiarities of the Gaussian distribution, the

results in [WTV08] shed little light on the multiterminal source coding problem for other

source distributions and/or choices of distortion measures. Indeed, it was still not clear

from [WTV08] whether the Berger-Tung achievability scheme — a very natural encoding

scheme — would be optimal in other settings of interest. In fact, Wagner et al. later gave

a relatively simple example in [WKA11] which suggested the possibility that the Berger-

Tung achievability scheme might not be optimal for finite-alphabet sources except in very

special cases (e.g., where one source is to be reproduced losslessly).

In the first part of this dissertation, we address this point for the two-encoder set-

ting. Specifically, we show that the Berger-Tung achievability scheme is optimal for all

finite-alphabet sources when distortion is measured under logarithmic loss. To our knowl-

edge, this constitutes the first time that the entire achievable rate distortion region has

been described for the multiterminal source coding problem with nontrivial finite-alphabet

sources and nontrivial distortion constraints. In addition to providing a single-letter char-
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acterization of the achievable rate distortion region for the multiterminal source coding

problem under logarithmic loss, we also give a complete characterization of the m-encoder

CEO problem (also under logarithmic loss). The CEO problem, like the multiterminal

source coding problem, is another well-known – and generally open – problem in the field

of network information theory.

For the reader unfamiliar with the distortion measure we consider, we briefly motivate

it here. Logarithmic loss is a widely used penalty function in the theory of learning and

prediction (cf. [CL06, Chapter 9]), and it has natural interpretations and applications

in gambling and portfolio theory. To be more precise, logarithmic loss is a natural loss

criterion in scenarios where the reconstructions are allowed to be ‘soft’, i.e., probability

measures rather than deterministic decision values. As we demonstrate through several

examples, logarithmic loss has a variety of useful applications and has implicitly appeared

in the source coding literature frequently over the years (popular examples include horse

racing markets and list decoding). However, it was not explicitly introduced in the context

of multiterminal source coding until [CW11a].

In contrast to the lossy setting investigated in the first part of this dissertation, we

restrict our attention to lossless reproduction of data in the second part. In making this

sacrifice, we are able to study networks which are essentially arbitrarily connected, as

opposed to the simple three-terminal network given in Figure 1.1. To be specific, we study

the problem of coded cooperative data exchange. This problem is predominantly motivated

by emerging issues in applied information theory, particularly in distributed storage and

peer-to-peer networks. In our model, we assume that each node in a network starts with a

subset of data. Nodes propagate data through the network by exchanging messages with

their neighbors. We quantify how many such exchanges are required to achieve universal

recovery, i.e., the state where each node recovers all data initially present in the network.

To see the motivation for this work, consider the task of backing up data on servers in

a large data center. One common method to protect data from corruption is replication.

3



As the name suggests, under replication, large quantities of data are replicated in several

locations so as to protect from various sources of corruption (e.g., equipment failure, power

outages, natural disasters, etc.). As the quantity of information in large data centers

continues to increase, the number of file transfers required to complete a periodic replication

task is becoming an increasingly important consideration due to time, equipment, cost,

and energy constraints. Our work in the second part of this dissertation addresses these

applications.

In addition to distributed storage, there are potential applications to tactical networks.

For instance, consider a scenario in which an aircraft flies over a group of nodes on the

ground and tries to deliver a video stream. Each ground node might only receive a subset

of the packets due to interference, obstructions, and other signal integrity issues. In order

to recover the transmission, the nodes are free to communicate with their neighbors, but

would like to minimize the number of transmissions in order to conserve battery power (or

avoid detection, etc.). How should the nodes share information, and what is the minimum

number of transmissions required so that the entire network can recover the video stream?

These are the essential questions addressed.

The third and final part of this dissertation is of a technical nature. In it, we present

three lemmas, each of which has applications to multiterminal information theory. The

reason for separating these results from the rest of the material in this dissertation is that

we feel each of these results is interesting in its own right. As such, we chose to highlight

them since they may be useful in other areas.

1.1 Summary of Contributions

We briefly outline the contributions of each chapter below. We remark that Chapters 2

and 3 are largely independent from one another, but both require results which are given

in Chapter 4. A background in information theory will be helpful to the reader interested

in Chapter 2, while no specific background is necessary for the material in Chapter 3.
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Chapter 2 Contributions

In Chapter 2, we study multiterminal source coding problems under logarithmic loss. We

give a single-letter characterization of the achievable rate distortion region for the m-

encoder CEO problem and the two-encoder lossy source coding problem when distortion

is measured under logarithmic loss. Notably, we make no assumptions on the source

distributions, other than that they have finite alphabets. For each of these problems, we

obtain a strengthened converse in the sense that augmenting the reproduction alphabet

does not enlarge the achievable rate distortion region.

In addition, we give a single-letter description for a fundamental entropy characteri-

zation problem. Specifically, if correlated sources are separately encoded by rate-limited

encoders, we give a precise characterization of the amount of information that can be

revealed about each source given the encoded representations. A consequence of this re-

sult is that relatively simple encoding functions suffice to attain any so-called achievable

information pair for given rates.

Throughout Chapter 2, we give several examples and applications of logarithmic loss

as a distortion measure. Specifically, we prove results related to horse racing markets, list

decoding, estimating a posterior distribution, and the general multiterminal source coding

problem with arbitrary distortion measures. Additionally, we characterize the achievable

rate distortion regions for the multiple description problem and the two-way lossy source

coding problem under logarithmic loss.

Chapter 3 Contributions

Chapter 3 presents our results on coded cooperative data exchange. To begin, we prove

necessary and sufficient conditions for achieving universal recovery in an arbitrarily con-

nected network. When the network has unit diameter (i.e., is fully connected), we provide

an efficient algorithm based on submodular optimization that computes an optimal trans-

mission schedule for the weighted cooperative data exchange problem.

5



When packets are randomly distributed amongst the nodes and the network topology

satisfies certain regularity conditions, we prove tight concentration results on the number

of transmissions required to achieve universal recovery. The interval of concentration is

independent of the number of packets in the network, and we prove concentration on a

single value in the single-hop setting. Moreover, we show that splitting packets does not

significantly reduce the number of transmissions required to achieve universal recovery.

Finally, we relate our results to the task of distributed secrecy generation amongst

a collection of nodes in the presence of an eavesdropper. Specifically, we show that the

submodular optimization algorithm we present can be used to compute and generate the

theoretical maximum amount of secrecy in a practical manner among nodes in a fully

connected network.

Chapter 4 Contributions

In Chapter 4, we prove three lemmas, each of which has applications to multiterminal

information theory. Roughly speaking, the first lemma shows that there exists an optimum

`1-solution to a linear program with an underdetermined set of constraints which behaves

similarly to the linear least-squares solution to a related linear system.

The second lemma is an existence result which states that, under certain assumptions,

a point-wise inequality relating two different convex combinations can be “amplified” to

yield an apparently stronger set of inequalities.

Finally, the third result in Chapter 4 is a concentration result. Informally, it states that

if n line segments are randomly placed in the unit square, we can typically find a set of c
√
n

line segments which don’t intersect (c is an absolute constant). While this result, unlike

the other two, is not used elsewhere in this dissertation, it can be used to characterize

the number of non-intersecting traffic flows in a network described by a random geometric

graph.
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CHAPTER 2

Multiterminal Source Coding under Logarithmic Loss

2.1 Introduction

A complete characterization of the achievable rate distortion region for the two-encoder

source coding problem depicted in Figure 2.1 has remained an open problem for over three

decades. Following tradition, we will refer to this two-encoder source coding network as

the multiterminal source coding problem throughout this dissertation. Several special cases

have been solved for general source alphabets and distortion measures:

• The lossless case where D1 = 0, D2 = 0. Slepian and Wolf solved this case in their

seminal work [SW73].

• The case where one source is recovered losslessly: i.e., D1 = 0, D2 = Dmax. This

case corresponds to the source coding with side information problem of Ahlswede-

Körner-Wyner [AK75,Wyn75].

• The Wyner-Ziv case [WZ76] where Y2 is available to the decoder as side information

and Y1 should be recovered with distortion at most D1.

• The Berger-Yeung case [BY89] where D1 is arbitrary and D2 = 0. This subsumes

the previous three cases

Despite the apparent progress, other seemingly fundamental cases, such as when D1 is

arbitrary and D2 = Dmax, remain unsolved except perhaps in very special cases.
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Encoder 1

Encoder 2

Decoder

Y1

Y2

R1

R2

Ŷ1

Ŷ2

Ed(Ŷ1, Y1) ≤ D1

Ed(Ŷ2, Y2) ≤ D2

Figure 2.1: The multiterminal source coding network.

Recently, the achievable rate distortion region for the quadratic Gaussian multiterminal

source coding problem was given by Wagner, Tavildar, and Viswanath in [WTV08]. Until

now, this was the only case for which the entire achievable rate distortion region was known.

While this is a very important result, it is again a special case from a theoretical point of

view: a specific choice of source distribution, and a specific choice of distortion measure.

In the present chapter, we determine the achievable rate distortion region of the mul-

titerminal source coding problem for arbitrarily correlated sources with finite alphabets.

However, as in [WTV08], we restrict our attention to a specific distortion measure.

At a high level, the roadmap for our argument is similar to that of [WTV08]. In par-

ticular, both arguments couple the multiterminal source coding problem to a parametrized

family of CEO problems. Then, the parameter in the CEO problem is “tuned” to yield the

converse result. Despite this apparent similarity, the proofs in [WTV08] rely heavily on the

calculus performed on the closed-form entropy expressions which arise from the Gaussian

source assumption. In our case we do not have this luxury, and our CEO tuning argument

essentially relies on an existence result to yield the converse result. The success of our

approach is largely due to the fact that the distortion measure we consider admits a lower

bound in the form of a conditional entropy, much like the quadratic distortion measure for

Gaussian sources.
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2.1.1 Our Contributions

In this chapter, we characterize the achievable rate distortion region for the multiterminal

source coding problem under logarithmic loss. In the process of accomplishing this, we

also obtain a description of the achievable rate distortion region for the CEO problem, also

under logarithmic loss. In both settings, we obtain a stronger converse than is standard

for rate distortion problems in the sense that augmenting the reproduction alphabet does

not enlarge the rate distortion region. Notably, we make no assumptions on the source

distributions, other than that the sources have finite alphabets. In both cases, the Berger-

Tung inner bound on the rate distortion region is tight. To the best of our knowledge,

this constitutes the first time that the entire achievable rate distortion region has been

described for general discrete alphabets under a non-trivial distortion constraint.

2.1.2 Organization

This chapter is organized as follows. In Section 2.2 we formally define the logarithmic loss

function and the multiterminal source coding problem we consider. In Section 2.3 we define

the CEO problem and give the rate distortion region under logarithmic loss. In Section 2.4

we return to the multiterminal source coding problem and derive the rate distortion region

for the two-encoder setting. Applications to estimation, horse racing, and list decoding

are given in Sections 2.3 and 2.4. In Section 2.5, we discuss connections between our

results and the multiterminal source coding problem with arbitrary distortion measures.

Section 2.6 considers a related source coding problem of compressing information subject

to amplification and equivocation constraints. In Section 2.7, we briefly consider two other

source coding problems under logarithmic loss: the multiple description problem, and the

two-way lossy source coding problem. Section 2.8 delivers our concluding remarks and

discusses directions for future work.
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2.2 Problem Definition

Throughout this chapter, we adopt notational conventions that are standard in the lit-

erature. Specifically, random variables are denoted by capital letters (e.g., X) and their

corresponding alphabets are denoted by corresponding calligraphic letters (e.g., X ). We

abbreviate a sequence (X1, X2, . . . , Xn) of n random variables by Xn, and we denote the

interval (Xk, Xk+1, . . . , Xj) by Xj
k. If the lower index is equal to 1, it will be omitted when

there is no ambiguity (e.g., Xj , Xj
1). Frequently, random variables will appear with two

subscripts (e.g., Yi,j). In this case, we are referring to the jth instance of random variable

Yi. We overload our notation here slightly in that Y j
i,1 is often abbreviated as Y j

i . However,

our meaning will always be clear from context.

Let {(Y1,j, Y2,j)}nj=1 = (Y n
1 , Y

n
2 ) be a sequence of n independent, identically distributed

random variables with finite alphabets Y1 and Y2 respectively and joint pmf p(y1, y2). That

is, (Y n
1 , Y

n
2 ) ∼∏n

i=1 p(y1,j, y2,j).

In this chapter, we take the reproduction alphabet Ŷi to be equal to the set of probability

distributions over the source alphabet Yi for i = 1, 2. Thus, for a vector Ŷ n
i ∈ Ŷni , we

will use the notation Ŷi,j(yi) to mean the jth coordinate (1 ≤ j ≤ n) of Ŷ n
i (which is a

probability distribution on Yi) evaluated for the outcome yi ∈ Yi. In other words, the

decoder generates ‘soft’ estimates of the source sequences.

We will consider the logarithmic loss distortion measure defined as follows:

d(yi, ŷi) = log

(
1

ŷi(yi)

)
for i = 1, 2.

In particular, d(yi, ŷi) is the relative entropy (i.e., Kullback-Leibler divergence) between

the empirical distribution of the event {Yi = yi} and the estimate ŷi. Using this definition

for symbol-wise distortion, it is standard to define the distortion between sequences as

d(yni , ŷ
n
i ) =

1

n

n∑
j=1

d(yi,j, ŷi,j) for i = 1, 2.

We point out that the logarithmic loss function is a widely used penalty function in
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the theory of learning and prediction (cf. [CL06, Chapter 9]). Further, it is a particularly

natural loss criterion in settings where the reconstructions are allowed to be ‘soft’, rather

than deterministic values. Surprisingly, since distributed learning and estimation problems

are some of the most oft-cited applications of lossy multiterminal source coding, it does not

appear to have been studied in this context until the recent work [CW11a]. However, we

note that this connection has been established previously for the single-encoder case in the

study of the information bottleneck problem [HT07]. Beyond learning and prediction, a

similar distortion measure has appeared before in the image processing literature [AAB06].

As we demonstrate through several examples, the logarithmic loss distortion measure has

a variety of useful applications in the context of multiterminal source coding.

A rate distortion code (of blocklength n) consists of encoding functions:

g
(n)
i : Yni →

{
1, . . . ,M

(n)
i

}
for i = 1, 2

and decoding functions

ψ
(n)
i :

{
1, . . . ,M

(n)
1

}
×
{

1, . . . ,M
(n)
2

}
→ Ŷni for i = 1, 2.

A rate distortion vector (R1, R2, D1, D2) is strict-sense achievable if there exists a block-

length n, encoding functions g
(n)
1 , g

(n)
2 and a decoder (ψ

(n)
1 , ψ

(n)
2 ) such that

Ri ≥
1

n
logM

(n)
i for i = 1, 2

Di ≥ Ed(Y n
i , Ŷ

n
i ) for i = 1, 2.

Where

Ŷ n
i = ψ

(n)
i (g

(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 )) for i = 1, 2.

Definition 1. Let RD? denote the set of strict-sense achievable rate distortion vectors and

define the set of achievable rate distortion vectors to be its closure, RD?.

Our ultimate goal in the present chapter is to give a single-letter characterization of the

region RD?. However, in order to do this, we first consider an associated CEO problem. In
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this sense, the roadmap for our argument is similar to that of [WTV08]. Specifically, both

arguments couple the multiterminal source coding problem to a parametrized family of

CEO problems. Then, the parameter in the CEO problem is “tuned” to yield the converse

result. Despite this apparent similarity, the proofs are quite different since the results

in [WTV08] depend heavily on the peculiarities of the Gaussian distribution.

2.3 The CEO problem

In order to attack the general multiterminal problem, we begin by studying the CEO prob-

lem (See [BZV96] for an introduction.). To this end, let {(Xj, Y1,j, Y2,j)}nj=1 = (Xn, Y n
1 , Y

n
2 )

be a sequence of n independent, identically distributed random variables distributed ac-

cording to the joint pmf p(x, y1, y2) = p(x)p(y1|x)p(y2|x). That is, Y1 ↔ X ↔ Y2 form a

Markov chain, in that order.

In this section, we consider the reproduction alphabet X̂ to be equal to the set of

probability distributions over the source alphabet X . As before, for a vector X̂n ∈ X̂ n,

we will use the notation X̂j(x) to mean the jth coordinate of X̂n (which is a probability

distribution on X ) evaluated for the outcome x ∈ X . As in the rest of this chapter, d(·, ·)
is the logarithmic loss distortion measure.

A rate distortion CEO code (of blocklength n) consists of encoding functions:

g
(n)
i : Yni →

{
1, . . . ,M

(n)
i

}
for i = 1, 2

and a decoding function

ψ(n) :
{

1, . . . ,M
(n)
1

}
×
{

1, . . . ,M
(n)
2

}
→ X̂ n.

A rate distortion vector (R1, R2, D) is strict-sense achievable for the CEO problem if

there exists a blocklength n, encoding functions g
(n)
1 , g

(n)
2 and a decoder ψ(n) such that

Ri ≥
1

n
logM

(n)
i for i = 1, 2

D ≥ Ed(Xn, X̂n).
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Where

X̂n = ψ(n)(g
(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 )).

Definition 2. Let RD?CEO denote the set of strict-sense achievable rate distortion vectors

and define the set of achievable rate distortion vectors to be its closure, RD?CEO.

2.3.1 Inner Bound

Definition 3. Let (R1, R2, D) ∈ RDiCEO if and only if there exists a joint distribution of

the form

p(x, y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

where |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 4, which satisfies

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D ≥ H(X|U1, U2, Q).

Theorem 1. RDiCEO ⊆ RD
?

CEO. That is, all rate distortion vectors (R1, R2, D) ∈ RDiCEO
are achievable.

Before proceeding with the proof, we cite the following variant of a well-known inner

bound:

Proposition 1 (Berger-Tung Inner Bound [Ber77]). The rate distortion vector (R1, R2, D)

is achievable if

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D ≥ E [d(X, f(U1, U2, Q)]
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for a joint distribution

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q)

and reproduction function

f : U1 × U2 ×Q → X̂ .

The proof of this proposition is a standard exercise in information theory, and is there-

fore omitted. The interested reader is directed to the text [EK12] for a modern, detailed

treatment. The proposition follows from what is commonly called the Berger-Tung achiev-

ability scheme. In this encoding scheme, each encoder quantizes its observation Y n
i to a

codeword Un
i , such that the empirical distribution of the entries in (Y n

i , U
n
i ) is very close

to the true distribution p(yi, ui). In order to communicate their respective quantizations

to the decoder, the encoders essentially perform Slepian-Wolf coding. For this reason,

the Berger-Tung achievability scheme is also referred to as a “quantize-and-bin” coding

scheme.

Proof of Theorem 1. Given Proposition 1, the proof of Theorem 1 is immediate. Indeed, if

we apply Proposition 1 with the reproduction function f(U1, U2, Q) , Pr [X = x|U1, U2, Q],

we note that

E [d(X, f(U1, U2, Q)] = H(X|U1, U2, Q),

which yields the desired result.

2.3.2 A Matching Outer Bound

A particularly useful property of the logarithmic loss distortion measure is that the ex-

pected distortion is lower-bounded by a conditional entropy. A similar property is enjoyed

by Gaussian random variables under quadratic distortion. In particular, if G is Gaussian,

and Ĝ is such that E(Ĝ−G)2 ≤ D, then 1
2

log(2πe)D ≥ h(G|Ĝ). The case for logarithmic

14



loss is similar, and we state it formally in the following lemma which is crucial in the proof

of the converse.

Lemma 1. Let Z = (g
(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 )) be the argument of the reproduction function ψ(n).

Then nEd(Xn, X̂n) ≥ H(Xn|Z).

Proof. By definition of the reproduction alphabet, we can consider the reproduction X̂n

to be a probability distribution on X n conditioned on the argument Z. In particular, if

x̂n = ψ(n)(z), define s(xn|z) ,
∏n

j=1 x̂j(xj). It is readily verified that s is a probability

measure on X n. Then, we obtain the following lower bound on the expected distortion

conditioned on Z = z:

E
[
d(Xn, X̂n)|Z = z

]
=

1

n

n∑
j=1

∑
xn∈Xn

p(xn|z) log

(
1

x̂j(xj)

)

=
1

n

∑
xn∈Xn

p(xn|z)
n∑
j=1

log

(
1

x̂j(xj)

)
=

1

n

∑
xn∈Xn

p(xn|z) log

(
1

s(xn|z)

)
=

1

n

∑
xn∈Xn

p(xn|z) log

(
p(xn|z)

s(xn|z)

)
+

1

n
H(Xn|Z = z)

=
1

n
D (p(xn|z)‖s(xn|z)) +

1

n
H(Xn|Z = z)

≥ 1

n
H(Xn|Z = z),

where p(xn|z) = Pr (Xn = xn|Z = z) is the true conditional distribution. Averaging both

sides over all values of Z, we obtain the desired result.

Definition 4. Let (R1, R2, D) ∈ RDoCEO if and only if there exists a joint distribution of

the form

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q),
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which satisfies

R1 ≥ I(U1;Y1|X,Q) +H(X|U2, Q)−D
R2 ≥ I(U2;Y2|X,Q) +H(X|U1, Q)−D

R1 +R2 ≥ I(U1;Y1|X,Q) + I(U2;Y2|X,Q) +H(X)−D
D ≥ H(X|U1, U2, Q).


(2.1)

Theorem 2. If (R1, R2, D) is strict-sense achievable for the CEO problem, then

(R1, R2, D) ∈ RDoCEO.

Proof. Suppose the point (R1, R2, D) is strict-sense achievable. Let A be a nonempty

subset of {1, 2}, and let Fi = g
(n)
i (Y n

i ) be the message sent by encoder i ∈ {1, 2}. Define

Ui,j , (Fi, Y
j−1
i ) and Qj , (Xj−1, Xn

j+1) = Xn\Xj. To simplify notation, let YA = ∪i∈AYi
(similarly for UA and FA).
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With these notations established, we have the following string of inequalities:

n
∑
i∈A

Ri ≥
∑
i∈A

H(Fi)

≥ H(FA)

≥ I(Y n
A ;FA|FAc)

= I(Xn, Y n
A ;FA|FAc) (2.2)

= I(Xn;FA|FAc) +
∑
i∈A

I(Fi;Y
n
i |Xn) (2.3)

= H(Xn|FAc)−H(Xn|F1, F2) +
∑
i∈A

n∑
j=1

I(Yi,j;Fi|Xn, Y j−1
i )

≥ H(Xn|FAc) +
∑
i∈A

n∑
j=1

I(Yi,j;Fi|Xn, Y j−1
i )− nD (2.4)

=
n∑
j=1

H(Xj|FAc , Xj−1) +
∑
i∈A

n∑
j=1

I(Yi,j;Fi|Xn, Y j−1
i )− nD

=
n∑
j=1

H(Xj|FAc , Xj−1) +
∑
i∈A

n∑
j=1

I(Yi,j;Ui,j|Xj, Qj)− nD (2.5)

≥
n∑
j=1

H(Xj|UAc,j, Qj) +
∑
i∈A

n∑
j=1

I(Yi,j;Ui,j|Xj, Qj)− nD. (2.6)

The nontrivial steps above can be justified as follows:

• (2.2) follows since FA is a function of Y n
A .

• (2.3) follows since Fi is a function of Y n
i and F1 ↔ Xn ↔ F2 form a Markov chain

(since Y n
1 ↔ Xn ↔ Y n

2 form a Markov chain).

• (2.4) follows since nD ≥ H(Xn|F1, F2) by Lemma 1.

• (2.5) follows from the Markov chain Yi,j ↔ Xn ↔ Y j−1
i , which follows from the i.i.d.

nature of the source sequences.

• (2.6) simply follows from the fact that conditioning reduces entropy.
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Therefore, dividing both sides by n, we have:

∑
i∈A

Ri ≥
1

n

n∑
j=1

H(Xj|UAc,j, Qj) +
∑
i∈A

1

n

n∑
j=1

I(Yi,j;Ui,j|Xj, Qj)−D.

Also, using Lemma 1 and the fact that conditioning reduces entropy:

D ≥ 1

n
H(Xn|F1, F2) ≥ 1

n

n∑
j=1

H(Xj|U1,j, U2,j, Qj).

Observe that Qj is independent of (Xj, Y1,j, Y2,j) and, conditioned on Qj, we have the

long Markov chain U1,j ↔ Y1,j ↔ Xj ↔ Y2,j ↔ U2,j. Finally, by a standard time-sharing

argument, we conclude by saying that if (R1, R2, D) is strict-sense achievable for the CEO

problem, then

R1 ≥ I(U1;Y1|X,Q) +H(X|U2, Q)−D

R2 ≥ I(U2;Y2|X,Q) +H(X|U1, Q)−D

R1 +R2 ≥ I(U1;Y1|X,Q) + I(U2;Y2|X,Q) +H(X)−D

D ≥ H(X|U1, U2, Q).

for some joint distribution p(q)p(x, y1, y2)p(u1|y1, q)p(u2|y2, q).

Theorem 3. RDoCEO = RDiCEO = RD?CEO.

Proof. We first remark that the cardinality bounds on the alphabets in the definition of

RDiCEO can be imposed without any loss of generality. This is a consequence of [Jan09,

Lemma 2.2] and is discussed in detail in Appendix 2.A.

Therefore, we can ignore the cardinality constraints while showing RDoCEO ⊆ RDiCEO
to prove the theorem. To this end, fix p(q), p(u1|y1, q), and p(u2|y2, q) and consider the
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extreme points1 of polytope defined by the inequalities (2.1):

P1 =

(
0, 0, I(Y1;U1|X,Q) + I(Y2;U2|X,Q) +H(X)

)
P2 =

(
I(Y1;U1|Q), 0, I(U2;Y2|X,Q) +H(X|U1, Q)

)
P3 =

(
0, I(Y2;U2|Q), I(U1;Y1|X,Q) +H(X|U2, Q)

)
P4 =

(
I(Y1;U1|Q), I(Y2;U2|U1, Q), H(X|U1, U2, Q)

)
P5 =

(
I(Y1;U1|U2, Q), I(Y2;U2|Q), H(X|U1, U2, Q)

)
,

where the point Pj is a triple (R
(j)
1 , R

(j)
2 , D(j)). We say a point (R

(j)
1 , R

(j)
2 , D(j)) is dominated

by a point in RDiCEO if there exists some (R1, R2, D) ∈ RDiCEO for which R1 ≤ R
(j)
1 ,

R2 ≤ R
(j)
2 , and D ≤ D(j). Observe that each of the extreme points P1, . . . , P5 is dominated

by a point in RDiCEO:

• First, observe that P4 and P5 are both inRDiCEO, so these points are not problematic.

• Next, observe that the point (0, 0, H(X)) is in RDiCEO, which can be seen by setting

all auxiliary random variables to be constant. This point dominates P1.

• By using auxiliary random variables (Û1, Û2, Q) = (U1, ∅, Q), the point

(I(Y1;U1|Q), 0, H(X|U1, Q)) is in RDiCEO, and dominates the point P2. By a sym-

metric argument, the point P3 is also dominated by a point in RDiCEO.

SinceRDoCEO is the convex hull of all such extreme points (i.e., the convex hull of the union

of extreme points over all appropriate joint distributions), the theorem is proved.

Remark 1. Theorem 3 can be extended to the general case of m-encoders. Details are

provided in Appendix 2.B.

1For two encoders, it is easy enough to enumerate the extreme points by inspection. However, this can
be formalized by a submodularity argument, which is given in Appendix 2.B.
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2.3.3 A stronger converse result for the CEO problem

As defined, our reproduction sequence X̂n is restricted to be a product distribution on X n.

However, for a blocklength n code, we can allow X̂n to be any probability distribution on

X n and the converse result still holds. In this case, we define the sequence distortion as

follows:

d(xn, x̂n) =
1

n
log

(
1

x̂n(xn)

)
,

which is compatible with the original definition when X̂n is a product distribution. The

reader can verify that the result of Lemma 1 is still true for this more general distortion

alphabet by setting s(xn|z) = x̂n(xn) in the corresponding proof. Since Lemma 1 is the

key tool in the CEO converse result, this implies that the converse holds even if X̂n is

allowed to be any probability distribution on X n (rather than being restricted to the set

of product distributions).

When this stronger converse result is taken together with the achievability result, we

observe that restricting X̂n to be a product distribution is in fact optimal and can achieve

all points in RD?CEO.

2.3.4 An Example: Distributed compression of a posterior distribution

Suppose two sensors observe sequences Y n
1 and Y n

2 respectively, which are conditionally

independent given a hidden sequence Xn. The sensors communicate with a fusion center

through rate-limited links of capacity R1 and R2 respectively. Given sequences (Y n
1 , Y

n
2 )

are observed, the sequence Xn cannot be determined in general, so the fusion center would

like to estimate the posterior distribution p(xn|Y n
1 , Y

n
2 ). However, since the communication

links are rate-limited, the fusion center generally cannot compute p(xn|Y n
1 , Y

n
2 ) exactly. In

this case, the fusion center would like to generate an estimate p̂(xn|g(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 )) that

should approximate p(xn|Y n
1 , Y

n
2 ) in the sense that

ED
(
p(xn|Y n

1 , Y
n

2 )
∥∥∥p̂(xn|g(n)

1 (Y n
1 ), g

(n)
2 (Y n

2 ))
)
≤ nε,
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where, consistent with standard notation (e.g. [CT06]), we define

ED
(
p(xn|Y n

1 , Y
n

2 )
∥∥∥p̂(xn|g(n)

1 (Y n
1 ),g

(n)
2 (Y n

2 ))
)

= Ep(xn,yn1 ,yn2 ) log
p(xn|Y n

1 , Y
n

2 )

p̂(xn|g(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 ))

=
∑

xn,yn1 ,y
n
2

p(xn, yn1 , y
n
2 ) log

p(xn|yn1 , yn2 )

p̂(xn|g(n)
1 (yn1 ), g

(n)
2 (yn2 ))

.

The relevant question here is the following. What is the minimum distortion ε that is

attainable given R1 and R2?

Considering the CEO problem for this setup, we have:

Ed(Xn, X̂n) =
1

n

∑
(xn,yn1 ,y

n
2 )

p(xn, yn1 , y
n
2 ) log

(
1

x̂n(xn)

)
=

1

n
ED
(
p(xn|Y n

1 , Y
n

2 )
∥∥∥X̂n(xn)

)
+

1

n
H(Xn|Y n

1 , Y
n

2 ).

Identifying p̂(xn|g(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 ))← X̂n(xn), we have:

ED
(
p(xn|Y n

1 , Y
n

2 )
∥∥∥p̂(xn|g(n)

1 (Y n
1 ), g

(n)
2 (Y n

2 ))
)

= nEd(Xn, X̂n)− nH(X|Y1, Y2).

Thus, finding the minimum possible distortion reduces to an optimization problem over

RD?CEO. In particular, the minimum attainable distortion ε∗ is given by

ε∗ = inf
{
D : (R1, R2, D) ∈ RD?CEO

}
−H(X|Y1, Y2). (2.7)

Moreover, the minimum distortion is obtained by estimating each xj separately. In other

words, there exists an optimal estimate p̂∗(xn|·, ·) (which is itself a function of optimal

encoding functions g
∗(n)
1 (·) and g

∗(n)
2 (·)) that can be expressed as a product distribution

p̂∗(xn|·, ·) =
n∏
j=1

p̂∗j

(
xj|g∗(n)

1 (·), g∗(n)
2 (·)

)
.

For this choice of p̂∗(xn|·, ·), we have the following relationship:

lim
n→∞

1

n

n∑
j=1

ED
(
p(xj|Y1,j, Y2,j)

∥∥∥p̂∗j(x(j)|g∗(n)
1 (Y n

1 ), g
∗(n)
2 (Y n

2 ))
)

= ε∗.
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Ed(X̂,X) ≤ D

BSC(α)

BSC(α)

X

Figure 2.2: An example CEO problem where X ∼ Bernoulli(1
2
), Pr(Yi = X) = (1 − α),

and both encoders are subject to the same rate constraint.

To make this example more concrete, consider the scenario depicted in Figure 2.2, where

X ∼ Bernoulli(1
2
) and Yi is the result of passing X through a binary symmetric channel

with crossover probability α for i = 1, 2. To simplify things, we constrain the rates of each

encoder to be at most R bits per channel use.

By performing a brute-force search over a fine mesh of conditional distributions

{p(ui|yi)}2
i=1, we numerically approximate the set of (R,D) pairs such that (R,R,D) is

in the achievable region RD?CEO corresponding to the network in Figure 2.2. The lower

convex envelope of these (R,D) pairs is plotted in Figure 2.3 for α ∈ {0.01, 0.1, 0.25}. Con-

tinuing our example above for this concrete choice of source parameters, we compute the

minimum achievable Kullback-Leibler distance ε∗ according to (2.7). The result is given

in Figure 2.4.

These numerical results are intuitively satisfying in the sense that, if Y1, Y2 are high-

quality estimates of X (e.g., α = 0.01), then a small increase in the allowable rate R results

in a large relative improvement of p̂(x|·, ·), the decoder’s estimate of p(x|Y1, Y2). On the

other hand, if Y1, Y2 are poor-quality estimates of X (e.g., α = 0.25), then we require a

large increase in the allowable rate R in order to obtain an appreciable improvement of

p̂(x|·, ·).

One field where this example is directly applicable is machine learning. In this case, Xj

could represent the class of object j, and Y1,j, Y2,j are observable attributes. In machine

learning, one typically estimates the probability that an object belongs to a particular class
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Figure 2.3: The distortion-rate function of the network in Figure 2.2 computed for

α ∈ {0.01, 0.1, 0.25}.

given a set of observable attributes. For this type of estimation problem, relative entropy

is a natural penalty criterion.

