
UNIVERSITY OF CALIFORNIA

Los Angeles

Research on

Low-Density Parity Check Codes

A dissertation submitted in partial satisfaction

of the requirement for the degree Doctor of Philosophy

in Electrical Engineering

by

Tao Tian

B.S., Tsinghua University, 1999

M.S., University of California, Los Angeles, 2000

Ph.D., University of California, Los Angeles, 2003

2003

.

The dissertation of Tao Tian is approved.

Richard D. Wesel

Gregory J. Pottie

Adnan Darwiche

John D. Villasenor, Committee Chair

University of California, Los Angeles
2003

ii

Contents

Table of Contents iii

List of Figures v

List of Tables viii

Acknowledgments x

Abstract xiii

1 Introduction 1

2 Analysis of Cycle Properties 8

2.1 Notation and Background Information 8

2.1.1 Representation of LDPC Codes 8

2.1.2 Message Passing Decoding . 11

2.2 The Relationship Between Cycles, Stopping Sets and Linearly Depen-

dent Sets . 16

2.2.1 Cd Cycle Sets . 17

2.2.2 Sd Stopping Sets . 18

2.2.3 Wd Codeword Sets . 21

iii

2.2.4 Ed Edge Expansion Sets . 23

2.3 Cycle-free Sets . 24

2.4 Summary . 29

3 Extrinsic Message Degree and LDPC Code Design 30

3.1 Extrinsic Message Degree . 32

3.2 Construction of LDPC Codes

with Large Stopping Sets . 36

3.2.1 Approximate EMD . 36

3.2.2 ACE Algorithm Outline . 36

3.2.3 ACE Detection in Tree Depiction 39

3.2.4 ACE Detection in Trellis Depiction 41

3.2.5 Intuitive Explanation . 43

3.3 Summary . 46

4 Simulation Results and

Data Analysis 48

4.1 Block-length 10,000 LDPC codes . 48

4.2 Shorter block lengths . 53

4.3 A Smart Decoder . 56

4.4 Summary . 59

5 Rate-Compatible LDPC Codes 60

5.1 Overview of the Proposed Rate-Compatible LDPC Codes 61

5.2 Weight-Assigning Algorithm . 63

5.3 Advantage of the Proposed Scheme 65

5.3.1 Efficient Encoding . 65

iv

5.3.2 Error Floor Suppression . 66

5.3.3 Why Nulling and Puncturing? 67

5.4 Simulation Results . 67

5.5 Summary . 69

6 Compression of Correlated Sources Using LDPC Codes 70

6.1 Finite-State Markov Channels and

Gilbert-Elliott Channels . 70

6.2 Encoding and Non-Zero Syndrome Decoding 72

6.3 LLR Evolution in the

Forward-Backward Algorithm . 75

6.4 Density Evolution Optimization of

Irregular LDPC Codes for Correlated Sources 82

6.5 Analytical and Simulation Results . 86

6.6 Appendix: Estimation of F-B Characteristics 87

6.7 Summary . 89

Bibliography 89

v

List of Figures

2.1 Matrix description and graph description of a (9, 3) code. 10

2.2 Illustration of one iteration in message passing decoding. 12

2.3 f(·) function used in message passing algorithm. 14

2.4 Relationship between Cd, Sd, Wd and Ed. 17

2.5 (a) Extrinsic concatenation (b) Structure of a stopping set 20

2.6 Erasure of stopping sets in BEC causes decoding failure. 21

2.7 Examples (a)S3 but not W3 (b)C3 but not S3. 25

2.8 Traditional girth conditioning removes too many cycles. 26

2.9 v1 can be replaced by two degree-2 nodes. 28

2.10 Replace v1 by its cluster in a cycle. 28

3.1 Message Effectiveness . 33

3.2 Sharing constraint nodes reduces the EMD of a cycle. 35

3.3 Illustration of an ACE search tree associated with v0 in the example

code of Fig.2.1. ηACE = 0. Bold lines represent survivor paths. ACE

values are indicated on the interior of circles (variables) or squares

(constraints), except on the lowest level where they are instead de-

scribed with a table. 39

3.4 The Viterbi-like ACE algorithm. ηACE = 0 42

vi

3.5 Cycle clustering. 45

3.6 Fake cycles in the EMD algorithm. 46

3.7 Our algorithm viewed as a flooding process. 47

4.1 Left edge degree distribution. 49

4.2 Right edge degree distribution. 50

4.3 Results for (10000, 5000) codes.

The BPSK capacity bound at R = 0.5 is 0.188dB. 51

4.4 Comparison of code performance. 54

4.5 Results for (1264, 456) codes.

The BPSK capacity bound at R = 0.36 is -0.394dB. 55

4.6 Results for (4000, 2000) codes.

The BPSK capacity bound at R = 0.5 is 0.188dB. 56

4.7 Sphere packing bound and some known good codes.

�: some good rate 1/2 turbo codes (data from JPL); 4: rate 1/2

LDPC codes . 57

4.8 Fluctuation in number of bit errors in a BIAWGN channel. 58

5.1 Proposed rate-compatible scheme for center rate R0 = 0.5. 62

5.2 Normalized node-wise degree distribution L̃i. 64

5.3 Es/N0 simulation results. AWGN channel. 68

5.4 Gap to BPSK capacity bound. 69

6.1 The E-B channel model. 72

6.2 Encoding process of correlated sources. 73

6.3 Message passing in the correlated source decoder. 74

6.4 The basic unit in the F-B trellis . 76

vii

6.5 Monte-Carlo simulation of LLRs of 5000 bits with 100 neighbors on

both sides for source 1. 80

6.6 Input-output characteristics of the F-B block generated by simulation. 81

6.7 Message passing with two synchronization bits. 82

6.8 Density evolution curves for an irregular LDPC code. dv = 12, σ =

0.80. The upper curve represents (6.19) and the lower curve represents

(6.20). 84

6.9 Theoretical R1 ∼ α curves for source 1. 86

viii

List of Tables

6.1 Statistics of the test sources. 79

6.2 Rcomp simulation result for regular codes and Rcomp threshold for ir-

regular codes. 87

ix

Acknowledgments

I wish to express my appreciation to Chris Jones, for the enlightening discussion

between us. I would also like to thank Ksenija Lakovic and Michael Smith for their

reviewing this work. Finally, I would like to dedicate this to my dear mom and dad.

It is their unselfish support through everyday of my life, that make this possible.

x

VITA

January 20, 1976 Born, Chongqing, China

1999 B.E., Electrical Engineering
Tsinghua University
Beijing, China

2000 M.S., Electrical Engineering
University of California, Los Angeles

1999-2003 Graduate Student Researcher
Electrical Engineering Department
University of California, Los Angeles

2002 Visiting Scholar
Electrical Engineering Department
University of Delaware, Newark, DE

PUBLICATIONS

• C. Jones, A. Matache, T. Tian, J. Villasenor, and R. Wesel. The Universal-

ity of LDPC Codes on Wireless Channels. Military Communications Confer-

ence,October 2003.

• T. Tian, J. Garcia-Frias, and W. Zhong. Density Evolution Analysis of Cor-

related Sources Compressed with LDPC Codes. International Symposium on

Information Theory, June 2003.

xi

• T. Tian, C. Jones, John Villasenor, and Rick Wesel. Construction of Irreg-

ular LDPC Codes with Low Error Floors. IEEE International Conference on

Communications, May 2003.

• T. Tian, J. Garcia-Frias, and W. Zhong. Compression of Correlated Sources

Using LDPC Codes. Data Compression Conference, February 2003.

• C. Jones, T. Tian, A. Matache, R. Wesel, and J. Villasenor. Robustness of

LDPC Codes on Periodic Fading Channels. IEEE GlobeCom, November 2002.

• A. Li, J. Fahlen, T. Tian, L. Boloni, S. Kim, J. Park, and J. Villasenor.

Generic Uneven Level Protection Algorithm for Multimedia Data Transmission

over Packet-Switched Networks. IEEE International Conference on Computer

Communications and Networks Proceedings, pp. 340-346 , October 2001.

• T. Tian, A. Li, J. Wen, and J. Villasenor. Priority Dropping in Network Trans-

mission of Scalable Video. IEEE International Conference on Image Processing

Proceedings, Volume III, pp. 400-403, September 2000.

xii

ABSTRACT OF THE DISSERTATION

Research on

Low-Density Parity Check Codes

by

Tao Tian

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2003

Professor John D. Villasenor, Chair

Low-density parity-check (LDPC) codes are a family of codes proven to have

good asymptotic ensemble properties. There are many open theoretical and practical

issues related to LDPC codes such as how to construct finite length LDPC codes with

guaranteed properties, how to realize rate compatibility with these codes, and how to

apply LDPC codes to source coding. This contribution first explains the relationship

between cycles, stopping sets and codewords from perspectives of both linear algebra

and graph theory. A method based on extrinsic message degree (EMD) is proposed

xiii

to construct irregular LDPC codes that have good cycle properties. As a result,

these codes achieve near capacity capability and low error floors. The performance

of different construction schemes are compared and the roles of cycles and stopping

sets in affecting capacity and error-floors are analyzed. Next, a rate-compatible

scheme based on LDPC codes is proposed. It is based on two techniques: parity

puncturing and information nulling. Simulations show that this scheme achieves

close-to-capacity performance over a wide range of code rates. Finally, a density

evolution analysis is developed for compression of correlated sources using irregular

LDPC codes. The standard density evolution algorithm is modified to incorporate

the Hidden Markov Model (HMM) defining the correlation model between sources.

