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ABSTRACT OF THE DISSERTATION

Research on

Low-Density Parity Check Codes

Tao Tian

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2003
Professor John D. Villasenor, Chair

Low-density parity-check (LDPC) codes are a family of codes proven to have
good asymptotic ensemble properties. There are many open theoretical and practical
issues related to LDPC codes such as how to construct finite length LDPC codes with
guaranteed properties, how to realize rate compatibility with these codes, and how to
apply LDPC codes to source coding. This contribution first explains the relationship
between cycles, stopping sets and codewords from perspectives of both linear algebra

and graph theory. A method based on extrinsic message degree (EMD) is proposed

xiil



to construct irregular LDPC codes that have good cycle properties. As a result,
these codes achieve near capacity capability and low error floors. The performance
of different construction schemes are compared and the roles of cycles and stopping
sets in affecting capacity and error-floors are analyzed. Next, a rate-compatible
scheme based on LDPC codes is proposed. It is based on two techniques: parity
puncturing and information nulling. Simulations show that this scheme achieves
close-to-capacity performance over a wide range of code rates. Finally, a density
evolution analysis is developed for compression of correlated sources using irregular
LDPC codes. The standard density evolution algorithm is modified to incorporate
the Hidden Markov Model (HMM) defining the correlation model between sources.
The proposed algorithm achieves a compression rate close to the theoretical Slepian-

Wolf limit.

X1v



Chapter 1

Introduction

Low-density parity-check (LDPC) codes were proposed by Gallager in the early 1960’s
[Gal62] [Gal63]. He defined an (n, d,, d.) LDPC code as a code of block length n
in which each column of the parity check matrix contains d, ones and each row
contains d. ones. Due to the regular structure (uniform column and row weight) of
Gallager’s codes, they are now called regular LDPC codes. Gallager also invented
soft-decision and hard-decision iterative decoders based on message passing. Using
hard-decision decoding, he showed simulation results for codes of block length around
500 bits. These results indicated that LDPC codes have very good potential for
error correction. However, these codes were not long enough for the sphere packing
bound to approach Shannon capacity, and the computational resources for longer
random codes were decades away from being broadly accessible. For the ensuing three
decades, LDPC codes received relatively little attention in the coding community.
Over the past two decades, a deeper understanding of the message passing algo-
rithm defined on graphs has developed. Tanner [Tan81| introduced bipartite graphs
to describe low-density codes and the sum-product algorithm based on these graphs.

Wiberg et al. [Wib96] extended Tanner graphs by including state variables which



are invisible to decoders. Pearl [Pea88| systematically described the “belief propa-
gation” algorithm operating on Bayesian networks. It has been recently shown that
the forward/backward algorithm for turbo codes, the belief propagation algorithm
for LDPC codes, and many other decoding algorithms for other graph-based codes,
are variations of the generalized sum-product (S-P) algorithm operating on the so-
called factor graphs (see [KFLO1] [For01]). To avoid a confusion in notations, we will
call all variations of the generalized S-P algorithms message passing.

In the mid-1990’s, Berrou et al. [BGT] demonstrated the impressive capacity-
approaching capability of turbo codes, which led to the explosion of interest in turbo
codes and other long random linear codes. Turbo codes share many attributes with
LDPC codes, mostly in the way message passing is performed during the iterative
decoding process. These similarities stimulated a revived interest in previous work
on LDPC codes. In 1999, MacKay et al. [Mac99] showed that LDPC codes have
near capacity performance and proposed several empirical rules for constructing good
random codes. Luby et al. [LMSS01] formally showed that properly constructed ir-
regular LDPC codes can approach capacity more closely than regular ones. Richard-
son, Shokrollahi and Urbanke [RSUO1] created a systematic method called density
evolution to analyze and synthesize the degree distribution in asymptotically large
random bipartite graphs under a wide range of channel realizations.

Recently, many interesting and equally important research topics have emerged
aside from the fundamental topics mentioned above. As we know, the decoding com-
plexity per bit for message passing depends on graph connectivity rather than block
length, which makes decoding of very long blocks possible. However, the encoding
complexity is quadratic in block length if dense generator matrices are used. [RU01]
proposed an almost linear time systematic encoder that converts the parity-check

matrix to “approximate” lower triangular form by permutation. The permutation
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transform doesn’t affect code performance because it conserves the sparsity of the
original parity-check matrix. However, the transformed generator matrix has a spe-
cial shape that allows it to encode most of the non-systematic bits recursively in
linear time. Chung et al. [CRUO1] proposed a Gaussian approximation approach to
reduce the density evolution algorithm to a one-dimensional problem, with only a
little loss in performance compared to the accurate density evolution. [MBO01] showed
that different scheduling in the message passing decoder gives different performance
in the high SNR region. [DM98] showed by their simulations that LDPC codes over
GF(q) outperform binary LDPC codes. [Fos01] designed a reliability-based decoder
to reduce the performance gap between message passing decoding and maximum
likelihood (ML) decoding. [KLF01] designed LDPC codes based on finite geometries
which have quasi-cyclic structures and very good minimum distance properties.

Density evolution determines the performance threshold for infinitely long codes
whose associated bipartite graphs are assumed to follow a tree-like structure. Us-
ing the density evolution theory, Richardson et al. designed rate one-half LDPC
codes achieving bit error rate (BER) 107% within less than one tenth of a dB from
the capacity limit. However, the block length they used in order to achieve this
performance was 10° bits which is too long for many applications. Bipartite graphs
representing finite-length codes without singly connected nodes inevitably have many
short cycles, which are neglected in the density evolution theory. Cycles in bipar-
tite graphs compromise the optimality of the commonly practiced message passing
decoding. If cycles exist, neighbors of a node are not conditionally independent in
general, therefore graph separation is inaccurate and so is Pearl’s polytree algorithm
[Pea88] (which defines belief propagation as a special case).

Two finite-length analyses have been developed for LDPC codes recently: “stop-

ping set analysis” [DPT*02] for the binary erasure channel (BEC) and “projection
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algebra and critical set analysis” [YSB]. The former predicts the performance of
LDPC code ensembles with given degree distributions while the latter predicts the
performance of a single LDPC code. Both analyses have to be improved because they
have very high computation complexity for longer blocks (e.g., several thousand bits).