Another application is to horse racing with conditionally independent, rate-limited side

informations. In this case, the doubling rate of the gambler’s wealth can be expressed

in terms of the logarithmic loss distortion measure. This example is consistent with the

original interpretation of the CEO problem, where the CEO makes consecutive business

decisions (investments) having outcomes Xn, with the objective of maximizing the wealth

of the company. We omit the details.
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Figure 2.4: The minimum achievable Kullback-Leibler distance computed according to

(2.7), i.e., the curves here are those of Figure 2.3, lowered by the constant H(X|Y1, Y2).

2.3.5 An Example: Joint estimation of the encoder observations

Suppose one wishes to estimate the encoder observations (Y1, Y2). In this case, the rate

region simplifies considerably. In particular, if we tolerate a distortion D in our estimate

of the pair (Y1, Y2), then the achievable rate region is the same as the Slepian-Wolf rate

region with each rate constraint relaxed by D bits. Formally:

24



Theorem 4. If X = (Y1, Y2), then RD?CEO consists of all vectors (R1, R2, D) satisfying

R1 ≥ H(Y1|Y2)−D

R2 ≥ H(Y2|Y1)−D

R1 +R2 ≥ H(Y1, Y2)−D

D ≥ 0.

Proof. First, note that Theorem 3 implies that RD?CEO is equivalent to the

the union of (R1, R2, D) triples satisfying (2.1) taken over all joint distributions

p(q)p(x, y1, y2)p(u1|y1, q)p(u2|y2, q). Now, since X = (Y1, Y2), each of the inequalities (2.1)

can be lower bounded as follows:

R1 ≥ I(Y1;U1|Y1, Y2, Q) +H(Y1, Y2|U2, Q)−D

= H(Y2|U2, Q) +H(Y1|Y2)−D

≥ H(Y1|Y2)−D

R2 ≥ I(Y2;U2|Y1, Y2, Q) +H(Y1, Y2|U1, Q)−D

= H(Y1|U1, Q) +H(Y2|Y1)−D

≥ H(Y2|Y1)−D

R1 +R2 ≥ I(U1;Y1|Y1, Y2, Q) + I(U2;Y2|Y1, Y2, Q) +H(Y1, Y2)−D

= H(Y1, Y2)−D

D ≥ H(Y1, Y2|U1, U2, Q)

≥ 0.

Finally, observe that by setting Ui = Yi for i = 1, 2, we can achieve any point in this

relaxed region (again, a consequence of Theorem 3).

We remark that this result was first proved in [CW11a] by Courtade and Wesel using

a different method.
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2.3.6 An Example: The Information Bottleneck

If we consider the CEO problem with a single observed source (i.e., Y2 = ∅), then the

achievable rate distortion region given by Theorem 3 is characterized by all (R1, D) pairs

satisfying

R1 ≥ I(Y1;U1)

D ≥ H(X|U1)

for some U1 satisfying the Markov chain X ↔ Y1 ↔ U1. Alternatively, by making the

substitution τ = H(X)−D, this tradeoff can be characterized as follows:

R1(τ) = min
p(u1|y1):I(U1;X)≥τ

I(Y1;U1). (2.8)

Expression 2.8 is known as the Information Bottleneck Function (cf. [GNT03]). Intuitively,

U1 is a description of X which is generated (stochastically) from the observation Y1. The

function R1(τ) describes the tradeoff between the complexity and the accuracy of the

description U1. Ideally, U1 should capture the relevant information about X present in the

observation Y1.

The concept of the Information Bottleneck was first introduced by Tishby et al.

in [TPB99], and the first formal rate distortion theorem on the topic was later proved

by Gilad-Bachrach et al. in [GNT03]. We remark that algorithms motivated by the In-

formation Bottleneck Method have been successfully applied to a wide variety problems.

Examples include word clustering for text classification [ST01], galaxy spectra classifica-

tion [SST01], neural code analysis [GCT01], and speech recognition [HT05]. Since Theorem

3 (and the m-encoder extension given in Appendix 2.B) generalize the tradeoff (2.8) to a

distributed setting, our results could be applied to similar problems. Particularly those for

which processing and computation occurs in a distributed or parallel manner.
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2.4 Multiterminal Source Coding

With Theorem 3 in hand, we are now in a position to characterize the achievable rate

distortion region RD? for the multiterminal source coding problem under logarithmic loss.

As before, we prove an inner bound first.

2.4.1 Inner Bound

Definition 5. Let (R1, R2, D1, D2) ∈ RDi if and only if there exists a joint distribution of

the form

p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

where |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 5, which satisfies

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D1 ≥ H(Y1|U1, U2, Q)

D2 ≥ H(Y2|U1, U2, Q).

Theorem 5. RDi ⊆ RD?. That is, all rate distortion vectors in RDi are achievable.

Again, we require an appropriate version of the Berger-Tung inner bound:

Proposition 2 (Berger-Tung Inner Bound [Ber77]). The rate distortion vector

(R1, R2, D1, D2) is achievable if

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D1 ≥ E [d(Y1, f1(U1, U2, Q)]

D2 ≥ E [d(Y2, f2(U1, U2, Q)] .
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for a joint distribution

p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

and reproduction functions

fi : U1 × U2 ×Q → Ŷi, for i = 1, 2.

Proof of Theorem 5. To prove the theorem, we simply apply Proposition 2 with the repro-

duction functions fi(U1, U2, Q) := Pr [Yi = yi|U1, U2, Q].

2.4.2 A Matching Outer Bound

The main result of this chapter is the following theorem.

Theorem 6. RDi = RD?.

Proof. As in the proof of Theorem 3, we note that the cardinality bounds on the alphabets

in the definition of RDi can be imposed without any loss of generality. This is discussed

in detail in Appendix 2.A. Thus, we do not need to consider these constraints in the proof

of the converse.

Assume (R1, R2, D1, D2) is strict-sense achievable. Observe that proving that

(R1, R2, D1, D2) ∈ RDi will prove the theorem, since RDi ⊆ RD? and RD? is closed

by definition.

For convenience, define P(R1, R2) to be the set of joint distributions of the form

p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

with |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 4 satisfying

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q).

28



We remark that P(R1, R2) is compact. We also note that it will suffice to show the existence

of a joint distribution in P(R1, R2) satisfying H(Y1|U1, U2, Q) ≤ D1 and H(Y2|U1, U2, Q) ≤
D2 to prove that (R1, R2, D1, D2) ∈ RDi.

With foresight, consider random variable X defined as follows

X =

 (Y1, 1) with probability t

(Y2, 2) with probability 1− t.
(2.9)

In other words, X = (YB, B), where B is a Bernoulli random variable independent of Y1, Y2.

Observe that Y1 ↔ X ↔ Y2 form a Markov chain, and thus, we are able to apply Theorem

3.

Since (R1, R2, D1, D2) is strict-sense achievable, the decoder can construct reproduc-

tions Ŷ n
1 , Ŷ

n
2 satisfying

1

n

n∑
j=1

Ed(Yi,j, Ŷi,j) ≤ Di for i = 1, 2.

Fix the encoding operations and set X̂j ((y1, 1)) = tŶ1,j(y1) and X̂j ((y2, 2)) = (1−t)Ŷ2,j(y2).

Then for the CEO problem defined by (X, Y1, Y2):

1

n

n∑
j=1

Ed(Xj, X̂j)

=
t

n

n∑
j=1

E log

(
1

tŶ1,j(Y1,j)

)
+

1− t
n

n∑
j=1

E log

(
1

(1− t)Ŷ2,j(Y2,j)

)

= h2(t) +
t

n

n∑
j=1

Ed(Y1,j, Ŷ1,j) +
1− t
n

n∑
j=1

Ed(Y2,j, Ŷ2,j)

≤ h2(t) + tD1 + (1− t)D2

where h2(t) is the binary entropy function. Hence, for this CEO problem, distortion

h2(t) + tD1 + (1 − t)D2 is achievable and Theorem 3 yields a joint distribution2 Pt ∈
2Henceforth, we use the superscript (t) to explicitly denote the dependence of the auxiliary random

variables on the distribution parametrized by t.
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P(R1, R2) satisfying

h2(t) + tD1 + (1− t)D2 ≥ H(X|U (t)
1 , U

(t)
2 , Q(t))

= h2(t) + tH(Y1|U (t)
1 , U

(t)
2 , Q(t))

+ (1− t)H(Y2|U (t)
1 , U

(t)
2 , Q(t)),

where the second equality follows by by definition of X in (2.9). For convenience, define

H1(Pt) , H(Y1|U (t)
1 , U

(t)
2 , Q(t)) and H2(Pt) , H(Y2|U (t)

1 , U
(t)
2 , Q(t)). Note the following two

facts:

1. By continuity of entropy, the functions H1(·) and H2(·) are continuous on the compact

domain P(R1, R2).

2. The above argument proves the existence of a function ϕ : [0, 1]→ P(R1, R2) which

satisfies

tH1(ϕ(t)) + (1− t)H2(ϕ(t)) ≤ tD1 + (1− t)D2 for all t ∈ [0, 1].

These two facts satisfy the requirements of Lemma 17 (see Chapter 4), and hence there

exists Pt1 ∈ P(R1, R2), Pt2 ∈ P(R1, R2), and θ ∈ [0, 1] for which

θH1(Pt1) + (1− θ)H1(Pt2) ≤ D1

θH2(Pt1) + (1− θ)H2(Pt2) ≤ D2.

Timesharing3 between distributions Pt1 and Pt2 with probabilities θ and (1−θ), respec-

tively, yields a distribution P ∗ ∈ P(R1, R2) which satisfies H1(P ∗) ≤ D1 and H2(P ∗) ≤ D2.

This proves the theorem.

2.4.3 A stronger converse

For the CEO problem, we are able to obtain a stronger converse result as discussed in

Section 2.3.3. We can obtain a similar result for the multiterminal source coding problem.

3The timesharing scheme can be embedded in the timesharing variable Q, increasing the cardinality of
Q by a factor of two.
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To be precise, let Ŷ∗n1 and Ŷ∗n2 denote the set of probability measures on Yn1 and Yn2 ,

respectively. Let d∗1, d
∗
2 be the (extended)-log loss distortion measures defined as follows:

d∗1(yn1 , ŷ
n
1 ) =

1

n
log

(
1

ŷn1 (yn1 )

)
d∗2(yn2 , ŷ

n
2 ) =

1

n
log

(
1

ŷn2 (yn2 )

)
,

where ŷn1 (yn1 ) is the probability assigned to outcome yn1 ∈ Yn1 by the probability mea-

sure ŷn1 ∈ Ŷ∗n1 . Similarly for ŷn2 (yn2 ). Note that this extends the standard definition of

logarithmic loss to sequence reproductions.

Definition 6. We say that a tuple (R1, R2, D1, D2) is sequence-achievable if, for any ε > 0,

there exist encoding functions

f1 : Yn1 → {1, . . . , 2nR1}

f2 : Yn2 → {1, . . . , 2nR2},

and decoding functions

φ1 : {1, . . . , 2nR1} × {1, . . . , 2nR2} → Ŷ∗n1

φ2 : {1, . . . , 2nR1} × {1, . . . , 2nR2} → Ŷ∗n2 ,

which satisfy

E d∗1(Y n
1 , Ŷ

n
1 ) ≤ D1 + ε

E d∗2(Y n
2 , Ŷ

n
2 ) ≤ D2 + ε,

where

Ŷ n
1 = φ1(f1(Y n

1 ), f2(Y n
2 ))

Ŷ n
2 = φ2(f1(Y n

1 ), f2(Y n
2 )).

Theorem 7. If (R1, R2, D1, D2) is sequence-achievable, then (R1, R2, D1, D2) ∈ RDi =

RD?.
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Proof. The theorem is an immediate consequence of Theorem 6 and Lemmas 2 and 3,

which are given below.

We refer to Theorem 7 as the “strengthened converse” of Theorem 6. Indeed, it states

that enlarging the set of possible reproduction sequences to include non-product distribu-

tions cannot attain better performance than when the decoder is restricted to choosing

a reproduction sequence from the set of product distributions. This result has several

interesting implications, which we describe in detail in the following sections.

Lemma 2. If (R1, R2, D̃1, D2) is sequence-achievable, then there exists a joint distribution

p(y1, y2, u1, u2, q) = p(q)p(y1, y2)p(u1|y1, q)p(u2|y2, q)

and a D1 ≤ D̃1 which satisfies

D1 ≥ H(Y1|U1, U2, Q)

D2 ≥ D1 +H(Y2|U1, U2, Q)−H(Y1|U1, U2, Q),

and

R1 ≥ H(Y1|U2, Q)−D1

R2 ≥ I(Y2;U2|Y1, Q) +H(Y1|U1, Q)−D1

R1 +R2 ≥ I(Y2;U2|Y1, Q) +H(Y1)−D1.

Proof. For convenience, let F1 = f1(Y n
1 ) and F2 = f2(Y n

2 ), where f1, f2 are the encoding

functions corresponding to a scheme which achieves (R1, R2, D̃1, D2) (in the sequence-

reproduction sense). Define D1 = 1
n
H(Y n

1 |F1, F2), so that:

nD1 = H(Y n
1 |F1, F2). (2.10)

Since nD̃1 ≥ H(Y n
1 |F1, F2) by the strengthened version4 of Lemma 1, we have D1 ≤ D̃1 as

desired. By definition of D1, we immediately obtain the following inequality:

nD1 =
n∑
i=1

H(Y1,i|F1, F2, Y
n

1,i+1) ≥
n∑
i=1

H(Y1,i|F1, F2, Y
i−1

2 , Y n
1,i+1). (2.11)

4See the comment in Section 2.3.3.
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Next, recall the Csiszár sum identity:

n∑
i=1

I(Y n
1,i+1;Y2,i|Y i−1

2 , F1, F2) =
n∑
i=1

I(Y i−1
2 ;Y1,i|Y n

1,i+1, F1, F2).

This, together with (2.10), implies the following inequality:

nD2 ≥ nD1 +
n∑
i=1

H(Y2,i|F1, F2, Y
i−1

2 , Y n
1,i+1)−H(Y1,i|F1, F2, Y

i−1
2 , Y n

1,i+1), (2.12)

which we can verifiy as follows:

nD2 ≥ H(Y n
2 |F1, F2) =

n∑
i=1

H(Y2,i|F1, F2, Y
i−1

2 )

=
n∑
i=1

H(Y2,i|F1, F2, Y
i−1

2 , Y n
1,i+1) + I(Y n

1,i+1;Y2,i|F1, F2, Y
i−1

2 )

=
n∑
i=1

H(Y2,i|F1, F2, Y
i−1

2 , Y n
1,i+1) + I(Y i−1

2 ;Y1,i|Y n
1,i+1, F1, F2)

= H(Y n
1 |F1, F2) +

n∑
i=1

H(Y2,i|F1, F2, Y
i−1

2 , Y n
1,i+1)−H(Y1,i|F1, F2, Y

i−1
2 , Y n

1,i+1)

= nD1 +
n∑
i=1

H(Y2,i|F1, F2, Y
i−1

2 , Y n
1,i+1)−H(Y1,i|F1, F2, Y

i−1
2 , Y n

1,i+1).

Next, observe that we can lower bound R1 as follows:

nR1 ≥ H(F1) ≥ I(Y n
1 ;F1|F2)

=
n∑
i=1

H(Y1,i|F2, Y
i−1

1 )−H(Y n
1 |F1, F2)

≥
n∑
i=1

H(Y1,i|F2, Y
i−1

1 , Y i−1
2 )− nD1 (2.13)

=
n∑
i=1

H(Y1,i|F2, Y
i−1

2 )− nD1 (2.14)

≥
n∑
i=1

H(Y1,i|F2, Y
i−1

2 , Y n
1,i+1)− nD1. (2.15)

In the above string of inequalities, (2.13) follows from (2.10) and the fact that conditioning

reduces entropy. Equality (2.14) follows since Y1,i ↔ F2, Y
i−1

2 ↔ Y i−1
1 form a Markov chain

(in that order).
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Next, we can obtain a lower bound on R2:

nR2 ≥ H(F2) ≥ H(F2|F1) = H(F2|F1, Y
n

1 ) + I(Y n
1 ;F2|F1)

≥ I(Y n
2 ;F2|F1, Y

n
1 ) + I(Y n

1 ;F2|F1)

= I(Y n
2 ;F2|Y n

1 ) + I(Y n
1 ;F2|F1) (2.16)

=
n∑
i=1

I(Y2,i;F2|Y n
1 , Y

i−1
2 ) +H(Y1,i|F1, Y

n
1,i+1)− nD1 (2.17)

≥
n∑
i=1

I(Y2,i;F2|Y n
1 , Y

i−1
2 ) +H(Y1,i|F1, Y

i−1
2 , Y n

1,i+1)− nD1

=
n∑
i=1

I(Y2,i;F2, Y
i−1

1 , Y i−1
2 |Y1,i, Y

i−1
2 , Y n

1,i+1) +H(Y1,i|F1, Y
i−1

2 , Y n
1,i+1)− nD1 (2.18)

≥
n∑
i=1

I(Y2,i;F2, Y
i−1

2 |Y1,i, Y
i−1

2 , Y n
1,i+1) +H(Y1,i|F1, Y

i−1
2 , Y n

1,i+1)− nD1. (2.19)

In the above string of inequalities, (2.17) follows from (2.10) and the chain rule. (2.18)

follows from the i.i.d. property of the sources, and (2.19) follows by monotonicity of mutual

information.

A lower bound on the sum-rate R1 +R2 can be obtained as follows:

n(R1 +R2) ≥ H(F1) +H(F2) ≥ H(F2) +H(F1|F2)

≥ I(F2;Y n
1 , Y

n
2 ) + I(F1;Y n

1 |F2)

= I(F2;Y n
1 ) + I(F2;Y n

2 |Y n
1 ) + I(F1;Y n

1 |F2)

= I(F2;Y n
2 |Y n

1 ) + I(F1, F2;Y n
1 )

≥
n∑
i=1

I(Y2,i;F2, Y
i−1

2 |Y1,i, Y
i−1

2 , Y n
1,i+1) +H(Y1,i)− nD1. (2.20)

Where (2.20) follows in a manner similar to (2.16)-(2.19) in the lower bound on R2.

Now, define U1,i , F1, U2,i , (F2, Y
i−1

2 ), and Qi , (Y i−1
2 , Y n

1,i+1). Then we can summa-
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rize our results so far as follows. Inequalities (2.11) and (2.12) become

D1 ≥
1

n

n∑
i=1

H(Y1,i|U1,i, U2,i, Qi)

D2 ≥ D1 +
1

n

n∑
i=1

H(Y2,i|U1,i, U2,i, Qi)−H(Y1,i|U1,i, U2,i, Qi),

and inequalities (2.15), (2.19), and (2.20) can be written as:

R1 ≥
1

n

n∑
i=1

H(Y1,i|U2,i, Qi)−D1

R2 ≥
1

n

n∑
i=1

I(Y2,i;U2,i|Y1,i, Qi) +H(Y1,i|U1,i, Qi)−D1

R1 +R2 ≥
1

n

n∑
i=1

I(Y2,i;U2,i|Y1,i, Qi) +H(Y1,i)−D1.

Next, we note that U1,i ↔ Y1,i ↔ Y2,i ↔ U2,i form a Markov chain (in that order)

conditioned on Qi. Moreover, Qi is independent of Y1,i, Y2,i. Hence, a standard timesharing

argument proves the lemma.

Lemma 3. Fix (R1, R2, D1, D2). If there exists a joint distribution of the form

p(y1, y2, u1, u2, q) = p(q)p(y1, y2)p(u1|y1, q)p(u2|y2, q)

which satisfies

D1 ≥ H(Y1|U1, U2, Q) (2.21)

D2 ≥ D1 +H(Y2|U1, U2, Q)−H(Y1|U1, U2, Q), (2.22)

and

R1 ≥ H(Y1|U2, Q)−D1 (2.23)

R2 ≥ I(Y2;U2|Y1, Q) +H(Y1|U1, Q)−D1 (2.24)

R1 +R2 ≥ I(Y2;U2|Y1, Q) +H(Y1)−D1, (2.25)

then (R1, R2, D1, D2) ∈ RDi.
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Proof. Let P denote the polytope of rate pairs which satisfy the inequalities (2.23)-(2.25).

It suffices to show that if (r1, r2) is a vertex of P , then (r1, r2, D1, D2) ∈ RDi. For conve-

nience, let [x]+ = max{x, 0}. There are only two extreme points of P :

r
(1)
1 =

[
H(Y1|U2, Q)−D1

]+

r
(1)
2 = I(Y2;U2|Y1, Q) +H(Y1)−D1 − r(1)

1 ,

and

r
(2)
1 = I(Y2;U2|Y1, Q) +H(Y1)−D1 − r(2)

2 ,

r
(2)
2 =

[
I(Y2;U2|Y1, Q) +H(Y1|U1, Q)−D1

]+

.

We first analyze the extreme point (r
(1)
1 , r

(1)
2 ):

• Case 1.1: r
(1)
1 = 0. In this case, we have r

(1)
2 = I(Y2;U2|Y1, Q) +H(Y1)−D1. This

can be expressed as:

r
(1)
2 = (1− θ)I(Y2;U2|Q),

where

θ =
D1 − I(Y2;U2|Y1, Q)−H(Y1) + I(Y2;U2|Q)

I(Y2;U2|Q)
.

Since r
(1)
1 = 0, we must have D1 ≥ H(Y1|U2, Q). This implies that

θ ≥ H(Y1|U2, Q)− I(Y2;U2|Y1, Q)−H(Y1) + I(Y2;U2|Q)

I(Y2;U2|Q)
= 0.

Also, we can assume without loss of generality that D1 ≤ H(Y1), hence θ ∈ [0, 1].

Applying the Berger-Tung achievability scheme, we can achieve the following distor-
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tions:

Dθ
1 = θH(Y1) + (1− θ)H(Y1|U2, Q)

= H(Y1|U2, Q) + θI(Y1;U2|Q)

≤ H(Y1|U2, Q) +D1 − I(Y2;U2|Y1, Q)−H(Y1) + I(Y2;U2|Q) (2.26)

= D1 − I(Y2;U2|Y1, Q)− I(Y1;U2|Q) + I(Y2;U2|Q)

= D1,

where (2.26) follows since I(Y1;U2|Q) ≤ I(Y2;U2|Q) by the data processing inequality.

Dθ
2 = θH(Y2) + (1− θ)H(Y2|U2, Q)

= H(Y2|U2, Q) + θI(Y2;U2|Q)

= H(Y2|U2, Q) +D1 − I(Y2;U2|Y1, Q)−H(Y1) + I(Y2;U2|Q)

= H(Y2) +D1 − I(Y2;U2|Y1, Q)−H(Y1)

= H(Y2|Y1, U2, Q) +D1 −H(Y1|Y2)

= H(Y2|Y1, U1, U2, Q) +D1 −H(Y1|Y2) (2.27)

≤ H(Y2|Y1, U1, U2, Q) +D1 −H(Y1|Y2, U1, U2, Q)

= H(Y2|U1, U2, Q) +D1 −H(Y1|U1, U2, Q)

≤ D2, (2.28)

where (2.27) follows since U1 ↔ (Y1, U2, Q)↔ Y2, and (2.28) follows from (2.22).

• Case 1.2: r
(1)
1 ≥ 0. In this case, we have r

(1)
2 = I(Y2;U2|Y1, Q) + I(Y1;U2|Q) =

I(Y2;U2|Q). Also, we can write r
(1)
1 as:

r
(1)
1 = (1− θ)I(Y1;U1|U2, Q),

where

θ =
D1 −H(Y1|U2, Q) + I(Y1;U1|U2, Q)

I(Y1;U1|U2, Q)
.
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Since r
(1)
1 ≥ 0, we must have D1 ≤ H(Y1|U2, Q). This implies that

θ ≤ H(Y1|U2, Q)−H(Y1|U2, Q) + I(Y1;U1|U2, Q)

I(Y1;U1|U2, Q)
= 1.

Also, (2.21) implies that D1 ≥ H(Y1|U1, U2, Q), hence θ ∈ [0, 1]. Applying the

Berger-Tung achievability scheme, we can achieve the following distortions:

Dθ
1 = θH(Y1|U2, Q) + (1− θ)H(Y1|U1, U2, Q)

= H(Y1|U1, U2, Q) + θI(Y1;U1|U2, Q)

= H(Y1|U1, U2, Q) +D1 −H(Y1|U2, Q) + I(Y1;U1|U2, Q)

= D1,

and

Dθ
2 = θH(Y2|U2, Q) + (1− θ)H(Y2|U1, U2, Q)

= H(Y2|U1, U2, Q) + θI(Y2;U1|U2, Q)

≤ H(Y2|U1, U2, Q) +D1 −H(Y1|U2, Q) + I(Y1;U1|U2, Q) (2.29)

= H(Y2|U1, U2, Q) +D1 −H(Y1|U1, U2, Q)

≤ D2, (2.30)

where (2.29) follows since I(Y2;U1|U2, Q) ≤ I(Y1;U1|U2, Q) by the data processing

inequality, and (2.30) follows from (2.22).

In a similar manner, we now analyze the second extreme point (r
(2)
1 , r

(2)
2 ):

• Case 2.1: r
(2)
2 = 0. In this case, we have r

(2)
1 = I(Y2;U2|Y1, Q) +H(Y1)−D1. This

can be expressed as:

r
(2)
1 = (1− θ)I(Y1;U1|Q),

where

θ =
D1 − I(Y2;U2|Y1, Q)−H(Y1) + I(Y1;U1|Q)

I(Y1;U1|Q)
.
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Since r
(2)
2 = 0, we must have D1 ≥ H(Y1|U1, Q) + I(Y2;U2|Y1, Q). This implies that

θ ≥ H(Y1|U1, Q) + I(Y2;U2|Y1, Q)− I(Y2;U2|Y1, Q)−H(Y1) + I(Y1;U1|Q)

I(Y1;U1|Q)
= 0.

Also, we can assume without loss of generality that D1 ≤ H(Y1), hence

θ ≤ H(Y1)− I(Y2;U2|Y1, Q)−H(Y1) + I(Y1;U1|Q)

I(Y1;U1|Q)
≤ 1,

and therefore θ ∈ [0, 1]. Applying the Berger-Tung achievability scheme, we can

achieve the following distortions:

Dθ
1 = θH(Y1) + (1− θ)H(Y1|U1, Q)

= H(Y1|U1, Q) + θI(Y1;U1|Q)

= H(Y1|U1, Q) +D1 − I(Y2;U2|Y1, Q)−H(Y1) + I(Y1;U1|Q)

= D1 − I(Y2;U2|Y1, Q)

≤ D1,

and

Dθ
2 = θH(Y2) + (1− θ)H(Y2|U1, Q)

= H(Y2|U1, Q) + θI(Y2;U1|Q)

≤ H(Y2|U1, Q) +D1 − I(Y2;U2|Y1, Q)−H(Y1) + I(Y1;U1|Q) (2.31)

= H(Y2|Y1, U2, Q) +D1 −H(Y1|Y2, U1, Q)

= H(Y2|Y1, U1, U2, Q) +D1 −H(Y1|Y2, U1, U2, Q) (2.32)

= H(Y2|U1, U2, Q) +D1 −H(Y1|U1, U2, Q)

≤ D2, (2.33)

where (2.31) follows since I(Y2;U1|Q) ≤ I(Y1;U1|Q) by the data processing inequality,

(2.32) follows since U1 ↔ (Y1, U2, Q) ↔ Y2 and U2 ↔ (Y2, U1, Q) ↔ Y1, and (2.33)

follows from (2.22).
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• Case 2.2: r
(2)
2 ≥ 0. In this case, we have r

(2)
1 = I(Y1;U1|Q). Also, we can write r

(2)
2

as:

r
(2)
2 = (1− θ)I(Y2;U2|U1, Q),

where

θ =
D1 −H(Y1|U1, Q)− I(Y2;U2|Y1, Q) + I(Y2;U2|U1, Q)

I(Y2;U2|U1, Q)
.

Since r
(2)
2 ≥ 0, we must have D1 ≤ H(Y1|U1, Q) + I(Y2;U2|Y1, Q). This implies that

θ ≤ 1. Also, (2.21) implies that D1 ≥ H(Y1|U1, U2, Q), yielding

θ ≥ H(Y1|U1, U2, Q)−H(Y1|U1, Q)− I(Y2;U2|Y1, Q) + I(Y2;U2|U1, Q)

I(Y2;U2|U1, Q)
= 0.

Therefore, θ ∈ [0, 1]. Applying the Berger-Tung achievability scheme, we can achieve

the following distortions:

Dθ
1 = θH(Y1|U1, Q) + (1− θ)H(Y1|U1, U2, Q)

= H(Y1|U1, U2, Q) + θI(Y1;U2|U1, Q)

≤ H(Y1|U1, U2, Q) +D1 −H(Y1|U1, Q)− I(Y2;U2|Y1, Q) + I(Y2;U2|U1, Q)

(2.34)

= D1,

where (2.34) follows since I(Y1;U2|U1, Q) ≤ I(Y2;U2|U1, Q) by the data processing

inequality.

Dθ
2 = θH(Y2|U1, Q) + (1− θ)H(Y2|U1, U2, Q)

= H(Y2|U1, U2, Q) + θI(Y2;U2|U1, Q)

= H(Y2|U1, U2, Q) +D1 −H(Y1|U1, Q)− I(Y2;U2|Y1, Q) + I(Y2;U2|U1, Q)

= H(Y2|U1, U2, Q) +D1 −H(Y1|U1, U2, Q)

≤ D2, (2.35)

where (2.35) follows from (2.22).
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Thus, this proves that the Berger-Tung compression scheme can achieve any rate dis-

tortion tuple (r1, r2, D1, D2) for (r1, r2) ∈ P . Since RDi is, by definition, the set of rate

distortion tuples attainable by the Berger-Tung achievability scheme, we must have that

(R1, R2, D1, D2) ∈ RDi. This proves the lemma.

2.4.3.1 A Brief Remark on the Proof of the Strengthened Converse

We note that the proof of Theorem 7 offers a direct proof of the converse of Theorem

6, and as such we do not require a CEO result (Theorem 3) or a “black box” tuning

argument (Lemma 17). At the heart of this alternative proof lies the Csiszár sum identity

(and a careful choice of auxiliary random variables) which provides a coupling between the

attainable distortions for each source. In the original proof of Theorem 6, this coupling is

accomplished by the tuning argument through Lemma 17.

Interestingly, the two proofs are quite similar in spirit, with the key differences being

the use of the Csiszár sum identity versus the tuning argument. Intuitively, the original

tuning argument allows a “clumsier” choice of auxiliary random variables which leads to

a more elegant and intuitive proof, but appears incapable of establishing the strengthened

converse. On the other hand, applying the Csiszár sum identity requires a very careful

choice of auxiliary random variables which, in turn, affords a finer degree of control over

various quantities. Ultimately, this allows us to prove the strengthened converse given by

Theorem 7.

2.4.4 An Example: The Daily Double

The Daily Double is a single bet that links together wagers on the winners of two con-

secutive horse races. Winning the Daily Double is dependent on both wagers winning

together. In general, the outcomes of two consecutive races can be correlated (e.g. due

to track conditions), so a gambler can potentially use this information to maximize his

expected winnings. Let Y1 and Y2 be the set of horses running in the first and second
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races respectively. If horses y1 and y2 win their respective races, then the payoff is o(y1, y2)

dollars for each dollar invested in outcome (Y1, Y2) = (y1, y2).

There are two betting strategies one can follow:

1. The gambler can wager a fraction b1(y1) of his wealth on horse y1 winning the first race

and parlay his winnings by betting a fraction b2(y2) of his wealth on horse y2 winning

the second race. In this case, the gambler’s wealth relative is b1(Y1)b2(Y2)o(Y1, Y2)

upon learning the outcome of the Daily Double. We refer to this betting strategy as

the product-wager.

2. The gambler can wager a fraction b(y1, y2) of his wealth on horses (y1, y2) winning

the first and second races, respectively. In this case, the gambler’s wealth relative is

b(Y1, Y2)o(Y1, Y2) upon learning the outcome of the Daily Double. We refer to this

betting strategy as the joint-wager.

Clearly the joint-wager includes the product-wager as a special case. However, the product-

wager requires less effort to place, so the question is: how do the two betting strategies

compare?

To make things interesting, suppose the gamblers have access to rate-limited informa-

tion about the first and second race outcomes at rates R1, R2 respectively. Further, assume

that R1 ≤ H(Y1), R2 ≤ H(Y2), and R1 +R2 ≤ H(Y1, Y2). For (R1, R2) and p(y1, y2) given,

let P(R1, R2) denote the set of joint pmf’s of the form

p(q, y1, y2, u1, u2) = p(q)p(y1, y2)p(u1|y1, q)p(u1|y1, q)

which satisfy

R1 ≥ I(Y1;U1|U2, Q)

R2 ≥ I(Y2;U2|U1, Q)

R1 +R2 ≥ I(Y1, Y2;U1, U2|Q)
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for alphabets U1,U2,Q satisfying |Ui| ≤ |Yi| and |Q| ≤ 5.