The proposed algorithm achieves a compression rate close to the theoretical Slepian-

Wolf limit.

xiv

Chapter 1

Introduction

Low-density parity-check (LDPC) codes were proposed by Gallager in the early 1960’s

[Gal62] [Gal63]. He defined an (n, dv, dc) LDPC code as a code of block length n

in which each column of the parity check matrix contains dv ones and each row

contains dc ones. Due to the regular structure (uniform column and row weight) of

Gallager’s codes, they are now called regular LDPC codes. Gallager also invented

soft-decision and hard-decision iterative decoders based on message passing. Using

hard-decision decoding, he showed simulation results for codes of block length around

500 bits. These results indicated that LDPC codes have very good potential for

error correction. However, these codes were not long enough for the sphere packing

bound to approach Shannon capacity, and the computational resources for longer

random codes were decades away from being broadly accessible. For the ensuing three

decades, LDPC codes received relatively little attention in the coding community.

Over the past two decades, a deeper understanding of the message passing algo-

rithm defined on graphs has developed. Tanner [Tan81] introduced bipartite graphs

to describe low-density codes and the sum-product algorithm based on these graphs.

Wiberg et al. [Wib96] extended Tanner graphs by including state variables which

1

are invisible to decoders. Pearl [Pea88] systematically described the “belief propa-

gation” algorithm operating on Bayesian networks. It has been recently shown that

the forward/backward algorithm for turbo codes, the belief propagation algorithm

for LDPC codes, and many other decoding algorithms for other graph-based codes,

are variations of the generalized sum-product (S-P) algorithm operating on the so-

called factor graphs (see [KFL01] [For01]). To avoid a confusion in notations, we will

call all variations of the generalized S-P algorithms message passing.

In the mid-1990’s, Berrou et al. [BGT] demonstrated the impressive capacity-

approaching capability of turbo codes, which led to the explosion of interest in turbo

codes and other long random linear codes. Turbo codes share many attributes with

LDPC codes, mostly in the way message passing is performed during the iterative

decoding process. These similarities stimulated a revived interest in previous work

on LDPC codes. In 1999, MacKay et al. [Mac99] showed that LDPC codes have

near capacity performance and proposed several empirical rules for constructing good

random codes. Luby et al. [LMSS01] formally showed that properly constructed ir-

regular LDPC codes can approach capacity more closely than regular ones. Richard-

son, Shokrollahi and Urbanke [RSU01] created a systematic method called density

evolution to analyze and synthesize the degree distribution in asymptotically large

random bipartite graphs under a wide range of channel realizations.

Recently, many interesting and equally important research topics have emerged

aside from the fundamental topics mentioned above. As we know, the decoding com-

plexity per bit for message passing depends on graph connectivity rather than block

length, which makes decoding of very long blocks possible. However, the encoding

complexity is quadratic in block length if dense generator matrices are used. [RU01]

proposed an almost linear time systematic encoder that converts the parity-check

matrix to “approximate” lower triangular form by permutation. The permutation

2

transform doesn’t affect code performance because it conserves the sparsity of the

original parity-check matrix. However, the transformed generator matrix has a spe-

cial shape that allows it to encode most of the non-systematic bits recursively in

linear time. Chung et al. [CRU01] proposed a Gaussian approximation approach to

reduce the density evolution algorithm to a one-dimensional problem, with only a

little loss in performance compared to the accurate density evolution. [MB01] showed

that different scheduling in the message passing decoder gives different performance

in the high SNR region. [DM98] showed by their simulations that LDPC codes over

GF (q) outperform binary LDPC codes. [Fos01] designed a reliability-based decoder

to reduce the performance gap between message passing decoding and maximum

likelihood (ML) decoding. [KLF01] designed LDPC codes based on finite geometries

which have quasi-cyclic structures and very good minimum distance properties.

Density evolution determines the performance threshold for infinitely long codes

whose associated bipartite graphs are assumed to follow a tree-like structure. Us-

ing the density evolution theory, Richardson et al. designed rate one-half LDPC

codes achieving bit error rate (BER) 10−6 within less than one tenth of a dB from

the capacity limit. However, the block length they used in order to achieve this

performance was 106 bits which is too long for many applications. Bipartite graphs

representing finite-length codes without singly connected nodes inevitably have many

short cycles, which are neglected in the density evolution theory. Cycles in bipar-

tite graphs compromise the optimality of the commonly practiced message passing

decoding. If cycles exist, neighbors of a node are not conditionally independent in

general, therefore graph separation is inaccurate and so is Pearl’s polytree algorithm

[Pea88] (which defines belief propagation as a special case).

Two finite-length analyses have been developed for LDPC codes recently: “stop-

ping set analysis” [DPT+02] for the binary erasure channel (BEC) and “projection

3

algebra and critical set analysis” [YSB]. The former predicts the performance of

LDPC code ensembles with given degree distributions while the latter predicts the

performance of a single LDPC code. Both analyses have to be improved because they

have very high computation complexity for longer blocks (e.g., several thousand bits).

Randomly realized finite-length irregular LDPC codes with block sizes on the or-

der of 104 [RSU01] approach their density evolution threshold closely (within 0.8dB

at BER ≈ 10−6) at rate 1/2, outperforming their regular counterparts [Mac99] by

about 0.6dB. Most publications to date on this subject of irregular codes have fo-

cused on the performance relative to capacity, and do not consider performance at

Eb/N0 levels in the error floor region. In this paper, we repeated the irregular code

construction method described in [RSU01] and extended their simulation to a higher

SNR region. In the relatively unconditioned codes, an error floor was observed at

BERs of slightly below 10−6. In contrast, regular codes and almost regular codes

([KLF01]) usually enjoy very low error floors, apparently due to their more uniform

Hamming distance between neighboring codewords and higher minimum distances.

MacKay et al. [MWD] first reported the tradeoff between the threshold SNR

and the error floor BER for irregular LDPC codes versus regular LDPC codes. A

similar tradeoff has been found for turbo codes ([BDMP98], [FW]). In the present

contribution, we introduce code construction methods that specifically address the

error floor issue. We present a design technique that requires all small cycles to have

a minimum degree of connectivity with the rest of the graph. This technique lowers

the error floors of irregular LDPC codes by several orders of magnitude with only

a little cost in performance relative to capacity in the waterfall region of the BER

versus Eb/N0 curve.

The error floor of an LDPC code under maximum likelihood (ML) decoding

depends on the dmin of the code and the multiplicity of dmin error events. However,

4

for randomly constructed codes, no algorithm is known to check if they have large

minimum distances (This problem was proved to be NP-hard [Var97]).

As a result, the common approach has been to indirectly improve dmin through

code conditioning techniques such as the removal of short cycles (girth conditioning

[MB], [AEH]). Such conditioning is useful also because certain short cycles can cause

poor performance in conjunction with iterative decoding even if they have a large

dmin and would not be problematic for ML decoding.

Cycle properties play a critical role in determining error floors. We explore the

relationship between cycles, stopping sets, and other attributes of the code and its

associated bipartite graph. One argument we will make in this contribution is that

not all cycles are equally problematic in practice. The more connected a cycle is

to the rest of the graph, the less difficulty it poses to iterative decoding. A novel

concept called “extrinsic message degree” (EMD) is introduced to help analyze the

inner-structure of stopping sets. An efficient algorithm based on an approximation

of EMD is proposed that constructs LDPC codes with good cycle properties and a

correspondingly lower error-floor.

Many factors can change the characteristics (or states) of communication chan-

nels. These factors include multipath fading, temperature/moisture change, hostile

jamming, and user-specified settings. A robust communication system should pro-

vide bandwidth close to capacity under various channel conditions. For example, the

3G CDMA specification IS-856 supports 12 data rates ranging from 38.4 to 2,457.6

Kbps. The corresponding code rate varies between 1/5 and 1/3. Traditionally, to

achieve rate-compatibility, we have to independently build several subsystems that

operate at different code rates, and switch between them according to channel state

information. However, this scheme increases the design, setup and maintenance cost.

A more efficient and flexible rate-compatible scheme is desired.

5

Punctured codes have long been used to achieve rate compatibility [Hag88] [WLS].

Compared to the traditional rate compatible codes based on convolutional codes and

turbo codes, LDPC codes enjoy more freedom in puncturing pattern design, thus

allowing for an almost continuous spectrum of code rates and more robustness to

catastrophic events (stopping set puncturing). A density evolution algorithm was

developed by Ha et al. [HM] to find asymptotically good puncturing profiles for

LDPC codes.

We propose a rate-compatible scheme that combines parity puncturing and infor-

mation nulling. Simulation results show that this scheme achieves close-to-capacity

performance with low error floors across a wide range of code rates.

The last contribution is a density evolution analysis of a compression system for

memory correlated binary sources using irregular LDPC codes as source codes.

It is well known that the problem of compressing correlated sources can be con-

sidered as a problem of channel coding with side information [Wyn74], [SVZ98]. The

first approach to using practical channel codes in this context was presented in [PR].

More powerful turbo-like codes and iterative decoding schemes were introduced in

[GF] and [GFZa]. Other work that utilizes turbo codes for source coding can be

found in [BM], [AG]. Recent research [LXG02] has shown that the use of regular

LDPC codes improves performance over turbo codes for the case of memoryless cor-

relation. This result was extended in [GFZb] to the case of correlation with memory,

where the memory is defined by HMMs.