Randomly realized finite-length irregular LDPC codes with block sizes on the or-
der of 10* [RSUO1] approach their density evolution threshold closely (within 0.8dB
at BER ~ 107°) at rate 1/2, outperforming their regular counterparts [Mac99] by
about 0.6dB. Most publications to date on this subject of irregular codes have fo-
cused on the performance relative to capacity, and do not consider performance at
Ey/Ny levels in the error floor region. In this paper, we repeated the irregular code
construction method described in [RSUO1] and extended their simulation to a higher
SNR region. In the relatively unconditioned codes, an error floor was observed at
BERs of slightly below 107%. In contrast, regular codes and almost regular codes
([KLFO01]) usually enjoy very low error floors, apparently due to their more uniform
Hamming distance between neighboring codewords and higher minimum distances.

MacKay et al. [MWD] first reported the tradeoff between the threshold SNR
and the error floor BER for irregular LDPC codes versus regular LDPC codes. A
similar tradeoff has been found for turbo codes ([BDMP9S8|, [FW]). In the present
contribution, we introduce code construction methods that specifically address the
error floor issue. We present a design technique that requires all small cycles to have
a minimum degree of connectivity with the rest of the graph. This technique lowers
the error floors of irregular LDPC codes by several orders of magnitude with only
a little cost in performance relative to capacity in the waterfall region of the BER
versus £, /Ny curve.

The error floor of an LDPC code under maximum likelihood (ML) decoding

depends on the d,,;, of the code and the multiplicity of d,,;, error events. However,
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for randomly constructed codes, no algorithm is known to check if they have large
minimum distances (This problem was proved to be NP-hard [Var97]).

As a result, the common approach has been to indirectly improve d,,;, through
code conditioning techniques such as the removal of short cycles (girth conditioning
[MB], [AEH]). Such conditioning is useful also because certain short cycles can cause
poor performance in conjunction with iterative decoding even if they have a large
dpmin and would not be problematic for ML decoding.

Cycle properties play a critical role in determining error floors. We explore the
relationship between cycles, stopping sets, and other attributes of the code and its
associated bipartite graph. One argument we will make in this contribution is that
not all cycles are equally problematic in practice. The more connected a cycle is
to the rest of the graph, the less difficulty it poses to iterative decoding. A mnovel
concept called “extrinsic message degree” (EMD) is introduced to help analyze the
inner-structure of stopping sets. An efficient algorithm based on an approximation
of EMD is proposed that constructs LDPC codes with good cycle properties and a
correspondingly lower error-floor.

Many factors can change the characteristics (or states) of communication chan-
nels. These factors include multipath fading, temperature/moisture change, hostile
jamming, and user-specified settings. A robust communication system should pro-
vide bandwidth close to capacity under various channel conditions. For example, the
3G CDMA specification IS-856 supports 12 data rates ranging from 38.4 to 2,457.6
Kbps. The corresponding code rate varies between 1/5 and 1/3. Traditionally, to
achieve rate-compatibility, we have to independently build several subsystems that
operate at different code rates, and switch between them according to channel state
information. However, this scheme increases the design, setup and maintenance cost.

A more efficient and flexible rate-compatible scheme is desired.

5



Punctured codes have long been used to achieve rate compatibility [Hag88] [WLS].
Compared to the traditional rate compatible codes based on convolutional codes and
turbo codes, LDPC codes enjoy more freedom in puncturing pattern design, thus
allowing for an almost continuous spectrum of code rates and more robustness to
catastrophic events (stopping set puncturing). A density evolution algorithm was
developed by Ha et al. [HM] to find asymptotically good puncturing profiles for
LDPC codes.

We propose a rate-compatible scheme that combines parity puncturing and infor-
mation nulling. Simulation results show that this scheme achieves close-to-capacity
performance with low error floors across a wide range of code rates.

The last contribution is a density evolution analysis of a compression system for
memory correlated binary sources using irregular LDPC codes as source codes.

It is well known that the problem of compressing correlated sources can be con-
sidered as a problem of channel coding with side information [Wyn74], [SVZ98]. The
first approach to using practical channel codes in this context was presented in [PR].
More powerful turbo-like codes and iterative decoding schemes were introduced in
[GF] and [GFZa]. Other work that utilizes turbo codes for source coding can be
found in [BM], [AG]. Recent research [LXGO02| has shown that the use of regular
LDPC codes improves performance over turbo codes for the case of memoryless cor-
relation. This result was extended in [GFZb] to the case of correlation with memory,
where the memory is defined by HMMs.

The basic idea in [GFZb] is to incorporate the HMM in the graph that repre-
sents the code, and to apply the corresponding message passing algorithm over the
whole graph. We extend this work to irregular LDPC codes. The standard density
evolution algorithm is modified to incorporate the Hidden Markov Model (HMM)

defining the correlation model between sources. Analysis and simulation shows that
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the proposed irregular LDPC codes optimized with this algorithm outperform tradi-
tionally designed regular or irregular LDPC codes. The proposed algorithm achieves
a compression rate close to the theoretical Slepian-Wolf limit.

Chapter 2 explores the relationship between several important graph structures:
cycles, stopping sets, linearly dependent sets and edge expanding sets. A high-level
description of their effects on the message passing algorithm is given. Furthermore,
the sufficient and necessary condition for a set of variable nodes to be cycle-free is
introduced.

Chapter 3 focuses on the inner-structure of stopping sets, especially how these
sets are formed by clustering cycles. We will show that stopping sets have weak
extrinsic message flow. To describe extrinsic message strength for stopping sets and
variable node sets in general, we introduce EMD and its approximation ACE. A code
construction algorithm based on ACE is given. The effectiveness and efficiency of
this algorithm is discussed.

Chapter 4 describes the “smart” decoder and gives the simulation results for
LDPC codes generated with the ACE algorithm. Different parameter schemes are
compared.

Chapter 5 discusses a novel design of rate-compatible LDPC code that performs
close to capacity over a large range of code rates. It combines three techniques:
information nulling, parity puncturing, and lower triangular submatrix construction.

Chapter 6 develops a density evolution analysis of a compression system for mem-
ory correlated binary sources using irregular LDPC codes as source codes. In order
to achieve this goal, the standard approach in density evolution is modified to in-
corporate the Hidden Markov Model (HMM) defining the correlation model between
sources. The proposed scheme is then applied to the design of irregular LDPC codes

that optimize the system performance.