Typically, the quality of a bet in a horse race market is measured by the associated

doubling rate (cf. [CT06]). Theorem 6 implies that the optimal doubling rate for the

product-wager is given by:

W ∗
p-w(p(y1, y2)) =

∑
y1,y2

p(y1, y2) log b∗1(y1)b∗2(y2)o(y1, y2)

= E log o(Y1, Y2)− inf
p∈P(R1,R2)

{H(Y1|U1, U2, Q) +H(Y2|U1, U2, Q)} .

Likewise, Theorem 4 implies that the optimal doubling rate for the joint-wager is given by:

W ∗
j-w(p(y1, y2)) =

∑
y1,y2

p(y1, y2) log b∗(y1, y2)o(y1, y2)

= E log o(Y1, Y2) + min{R1 −H(Y1|Y2), R2 −H(Y2|Y1),

R1 +R2 −H(Y1, Y2)}.

It is important to note that we do not require the side informations to be the same for

each type of wager, rather, the side informations are only provided at the same rates. Thus,

the gambler placing the joint-wager receives side information at rates (R1, R2) that maxi-

mizes his doubling rate, while the gambler placing the product-wager receives (potentially

different) side information at rates (R1, R2) that maximizes his doubling rate. However, as

we will see shortly, for any rates (R1, R2), there always exists rate-limited side information

which simultaneously allows each type of gambler to attain their maximum doubling rate.

By combining the expressions for W ∗
p-w(p(y1, y2)) and W ∗

j-w(p(y1, y2)), we find that the
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difference in doubling rates is given by:

∆(R1, R2) = W ∗
j-w(p(y1, y2))−W ∗

p-w(p(y1, y2))

= min
{
R1 −H(Y1|Y2), R2 −H(Y2|Y1), R1 +R2 −H(Y1, Y2)

}
+ inf

p∈P(R1,R2)
{H(Y1|U1, U2, Q) +H(Y2|U1, U2, Q)} (2.36)

= inf
p∈P(R1,R2)

min
{
R1 − I(Y1;U1|U2, Q) + I(Y1;Y2)− I(Y1;U2, Q) +H(Y2|U1, U2, Q),

R2 − I(Y2;U2|U1, Q) + I(Y2;Y1)− I(Y2;U1, Q) +H(Y1|U1, U2, Q),

R1 +R2 − I(Y1, Y2;U1, U2|Q) + I(Y1;Y2|U1, U2, Q)
}

= inf
p∈P(R1,R2)

I(Y1;Y2|U1, U2, Q). (2.37)

The final equality (2.37) can be deduced by looking at each of the three terms in the

minimum individually. To this end, note that:

• We have R1 ≥ I(Y1;U1|U2, Q) for any p ∈ P(R1, R2), and I(Y1;Y2) ≥ I(Y1;U2, Q) by

the data processing inequality. Hence

R1 − I(Y1;U1|U2, Q) + I(Y1;Y2)− I(Y1;U2, Q) +H(Y2|U1, U2, Q)

≥ H(Y2|U1, U2, Q)

≥ I(Y1;Y2|U1, U2, Q).

• By a symmetric argument, we can lower bound the second term in a similar fashion:

R2 − I(Y2;U2|U1, Q) + I(Y2;Y1)− I(Y2;U1, Q) +H(Y1|U1, U2, Q)

≥ I(Y1;Y2|U1, U2, Q).

• By Lemma 9 (see Appendix 2.D), the infimum in (2.36) is attained by a p ∈ P(R1, R2)

satisfying R1 + R2 = I(Y1, Y2;U1, U2|Q). Therefore, the third term in the minimum

is given by

R1 +R2 − I(Y1, Y2;U1, U2|Q) + I(Y1;Y2|U1, U2, Q) = I(Y1;Y2|U1, U2, Q),

and (2.37) follows immediately.
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Let p∗ ∈ P(R1, R2) be the distribution that attains the infimum in (2.36) (such a p∗

always exists), then (2.37) yields

W ∗
j-w(p(y1, y2))−W ∗

p-w(p(y1, y2))

=
∑
u1,u2,q

p∗(u1, u2, q)
∑
y1,y2

p∗(y1, y2|u1, u2, q) log
p∗(y1, y2|u1, u2, q)

p∗(y1|u1, u2, q)p∗(y2|u1, u2, q)

= Ep∗ log o(Y1, Y2)p∗(Y1, Y2|U1, U2, Q)

− Ep∗ log o(Y1, Y2)p∗(Y1|U1, U2, Q)p∗(Y2|U1, U2, Q).

Hence, we can interpret the auxiliary random variables corresponding to p∗ as optimal

rate-limited side informations for both betting strategies. Moreover, optimal bets for each

strategy are given by

1. b∗(y1, y2) = p∗(y1, y2|u1, u2, q) for the joint-wager, and

2. b∗1(y1) = p∗(y1|u1, u2, q), b
∗
2(y2) = p∗(y2|u1, u2, q) for the product-wager.

Since P(R1, R2) ⊆ P(R′1, R
′
2) for R1 ≤ R′1 and R2 ≤ R′2, the function ∆(R1, R2) is

nonincreasing in R1 and R2. Thus, the benefits of using the joint-wager over the product-

wager diminish in the amount of side-information available. It is also not difficult to show

that ∆(R1, R2) is jointly convex in (R1, R2).

Furthermore, for rate-pairs (R1, R2) and (R′1, R
′
2) satisfying R1 < R′1 and R2 < R′2,

there exist corresponding optimal joint- and product-wagers b∗(y1, y2) and b∗1(y1)b∗2(y2),

and b∗
′
(y1, y2) and b∗

′
1 (y1)b∗

′
2 (y2), respectively, satisfying

D
(
b∗
′
(y1, y2)

∣∣∣∣∣∣b∗′1 (y1)b∗
′

2 (y2)
)
< D

(
b∗(y1, y2)

∣∣∣∣∣∣b∗1(y1)b∗2(y2)
)
. (2.38)

Hence, roughly speaking, the joint-wager and product-wager look “more alike” as the

amount of side information is increased. The proof of the strict inequality in (2.38) can be

inferred from the proof of Lemma 9 in Appendix 2.D.

To conclude this example, we note that ∆(R1, R2) enjoys a great deal of symmetry near

the origin in the sense that side information from either encoder contributes approximately
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the same amount to the improvement of the product-wager. We state this formally as a

theorem:

Theorem 8. Define ρm(Y1, Y2) to be the Hirschfeld-Gebelein-Rényi maximal correlation

between random variables Y1 and Y2. Then, ∆(R1, R2) ≥ I(Y1;Y2)−ρ2
m(Y1, Y2) · (R1 +R2).

Moreover, this bound is tight as (R1, R2)→ (0, 0).

Proof. If R2 = 0, then it is readily verified that ∆(R1, 0) can be expressed as follows:

∆(R1, 0) = I(Y1;Y2)− max
p(u1|y1):I(U1;Y1)=R1,

U1→Y1→Y2, |U1|≤|Y1|+1

I(U1;Y2).

By symmetry:

∆(0, R2) = I(Y1;Y2)− max
p(u2|y2):I(U2;Y2)=R2,

U2→Y2→Y1, |U2|≤|Y2|+1

I(U2;Y1).

Here, we can apply a result of Erkip [Erk96, Theorem 10] to evaluate the gradient of

∆(R1, R2) at (R1, R2) = (0, 0):

∂

∂R1

∆(R1, R2)

∣∣∣∣
(R1,R2)=(0,0)

=
∂

∂R2

∆(R1, R2)

∣∣∣∣
(R1,R2)=(0,0)

= −ρ2
m(Y1, Y2). (2.39)

Note, since ∆(R1, 0) and ∆(0, R2) are each convex in their respective variable and ∆(0, 0) =

I(Y1;Y2), we have

∆(R1, 0) ≥ I(Y1;Y2)− ρ2
m(Y1, Y2)R1

∆(0, R2) ≥ I(Y1;Y2)− ρ2
m(Y1, Y2)R2. (2.40)

Taking this one step further, for ν1, ν2 > 0, we can evaluate the one-sided derivative:

lim
λ↓0

∆(λν1, λν2)−∆(0, 0)

λ
= −ρ2

m(Y1, Y2) · (ν1 + ν2). (2.41)

We remark that (2.41) does not follow immediately from (2.39) since the point at which

we are taking the derivatives (i.e., the origin) does not lie in an open neighborhood of the

domain. Nonetheless, the expected result holds.
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Since ∆(R1, R2) is convex, we obtain an upper bound on the one-sided derivative as

follows:

lim
λ↓0

∆(λν1, λν2)−∆(0, 0)

λ
≤ lim

λ↓0

1
2
∆(2λν1, 0) + 1

2
∆(0, 2λν2)−∆(0, 0; p)

λ

=
1

2
lim
λ↓0

∆(λ2ν1, 0)−∆(0, 0)

λ
+

1

2
lim
λ↓0

∆(0, λ2ν2)−∆(0, 0)

λ

= −ρ2
m(Y1, Y2) · (ν1 + ν2),

where the final equality follows by (2.39) and the positive homogeneity of the directional

derivative.

Therefore, to complete the proof of (2.41), it suffices to prove the lower bound

lim
λ↓0

∆(λν1, λν2)−∆(0, 0)

λ
≥ −ρ2

m(Y1, Y2) · (ν1 + ν2).

To this end, fix λ, ν1, ν2 > 0 and observe that

∆(λν1, λν2)−∆(0, 0)

λ

=
1

λ
inf

p∈P(λν1,λν2)

{
I(Y1;Y2|U1, U2|Q)− I(Y1;Y2)

}
(2.42)

=
1

λ
inf

p∈P(λν1,λν2)

{
I(Y1, Y2;U1, U2|Q)− I(Y1;U1, U2|Q)− I(Y2;U1, U2|Q)

}
= (ν1 + ν2)− 1

λ

(
Ip∗(Y1;U1, U2|Q) + Ip∗(Y2;U1, U2|Q)

)
(2.43)

= (ν1 + ν2)− 1

λ

(
Ip∗(Y1;U1|U2, Q) + Ip∗(Y1;U2|Q)

+ Ip∗(Y2;U2|U1, Q) + Ip∗(Y2;U1|Q)
)

≥ (ν1 + ν2)− ρ2
m(Y1, Y2) (2ν1 + 2ν2)

− (1− ρ2
m(Y1, Y2))

λ
(Ip∗(Y1;U1|U2, Q) + Ip∗(Y2;U2|U1, Q)) (2.44)

= −ρ2
m(Y1, Y2) (ν1 + ν2) + (1− ρ2

m(Y1, Y2)) (ν1 + ν2)

− (1− ρ2
m(Y1, Y2))

λ
(Ip∗(Y1;U1|U2, Q) + Ip∗(Y2;U2|U1, Q))

≥ −ρ2
m(Y1, Y2) (ν1 + ν2) . (2.45)

In the above string of inequalities
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• (2.42) follows by definition of ∆(R1, R2).

• Equality (2.43) follows since Lemma 9 guarantees that the infimum is attained in

(2.42) for some p∗ ∈ P(λν1, λν2) satisfying Ip∗(Y1, Y2;U1, U2|Q) = λ(ν1 + ν2). Here,

we write Ip∗(Y1, Y2;U1, U2|Q) to denote the mutual information I(Y1, Y2;U1, U2|Q)

evaluated for the distribution p∗.

• To see that (2.44) holds, note that

Ip∗(Y2;U2|Q) = λν1 + λν2 − Ip∗(Y1;U1|U2, Q),

and thus

I(Y1;Y2)− ρ2
m(Y1, Y2) (λν1 + λν2 − Ip∗(Y1;U1|U2, Q))

≤ ∆(0, λν1 + λν2 − Ip∗(Y1;U1|U2, Q)) (2.46)

= I(Y1;Y2)− max
p(ũ2|y2):I(Y2;Ũ2)≤λν1+λν2−Ip∗ (Y1;U1|U2,Q),

Ũ2↔Y2↔Y1

I(Ũ2;Y1) (2.47)

≤ I(Y1;Y2)− Ip∗(Y1;U2|Q), (2.48)

which implies

−ρ2
m(Y1, Y2) (λν1 + λν2 − Ip∗(Y1;U1|U2, Q)) ≤ −Ip∗(Y1;U2|Q).

The above steps are justified as follows:

– (2.46) follows from (2.40).

– (2.47) follows by definition of the function ∆(0, x).

– (2.48) follows since Q is independent of Y1, Y2 (by definition of p∗), and thus

Ũ2 = (U2, Q) lies in the set over which we take the maximum in (2.47).

By symmetry, we conclude that

− (Ip∗(Y1;U2|Q) + Ip∗(Y2;U1|Q))

≥ −ρ2
m(Y1, Y2) (2λν1 + 2λν2 − Ip∗(Y1;U1|U2, Q)− Ip∗(Y2;U2|U1, Q)) ,

and (2.44) follows.
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• (2.45) follows since λν1 ≥ Ip∗(Y1;U1|U2, Q) and λν2 ≥ Ip∗(Y2;U2|U1, Q) for p∗ ∈
P(λν1, λν2).

2.4.5 An Application: List Decoding

In the previous example, we did not take advantage of the strengthened converse result

(i.e., Theorem 7) which we proved in Section 2.4.3. In this section, we give an application

that requires this strengthening.

Formally, a 2-list code (of blocklength n consists) of encoding functions:

g
(n)
i : Yni →

{
1, . . . ,M

(n)
i

}
for i = 1, 2

and list decoding functions

L
(n)
1 :

{
1, . . . ,M

(n)
1

}
×
{

1, . . . ,M
(n)
2

}
→ 2Y

n
1

L
(n)
2 :

{
1, . . . ,M

(n)
1

}
×
{

1, . . . ,M
(n)
2

}
→ 2Y

n
2 .

A list decoding tuple (R1, R2,∆1,∆2) is achievable if, for any ε > 0, there exists a 2-list

code of blocklength n satisfying the rate constraints

1

n
logM

(n)
1 ≤ R1 + ε

1

n
logM

(n)
2 ≤ R2 + ε,

and the probability of list-decoding error constraints

Pr
[
Y n

1 /∈ L(n)
1

(
g

(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 )
)]
≤ ε,

Pr
[
Y n

2 /∈ L(n)
2

(
g

(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 )
)]
≤ ε.
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with list sizes

1

n
log |L(n)

1 | ≤ ∆1 + ε

1

n
log |L(n)

2 | ≤ ∆2 + ε.

With a 2-list code so defined, the following theorem shows that the 2-list decoding problem

and multiterminal source coding problem under logarithmic loss are equivalent (inasmuch

as the achievable regions are identical):

Theorem 9. The list decoding tuple (R1, R2,∆1,∆2) is achievable if and only if

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

∆1 ≥ H(Y1|U1, U2, Q)

∆2 ≥ H(Y2|U1, U2, Q).

for some joint distribution

p(y1, y2, u1, u2, q) = p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q),

where |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 5.

Remark 2. We note that a similar connection to list decoding can be made in the context

of the CEO problem.

To prove the theorem, we require a slightly modified version of [KSC08, Lemma 1]:

Lemma 4. If the list decoding tuple (R1, R2,∆1,∆2) is achieved by a sequence of 2-list

codes {g(n)
1 , g

(n)
2 , L

(n)
1 , L

(n)
2 }n→∞, then

H(Y n
1 |g(n)

1 (Y n
1 ), g

(n)
2 (Y n

2 )) ≤ |L(n)
1 |+ nεn

H(Y n
2 |g(n)

1 (Y n
1 ), g

(n)
2 (Y n

2 )) ≤ |L(n)
2 |+ nεn,

where εn → 0 as n→∞.
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Proof. The proof is virtually identical to that of [KSC08, Lemma 1], and is therefore

omitted.

Proof of Theorem 9. First observe that the direct part is trivial. Indeed, for a joint distri-

bution p(y1, y2, u1, u2, q) = p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q), apply the Berger-Tung achiev-

ability scheme and take L
(n)
i to be the set of yni sequences which are jointly typical with the

decoded quantizations (Un
1 , U

n
2 ). This set has cardinality no larger than 2n(H(Yi|U1,U2,Q)+ε),

which proves achievability.

To see the converse, note that setting

Ŷ n
i = Pr

[
Y n
i |g(n)

1 (Y n
1 ), g

(n)
2 (Y n

2 )
]

achieves a logarithmic loss of 1
n
H(Y n

i |g(n)
1 (Y n

1 ), g
(n)
2 (Y n

2 )) for source i in the setting where

reproductions are not restricted to product distributions. Applying Theorem 7 together

with Lemma 4 yields the desired result.

2.5 Relationship to the General Multiterminal Source Coding

Problem

In this section, we relate our results on logarithmic loss to multiterminal source coding

problems with arbitrary distortion measures and reproduction alphabets.

As before, we let {Y1,j, Y2,j}nj=1 be a sequence of n independent, identically distributed

random variables with finite alphabets Y1 and Y2, respectively, and joint pmf p(y1, y2).

In this section, the reproduction alphabets Y̆i, i = 1, 2, are arbitrary. We also consider

generic distortion measures:

d̆i : Yi × Y̆i → R+ for i = 1, 2,

where R+ denotes the set of nonnegative real numbers. The sequence distortion is then
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defined as follows:

d̆i(y
n
i , y̆

n
i ) =

1

n

n∑
j=1

d̆i(yi,j, y̆i,j).

We will continue to let d(·, ·) and Ŷ1, Ŷ2 denote the logarithmic loss distortion measure

and the associated reproduction alphabets, respectively.

A rate distortion code (of blocklength n) consists of encoding functions:

ğ
(n)
i : Yni →

{
1, . . . ,M

(n)
i

}
for i = 1, 2

and decoding functions

ψ̆
(n)
i :

{
1, . . . ,M

(n)
1

}
×
{

1, . . . ,M
(n)
2

}
→ Y̆ni for i = 1, 2.

A rate distortion vector (R1, R2, D1, D2) is strict-sense achievable if there exists a block-

length n, encoding functions ğ
(n)
1 , ğ

(n)
2 and a decoder (ψ̆

(n)
1 , ψ̆

(n)
2 ) such that

Ri ≥
1

n
logM

(n)
i for i = 1, 2 (2.49)

Di ≥ Ed̆i(Y n
i , Y̆

n
i ) for i = 1, 2. (2.50)

Where

Y̆ n
i = ψ̆

(n)
i (ğ

(n)
1 (Y n

1 ), ğ
(n)
2 (Y n

2 )) for i = 1, 2.

For these functions, we define the quantity

βi

(
ğ

(n)
1 , ğ

(n)
2 , ψ̆

(n)
1 , ψ̆

(n)
2

)
:=

1

n

n∑
j=1

E log

(∑
yi∈Yi

2−d̆i(yi,Y̆i,j)

)
for i = 1, 2. (2.51)

Now, let βi(R1, R2, D1, D2) be the infimum of the βi

(
ğ

(n)
1 , ğ

(n)
2 , ψ̆

(n)
1 , ψ̆

(n)
2

)
’s, where the

infimum is taken over all codes that achieve the rate distortion vector (R1, R2, D1, D2).

At this point it is instructive to pause and consider some examples.
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Example 1 (Binary Sources and Hamming Distortion). For i = 1, 2, let Y̆i = Yi = {0, 1}
and let d̆i be the α-scaled Hamming distortion measure:

d̆i(yi, y̆i) =

 0 if y̆i = yi,

α if y̆i 6= yi.

In this case, ∑
yi∈Yi

2−d̆i(yi,Y̆i,j) = 20 + 2−α, (2.52)

so βi(R1, R2, D1, D2) = log(1 + 2−α) for any (R1, R2, D1, D2). This notion that

βi(R1, R2, D1, D2) is a constant extends to all distortion measures for which the columns

of the |Yi| × |Y̆i| distortion matrix are permutations of one another.

Example 2 (Binary Sources and Erasure Distortion). For i = 1, 2, let Yi = {0, 1}, Y̆i =

{0, 1, e} and let d̆i be the standard erasure distortion measure:

d̆i(yi, y̆i) =


0 if y̆i = yi

1 if y̆i = e

∞ if y̆i ∈ {0, 1} and y̆i 6= yi.

In this case,

∑
yi∈Yi

2−d̆i(yi,Y̆i,j) =

 2−∞ + 20 = 1 if Y̆i,j ∈ {0, 1}
2−1 + 2−1 = 1 if Y̆i,j = e.

(2.53)

so βi(R1, R2, D1, D2) = 0 for any (R1, R2, D1, D2). This result can easily be extended to

erasure distortion on larger alphabets by setting the penalty to log |Yi| when Y̆i = e.

Theorem 10. Suppose (R1, R2, D1, D2) is strict-sense achievable for the general multiter-

minal source coding problem. Then

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D1 ≥ H(Y1|U1, U2, Q)− β1(R1, R2, D1, D2)

D2 ≥ H(Y2|U1, U2, Q)− β2(R1, R2, D1, D2)


(2.54)

for some joint distribution p(y1, y2)p(q)p(u1|y1, q)p(u2|y2, q) with |Ui| ≤ |Yi| and |Q| ≤ 5.
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Proof. Since (R1, R2, D1, D2) is strict-sense achievable, there exists a blocklength n, en-

coding functions ğ
(n)
1 , ğ

(n)
2 and a decoder (ψ̆

(n)
1 , ψ̆

(n)
2 ) satisfying (2.49)-(2.50). Given these

functions, the decoder can generate reproductions Y̆ n
1 , Y̆

n
2 satisfying the average distortion

constraints (2.50). From the reproduction Y̆ n
i , we construct the reproduction Ŷ n

i as follows:

Ŷj(yi) =
2−d̆i(yi,Y̆i,j)∑

y′i∈Yi
2−d̆i(y

′
i,Y̆i,j)

.

Now, using the logarithmic loss distortion measure, observe that Ŷ n
i satisfies

Ed(Y n
i , Ŷ

n
i ) =

1

n

n∑
j=1

E log
(

2d̆i(Yi,j ,Y̆i,j)
)

+
1

n

n∑
j=1

E log

∑
y′i∈Yi

2−d̆i(y
′
i,Y̆i,j)


=

1

n

n∑
j=1

Ed̆i(Yi,j, Y̆i,j) + βi

(
ğ

(n)
1 , ğ

(n)
2 , ψ̆

(n)
1 , ψ̆

(n)
2

)
≤ Di + βi

(
ğ

(n)
1 , ğ

(n)
2 , ψ̆

(n)
1 , ψ̆

(n)
2

)
:= D̃i.

Thus, (R1, R2, D̃1, D̃2) is achievable for the multiterminal source coding problem with the

logarithmic loss distortion measure. Applying Theorem 6 and taking the infimum over all

coding schemes that achieve (R1, R2, D1, D2) proves the theorem.

This outer bound is interesting because the region is defined over the same set of

probability distributions that define the Berger-Tung inner bound. While the βi’s can be

difficult to compute in general, we have shown that they can be readily determined for many

popular distortion measures. As an application, we now give a quantitative approximation

of the rate distortion region for binary sources subject to Hamming distortion constraints.

Before proceeding, we prove the following lemma.

Lemma 5. Suppose (R1, R2, D̃1, D̃2) is strict-sense achievable for the multiterminal source

coding problem with binary sources and d̆i equal to the αi-scaled Hamming distortion

measure, for i = 1, 2. Then the Berger-Tung achievability scheme can achieve a point
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(R1, R2, D1, D2) satisfying

Di − D̃i ≤
(αi

2
− 1
)
Hi + log(1 + 2−αi)

for some Hi ∈ [0, 1], i = 1, 2.

Proof. By Theorem 10, (R1, R2, D̃1, D̃2) satisfy (2.54) for some joint distribution

p(y1, y2)p(q)p(u1|y1, q)p(u2|y2, q). For this distribution, define the reproduction functions

Y̆i(U1, U2, Q) = arg max
yi

p(yi|U1, U2, Q) for i = 1, 2. (2.55)

Then, observe that for i = 1, 2:

Ed̆i(Yi, Y̆i) =
∑
u1,u2,q

p(u1, u2, q)

[
αi ·min

yi
p(yi|u1, u2, q) + 0 ·max

yi
p(yi|u1, u2, q)

]
= αi

∑
u1,u2,q

p(u1, u2, q) ·min
yi

p(yi|u1, u2, q)

≤ αi
2

∑
u1,u2,q

p(u1, u2, q) ·H(Yi|U1, U2, Q = u1, u2, q) (2.56)

=
αi
2
H(Yi|U1, U2, Q).

Where (2.56) follows from the fact that 2p ≤ h2(p) for 0 ≤ p ≤ 0.5. Thus, Di =

αi

2
H(Yi|U1, U2, Q) is achievable for rates (R1, R2) using the Berger-Tung achievability

scheme. Combining this with the fact that D̃i ≥ H(Yi|U1, U2, Q) − log(1 + 2−αi), we

see that

Di − D̃i ≤
αi
2
H(Yi|U1, U2, Q)−H(Yi|U1, U2, Q) + log(1 + 2−αi).

Lemma 5 allows us to give a quantitative outer bound on the achievable rate distortion

region in terms of the Berger-Tung inner bound.

Corollary 1. Suppose (R1, R2, D̃
(1)
1 , D̃

(1)
2 ) is strict-sense achievable for the multiterminal

source coding problem with binary sources and d̆i equal to the standard 1-scaled Hamming
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distortion measure, for i = 1, 2. Then the Berger-Tung achievability scheme can achieve a

point (R1, R2, D
(1)
1 , D

(1)
2 ), where

D
(1)
i − D̃(1)

i ≤
1

2
log

(
5

4

)
< 0.161 for i = 1, 2.

Proof. For rates (R1, R2), note that distortions (D̃1, D̃2) are strict-sense achievable for

the αi-scaled Hamming distortion measures if and only if distortions (D̃
(1)
1 , D̃

(1)
2 ) =

( 1
α1
D̃1,

1
α2
D̃2) are strict-sense achievable for the 1-scaled Hamming distortion measure.

Likewise, the point (R1, R2, D1, D2) is achieved by the Berger-Tung coding scheme for the

αi-scaled Hamming distortion measures if and only if (R1, R2,
1
α1
D1,

1
α2
D2) is achieved by

the Berger-Tung coding scheme for the 1-scaled Hamming distortion measure.

Thus, applying Lemma 5, we can use the Berger-Tung achievability scheme to achieve

a point (R1, R2, D
(1)
1 , D

(1)
2 ) satisfying

D
(1)
i − D̃(1)

i =
1

αi

(
Di − D̃i

)
≤ 1

αi

(αi
2
− 1
)
Hi +

1

αi
log(1 + 2−αi)

=

(
1

2
− 1

αi

)
Hi +

1

αi
log(1 + 2−αi) (2.57)

for some Hi ∈ [0, 1]. We can optimize (2.57) over αi to find the minimum gap for a given

Hi. Maximizing over Hi ∈ [0, 1] then gives the worst-case gap. Straightforward calculus

yields the saddle-point:

max
Hi∈[0,1]

inf
αi>0

{(
1

2
− 1

αi

)
Hi +

1

αi
log(1 + 2−αi)

}
= inf

αi>0
max
Hi∈[0,1]

{(
1

2
− 1

αi

)
Hi +

1

αi
log(1 + 2−αi)

}
=

1

2
log

(
5

4

)
< 0.161,

which is achieved for αi = 2 and any H ∈ [0, 1].

In the above results, we did not require the strengthening that Theorem 7 provides

over Theorem 6. However, our next result takes this strengthened converse into account.
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To motivate the final results of this section, we begin with a discussion of the two-encoder

quadratic Gaussian source coding problem. To this end, suppose Y1, Y2 are jointly Gaussian

– each with unit variance and correlation ρ – and distortion is measured under mean square

error. In this setting, the set of achievable rate distortion tuples (R1, R2, D1, D2) is given

by

R1 ≥
1

2
log

(
1

D1

(
1− ρ2 + ρ22−2R2

))
(2.58)

R2 ≥
1

2
log

(
1

D2

(
1− ρ2 + ρ22−2R1

))
(2.59)

R1 +R2 ≥
1

2
log

(
(1− ρ2)β(D1, D2)

2D1D2

)
, (2.60)

where

β(D1, D2) = 1 +

√
1 +

4ρ2D1D2

(1− ρ2)2
.

Long before the converse result was completed in [WTV08], it was known that any

(R1, R2, D1, D2) satisfying (2.58)-(2.60) was achievable. Indeed, (2.58)-(2.60) correspond

to a set of points in the Berger-Tung inner bound [Ber77, Tun78] achieved by Gausian

test channels. Moreover, roughly a decade before the sum-rate lower bound (2.60) was

established in [WTV08], it was proven by Oohama [Ooh97] that (2.58)-(2.59) were neces-

sary conditions for (R1, R2, D1, D2) to be achievable. Thus, in the period between [Ooh97]

and [WTV08], ad-hoc lower bounds on the sum-rate could be established as follows.

Noting that the right hand sides of (2.58) and (2.59) are convex in R2 and R2, respec-

tively, it is straightforward to establish the necessity of

R1 + ρ2R2 ≥
1

2
log

(
1

D1

)
(2.61)

R2 + ρ2R1 ≥
1

2
log

(
1

D2

)
(2.62)

in order for (R1, R2, D1, D2) to be achievable. Thus, a simple sum-rate lower bound in the
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Figure 2.5: Comparison of Eqns. (2.60), (2.63), and (2.64) for ρ = 1/5.

quadratic Gaussian setting is given by

R1 +R2 ≥
1

(1 + ρ2)

(
1

2
log

(
1

D1

)
+

1

2
log

(
1

D2

))
(2.63)

=
1

2(1 + ρ2)
log

(
1

D1D2

)
.

Furthermore, since the sum-rate is trivially lower bounded by the rate distortion function

of one source plus the Wyner-Ziv rate distortion function of the other source (given the
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former source as side information), we have the necessary condition

R1 +R2 ≥
1

2
log

(
1

D1

)
+

1

2
log

(
1− ρ2

D2

)
=

1

2
log

(
1

D2

)
+

1

2
log

(
1− ρ2

D1

)
=

1

2
log

(
1− ρ2

D1D2

)
. (2.64)

In Figures 2.5 and 2.6 we have plotted the lower bounds (2.60), (2.63), and optimal sum-

rate (2.64) for ρ = 1/5 and ρ = 4/5, respectively. As evidenced by the plots, taking the

maximum of the necessary conditions (2.63) and (2.64) yields a strikingly tight bound on

(2.60) (i.e., the optimal sum-rate constraint).

Unfortunately, our derivation of (2.63) was somewhat ad-hoc and required necessity

of (2.58) and (2.59), which was established by Oohama in [Ooh97] many years after the

multiterminal source coding problem was posed. Thus, it is desirable to establish a gener-

alization of (2.61) and (2.62) to arbitrary sources and distortion measures which does not

require known converse results for the specific problem instance under consideration. This

leads us to state our final result of the section.

Definition 7. Define ρm(Y1, Y2) to be the Hirschfeld-Gebelein-Rényi maximal correlation

(cf. [Ren59]) between random variables Y1 and Y2.

Theorem 11. Suppose (R1, R2, D1, D2) is achievable for the general multiterminal source

coding problem. Then

R1 + ρ2
m(Y1, Y2)R2 ≥ I(Y1; Y̆1, Y̆2)

R2 + ρ2
m(Y1, Y2)R1 ≥ I(Y2; Y̆1, Y̆2)

for some conditional pmf p(y̆1, y̆2|y1, y2) satisfying

Ed1(Y1, Y̆1) ≤ D1

Ed2(Y2, Y̆2) ≤ D2.
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Figure 2.6: Comparison of Eqns. (2.60), (2.63), and (2.64) for ρ = 4/5.

To see how Theorem 11 relates to the above discussion, we make the following definition.

Definition 8. Let R(Di; d̆i) denote the rate distortion function for source Yi under distor-

tion measure d̆i. That is,

d̆i : Yi × Y̆i → [0,∞) for i = 1, 2,

and

R(Di; d̆i) , min
p(y̆i|yi):Edi(Yi,Y̆i)≤Di

I(Yi; Y̆i) for i = 1, 2.

With this definition in hand, we observe that an immediate corollary of Theorem 11 is
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that any achievable (R1, R2, D1, D2) necessarily satisfies

R1 + ρ2
m(Y1, Y2)R2 ≥ R(D1; d̆1)

R2 + ρ2
m(Y1, Y2)R1 ≥ R(D2; d̆2).

Noting that ρ2
m(Y1, Y2) = ρ2 for the Gaussian setting described above, we see that Theorem

11 generalizes (2.61) and (2.62) without requiring previously known converse results.

Remarkably, Theorem 11 makes no assumptions on the distortion measures or source

distribution (other than the standard assumption that the source is i.i.d.). Moreover,

the necessary conditions implied by Theorem 11 are easily computable for finite al-

phabet sources. Indeed, the squared maximal correlation ρ2
m(Y1, Y2) corresponds to an

eigenvalue of a linear system defined by the joint pmf p(y1, y2) [Ren59], and minimizing

λ1I(Y1; Y̆1, Y̆2) + λ2I(Y2; Y̆1, Y̆2) subject to the desired distortion constraints is a convex

optimization problem for λ1, λ2 ≥ 0.

Another immediate Corollary to Theorem 11 is the following intuitive lower bound on

the sum-rate which extends (2.63) to the general setting.

Corollary 2. If (R1, R2, D1, D2) is achievable for the general multiterminal source coding

problem, then

R1 +R2 ≥
1

1 + ρ2
m(Y1, Y2)

(
R(D1; d̆1) +R(D2; d̆2)

)
.