The basic idea in [GFZb] is to incorporate the HMM in the graph that repre-

sents the code, and to apply the corresponding message passing algorithm over the

whole graph. We extend this work to irregular LDPC codes. The standard density

evolution algorithm is modified to incorporate the Hidden Markov Model (HMM)

defining the correlation model between sources. Analysis and simulation shows that

6

the proposed irregular LDPC codes optimized with this algorithm outperform tradi-

tionally designed regular or irregular LDPC codes. The proposed algorithm achieves

a compression rate close to the theoretical Slepian-Wolf limit.

Chapter 2 explores the relationship between several important graph structures:

cycles, stopping sets, linearly dependent sets and edge expanding sets. A high-level

description of their effects on the message passing algorithm is given. Furthermore,

the sufficient and necessary condition for a set of variable nodes to be cycle-free is

introduced.

Chapter 3 focuses on the inner-structure of stopping sets, especially how these

sets are formed by clustering cycles. We will show that stopping sets have weak

extrinsic message flow. To describe extrinsic message strength for stopping sets and

variable node sets in general, we introduce EMD and its approximation ACE. A code

construction algorithm based on ACE is given. The effectiveness and efficiency of

this algorithm is discussed.

Chapter 4 describes the “smart” decoder and gives the simulation results for

LDPC codes generated with the ACE algorithm. Different parameter schemes are

compared.

Chapter 5 discusses a novel design of rate-compatible LDPC code that performs

close to capacity over a large range of code rates. It combines three techniques:

information nulling, parity puncturing, and lower triangular submatrix construction.

Chapter 6 develops a density evolution analysis of a compression system for mem-

ory correlated binary sources using irregular LDPC codes as source codes. In order

to achieve this goal, the standard approach in density evolution is modified to in-

corporate the Hidden Markov Model (HMM) defining the correlation model between

sources. The proposed scheme is then applied to the design of irregular LDPC codes

that optimize the system performance.

7

Chapter 2

Analysis of Cycle Properties

This chapter will first introduce two equivalent descriptions of an LDPC code: the

matrix and the bipartite graph. We then explore the relationship between several

important graph structures, namely, cycles, stopping sets, codeword sets and edge

expanding sets. The effect of these graph structures on code performance at high SNR

will be discussed briefly. Furthermore, we will provide the sufficient and necessary

condition for a set of variable nodes to be cycle-free.

2.1 Notation and Background Information

2.1.1 Representation of LDPC Codes

We wish to design an (n, k) binary systematic LDPC code where n is the block length

and k is the number of information bits in one block. The code rate is R = k/n. The

parity check matrix H is a full-rank (n− k)× n sparse matrix. The rows of H span

the null space of the codeword space. H can be written as

H =

[

H1 H2

]

, (2.1)

8

where H1 is an (n − k) × k matrix and H2 is an (n − k) × (n − k) matrix. H2 is

constructed to be invertible, so by row transformation through left multiplication

with H−1
2 , we obtain a systematic parity check matrix Hsys that is range equivalent

to H

Hsys = H−1
2 H =

[

H−1
2 H1 In−k

]

. (2.2)

A systematic generator matrix can be obtained from Hsys

Gsys =

[

Ik

(

H−1
2 H1

)T

]

. (2.3)

The rows of Gsys span the codeword space. Obviously, GsysH
T = GsysH

T
sys = 0. It

should be noted that although the original H matrix is sparse, neither Hsys nor Gsys

is sparse in general. Gsys is used for encoding and the original sparse parity matrix

H is used for iterative decoding.

An LDPC code can also be described by a bipartite graph. In this graph, n

variable nodes form the left vertex set and (n − k) constraint nodes form the right

vertex set. In the case of a systematic code, the first k variable nodes are message

nodes and the other (n−k) variable nodes are parity nodes. If the entire set of variable

nodes forms a valid codeword then the exclusive-or performed by each constraint node

will be zero.

One column in the parity-check matrix corresponds to one variable in the bipartite

graph. For convenience, we will use ‘column’ and ‘variable’ interchangeably in this

paper.

The bipartite graphs and H matrices we are interested in have two further prop-

erties:

9

(1) There is at most one edge between any pair of nodes. In other words, there are

no double-edges or other types of multiple-edges.

(2) There are no singly connected variable nodes, i.e., the degree (number of neigh-

bors) of any variable node is at least 2.

The first property ensures equivalence between the matrix and graph descriptions

of the code. The second property will be used as part of a proof which relates graph

structures known as stopping sets to cycles. As an example, the matrix and graph

descriptions of a (9, 3) irregular code are shown in Fig. 2.1. Because a vertex cannot

connect to another vertex from the same side in a bipartite graph, the length of any

cycle in a bipartite graph is an even number. Fig. 2.1 also shows in solid lines a

length-6 cycle that involves variable nodes v0, v4 and v6.

��
��
��
��

�

�

��
��
��
��

�

�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

� 	 �

variable
nodes

constraint
nodes

 +

 +

 +

 +

 +

 +

message
nodes

check
nodes

� � �
 � � � � � � � � � � � � � �
� � �

� �
� �
� �
� �

� � �

� �
� �
� �
� �

��� �

���
���
� �
���
���
� �
���

(a) (b)

H =

Figure 2.1: Matrix description and graph description of a (9, 3) code.

The systematic parity check matrix and the systematic generator matrix of this

example can be derived according to Eq. 2.2 and 2.3. They are shown in Eq. 2.4

10

and 2.5

Hsys =

[

H−1
2 H1 In−k

]

=

































0 1 1 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0

0 1 1 0 0 1 0 0 0

1 1 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0

0 1 1 0 0 0 0 0 1

































, (2.4)

Gsys =

[

Ik

(

H−1
2 H1

)T

]

=













1 0 0 0 1 0 1 0 0

0 1 0 1 1 1 1 1 1

0 0 1 1 0 1 0 1 1













. (2.5)

2.1.2 Message Passing Decoding

Let x be the transmitted signal corresponding to a variable bit with BPSK modu-

lation. We define signal mapping in a way such that x = −1 if its corresponding

variable bit is 1 and x = 1 if its corresponding variable bit is 0. Let y be the received

signal which is equal to the sum of x and a noise. A message passing decoder tries

to solve x’s based on the knowledge about y’s. There exist many ways to describe

the soft-decision message passing algorithm (see [KFL01]). A very parsimonious and

convenient one can be described as exchanging log-likelihood ratios (LLRs) between

variable nodes and constraint nodes. Define u as an incident message to a variable

node

u = ln
p(x = 1|y)

p(x = −1|y)
, (2.6)

and v as an emanating message from a variable node

11

v = ln
p(x′ = 1|y′)

p(x′ = −1|y′)
, (2.7)

where x′ and y′ have the same meaning as x and y except that they correspond

to the variable that is located at the source of this message. As we can see, an

important advantage of using LLRs is that probabilities such as 10−5 and 1 − 10−5

can be easily represented by ln 10−5

1−10−5 ≈ −11.51 and ln 1−10−5

10−5 ≈ 11.51. Fixed-point

implementation is more accurate using LLRs than using probabilities because the

finite-word effect is much reduced with LLRs.

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

u0
u1

u2

v u

v1

v2

v3
v4

Step A Step B

variable nodes variable nodes constraint nodes constraint nodes

Figure 2.2: Illustration of one iteration in message passing decoding.

One iteration in message passing decoding consists of two steps. Step A, passing

messages from constraint nodes to variable nodes; step B, passing messages from

variable nodes to constraint nodes. These two steps are illustrated in Fig. 2.2. In

step A, the half-edges attached to the variable nodes represent the a priori LLRs

12

determined by the received signal y and channel parameters. One message from a

half-edge to its corresponding variable node is labeld u0. The computation involved

in these two steps can be written as Eq. 2.8 and 2.9 respectively (see [CRU01]).

v =
dv−1
∑

i=0

ui, (2.8)

tanh
u

2
=

dc−1
∏

j=1

tanh
vj

2
, (2.9)

where dv and dc are the degree of the corresponding variable node or constraint node

respectively. Computation of Eq. 2.8 is simple because it only involves summation.

However, Eq. 2.9 involves multiplication and hyperbolic tangent functions. We can

prove that by defining

f(x) = − ln tanh x
2
≈











− ln(1− 2e−x) = 2e−x if x >> 1

− ln x
2

if x ≈ 0,

(2.10)

Eq. 2.9 can be re-written as

sgn(u) =
dc−1
∏

j=1

sgn(vj), (2.11)

and

|u| = f

(

dc−1
∑

j=1

f(|vj|)

)

. (2.12)

where sgn(x) is the sign function. Eq. 2.12 is computationally efficient because the

f(·) function can be implemented by a look-up table and thus only summation is

involved in calculating this equation. The curve for the f(·) function is shown in Fig.

13

2.3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2.3: f(·) function used in message passing algorithm.

Due to the different nature of the functions involved in Eq. 2.8 and 2.9, u messages

and v messages have different effect on the reliability of corresponding nodes. For

example, in Eq. 2.8, if there are three input u messages

u1 = −0.2, u2 = 2, u3 = −20, (2.13)

then the output v message is

v = −0.2 + 2− 20 = −18.2, (2.14)

which has a value close to −20, the most reliable input message. In Eq. 2.9, if there

are three input v messages

14

v1 = −0.2, v2 = 2, v3 = −20, (2.15)

then the output u message is

u = 2 tanh−1(0.0997× 0.7616× 1.0000) = 0.152, (2.16)

which is similar in magnitude to the lease reliable input message−0.2. This is because

the hyperbolic tangent function saturates at high magnitude. The reliable messages

barely affect the magnitude of the output u message because the hyperbolic tangent

of them is close to either 1 or −1. Only the unreliable messages, whose magnitude

lies in the linear region of the hyperbolic tangent function, reduces the reliability of

the output u message. Particularly, in a BEC, an output v message will not be an

erasure as long as there is an input u message that is not an erasure; an output u

message will not be an erasure only if all of its input v messages are not erasures.