Chapter 2

Analysis of Cycle Properties

This chapter will first introduce two equivalent descriptions of an LDPC code: the
matrix and the bipartite graph. We then explore the relationship between several
important graph structures, namely, cycles, stopping sets, codeword sets and edge
expanding sets. The effect of these graph structures on code performance at high SNR
will be discussed briefly. Furthermore, we will provide the sufficient and necessary

condition for a set of variable nodes to be cycle-free.

2.1 Notation and Background Information

2.1.1 Representation of LDPC Codes

We wish to design an (n, k) binary systematic LDPC code where n is the block length
and k is the number of information bits in one block. The code rate is R = k/n. The
parity check matrix H is a full-rank (n — k) X n sparse matrix. The rows of H span

the null space of the codeword space. H can be written as

H:{H1 Hz}, (2.1)
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where Hj is an (n — k) X k matrix and Hj is an (n — k) x (n — k) matrix. Hy is
constructed to be invertible, so by row transformation through left multiplication
with H, ', we obtain a systematic parity check matrix H sys that is range equivalent

to H

HSZJS = H2_1H = |: H;lHl Infk :| . (22)

A systematic generator matrix can be obtained from Hgys

Gays = { L, (Hy'Hy)" ] : (2.3)

The rows of Gy span the codeword space. Obviously, G H" = Gy HL, = 0. It
should be noted that although the original A matrix is sparse, neither H,, nor Gy,
is sparse in general. G, is used for encoding and the original sparse parity matrix
H is used for iterative decoding.

An LDPC code can also be described by a bipartite graph. In this graph, n
variable nodes form the left vertex set and (n — k) constraint nodes form the right
vertex set. In the case of a systematic code, the first k variable nodes are message
nodes and the other (n—k) variable nodes are parity nodes. If the entire set of variable
nodes forms a valid codeword then the exclusive-or performed by each constraint node
will be zero.

One column in the parity-check matrix corresponds to one variable in the bipartite
graph. For convenience, we will use ‘column’ and ‘variable’ interchangeably in this
paper.

The bipartite graphs and H matrices we are interested in have two further prop-

erties:



(1) There is at most one edge between any pair of nodes. In other words, there are

no double-edges or other types of multiple-edges.

(2) There are no singly connected variable nodes, i.e., the degree (number of neigh-

bors) of any variable node is at least 2.

The first property ensures equivalence between the matrix and graph descriptions
of the code. The second property will be used as part of a proof which relates graph
structures known as stopping sets to cycles. As an example, the matrix and graph
descriptions of a (9, 3) irregular code are shown in Fig. 2.1. Because a vertex cannot
connect to another vertex from the same side in a bipartite graph, the length of any
cycle in a bipartite graph is an even number. Fig. 2.1 also shows in solid lines a

length-6 cycle that involves variable nodes vq, v4 and vg.

H=

messag
_Vo Vi V2 V3 V3 V5 Vg Vy V8_ nodes
0—31+—6—1 0 0 0 1 ¢
0 1 1 0 =% 0 0|c
O 0 01 90 1 0D 0O
© check
0 0 0 1 § 1 0 ¢ nodes <
0 1 1 1 0 1 0 0 1| c
I—06—0—0°0 1 1/¢s
- \_V_/ N -
V - .
H 1 H 5 variable constraint
nodes nodes

(@ (b)

Figure 2.1: Matrix description and graph description of a (9, 3) code.

The systematic parity check matrix and the systematic generator matrix of this
example can be derived according to Eq. 2.2 and 2.3. They are shown in Eq. 2.4
10



and 2.5

(011100000

110010000
HsyS:{H21Hl Ink}: 011001000 o)

110000100

01 10000T10

011000001

100010100
Gsysz{lk (H;lHI)T]z 01011 111T1]. (2.5)

0011010171

2.1.2 Message Passing Decoding

Let x be the transmitted signal corresponding to a variable bit with BPSK modu-
lation. We define signal mapping in a way such that x = —1 if its corresponding
variable bit is 1 and z = 1 if its corresponding variable bit is 0. Let y be the received
signal which is equal to the sum of x and a noise. A message passing decoder tries
to solve z’s based on the knowledge about y’s. There exist many ways to describe
the soft-decision message passing algorithm (see [KFLO1]). A very parsimonious and
convenient one can be described as exchanging log-likelihood ratios (LLRs) between
variable nodes and constraint nodes. Define u as an incident message to a variable

node

p(z = 1]y)

u=lIn ,
plz = —1[y)

and v as an emanating message from a variable node

11



.'L'/ — 1 /
v=In P& =) (2.7)
plx’ = —1[y’)
where 2’ and 3’ have the same meaning as x and y except that they correspond
to the variable that is located at the source of this message. As we can see, an

important advantage of using LLRs is that probabilities such as 107° and 1 — 107°

can be easily represented by In % ~ —11.51 and In 1;&9;5 ~ 11.51. Fixed-point

implementation is more accurate using LLRs than using probabilities because the

finite-word effect is much reduced with LLRs.

[+] [+]

] [+ B [+

variable nodes constraint nodes variable nodes  constraint nodes

Step A Step B

Figure 2.2: Illustration of one iteration in message passing decoding.

One iteration in message passing decoding consists of two steps. Step A, passing
messages from constraint nodes to variable nodes; step B, passing messages from
variable nodes to constraint nodes. These two steps are illustrated in Fig. 2.2. In
step A, the half-edges attached to the variable nodes represent the a priori LLRs

12



determined by the received signal y and channel parameters. One message from a
half-edge to its corresponding variable node is labeld ug. The computation involved

in these two steps can be written as Eq. 2.8 and 2.9 respectively (see [CRUO1]).
v = Z u;, (2.8)

tanh% = H tanh - (2.9)

where d, and d. are the degree of the corresponding variable node or constraint node
respectively. Computation of Eq. 2.8 is simple because it only involves summation.
However, Eq. 2.9 involves multiplication and hyperbolic tangent functions. We can

prove that by defining

f(z) = —Intanh § ~
—In(1 —2e7*) =2 if x>>1 (2.10)

—In3 if =0,

Eq. 2.9 can be re-written as

de—1
sgn(u) = H sgn(v;), (2.11)

and

u| = £ (Z_j f(|vjy)> . (2.12)

j=1
where sgn(z) is the sign function. Eq. 2.12 is computationally efficient because the
f(-) function can be implemented by a look-up table and thus only summation is
involved in calculating this equation. The curve for the f(-) function is shown in Fig.