Corollary 2 gives a rough estimate of the price paid (with respect to sum rate) by

compressing each source separately. Indeed, at most ρ2m(Y1,Y2)
1+ρ2m(Y1,Y2)

(
R(D1; d̆1) +R(D2; d̆2)

)
total bits of rate can be saved by exploiting correlation (if any) between sources. Since

ρm(Y1, Y2) ∈ [0, 1] by definition, the coefficient ρ2m(Y1,Y2)
1+ρ2m(Y1,Y2)

can be quite small if the sources

under consideration are not strongly correlated. The practical implication is that com-

pressing each source individually can attain near-optimal performance if the sources are

not strongly correlated. For instance, if ρm(Y1, Y2) = 0.2, then compressing each source

individually requires a sum-rate at most 3.85% in excess of that required by an optimal
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scheme, regardless of which distortion measures are used. One simple example of a source

with ρm(Y1, Y2) = 0.2 is the following: Y1 = Y2 = {1, 2, 3, 4} with joint pmf

p(y1, y2) =

 1/10 if y1 = y2

1/20 if y1 6= y2.

We note that the outer bound given by Theorem 11 and Corollary 2 should be tight in

the high-disortion (i.e., low-rate) regime. Therefore, our results complement others which

characterize the rate distortion region in the high-resolution regime (e.g., [ZB99]). This is

concretely demonstrated in Figure 2.6.

Proof of Theorem 11. Fix ε > 0 and let (ğ
(n)
1 , ğ

(n)
2 , ψ̆

(n)
1 , ψ̆

(n)
2 ) be a code which attains

distortions D1 + ε and D2 + ε for sources Y1 and Y2, respectively. By considering the

log-loss sequence reproductions Ŷ n
i = Pr[Y n

i = yni |ğ(n)
1 (Y n

1 ), ğ
(n)
2 (Y n

2 )] for each source

i = 1, 2, Theorem 7 immediately implies that there exists a joint distribution p ,

p(y1, y2)p(q)p(u1|y1, q)p(u2|y2, q) with |Ui| ≤ |Yi| and |Q| ≤ 5 which satisfies5:

R1 ≥ I(Y1;U1|U2, Q)

R2 ≥ I(Y2;U2|U1, Q)

R1 +R2 = I(Y1, Y2;U1, U2|Q)

1

n
H(Y n

1 |ğ(n)
1 (Y n

1 ), ğ
(n)
2 (Y n

2 )) ≥ H(Y1|U1, U2, Q)

1

n
H(Y n

2 |ğ(n)
1 (Y n

1 ), ğ
(n)
2 (Y n

2 )) ≥ H(Y2|U1, U2, Q).

Since the sources are memoryless, the last two inequalities above are equivalent to

I(Y1;U1, U2|Q) ≥ 1

n
I(Y n

1 ; ğ
(n)
1 (Y n

1 ), ğ
(n)
2 (Y n

2 )) (2.65)

I(Y2;U1, U2|Q) ≥ 1

n
I(Y n

2 ; ğ
(n)
1 (Y n

1 ), ğ
(n)
2 (Y n

2 )).

5Establishing the equality in the sum-rate constraint is straightforward. It can be accomplished along
the same lines as Lemma 9.
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By definition of p, we have R1 +R2 = I(Y1, Y2;U1, U2|Q), and hence

R2 = I(Y1, Y2;U1, U2|Q)−R1

= I(Y2;U2|Q)− (R1 − I(Y1;U1|U2, Q))

≤ I(Y2;U2|Q). (2.66)

Recall the following result of Erkip [Erk96, Theorem 10]. For all real x ≥ 0, the

following holds:

max
p(ũ2|y2):I(Y2;Ũ2)≤x,

Ũ2↔Y2↔Y1

I(Ũ2;Y1) ≤ ρ2
m(Y1, Y2)x. (2.67)

Applying this inequality, we obtain

ρ2
m(Y1, Y2)I(Y2;U2|Q) = ρ2

m(Y1, Y2)I(Y2;U2, Q) (2.68)

≥ max
p(ũ2|y2):I(Y2;Ũ2)≤I(Y2;U2,Q),

Ũ2↔Y2↔Y1

I(Ũ2;Y1) (2.69)

≥ I(U2, Q;Y1) (2.70)

= I(U2;Y1|Q) (2.71)

where

• (2.68) and (2.71) follow since Q and (Y1, Y2) are independent by definition of p.

• (2.69) follows from (2.67).

• (2.70) follows since Ũ2 = (U2, Q) lies in the set over which we take the maximum in

(2.69).

Summarizing the above string of inequalities, we have

I(Y1;U2|Q) ≤ ρ2
m(Y1, Y2)I(Y2;U2|Q). (2.72)
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Next, observe that

R1 +R2 = I(Y1, Y2;U1, U2|Q)

= I(Y1;U1, U2|Q) + I(Y2;U1, U2|Y1, Q)

= I(Y1;U1, U2|Q) + I(Y2;U2|Q)− I(Y1;U2|Q)

≥ I(Y1;U1, U2|Q) + I(Y2;U2|Q)− ρ2
m(Y1, Y2)I(Y2;U2|Q) (2.73)

= I(Y1;U1, U2|Q) + (1− ρ2
m(Y1, Y2))I(Y2;U2|Q)

≥ I(Y1;U1, U2|Q) + (1− ρ2
m(Y1, Y2))R2, (2.74)

where (2.73) follows from (2.72), and (2.74) follows from (2.66) and the fact that

ρm(Y1, Y2) ∈ [0, 1]. Rearranging and applying (2.65), we obtain the inequality

R1 + ρ2
m(Y1, Y2)R2 ≥ I(Y1;U1, U2|Q)

≥ 1

n
I(Y n

1 ; ğ
(n)
1 (Y n

1 ), ğ
(n)
2 (Y n

2 )). (2.75)

By a similar argument, we obtain the symmetric inequality:

R2 + ρ2
m(Y1, Y2)R1 ≥

1

n
I(Y n

2 ; ğ
(n)
1 (Y n

1 ), ğ
(n)
2 (Y n

2 )). (2.76)

Next, since Y̆ n
j = ψ̆

(n)
j (ğ1(Y n

1 ), ğ2(Y n
2 )) for j = 1, 2, the data processing inequality

implies that

1

n
I(Y n

1 ; ğ1(Y n
1 ), ğ2(Y n

2 )) ≥ 1

n
I(Y n

1 ; Y̆ n
1 , Y̆

n
2 )

=
1

n

n∑
i=1

I(Y1,i; Y̆
n

1 , Y̆
n

2 |Y i−1
1 )

=
1

n

n∑
i=1

I(Y1,i; Y̆
n

1 , Y̆
n

2 , Y
i−1

1 )

≥ 1

n

n∑
i=1

I(Y1,i; Y̆1,i, Y̆2,i).

By a similar argument, we have

1

n
I(Y n

2 ; ğ1(Y n
1 ), ğ2(Y n

2 )) ≥ 1

n

n∑
i=1

I(Y2,i; Y̆1,i, Y̆2,i).
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Also, by definition of (ğ
(n)
1 , ğ

(n)
2 , ψ̆

(n)
1 , ψ̆

(n)
2 ), we note that

1

n

n∑
i=1

Ed̆1(Y1,i, Y̆1,i) ≤ D1 + ε

1

n

n∑
i=1

Ed̆2(Y2,i, Y̆2,i) ≤ D2 + ε.

For each j = 1, . . . , n, define

p(Y̆1 = y̆1, Y̆2 = y̆2|Y1,j = y1, Y2,j = y2) =
1

n

n∑
i=1

Pr
[
Y̆1,i = y̆1, Y̆2,i = y̆2|Y1,i = y1, Y2,i = y2

]
.

Recalling that I(X;Y ) is convex in p(x|y) for fixed p(y) and Y n
1 is i.i.d., we can apply

Jensen’s inequality to obtain

1

n
I(Y n

1 ; ğ1(Y n
1 ), ğ2(Y n

2 )) ≥ 1

n

n∑
i=1

I(Y1,i; Y̆1,i, Y̆2,i)

≥ 1

n

n∑
i=1

I(Y1,i; Y̆1, Y̆2)

= I(Y1; Y̆1, Y̆2), (2.77)

where

p(Y̆1 = y̆1, Y̆2 = y̆2|Y1 = y1, Y2 = y2) , p(Y̆1 = y̆1, Y̆2 = y̆2|Y1,j = y1, Y2,j = y2).

Similarly,

1

n
I(Y n

2 ; ğ1(Y n
1 ), ğ2(Y n

2 )) ≥ I(Y2; Y̆1, Y̆2). (2.78)

Next, we apply linearity of expectation to obtain

Ed̆j(Yj, Y̆j) ≤ Dj + ε for j = 1, 2. (2.79)

Finally, we combine (2.75), (2.76), (2.77), (2.78), and (2.79) to obtain the desired result:

R1 + ρ2
m(Y1, Y2)R2 ≥ I(Y1; Y̆1, Y̆2)

R2 + ρ2
m(Y1, Y2)R1 ≥ I(Y2; Y̆1, Y̆2)
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for some conditional pmf p(y̆1, y̆2|y1, y2) satisfying

Ed1(Y1, Y̆1) ≤ D1 + ε

Ed2(Y2, Y̆2) ≤ D2 + ε.

Since ε can be taken arbitrarily small, the theorem is proved.

2.6 Information Amplification and Masking

In Section 2.4, we considered the goal of minimizing the attainable distortion for each

source subject to rate constraints at the encoders. However, we can also consider a related

setting where the objective is to minimize one distortion, say D1, while simultaneously

maximizing the other distortion D2. In general, there is a tension between these two

objectives which is characterized by the amplification-masking tradeoff. In this section, we

give a single-letter description of this tradeoff. As an application, we apply this result,

together with Theorem 7, to solve a fundamental entropy characterization problem.

The well known source coding with side information problem has an achievable rate

region given by

Rx ≥ H(X|U), Ry ≥ I(Y ;U)

as originally shown by Ahlswede and Körner [AK75], and independently by Wyner

[Wyn75]. In this setting, the side information encoder merely serves as a helper with

the sole purpose of aiding in the recovery of Xn at the decoder. However, for given rates

(Rx, Ry), there may be many different coding schemes which permit recovery of Xn at the

decoder. In some cases, it may be desirable to select a coding scheme that reveals very

little information about the side information Y n to the decoder. We refer to this objective

as masking the side information.

To motivate this goal, consider the following example. Suppose X is an attribute of an

online customer that an advertiser would like to specifically target (e.g., gender), and Y is
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other detailed information about the same customer (e.g., credit history). Companies A

and B separately have databases Xn and Y n corresponding to n different customers (the

databases could be indexed by IP address, for example). The advertiser pays Companies A

and B to learn as much about the database Xn as possible. Now, suppose governing laws

prohibit the database Y n from being revealed too extensively. In this case, the material

given to the advertiser must be chosen so that at most a prescribed amount of information

is revealed about Y n.

In general, a masking constraint on Y n may render near-lossless reconstruction of Xn

impossible. This motivates the study the amplification-masking tradeoff. That is, the

tradeoff between amplifying (or revealing) information about Xn while simultaneously

masking the side information Y n.

Similar problems have been previously considered in the information theory literature

on secrecy and privacy. For example, Sankar et al. determine the utility-privacy tradeoff

for the case of a single encoder in [SRP11]. In their setting, the random variable X is a

vector with a given set of coordinates that should be masked and another set that should

be revealed (up to a prescribed distortion). In this context, our study of the amplification-

masking tradeoff is a distributed version of [SRP11], in which utility is measured by the

information revealed about the database Xn. The problem we consider here is distinct

from those typically studied in the information-theoretic secrecy literature, in that the

masking (i.e., equivocation) constraint corresponds to the intended decoder, rather than

an eavesdropper.

We remark that the results presented in this section are inspired in part by the re-

cent, complementary works [KSC08] and [MS07] which respectively study amplification

and masking of channel state information in the Gel’fand-Pinsker channel. We borrow

our terminology from those works. On a related note, the tension between amplification

and masking of channel state information in the presence of an eavesdropper was studied

recently in [KSV11].
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This section of the dissertation is largely self-contained and is organized as follows.

Section 2.6.1 formally defines the problems considered and delivers the main results of the

section. The corresponding proofs are given in Section 2.6.2.

2.6.1 Problem Statement and Results

Throughout this section we adopt notational conventions that are standard in the liter-

ature. Specifically, random variables are denoted by capital letters (e.g., X) and their

corresponding alphabets are denoted by corresponding calligraphic letters (e.g., X ). We

abbreviate a sequence (X1, . . . , Xn) of n random variables by Xn, and we let δ(ε) represent

a quantity satisfying limε→0 δ(ε) = 0. Other notation will be introduced where necessary.

For a joint distribution p(x, y) on finite alphabets X × Y , consider the source cod-

ing setting where separate Encoders 1 and 2 have access to the sequences Xn and Y n,

respectively. We make the standard assumption that the sequences (Xn, Y n) are drawn

i.i.d. according to p(x, y) (i.e., Xn, Y n ∼ ∏n
i=1 p(xi, yi)), and n can be taken arbitrarily

large.

The first of the following three subsections characterizes the amplification-masking

tradeoff. This result is applied to solve a fundamental entropy characterization in the

second subsection. The final subsection comments on the connection between information

amplification and list decoding. Proofs of the main results are postponed until Section

2.6.2.

2.6.1.1 The Amplification-Masking Tradeoff

Formally, a (2nRx , 2nRy , n) code is defined by its encoding functions

fx : X n → {1, . . . , 2nRx} and fy : Yn → {1, . . . , 2nRy}.
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A rate-amplification-masking tuple (Rx, Ry,∆A,∆M) is achievable if, for any ε > 0, there

exists a (2nRx , 2nRy , n) code satisfying the amplification criterion:

∆A ≤
1

n
I (Xn; fx(X

n), fy(Y
n)) + ε, (2.80)

and the masking criterion:

∆M ≥
1

n
I (Y n; fx(X

n), fy(Y
n))− ε. (2.81)

Thus, we see that the amplification-masking problem is an entropy characterization prob-

lem similar to that considered in [CK81, Chapter 15].

Definition 9. The achievable amplification-masking region RAM is the closure of the set

of all achievable rate-amplification-masking tuples (Rx, Ry,∆A,∆M).

Theorem 12. RAM consists of the rate-amplification-masking tuples (Rx, Ry,∆A,∆M)

satisfying

Rx ≥ ∆A − I(X;U)

Ry ≥ I(Y ;U)

∆M ≥ max {I(Y ;U,X) + ∆A −H(X), I(Y ;U)}
∆A ≤ H(X).


(2.82)

for some joint distribution p(x, y, u) = p(x, y)p(u|y), where |U| ≤ |Y|+ 1.

Observe thatRAM characterizes the entire tradeoff between amplifying Xn and masking

Y n. We remark that maximum amplification ∆A = H(X) does not necessarily imply that

Xn can be recovered near-losslessly at the encoder. However, if an application demands

near lossless reproduction of the sequence Xn, Theorem 12 can be strengthened to include

this case. To this end, define a rate-masking triple (Rx, Ry,∆M) to be achievable if, for

any ε > 0, there exists a (2nRx , 2nRy , n) code satisfying the masking criterion (2.81), and a

decoding function

X̂n : {1, 2, . . . , 2nRx} × {1, 2, . . . , 2nRy} → X n
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which satisfies the decoding-error criterion

Pr
[
Xn 6= X̂n(fx(X

n), fy(Y
n))
]
≤ ε.

Definition 10. The achievable rate-masking region RM is the closure of the set of all

achievable rate-masking triples (Rx, Ry,∆M).

Corollary 3. RM consists of the rate-masking triples (Rx, Ry,∆M) satisfying

Rx ≥ H(X|U)

Ry ≥ I(Y ;U)

∆M ≥ I(Y ;X,U)

for some joint distribution p(x, y, u) = p(x, y)p(u|y), where |U| ≤ |Y|+ 1.

2.6.1.2 An Entropy Characterization Result

As we previously noted, the amplification-masking tradeoff solves a multi-letter entropy

characterization problem by reducing it to single-letter form. The reader is directed to

[CK81] for an introduction to entropy characterization problems. Here, we apply our

results to yield a fundamental characterization of the information revealed about Xn and

Y n, respectively, by arbitrary encoding functions fx and fy (of rates Rx, Ry).

Definition 11. Define the region R?(Rx, Ry) as follows. The pair (∆X ,∆Y ) ∈ R?(Rx, Ry)

if and only if, for any ε > 0, there exists a (2nRx , 2nRy, n) code satisfying∣∣∣∣∆X −
1

n
I(Xn; fx(X

n), fy(Y
n))

∣∣∣∣ ≤ ε, and∣∣∣∣∆Y −
1

n
I(Y n; fx(X

n), fy(Y
n))

∣∣∣∣ ≤ ε.

Let R?(Rx, Ry) be the closure of R?(Rx, Ry).

Ultimately we obtain a single-letter description of R?(Rx, Ry). However, in order to do

so, we require some notation. To this end, let:

RAM(Rx, Ry) = {(∆X ,∆Y ) : (Rx, Ry,∆X ,∆Y ) ∈ RAM} .
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Symmetrically, let RMA be the region where Xn is subject to masking ∆X and Y n is

subject to amplification ∆Y . Let

RMA(Rx, Ry) = {(∆X ,∆Y ) : (Rx, Ry,∆X ,∆Y ) ∈ RMA} .

Finally, let RAA(Rx, Ry) consist of all pairs (∆X ,∆Y ) satisfying

Rx ≥ I(Ux;X|Uy, Q)

Ry ≥ I(Uy;Y |Ux, Q)

Rx +Ry ≥ I(Ux, Uy;X, Y |Q)

∆X ≤ I(X;Ux, Uy|Q)

∆Y ≤ I(Y ;Ux, Uy|Q)

for some joint distribution of the form

p(x, y, ux, uy, q) = p(x, y)p(ux|x, q)p(uy|y, q)p(q),

where |Ux| ≤ |X |, |Uy| ≤ |Y|, and |Q| ≤ 5.

Theorem 13. The region R?(Rx, Ry) has a single-letter characterization given by

R?(Rx, Ry) =

RAM(Rx, Ry) ∩RMA(Rx, Ry) ∩RAA(Rx, Ry).

Moreover, restriction of the encoding functions to vector-quantization and/or random bin-

ning is sufficient to achieve any point in R?(Rx, Ry).

The second statement of Theorem 13 is notable since it states that relatively simple

encoding functions (i.e., vector quantization and/or binning) can asymptotically reveal the

same amount of information about Xn and Y n, respectively, as encoding functions that are

only restricted in rate. In contrast, this is not true for the setting of three or more sources,

as the modulo-sum problem studied by Körner and Marton [KM79] provides a counterex-

ample where the Berger-Tung achievability scheme [Ber77] is not optimal. Thus, obtaining
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a characterization like Theorem 13 for three or more sources represents a formidable chal-

lenge.

We remark that the points in R?(Rx, Ry) with ∆X = H(X) and/or ∆Y = H(Y ) also

capture the more stringent constraint(s) of near-lossless reproduction of Xn and/or Y n,

respectively. This is a consequence of Corollary 3.

To give a concrete example of R?(Rx, Ry), consider the following joint distribution:

PX,Y (x, y) x = 0 x = 1

y = 0 1/3 0

y = 1 1/6 1/2.

(2.83)

By performing a brute-force search over the auxiliary random variables definingR?(Rx, Ry)

for the distribution PX,Y , we have obtained numerical approximations of R?(·, ·) for several

different pairs of (Rx, Ry). The results are given in Figure 2.7.

2.6.1.3 Connection to List Decoding

We briefly comment on the connection between an amplification constraint and list de-

coding. As discussed in detail in [KSC08], the amplification criterion (2.80) is essentially

equivalent to the requirement for a list decoder

Ln : {1, . . . , 2nRx} × {1, . . . , 2nRy} → 2X
n

with list size and probability of error respectively satisfying

log |Ln| ≤ n(H(X)−∆A + ε), and

Pr [Xn /∈ Ln(fx(X
n), fy(Y

n))] ≤ ε.

Thus maximizing the amplification of Xn subject to given rate and masking constraints

can be thought of as characterizing the best list decoder in that setting.
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Figure 2.7: The region R?(Rx, Ry) for joint distribution PX,Y given by (2.83) and three

different pairs of rates. Rate pairs (Rx, Ry) equal to (0.1, 0.7), (0.4, 0.4), and (0.5, 0.6)

define the convex regions bounded by the black, blue, and red curves, respectively.
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2.6.2 Proofs of the Amplification-Masking Results

Proof of Theorem 12. Converse Part: Suppose (Rx, Ry,∆A,∆M) is achievable. For con-

venience, define Fx = fx(X
n), Fy = fy(Y

n), and Ui = (Fy, Y
i−1).

First, note that ∆A ≤ H(X) is trivially satisfied. Next, the constraint on Rx is given

by:

nRx ≥ H(Fx) ≥ H(Fx|Fy)

=
n∑
i=1

H(Xi|Fy, X i−1)−H(Xn|Fx, Fy)

≥
n∑
i=1

H(Xi|Fy, Y i−1, X i−1)−H(Xn|Fx, Fy)

= I(Xn;Fx, Fy)−
n∑
i=1

I(Xi;Ui) (2.84)

≥ n(∆A − ε)−
n∑
i=1

I(Xi;Ui). (2.85)

Equality (2.84) follows since Xi ↔ Fy, Y
i−1 ↔ X i−1 form a Markov chain, and inequality

(2.85) follows since amplification ∆A is achievable.

The constraint on Ry is trivial:

nRy ≥ H(Fy) ≥ I(Fy;Y
n) =

n∑
i=1

I(Yi;Fy|Y i−1)

=
n∑
i=1

I(Yi;Fy, Y
i−1) =

n∑
i=1

I(Yi;Ui).

Similarly, we obtain the first lower bound on ∆M :

n(∆M + ε) ≥ I(Y n;Fx, Fy) ≥ I(Y n;Fy) =
n∑
i=1

I(Yi;Ui).
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The second lower bound on ∆M requires slightly more work, and can be derived as follows:

n(∆M + ε) ≥ I(Y n;Fx, Fy)

= I(Y n;Xn, Fy) + I(Xn;Fx, Fy)− I(Xn;Fx, Y
n)

≥ I(Y n;Xn, Fy) + n∆A − I(Xn;Fx, Y
n)− nε (2.86)

≥
n∑
i=1

I(Yi;X
n, Fy|Y i−1) + n∆A −H(Xn)− nε

≥
n∑
i=1

I(Yi;Xi, Ui) + ∆A −H(Xi)− ε,

where (2.86) follows since amplification ∆A is achievable.

Observing that the Markov condition Ui ↔ Yi ↔ Xi is satisfied for each i, a standard

timesharing argument proves the existence of a random variable U such that U ↔ Y ↔ X

forms a Markov chain and (2.82) is satisfied.

Direct Part: Fix p(u|y) and suppose (Rx, Ry,∆A,∆M) satisfy (2.82) with strict in-

equality. Next, fix ε > 0 sufficiently small so that it is less than the minimum slack in said

inequalities, and set R̃ = I(Y ;U) + ε. Our achievability scheme uses a standard random

coding argument which we sketch below.

Codebook generation. Randomly and independently, bin the typical xn’s uniformly

into 2n(∆A−I(X;U)+ε) bins. Let b(xn) be the index of the bin which contains xn. For l ∈
{1, . . . , 2nR̃}, randomly and independently generate un(l), each according to

∏n
i=1 pU(ui).

Encoding. Encoder 1, upon observing the sequence Xn, sends the corresponding bin

index b(Xn) to the decoder. If Xn is not typical, an error is declared. Encoder 2, upon

observing the sequence Y n, finds an L ∈ {1, . . . , 2nR̃} such that (Y n, Un(L)) are jointly

ε-typical, and sends the unique index L to the decoder. If more than one such L exists,

ties are broken arbitrarily. If no such L exists, then an error is declared.

This coding scheme clearly satisfies the given rates. Further, each encoder errs with

arbitrarily small probability as n→∞. Hence, we only need to check that the amplification

and masking constraints are satisfied. To this end, let C be the random codebook. We
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first check that the amplification and masking constraints are separately satisfied when

averaged over random codebooks C.

To see that the (averaged) amplification constraint is satisfied, consider the following:

I(Xn;Fx, Fy|C) = H(Xn|C)−H(Xn|b(Xn), L, C)

≥ nH(X)− n(H(X)−∆A + δ(ε)) (2.87)

= n(∆A − δ(ε)),

where (2.87) follows since Xn is independent of C and, averaged over codebooks, there are

at most 2n(H(X)−∆A+δ(ε)) sequences xn in bin b(Xn) which are typical with Un(L), where

L ∈ {1, . . . , 2nR̃}.

To see this is true, we appeal to the proof strategy of [EK12, Lemma 22.3] and make

adjustments where necessary. For convenience, define R̃x = ∆A − I(X;U) + ε and recall

that ε was chosen sufficiently small so that R̃x < H(X|U). Note that we can express the

random codebook C as a pair of random codebooks C = (CB, CV Q), where CB is the “binning

codebook” at Encoder 1, and CV Q is the “vector-quantization codebook” at Encoder 2.

Let E1 = 1 if (Xn, Un(L)) /∈ T (n)
ε and E1 = 0 otherwise, where T (n)

ε denotes the set of

ε-jointly typical (xn, un) sequence pairs. Note that Pr({E1 = 1}) tends to 0 as n → ∞.

Consider

H(Xn|L, b(Xn), C)

≤ H(Xn, E1|L, b(Xn), C)

≤ 1 + nPr({E1 = 1})H(X)

+
∑

(l,b,cV Q)

p(l, b, cV Q|E1 = 0)×H(Xn|L = l, b(Xn) = b, E1 = 0, CV Q = cV Q, CB).

Now, let N(l, b, cV Q, CB) be the number of sequences xn ∈ B(b)∩T (n)
ε (X|un(l)), where B(b)

denotes the bin of x-sequences which is labeled by index b and un(l) is the codeword in

the (fixed) codebook cV Q with index l. Note that N(l, b, cV Q, CB) is a binomial random
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variable, where the source of randomness comes from the random codebook CB. Define

E2(l, b, cV Q, CB) =

 1 if N(l, b, cV Q, CB) ≥ 2E [N(l, b, cV Q, CB)],

0 otherwise.

Due to the binomial distribution of N(l, b, cV Q, CB), it is readily verified that

E [N(l, b, cV Q, CB)] = 2−nR̃x
∣∣T (n)
ε (X|un(l))

∣∣ ,
Var(N(l, b, cV Q, CB)) ≤ 2−nR̃x

∣∣T (n)
ε (X|un(l))

∣∣ .
Then, by the Chebyshev lemma [EK12, Appendix B],

Pr({E2(l, b, cV Q, CB) = 1}) ≤ Var(N(l, b, cV Q, CB))

(E [N(l, b, cV Q, CB)])2 ≤ 2−n(H(X|U)−R̃x−δ(ε)),

which tends to zero as n→∞ if R̃x < H(X|U)− δ(ε), which is satisfied for ε sufficiently

small. Now consider

H(Xn|L = l, b(Xn) = b, E1 = 0, CV Q = cV Q, CB)

≤ H(Xn, E2|L = l, b(Xn) = b, E1 = 0, CV Q = cV Q, CB)

≤ 1 + nPr({E2 = 1})H(X) +H(Xn|L = l, b(Xn) = b, E1 = 0, E2 = 0, CV Q = cV Q, CB)

≤ 1 + nPr({E2 = 1})H(X) + n(H(X|U)− R̃x + δ(ε)),

which implies that

H(Xn|L, b(Xn), C)

≤ 2 + n(Pr({E1 = 1}) + Pr({E2 = 1}))H(X) + n(H(X|U)− R̃x + δ(ε))

≤ 2 + n(Pr({E1 = 1}) + Pr({E2 = 1}))H(X) + n(H(X)−∆A + δ(ε)).

Taking n→∞ completes the proof of (2.87).
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We now turn our attention to the masking criterion. First note the following inequality:

I(Y n;Fx, Fy|C) = I(Y n;L|C) + I(Y n; b(Xn)|L, C)

≤ I(Y n;L|C) +H(b(Xn)|C)−H(b(Xn)|Y n, C)

= I(Y n;L|C) + I(Xn;Y n)−H(Xn) +H(b(Xn)|C)−H(b(Xn)|Y n, C) +H(Xn|Y n)

≤ I(Y n;L|C) + I(Xn;Y n)−H(Xn) +H(b(Xn)|C)− I(b(Xn);Xn|Y n, C) +H(Xn|Y n)

= I(Y n;L|C) + I(Xn;Y n)−H(Xn) +H(b(Xn)|C) +H(Xn|Y n, b(Xn), C) (2.88)

Two of the terms in (2.88) can be bounded as follows: First, since L ∈ {1, . . . , 2nR̃}, we

have

I(Y n;L|C) ≤ nR̃ = n(I(Y ;U) + ε).

Second, there are 2n(∆A−I(X;U)+ε) bins at Encoder 1 by construction, and hence

H(b(Xn)|C) ≤ n(∆A − I(X;U) + ε). Therefore, substituting into (2.88) and simplifying,

we have:

I(Y n;Fx, Fy|C) ≤ n(I(Y ;U,X) + ∆A −H(X)) +H(Xn|Y n, b(Xn), C) + n2ε. (2.89)

We now consider three separate cases. First, assume ∆A ≤ I(U ;X). Then,

I(Y ;X,U) + ∆A −H(X) ≤ I(Y ;X,U)−H(X|U) = I(Y ;U)−H(X|Y ),

and (2.89) becomes

I(Y n;Fx, Fy|C) ≤ nI(Y ;U)− I(Xn; b(Xn)|Y n, C) + n2ε ≤ nI(Y ;U) + n2ε.

Next, suppose that ∆A ≥ I(X;U) + H(X|Y ). In this case, there are greater than

2n(H(X|Y )+ε) bins in which the Xn sequences are distributed. Hence, knowing Y n and

b(Xn) is sufficient to determine Xn with high probability (i.e., we have a Slepian-Wolf

binning at Encoder 1). Therefore, H(Xn|Y n, b(Xn), C) ≤ nε, and (2.89) becomes

I(Y n;Fx, Fy|C) ≤ n(I(Y ;X,U) + ∆A −H(X)) + n3ε.
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Finally, suppose ∆A = I(X;U) + θH(X|Y ) for some θ ∈ [0, 1]. In this case, we can

timeshare between a code C1 designed for amplification ∆′A = I(X;U) with probability θ,

and a code C2 designed for amplification ∆′′A = I(X;U) + H(X|Y ) with probability 1− θ
to obtain a code C with the same average rates and averaged amplification

I(Xn;Fx, Fy|C) = θI(Xn;Fx, Fy|C1) + (1− θ)I(Xn;Fx, Fy|C2)

≥ n(I(X;U) + θH(X|Y )− δ(ε)) = n(∆A − δ(ε)).

Then, applying the inequalities obtained in the previous two cases, we obtain:

I(Y n;Fx, Fy|C) = θI(Y n;Fx, Fy|C1) + (1− θ)I(Y n;Fx, Fy|C2)

≤ θnI(Y ;U) + (1− θ)n(I(Y ;X,U) + ∆′′A −H(X)) + 3nε

= nI(Y ;U) + 3nε.

Combining these three cases proves that

1

n
I(Y n;Fx, Fy|C) ≤ max{I(Y ;U,X) + ∆A −H(X), I(Y ;U)}+ 3ε

≤ ∆M + 3ε.

To show that there exists a code which satisfies the amplification and masking constraints

simultaneously, we construct a super-code C̄ of blocklength Nn by concatenating N ran-

domly, independently chosen codes of length n (each constructed as described above). By

the weak law of large numbers and independence of the concatenated coded blocks,

Pr

({
c̄ :

1

Nn
I(XNn; F̄x, F̄y|C̄ = c̄) > ∆A − δ(ε)

})
≥ 3/4

Pr

({
c̄ :

1

Nn
I(Y Nn; F̄x, F̄y|C̄ = c̄) < ∆M + δ(ε)

})
≥ 3/4

for N and n sufficiently large. Thus, there must exist one super-code which simultane-

ously satisfies both desired constraints. This completes the proof that (Rx, Ry,∆A,∆M)

is achievable. Finally, we invoke the Support Lemma [CK81] to see that |Y| − 1 letters

are sufficient to preserve p(y). Plus, we require two more letters to preserve the values of

H(X|U) and I(Y ;U |X).
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Proof of Corollary 3. By setting ∆A = H(X), [AK75, Theorem 2] implies that Xn can be

reproduced near losslessly. A simplified version of the argument in the direct part of the

proof of Theorem 12 shows that the masking criterion will be satisfied for the standard

coding scheme. The converse of Theorem 12 continues to apply

Proof of Theorem 13. First, we remark that Theorem 7 states that RAA(Rx, Ry) is the

closure of pairs (∆X ,∆Y ) such that there exists a (2nRx , 2nRy , n) code satisfying

∆X ≤
1

n
I(Xn; fx(X

n), fy(Y
n)) + ε,

∆Y ≤
1

n
I(Y n; fx(X

n), fy(Y
n)) + ε

for any ε > 0.

Suppose (∆X ,∆Y ) ∈ R?(Rx, Ry). By definition of R?(Rx, Ry), Theorem 12, and the

above statement, (∆X ,∆Y ) also lies in each of the sets RAM(Rx, Ry), RMA(Rx, Ry), and

RAA(Rx, Ry). Since each of these sets are closed by definition, we must have

R?(Rx, Ry) ⊆

RAM(Rx, Ry) ∩RMA(Rx, Ry) ∩RAA(Rx, Ry).

Since each point in the setsRAM(Rx, Ry), RMA(Rx, Ry), andRAA(Rx, Ry) is achievable

by vector quantization and/or random binning, the second statement of the Theorem is

proved.