To summarize this, we say:

The reliability of a v message is similar to that of the most reliable input u mes-

sage; the reliability of a u message is at most that of the least reliable input v message.

We know that a BIAWGN channel can be quantized into a binary symmetric

channel (BSC) in which all the LLRs have large magnitude at medium to high SNR.

Note tanh(x/2) = sgn(x) for |x| >> 1. If we assume that all the u’s and v’s take

value ±∞, Eq. 2.11 contains all the information about Eq. 2.9 because Eq. 2.12 is

always satisfied. Note Eq. 2.11 is exactly the hard-decision parity check equation.

Therefore, Eq. 2.8 can be viewed as the “soft” version of the parity check operation.

It should be noted that before message passing, all the unknown messages except

a priori messages (denoted by u0’sTj
25.3-420(o3.79147 0 Td
(view)d
(’s.ould)Tj
36.6494 0 Td
(b)Tj
6.82758 0 Td
(e)Tj
8.63848 0 Td
(noted)Tj
32.0344ew)d
(’s.o67(binary)547 1.)Tj
-375.838 -2of

x̂ = sgn

(

dv
∑

i=0

ui

)

, (2.17)

where x̂ is the estimate of x and sgn(·) is the sign function. The difference between

Eq. 2.17 and 2.8 is that the sum in Eq. 2.17 is taken over all the incident edges and

half-edges, as opposed to only dv − 1 edges.

Message passing decoding is optimal only for tree-like graphs. The performance

of this decoding algorithm on a general (dense) graph is not guaranteed because

of the wide existence of cycles. In contrast, sparse bipartite graphs are suitable

for message passing decoding because they have better cycle properties than dense

bipartite graphs. These properties will be analyzed in the next section.

2.2 The Relationship Between Cycles, Stopping

Sets and Linearly Dependent Sets

Although the relationship between graph topology and code performance in the case

of a specific code is not fully understood, work has been done to investigate the effects

of graph structures such as cycles, stopping sets, codeword sets, and expanders. Here

we give a specific analysis of how these four concepts are related. This analysis can

be combined with density evolution to generate good irregular LDPC codes.

For brevity we denote cycle sets by Cd, stopping sets by Sd, codeword sets by

Wd, and edge-expanding sets with parameter 1/2 by Ed. These sets, as well as the

nature of the parameter d are described below. It is helpful to first illustrate the

relationship between these sets (Fig. 2.4).

16

{Cd}

{Sd}

{Wd}

{Ed}

Figure 2.4: Relationship between Cd, Sd, Wd and Ed.

2.2.1 Cd Cycle Sets

Definition 2.2.1. (Cycle) A cycle of length 2d is a set of d variable nodes and d

constraint nodes connected by edges such that a path exists that travels through

every node in the set and connects each node to itself without traversing an edge

twice.

Definition 2.2.2. (Cd Cycle set) A set of variable nodes in a bipartite graph is a

Cd set if (1) it has d elements, and (2) one or more cycles are formed between this

set and its neighboring constraint set. A set of d variable nodes does not form a Cd

set only if no cycles exist between these variables and their constraint neighbors.

Note that the maximum cycle length that is possible in a Cd set is 2d. Fig.

2.1 shows a length-6 cycle (v0 − c0 − v4 − c1 − v6 − c5 − v0) and a length-4 cycle

(v4 − c1 − v6 − c3 − v4). Variable node set {v0, v4, v6} is a C3 set. Variable node set

{v4, v5, v6} is also a C3 set although v5 is not contained in the length-4 cycle. Di et

al. defined a stopping set as follows, which we will show to contain cycles shortly.

A well known result is that message passing is accurate only for cycle-free graphs.

We know that the number of edges in a tree equals to the number of nodes minus

17

one, thus a code whose graph is a tree has n + (n− k)− 1 = 2n− k − 1 edges. This

number is too small for a practically useful finite length code. Actually the result

given by density evolution says that all the variable nodes should be connected to

at least two edges, which gives the minimal number of edges 2n > 2n − k − 1.

Therefore, cycles are almost inevitable and they make the message passing algorithm

suboptimal. Furthermore, not all cycles are equally harmful. For example, it is

well-known that short cycles among low-degree variable nodes represent severe code

defects.

2.2.2 Sd Stopping Sets

Definition 2.2.3. (Sd Stopping set [DPT+02]) A variable node set is called an

Sd set if it has d elements and all its neighbors are connected to it at least twice.

Variable node set {v0, v4, v6} in Fig. 2.1 is an S3 set because all its neighbors c0,

c1, c3 and c5 are connected to this set at least twice.

The following lemma shows that stopping sets always contain cycles. The effec-

tiveness of message passing decoding on graphs with cycles depends primarily on

how cycles are clustered to form stopping sets.

Lemma 2.2.4. In a bipartite graph without singly connected variable nodes (such as

one generated with a degree distribution given by density evolution), every stopping

set contains cycles.

Proof: A stopping set (variable nodes) and its neighbors (constraint nodes) form

a bipartite graph where one can always leave a node on a different edge than used

to enter that node. Traversing the resulting bipartite graph in this way indefinitely,

one eventually visits a node twice, thus forming a cycle.2

18

Alternative proof: As explained before, if every node in an LDPC bipartite graph

is at least doubly connected, the total number of edges is at least 2n which is larger

than 2n− k − 1, the number of edges required for the graph to be a tree.2

Lemma 2.2.5. In a bipartite graph without singly connected variable nodes, stopping

sets in general are comprised of multiple cycles. The only stopping sets formed by a

single cycle are those that consist of all degree-2 variable nodes.

Proof: A cycle that consists of all degree-2 variable nodes is a stopping set. To

prove the lemma, we only need to show that if a cycle contains variable nodes of

degree-3 or more, any stopping sets including this cycle are comprised of multiple

cycles. Fig. 2.5(a) shows a cycle of arbitrary length 2d (here 2d = 8 for demonstra-

tion). Assume that one variable node v2 in this cycle has degree 3 or higher, v2 must

be connected to at least one constraint node out of this cycle (for instance c1 in Fig.

2.5(a)). By the definition of a stopping set, c1 must be connected to variable nodes

in the stopping set at least twice. Therefore if c1 is not connected to v1, or v3, or v4,

the stopping set must contain at least one more variable node (for instance v5). The

‘concatenation’ of constraints and variables on to v5 may occur across many nodes.

However, to form a stopping set, eventually a new loop must be closed that connects

the newest constraint in the chain to a variable on the chain or in the original cycle.

Thus, the stopping set is comprised of at least two cycles.2

According to Lemma 2.2.5, the general view of stopping sets and cycles is given in

Fig. 2.5(b). Two types of variable nodes comprise a stopping set. Variable nodes of

the first type (denoted by solid curves) form cycles with other variable nodes; variable

nodes of the second type (denoted by dashed curves) form binding structures that

connect different cycles. It should be noted that both binding nodes and cycle nodes

may have branches that lead to cycles containing variable nodes not in the current

19

+

+

+

+ v4

v3

v2 v1

(a) (b)

+

v5

extrinsic component of v2

c1

Figure 2.5: (a) Extrinsic concatenation (b) Structure of a stopping set

stopping set. Our proposed parity matrix design algorithm ensure that short cycles

contain at least a given minimum number of ‘extrinsic paths’. This leads to an

increase in the minimum size of a stopping set.

Di, et al. [DPT+02] showed that in a binary erasure channel (BEC), the residual

erasure bits after message passing iterative decoding are exactly equal to the max-

imum stopping set which is a subset of the originally erased bits. See the example

in Fig. 2.6. Variable nodes v0, v4 and v5 are erased. Any message passing from

constraint nodes to these variable nodes, e.g., the one from c1 to v6, is a function

of the incident messages to c1 from other variable nodes, which contain at least one

erasure (the checked edge). Because an erasure is a bit that has equal probability to

be 0 or 1, the resulting message remains erased and no further iterations can recover

it. Therefore, stopping sets are the only type of “bad” cycles in a BEC. A natural

conjecture is that stopping sets play an important role in other channels. In particu-

lar, consider the scenario where all members of a stopping set are received with poor

reliability at the output of a binary-input additive white Gaussian (BIAWGN) chan-

20

 +

 +

 +

 +

 +

 +

� �
 � �

� �
� �
� �
���

� � � �
� �
� �
� �
� �
�
� !
� "

Figure 2.6: Erasure of stopping sets in BEC causes decoding failure.

nel. These reliabilities will be particularly slow to change in the course of message

passing decoding as the reliability generated by any connected neighbor (constraint

node) must also be low.

2.2.3 Wd Codeword Sets

Definition 2.2.6. (Wd Codeword set) A variable node set is called a Wd set if it

is comprised of exactly d elements whose columns form a (weight-d) codeword.

Variable nodes set {v0, v4, v6} in Fig. 2.1 is the W3 set corresponding to the

codeword 100010100. A linear code with minimum distance dmin has at least one

codeword with weight dmin and no non-zero codewords with smaller weight. Hence,

there is at least one Wdmin
set but no Wd sets where d < dmin.

Erasing all the variables in a codeword set is the same as erasing all the non-zero

positions of a binary codeword. Recovery from such an erasure is impossible even

under ML decoding. Thus all codeword sets are stopping sets. This argument can

21

be formalized into the next theorem.