13



2.3.

0 05 1 15 2 25 3 35 4 45 5

Figure 2.3: f(-) function used in message passing algorithm.

Due to the different nature of the functions involved in Eq. 2.8 and 2.9, u messages
and v messages have different effect on the reliability of corresponding nodes. For

example, in Eq. 2.8, if there are three input u messages

Uy = —O.Q,Ug = 2, Uz = —207 (213)

then the output v message is

v=—02+2—-20=—18.2, (2.14)

which has a value close to —20, the most reliable input message. In Eq. 2.9, if there
are three input v messages
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v = —0.2,’02 = 2,’03 = —20, (215)

then the output u message is

w = 2tanh™(0.0997 x 0.7616 x 1.0000) = 0.152, (2.16)

which is similar in magnitude to the lease reliable input message —0.2. This is because
the hyperbolic tangent function saturates at high magnitude. The reliable messages
barely affect the magnitude of the output u message because the hyperbolic tangent
of them is close to either 1 or —1. Only the unreliable messages, whose magnitude
lies in the linear region of the hyperbolic tangent function, reduces the reliability of
the output v message. Particularly, in a BEC, an output v message will not be an
erasure as long as there is an input v message that is not an erasure; an output u
message will not be an erasure only if all of its input v messages are not erasures.
To summarize this, we say:

The reliability of a v message is similar to that of the most reliable input u mes-
sage; the reliability of a u message is at most that of the least reliable input v message.

We know that a BIAWGN channel can be quantized into a binary symmetric
channel (BSC) in which all the LLRs have large magnitude at medium to high SNR.
Note tanh(z/2) = sgn(x) for |z| >> 1. If we assume that all the u’s and v’s take
value 00, Eq. 2.11 contains all the information about Eq. 2.9 because Eq. 2.12 is
always satisfied. Note Eq. 2.11 is exactly the hard-decision parity check equation.
Therefore, Eq. 2.8 can be viewed as the “soft” version of the parity check operation.

It should be noted that before message passing, all the unknown messages except

a priori messages (denoted by uy’sTj 25.3-420(03.7947 0 Td (view)d (’s.ould)Tj 36.6494 0 Td (L



T = sgn (2 u,) : (2.17)

=0

where Z is the estimate of z and sgn(-) is the sign function. The difference between
Eq. 2.17 and 2.8 is that the sum in Eq. 2.17 is taken over all the incident edges and
half-edges, as opposed to only d, — 1 edges.

Message passing decoding is optimal only for tree-like graphs. The performance
of this decoding algorithm on a general (dense) graph is not guaranteed because
of the wide existence of cycles. In contrast, sparse bipartite graphs are suitable
for message passing decoding because they have better cycle properties than dense

bipartite graphs. These properties will be analyzed in the next section.

2.2 The Relationship Between Cycles, Stopping
Sets and Linearly Dependent Sets

Although the relationship between graph topology and code performance in the case
of a specific code is not fully understood, work has been done to investigate the effects
of graph structures such as cycles, stopping sets, codeword sets, and expanders. Here
we give a specific analysis of how these four concepts are related. This analysis can
be combined with density evolution to generate good irregular LDPC codes.

For brevity we denote cycle sets by Cy, stopping sets by Sy, codeword sets by
Wy, and edge-expanding sets with parameter 1/2 by E;. These sets, as well as the
nature of the parameter d are described below. It is helpful to first illustrate the

relationship between these sets (Fig. 2.4).
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Figure 2.4: Relationship between Cy, Sy, Wy and Ejy.

2.2.1 C,; Cycle Sets

Definition 2.2.1. (Cycle) A cycle of length 2d is a set of d variable nodes and d
constraint nodes connected by edges such that a path exists that travels through
every node in the set and connects each node to itself without traversing an edge

twice.

Definition 2.2.2. (Cy; Cycle set) A set of variable nodes in a bipartite graph is a
Cy set if (1) it has d elements, and (2) one or more cycles are formed between this
set and its neighboring constraint set. A set of d variable nodes does not form a Cjy

set only if no cycles exist between these variables and their constraint neighbors.

Note that the maximum cycle length that is possible in a Cy set is 2d. Fig.
2.1 shows a length-6 cycle (vg — cog — vy — 1 — v6 — ¢5 — V) and a length-4 cycle
(vg — 1 — vg — c3 — vy). Variable node set {vg, v4, v} is a C3 set. Variable node set
{vy,v5,v6} is also a Cj set although v; is not contained in the length-4 cycle. Di et
al. defined a stopping set as follows, which we will show to contain cycles shortly.

A well known result is that message passing is accurate only for cycle-free graphs.
We know that the number of edges in a tree equals to the number of nodes minus
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one, thus a code whose graph is a tree has n+ (n — k) — 1 = 2n — k — 1 edges. This
number is too small for a practically useful finite length code. Actually the result
given by density evolution says that all the variable nodes should be connected to
at least two edges, which gives the minimal number of edges 2n > 2n — k — 1.
Therefore, cycles are almost inevitable and they make the message passing algorithm
suboptimal. Furthermore, not all cycles are equally harmful. For example, it is
well-known that short cycles among low-degree variable nodes represent severe code

defects.

2.2.2 S, Stopping Sets

Definition 2.2.3. (S; Stopping set [DPT"02]) A variable node set is called an

Sy set if it has d elements and all its neighbors are connected to it at least twice.

Variable node set {vg, v4,v6} in Fig. 2.1 is an S5 set because all its neighbors cy,
c1, cg and cg are connected to this set at least twice.

The following lemma shows that stopping sets always contain cycles. The effec-
tiveness of message passing decoding on graphs with cycles depends primarily on

how cycles are clustered to form stopping sets.

Lemma 2.2.4. In a bipartite graph without singly connected variable nodes (such as
one generated with a degree distribution given by density evolution), every stopping

set contains cycles.