To show the reverse inclusion, fix ε > 0 and suppose (∆X ,∆Y ) ∈ RAM(Rx, Ry) ∩
RMA(Rx, Ry) ∩ RAA(Rx, Ry). This implies the existence of (2nAMRx , 2nAMRy , nAM),
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(2nMARx , 2nMARy , nMA), and (2nAARx , 2nAARy , nAA) codes satisfying:

∆X ≤
1

nAM
I(XnAM ; fAMx (XnAM ), fAMy (Y nAM )) + ε,

∆Y ≥
1

nAM
I(Y nAM ; fAMx (XnAM ), fAMy (Y nAM ))− ε.

∆X ≥
1

nMA

I(XnMA ; fMA
x (XnMA), fMA

y (Y nMA))− ε,

∆Y ≤
1

nMA

I(Y nMA ; fMA
x (XnMA), fMA

y (Y nMA)) + ε,

∆X ≤
1

nAA
I(XnAA ; fAAx (XnAA), fAAy (Y nAA)) + ε,

∆Y ≤
1

nAA
I(Y nAA ; fAAx (XnAA), fAAy (Y nAA)) + ε.

Also, by taking fMM
x , fMM

y to be constants, we trivially have a (2nMMRx , 2nMMRy , nMM)

code satisfying

∆X ≥
1

nMM

I(XnMM ; fMM
x (XnMM ), fMM

y (Y nMM )),

∆Y ≥
1

nMM

I(Y nMM ; fMM
x (XnMM ), fMM

y (Y nMM )).

It is readily verified that, by an appropriate timesharing between these four codes, there

exists a (2nRx , 2nRy , n) code satisfying∣∣∣∣∆X −
1

n
I(Xn; fx(X

n), fy(Y
n))

∣∣∣∣ ≤ δ(ε), and∣∣∣∣∆Y −
1

n
I(Y n; fx(X

n), fy(Y
n))

∣∣∣∣ ≤ δ(ε).

This completes the proof of the theorem.

Remark 3. To conclude this section, we remark that in the state amplification and masking

problems considered in [KSC08] and [MS07], the authors obtain explicit characterizations of

the achievable regions when the channel state and noise are independent Gaussian random

variables. Presumably, this could also be accomplished in our setting using known results on

Gaussian multiterminal source coding, however, a compete investigation into this matter

is left to future work.
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2.7 Other Multiterminal Problems under Logarithmic Loss

In light of the fact that the CEO and multiterminal source coding problems admit solutions

under logarithmic loss, it is natural to ask whether other open source coding problems can

be solved when distortion is measured under logarithmic loss. It turns out that the answer

is affirmative, and we present two here which have particularly concise solutions. This is

by no means an exhaustive list of problems which can easily be solved under logarithmic

loss.

2.7.1 Multiple Description Coding

The multiple description problem for a discrete memoryless source X is depicted in Figure

2.8. Briefly, a (2nR1 , 2nR2 , n) multiple description code consists of two encoders:

g1 : Xn 7→M1 ∈ {1, . . . , 2nR1}

g2 : Xn 7→M2 ∈ {1, . . . , 2nR2},

and three decoders:

ψ0 : (M1,M2) 7→ X̂n
0

ψ1 : M1 7→ X̂n
1

ψ2 : M2 7→ X̂n
2 .

A rate distortion tuple (R1, R2, D0, D1, D2) is achievable if there exists a sequence of

(2nR1 , 2nR2 , n) codes satisfying

lim sup
n→∞

E
[
d(Xn, X̂n

j )
]
≤ Dj for j = 0, 1, 2.

Although a characterization of the achievable rate distortion region is unknown in

general6, it is readily described when distortion is measured under logarithmic loss.

6The reader is directed to [EK12, Chapter 13] for an introduction to known results for the multiple
description problem.
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1 , D1)
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2 , D2)
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0 , D0)

Decoder 0

Decoder 2

Encoder 1

Encoder 2

M1

M2

Figure 2.8: The multiple description coding network.

Theorem 14. For the multiple description problem, the achievable rate distortion region

under logarithmic loss consists of all tuples (R1, R2, D0, D1, D2) satisfying:

D1 ≥ [H(X)−R1]+

D2 ≥ [H(X)−R2]+

D0 ≥ [H(X)− (R1 +R2)]+ ,

where [x]+ = maxx, 0.

We remark that the achievable region coincides with the El Gamal-Cover Inner Bound

for multiple description coding (cf. [GC82,EK12]).

Proof. Converse Part. By Lemma 1, we have

nD1 ≥ H(Xn|M1) = H(Xn)− I(M1;Xn) ≥ nH(X)− nR1.

In a similar fashion, we can obtain the desired lower bounds on D2 and D0.

Direct Part. Let M1 be a lossless encoding of the first n1 = nR1/H(X) symbols of Xn.

By the lossless source coding theorem, this can be achieved with rate R1. Next, let M2 be

a lossless encoding of the last n2 = nR2/H(X) symbols of Xn. This can be achieved with

rate R2.
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(Ŷ n
1 , D1)

Y n
2(Ŷ n
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Ml+1(Y n

2 ,M
l)

Figure 2.9: Two-way lossy source coding.

This scheme allows decoder 1 to achieve distortion H(X) − R1, since zero distortion

is incurred for the first n1 symbols of Xn, and distortion H(X) is incurred (on average)

for the remaining (n − n1) symbols. By a similar argument, distortions H(X) − R2 and

[H(X)− (R1 +R2)]+ are achieved by decoders 2 and 0, respectively.

2.7.2 Two-Way Lossy Source Coding

The interactive source coding problem illustrated in Figure 2.9 is known as the Two-Way

Lossy Source Coding problem (cf. [EK12, Chapter 20]). As with the multiple description

problem, a characterization of the achievable rate distortion region for the two-way source

coding problem is not known in general.

Without loss of generality, we can assume that the communication takes place in rounds

l = 1, 2, . . . ,m, where Node 1 transmits during odd rounds, and Node 2 transmits during

even rounds. To be more specific, a (2nr1 , . . . , 2nrm , n) interactive coding scheme can be

described as follows:

• During round l, where l is odd, Node 1 sends a message Ml = Ml(Y
n

1 ,M
l−1) ∈

{1, . . . , 2nrl}. The notation Ml(Y
n

1 ,M
l−1) signifies that Ml can be a function of Y n

1

and all previous messages.

• During round l, where l is even, Node 2 sends a message Ml = Ml(Y
n

2 ,M
l−1) ∈

{1, . . . , 2nrl}. Again, the notation Ml(Y
n

2 ,M
l−1) signifies that Ml can be a function

of Y n
2 and all previous messages.
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• After round m concludes, Node 1 generates a reproduction sequence Ŷ n
2 as a function

of (Y n
1 ,M1, . . . ,Mm). Similarly, Node 2 generates a reproduction sequence Ŷ n

1 as a

function of (Y n
2 ,M1, . . . ,Mm).

A rate distortion tuple (R1, R2, D1, D2) is achievable if there exists a sequence of

(2nr1 , . . . , 2nrm , n) interactive coding schemes satisfying

m∑
l=1

l odd

rl ≤ R1

m∑
l=2

l even

rl ≤ R2

lim sup
n→∞

E
[
d(Y n

j , Ŷ
n
j )
]
≤ Dj for j = 1, 2.

Theorem 15. For the two-way lossy source coding problem, the achievable rate distortion

region under logarithmic loss consists of all tuples (R1, R2, D1, D2) satisfying:

R1 ≥ H(Y1|Y2)−D1

R2 ≥ H(Y2|Y1)−D2.

Proof. Converse Part. To see the converse, enhance Node 1 by providing it with additional

side information Y n
2 . Clearly, Node 1 does not require multiple transmission rounds in this

enhanced setting, since it can simulate any messages it would receive from Node 2 in

advance. Thus, let M1 = M1(Y n
1 , Y

n
2 ) be the message sent by Node 1. Now, Lemma 1

implies that

nD1 ≥ H(Y n
1 |M1, Y

n
2 ) = H(Y n

1 |Y n
2 )− I(Y n

1 ;M1|Y n
2 ) ≥ n(H(Y1|Y2)−R1)

for this enhanced setting. Therefore, it immediately follows that R1 ≥ H(Y1|Y2) − D1

for the two-way source coding problem. The inequality R2 ≥ H(Y2|Y1) −D2 follows by a

symmetric argument.

Direct Part. Achievability follows by letting each node perform Wyner-Ziv coding (no

interaction is required).

85



Remark 4. Theorem 15 is due to Yeow Khiang Chia [Chi12].

2.8 Concluding Remarks

One immediate direction for further work would be to extend our results on the multiter-

minal source coding problem to more than two encoders. For the CEO problem, our results

can be extended to an arbitrary number of encoders7. On the other hand, generalizing the

results for the two-encoder source coding problem with distortion constraints on Y1 and

Y2 poses a significant challenge. The obvious point of difficulty in the proof is extending

the tuning argument to higher dimensions so that it yields a distribution with the desired

properties. In fact, a “quick-fix” to the tuning argument alone would not be sufficient

since this would imply that the Berger-Tung inner bound is tight for more than two en-

coders. This is known to be false (even for the logarithmic loss distortion measure) since

the Berger-Tung achievability scheme is not optimal for the lossless modulo-sum problem

studied by Körner and Marton in [KM79].

Another potential direction would be to extend the multiple description result to m > 2

descriptions and 2m−1 decoders. Although the case form = 2 descriptions is readily solved,

the problem appears nontrivial for m > 2 descriptions.
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2.A Cardinality Bounds on Auxiliary Random Variables

In order to obtain tight cardinality bounds on the auxiliary random variables used through-

out this chapter, we refer to a recent result by Jana. In [Jan09], the author carefully applies

the Caratheodory-Fenchel-Eggleston theorem in order to obtain tight cardinality bounds

on the auxiliary random variables in the Berger-Tung inner bound. This result extends

the results and techniques employed by Gu and Effros for the Wyner-Ahlswede-Körner

problem [GE07], and by Gu, Jana, and Effros for the Wyner-Ziv problem [GJE08]. We

now state Jana’s result, appropriately modified for our purposes:

Consider an arbitrary joint distribution p(v, y1, . . . , ym) with random variables

V, Y1, . . . , Ym coming from alphabets V ,Y1, . . . ,Ym respectively.

Let dl : V × V̂l → R, 1 ≤ l ≤ L be arbitrary distortion measures defined for possibly

different reproduction alphabets V̂l.

Definition 12. Define A? to be the set of (m + L)-vectors (R1, . . . , Rm, D1, . . . , DL) sat-

isfying the following conditions:

1. auxiliary random variables U1, . . . , Um exist such that

∑
i∈I

Ri ≥ I(YI ;UI |UIc), for all I ⊆ {1, . . . ,m}, and

2. mappings ψl : U1 × · · · × Um → V̂l, 1 ≤ l ≤ L exist such that

Edl(V, ψl(U1, . . . , Um)) ≤ Dl

for some joint distribution

p(v, y1, . . . , ym)
m∏
j=1

p(uj|yj).

Lemma 6 (Lemma 2.2 from [Jan09]). Every extreme point of A? corresponds to some

choice of auxiliary variables U1, . . . , Um with alphabet sizes |Uj| ≤ |Yj|, 1 ≤ j ≤ m.
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In order to obtain the cardinality bounds for the CEO problem, we simply let L = 1,

V = X, and V̂1 = X̂ . Defining

d1(x, x̂) = log

(
1

x̂(x)

)
,

we see thatRD?CEO = conv (A?), where conv (A?) denotes the convex hull ofA?. Therefore,

Lemma 6 implies that all extreme points of RD?CEO are achieved with a choice of auxiliary

random variables U1, . . . , Um with alphabet sizes |Uj| ≤ |Yj|, 1 ≤ j ≤ m. By timesharing

between extreme points, any point in RD?CEO can be achieved for these alphabet sizes.

Obtaining the cardinality bounds for the multiterminal source coding problem proceeds

in a similar fashion. In particular, let L = m = 2, V = (Y1, Y2), and V̂j = Ŷj, j = 1, 2.

Defining

dj((y1, y2), ŷj) = log

(
1

ŷj(yj)

)
for j = 1, 2,

we see that RD? = conv (A?). In this case, Lemma 6 implies that all extreme points of

RD? are achieved with a choice of auxiliary random variables U1, U2 with alphabet sizes

|Uj| ≤ |Yj|, 1 ≤ j ≤ 2. By timesharing between extreme points, any point in RD? can be

achieved for these alphabet sizes.

In order to obtain cardinality bounds on the timesharing variable Q, we can apply

Caratheodory’s theorem (cf. [Wit80]). In particular, if C ⊂ Rn is compact, then any point

in conv(C) is a convex combination of at most n + 1 points of C. Taking C to be the

closure of the set of extreme points of A? is sufficient for our purposes (boundedness of C

can be dealt with by a standard truncation argument).

2.B Extension of CEO Results to m Encoders

In this appendix, we prove the generalization of Theorem 3 to m encoders, which essentially

amounts to extending Lemma 2 to the general case. We begin by stating the m-encoder

generalizations of Theorems 1 and 2, the proofs of which are trivial extensions of the proofs

given for the two-encoder case and are therefore omitted.
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Definition 13. Let Ri
CEO,m be the set of all (R1, . . . , Rm, D) satisfying∑

i∈I

Ri ≥ I(YI ;UI |UIc , Q) for all I ⊆ {1, . . . ,m}

D ≥ H(X|U1, . . . , Um, Q).

for some joint distribution p(q)p(x)
∏m

i=1 p(yi|x)p(ui|yi, q).

Theorem 16. All rate distortion vectors (R1, . . . , Rm, D) ∈ Ri
CEO,m are achievable.

Definition 14. Let Ro
CEO,m be the set of (R1, . . . , Rm, D) satisfying∑

i∈I

Ri ≥
∑
i∈I

I(Ui;Yi|X,Q) +H(X|UIc , Q)−D for all I ⊆ {1, . . . ,m} (2.90)

D ≥ H(X|U1, . . . , Um, Q). (2.91)

for some joint distribution p(q)p(x)
∏m

i=1 p(yi|x)p(ui|yi, q).

Theorem 17. If (R1, . . . , Rm, D) is strict-sense achievable, then

(R1, . . . , Rm, D) ∈ Ro
CEO,m.

Given the definitions of Ri
CEO,m and Ro

CEO,m, the generalization of Theorem 3 to m

encoders is an immediate consequence of the following lemma:

Lemma 7. Ro
CEO,m ⊆ Ri

CEO,m.

Proof. Suppose (R1, . . . , Rm, D) ∈ Ro
CEO,m, then by definition there exists p(q) and con-

ditional distributions {p(ui|yi, q)}mi=1 so that (2.90) and (2.91) are satisfied. For the

joint distribution corresponding to p(q) and conditional distributions p{(ui|yi, q)}mi=1, de-

fine PD ⊂ Rm to be the polytope defined by the inequalities (2.90). Now, to show

(R1, . . . , Rm, D) ∈ Ri
CEO,m, it suffices to show that each extreme point of PD is domi-

nated by a point in Ri
CEO,m that achieves distortion at most D.

To this end, define the set function f : 2[m] → R as follows:

f(I) := I(YI ;UI |UIc , Q)− (D −H(X|U1, . . . , Um, Q))

=
∑
i∈I

I(Ui;Yi|X,Q) +H(X|UIc , Q)−D.
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It can be verified that the function f and the function f+(I) = max{f(I), 0} are

supermodular functions (see Appendix 2.C). By construction, PD is equal to the set of

(R1, . . . , Rm) which satisfy:

∑
i∈I

Ri ≥ f+(I).

It follows by basic results in submodular optimization (see Appendix 2.C) that, for a

linear ordering i1 ≺ i2 ≺ · · · ≺ im of {1, . . . ,m}, an extreme point of PD can be greedily

computed as follows:

R̃ij = f+({i1, . . . , ij})− f+({i1, . . . , ij−1}) for j = 1, . . . ,m.

Furthermore, all extreme points of PD can be enumerated by looking over all linear order-

ings i1 ≺ i2 ≺ · · · ≺ im of {1, . . . ,m}. Each ordering of {1, . . . ,m} is analyzed in the same

manner, hence we assume (for notational simplicity) that the ordering we consider is the

natural ordering ij = j.

Let j be the first index for which R̃j > 0. Then, by construction,

R̃k = I(Uk;Yk|Uk+1, . . . , Um, Q) for all k > j.

Furthermore, we must have f({1, . . . , j′}) ≤ 0 for all j′ < j. Thus, R̃j can be expressed as

R̃j =

j∑
i=1

I(Yi;Ui|X,Q) +H(X|Uj+1, . . . , Um, Q)−D

= I(Yj;Uj|Uj+1, . . . , Um, Q) + f({1, . . . , j − 1})

= (1− θ)I(Yj;Uj|Uj+1, . . . , Um, Q),

where θ ∈ [0, 1) is defined as:

θ =
−f({1, . . . , j − 1})

I(Yj;Uj|Uj+1, . . . , Um, Q)

=
D −H(X|U1, . . . , Um, Q)− I(U1, . . . , Uj−1;Y1, . . . , Yj−1|Uj, . . . , Um, Q)

I(Yj;Uj|Uj+1, . . . , Um, Q)
.
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By the results of Theorem 16, the rates (R̃1, . . . , R̃m) permit the following coding

scheme: For a fraction (1− θ) of the time, a codebook can be used that allows the decoder

to recover Un
j , . . . , U

n
m with high probability. The other fraction θ of the time, a codebook

can be used that allows the decoder to recover Un
j+1, . . . , U

n
m with high probability. As

n→∞, this coding scheme can achieve distortion

D̃ = (1− θ)H(X|Uj, . . . , Um, Q) + θH(X|Uj+1, . . . , Um, Q)

= H(X|Uj, . . . , Um, Q) + θI(X;Uj|Uj+1, . . . , Um, Q)

= H(X|Uj, . . . , Um, Q) +
I(X;Uj|Uj+1, . . . , Um, Q)

I(Yj;Uj|Uj+1, . . . , Um, Q)
×

[D −H(X|U1, . . . , Um, Q)− I(U1, . . . , Uj−1;Y1, . . . , Yj−1|Uj, . . . , Um, Q)]

≤ H(X|Uj, . . . , Um, Q) +D −H(X|U1, . . . , Um, Q)

− I(U1, . . . , Uj−1;Y1, . . . , Yj−1|Uj, . . . , Um, Q) (2.92)

= D + I(X;U1, . . . Uj−1|Uj, . . . , Um, Q)

− I(U1, . . . , Uj−1;Y1, . . . , Yj−1|Uj, . . . , Um, Q)

= D − I(U1, . . . , Uj−1;Y1, . . . , Yj−1|X,Uj, . . . , Um, Q)

≤ D. (2.93)

In the preceding string of inequalities (2.92) follows since Uj is conditionally independent

of everything else given (Yj, Q), and (2.93) follows from the non-negativity of mutual

information.

Therefore, for every extreme point (R̃1, . . . , R̃m) of PD, the point

(R̃1, . . . , R̃m, D) lies in Ri
CEO,m. This proves the lemma.

Finally, we remark that the results of Appendix 2.A imply that it suffices to consider

auxiliary random variables U1, . . . , Um with alphabet sizes |Uj| ≤ |Yj|, 1 ≤ j ≤ m. The

timesharing variable Q requires an alphabet size bounded by |Q| ≤ m+ 2.
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2.C Supermodular Functions

In this appendix, we review some basic results in submodular optimization that were used

in Appendix 2.B to prove Lemma 7. We tailor our statements toward supermodularity,

since this is the property we require in Appendix 2.B.

We begin by defining a supermodular function.

Definition 15. Let E = {1, . . . , n} be a finite set. A function s : 2E → R is supermodular

if for all S, T ⊆ E

s(S) + s(T ) ≤ s(S ∩ T ) + s(S ∪ T ). (2.94)

One of the fundamental results in submodular optimization is that a greedy algorithm

minimizes a linear function over a supermodular polyhedron. By varying the linear function

to be minimized, all extreme points of the supermodular polyhedron can be enumerated. In

particular, define the supermodular polyhedron P(s) ⊂ Rn be the set of x ∈ Rn satisfying∑
i∈T

xi ≥ s(T ) for all T ⊆ E.

The following theorem provides an algorithm that enumerates the extreme points of P(s).

Theorem 18 (See [Sch03,Fuj10,McC05]). For a linear ordering e1 ≺ e2 ≺ · · · ≺ en of the

elements in E, Algorithm 2.C.1 returns an extreme point v of P(s). Moreover, all extreme

points of P(s) can be enumerated by considering all linear orderings of the elements of E.

Algorithm 2.C.1: Greedy(s, E,≺)

comment: Returns extreme point v of P(s) corresponding to the ordering ≺.

for i = 1, . . . n

Set vi = s({e1, e2, . . . , ei})− s({e1, e2, . . . , ei−1})
return (v)
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Proof. See [Sch03,Fuj10,McC05].

Theorem 18 is the key tool we employ to establish Lemma 7. In order to apply it, we

require the following lemma.

Lemma 8. For any joint distribution of the form p(q)p(x)
∏m

i=1 p(yi|x)p(ui|yi, q) and fixed

D ∈ R, define the set function f : 2[m] → R as:

f(I) := I(YI ;UI |UIc , Q)− (D −H(X|U1, . . . , Um, Q)) (2.95)

=
∑
i∈I

I(Ui;Yi|X,Q) +H(X|UIc , Q)−D,

and the corresponding non-negative set function f+ : 2[m] → R as f+ = max{f, 0}. The

functions f and f+ are supermodular.

Proof. In order to verify that f is supermodular, it suffices to check that the function

f ′(I) = I(YI ;UI |UIc , Q) is supermodular since the latter two terms in (2.95) are constant.

To this end, consider sets T, S ⊆ {1, . . . ,m} and observe that:

f ′(S) + f ′(T ) = I(YS;US|USc , Q) + I(YT ;UT |UT c , Q)

= H(US|USc , Q)−H(US|YS, Q) +H(UT |UT c , Q)−H(UT |YT , Q)

= H(US|USc , Q) +H(UT |UT c , Q)

−H(US∪T |YS∪T , Q)−H(US∩T |YS∩T , Q) (2.96)

= H(US\T |USc , Q) +H(US∩T |U(S∩T )c , Q) +H(UT |UT c , Q)

−H(US∪T |YS∪T , Q)−H(US∩T |YS∩T , Q) (2.97)

= H(US\T |USc , Q) +H(UT |UT c , Q)−H(US∪T |YS∪T , Q)

+ I(US∩T ;YS∩T |U(S∩T )c , Q)

≤ H(US\T |U(S∪T )c , Q) +H(UT |UT c , Q)−H(US∪T |YS∪T , Q)

+ I(US∩T ;YS∩T |U(S∩T )c , Q) (2.98)

= I(US∪T ;YS∪T |U(S∪T )c , Q) + I(US∩T ;YS∩T |U(S∩T )c , Q)

= f ′(S ∩ T ) + f ′(S ∪ T ).
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The labeled steps above can be justified as follows:

• (2.96) follows since Ui is conditionally independent of everything else given (Yi, Q).

• (2.97) is simply the chain rule.

• (2.98) follows since conditioning reduces entropy.

Next, we show that f+ = max{f, 0} is supermodular. Observe first that f is monotone

increasing, i.e., if S ⊂ T , then f(S) ≤ f(T ). Thus, fixing S, T ⊆ {1, . . . ,m}, we can

assume without loss of generality that

f(S ∩ T ) ≤ f(S) ≤ f(T ) ≤ f(S ∪ T ).

If f(S ∩ T ) ≥ 0, then (2.94) is satisfied for s = f+ by the supermodularity of f . On the

other hand, if f(S ∪ T ) ≤ 0, then (2.94) is a tautology for s = f+. Therefore, it suffices to

check the following three cases:

• Case 1: f(S ∩ T ) ≤ 0 ≤ f(S) ≤ f(T ) ≤ f(S ∪ T ). In this case, the supermodularity

of f and the fact that f+ ≥ f imply:

f+(S ∪ T ) + f+(S ∩ T ) ≥ f(S ∪ T ) + f(S ∩ T )

≥ f(S) + f(T ) = f+(S) + f+(T ).

• Case 2: f(S ∩ T ) ≤ f(S) ≤ 0 ≤ f(T ) ≤ f(S ∪ T ). Since f is monotone increasing,

we have:

f+(S ∪ T ) + f+(S ∩ T ) = f(S ∪ T ) + 0 ≥ f(T ) + 0 = f+(S) + f+(T ).

• Case 3: f(S ∩ T ) ≤ f(S) ≤ f(T ) ≤ 0 ≤ f(S ∪ T ). By definition of f+:

f+(S ∪ T ) + f+(S ∩ T ) = f(S ∪ T ) + 0 ≥ 0 + 0 = f+(S) + f+(T ).

Hence, f+ = max{f, 0} is supermodular.

94



2.D A Lemma for the Daily Double

For a given joint distribution p(y1, y2) on the finite alphabet Y1×Y2, let P(R1, R2) denote

the set of joint pmf’s of the form

p(q, y1, y2, u1, u2) = p(q)p(y1, y2)p(u1|y1, q)p(u1|y1, q)

which satisfy

R1 ≥ I(Y1;U1|U2, Q)

R2 ≥ I(Y2;U2|U1, Q)

R1 +R2 ≥ I(Y1, Y2;U1, U2|Q)

for given finite alphabets U1,U2,Q.

Lemma 9. For R1, R2 satisfying R1 ≤ H(Y1), R2 ≤ H(Y2), and R1 +R2 ≤ H(Y1, Y2), the

infimum

inf
p∈P(R1,R2)

{H(Y1|U1, U2, Q) +H(Y2|U1, U2, Q)}

is attained by some p∗ ∈ P(R1, R2) which satisfies R1 + R2 = I(Y1, Y2;U∗1 , U
∗
2 |Q∗), where

U∗1 , U
∗
2 , Q

∗ correspond to the auxiliary random variables defined by p∗.

Proof. First, note that the infimum is always attained since P(R1, R2) is compact and the

objective function is continuous on P(R1, R2). Therefore, let U∗1 , U
∗
2 , Q

∗ correspond to the

auxiliary random variables which attain the infimum.

If H(Y1|U∗1 , U∗2 , Q∗) + H(Y2|U∗1 , U∗2 , Q∗) = 0, then we must have

I(Y1, Y2;U∗1 , U
∗
2 |Q∗) = H(Y1, Y2). Thus, R1 +R2 = I(Y1, Y2;U∗1 , U

∗
2 |Q∗).

Next, consider the case where H(Y1|U∗1 , U∗2 , Q∗) + H(Y2|U∗1 , U∗2 , Q∗) > 0. Assume for

sake of contradiction that R1 +R2 > I(Y1, Y2;U∗1 , U
∗
2 |Q∗). For any p ∈ P(R1, R2):

I(Y1;U1|U2, Q) + I(Y2;U2|U1, Q) ≤ I(Y1, Y2;U1, U2|Q).
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Hence, at most one of the remaining rate constraints can be satisfied with equality. If none

of the rate constraints are satisfied with equality, then define

(Ũ1, Ũ2) =

 (U∗1 , U
∗
2 ) with probability 1− ε

(Y1, Y2) with probability ε.

For ε > 0 sufficiently small, the distribution p̃ corresponding to the auxiliary random

variables Ũ1, Ũ2, Q
∗ is still in P(R1, R2). However, p̃ satisfies

H(Y1|Ũ1, Ũ2, Q
∗) +H(Y2|Ũ1, Ũ2, Q

∗) < H(Y1|U∗1 , U∗2 , Q∗) +H(Y2|U∗1 , U∗2 , Q∗),

which contradicts the optimality of p∗.

Therefore, assume without loss of generality that

R1 = I(Y1;U∗1 |U∗2 , Q∗)

R1 +R2 > I(Y1, Y2;U∗1 , U
∗
2 |Q∗).

This implies that R2 > I(Y2;U∗2 |Q∗). Now, define

Ũ2 =

 U∗2 with probability 1− ε
Y2 with probability ε.

Note that for ε > 0 sufficiently small:

I(Y2;U∗2 |Q∗) < I(Y2; Ũ2|Q∗) < R2

I(Y1, Y2;U∗1 , U
∗
2 |Q∗) < I(Y1, Y2;U∗1 , Ũ2|Q∗) < R1 +R2,

and for any ε ∈ [0, 1]:

R1 = I(Y1;U∗1 |U∗2 , Q∗) ≥ I(Y1;U∗1 |Ũ2, Q
∗)

H(Y1|U∗1 , U∗2 , Q∗) +H(Y2|U∗1 , U∗2 , Q∗) ≥ H(Y1|U∗1 , Ũ2, Q
∗) +H(Y2|U∗1 , Ũ2, Q

∗). (2.99)

Since R2 ≤ H(Y2), as ε is increased from 0 to 1, at least one of the following must occur:

1. I(Y2; Ũ2|Q∗) = R2.
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2. I(Y1, Y2;U∗1 , Ũ2|Q∗) = R1 +R2.

3. I(Y1;U1|Ũ2, Q
∗) < R1.

If either of events 1 or 2 occur first then the sum-rate constraint is met with equality

(since they are equivalent in this case). If event 3 occurs first, then all rate constraints

are satisfied with strict inequality and we can apply the above argument to contradict

optimality of p∗. Since (2.99) shows that the objective is nonincreasing in ε, there must

exist a p̃ ∈ P(R1, R2) which attains the infimum and satisfies the sum-rate constraint with

equality.
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CHAPTER 3

Coded Cooperative Data Exchange

3.1 Introduction

Consider a connected network of n nodes that all wish to recover k desired packets. Each

node begins with a subset of the desired packets and broadcasts messages to its neighbors

over discrete, memoryless, and interference-free channels. Furthermore, every node knows

which packets are already known by each node and knows the topology of the network.

How many transmissions are required to disseminate the k packets to every node in the

network? How should this be accomplished? These are the essential questions addressed.

We refer to this as the Coded Cooperative Data Exchange problem, or just the Cooperative

Data Exchange problem.

This work is motivated in part by emerging issues in distributed data storage. Consider

the problem of backing up data on servers in a large data center. One commonly employed

method to protect data from corruption is replication. Using this method, large quantities

of data are replicated in several locations so as to protect from various sources of corruption

(e.g., equipment failure, power outages, natural disasters, etc.). As the quantity of infor-

mation in large data centers continues to increase, the number of file transfers required to

complete a periodic replication task is becoming an increasingly important consideration

due to time, equipment, cost, and energy constraints. The results presented in this chapter

address these issues.

This model also has natural applications in the context of tactical networks, and we
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give one of them here. Consider a scenario in which an aircraft flies over a group of nodes

on the ground and tries to deliver a video stream. Each ground node might only receive

a subset of the transmitted packets due to interference, obstructions, and other signal

integrity issues. In order to recover the transmission, the nodes are free to communicate

with their neighbors, but would like to minimize the number of transmissions in order to

conserve battery power (or avoid detection, etc.). How should the nodes share information,

and what is the minimum number of transmissions required so that the entire network can

recover the video stream?

Beyond the examples mentioned above, the results presented herein can also be applied

to practical secrecy generation amongst a collection of nodes. We consider this application

in detail in Section 3.4.

3.1.1 Related Work

Distributed data exchange problems have received a great deal of attention over the past

several years. The powerful techniques afforded by network coding [ACR00,RMY03] have

paved the way for cooperative communications at the packet-level.

The coded cooperative data exchange problem (also called the universal recovery

problem in [CXW10, CW10, CW11b]) was originally introduced by El Rouayheb et al.

in [ECS07,ESS10] for a fully connected network (i.e., a single-hop network). For this spe-

cial case, a randomized algorithm for finding an optimal transmission scheme was given

in [SSB10b], and the first deterministic algorithm was recently given in [SSB10a]. In the

concluding remarks of [SSB10a], the weighted universal recovery problem (in which the

objective is to minimize the weighted sum of transmissions by nodes) was posed as an

open problem. However, this was solved using a variant of the same algorithm in [OS11],

and independently by the present authors using a submodular algorithm in [CW11b].

The coded cooperative data exchange problem is related to the index coding problem

originally introduced by Birk and Kol in [BK06]. Specifically, generalizing the index coding
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problem to permit each node to be a transmitter (instead of having a single server) and

further generalizing so that the network need not be a single hop network leads to a class of

problems that includes our problem as a special case in which each node desires to receive

all packets.

One significant result in index coding is that nonlinear index coding outperforms the

best linear index code in certain cases [LS09,ALS08]. As discussed above, our problem is a

special case of the generalized index coding problem, and it turns out that linear encoding

does achieve the minimum number of transmissions required for universal recovery and

this solution is computable in polynomial time for some important cases.

In this chapter, we apply principles of cooperative data exchange to generate secrecy

in the presence of an eavesdropper. In this context, the secrecy generation problem was

originally studied in [CN04]. In [CN04], Csiszar and Narayan gave single-letter character-

izations of the secret-key and private-key capacities for a network of nodes connected by

an error-free broadcast channel. While general and powerful, these results left two prac-

tical issues as open questions. First, (as with many information-theoretic investigations)

the results require the nodes to observe arbitrarily long sequences of i.i.d. source symbols,

which is generally not practical. Second, no efficient algorithm is provided in [CN04] which

achieves the respective secrecy capacities. More recent work in [YN05, YR10] addressed

the latter point.

3.1.2 Our Contributions

We provide necessary and sufficient conditions for achieving universal recovery1 in arbitrar-

ily connected multihop networks. We specialize these necessary and sufficient conditions

to obtain precise results in the case where the underlying network topology satisfies some

modest regularity conditions.