Theorem 2.2.7. An Wd set must also be an Sd set.

Proof: The binary sum of all columns corresponding to the variable nodes in Wd

is the all-zero vector. Thus any neighbor (constraint node) of Wd is shared by the

variable nodes that comprise Wd an even number of times, which means at least

twice.2

In a linear block code, the lowest codeword (Hamming) weight is called the min-

imum distance dmin. Preventing small stopping sets also prevents small dmin. If a

code has dmin, it must have an Sdmin
stopping set. Thus, avoiding all stopping sets

Sd for d ≤ t ensures dmin > t.

However, small stopping sets do not necessarily represent low distance events.

Indeed, an ML decoder can successfully decode an erased stopping set if a full column-

rank sub-matrix is formed by the columns of the parity check matrix that are indexed

by the stopping set variables. For example, {v3, v4, v5, v6, v8} in Fig. 2.1 is a stopping

set that may be recovered by ML decoding (in the BEC case, simply solve a linear

equation set). However, an erased stopping set can never be overcome by an iterative

decoder.

With additive white Gaussian noise (AWGN), the magnitude of a corrupted signal

can be so small that it can be effectively treated as an erasure. Hence the role

of stopping sets can be translated to AWGN scenarios where variables with poor

observation reliability are analogous to erasures. All stopping sets of small size

are problematic. Some cause small distance, and all cause problems for iterative

decoding. An obvious direction to take in order to generate codes well-suited to

iterative decoding is to increase the size of minimum stopping set and reduce its

multiplicity.

22

2.2.4 Ed Edge Expansion Sets

Edge expanders are known to have good minimum distance properties.

Definition 2.2.8. ((α, γ) edge expander [DPT+02]) Let L be any subset of left

nodes (variable nodes). Define E(L) to be the number of edges connected to L and

N(L) to be the number of neighbors of L. An (α, γ) edge expander of an (n, k) code

is a graph that has N (L) > γE (L) for all subsets with E (L) ≤ αn.

Methods that realize regular graphs with good edge expanding properties were

proposed by Margulis in [Mar82]. However, a construction that can simultaneously

satisfy a given edge expanding property as well as a given irregular degree distribu-

tion has yet to be proposed. We are interested in the special case of (α, 1/2) edge

expanders.

Definition 2.2.9. (Ed Edge-expanding set with parameter γ = 1/2) A set of d

variable nodes is called an Ed set if one-half of the number of edges emanating from

it is less than the number of neighbors to which these edges connect.

The relationship between stopping sets and (α, 1/2) edge expanders is given by

the following theorem.

Theorem 2.2.10. (1) {Sd} and {Ed} are disjoint sets. i.e., An Sd set cannot be an

Ed set and vice versa. (2) If all size-d subsets of variable nodes are {Ed} sets then

an {Sd} set does not exist.

Proof: According to the definition of Ed, neighbor nodes of Ed are connected to

Ed less than twice on average. So there must exist at least one singly connected

neighbor to Ed, this proves (1). It easily follows that if all size d subsets form Ed

sets then no size-d subset may be an Sd set (2). 2

23

For a code with minimal variable node degree 2, if all the subsets of an (n, k) code

with d elements are Ed sets, where d = 1, 2, ..., ceil (αn/2), then this code is an (α,

1/2) edge expander. (This is a sufficient condition but not a necessary one, because

an Ed set can have more than 2d edges if it contains variable nodes with degree

higher than 2.) It follows that designing a code that avoids Sd sets is similar to the

problem of generating as many Ed sets as possible. In the code design process that

follows we improve the edge expansion property of short cycles, therefore indirectly

reducing the occurrence of small stopping sets.

Fig. 2.4 outlines the relationships between the above-mentioned graph structures.

Some examples help clarify these relationships. Fig. 2.7 (a) shows three columns that

are not linearly dependent since their binary sum is not all-zero, hence, {0, 3, 5} is

not a W3 set. But because all neighbor nodes of {0, 3, 5} (corresponding to the first

three rows) are connected to it at least twice, it is an S3 set. Fig. 2.7 (b) shows one

length-6 cycle in set {0, 3, 5} which makes this a C3 set. However the last constraint

node is singly connected to the variable node set and so this set does not form an S3

set.

2.3 Cycle-free Sets

At this point, the value of removing small stopping sets is apparent. However, one

might argue that simple girth conditioning accomplishes this because every stopping

set contains cycles. The problem with traditional girth conditioning is that there are

so many cycles. Fig. 2.8 illustrates a cycle in the support tree of variable node v0

of Fig. 2.1. All the levels whose indices are odd numbers consist of constraint nodes

and all the levels whose indices are even numbers consist of variable nodes. A cycle

occurs if two positions in the support tree represent the same node in the bipartite

24

##
##

$

%

&&
&&

'

(

0.0..0

1.1..1

1.1..0

0.1..1

 ##
##

$

%

&&
&&

'

(

0.1..0

1.0..1

1.1..0

0.1..1

 (a) (b)

 +

 +

 +

 +

 +

 +

 +

 +

Figure 2.7: Examples (a)S3 but not W3 (b)C3 but not S3.

graph (e.g., v8 in level-3). To detect cycles of length up to 2d in the support tree of

v0, we need to expand its support tree d levels.

The number of nodes in the support tree grows exponentially with the number

of levels expanded. To be short-cycle-free, all these nodes have to be different, so

the longest cycle size we can avoid increases only logarithmically with block size (see

[Gal62]). Since the logarithm is a slowly increasing function, girth conditioning of a

finite length LDPC code is severely limited by block length.

Girth conditioning is especially problematic when there are high-degree nodes,

as is common with degree distributions produced by density evolution. Recent girth

conditioning techniques usually bypass high degree nodes. For example, in [MB],

the edge-wise highest variable degree is only 3; in [AEH], the fraction of the high-

est degree variables λ8 is only 0.025. As a result, girth conditioning was easier to

25

+ +

v0

c0 c5

v2 v4 v8 v1 v6 v7 v8

Level-0

Level-1

Level-2

Figure 2.8: Traditional girth conditioning removes too many cycles.

perform. However, the capacity-approaching capability was sacrificed. High degree

nodes are indicated by density evolution and lead to large stopping sets. The follow-

ing arguments further discuss the cycle-related structures for high degree nodes and

low degree nodes.

Definition 2.3.1. (Cycle-free set) A variable node set is called a cycle-free set if

no cycle exists among its constituent variables.

Theorem 2.3.2. A necessary and sufficient condition for a set of degree-2 variable

nodes to be a cycle-free set is that this set is linearly independent.

Proof: All sets that are not linearly independent contain codeword sets. Codeword

sets are special stopping sets and stopping sets contain cycles (Lemma 2.2.4). For

sufficiency, note that the constraint nodes taking part in a cycle among degree-2

nodes are each shared by exactly two variable nodes. Therefore the binary sum of

columns (variables) taking place in the cycle is the all-zero vector and these columns

are linearly dependent.2

Corollary 2.3.3. A maximum of n− k− 1 degree-2 columns of length n− k may be

linearly independent (cycle-free).

26

Proof: Consider the (n− k)× (n− k − 1) bi-diagonal matrix,







































1 0 · · · 0

1 1

0 1
. . .

...
. . .

1 0

1 1

0 · · · 0 1







































n−k−1

n−k, (2.18)

This matrix forms a rank n − k − 1 basis of degree-2 columns each with dimension

n− k. Any possible degree-2 column of dimension n− k can be formed via a linear

combination of columns in the above basis.2

Corollary 2.3.3 may also be considered a version of the Singleton bound where the

restriction to degree-2 columns lowers the best possible dmin from n− k to n− k− 1.

Theorem 2.3.4. In an (n, k) code free of degree-1 variables, a cycle-free variable

node set {v1, v2, ..., vs} must satisfy
∑s

i=1 (di − 1) ≤ n− k − 1, where di is the degree

of vi.

Proof: A degree-d variable node whose constraints are {c1, c2, ..., cd} can be con-

ceptually replaced by a cluster of d− 1 degree-2 nodes whose constraints are {c1, c2},

{c2, c3}, ..., {cd−1, cd} respectively. As an example, Fig. 2.9 shows how variable node

v1 in Fig. 2.1 may be replaced by a cluster of two degree-2 nodes.

Because the indices of the constraints in a cluster are ordered, any cycle involving

the degree-d node is equivalent to a cycle involving some of the degree-2 nodes in

the cluster replacing the original node. Fig. 2.10 shows an example. Replace every

variable in the set with its equivalent cluster. According to Corollary 2.3.3, at most

27

5

4

3

2

1

0

...

...

...

...

...

...

1

1

0

0

1

0

c

c

c

c

c

c

))
))
))
))

*

+

,,
,,
,,
,,

-

.

)c ,(c)c ,(c
1

1

0

0

0

0

0

1

0

0

1

0

5441

//
//
//
//

0

1

22
22
22
22

3

4

//
//
//
//

0

1

22
22
22
22

3

4

variable
node v1:

cluster of
degree-2
nodes:

Figure 2.9: v1 can be replaced by two degree-2 nodes.

5

6

6

6

6

5

6

5

6

6

5

5

5

5

6

5

6

6

7
 8 7

 9 7
 : 5

6

6

6

6

5

5

5

6

6

6

6

6

5

6

6

5

6

7
 8 7

 :;8 6

5

6

5

6

6

7
 :<9

7
 9=8 6

6

6

6

5

5

7
 9;9

(a)
 (b)

 Figure 2.10: Replace v1 by its cluster in a cycle.

n−k−1 of these resulting degree-2 nodes can form a cycle-free set. Thus the theorem

is proved.2

Corollary 2.3.5. In an (n, k) code free of degree-1 variables, no set of variable

nodes whose cardinality is larger than n− k − 1 can be cycle-free.