Proof: A stopping set (variable nodes) and its neighbors (constraint nodes) form
a bipartite graph where one can always leave a node on a different edge than used
to enter that node. Traversing the resulting bipartite graph in this way indefinitely,

one eventually visits a node twice, thus forming a cycle.O
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Alternative proof. As explained before, if every node in an LDPC bipartite graph
is at least doubly connected, the total number of edges is at least 2n which is larger

than 2n — k — 1, the number of edges required for the graph to be a tree.O

Lemma 2.2.5. In a bipartite graph without singly connected variable nodes, stopping
sets in general are comprised of multiple cycles. The only stopping sets formed by a

single cycle are those that consist of all degree-2 variable nodes.

Proof. A cycle that consists of all degree-2 variable nodes is a stopping set. To
prove the lemma, we only need to show that if a cycle contains variable nodes of
degree-3 or more, any stopping sets including this cycle are comprised of multiple
cycles. Fig. 2.5(a) shows a cycle of arbitrary length 2d (here 2d = 8 for demonstra-
tion). Assume that one variable node v, in this cycle has degree 3 or higher, vy must
be connected to at least one constraint node out of this cycle (for instance ¢; in Fig.
2.5(a)). By the definition of a stopping set, ¢; must be connected to variable nodes
in the stopping set at least twice. Therefore if ¢; is not connected to vy, or vs, or vy,
the stopping set must contain at least one more variable node (for instance vs). The
‘concatenation’ of constraints and variables on to vs may occur across many nodes.
However, to form a stopping set, eventually a new loop must be closed that connects
the newest constraint in the chain to a variable on the chain or in the original cycle.
Thus, the stopping set is comprised of at least two cycles.O

According to Lemma 2.2.5, the general view of stopping sets and cycles is given in
Fig. 2.5(b). Two types of variable nodes comprise a stopping set. Variable nodes of
the first type (denoted by solid curves) form cycles with other variable nodes; variable
nodes of the second type (denoted by dashed curves) form binding structures that
connect different cycles. It should be noted that both binding nodes and cycle nodes

may have branches that lead to cycles containing variable nodes not in the current
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extrinsic component of v
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Figure 2.5: (a) Extrinsic concatenation (b) Structure of a stopping set

stopping set. Our proposed parity matrix design algorithm ensure that short cycles
contain at least a given minimum number of ‘extrinsic paths’. This leads to an
increase in the minimum size of a stopping set.

Di, et al. [DPTT02] showed that in a binary erasure channel (BEC), the residual
erasure bits after message passing iterative decoding are exactly equal to the max-
imum stopping set which is a subset of the originally erased bits. See the example
in Fig. 2.6. Variable nodes vy, v4 and v5 are erased. Any message passing from
constraint nodes to these variable nodes, e.g., the one from c; to vg, is a function
of the incident messages to c¢; from other variable nodes, which contain at least one
erasure (the checked edge). Because an erasure is a bit that has equal probability to
be 0 or 1, the resulting message remains erased and no further iterations can recover
it. Therefore, stopping sets are the only type of “bad” cycles in a BEC. A natural
conjecture is that stopping sets play an important role in other channels. In particu-
lar, consider the scenario where all members of a stopping set are received with poor

reliability at the output of a binary-input additive white Gaussian (BIAWGN) chan-
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Vs
Figure 2.6: Erasure of stopping sets in BEC causes decoding failure.

nel. These reliabilities will be particularly slow to change in the course of message
passing decoding as the reliability generated by any connected neighbor (constraint

node) must also be low.

2.2.3 W,; Codeword Sets

Definition 2.2.6. (IW; Codeword set) A variable node set is called a Wy set if it

is comprised of exactly d elements whose columns form a (weight-d) codeword.

Variable nodes set {vg,vs,v6} in Fig. 2.1 is the W3 set corresponding to the
codeword 100010100. A linear code with minimum distance d,,;, has at least one
codeword with weight d,,;, and no non-zero codewords with smaller weight. Hence,
there is at least one W, . set but no W, sets where d < d,,.

Erasing all the variables in a codeword set is the same as erasing all the non-zero
positions of a binary codeword. Recovery from such an erasure is impossible even

under ML decoding. Thus all codeword sets are stopping sets. This argument can
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be formalized into the next theorem.
Theorem 2.2.7. An Wy set must also be an Sy set.

Proof: The binary sum of all columns corresponding to the variable nodes in Wy
is the all-zero vector. Thus any neighbor (constraint node) of Wy is shared by the
variable nodes that comprise W; an even number of times, which means at least
twice.O

In a linear block code, the lowest codeword (Hamming) weight is called the min-
imum distance d,,;,. Preventing small stopping sets also prevents small d,,;,. If a
code has d,;,, it must have an Sy, , stopping set. Thus, avoiding all stopping sets
Sy for d <t ensures d,;, > t.

However, small stopping sets do not necessarily represent low distance events.
Indeed, an ML decoder can successfully decode an erased stopping set if a full column-
rank sub-matrix is formed by the columns of the parity check matrix that are indexed
by the stopping set variables. For example, {vs, vy, v5, U6, vg} in Fig. 2.1 is a stopping
set that may be recovered by ML decoding (in the BEC case, simply solve a linear
equation set). However, an erased stopping set can never be overcome by an iterative
decoder.

With additive white Gaussian noise (AWGN), the magnitude of a corrupted signal
can be so small that it can be effectively treated as an erasure. Hence the role
of stopping sets can be translated to AWGN scenarios where variables with poor
observation reliability are analogous to erasures. All stopping sets of small size
are problematic. Some cause small distance, and all cause problems for iterative
decoding. An obvious direction to take in order to generate codes well-suited to
iterative decoding is to increase the size of minimum stopping set and reduce its

multiplicity.
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2.2.4 [E; Edge Expansion Sets

Edge expanders are known to have good minimum distance properties.

Definition 2.2.8. ((«, ) edge expander [DPT*02]) Let L be any subset of left
nodes (variable nodes). Define E(L) to be the number of edges connected to L and

N(L) to be the number of neighbors of L. An («, v) edge expander of an (n, k) code
is a graph that has N (L) > vE (L) for all subsets with E (L) < an.