1In this chapter, we use the term universal recovery to refer to the ultimate condition where every node
has successfully recovered all packets.

100



For the case of a fully connected network, we provide an algorithm based on submodular

optimization which solves the cooperative data exchange problem. This algorithm is unique

from the others previously appearing in the literature (cf. [SSB10b,SSB10a,OS11]) in that

it exploits submodularity. As a corollary, we provide exact concentration results when

packets are randomly distributed in a network.

In this same vein, we also obtain tight concentration results and approximate solutions

when the underlying network is d-regular and packets are distributed randomly.

Furthermore, if packets are divisible (allowing transmissions to consist of partial pack-

ets), we prove that the traditional cut-set bounds can be achieved for any network topology.

In the case of d-regular and fully connected networks, we show that splitting packets does

not typically provide any significant benefits.

Finally, for the application to secrecy generation, we leverage the results of [CN04]

in the context of the cooperative data exchange problem for a fully connected network.

In doing so, we provide an efficient algorithm that achieves the secrecy capacity without

requiring any quantities to grow asymptotically large.

3.1.3 Organization

This chapter is organized as follows. Section 3.2 formally introduces the problem and

provides basic definitions and notation. Section 3.3 presents our main results. Section 3.4

discusses the application of our results to secrecy generation by a collection of nodes in the

presence of an eavesdropper. Section 3.5 contains the relevant proofs. Section 3.6 delivers

the conclusions and discusses directions for future work.

3.2 System Model and Definitions

Before we formally introduce the problem, we establish some notation. Let N = 0, 1, 2, . . .

denote the set of natural numbers. For two sets A and B, the relation A ⊂ B implies that
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A is a proper subset of B (i.e., A ⊆ B and A 6= B). For a set A, the corresponding power

set is denoted 2A := {B : B ⊆ A}. We use the notation [m] to denote the set {1, . . . ,m}.

This chapter considers a network of n nodes. The network must be connected, but it

need not be fully connected (i.e., it need not be a complete graph). A graph G = (V,E)

describes the specific connections in the network, where V is the set of vertices {vi : i ∈
{1, . . . , n}} (each corresponding to a node) and E is the set of edges connecting nodes. We

assume that the edges in E are undirected, but our results can be extended to directed

graphs.

Each node wishes to recover the same k desired packets, and each node begins with

a (possibly empty) subset of the desired packets. Formally, let Pi ⊆ {p1, . . . , pk} be the

(indexed) set of packets originally available at node i, and {Pi}ni=1 satisfies
⋃n
i=1 Pi =

{p1, . . . , pk}. Each pj ∈ F, where F is some finite field (e.g. F = GF(2m)). For our

purposes, it suffices to assume |F| ≥ 2n. The set of packets initially missing at node i is

denoted P c
i := {p1, . . . , pk}\Pi.

Throughout this chapter, we assume that each packet pi ∈ {p1, . . . , pk} is equally likely

to be any element of F. Moreover, we assume that packets are independent of one another.

Thus, no correlation between different packets or prior knowledge about unknown packets

can be exploited.

To simplify notation, we will refer to a given problem instance (i.e., a graph and corre-

sponding sets of packets available at each node) as a network T = {G, P1, . . . , Pn}. When

no ambiguity is present, we will refer to a network by T and omit the implicit dependence

on the parameters {G, P1, . . . , Pn}.

Let the set Γ(i) be the neighborhood of node i. There exists an edge e ∈ E connecting

two vertices vi, vj ∈ V iff i ∈ Γ(j). For convenience, we put i ∈ Γ(i). Node i sends

(possibly coded) packets to its neighbors Γ(i) over discrete, memoryless, and interference-

free channels. In other words, if node i transmits a message, then every node in Γ(i)

receives that message. If S is a set of nodes, then we define Γ(S) = ∪i∈SΓ(i). In a similar
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Γ(S)

S

Figure 3.1: For the given graph, a set of vertices S and its neighborhood Γ(S) are depicted.

The set ∂(S) (i.e., the boundary of S) consists of the four vertices in Γ(S) which are not

in S.

manner, we define ∂(S) = Γ(S)\S to be the boundary of the vertices in S. An example of

sets S, Γ(S), and ∂(S) is given in Figure 3.1.

We seek to determine the minimum number of transmissions required to achieve univer-

sal recovery (when every node has learned all k packets). We primarily consider the case

where packets are deemed indivisible. In this case, a single transmission by user i consists

of sending a packet (some z ∈ F) to all nodes j ∈ Γ(i). This motivates the following

definition.

Definition 16. Given a network T , the minimum number of transmissions required to

achieve universal recovery is denoted M∗(T ).

To clarify this concept, we briefly consider two examples:

Example 3 (Line Network). Suppose T is a network of nodes connected along a line as

follows: V = {v1, v2, v3}, E = {(v1, v2), (v2, v3)}, P1 = {p1}, P2 = ∅, and P3 = {p2}. Note

that each node must transmit at least once in order for all nodes to recover {p1, p2}, hence

M∗(T ) ≥ 3. Suppose node 1 transmits p1 and node 3 transmits p2. Then (upon receipt of

p1 and p2 from nodes 1 and 3, respectively) node 2 transmits p1 ⊕ p2, where ⊕ indicates

addition in the finite field F. This strategy requires 3 transmissions and allows each user

to recover {p1, p2}. Hence M∗(T ) = 3.
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p1 p2

p1 p2

p1 p2

p1 ⊕ p2

p1, p2

Node 1 Node 2 Node 3

Node 1 Node 2 Node 3

Time Instant 1:

Time Instant 2:

Figure 3.2: An illustration of the transmission scheme employed in Example 3. During

the first time instant, Nodes 1 and 3 broadcast packets p1 and p2, respectively. During

the second time instant, Node 2 broadcasts the XOR of packets p1 and p2. This scheme

requires three transmissions and achieves universal recovery.

Example 3 demonstrates a transmission schedule that uses two rounds of communica-

tion. The transmissions by node i in a particular round of communication can depend only

on the information available to node i prior to that round (i.e. Pi and previously received

transmissions from neighboring nodes). In other words, the transmissions are causal. The

transmission scheme employed in Example 3 is illustrated in Figure 3.2.

Example 4 (Fully Connected Network). Suppose T is a 3-node fully connected network

in which G is a complete graph on 3 vertices, and Pi = {p1, p2, p3}\pi. Clearly one trans-

mission is not sufficient, thus M∗(T ) ≥ 2. It can be seen that two transmissions suffice:

let node 1 transmit p2 which lets node 2 have P2 ∪ p2 = {p1, p2, p3}. Now, node 2 transmits

p1 ⊕ p3, allowing nodes 1 and 3 to each recover all three packets. Thus M∗(T ) = 2. Since

each transmission was only a function of the packets originally available at the correspond-

ing node, this transmission strategy can be accomplished in a single round of communica-
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tion.

In the above examples, we notice that the transmission schemes are partially charac-

terized by a schedule of which nodes transmit during which round of communication. We

formalize this notion with the following definition:

Definition 17 (Transmission Schedule). A set of integers {bji : i ∈ [n], j ∈ [r], bji ∈ N} is

called a transmission schedule for r rounds of communication if node i makes exactly bji

transmissions during communication round j.

When the parameters n and r are clear from context, a transmission schedule will be

denoted by the shorthand notation {bji}. Although finding a transmission schedule that

achieves universal recovery is relatively easy (e.g., each node transmits all packets in their

possession at each time instant), finding one that achieves universal recovery with M∗(T )

transmissions can be extremely difficult. This is demonstrated by the following example:

Example 5 (Optimal Cooperative Data Exchange is NP-Hard.). Suppose T is a network

with k = 1 corresponding to a bipartite graph with left and right vertex sets VL and VR

respectively. Let Pi = p1 for each i ∈ VL, and let Pi = ∅ for each i ∈ VR. In this case,

M∗(T ) is given by the minimum number of sets in {Γ(i)}i∈VL which cover all vertices in

VR. Thus, finding M∗(T ) is at least as hard as the Minimum Set Cover problem, which is

NP-complete [Kar72].

Several of our results are stated in the context of randomly distributed packets. Assume

0 < q < 1 is given. Our model is essentially that each packet is available independently

at each node with probability q. However, we must condition on the event that each

packet is available to at least one node. Thus, when packets are randomly distributed, the

underlying probability measure is given by

Pr

[
pi ∈

⋃
j∈S

Pj

]
=

1− (1− q)|S|
1− (1− q)n (3.1)
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S0

S2

S1

Figure 3.3: An example of a sequence (S0, S1, S2) ∈ S(2)(G) for a particular choice of graph

G.

for all i ∈ [k] and all nonempty S ⊆ V = [n].

Finally, we introduce one more definition which links the network topology with the

number of communication rounds, r.

Definition 18. For a graph G = (V,E) on n vertices, define S(r)(G) ⊂ (2V )r+1 as follows:

(S0, S1, . . . , Sr) ∈ S(r)(G) if and only if the sets {Si}ri=0 satisfy the following two conditions:

∅ ⊂ Si ⊂ V for each 0 ≤ i ≤ r, and

Si−1 ⊆ Si ⊆ Γ(Si−1) for each 1 ≤ i ≤ r.

In words, any element in S(r)(G) is a nested sequence of subsets of vertices of G. More-

over, the constraint that each set in the sequence is contained in its predecessor’s neigh-

borhood implies that the sets cannot expand too quickly relative to the topology of G.

To make the definition of S(r)(G) more concrete, we have illustrated a sequence

(S0, S1, S2) ∈ S(2)(G) for a particular choice of graph G in Figure 3.3.

3.3 Main Results

In this section, we present our main results. Proofs are delayed until Section 3.5.
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3.3.1 Necessary and Sufficient Conditions for Universal Recovery

First, we provide necessary and sufficient conditions for achieving universal recovery in

a network T . It turns out that these conditions are characterized by a particular set of

transmission schedules Rr(T ) which we define as follows:

Definition 19. For a network T = {G, P1, . . . , Pn}, define the region Rr(T ) ⊆ Nn×r to be

the set of all transmission schedules {bji} satisfying:

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

b
(r+1−j)
i ≥

∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣ for each (S0, . . . , Sr) ∈ S(r)(G).

Theorem 19. For a network T , a transmission schedule {bji} permits universal recovery

in r rounds of communication if and only if {bji} ∈ Rr(T ).

Theorem 19 reveals that the set of transmission schedules permitting universal recovery

is characterized precisely by the region Rr(T ). In fact, given a transmission schedule in

Rr(T ), a corresponding coding scheme that achieves universal recovery can be computed

in polynomial time using the algorithm in [JSC05] applied to the network coding graph

discussed in the proof of Theorem 19. Alternatively, one could employ random linear

network coding over a sufficiently large field size [HMK06]. If transmissions are made in a

manner consistent with a schedule in Rr(T ), universal recovery will be achieved with high

probability.

Thus, the problem of achieving universal recovery with the minimum number of trans-

missions reduces to solving a combinatorial optimization problem over Rr(T ). As this

problem was shown to be NP-hard in Example 5, we do not attempt to solve it in its most

general form. Instead, we apply Theorem 19 to obtain surprisingly simple characterizations

for several cases of interest.

Before proceeding, we provide a quick example showing how the traditional cut-set

bounds can be recovered from Theorem 19.
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Example 6 (Cut-Set Bounds). Considering the constraint defining Rr(T ) in which the

nested subsets that form S(r)(G) are all identical. That is, (S, S, . . . , S) ∈ S(r)(G) for some

nonempty S ⊂ V . We see that any transmission schedule {bji} ∈ Rr(T ) must satisfy the

familiar cut-set bounds:

r∑
j=1

∑
i∈∂(S)

bji ≥
∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ . (3.2)

In words, the total number of packets that flow into the set of nodes S must be greater than

or equal to the number of packets that the nodes in S are collectively missing.

3.3.2 Fully Connected Networks

When T is a fully connected network, the graph G is a complete graph on n vertices. This

is perhaps one of the most practically important cases to consider. For example, in a wired

computer network, clients can multicast their messages to all other terminals which are

cooperatively exchanging data. In wireless networks, broadcast is a natural transmission

mode. Indeed, there are protocols tailored specifically to wireless networks which support

reliable network-wide broadcast capabilities (cf. [HCP10, HC10, HH10, BBC08]). It is for-

tunate then, that the cooperative data exchange problem can be solved in polynomial time

for fully connected networks:

Theorem 20. For a fully connected network T , a transmission schedule requiring only

M∗(T ) transmissions can be computed in polynomial time. Necessary and sufficient condi-

tions for universal recovery in this case are given by the cut-set constraints (3.2). Moreover,

a single round of communication is sufficient to achieve universal recovery with M∗(T )

transmissions.

For the fully connected network in Example 4, we remarked that only one round of

transmission was required. Theorem 20 states that this trend extends to any fully connected

network.
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An algorithm for solving the cooperative data exchange problem for fully connected

networks is presented in Appendix 3.A. We remark that the algorithm is sufficiently

general that it can also solve the cooperative data exchange problem where the objective

is to minimize the weighted sum of nodes’ transmissions.

Although Theorem 20 applies to arbitrary sets of packets P1, . . . , Pn, it is insightful to

consider the case where packets are randomly distributed in the network. In this case, the

minimum number of transmissions required for universal recovery converges in probability

to a simple function of the (random) sets P1, . . . , Pn.

Theorem 21. If T is a fully connected network and packets are randomly distributed, then

M∗(T ) =

⌈
1

n− 1

n∑
i=1

|P c
i |
⌉
.

with probability approaching 1 as the number of packets k →∞.

3.3.3 d-Regular Networks

Given that precise results can be obtained for fully connected networks, it is natural to ask

whether these results can be extended to a larger class of networks which includes fully

connected networks as a special case. In this section, we partially answer this question in

the affirmative. To this end, we define d-regular networks.

Definition 20 (d-Regular Networks). A network T is said to be d-regular if ∂(i) = d for

each i ∈ V and ∂(S) ≥ d for each nonempty S ⊂ V with |S| ≤ n − d. In other words, a

network T is d-regular if the associated graph G is d-regular and d-vertex-connected.

Immediately, we see that the class of d-regular networks includes fully connected net-

works as a special case with d = n − 1. Further, the class of d-regular networks includes

many frequently studied network topologies (e.g., cycles, grids on tori, etc.).

Unfortunately, the deterministic algorithm of Theorem 20 does not appear to extend to

d-regular networks. However, a slightly weaker concentration result similar to Theorem 21

109



can be obtained when packets are randomly distributed. Before stating this result, consider

the following Linear Program (LP) with variable vector x ∈ Rn defined for a network T :

minimize
n∑
i=1

xi (3.3)

subject to:
∑
i∈∂(j)

xi ≥
∣∣P c

j

∣∣ for each j ∈ V . (3.4)

Let MLP (T ) denote the optimal value of this LP. Interpreting xi as
∑

j b
j
i , the constraints

in the LP are a subset of the cut-set constraints of (3.2) which are a subset of the nec-

essary constraints for universal recovery given in Theorem 19. Furthermore, the integer

constraints on the xi’s are relaxed. Thus MLP (T ) certainly bounds M∗(T ) from below.

Surprisingly, if T is a d-regular network and the packets are randomly distributed, M∗(T )

is very close to this lower bound with high probability:

Theorem 22. If T is a d-regular network and the packets are randomly distributed, then

M∗(T ) < MLP (T ) + n

with probability approaching 1 as the number of packets k →∞.

We make two important observations. First, the length of the interval in which M∗(T )

is concentrated is independent of k. Hence, even though the number of packets k may be

extremely large, M∗(T ) can be estimated accurately. Second, as k grows large, M∗(T ) is

dominated by the local topology of T . This is readily seen since the constraints defining

MLP (T ) correspond only to nodes’ immediate neighborhoods. The importance of the local

neighborhood was also seen in [RSW05] where network coding capacity for certain random

networks is shown to concentrate around the expected number of nearest neighbors of the

source and the terminals.

3.3.4 Large (Divisible) Packets

We now return to general networks with arbitrarily distributed packets. However, we now

consider the case where packets are “large” and can be divided into several smaller pieces
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(e.g., packets actually correspond to large files). To formalize this, assume that each packet

can be partitioned into t chunks of equal size, and transmissions can consist of a single

chunk (as opposed to an entire packet). In this case, we say the packets are t-divisible. To

illustrate this point more clearly, we return to Example 4, this time considering 2-divisible

packets.

Example 7 (2-Divisible Packets). Let T be the network of Example 4 and split each packet

into two halves: pi → (p
(1)
i , p

(2)
i ). Denote this new network T ′ with corresponding sets of

packets:

P ′i = {p(1)
1 , p

(2)
1 p

(1)
2 , p

(2)
2 , p

(1)
3 , p

(2)
3 }\{p(1)

i , p
(2)
i }.

Three chunk transmissions allow universal recovery as follows: Node 1 transmits p
(2)
2 ⊕p(2)

3 .

Node 2 transmits p
(1)
1 ⊕ p(1)

3 . Node 3 transmits p
(2)
1 ⊕ p(1)

2 . It is readily verified from (3.2)

that 3 chunk-transmissions are required to permit universal recovery. Thus, M∗(T ′) = 3.

Hence, if we were allowed to split the packets of Example 4 into two halves, it would suffice

to transmit 3 chunks. Normalizing the number of transmissions by the number of chunks

per packet, we say that universal recovery can be achieved with 1.5 packet transmissions.

Motivated by this example, define M∗
t (T ) to be the minimum number of (normalized)

packet-transmissions required to achieve universal recovery in the network T when packets

are t-divisible. For the network T in Example 4, we saw above that M∗
2 (T ) = 1.5.

It turns out, if packets are t-divisible and t is large, the cut-set bounds (3.2) are “nearly

sufficient” for achieving universal recovery. To see this, let Mcut-set(T ) be the optimal

value of the LP:

minimize
n∑
i=1

xi (3.5)

subject to:
∑
i∈∂(S)

xi ≥
∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ for each nonempty S ⊂ V . (3.6)

Clearly Mcut-set(T ) ≤M∗
t (T ) for any network T with t-divisible packets because the LP

producing Mcut-set(T ) relaxes the integer constraints and is constrained only by (3.2)
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rather than the full set of constraints given in Theorem 19. However, there exist transmis-

sion schedules which can approach this lower bound. Stated more precisely:

Theorem 23. For any network T , the minimum number of (normalized) packet-

transmissions required to achieve universal recovery with t-divisible packets satisfies

lim
t→∞

M∗
t (T ) = Mcut-set(T ).

Precisely how large t is required to be in order to approach Mcut-set(T ) within a

specified tolerance is not clear for general networks. However, an immediate consequence

of Theorem 21 is that t = n−1 is sufficient to achieve this lower bound with high probability

when packets are randomly distributed in a fully connected network.

Finally, we remark that it is a simple exercise to construct examples where the cut-set

bounds alone are not sufficient to characterize transmission schedules permitting universal

recovery when packets are not divisible (e.g., a 4-node line network with packets p1 and p2

at the left-most and right-most nodes, respectively). Thus, t-divisibility of packets provides

the additional degrees of freedom necessary to approach the cut-set bounds more closely.

3.3.5 Remarks

One interesting consequence of our results is that splitting packets does not significantly

reduce the required number of packet-transmissions for many scenarios. Indeed, at most

one transmission can be saved if the network is fully connected (under any distribution of

packets). If the network is d-regular, we can expect to save fewer than n transmissions if

packets are randomly distributed (in fact, at most one transmission per node). It seems

possible that this result could be strengthened to include arbitrary distributions of packets

in d-regular networks (as opposed to randomly distributed packets), but a proof has not

been found.

The limited value of dividing packets has practical ramifications since there is usually

some additional communication overhead associated with dividing packets (e.g. additional
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headers, etc. for each transmitted chunk are required). Thus, if the packets are very

large, say each packet is a video file, our results imply that entire coded packets can be

transmitted without significant loss, avoiding any additional overhead incurred by dividing

packets.

3.4 An Application: Secrecy Generation

In this section, we consider the setup of the cooperative data exchange problem for a fully

connected network T , but we consider a different goal. In particular, we wish to generate

a secret-key among the nodes that cannot be derived by an eavesdropper privy to all of the

transmissions among nodes. Also, like the nodes themselves, the eavesdropper is assumed

to know the indices of the packets initially available to each node. The goal is to generate

the maximum amount of “secrecy” that cannot be determined by the eavesdropper.

The theory behind secrecy generation among multiple terminals was originally estab-

lished in [CN04] for a very general class of problems. Our results should be interpreted as

a practical application of the theory originally developed in [CN04]. Indeed, our results

and proofs are special cases of those in [CN04] which have been streamlined to deal with

the scenario under consideration. The aim of the present section is to show how secrecy

can be generated in a practical scenario. In particular, we show that it is possible to effi-

ciently generate the maximum amount of secrecy (as established in [CN04] ) among nodes

in a fully connected network T = {G, P1, . . . , Pn}. Moreover, we show that this is possible

in the non-asymptotic regime (i.e., there are no ε’s and we don’t require the number of

packets or nodes to grow arbitrarily large). Finally, we note that it is possible to generate

perfect secrecy instead of ε-secrecy without any sacrifice.
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3.4.1 Practical Secrecy Results

In this subsection, we state two results on secrecy generation. Proofs are again postponed

until Section 3.5. We begin with some definitions2. Let F denote the set of all transmissions

(all of which are available to the eavesdropper by definition). A function K of the packets

{p1, . . . , pk} in the network is called a secret key (SK) if K is recoverable by all nodes after

observing F, and it satisfies the (perfect) secrecy condition

I(K; F) = 0, (3.7)

and the uniformity condition

Pr (K = key) =
1

|K| for all key ∈ K, (3.8)

where K is the alphabet of possible keys.

We define CSK(P1, . . . , Pn) to be the secret-key capacity for a particular distribution

of packets. We will drop the notational dependence on P1, . . . , Pn where it doesn’t cause

confusion. By this we mean that a secret-key K can be generated if and only if K = FCSK .

In other words, the nodes can generate at most CSK packets worth of secret-key. Our first

result of this section is the following:

Theorem 24. The secret-key capacity is given by: CSK(P1, . . . , Pn) = k −M∗(T ).

Next, consider the related problem where a subset D ⊂ V of nodes is compromised.

In this problem, the eavesdropper has access to F and Pi for i ∈ D. In this case, the

secret-key should also be kept hidden from the nodes in D (or else the eavesdropper could

also recover it). Thus, for a subset of nodes D, let PD =
⋃
i∈D Pi, and call K a private-key

(PK) if it is a secret-key which is only recoverable by the nodes in V \D, and also satisfies

the stronger secrecy condition:

I(K; F, PD) = 0. (3.9)

2We attempt to follow the notation of [CN04] where appropriate.
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Similar to above, define CPK(P1, . . . , Pn, D) to be the private-key capacity for a particular

distribution of packets and subset of nodes D. Again, we mean that a private-key K can

be generated if and only if K = FCPK . In other words, the nodes in V \D can generate at

most CPK packets worth of private-key. Note that, since PD is known to the eavesdropper,

each node i ∈ D can transmit its respective set of packets Pi without any loss of secrecy

capacity.

Define a new network TD = {GD, {P (D)
i }i∈V \D} as follows. Let GD be the complete

graph on V \D, and let P
(D)
i = Pi\PD for each i ∈ V \D. Thus, TD is a fully connected

network with n− |D| nodes and k − |PD| packets. Our second result of this section is the

following:

Theorem 25. The private-key capacity is given by:

CPK(P1, . . . , Pn, D) = (k − |PD|)−M∗(TD).

The basic idea for private-key generation is that the users in V \D should generate a

secret-key from {p1, . . . , pk}\PD.

By the definitions of the SK and PK capacities, Theorem 20 implies that it is possible

to compute these capacities efficiently. Moreover, as we will see in the achievability proofs,

these capacities can be achieved by performing coded cooperative data exchange amongst

the nodes. Thus, the algorithm developed in Appendix 3.A combined with the algorithm

in [JSC05] can be employed to efficiently solve the secrecy generation problem we consider.

We conclude this subsection with an example to illustrate the results.

Example 8. Consider again the network of Example 4 and assume F = {0, 1} (i.e., each

packet is a single bit). The secret-key capacity for this network is 1 bit. After performing

universal recovery, the eavesdropper knows p2 and the parity p1 ⊕ p3. A perfect secret-key

is K = p1 (we could alternatively use K = p3). If any of the nodes are compromised by the

eavesdropper, the private-key capacity is 0.
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We remark that the secret-key in the above example can in fact be attained by all

nodes using only one transmission (i.e., universal recovery is not a prerequisite for secret-

key generation). However, it remains true that only one bit of secrecy can be generated.

3.5 Proofs of Main Results

3.5.1 Necessary and Sufficient Conditions for Universal Recovery

Proof of Theorem 19. This proof is accomplished by reducing the problem at hand to an

instance of a single-source network coding problem and invoking the Max-Flow Min-Cut

Theorem for network information flow [ACR00].

First, fix the number of communication rounds r to be large enough to permit universal

recovery. For a network T , construct the network-coding graph GNC = (VNC , ENC) as

follows. The vertex set, VNC is defined as:

VNC = {s, u1, . . . , uk} ∪
r⋃
j=0

{vj1, . . . , vjn} ∪
r⋃
j=1

{wj1, . . . , wjn}.

The edge set, ENC , consists of directed edges and is constructed as follows:

• For each i ∈ [k], there is an edge of unit capacity3 from s to ui.

• If pi ∈ Pj, then there is an edge of infinite capacity from ui to v0
j .

• For each j ∈ [r] and each i ∈ [n], there is an edge of infinite capacity from vj−1
i to vji .

• For each j ∈ [r] and each i ∈ [n], there is an edge of capacity bji from vj−1
i to wji .

• For each j ∈ [r] and each i ∈ [n], there is an edge of infinite capacity from wji to vji′

iff i′ ∈ Γ(i).

The interpretation of this graph is as follows: the vertex ui is introduced to represent

packet pi, the vertex vji represents node i after the jth round of communication, and the

3An edge of unit capacity can carry one field element z ∈ F per unit time.
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Figure 3.4: The graph GNC corresponding to the line network of Example 3. Edges repre-

sented by broken lines have infinite capacity. Edges with finite capacities are labeled with

the corresponding capacity value.
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vertex wji represents the broadcast of node i during the jth round of communication. If the

bji ’s are chosen such that the graph GNC admits a network coding solution which supports

a multicast of k units from s to {vr1, . . . , vrn}, then this network coding solution also solves

the universal recovery problem for the network T when node i is allowed to make at most

bji transmissions during the jth round of communication. The graph GNC corresponding to

the line network of Example 3 is given in Figure 3.4.

We now formally prove the equivalence of the network coding problem on GNC and the

universal recovery problem defined by T .

Suppose a set of encoding functions {f ji } and a set decoding functions {φi} describe

a transmission strategy which solves the universal recovery problem for a network T in r

rounds of communication. Let bji be the number of transmissions made by node i during

the jth round of communication, and let Iji be all the information known to node i prior to

the jth round of communication (e.g. I1
i = Pi). The function f ji is the encoding function

for user i during the jth round of communication (i.e. f ji (Iji ) ∈ Fb
j
i ), and the decoding

functions satisfy:

φi
(
Iri ,∪i′∈Γ(i){f ri′(Iri′)}

)
= {p1, . . . , pk}.

Note that, given the encoding functions and the Pi’s, the Iji ’s can be defined recursively

as:

Ij+1
i = Iji ∪

⋃
i′∈Γ(i)

{f ji′(Iji′)}.

The functions {f ji } and {φi} can be used to generate a network coding solution which

supports k units of flow from s to {vr1, . . . , vrn} on GNC as follows:

For each vertex v ∈ VNC , let IN(v) be whatever v receives on its incoming edges. Let

gv be the encoding function at vertex v, and gv(e, IN(v)) be the encoded message which

vertex v sends along e (e is an outgoing edge from v).

If e is an edge of infinite capacity emanating from v, let gv(e, IN(v)) = IN(v).
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Let s send pi along edge (s, ui). At this point, we have IN(v0
i ) = Pi = I1

i . For

each i ∈ [n], let gv0i ((v0
i , w

1
i ), IN(v0

i )) = f 1
i (I1

i ). By a simple inductive argument, defining

the encoding functions gvji
((vji , w

j+1
i ), IN(vji )) to be equal to f j+1

i yields the result that

IN(vri ) =
(
Iri ,∪i′∈Γ(i){f ri′(Iri′)}

)
. Hence, the decoding function φi can be used at vri to allow

error-free reconstruction of the k-unit flow.

The equivalence argument is completed by showing that a network coding solution

which supports a k-unit multicast flow from s to {vr1, . . . , vrn} on GNC also solves the

universal recovery problem on T . This is argued in a similar manner as above, and is

therefore omitted.

Since we have shown that the universal recovery problem on T is equivalent to a

network coding problem on GNC , the celebrated max-flow min-cut result of Ahlswede

et. al [ACR00] is applicable. In particular, a fixed vector {bji} admits a solution to the

universal recovery problem where node i makes at most bji transmissions during the jth

round of communication if and only if any cut separating s from some vri in GNC has

capacity at least k.

What remains to be shown is that the inequalities defining Rr(T ) are satisfied if and

only if any cut separating s from some vri in GNC has capacity at least k.

To this end, suppose we have a cut (S, Sc) satisfying s ∈ Sc and vri ∈ S for some i ∈ [n].

We will modify the cut (S, Sc) to produce a new cut (S ′, S ′c) with capacity less than or

equal to the capacity of the original cut (S, Sc).

Define the set S0 ⊆ [n] as follows: i ∈ S0 iff vri ∈ S (by definition of S, we have that

S0 6= ∅).

Initially, let S ′ = S. Modify the cut (S ′, S ′c) as follows:

M1) If i ∈ Γ(S0), then place wri into S ′.

M2) If i /∈ Γ(S0), then place wri into S ′c.

Modifications M1 and M2 are justified (respectively) by J1 and J2:
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J1) If i ∈ Γ(S0), then there exists an edge of infinite capacity from wri to some vri′ ∈ S.

Thus, moving wri to S ′ (if necessary) does not increase the capacity of the cut.

J2) If i /∈ Γ(S0), then there are no edges from wri to S, hence we can move wri into S ′c

(if necessary) without increasing the capacity of the cut.

Modifications M1 and M2 guarantee that wri ∈ S ′ iff i ∈ Γ(S0). Thus, assume that

(S ′, S ′c) satisfies this condition and further modify the cut as follows:

M3) If i ∈ S0, then place vr−1
i into S ′.

M4) If i /∈ Γ(S0), then place vr−1
i into S ′c.

Modifications M3 and M4 are justified (respectively) by J3 and J4:

J3) If i ∈ S0, then there exists an edge of infinite capacity from vr−1
i to vri ∈ S. Thus,

moving vr−1
i to S ′ (if necessary) does not increase the capacity of the cut.

J4) If i /∈ Γ(S0), then there are no edges from vr−1
i to S ′ (since wri /∈ S ′ by assumption),

hence we can move vr−1
i into S ′c (if necessary) without increasing the capacity of the

cut.

At this point, define the set S1 ⊆ [n] as follows: i ∈ S1 iff vr−1
i ∈ S ′. Note that the

modifications of S ′ guarantee that S1 satisfies S0 ⊆ S1 ⊆ Γ(S0).

This procedure can be repeated for each layer of the graph resulting in a sequence of

sets ∅ ( S0 ⊆ · · · ⊆ Sr ⊆ [n] satisfying Sj ⊆ Γ(Sj−1) for each j ∈ [r].

We now perform a final modification of the cut (S ′, S ′c):

M5) If pj ∈ ∪i∈SrPi, then place uj into S ′.

M6) If pj /∈ ∪i∈SrPi, then place uj into S ′c.

Modifications M5 and M6 are justified (respectively) by J5 and J6:
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J5) If pj ∈ ∪i∈SrPi, then there is an edge of infinite capacity from uj to S ′ and moving

uj into S ′ (if necessary) does not increase the capacity of the cut.

J6) If pj /∈ ∪i∈SrPi, then there are no edges from uj to S ′, hence moving uj (if necessary)

into S ′c cannot increase the capacity of the cut.

A quick calculation shows that the modified cut (S ′, S ′c) has capacity greater than or

equal to k iff:

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

br+1−j
i ≥

∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣ . (3.10)

Since every modification of the cut either preserved or reduced the capacity of the cut,

the original cut (S, Sc) also has capacity greater than or equal to k if the above inequality

is satisfied. In Figure 3.5, we illustrate a cut (S, Sc) and its modified minimal cut (S ′, S ′c)

for the graph GNC corresponding to the line network of Example 3.

By the equivalence of the universal recovery problem on a network T to the network

coding problem on GNC and the max-flow min-cut theorem for network information flow,

if a transmission scheme solves the universal recovery problem on T , then the associated

bji ’s must satisfy the constraints of the form given by (3.10). Conversely, for any set of

bji ’s which satisfy the constraints of the form given by (3.10), there exists a transmission

scheme using exactly those numbers of transmissions which solves the universal recovery

problem for T . Thus the constraints of (3.10), and hence the inequalities defining Rr(T ),

are satisfied if and only if any cut separating s from some vri in GNC has capacity at least

k.