Proof: Equality in the inequality of Theorem 2.3.4 is achieved with n− k − 1

independent degree-2 variable nodes. Fewer variable nodes are allowed if some have

higher degree.2

28

Lemma 2.2.5 and Theorem 2.3.2 show that for degree-2 variable nodes, cycles,

stopping sets and codeword sets are equivalent. These structures are distinct for

higher degree nodes following the Venn diagram of Fig. 2.4. Theorem 2.3.4 shows

that higher degree nodes may b

Chapter 3

Extrinsic Message Degree and

LDPC Code Design

The goal of LDPC code design is achieving good performance close to capacity while

maintaining low error floors. These two goals are contradictory in general, as sug-

gested by Urbanke in [DPT+02]:

Steep cliffs are usually associated with high error floors. A large frac-

tion of degree two left nodes leads to an initial rapid decline of the error

probability. On the other hand a large degree two fraction usually causes

problems towards the end of the decoding process.

This can also be explained intuitively in the following way. A low-error-floor

code can dilute the effect of a few corrupted bits to a large number of bits at high

SNR while a near-capacity code tends to localize errors at low SNR to prevent error

propagation. Degree-two nodes widely exist in irregular LDPC codes with degree

distribution generated by density evolution (see [RSU01]) whereas they do not exist

in regular codes involving variable node of degree 3 or higher.

30

In this chapter, we will see that degree-two nodes allow very little extrinsic mes-

sage flow, which is the major reason why randomly generated irregular codes have

small stopping sets, and hence high error floors. Our goal in LDPC code design is to

reduce error floor level, and maintain the capacity performance of irregular LDPC

codes as well as possible.

For QPSK and BPSK modulation, Euclidean distance and Hamming distance

are linearly related. Thus, it is reasonable to design codes for such modulations to

focus on the Hamming distance spectrum. Minimum Hamming distance (dmin) is

well-known to be related to the number of errors (t) that can be corrected reliably,

dmin = 2t + 1. Minimum Hamming distance is also known to be linearly related to

the number of erasures (u) that can be corrected, dmin = u + 1. We already know

that the minimum stopping set size is equal to the smallest number of erasures that

cannot be corrected by iterative decoding. Thus it is closely related to the Hamming

distance (and hence Euclidean distance for QPSK and BPSK). Because the weight

distribution of stopping sets is so closely related to the Euclidean distance spectrum,

it is clear that LDPC designs focusing on the weight distribution of stopping sets is

appropriate for AWGN channels as well as the binary erasure channel (BEC).

This goal can be achieved by ensuring that all stopping sets have at least some

minimum number of variable nodes. However, no polynomial-time algorithm is

known that removes small stopping sets explicitly, and our attempts to directly con-

trol stopping set sizes were too complex even to prevent very small stopping sets in

a reasonable amount of time.

Lemma 2.2.5 shows that stopping sets are comprised of linked cycles. An efficient

way to suppress small stopping sets is to improve the edge expanding properties

of cycles in an irregular LDPC code. From the discussion of Ed sets, we know that

constraint nodes singly connected to a variable node set provide good edge expansion

31

because these constraint nodes ensure useful message flows. Our algorithm achieves

this by focusing on a parameter of variable node sets that we call the extrinsic message

degree (EMD).

3.1 Extrinsic Message Degree

The essence of the message passing decoding algorithm is to find the probability

of every variable bit based on the observation of all the other variable bits. From

Chapter 2 we know that there are two types of messages passed in the bipartite

graph: messages from constraint nodes to variable nodes (u messages) and messages

from variable nodes to constraint nodes (v messages). These two types of messages

have different reliability evolution rules. As shown in Eq. 2.8, the reliability of the

output v message is similar to the reliability of the most reliable input ui message;

in Eq. 2.12, the reliability of the output u message is similar to the reliability of the

least reliable input vj message.

Consider the ‘voting’ example in Fig. 3.1. If the incident u message is positive, it

“votes” variable node v2 as +1, otherwise, it “votes” v2 as −1. The magnitude of a

message indicates its reliability. The output v message is generated as the sum of all

incident u messages, which shows a compromise between “voters”. If the magnitude

of u is much larger than the magnitude of the messages from c0 and c4 to v2, u will

almost dominate the “vote” result at v2. In contrast, the reliability generated by

constraint node c1 is not guaranteed solely by one v message. No matter how reliable

this v message is, the reliability of c1 also depends on other incident messages (from

variable nodes v1, v4, v5 and v6). Flipping of any two incident v messages in Eq.

2.11 shows no detectable effects. In the case of a BEC where a stopping set (v0, v4

and v6) is erased, at least two of the incident v messages to constraint node c1 are

32

lost and any output u message c1 generates will be erased no matter what incident

messages it receives from variable nodes outside of this stopping set.

Thus we conclude: a non-erasure u message is useful in increasing the reliability of

the corresponding variable node; a non-erasure v message is only useful in increasing

the reliability generated by the corresponding constraint node if this constraint node

is not a neighbor of an erased stopping set.

The difference between the effectiveness of u messages and v messages explains

why the variable nodes of a good LDPC code can have very different degree whereas

the constraint nodes typically have uniform degree. If some constraint nodes have

very high degrees, these constraint nodes will become the “weak links” in the graph

because the probability that two incident messages are corrupted for a high-degree

constraint node is much higher than that for its low-degree counterpart. The degree

difference of variable nodes does not have such an effect thus we can choose some

variable nodes to have higher degree and make the decoding process converge faster.

 +

 +

 +

 +

 +

 +

v u

> ?
 > @

> A
> B
> C
>ED

F ? F @
F A
F B
F C
F D
F G
F H
F I

Figure 3.1: Message Effectiveness

33

Using the language of “extrinsic messages”, the unreliability of an erased stopping

set can be explained in the following way. A stopping set has no extrinsic u messages

but only extrinsic v messages, which are not very effective in increasing the reliability

of variable nodes in this set. Since all the neighbor nodes are connected to a stopping

set twice or more, if all the variable nodes in the stopping set are erased, there will be

no extrinsic messages that can recover them effectively. The next definition describes

the effectiveness of the extrinsic message flow of a variable node set in general.

Definition 3.1.1. (Extrinsic message degree) An extrinsic constraint node of

a variable node set is a constraint node that is singly connected to this set. The

extrinsic message degree (EMD) of a variable node set is the number of extrinsic

constraint nodes of this variable node set.

Obviously, the EMD is a metric representing the number of useful u messages

incident to a variable node set. The EMD of a stopping set is zero. The only

stopping set that contains a single cycle is a stopping set that consists of all degree-2

nodes. If this stopping set is erased, all of its u messages are erasures and all of the

v messages are not useful in increasing the reliability generated by the neighbors of

this stopping set.

Now we calculate the EMD of a cycle. If there are no variable nodes in a cycle

that share common constraint nodes, the EMD of this cycle is equal to
∑

i (di − 2),

where di is the degree of the ith variable in this set. Otherwise, there are constraint

nodes connected to at least two variable nodes in a cycle, and the EMD of this

cycle should be lower. In Fig. 3.2, variable nodes v1 and v3 are both connected to

constraint node c0. Thus the two edges that connect v1, v3 and c0 are not extrinsic

edges and the EMD of the large cycle is reduced by two. c0 also breaks the large

cycle into two smaller ones and generally speaking, constraint node sharing causes

34

short cycles.

+

+

+

+ v4

v3

v2 v1

+
c0

Figure 3.2: Sharing constraint nodes reduces the EMD of a cycle.

As was previously described, the high-SNR performance of an iteratively decoded

LDPC code is limited by the size of the smallest stopping set (and its multiplicity,

to be exact) in the code. The EMD of a stopping set is zero. A set of variable nodes

with large EMD will require additional concatenation of nodes to become a stopping

set. We will propose a conditioning algorithm that ensures all cycles less than a

given length have an EMD greater than a given value. This technique statistically

increases the smallest stopping set size. It also increases dmin because codeword sets

are special cases of stopping sets.

35

3.2 Construction of LDPC Codes

with Large Stopping Sets

3.2.1 Approximate EMD

First we consider the EMD of a generic cycle. If there are no variable nodes in a

cycle that share common constraint nodes outside of the cycle, then the EMD of this

cycle is
∑

i (di − 2), where di is the degree of the ith variable in this cycle. Otherwise,

the EMD is reduced through constraint node sharing. To provide a calculable EMD

metric, we neglect constraint node sharing and define an approximate cycle EMD.

Definition 3.2.1. (Approximate cycle EMD (ACE)) The ACE of a length 2d

cycle is
∑

i (di − 2), where di is the degree of the ith variable in this cycle. We also

say that the ACE of a degree-d variable node is d− 2 and the ACE of any constraint

node is 0.

ACE is an upper bound on EMD. The code conditioning algorithm to be proposed

next is based on ACE instead of EMD. This approximation is reasonable since in

this algorithm, all cycles shorter than a given length (including those formed through

constraint node sharing) will be required to meet the ACE criteria. An LDPC code

has property (dACE, ηACE), if all the cycles whose length is 2dACE or less have ACE

values of at least ηACE.

3.2.2 ACE Algorithm Outline

The weight distribution of H is given by the density evolution algorithm [RSU01].