Methods that realize regular graphs with good edge expanding properties were
proposed by Margulis in [Mar82]. However, a construction that can simultaneously
satisfy a given edge expanding property as well as a given irregular degree distribu-
tion has yet to be proposed. We are interested in the special case of (a,1/2) edge

expanders.

Definition 2.2.9. (E,; Edge-expanding set with parameter v = 1/2) A set of d
variable nodes is called an Ej set if one-half of the number of edges emanating from

it is less than the number of neighbors to which these edges connect.

The relationship between stopping sets and («, 1/2) edge expanders is given by

the following theorem.

Theorem 2.2.10. (1) {S;} and {E4} are disjoint sets. i.e., An Sy set cannot be an
Ey set and vice versa. (2) If all size-d subsets of variable nodes are {E4} sets then

an {Sq} set does not ezist.

Proof. According to the definition of Ey, neighbor nodes of E,; are connected to
E,; less than twice on average. So there must exist at least one singly connected
neighbor to E,, this proves (1). It easily follows that if all size d subsets form Ej,

sets then no size-d subset may be an Sy set (2). O
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For a code with minimal variable node degree 2, if all the subsets of an (n, k) code
with d elements are Ey4 sets, where d = 1,2, ..., ceil (an/2), then this code is an («,
1/2) edge expander. (This is a sufficient condition but not a necessary one, because
an F; set can have more than 2d edges if it contains variable nodes with degree
higher than 2.) It follows that designing a code that avoids Sy sets is similar to the
problem of generating as many E, sets as possible. In the code design process that
follows we improve the edge expansion property of short cycles, therefore indirectly
reducing the occurrence of small stopping sets.

Fig. 2.4 outlines the relationships between the above-mentioned graph structures.
Some examples help clarify these relationships. Fig. 2.7 (a) shows three columns that
are not linearly dependent since their binary sum is not all-zero, hence, {0, 3, 5} is
not a Wy set. But because all neighbor nodes of {0, 3, 5} (corresponding to the first
three rows) are connected to it at least twice, it is an S3 set. Fig. 2.7 (b) shows one
length-6 cycle in set {0, 3, 5} which makes this a C5 set. However the last constraint
node is singly connected to the variable node set and so this set does not form an S3

set.

2.3 Cycle-free Sets

At this point, the value of removing small stopping sets is apparent. However, one
might argue that simple girth conditioning accomplishes this because every stopping
set contains cycles. The problem with traditional girth conditioning is that there are
so many cycles. Fig. 2.8 illustrates a cycle in the support tree of variable node vg
of Fig. 2.1. All the levels whose indices are odd numbers consist of constraint nodes
and all the levels whose indices are even numbers consist of variable nodes. A cycle

occurs if two positions in the support tree represent the same node in the bipartite
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Figure 2.7: Examples (a)Ss but not W3 (b)C5 but not Ss.

graph (e.g., vg in level-3). To detect cycles of length up to 2d in the support tree of
Vg, we need to expand its support tree d levels.

The number of nodes in the support tree grows exponentially with the number
of levels expanded. To be short-cycle-free, all these nodes have to be different, so
the longest cycle size we can avoid increases only logarithmically with block size (see
[Gal62]). Since the logarithm is a slowly increasing function, girth conditioning of a
finite length LDPC code is severely limited by block length.

Girth conditioning is especially problematic when there are high-degree nodes,
as is common with degree distributions produced by density evolution. Recent girth
conditioning techniques usually bypass high degree nodes. For example, in [MB],
the edge-wise highest variable degree is only 3; in [AEH], the fraction of the high-

est degree variables Ag is only 0.025. As a result, girth conditioning was easier to
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Figure 2.8: Traditional girth conditioning removes too many cycles.

perform. However, the capacity-approaching capability was sacrificed. High degree
nodes are indicated by density evolution and lead to large stopping sets. The follow-
ing arguments further discuss the cycle-related structures for high degree nodes and

low degree nodes.

Definition 2.3.1. (Cycle-free set) A variable node set is called a cycle-free set if

no cycle exists among its constituent variables.

Theorem 2.3.2. A necessary and sufficient condition for a set of degree-2 variable

nodes to be a cycle-free set is that this set is linearly independent.

Proof. All sets that are not linearly independent contain codeword sets. Codeword
sets are special stopping sets and stopping sets contain cycles (Lemma 2.2.4). For
sufficiency, note that the constraint nodes taking part in a cycle among degree-2
nodes are each shared by exactly two variable nodes. Therefore the binary sum of
columns (variables) taking place in the cycle is the all-zero vector and these columns

are linearly dependent.O

Corollary 2.3.3. A mazimum of n —k — 1 degree-2 columns of length n — k may be

linearly independent (cycle-free).
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Proof: Consider the (n — k) x (n — k — 1) bi-diagonal matrix,

(1 0 0]
11
0 1
nk, (2.18)
10
11
0 0 1|
n—k—1

This matrix forms a rank n — k — 1 basis of degree-2 columns each with dimension
n — k. Any possible degree-2 column of dimension n — k can be formed via a linear
combination of columns in the above basis.O

Corollary 2.3.3 may also be considered a version of the Singleton bound where the

restriction to degree-2 columns lowers the best possible d,,;, from n—k ton—Fk— 1.

Theorem 2.3.4. In an (n, k) code free of degree-1 variables, a cycle-free variable
node set {vi,va, ..., vs} must satisfy Y :_, (d; — 1) <n—k — 1, where d; is the degree

of v;.

Proof. A degree-d variable node whose constraints are {cy, ¢s, ..., ¢4} can be con-
ceptually replaced by a cluster of d — 1 degree-2 nodes whose constraints are {cy, c2},
{ca,¢3}, .oy {ca—1, ca} respectively. As an example, Fig. 2.9 shows how variable node
vy in Fig. 2.1 may be replaced by a cluster of two degree-2 nodes.