Remark 5. Since
∣∣∣⋂i∈[n] P

c
i

∣∣∣ = 0, constraints where Sr = [n] are trivially satisfied. There-

fore, we can restrict our attention to sequences of sets where Sr ( [n].
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Figure 3.5: The graph GNC corresponding to the line network of Example 3 with orig-

inal cut (S, Sc) and the corresponding modified minimal cut (S ′, S ′c). In this case,

S0 = S1 = S2 = {1}. Upon substitution into (3.10), this choice of S0, S1, S2 yields the

inequality b1
2 + b2

2 ≥ 1.
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3.5.2 Fully Connected Networks

Proof of Theorem 20. In the case where T is a fully connected network, we have that

Scj ∩ Γ(Sj−1) = Scj for any nonempty S ⊂ V . Therefore, the constraints defining Rr(T )

become:
r∑
j=1

∑
i∈Sc

j

br+1−j
i ≥

∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣ . (3.11)

Now, suppose a transmission schedule {bji} ∈ Rr(T ) and consider the modified transmission

schedule {b̃ji} defined by: b̃ri =
∑r

j=1 b
j
i and b̃ji = 0 for j < r. By construction, Scj+1 ⊆ Scj

in the constraints defining Rr(T ). Therefore, using the definition of {b̃ji}, we have:∑
i∈Sc

1

b̃ri ≥
r∑
j=1

∑
i∈Sc

j

br+1−j
i ≥

∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣ .
Thus the modified transmission schedule is also in Rr(T ). Since

∣∣⋂
i∈S1

P c
i

∣∣ ≥∣∣⋂
i∈Sr

P c
i

∣∣, when T is a fully connected network, it is sufficient to consider constraints

of the form: ∑
i∈Sc

b1
i ≥

∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ for all nonempty S ⊂ V . (3.12)

This proves the latter two statements of the theorem: that the cut-set constraints are

necessary and sufficient for universal recovery when T is a fully connected network, and

that a single round of communication is sufficient to achieve universal recovery with M∗(T )

transmissions.

With these results established, an optimal transmission schedule can be obtained by

solving the following integer linear program:

minimize
n∑
i=1

bi (3.13)

subject to:
∑
i∈Sc

bi ≥
∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ for each nonempty S ⊂ V .

In order to accomplish this, we identify Bi ← P c
i and set wi = 1 for i ∈ [n] and apply

the submodular algorithm presented in Appendix 3.A.
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Now we consider fully connected networks in which packets are randomly distributed

according to (3.1), which is parametrized by q. The proof of Theorem 21 requires the

following lemma:

Lemma 10. If 0 < q < 1 is fixed, then there exists some δ > 0 such that the following

inequality holds for all ` ∈ {2, . . . , n− 1}:

n− `
n− 1

≥ (1− q)` − (1− q)n
1− q − (1− q)n + δ.

Proof. Applying Jensen’s inequality to the strictly convex function f(x) = (1 − q)x using

the convex combination ` = θ · 1 + (1− θ) · n yields:

(1− q)` − (1− q)n
1− q − (1− q)n <

n− `
n− 1

.

Taking δ to be the minimum gap in the above inequality for the values ` ∈ {2, . . . , n− 1}
completes the proof.

Proof of Theorem 21. We begin by showing that the LP

minimize
n∑
i=1

bi (3.14)

subject to:
∑
i∈Sc

bi ≥
∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ for each nonempty S ⊂ V . (3.15)

has an optimal value of 1
n−1

∑n
i=1 |P c

i | with high probability. To this end, note that the

inequalities

n∑
i=1
i 6=j

bi ≥ |P c
j | for 1 ≤ j ≤ n. (3.16)

are a subset of the inequality constraints (3.15). Summing both sides of (3.16) over 1 ≤
j ≤ n reveals that any feasible vector b ∈ Rn for LP (3.14)-(3.15) must satisfy:

n∑
i=1

bi ≥
1

n− 1

n∑
i=1

|P c
i |. (3.17)
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This establishes a lower bound on the optimal value of the LP. We now identify a solution

that is feasible with probability approaching 1 as k →∞ while achieving the lower bound

of (3.17) with equality. To begin note that

b̃j =
1

n− 1

n∑
i=1

|P c
i | − |P c

j | (3.18)

is a solution to the system of linear equations given by (3.16) and achieves (3.17) with

equality. Now, we prove that (b̃1, . . . , b̃n) is a feasible solution to LP (3.14) with high

probability. To be specific, we must verify that

∑
i∈Sc

b̃i ≥
∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ (3.19)

holds with high probability for all subsets S ⊂ V satisfying 2 ≤ |S| ≤ n − 1 (the case

|S| = 1 is satisfied by the definition of {b̃i}ni=1). Substitution of (3.18) into (3.19) along

with some algebra yields that the following equivalent conditions must hold:(
n− |S|
n− 1

) n∑
i=1

1

k
|P c
i | −

∑
i∈Sc

1

k
|P c
i | ≥

1

k

∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ . (3.20)

To this end, note that for any S,
∣∣⋂

i∈S P
c
i

∣∣ is a random variable which can be expressed

as
∣∣⋂

i∈S P
c
i

∣∣ =
∑k

j=1X
S
j , where XS

j is an indicator random variable taking the value 1 if

pj ∈
⋂
i∈S P

c
i and 0 otherwise. From (3.1) we have:

Pr
(
XS
j = 1

)
=

(1− q)|S| − (1− q)n
1− (1− q)n .

By the weak law of large numbers, for any η > 0:

Pr

(∣∣∣∣∣1k
∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣− (1− q)|S| − (1− q)n
1− (1− q)n

∣∣∣∣∣ > η

)
< εk, (3.21)

where εk → 0 as k →∞. Thus, by the union bound, Lemma 10, and taking η sufficiently
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small, the following string of inequalities holds with arbitrarily high probability as k →∞:(
n− |S|
n− 1

) n∑
i=1

1

k
|P c
i | −

∑
i∈Sc

1

k
|P c
i |

≥
(
n− |S|
n− 1

)(
(1− q)− (1− q)n

1− (1− q)n − (2n− 1)η

)
≥ (1− q)|S| − (1− q)n

1− (1− q)n + η

≥ 1

k

∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ .
These steps are justified as follows: for η sufficiently small the first and last inequalities

hold with high probability by (3.21), and the second inequality follows from Lemma 10

with ` = |S|. This proves that (3.20) holds, and therefore (b̃1, . . . , b̃n) is a feasible solution

to LP (3.14) with high probability. Now, taking Corollary 4 in Appendix 3.A together

with Theorem 20 completes the proof.

3.5.3 d-Regular Networks

Lemma 11. Assume packets are randomly distributed in a d-regular network T . For any

ε > 0, there exists an optimal solution x∗ to LP (3.3-3.4) which satisfies∥∥∥∥x∗ − 1

d
E[|P c

1 |]1
∥∥∥∥
∞
< εk

with probability approaching 1 as k →∞, where E indicates expectation.

Proof. Let ~P = (|P c
1 |, . . . , |P c

n|)T and let A be the adjacency matrix of G (i.e., ai,j = 1 if

(i, j) ∈ E and 0 otherwise). Observe that A is symmetric and A1 = d1, where 1 denotes

a column vector of 1’s. With this notation, LP (3.3) can be rewritten as:

minimize 1Tx (3.22)

subject to: Ax � ~P ,

where “a � b” for vectors a, b ∈ Rn means that ai ≥ bi for i = 1, . . . , n.
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Let A+ denote the Moore-Penrose pseudoinverse of A. Observe that the linear least

squares solution to Ax ≈ ~P is given by:

x̄LS = A+ ~P

= A+E~P + A+
(
~P − E~P

)
=

1

d
E~P + A+

(
~P − E~P

)
.

For the last step above, note that E~P is an eigenvector of A with eigenvalue d so E~P will

also be an eigenvector of A+ with eigenvalue 1
d
. Hence,

‖xLS −
1

d
E~P‖2 = ‖A+

(
~P − E~P

)
‖2

≤ ‖A+‖2‖~P − E~P‖2.

Combining this with the triangle inequality implies that, for any vector y,

‖y − 1

d
E~P‖∞ ≤ ‖y − x̄LS‖∞ + ‖x̄LS −

1

d
E~P‖∞

≤ ‖y − x̄LS‖∞ + ‖x̄LS −
1

d
E~P‖2

≤ ‖y − x̄LS‖∞ + ‖A+‖2‖~P − E~P‖2.

Therefore, Lemma 16 (see Chapter 4) guarantees the existence of an optimal solution

x∗ to LP (3.22) (and consequently LP (3.3)) which satisfies:

‖x∗ − 1

d
E~P‖∞ ≤ ‖x∗ − x̄LS‖∞ + ‖A+‖2‖~P − E~P‖2

≤ cA‖Ax̄LS − ~P‖2 + ‖A+‖2‖~P − E~P‖2

≤ cA‖
1

d
AE~P − ~P‖2 + ‖A+‖2‖~P − E~P‖2

= cA‖E~P − ~P‖2 + ‖A+‖2‖~P − E~P‖2,

where cA is a constant depending only on A. By the weak law of large numbers, ‖~P −
E~P‖2 ≤ εk with probability tending to 1 as k → ∞ for any ε > 0. Noting that E~P =

E[|P c
1 |]1 completes the proof.
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Proof of Theorem 22. We begin with some observations and definitions:

• First, recall that our model for randomly distributed packets (3.1) implies that

E

[∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣
]

= k
(1− q)|S| − (1− q)n

1− (1− q)n for all nonempty S ⊂ V . (3.23)

• With this in mind, there exists a constant cq > 0 such that

E [|P c
1 |] ≥ (1 + cq)E

[∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣
]

for all S ⊂ V, |S| ≥ 2. (3.24)

• Next, Lemma 10 implies the existence of a constant δq > 0 such that for any S ⊂ V

with 2 ≤ |S| ≤ n− 1:

n− |S|
n− 1

≥ (1− q)|S| − (1− q)n
(1− q)− (1− q)n + δq =

E
[∣∣⋂

i∈S P
c
i

∣∣]
E [|P c

1 |]
+ δq. (3.25)

• The weak law of large numbers implies that(
1 +

min{δq, cq}
4

)
E

[∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣
]
≥
∣∣∣∣∣⋂
i∈S

P c
i

∣∣∣∣∣ (3.26)

with probability approaching 1 as k →∞.

• Finally, for the proof below, we will take the number of communication rounds suf-

ficiently large to satisfy

r ≥ max

{
2d

nδq
,
2n(1 + cq)

dcq

}
. (3.27)

Fix ε > 0. Lemma 11 guarantees that there exists an optimal solution x∗ to LP (3.3)

satisfying ∥∥∥∥x∗ − 1

d
E[|P c

1 |]1
∥∥∥∥
∞
< εk (3.28)

with probability tending to 1 in k. Now, it is always possible to construct a transmission

schedule {bji} which satisfies
∑

j b
j
i = dx∗i e and b1

r
x∗i c ≤ bji ≤ d1

r
x∗i e for each i, j. Observe
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that
∑

i,j b
j
i < n +

∑
i x
∗
i . Thus, proving that {bji} ∈ Rr(T ) with high probability will

prove the theorem.

Since the network is d-regular, |∂(S)| ≥ d whenever |S| ≤ n− d and |∂(S1)| ≥ n− |S2|
whenever |S2| ≥ n − d and S1 ⊆ S2. We consider the cases where 2 ≤ |Sr| ≤ n − d and

n − d < |Sr| ≤ n − 1 separately. The case where |Sr| = 1 coincides precisely with the

constraints (3.4), and hence is satisfied by definition of {bji}.

Considering the case where 2 ≤ |Sr| ≤ n−d, we have the following string of inequalities:

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

b
(r+1−j)
i ≥

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

⌊
1

r
x∗i

⌋
(3.29)

≥ 1

r

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

x∗i − nr (3.30)

=
1

r

r∑
j=1

∑
i∈∂(Sj−1)

x∗i −
1

r

∑
i∈Sr∩Sc

0

x∗i − nr (3.31)

≥ 1

r

r∑
j=1

∑
i∈∂(Sj−1)

1

d
E[|P c

1 |]−
1

r

∑
i∈Sr∩Sc

0

1

d
E[|P c

1 |]− nkε− nr (3.32)

≥ 1

rd
E[|P c

1 |]
(

r∑
j=1

|∂(Sj−1)| − n
)
− nr(kε+ 1) (3.33)

≥ 1 + cq
rd

E

[∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣
](

r∑
j=1

|∂(Sj−1)| − n
)
− nr(kε+ 1) (3.34)

≥ 1 + cq
rd

E

[∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣
]

(rd− n)− nr(kε+ 1) (3.35)

≥
(

1 +
cq
2

)
E

[∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣
]
− nr(kε+ 1) (3.36)

≥
(

1 +
cq
4

)
E

[∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣
]

(3.37)

≥
∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣ . (3.38)

The above string of inequalities holds with probability tending to 1 as k →∞. They can

be justified as follows:
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• (3.29) follows by definition of {bji}.

• (3.30) follows since
⌊

1
r
x∗i
⌋
≥ 1

r
x∗i − 1 and |Scj ∩ Γ(Sj−1)| ≤ n.

• (3.31) follows from writing ∪rj=1S
c
j ∩ Γ(Sj−1) as

(
∪rj=1∂(Sj−1)

)
\ (Sr ∩ Sc0) and ex-

panding the sum.

• (3.32) follows from (3.28).

• (3.33) is true since |Sc0 ∩ Sr| ≤ n.

• (3.34) follows from (3.24).

• (3.35) follows from |∂(Sj−1)| ≥ d by d regularity and the assumption that 2 ≤ |Sr| ≤
n− d.

• (3.36) follows from our choice of r given in (3.27).

• (3.37) follows since cq
4
E
[∣∣⋂

i∈Sr
P c
i

∣∣] ≥ nr(kε + 1) with high probability for ε suffi-

ciently small.

• (3.38) follows from (3.26).
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Next, consider the case where n− d ≤ |Sr| ≤ n− 1. Starting from (3.33), we obtain:

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

b
(r+1−j)
i ≥ 1

rd
E[|P c

1 |]
(

r∑
j=1

|∂(Sj−1)| − n
)
− nr(kε+ 1) (3.39)

≥ 1

rd
E[|P c

1 |]
(
r(n− |Sr|)− n

)
− nr(kε+ 1) (3.40)

= E[|P c
1 |]
(
n− |Sr|

d
− n

rd

)
− nr(kε+ 1) (3.41)

≥ E[|P c
1 |]
(
n− |Sr|
n− 1

− n

rd

)
− nr(kε+ 1) (3.42)

≥ E[|P c
1 |]
(
E
[∣∣⋂

i∈Sr
P c
i

∣∣]
E[|P c

1 |]
+ δq −

n

rd

)
− nr(kε+ 1) (3.43)

≥ E[|P c
1 |]
(
E
[∣∣⋂

i∈Sr
P c
i

∣∣]
E[|P c

1 |]
+
δq
2

)
− nr(kε+ 1) (3.44)

≥
(

1 +
δq
4

)
E

[∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣
]

(3.45)

≥
∣∣∣∣∣⋂
i∈Sr

P c
i

∣∣∣∣∣ . (3.46)

The above string of inequalities holds with probability tending to 1 as k → ∞. They

can be justified as follows:

• (3.39) is simply (3.33) repeated for convenience.

• (3.40) follows since n−d ≤ |Sr| ≤ n−1 and hence d-regularity implies that |∂(Sj−1)| ≥
(n− |Sr|).

• (3.42) follows since d ≤ n− 1.

• (3.43) follows from (3.25).

• (3.44) follows from from our definition of r given in (3.27).

• (3.45) follows since δq
4
E[P c

1 ] ≥ nr(kε+1) with high probability for ε sufficiently small.

• (3.46) follows from (3.26).
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Thus, we conclude that, for ε sufficiently small, the transmission schedule {bji} satisfies

each of the inequalities defining Rr(T ) with probability tending to 1. Since the number

of such inequalities is finite, an application of the union bound completes the proof that

{bji} ∈ Rr(T ) with probability tending to 1 as k →∞.

3.5.4 Divisible Packets

Proof of Theorem 23. Fix any ε > 0 and let x∗ be an optimal solution to LP (3.5). Put

bi = x∗i + ε. Note that bi is nonnegative. This follows by considering the set S\{i} in the

inequality constraint (3.6), which implies x∗i ≥ 0.

Now, take an integer r ≥ ε−1nmax1≤i≤n bi. If packets are t-divisible, we can find a

transmission schedule {bji} such that 1
r
bi ≤ bji ≤ 1

r
bi + 1

t
for all i ∈ [n], j ∈ [r].

Thus, for any (S0, · · · , Sr) ∈ S(r)(G) we have the following string of inequalities:

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

b
(r+1−j)
i ≥ 1

r

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

bi

=
1

r

r∑
j=1

∑
i∈∂(Sj−1)

bi −
1

r

∑
i∈Sc

0∩Sr

bi

=
1

r

r∑
j=1

∑
i∈∂(Sj−1)

x∗i +
ε

r

r∑
j=1

|∂(Sj−1)| − 1

r

∑
i∈Sc

0∩Sr

bi

≥ 1

r

r∑
j=1

∣∣∣∣∣∣
⋂

i∈Sj−1

P c
j

∣∣∣∣∣∣+ ε− n

r
max
1≤i≤n

bi

≥
∣∣∣∣∣⋂
i∈Sr

P c
j

∣∣∣∣∣ .
Hence, Theorem 19 implies that the transmission schedule {bji} is sufficient to achieve

universal recovery. Noting that

∑
i,j

bji ≤
n∑
i=1

bi +
nr

t
≤

n∑
i=1

x∗i + n
(r
t

+ ε
)

completes the proof of the theorem.
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3.5.5 Secrecy Generation

In this subsection, we prove Theorems 24 and 25. We again remark that our proofs can be

seen as special cases of those in [CN04] which have been adapted for the problem at hand.

For notational convenience, define P = {p1, . . . , pk}. We will require the following lemma.

Lemma 12. Given a packet distribution P1, . . . , Pn, let K be a secret-key achievable with

communication F. Then the following holds:

H(K|F) = H(P )−
n∑
i=1

xi. (3.47)

for some vector x = (x1, . . . , xn) which is feasible for the following ILP:

minimize
n∑
i=1

xi (3.48)

subject to:
∑
i∈S

xi ≥
∣∣∣∣∣⋂
i∈Sc

P c
i

∣∣∣∣∣ for each nonempty S ⊂ V . (3.49)

Moreover, if K is a PK (with respect to a set D) and each node i ∈ D transmits its

respective set of packets Pi, then

H(K|F) = H(P |PD)−
∑
i∈V \D

xi. (3.50)

for some vector x = (x1, . . . , xn) which is feasible for the ILP:

minimize
∑
i∈V \D

xi (3.51)

subject to:
∑
i∈S

xi ≥
∣∣∣∣∣⋂
i∈Sc

P c
i

∣∣∣∣∣ for each nonempty S ⊂ V \D. (3.52)

Remark 6. We remark that (3.49) and (3.52) are necessary and sufficient conditions for

achieving universal recovery in the networks T and TD considered in Theorems 24 and 25,

respectively. Thus, the optimal values of ILPs (3.48) and (3.51) are equal to M∗(T ) and

M∗(TD), respectively.
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Proof. We assume throughout that all entropies are with respect to the base-|F| logarithm

(i.e., information is measured in packets). For this and the following proofs, let F =

(F1, . . . , Fn) and F[1,i] = (F1, . . . , Fi), where Fi denotes the transmissions made by node i.

For simplicity, our proof does not take into account interactive communication, but can

be modified to do so. Allowing interactive communication does not change the results.

See [CN04] for details.

Since K and F are functions of P :

H(P ) = H(F, K, P1, . . . , Pn) (3.53)

=
n∑
i=1

H(Fi|F[1,i−1]) +H(K|F) +
n∑
i=1

H(Pi|F, K, P[1,i−1]). (3.54)

Set xi = H(Fi|F[1,i−1]) + H(Pi|F, K, P[1,i−1]). Then, the substituting xi into the above

equation yields:

H(K|F) = H(P )−
n∑
i=1

xi. (3.55)

To show that x = (x1, . . . , xn) is a feasible vector for ILP (3.48), we write:∣∣∣∣∣⋂
i∈Sc

P c
i

∣∣∣∣∣ = H(PS|PSc) (3.56)

= H(F, K, PS|PSc) (3.57)

=
n∑
i=1

H(Fi|F[1,i−1], PSc) +H(K|F, PSc) +
∑
i∈S

H(Pi|F, K, P[1,i−1], PSc∩[i+1,n])

(3.58)

≤
∑
i∈S

H(Fi|F[1,i−1]) +
∑
i∈S

H(Pi|F, K, P[1,i−1]) (3.59)

=
∑
i∈S

xi. (3.60)

In the above inequality, we used the fact that conditioning reduces entropy, the fact that

K is a function of (F, PSc) for any S 6= V , and the fact that Fi is a function of Pi (by the

assumption that communication is not interactive).
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To prove the second part of the lemma, we can assume D = {1, . . . , `}. The assumption

that each node i in D transmits all of the packets in Pi implies Fi = Pi. Thus, for i ∈ D
we have xi = H(Pi|P[1,i−1]). Repeating the above argument, we obtain

H(K|F) = H(P )−H(PD)−
∑
i∈V \D

xi (3.61)

= H(P |PD)−
∑
i∈V \D

xi, (3.62)

completing the proof of the lemma.

Proof of Theorem 24. Converse Part. Suppose K is a secret-key achievable with commu-

nication F. Then, by definition of a SK and Lemma 12 we have

CSK = H(K) = H(K|F) = H(P )−
n∑
i=1

xi ≤ H(P )−M∗(T ) = k −M∗(T ). (3.63)

Achievability Part. By definition, universal recovery can be achieved with M∗(T ) trans-

missions. Moreover, the communication F can be generated as a linear function of P (see

the proof of Theorem 19 and [JSC05]). Denote this linear transformation by F = LP .

Note that L only depends on the indices of the packets available to each node, not the

values of the packets themselves (see [JSC05]). Let PF = {P ′ : LP ′ = F} be the set of all

packet distributions which generate F.

By our assumption that the packets are i.i.d. uniform from F, each P ′ ∈ PF is equally

likely given F was observed. Since F has dimension M∗(T ), |PF| = Fk−M∗(T ). Thus, we

can set K = Fk−M∗(T ) and label each P ′ ∈ PF with a unique element in K. The label

for the actual P (which is reconstructed by all nodes after observing F) is the secret-key.

Thus, CSK ≥ k −M∗(T ).

We remark that this labeling can be done efficiently by an appropriate linear transfor-

mation mapping P to K.

Proof of Theorem 25. Converse Part. Suppose K is a private-key. Then, by definition of

135



a PK and Lemma 12,

CPK = H(K) = H(K|F) = H(P |PD)−
∑
i∈V \D

xi

≤ H(P |PD)−M∗(TD) = (k − |PD|)−M∗(TD).

Achievability Part. Let each node i ∈ D transmit Pi so that we can update Pj ← Pj∪PD
for each j ∈ V \D. Now, consider the universal recovery problem for only the nodes in

V \D. M∗(TD) is the minimum number of transmissions required among the nodes in V \D
so that each node in V \D recovers P . At this point, the achievability proof proceeds

identically to the SK case.

3.6 Concluding Remarks

In this chapter, we derive necessary and sufficient conditions for achieving universal recov-

ery in an arbitrarily connected network. For the case when the network is fully connected,

we provide an efficient algorithm based on submodular optimization which efficiently solves

the cooperative problem. This algorithm and its derivation yield tight concentration results

for the case when packets are randomly distributed. Moreover, concentration results are

provided when the network is d-regular and packets are distributed randomly. If packets

are divisible, we prove that the traditional cut-set bounds are achievable. As a consequence

of this and the concentration results, we show that splitting packets does not typically pro-

vide a significant benefit when the network is d-regular. Finally, we discuss an application

to secrecy generation in the presence of an eavesdropper. We demonstrate that our sub-

modular algorithm can be used to generate the maximum amount of secrecy in an efficient

manner.

It is conceivable that the coded cooperative data exchange problem can be solved (or

approximated) in polynomial time if the network is d-regular, but packets aren’t necessarily

randomly distributed. This is one possible direction for future work.
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3.A An Efficiently Solvable Integer Linear Program

In this appendix, we introduce a special ILP and provide an efficient algorithm for solving

it. This algorithm can be used to efficiently solve the cooperative data exchange problem

when the underlying graph is fully-connected. We begin by introducing some notation4.

Let E = {1, . . . , n} be a finite set with n elements. We denote the family of all subsets of

E by 2E. We frequently use the compact notation E\U and U+ i to denote the sets E∩U c

and U ∪ {i} respectively. For a vector x = (x1, . . . , xn) ∈ Rn, define the corresponding

functional x : 2E → R as:

x(U) :=
∑
i∈U

xi, for U ⊆ E. (3.64)

Throughout this section, we let F = 2E−{∅, E} denote the family of nonempty proper

subsets of E. Let B = {B1, . . . , Bn}. No special structure is assumed for the Bi’s except

that they are finite.

With the above notation established, we consider the following Integer Linear Program

(ILP) in this section:

minimize

∑
i∈E

wixi : x(U) ≥

∣∣∣∣∣∣
⋂

i∈E\U

Bi

∣∣∣∣∣∣ ,∀ U ∈ F , xi ∈ Z

 . (3.65)

It is clear that any algorithm that efficiently solves this ILP also solves ILP (3.13) by

putting Bi ← P c
i and w = 1.

4We attempt to keep the notation generic in order to emphasize that the results in this appendix are
not restricted to the context of the cooperative data exchange problem.
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3.A.1 Submodular Optimization

Our algorithm for solving ILP (3.65) relies heavily on submodular function optimization.

To this end, we give a very brief introduction to submodular functions here.

A function g : 2E → R is said to be submodular if, for all X, Y ∈ 2E,

g(X) + g(Y ) ≥ g(X ∩ Y ) + g(X ∪ Y ). (3.66)

Over the past three decades, submodular function optimization has received a significant

amount of attention. Notably, several polynomial time algorithms have been developed for

solving the Submodular Function Minimization (SFM) problem

min {g(U) : U ⊆ E} . (3.67)

We refer the reader to [McC05, Fuj10, Sch03] for a comprehensive overview of SFM and

known algorithms. As we will demonstrate, we can solve ILP (3.65) via an algorithm that

iteratively calls a SFM routine. The most notable feature of SFM algorithms is their ability

to solve problems with exponentially many constraints in polynomial time. One of the key

drawbacks of SFM is that the problem formulation is very specific. Namely, SFM routines

typically require the function g to be submodular on all subsets of the set E.

3.A.2 The Algorithm

We begin by developing an algorithm to solve an equality constrained version of ILP (3.65).

We will remark on the general case at the conclusion of this section. To this end, let M be

a positive integer and consider the following ILP:

minimize wTx (3.68)

subject to: x(U) ≥

∣∣∣∣∣∣
⋂

i∈E\U

Bi

∣∣∣∣∣∣ for all U ∈ F , and (3.69)

x(E) = M. (3.70)
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Remark 7. We assume wi ≥ 0, else in the case without the equality constraint we could

allow the corresponding xi → +∞ and the problem is unbounded from below.

Algorithm 3.A.1: SolveILP(B, E,M,w)

comment: Define f : 2E → R as in equation (3.71).

x← ComputePotentialX(f,M,w)

if CheckFeasible(f, x)

then return (x)

else return (Problem Infeasible)

Theorem 26. Algorithm 3.A.1 solves the equality constrained ILP (3.68) in polynomial

time. If feasible, Algorithm 3.A.1 returns an optimal x. If infeasible, Algorithm 3.A.1

returns “Problem Infeasible”.

Proof. The proof is accomplished in three steps:

1. First, we show that if our algorithm returns an x, it is feasible.

2. Second, we prove that if a returned x is feasible, it is also optimal.

3. Finally, we show that if our algorithm does not return an x, then the problem is

infeasible.

Each step is given its own subsection.

Algorithm 3.A.1 relies on three basic subroutines given below:
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Algorithm 3.A.2: ComputePotentialX(f,M,w)

comment: If feasible, returns x satisfying (3.69) and (3.70) that minimizes wTx.

comment: Order elements of E so that w1 ≥ w2 ≥ · · · ≥ wn.

for i← n to 2

do


comment: Define fi(U) := f(U + i) for U ⊆ {i, . . . , n}.

xi ← SFM(fi, {i, . . . , n})
x1 ←M −∑n

i=2 xi

return (x)

Algorithm 3.A.3: CheckFeasible(f, x)

comment: Check if x(U) ≤ f(U) for all U ∈ F with 1 ∈ U .

comment: Define f1(U) := f(U + 1) for U ⊆ E.

if SFM(f1, E) < 0

then return ( false )

else return ( true )

Algorithm 3.A.4: SFM(f, V )

comment: Minimize submodular function f over groundset V (cf. [McC05]).

v ← min {f(U) : U ⊆ V }
return (v)

3.A.3 Feasibility of a Returned x

In this section, we prove that if Algorithm 3.A.1 returns a vector x, it must be feasible.

We begin with some definitions.
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Definition 21. A pair of sets X, Y ⊂ E is called crossing if X ∩Y 6= ∅ and X ∪Y 6= E.

Definition 22. A function g : 2E → R is crossing submodular if

g(X) + g(Y ) ≥ g(X ∩ Y ) + g(X ∪ Y )

for X, Y crossing.

We remark that minimization of crossing submodular functions is well established,

however it involves a lengthy reduction to a standard submodular optimization problem.

However, the crossing family F admits a straightforward algorithm, which is what we

provide in Algorithm 3.A.1. We refer the reader to [Sch03] for complete details on the

general case.

For M a positive integer, define

f(U) := M −
∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U), for U ∈ F . (3.71)

Lemma 13. The function f is crossing submodular on F .

Proof. For X, Y ∈ F crossing:

f(X) + f(Y ) = M −
∣∣∣∣∣⋂
i∈X

Bi

∣∣∣∣∣− x(X) +M −
∣∣∣∣∣⋂
i∈Y

Bi

∣∣∣∣∣− x(Y )

= M −
∣∣∣∣∣⋂
i∈X

Bi

∣∣∣∣∣− x(X ∩ Y ) +M −
∣∣∣∣∣⋂
i∈Y

Bi

∣∣∣∣∣− x(X ∪ Y )

≥M −
∣∣∣∣∣ ⋂
i∈X∩Y

Bi

∣∣∣∣∣− x(X ∩ Y ) +M −
∣∣∣∣∣ ⋂
i∈X∪Y

Bi

∣∣∣∣∣− x(X ∪ Y )

= f(X ∩ Y ) + f(X ∪ Y ).

Observe that, with f defined as above, the constraints of ILP (3.68) can be equivalently

141



written as:

f(U) = M −
∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U) ≥ 0 for all U ∈ F , and (3.72)

x(E) = M. (3.73)

Without loss of generality, assume the elements of E are ordered lexicographically so

that w1 ≥ w2 ≥ · · · ≥ wn. At iteration i in Algorithm 3.A.2, xj = 0 for all j ≤ i. Thus,

setting

xi ← min
U⊆{i,...,n}

{fi(U)} (3.74)

= min
U⊆{i,...,n}:i∈U

{f(U)} (3.75)

= min
U⊆{i,...,n}:i∈U

{
M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U)

}
(3.76)

and noting that the returned x satisfies x(E) = M , rearranging (3.76) guarantees that

x(E\U) ≥
∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣ , for all U ⊆ {i, . . . , n}, i ∈ U (3.77)

as desired. Iterating through i ∈ {2, . . . , n} guarantees (3.77) holds for 2 ≤ i ≤ n.

Remark 8. In the feasibility check routine (Algorithm 3.A.3), we must be able to evaluate

f1(E). The reader can verify that putting f(E) = 0 preserves submodularity.

Now, in order for the feasibility check to return true, we must have

min
U⊆E
{f1(U)} = min

U⊆E:1∈U
{f(U)} (3.78)

= min
U⊆E:1∈U

{
M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U)

}
(3.79)

≥ 0, (3.80)

implying that

x(E\U) ≥
∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣ , for all U ⊆ E, 1 ∈ U. (3.81)

Combining (3.77) and (3.81) and noting that x(E) = M proves that x is indeed feasible.

Moreover, x is integral as desired.
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3.A.4 Optimality of a Returned x

In this section, we prove that if Algorithm 3.A.1 returns a feasible x, then it is also optimal.

First, we require two more definitions and a lemma.

Definition 23. A constraint of the form (3.72) corresponding to U is said to be tight for

U if

f(U) = M −
∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U) = 0. (3.82)

Lemma 14. If x is feasible, X, Y are crossing, and their corresponding constraints are

tight, then the constraints corresponding to X ∩ Y and X ∪ Y are also tight.

Proof. Since the constraints corresponding to X and Y are tight, we have

0 = f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) ≥ 0. (3.83)

The first inequality is due to submodularity and the last inequality holds since x is feasible.

This implies the result.

Definition 24. A family of sets L is laminar if X, Y ∈ L implies either X ∩ Y = ∅,
X ⊂ Y , or Y ⊂ X.

At iteration k (1 < k ≤ n) of Algorithm 3.A.2, let Uk be the set where (3.76) achieves its

minimum. Note that k ∈ Uk ⊆ {k, . . . , n}. By construction, the constraint corresponding

to Uk is tight. Also, the constraint x(E) = M is tight. From the Uk’s and E we can

construct a laminar family as follows: if Uj ∩ Uk 6= ∅ for j < k, then replace Uj with

Ũj ← Uk ∪ Uj. By Lemma 14, the constraints corresponding to the sets in the newly

constructed laminar family are tight. Call this family L. For each i ∈ E, there is a unique

smallest set in L containing i. Denote this set Li. Since k ∈ Uk ⊆ {k, . . . , n}, Li 6= Lj for

i 6= j. Note that L1 = E and Li ⊂ Lj only if j < i.