A typical distribution generated by this algorithm has one single concentration for

constraint nodes (row weight) but has two separate concentrations around the highest

36

degree and the lowest degree for variable nodes (column weight). It is well known

that variable nodes with more neighbors (constraints) experience lower decoder bit

error rates. We assign higher degrees to the information bits to provide them with

better protection. There is another advantage to this arrangement: cycles among

degree-2 nodes are very harmful to code performance because their EMD is always

zero and thus are always stopping sets. We note that if a code has n−k− j degree-2

nodes (j > 0), it is possible to form a submatrix of degree-2 columns that has rank

n − k − j (see Corollary 2.3.3). Our codes are constructed such that the degree-2

variable nodes (columns) have this property when the density evolution distribution

allows it.

In our codes, information bits come before parity bits (see Fig. 2.1). We assign

column nodes such that degree decreases monotonically (i.e., di ≥ dj if i < j).

Because high degree nodes converge faster, this arrangement provides more protection

to information bits than to parity bits. The algorithm is as follows:

37

for (i = n− 1; i ≥ 0; i−−)

begin

redo:

Randomly generate vi according to deg. distr.;

if i ≥ k (i.e., vi is a parity bit)

begin

Gaussian Elimination (GE) on H2;

if vi ∈ SPAN(v′
i+1, v

′
i+2, ..., v

′
n−1)

goto redo;

else

v′
i ← the residue of vi after GE;

end

ACE detection for vi;

if ACE < ηACE for a cycle of length 2dACE or less

goto redo;

end

The Gaussian elimination process ultimately guarantees that the H matrix has

full rank by ensuring that the n − k columns of H2 be linearly independent. For

degree-2 variable nodes, independence entails freedom from cycles so that all degree-

2 parity check nodes will be cycle-free. A caveat is that if Gaussian elimination is

used in conjunction with a degree distribution that yields more than n−k−1 degree-2

nodes, then at least one of the n− k parity check variables should have odd number

degree (this can be achieved by column swapping). This follows immediately from

Corollary 2.3.3.

38

0 1 2 3 4 5 6 7 8
1 1 1 1 020 1 1ACE

1 54 6 3 58 1 256 36 7 1 235 10 671

5

4 1 3 4 5 4 1 3

456 2358 1 22 45 3 4 7 3 4 6 0 1 23 5

1 76 8842

0

0

1 3 0 4

42

1

V

0

1 1 0 1

1000111010111

1 1 1

0 0

V V

C

C

V VV VVVV

C

V

C C C C C C C C C C CC

V V

Figure 3.3: Illustration of an ACE search tree associated with v0 in the example code
of Fig.2.1. ηACE = 0. Bold lines represent survivor paths. ACE values are indicated
on the interior of circles (variables) or squares (constraints), except on the lowest
level where they are instead described with a table.

3.2.3 ACE Detection in Tree Depiction

The ACE detection method can be equivalently depicted in two ways. The first one,

based on support trees, is directly related to the graph structure. The second one,

based on trellises, is oriented for algorithm implementation.

The tree depiction of ACE detection (ηACE = 0) is given in Fig. 3.3. Here,

variable and constraint node labels refer literally to those of the example code in Fig.

2.1 and the support tree that extends four levels below root node v0 is portrayed.

We define p(µt) to be the ACE of a path between root node v0 and an arbitrary

node µt (it can be either a variable node or a constraint node). Recall also that

ACE(µt) = degree(µt)− 2 if µt is a variable, and ACE(µt) = 0 if µt is a constraint.

39

ACE Detection of v0

p(µt)←∞ for all variables and constraints;

p(v0)← ACE(v0); Activate v0 for level-0;

for (l = 1; l ≤ dACE; l + +)

begin

for any active node ws in level-(l − 1)

begin

Find its children set Ch(ws);

for every child µt ∈ Ch(ws)

begin

ptemp ← p(ws) + ACE(µt);

if (ptemp + p(µt)− ACE(v0)− ACE(µt)) < ηACE
1

exit with failure;

elseif ptemp ≥ p(µt)

Deactivate µt in level-l with respect to current parent ws;

else

p(µt)← ptemp;

end

end

end

exit with success;

To explain the above algorithm, we need to recognize that a node should propa-

gate descendants (be active) only if the path leading to this node has the lowest ACE

value that any path to this node has had thus far. Therefore linear cost is achieved

1Note that this is the ACE of a cycle involving µt if (ptemp +p(µt)−ACE(v0)−ACE(µt)) <∞.

40

instead of an exponential cost. Initially all the path ACEs can be set to ∞ (which

means ‘unvisited’). Note that cycles occur when a node is revisited, is simultaneously

visited, or both. A cycle ACE equals the sum of the previously lowest path ACE to a

node and the current path ACE to the node minus the doubly counted root and child

ACE. When a cycle is formed by connecting two distinct paths from v0 to µt we have

cycle ACE = ptemp + p(µt) − ACE(v0) − ACE(µt), where ptemp and p(µt) are the

ACEs of the two paths from v0 to µt. Handling multiple simultaneous arrivals to the

same node is a trivial extension where ACE minimization is performed sequentially

across all arrivals.

In the example shown in Fig. 3.3, bold lines at each level describe the current

set of active paths. In this example ‘ties’ are assigned the path whose parent has

the lowest index. For instance the path (v0-c5-v1-c1) with ACE = 1 survives while,

(v0-c5-v6-c1), (v0-c0-v2-c1), (v0-c0-v4-c1) each also having ACE = 1, perish. For an

example of pruning occurring due to cycle detection on differing levels of the tree,

observe that the path (v0-c0-v8-c5) with ACE = 1 does not survive since c5 was

visited at Level-1 and was accordingly assigned ACE = 0.

3.2.4 ACE Detection in Trellis Depiction

Fig. 3.4 provides a trellis depiction of the previous discussion (with two more stages

added). A trellis instead of a full support tree is adequate for ACE detection because

the ACE minimization is performed sequentially and only the minimum ACE needs

to be stored. Again, a path ACE is stored for every variable node and every constraint

node. An active path is a path that connects the root variable node and any other

node with the lowest ACE value up to the current step. Active paths are marked by

solid lines in Fig. 3.4. An active node is a node that connects to an active path at

41

the current step.

v0

v1

v2

v3

v4

v5

v6

v7

v8

c0

c1

c2

c3

c4

c5

0 0

0

1

1

0

1

1

0

1

0

1

0

1

0

0

1

1

1

1

2

1

0

1

0

1

1

0

0

1

0

1

1

1

1

2

1

0

1

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 3.4: The Viterbi-like ACE algorithm. ηACE = 0

Viterbi tree pruning yields a complexity at each root that is upper bounded by

dACE × n× (d− 1) where d is the highest degree of any node in the graph, because

the support tree is expanded dACE levels, for each level we have to consider at most

n nodes, and every node has at most d− 1 children. As shown in Fig. 3.4, relatively

few nodes at a level are active, thus the actual computational burden is reasonable,

even for block size on the order of 105 bits. The storage space needed is on the

order of n + (n− k) because only the current trellis level has to be saved. To further

improve run-time, any active node with path ACE p(µt) ≥ ηACE can be deactivated

because all the paths stemming from this node have an ACE value of at least ηACE.

As a special application of this argument, the user may generate columns for all

variable nodes with degree ηACE + 2 or higher without checking the ACE (since all

descendants will have a path ACE of at least ηACE).

Note that cycle detection can be implicitly performed in the above algorithm.

42

other and the number of effective exits of these two cycles is only two.

A common attribute of these local solutions is that they create cycles shorter

than the original ones. These short cycles are marked by dashed lines with arrows in

Fig. 3.5. Since the length of these short cycles is usually much lower than 2dACE =

2 × 10 = 20, and these short cycles will all be conditioned by the ACE algorithm.

Fig. 3.5 (e) shows a good solution of cycle exits when appropriate values of (dACE,

ηACE) are chosen. After joining two cycles, only one exit of each cycle is solved and

four others are left for further clustering. Thus many more new variable nodes have

to be introduced in order to form a stopping set. The clustering process finally ends

in Fig. 3.5 (f), with four cycles in this stopping set, which obviously has a much

larger size than the one in Fig. 3.5 (b). So far we have explained why this algorithm

can avoid small stopping sets.

The complexity of checking if a newly generated variable node satisfies design

rules is bounded by 2n− k because each node in a graph is stored once in the EMD

table, which keeps the lowest EMD value of any paths between every node and the

root variable node. Thus although the number of nodes in a support tree grows

exponentially with the number of levels it is expanded, many nodes are redundant

and the size of the EMD table is at most the number of nodes in the graph n+(n−k) =

2n− k.

Another question is whether “fake cycles” cause problems in this algorithm. As

mentioned before, a “fake cycle” is a cycle in the support tree of a variable node

whose two constituent paths merge before they are connected to the root variable

node. In Fig. 3.6, v1 and v2 are found to be the same node, thus a cycle occurs.

Because the two paths P1 and P2 merge at c1 instead of v0, this cycle is a “fake cycle”

for v0. The real cycle is C1 (not including v0). Since C1 only contains old variable

nodes (except v0), it must satisfy design rules and thus its EMD value is at least η.

44

?
?
?

(a) (c)

?
?

?
?

?

(b)

(d)

?

?

(e) (f)

Figure 3.5: Cycle clustering.

Obviously the EMD value of the “fake cycle” is larger than or equal to that of C1

because it contains more nodes. Thus a “fake cycle” automatically satisfies design

rules if all the existing cycles obey the designing rules. Therefore, “fake cycles” will

not be problematic.