Because the indices of the constraints in a cluster are ordered, any cycle involving
the degree-d node is equivalent to a cycle involving some of the degree-2 nodes in
the cluster replacing the original node. Fig. 2.10 shows an example. Replace every

variable in the set with its equivalent cluster. According to Corollary 2.3.3, at most
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nodes whose cardinality is larger than n — k — 1 can be cycle-free.

n—k—1 of these resulting degree-2 nodes can form a cycle-free set. Thus the theorem

Corollary 2.3.5. In an (n, k) code free of degree-1 variables, no set of variable

Proof. Equality in the inequality of Theorem 2.3.4 is achieved with n — k — 1

independent degree-2 variable nodes. Fewer variable nodes are allowed if some have



Lemma 2.2.5 and Theorem 2.3.2 show that for degree-2 variable nodes, cycles,
stopping sets and codeword sets are equivalent. These structures are distinct for
higher degree nodes following the Venn diagram of Fig. 2.4. Theorem 2.3.4 shows

that higher degree nodes may b



Chapter 3

Extrinsic Message Degree and

LDPC Code Design

The goal of LDPC code design is achieving good performance close to capacity while
maintaining low error floors. These two goals are contradictory in general, as sug-

gested by Urbanke in [DPT*02]:

Steep cliffs are usually associated with high error floors. A large frac-
tion of degree two left nodes leads to an initial rapid decline of the error
probability. On the other hand a large degree two fraction usually causes

problems towards the end of the decoding process.

This can also be explained intuitively in the following way. A low-error-floor
code can dilute the effect of a few corrupted bits to a large number of bits at high
SNR while a near-capacity code tends to localize errors at low SNR to prevent error
propagation. Degree-two nodes widely exist in irregular LDPC codes with degree
distribution generated by density evolution (see [RSUO1]) whereas they do not exist

in regular codes involving variable node of degree 3 or higher.
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In this chapter, we will see that degree-two nodes allow very little extrinsic mes-
sage flow, which is the major reason why randomly generated irregular codes have
small stopping sets, and hence high error floors. Our goal in LDPC code design is to
reduce error floor level, and maintain the capacity performance of irregular LDPC
codes as well as possible.

For QPSK and BPSK modulation, FEuclidean distance and Hamming distance
are linearly related. Thus, it is reasonable to design codes for such modulations to
focus on the Hamming distance spectrum. Minimum Hamming distance (d,,i,) is
well-known to be related to the number of errors (¢) that can be corrected reliably,
Amin = 2t + 1. Minimum Hamming distance is also known to be linearly related to
the number of erasures (u) that can be corrected, d, = u + 1. We already know
that the minimum stopping set size is equal to the smallest number of erasures that
cannot be corrected by iterative decoding. Thus it is closely related to the Hamming
distance (and hence Euclidean distance for QPSK and BPSK). Because the weight
distribution of stopping sets is so closely related to the Euclidean distance spectrum,
it is clear that LDPC designs focusing on the weight distribution of stopping sets is
appropriate for AWGN channels as well as the binary erasure channel (BEC).

This goal can be achieved by ensuring that all stopping sets have at least some
minimum number of variable nodes. However, no polynomial-time algorithm is
known that removes small stopping sets explicitly, and our attempts to directly con-
trol stopping set sizes were too complex even to prevent very small stopping sets in
a reasonable amount of time.

Lemma 2.2.5 shows that stopping sets are comprised of linked cycles. An efficient
way to suppress small stopping sets is to improve the edge expanding properties
of cycles in an irregular LDPC code. From the discussion of Ej; sets, we know that

constraint nodes singly connected to a variable node set provide good edge expansion
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because these constraint nodes ensure useful message flows. Our algorithm achieves
this by focusing on a parameter of variable node sets that we call the extrinsic message

degree (EMD).

3.1 Extrinsic Message Degree

The essence of the message passing decoding algorithm is to find the probability
of every variable bit based on the observation of all the other variable bits. From
Chapter 2 we know that there are two types of messages passed in the bipartite
graph: messages from constraint nodes to variable nodes (u messages) and messages
from variable nodes to constraint nodes (v messages). These two types of messages
have different reliability evolution rules. As shown in Eq. 2.8, the reliability of the
output v message is similar to the reliability of the most reliable input u; message;
in Eq. 2.12, the reliability of the output u message is similar to the reliability of the
least reliable input v; message.

Consider the ‘voting’ example in Fig. 3.1. If the incident u message is positive, it
“votes” variable node vy as +1, otherwise, it “votes” vy as —1. The magnitude of a
message indicates its reliability. The output v message is generated as the sum of all
incident u messages, which shows a compromise between “voters”. If the magnitude
of u is much larger than the magnitude of the messages from cg and ¢4 to vo, u will
almost dominate the “vote” result at vo. In contrast, the reliability generated by
constraint node c; is not guaranteed solely by one v message. No matter how reliable
this v message is, the reliability of ¢; also depends on other incident messages (from
variable nodes vy, vy, vs and vg). Flipping of any two incident v messages in Eq.
2.11 shows no detectable effects. In the case of a BEC where a stopping set (vg, v4

and vg) is erased, at least two of the incident v messages to constraint node c; are
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lost and any output u message c¢; generates will be erased no matter what incident
messages it receives from variable nodes outside of this stopping set.

Thus we conclude: a non-erasure u message is useful in increasing the reliability of
the corresponding variable node; a non-erasure v message is only useful in increasing
the reliability generated by the corresponding constraint node if this constraint node
is not a neighbor of an erased stopping set.

The difference between the effectiveness of u messages and v messages explains
why the variable nodes of a good LDPC code can have very different degree whereas
the constraint nodes typically have uniform degree. If some constraint nodes have

¢

very high degrees, these constraint nodes will become the “weak links” in the graph

because the probability that two incident messages are corrupted for a high-degree
constraint node is much higher than that for its low-degree counterpart. The degree
difference of variable nodes does not have such an effect thus we can choose some

variable nodes to have higher degree and make the decoding process converge faster.
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Figure 3.1: Message Effectiveness
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Using the language of “extrinsic messages”, the unreliability of an erased stopping
set can be explained in the following way. A stopping set has no extrinsic u messages
but only extrinsic v messages, which are not very effective in increasing the reliability
of variable nodes in this set. Since all the neighbor nodes are connected to a stopping
set twice or more, if all the variable nodes in the stopping set are erased, there will be
no extrinsic messages that can recover them effectively. The next definition describes

the effectiveness of the extrinsic message flow of a variable node set in general.

Definition 3.1.1. (Extrinsic message degree) An extrinsic constraint node of
a variable node set is a constraint node that is singly connected to this set. The
extrinsic message degree (EMD) of a variable node set is the number of extrinsic

constraint nodes of this variable node set.