For each Li ∈ L there is a unique smallest set Lj such that Li ⊂ Lj. We call Lj the

least upper bound on Li.
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Now, consider the dual linear program to (3.68):

maximize −
∑
U∈F

πU

(
M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣
)
− πEM (3.84)

subject to:
∑

U∈F :i∈U

πU + πE + wi = 0, for 1 ≤ i ≤ n (3.85)

πU ≥ 0 for U ∈ F , and πE free. (3.86)

For each Li ∈ L, let the corresponding dual variable πLi
= wj−wi, where Lj is the least

upper bound on Li. By construction, πLi
≥ 0 since it was assumed that w1 ≥ · · · ≥ wn.

Finally, let πE = −w1 and πU = 0 for U /∈ L.

Now, observe that:

∑
U∈F :i∈U

πU + πE + wi = 0 (3.87)

as desired for each i. Thus, π is dual feasible. Finally, note that πU > 0 only if U ∈ L.

However, the primal constraints corresponding to the sets in L are tight. Thus, (x, π)

form a primal-dual feasible pair satisfying complementary slackness conditions, and are

therefore optimal.

3.A.5 No Returned x = Infeasibility

Finally, we prove that if the feasibility check returns false, then ILP (3.68) is infeasible.

Note by construction that the vector x passed to the feasibility check satisfies

M −
∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U) ≥ 0 for all nonempty U ⊆ {2, . . . , n}, (3.88)

and x(E) = M . Again, let Uk be the set where (3.76) achieves its minimum and let L be

the laminar family generated by these Uk’s and E exactly as before. Again, the constraints

corresponding to the sets in L are tight (this can be verified in a manner identical to the

proof of Lemma 14). Now, since x failed the feasibilty check, there exists some exceptional
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set T with 1 ∈ T for which

M −
∣∣∣∣∣⋂
i∈T

Bi

∣∣∣∣∣− x(T ) < 0. (3.89)

Generate a set LT as follows: Initialize LT ← T . For each Li ∈ L, Li 6= E, if LT ∩ Li 6= ∅,
update LT ← LT ∪ Li. Now, we can add LT to family L while preserving the laminar

property. We pause to make two observations:

1. By an argument similar to the proof of Lemma 14, we have that

M −
∣∣∣∣∣ ⋂
i∈LT

Bi

∣∣∣∣∣− x(LT ) < 0.

2. The sets in L whose least upper bound is E form a partition of E. We note that LT

is a nonempty class of this partition. Call this partition PL.

Again consider the dual constraints, however, let wi = 0 (this does not affect feasibility).

For each L ∈ PL define the associated dual variable πL = α, and let πE = −α. All other

dual variables are set to zero. It is easy to check that this π is dual feasible. Now, the dual

objective function becomes:

−
∑
U∈F

πU

(
(M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣
)
− πEM = −α

∑
L∈PL

(
M −

∣∣∣∣∣⋂
i∈L

Bi

∣∣∣∣∣− x(L) + x(L)

)
+ αM

(3.90)

= −α
(
M −

∣∣∣∣∣ ⋂
i∈LT

Bi

∣∣∣∣∣− x(LT )

)
− αx(E) + αM

(3.91)

= −α
(
M −

∣∣∣∣∣ ⋂
i∈LT

Bi

∣∣∣∣∣− x(LT )

)
(3.92)

→ +∞ as α→∞. (3.93)

Thus, the dual is unbounded and therefore the primal problem must be infeasible.

As an immediate corollary we obtain the following:
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Corollary 4. The optimal values of the ILP:

min
{
x(E) : x(U) ≥

∣∣∩i∈E\UBi

∣∣ , U ∈ F , xi ∈ Z
}

and the corresponding LP relaxation:

min
{
x(E) : x(U) ≥

∣∣∩i∈E\UBi

∣∣ , U ∈ F , xi ∈ R
}

differ by less than 1.

Proof. Algorithm 3.A.1 is guaranteed to return an optimal x if the intersection of the

polytope and the hyperplane x(E) = M is nonempty. Thus, if M∗ is the minimum such

M , then the optimal value of the LP must be greater than M∗ − 1.

3.A.6 Solving the General ILP

Finally, we remark on how to solve the general case of the ILP without the equality

constraint given in (3.65). First, we state a simple convexity result.

Lemma 15. Let p∗w(M) denote the optimal value of ILP (3.68) when the equality constraint

is x(E) = M . We claim that p∗w(M) is a convex function of M .

Proof. Let M1 and M2 be integers and let θ ∈ [0, 1] be such that Mθ = θM1+(1−θ)M2 is an

integer. Let x(1) and be x(2) optimal vectors that attain p∗w(M1) and p∗w(M2) respectively.

Let x(θ) = θx(1) + (1− θ)x(2). By convexity, x(θ) is feasible, though not necessarily integer.

However, by the results from above, optimality is always attained by an integral vector.

Thus, it follows that:

θp∗w(M1) + (1− θ)p∗w(M2) = θwTx(1) + (1− θ)wTx(2) = wTx(θ) ≥ p∗w(Mθ). (3.94)
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Noting that p∗w(M) is convex in M , we can perform bisection on M to solve the ILP

in the general case. For our purposes, it suffices to have relatively loose upper and lower

bounds on M since the complexity only grows logarithmically in the difference. A simple

lower bound on M is given by M ≥ maxi |Bi|.

3.A.7 Complexity

Our aim here is not to give a detailed complexity analysis of our algorithm. This is due to

the fact that the complexity is dominated by the the SFM over the set E in Algorithm 3.A.3.

Therefore, the complexity of Algorithm 3.A.1 is essentially the same as the complexity of

the SFM solver employed.

However, we have performed a series of numerical experiments to demonstrate that

Algorithm 3.A.1 performs quite well in practice. In our implementation, we ran the

Fujishige-Wolfe (FW) algorithm for SFM [FHI06] based largely on a Matlab routine by A.

Krause [KS10]. While the FW algorithm has not been proven to run in polynomial time,

it has been shown to work quite well in practice [FHI06] (similar to the Simplex algorithm

for solving Linear Programs). Whether or not FW has worst-case polynomial complex-

ity is an open problem to date. We remark that there are several SFM algorithms that

run in strongly polynomial time which could be used if a particular application requires

polynomially bounded worst-case complexity [McC05].

In our series of experiments, we chose Bi ⊂ F randomly, where |F | = 50. We let n = |E|
range from 10 to 190 in increments of 10. For each value of n, we ran 10 experiments. The

average computation time is shown in Figure 3.6, with error bars indicating one standard

deviation. We consistently observed that the computations run in approximately O(n1.85)

time. Due to the iterative nature of the SFM algorithm, we anticipate that the computation

time could be significantly reduced by implementing the algorithm in C/C++ instead of

Matlab. However, the O(n1.85) trend should remain the same. Regardless, we are able

to solve the ILP problems under consideration with an astonishing 2190 constraints in
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approximately one minute.

Figure 3.6: Experimental results. For the red dotted line, the multiplicative constant α

and exponent β were chosen to minimize the MSE
∑n

i=1 | log(αnβ)− log(m̂n)|2, where m̂n

is the sample mean of the computation times for |E| = n.
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CHAPTER 4

Three Interesting Lemmas

4.1 Introduction

I have always admired results that can be simply stated and appreciated, regardless of

their potential applications. In this chapter, I have compiled three such results which I’ve

developed over the course of my research. For one reason or another, I find each of the

lemmas presented herein interesting. Therefore, I feel they merit their own chapter instead

of being relegated to an appendix, hidden amongst the gritty details of this dissertation.

Fitting with the common theme, each of the results presented in this chapter has an

application to multiterminal information theory. Indeed, the first two results are crucial

tools employed in Chapters 2 and 3. The final result of this chapter does not appear

elsewhere in this dissertation. However, it has become a favorite problem of mine and I

couldn’t resist the temptation to include it.

Each section of this chapter is self-contained and follows a common format. Specifically,

each section begins with a statement of the lemma, a brief discussion ensues, and a proof

concludes.

4.2 A Linear Programming Approximation

Lemma 16. Let A ∈ Rn×n be a symmetric matrix with nonnegative entries and all column

sums equal to d. Let x̄y be the vector of minimum Euclidean norm which minimizes ‖Axy−
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y‖2. There exists an optimal solution x∗ to the linear program

minimize 1Tx (4.1)

subject to: Ax � y

which satisfies

‖x∗ − x̄y‖∞ ≤ cA‖Ax̄y − y‖2,

where cA is a constant depending only on A.

4.2.1 Remarks

The lemma is trivial if the matrix A is nonsingular. However, the case where A is singular

is interesting to consider. In this case, any nonzero vector v in the nullspace of A must

satisfy 1Tv = 0 since 1 is an eigenvector of A corresponding to eigenvalue d. Thus, if x∗

is an optimal solution to LP (4.1), then so is x∗ + v. Hence, the set of optimal solutions is

unbounded in the sense that for any B > 0, there exists an optimal solution to LP (4.1)

with entries greater than B and other entries less than −B. Thus, Lemma 16 is useful

because it always guarantees the existence of an optimal solution that is well-behaved in

the sense that it is quantifiably close to the linear least-squares solution to Ax ≈ y.

In my case, the motivating application was where y = 1+ ε, d = 1, and the vector ε is

a small perturbation (see Chapter 3 for details). In this case, it is straightforward to show

that there exists an optimal solution x∗ to LP (4.1) satisfying

‖x∗ − 1‖∞ ≤ δ(‖ε‖),

where δ(‖ε‖) → 0 as ‖ε‖ → 0. Although this seems intuitive, if ε is not in the range

of A, then the previous remark demonstrates that there always exists optimal solutions

satisfying ‖x∗ − 1‖∞ > B for any B > 0. Thus, out of infinitely many optimal solutions

to LP (4.1), Lemma 16 allows us to choose one which is suitably well behaved.
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4.2.2 Proof

Proof of Lemma 16. To begin the proof, we make a few definitions. Let λ be the absolute

value of the nonzero eigenvalue of A with smallest modulus (at least one exists since d is an

eigenvalue). Define N (A) to be the nullspace of A, and let N⊥(A) denote its orthogonal

complement. Finally, let A+ denote the Moore-Penrose pseudoinverse of A (see [Lau05]).

Fix x̄y ∈ Rn, and note that x∗ is an optimal solution to LP (4.1) if and only if x∗ − x̄y
is an optimal solution to the linear program

minimize 1T (x+ x̄y)

subject to: A(x+ x̄y) � y

with variable x ∈ Rn. With this in mind, put x̄y = A+y and define b = y − Ax̄y.

By definition of the pseudoinverse, x̄y is the vector of minimum Euclidean norm which

minimizes ‖Axy − y‖2. Moreover, b ∈ N (A).

Thus, in order to prove the lemma, it suffices to show the existence of an optimal

solution x∗ to the linear program

minimize 1Tx (4.2)

subject to: Ax � b

which also satisfies the additional constraints

|xi| ≤ cA‖b‖2 for i = 1, . . . , n,

where cA is a constant depending only on A.

Claim 1. There exists an optimal solution x∗ to Linear Program (4.2) which satisfies

x∗i ≤ (dλ)−1n‖b‖∞ for i = 1, . . . , n. (4.3)

The proof relies heavily on duality. The reader is directed to [BV04] or any other

standard text for details.
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To prove the claim, consider LP (4.2). By premultiplying the inequality constraint by

d−11T on both sides, we see that 1Tx ≥ d−11T b > −∞. Thus, the objective is bounded

from below, which implies that strong duality holds. Thus, let z̃ be an optimal solution to

the dual LP of (4.2):

maximize bT z (4.4)

subject to: Az = 1

z � 0

with dual variable z ∈ Rn.

Next, consider the dual LP of (4.2) with the additional inequality constraints corre-

sponding to (4.3):

maximize bT z − (dλ)−1n‖b‖∞1Ty (4.5)

subject to: Az = 1 + y

z � 0

y � 0

with dual variables z ∈ Rn and y ∈ Rn. Equivalently, by setting z = z̃+ ∆z and observing

that y = A∆z, we can write the dual LP (4.5) as

maximize bT z̃ + bT∆z − (dλ)−1n‖b‖∞1TA∆z (4.6)

subject to: A∆z � 0

z̃ + ∆z � 0

with dual variables ∆z ∈ Rn. We prove the claim by showing that the dual LPs (4.4) and

(4.6) have the same optimal value. Since strong duality holds, the corresponding primal

problems must also have the same optimal value.

Without loss of generality, we can uniquely decompose ∆z = ∆z1 + ∆z2 where ∆z1 ∈
N (A) and ∆z2 ∈ N⊥(A). Since b ∈ N (A), we have bT∆z2 = 0 and we can rewrite (4.6)
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yet again as

maximize bT z̃ + bT∆z1 − (dλ)−1n‖b‖∞1TA∆z2 (4.7)

subject to: A∆z2 � 0

z̃ + ∆z1 + ∆z2 � 0 (4.8)

∆z1 ∈ N (A),∆z2 ∈ N⊥(A).

By definition of λ, for any unit vector u ∈ N⊥(A) with ‖u‖2 = 1 we have ‖Au‖2 ≥ λ.

Using this and the fact that A∆z2 � 0 for all feasible ∆z2, we have the following inequality:

1TA∆z2 = ‖A∆z2‖1 ≥ ‖A∆z2‖2 ≥ λ‖∆z2‖2.

Thus, the objective (4.7) can be upper bounded as follows:

bT z̃ + bT∆z1 − (dλ)−1n‖b‖∞1TA∆z2 ≤ bT z̃ + bT∆z1 − d−1n‖b‖∞‖∆z2‖2. (4.9)

Next, we obtain an upper bound on bT∆z1. To this end, observe that constraint (4.8)

implies that z̃ + ∆z1 � −1‖∆z2‖∞. Motivated by this, consider the following ε-perturbed

LP:

minimize − bTv (4.10)

subject to: z̃ + v � −ε1

v ∈ N (A).

with variable v. Let p∗(ε) denote the optimal value of the ε-perturbed problem. First

observe that p∗(0) = 0. To see this, note that if z̃ + v � 0, then bTv ≤ 0, else we would

contradict the optimality of z̃ since z = z̃ + v is a feasible solution to the dual LP (4.4) in

this case. Now, weak duality implies

−bTv ≥ p∗(ε) ≥ p∗(0)− ε1Tw∗, (4.11)
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where w∗ corresponds to an optimal solution to the dual LP of the unperturbed primal LP

(4.10), given by:

maximize − z̃T (Aw − b) (4.12)

subject to: Aw � b.

Hence, (4.11) implies that

bT∆z1 ≤ ‖∆z2‖∞1Tw∗ (4.13)

if ∆z1,∆z2 are feasible for LP (4.7).

By definition of z̃, z̃TA = 1T , and hence a vector w∗ is optimal for (4.12) if and only if

it also optimizes:

minimize 1Tw

subject to: Aw � b.

Combining this with (4.13), we have

bT∆z1 ≤ ‖∆z2‖∞1Tw∗ ≤ ‖∆z2‖∞1Tw

for any vector w satisfying Aw � b. Trivially, w = d−1‖b‖∞1 satisfies this, and hence we

obtain:

bT∆z1 ≤ d−1n‖b‖∞‖∆z2‖∞.

Finally, we substitute this into (4.9) and see that

bT z ≤ bT z̃ + d−1n‖b‖∞‖∆z2‖∞ − d−1n‖b‖∞‖∆z2‖2

≤ bT z̃ + d−1n‖b‖∞‖∆z2‖2 − d−1n‖b‖∞‖∆z2‖2

≤ bT z̃

for all vectors z which are feasible for the dual LP (4.5). This completes the proof of Claim

1.

154



Claim 2. There exists an optimal solution x∗ to Linear Program (4.2) which satisfies

|xi| ≤ cA‖b‖2 for i = 1, . . . , n (4.14)

for some constant cA depending only on A.

First note that ‖b‖∞ ≤ ‖b‖2 for any b ∈ Rn, hence it suffices to prove the claim for the

infinity norm. Claim 1 shows that each of the xi’s can be upper bounded by (dλ)−1n‖b‖∞
without affecting the optimal value of LP (4.2). To see the lower bound, let aTj be a row

of A with entry aji ≥ d/n in the ith coordinate (at least one exists for each i since the

columns of A sum to d). Now, the inequality constraint Ax � b combined with the upper

bound on each xi implies:

ajixi + (d− aji)λ−1n‖b‖∞ ≥ aTj x ≥ bj ≥ −‖b‖∞. (4.15)

Since aji ≥ d/n, (4.15) implies:

xi ≥ −λ−1n(n− 1)‖b‖∞.

Hence, we can take cA = λ−1n×max{n− 1, d−1}. This proves Claim 2, and, by our earlier

remarks, proves the lemma.

4.3 Amplifying a Pointwise Convexity Constraint

Lemma 17. Let r1, r2 ∈ R be given, and suppose f1 : K → R and f2 : K → R are

continuous functions defined on a compact domain K ⊂ Rn. If there exists a function

h : [0, 1]→ K satisfying

t (f1 ◦ h) (t) + (1− t) (f2 ◦ h) (t) ≤ tr1 + (1− t)r2 for all t ∈ [0, 1], (4.16)

then there exists x∗1, x
∗
2 ∈ K and t∗ ∈ [0, 1] for which

t∗f1(x∗1) + (1− t∗)f1(x∗2) ≤ r1

t∗f2(x∗1) + (1− t∗)f2(x∗2) ≤ r2.
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4.3.1 Remarks

At first glance, this lemma appears somewhat bizarre. Indeed, the set K need only be

compact (e.g., connectedness is not required) and h can be an arbitrarily complicated

function, as long as it satisfies (4.16). The strange nature of the lemma is echoed by

the proof in that we merely prove the existence of the desired x∗1, x∗2 and t∗; no further

information is obtained. Stripped to its core, the existence of the desired x∗1, x∗2 and t∗

essentially follows from the pigeon-hole principle, which manifests itself in the sequential

compactness of K.

Despite its strange nature, Lemma 17 was crucial in establishing the converse result

for the multiterminal source coding problem under logarithmic loss. Specifically, Lemma

17 demonstrates that an appropriately parametrized CEO problem can be tuned to yield

the converse result for the two-encoder source coding problem with separate distortion

constraints (see Chapter 2 for details). In this application, K was a closed subset of a

finite-dimensional probability simplex and f1, f2 were conditional entropies evaluated for

probability distributions in K.

Finally, we remark that the Lemma 17 can be generalized to a certain extent. For

example, the function h need only be defined on a dense subset of [0, 1] and the set K can

be a more general sequentially compact space.

4.3.2 Proof

Proof of Lemma 17. Since f1, f2 are continuous1 and K is compact, there exists M < ∞
such that f1 and f2 are bounded from above and below by M and −M , respectively.

Fix ε > 0, and partition the interval [0, 1] as 0 = t1 < t2 < · · · < tm = 1, such that

|tj+1 − tj| < ε
M

. For convenience define xtj := h(tj) when tj is in the partition.

1Although not required for our purposes, we can assume f1 and f2 are defined and continuous over all
of Rn. This is a consequence of the Tietze extension theorem.
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Now, for i = 1, 2 define piecewise-linear functions g1(t), g2(t) on [0,1] by:

gi(t) =

 fi(xtj) if tj is in the partition

θfi(xtj) + (1− θ)fi(xtj+1
) if t is in the interval (tj, tj+1),

(4.17)

where θ ∈ (0, 1) is chosen so that t = θtj + (1− θ)tj+1 when t is in the interval (tj, tj+1).

With g1(t) and g2(t) defined in this manner, suppose t = θtj + (1 − θ)tj+1 for some j

and θ ∈ [0, 1]. Then some straightforward algebra yields:

tg1(t) + (1− t)g2(t) = (θtj + (1− θ)tj+1)
(
θf1(xtj) + (1− θ)f1(xtj+1

)
)

+ (1− θtj − (1− θ)tj+1)
(
θf2(xtj) + (1− θ)f2(xtj+1

)
)

= θ2
[
tjf1(xtj) + (1− tj)f2(xtj)

]
+ (1− θ)2

[
tj+1f1(xtj+1

) + (1− tj+1)f2(xtj+1
)
]

+ θ(1− θ)
[
(1− tj)f2(xtj+1

) + (1− tj+1)f2(xtj)

+tj+1f1(xtj) + tjf1(xtj+1
)
]

≤ θ2
[
tjf1(xtj) + (1− tj)f2(xtj)

]
+ (1− θ)2

[
tj+1f1(xtj+1

) + (1− tj+1)f2(xtj+1
)
]

+ θ(1− θ)
[
(1− tj+1)f2(xtj+1

) + (1− tj)f2(xtj)

+tjf1(xtj) + tj+1f1(xtj+1
)
]

+ ε

≤ θ2 [tjr1 + (1− tj)r2]

+ (1− θ)2 [tj+1r1 + (1− tj+1)r2]

+ θ(1− θ) [(1− tj+1)r2 + (1− tj)r2

+tjr1 + tj+1r1] + ε

= (θtj + (1− θ)tj+1)r1 + (1− θtj − (1− θ)tj+1)r2 + ε

= tr1 + (1− t)r2 + ε,

where the first inequality follows since |tj+1−tj| is small, and the second inequality follows

from the the fact that (4.16) holds for each tj in the partition. Notably, this implies that
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r1 + ε

r2 + ε

(g1(0), g2(0))

(g1(1), g2(1))

Figure 4.1: A parametric plot of the function ϕ : t 7→ (g1(t), g2(t)). Since ϕ(t) is continuous,

starts with g2(0) ≤ D2 + ε, ends with g1(1) ≤ D1 + ε, and doesn’t intersect the shaded

area, ϕ(t) must pass through the lower-left region.

it is impossible to have

g1(t) > r1 + ε and g2(t) > r2 + ε

hold simultaneously for any t ∈ [0, 1], else we would obtain a contradiction. Also, since

we included the endpoints t1 = 0 and tm = 1 in the partition, we have the following two

inequalities:

g1(1) ≤ r1, and g2(0) ≤ r2.

Combining these observations with the fact that g1(t) and g2(t) are continuous, there

must exist some t∗ ∈ [0, 1] for which

g1(t∗) ≤ r1 + ε, and g2(t∗) ≤ r2 + ε

158



simultaneously. An illustration of this is given in Figure 4.1.

Applying this result, we can find a sequence {x(n)
1 , x

(n)
2 , t(n)}∞n=1 satisfying

t(n)f1(x
(n)
1 ) + (1− t(n))f1(x

(n)
2 ) ≤ r1 +

1

n

t(n)f2(x
(n)
1 ) + (1− t(n))f2(x

(n)
2 ) ≤ r2 +

1

n

for each n ≥ 1. Since K × K × [0, 1] is sequentially compact, there exists a convergent

subsequence {nj}∞j=1 such that (x
(nj)
1 , x

(nj)
2 , t(nj)) → (x∗1, x

∗
2, t
∗) ∈ K × K × [0, 1]. The

continuity of f1 and f2 then apply to yield the desired result.

4.4 Random Line Segments in the Unit Square

Let Q = [0, 1] × [0, 1] denote the unit square and let Ln be a set of n line segments in Q.

Two line segments are said to be crossing if they intersect at any point. A subset of line

segments is called non-crossing if no two segments in the subset are crossing.

Here, we consider the scenario where the endpoints of the n line segments are randomly

distributed, independently and uniformly, in Q. To this end, define N(Ln) to be the size

of the largest non-crossing subset of segments:

N(Ln) = max
U⊆Ln

{|U| : `1, `2 do not cross for all `1, `2 ∈ U} ,

where |U| denotes the number of line segments in the subset U .

Lemma 18. There exists some constant c ∈ [1/2, 15] such that

N(Ln)√
n
→ c a.s.

Moreover, N(Ln) is tightly concentrated about c
√
n in the sense that |N(Ln)−c√n| � n1/4

with probability approaching zero as n→∞.
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4.4.1 Remarks

Unlike the other two results in this chapter, Lemma 18 is not required elsewhere in this

dissertation. However, the toy problem of counting the number of non-crossing line seg-

ments has become a favorite of mine, and as such, I could not resist the temptation to

include it here.

My motivation for this result was the following. Consider a random geometric graph

on m > 2n vertices, and assume n randomly selected pairs of vertices are selected. How

many pairs can be found for which the shortest paths connecting each vertex pair do not

intersect the shortest paths connecting any other vertex pair? It can be shown that, for m

sufficiently large, shortest paths connecting two vertices can be approximated by a straight

line. Thus, Lemma 18 can be applied to estimate the maximum number of vertex pairs

with disjoint shortest paths. The reader is directed to [HCC11] for complete details on this

application.

Regarding the proof, the lower bound N(Ln) ≥ 1/2
√
n w.h.p. is a relatively standard

application of the probabilistic method (cf. [AS08]). The upper bound N(Ln) ≤ 15
√
n

w.h.p. is more delicate and requires a recent result by Sharir et al. [SW06].

Once we have these two bounds, the rest follows with relatively little effort. An applica-

tion of Talagrand’s Inequality [AS08, Section 7.7] reveals that N(Ln) is tightly concentrated

about its median mn ∈ [
√
n/2, 15

√
n] in an interval of order no larger than n1/4. Further,

by applying the subadditive ergodic theorem (in a manner similar in spirit to [Dur10, Ex-

ample 7.5.2] albeit to a four-dimensional Poisson process), one can show that there exists

some constant c ∈ [1/2, 15] such that

N(Ln)√
n
→ c a.s.

Hence, almost everything is known about asymptotic the behavior of N(Ln), except the

exact value of c. This is left as an open problem. This problem is similar in spirit to finding

the length of the longest increasing subsequence in a random permutation. The reader is
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referred to [Ham72,VK77,LS77,BJ95] for more details.

4.4.2 Proof

Proof of Lemma 18. Given the sketch of the complete proof in the remarks above, we will

only prove here that 1/2 ≤ N(Ln)/
√
n ≤ 15 with probability tending to 1 as n→∞.

Throughout the proof, we make the distinction between left and right endpoints of line

segments. This is somewhat arbitrary, but simplifies the argument significantly. Thus, a

line segment is generated according to the following process: (Step 1) the left endpoint

is chosen uniformly from Q, and (Step 2) the right endpoint is chosen independently and

uniformly from Q.

Claim 3. With probability tending to 1 as n→∞, N(Ln) ≥ √n/2.

Partition Q into
√
n disjoint horizontal strips2, each having height 1/

√
n and width 1.

Note that if a line segment ` is contained in a single strip, then it will not intersect line

segments contained in any other strip. Then N(Ln) ≥ Y , where Y is the number of strips

that contain line segments. Observe that

Pr [Line ` in strip j]

= Pr [{left endpoint of ` in strip j} ∧ {right endpoint of ` in strip j}]

= Pr [left endpoint of ` in strip j]× Pr [right endpoint of ` in strip j]

=
1

n
.

Where we used the fact that the probability a given point falls in a particular strip is 1/
√
n

and points are chosen independently. Then, the probability that a given strip does not

contain any line segments is:

(1− 1/n)n ≈ 1/e.

2The idea of partitioning Q into strips to find roughly
√
n segments is originally due to Professor

Michael Neely [Nee11].
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Further, note that:

Pr [{Line ` not in strip i} ∧ {Line ` not in strip j}]

= 1− Pr [{Line ` in strip i} ∨ {Line ` in strip j}]

= 1− (Pr [Line ` in strip i] + Pr [Line ` in strip j])

= 1− 2/n.

Where we used the fact that the events {Line ` in strip i} and {Line ` in strip j} are dis-

joint. Then for any pair of strips (i, j), the probability that neither strip i nor strip j

contains any line segments is

(1− 2/n)n ≈ 1/e2.

Let Xi be the indicator random variable taking value 1 if strip i contains no line

segments and taking the value 0 otherwise. Note that EXi ≈ e−1, Var(Xi) ≈ e−1(1− e−1),

and

Cov(Xi, Xj) = E [XiXj]− E [Xi]E [Xj]

= (1− 2/n)n − (1− 1/n)2n

≤ e−2 − e−2 + o(1)

= o(1).

Then, letting X =
∑√n

i=1Xi be the number of strips that don’t contain any line segments,

and noting that

Var(X) =
∑
i

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

≤ √n
(

1

e

(
1− 1

e

)
+ o(1)

)
+
√
n(
√
n− 1)o(1)

≤ √n+ n · o(1),
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Chebyshev’s inequality yields:

Pr

[
|X − EX| ≥ 1

10

√
n

]
≤ 100× Var(X)

n

≤ 100×
√
n+ n · o(1)

n

→ 0.

Therefore, with probability tending to 1,

X ≤
(

1 +
1

10
+ o(1)

) √
n

e
≤
√
n

2
.

Hence, Y =
√
n−X ≥ √n/2 with probability tending to 1. This proves the claim.

Claim 4. With probability tending to 1 as n→∞, N(Ln) ≤ 15
√
n.

From [SW06], there exists an absolute constant c such that for any 2k points in the

plane, the number of non-crossing left-right3 perfect matchings is upper-bounded by c ·29k.

Consider any realization of n line segments in the plane and further consider the 2k (k

left and k right) endpoints corresponding to any subset S consisting of k line segments.

Conditioned on the locations of the left and right endpoints, every left-right perfect match-

ing of these 2k points is equally likely, and thus the probability that these k segments are

non-crossing is upper bounded by:

Pr [S is non-crossing] ≤ c · 29k

k!

since there are k! left-right perfect matchings on the 2k endpoints.

Stirling’s formula states

lim
k→∞

k!√
2πk

(
k
e

)k = 1,

and thus

c · 29k

k!
≤ o(1) ·

(
29 · e
k

)k
.

3A left-right perfect matching distinguishes between left endpoints and right endpoints in edges. In
other words, an edge is only allowed to match a left endpoint to a right endpoint.
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Recalling the crude upper bound
(
n
k

)
≤
(
n·e
k

)k
, a union bound gives:

Pr[∃ k non-crossing segments] ≤
(
n

k

)
c · 29k

k!

≤ o(1) ·
(

29 · n · e2

k2

)k
Letting k = 15

√
n, we have

Pr[∃ 15
√
n non-crossing segments] ≤ o(1) ·

(
29 · e2

152

)15
√
n

≤ o(1) · (.96)15
√
n → 0.

This proves the claim.
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CHAPTER 5

Conclusion

5.1 Summary of the Results

In this dissertation, we investigated both lossy and lossless source coding problems. In

the former case, we studied source coding problems where distortion is measured under

logarithmic loss. We characterized the achievable rate distortion region for the two-encoder

multiterminal source coding problem and, along the way, we also characterized the rate

distortion region for the m-encoder CEO problem (both under logarithmic loss). We gave

several applications of these results, including betting on correlated horse races, estimation

of a posterior distribution, and list decoding. In addition, we demonstrated that our results

can be applied to obtain quantitative bounds on the general multiterminal source coding

problem with arbitrary distortion measures.

We also derived a single-letter description for a fundamental entropy characterization

problem. Namely, for correlated sources encoded separately by rate-limited encoders, we

precisely characterized the amount of information that can be revealed about each source

by the encoded representations. A consequence of this result is that relatively simple

encoding functions suffice to attain any achievable information pair for given rates.

In the context of lossless coding, we studied the problem of cooperative data exchange.

Here, we gave necessary and sufficient conditions for achieving universal recovery in an ar-

bitrarily connected network. When the network has unit diameter (i.e., is fully connected),

we derived an algorithm based on submodular optimization that can efficiently compute
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an optimal transmission schedule.

When packets are randomly distributed and the network topology satisfies certain reg-

ularity conditions, we proved tight concentration results on the number of transmissions

required to achieve universal recovery. Notably, the concentration interval is independent

of the number of packets in the network. In the special case of a single-hop network, this

concentration is shown to occur at a single, computable value. We also showed in these

settings that splitting packets does not significantly reduce the number of transmissions

required to achieve universal recovery.

As an application, we related our results to the task of distributed secrecy generation

amongst a collection of nodes in the presence of an eavesdropper. Specifically, we showed

that the submodular optimization algorithm we derived can be used to compute and gen-

erate the theoretical maximum amount of secrecy among nodes in a practical manner.

Finally, we gave three technical lemmas, each of which has applications to multiterminal

information theory. We intentionally highlighted these lemmas in their own chapter, as

each appears to be interesting in its own right. Perhaps these results will enjoy additional

applications in information theory and other fields.

5.2 Future Directions

Multiterminal information theory continues to be a rich source of problems, and will con-

tinue to be so for the foreseeable future. We take this opportunity to briefly mention some

potential directions for research specifically related to this dissertation.

In the context of the multiterminal source coding problem, one immediate direction

for further work would be to extend our results to more than two encoders. Indeed, we

have shown for the CEO problem that our results can be extended to an arbitrary number

of encoders. However, generalizing the results for the two-encoder source coding problem

with separate distortion constraints on each source poses a formidable challenge. In fact,
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any extension of our converse alone would not be sufficient since this would imply that the

Berger-Tung inner bound is tight for more than two encoders. This is known to be false

(even under logarithmic loss) since the Berger-Tung achievability scheme is not optimal

for the lossless modulo-sum problem studied by Körner and Marton in [KM79].

For the cooperative data exchange problem, it seems plausible that an efficient al-

gorithm can be found for computing optimal transmission schedules in other settings of

interest. For example, in the case of regular networks or trees with deterministic packet

distributions. On the other hand, we have seen that minimizing the number of transmis-

sions required to permit universal recovery problem is NP-hard in general. Therefore, an

interesting first step would be to try to find an example demonstrating that this problem

is NP-hard for regular networks.
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