Obviously, the EMD is a metric representing the number of useful v messages
incident to a variable node set. The EMD of a stopping set is zero. The only
stopping set that contains a single cycle is a stopping set that consists of all degree-2
nodes. If this stopping set is erased, all of its u messages are erasures and all of the
v messages are not useful in increasing the reliability generated by the neighbors of
this stopping set.

Now we calculate the EMD of a cycle. If there are no variable nodes in a cycle
that share common constraint nodes, the EMD of this cycle is equal to ). (d; — 2),
where d; is the degree of the i*" variable in this set. Otherwise, there are constraint
nodes connected to at least two variable nodes in a cycle, and the EMD of this
cycle should be lower. In Fig. 3.2, variable nodes v; and v3 are both connected to
constraint node cyg. Thus the two edges that connect vy, v and ¢y are not extrinsic
edges and the EMD of the large cycle is reduced by two. ¢ also breaks the large

cycle into two smaller ones and generally speaking, constraint node sharing causes
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short cycles.

Figure 3.2: Sharing constraint nodes reduces the EMD of a cycle.

As was previously described, the high-SNR performance of an iteratively decoded
LDPC code is limited by the size of the smallest stopping set (and its multiplicity,
to be exact) in the code. The EMD of a stopping set is zero. A set of variable nodes
with large EMD will require additional concatenation of nodes to become a stopping
set. We will propose a conditioning algorithm that ensures all cycles less than a
given length have an EMD greater than a given value. This technique statistically
increases the smallest stopping set size. It also increases d,,,;, because codeword sets

are special cases of stopping sets.
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3.2 Construction of LDPC Codes

with Large Stopping Sets

3.2.1 Approximate EMD

First we consider the EMD of a generic cycle. If there are no variable nodes in a
cycle that share common constraint nodes outside of the cycle, then the EMD of this
cycleis Y, (d; — 2), where d; is the degree of the i*" variable in this cycle. Otherwise,
the EMD is reduced through constraint node sharing. To provide a calculable EMD

metric, we neglect constraint node sharing and define an approximate cycle EMD.

Definition 3.2.1. (Approximate cycle EMD (ACE)) The ACE of a length 2d
cycle is >, (d; — 2), where d; is the degree of the 7' variable in this cycle. We also
say that the ACE of a degree-d variable node is d — 2 and the ACE of any constraint

node is 0.

ACE is an upper bound on EMD. The code conditioning algorithm to be proposed
next is based on ACE instead of EMD. This approximation is reasonable since in
this algorithm, all cycles shorter than a given length (including those formed through
constraint node sharing) will be required to meet the ACE criteria. An LDPC code
has property (dacg, nace), if all the cycles whose length is 2d 4o or less have ACE

values of at least nacp.

3.2.2 ACE Algorithm Outline

The weight distribution of H is given by the density evolution algorithm [RSUO1].
A typical distribution generated by this algorithm has one single concentration for

constraint nodes (row weight) but has two separate concentrations around the highest
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degree and the lowest degree for variable nodes (column weight). It is well known
that variable nodes with more neighbors (constraints) experience lower decoder bit
error rates. We assign higher degrees to the information bits to provide them with
better protection. There is another advantage to this arrangement: cycles among
degree-2 nodes are very harmful to code performance because their EMD is always
zero and thus are always stopping sets. We note that if a code has n — k — 7 degree-2
nodes (j > 0), it is possible to form a submatrix of degree-2 columns that has rank
n —k — j (see Corollary 2.3.3). Our codes are constructed such that the degree-2
variable nodes (columns) have this property when the density evolution distribution
allows it.

In our codes, information bits come before parity bits (see Fig. 2.1). We assign
column nodes such that degree decreases monotonically (i.e., d; > d; if ¢ < j).
Because high degree nodes converge faster, this arrangement provides more protection

to information bits than to parity bits. The algorithm is as follows:
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for (i=n—-1,i>0;i——)
begin
redo:
Randomly generate v; according to deg. distr.;
if i > k (i.e., v; is a parity bit)
begin
Gaussian Elimination (GE) on Hy;
if v; € SPAN(v{ 1, Viygs s Vpy_y)
goto redo;
else

v; « the residue of v; after GE;

end

ACE detection for v;;
if ACE < nacg for a cycle of length 2d scp or less
goto redo;

end

The Gaussian elimination process ultimately guarantees that the H matrix has
full rank by ensuring that the n — k columns of Hy be linearly independent. For
degree-2 variable nodes, independence entails freedom from cycles so that all degree-
2 parity check nodes will be cycle-free. A caveat is that if Gaussian elimination is
used in conjunction with a degree distribution that yields more than n—k—1 degree-2
nodes, then at least one of the n — k parity check variables should have odd number
degree (this can be achieved by column swapping). This follows immediately from

Corollary 2.3.3.
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Figure 3.3: Ilustration of an ACE search tree associated with vy in the example code
of Fig.2.1. naceg = 0. Bold lines represent survivor paths. ACE values are indicated
on the interior of circles (variables) or squares (constraints), except on the lowest
level where they are instead described with a table.

3.2.3 ACE Detection in Tree Depiction

The ACE detection method can be equivalently depicted in two ways. The first one,
based on support trees, is directly related to the graph structure. The second one,
based on trellises, is oriented for algorithm implementation.

The tree depiction of ACE detection (nacg = 0) is given in Fig. 3.3. Here,
variable and constraint node labels refer literally to those of the example code in Fig.
2.1 and the support tree that extends four levels below root node v is portrayed.
We define p(p;) to be the ACE of a path between root node vy and an arbitrary
node p; (it can be either a variable node or a constraint node). Recall also that

ACE(py) = degree(u;) — 2 if p is a variable, and ACE(u;) = 0 if y; is a constraint.
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ACE Detection of v,

p(pe) < oo for all variables and constraints;
p(vo) «— ACE(vg); Activate vy for level-0;
for (I =1;1<ducg; | ++)
begin
for any active node wy in level-(I — 1)
begin
Find its children set Ch(ws);
for every child p; € Ch(ws)
begin
Premp — P(ws) + ACE (pur);
if (Dremp + P(pe) — ACE(vo) — ACE (1)) < nace'
exit with failure;
elseif prem, > p1i)
Deactivate p; in level-1 with respect to current parent 