The EMD algorithm can also be viewed as a “flooding” process, like those used

to solve “routing” problems in the networking area. There are two types of nodes

in this network: variable nodes and constraint nodes. The former introduces link

“delay” which is equal to its EMD value; the latter introduces no link “delay”. As

we proceed, we keep the path from the root variable node to any node that can be

reached in d1 steps that has minimal cumulative “delay”. When a cycle is formed,

the cycle “delay” will be checked. This process goes on until all the nodes are checked

45

+ + +

……

+ + +
…… ……

…… ……

Level-0

Level-1

Level-2

Level-3

Level-4
v1

v0

v2

c1 cd c2 ……

+

EMD1

EMD2

P1

P2

C1

Figure 3.6: Fake cycles in the EMD algorithm.

and no violation of design rules are detected.

3.3 Summary

This chapter described the inner-structure of stopping sets and explained how they

are formed by clustering cycles. An LDPC code design algorithm based on the

approximate extrinsic message degree (ACE) was proposed. The simulation results

will be shown in the next chapter.

46

+

+

+

+

+

+

+
+

ROOT

Figure 3.7: Our algorithm viewed as a flooding process.

47

Chapter 4

Simulation Results and

Data Analysis

We present results for LDPC codes with three different block lengths.

4.1 Block-length 10,000 LDPC codes

We used the ACE algorithm to construct (10000, 5000) codes that have the irregular

degree distribution given in [RSU01] with maximum variable node degree dv = 20

λ (x) = 0.21991x + 0.23328x2 + 0.02058x3 + 0.08543x5 + 0.06540x6 + 0.04767x7

+0.01912x8 + 0.08064x18 + 0.22798x19,

(4.1)

ρ (x) = 0.64854x7 + 0.34747x8 + 0.00399x9. (4.2)

Any edge in a bipartite graph is connected to a left node (variable node) and a

right node (constraint node). We refer to a left edge when we consider the degree

48

distribution related to variable nodes. Similarly we refer to a right edge when we

consider the degree distribution of constraint nodes. λ(x) describes the degree dis-

tribution of left edges. The coefficient of xi−1 in Eq. 4.1 represents the fraction of

left edges that are connected to degree-i variable nodes. For example, the last term

in Eq. 4.1 is 0.22798x19 which means 22.798% of edges are connected to degree-20

left nodes. The meaning of ρ(x) is similar to λ(x) except that it is defined for right

edges and right nodes. The two edge degree distributions are shown in Fig. 4.1 and

4.2. The right edge degree distribution is very peaked whereas the left edge degree

distribution has at least two separate concentrations. The low-degree concentration

near degree 2 and the high-degree concentration near degree dv are most prominent.

For low rate codes and high dv, less prominent concentrations may appear between

the two major ones. λ(x) and ρ(x) are also subject to other constraints in order

for the total number of left edges and that of right edges to be equal. (They are

actually the same edges. “Left” and “right” are just names that indicates from what

perspective we look at them.)

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

left edge degree

Figure 4.1: Left edge degree distribution.

When we design a real LDPC code based on the density evolution result, node-

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

right edge degree

Figure 4.2: Right edge degree distribution.

wise degree distributions are more convenient than edge-wise degree distributions.

They can be calculated as

λ̃i =
λi/i

∑dv

j=2 λj/j
, (4.3)

and

ρ̃i =
ρi/i

∑dc

j=2 ρj/j
. (4.4)

The node-wise degree distributions can also be easily translated to the edge-wise

degree distributions.

λi =
iλ̃i

∑dv

j=2 jλ̃j

, (4.5)

ρi =
iρ̃i

∑dc

j=2 jρ̃j

. (4.6)

The encoded bits were sent through an BIAWGN channel. For each corrupted

codeword, a maximum of 200 iterations were performed. Each simulation was stopped

when 80 block errors were detected. The BER results and in one case the word (block)

error rate (WER) results are plotted in Fig. 4.3.

A (dACE, ηACE) code in Fig. 4.3 means that in this code, all cycles of length up

50

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.4 0.6 0.8 1 1.2
Eb / No (dB)

B
E

R
 o

r
W

E
R

RU BER

(, 1) BER

(, 1) w/o length-4 cycles BER

(9, 4) BER

(9, 4) WER

∞

∞

(a) hbt

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
Eb / No (dB)

B
E

R

(10, 3)

(9, 4)

(6, 7)

(10, 3) w/o length-4 cycles

(9, 4) w/o length-4 cycles

(6, 7) w/o length-4 cycles

 (b) hbt

Figure 4.3: Results for (10000, 5000) codes.
The BPSK capacity bound at R = 0.5 is 0.188dB.

51

to 2dACE have ACE of at least ηACE. Higher ηACE values ensure better properties

for the conditioned cycles and higher dACE values ensure that conditioning occurs for

longer cycles. There is a tradeoff between dACE and ηACE: increasing one parameter

inevitably makes the other parameter more difficult to implement. For dACE =

13, 10, 9, 7, and 6, the highest ηACE values that we could achieve were 2, 3, 4, 5, and

7 respectively. If all degree-2 variables are parity bits (which is possible if there are

fewer than n − k of them), then the full-rankness of the parity matrix guarantees

that no cycles will exist between degree-2 variables (see Theorem 2.3.2). In this case

we can construct (∞, 1) codes since all cycles of any length must include nodes of

at least degree-3 (and hence have ACE of at least 1). Such codes have the lowest

level of conditioning that we consider and we use codes constructed in this manner

to contrast the performance of stronger (dACE, ηACE) conditioning levels.

As a benchmark, Richardson and Urbanke’s 104-bit code [RSU01] (referred to

here as the RU code) is included in Fig. 4.3(a). This RU code was constructed with

the constraint that “all the degree-two nodes were made loop-free”. Unfortunately,

simulation results below BER 10−6 are unavailable for the RU code. The (∞, 1) code

shown in our paper has a similar level of conditioning as the RU code and exhibit

comparable performance. The (∞, 1) code ensures linear independence among parity

bits which include all degree-two nodes and some degree-three nodes. The error-floor

BER of the (∞, 1) code is around 10−6. Pure length-4 cycle removal improves BER by

half an order in magnitude over the (∞, 1) code at highest SNR, and adversely affects

convergence. However, proper selection of dACE and ηACE suppresses error floors

significantly more. For example, the pure ACE conditioning code (9, 4) achieves

approximately BER = 10−9, three orders of magnitude below the (∞, 1) code.

Fig. 4.3(b) compares several ACE parameter sets with or without explicit length-

4 cycle removal. Note that the lowest error floor was achieved at dACE = 9 and

52

ηACE = 4 with no explicit removal of short cycles. As explained before, traditional

girth conditioning treats all short cycles equally, thus making the removal of longer

but still harmful cycles more difficult. On the contrary, the ACE algorithm effectively

removes low-ACE cycles, while leaving shorter cycles intact, if they have a high ACE.

By doing this, participation of high degree variables in cycles is encouraged. In fact,

removing all length-4 cycles hinders the performance of the ACE algorithm.

We observe that there is a small penalty in the capacity-approaching capabil-

ity of our low-error-floor codes. With more conditioning at this block size, the

low-SNR performance of the code is slightly degraded, possibly due to a decrease

in the randomness of the code structure. This tradeoff between error floor and

low-SNR performance is a well-known characteristic of iteratively decoded codes

([MWD][BDMP98][FW]). Scheme (9, 4) is approximately 0.07dB away from the RU

code at low SNR. However, even with this mild penalty these codes remain superior

to regular codes in terms of their capacity-approaching performance. For example,

we tested MacKay’s (9972, 3, 6) regular LDPC code described in [MWD]. Although

no error floors were detected for this code, it achieves BER ≈ 10−5 at SNR ≈ 1.7dB,

more than 0.6dB worse than our (9, 4) code. Thus the combination of density evolu-

tion optimized degree distributions and ACE construction achieves good performance

over a wide SNR operating range.

To show the performance of our irregular codes compared to the RU code and

MacKay’s code, we plotted them in Fig. 4.4.

4.2 Shorter block lengths

To compare with other techniques at block lengths around 1000, we choose Mao’s

(1268, 456) code described in [MB] as a benchmark. Fig. 4.5 compares the perfor-

53

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.4 0.6 0.8 1 1.2 1.4 1.6

MacKay's (3, 6) regular code
(block length = 8000)

Our (10000, 5000)
irregular codes

Richardson & Urbanke's
(10000, 5000) irregular code

 Figure 4.4: Comparison of code performance.

mance of the ACE-conditioned (1264, 456) code with that of Mao’s (1268, 456) code

(results drawn from [MB]).

It should be noted that degree distributions play an important role in conditioning

schemes. With the low maximum variable degree (dv = 3) distribution proposed in

[MB], both the girth conditioning and the ACE conditioning are easy to perform.

However, the ACE-conditioned code (∞, 3) is 0.2 dB better in BER at the high

SNR region. If the density-evolution optimized distribution with dv = 14 is imposed,

the girth conditioning technique becomes more difficult due to the higher fraction

of high degree nodes. However, the ACE algorithm still works well, outperforming

Mao’s code by 0.3dB, with no detectable error floors above BER = 10−9.

We have also designed two ACE-conditioned (4000, 2000) codes to compare with

Arnold’s (4000, 2000)(dv = 8) code described in [AEH] (results drawn from [AEH],

see Fig. 4.6). The degree distributions of the proposed code are Arnold’s dv = 8 de-

gree distribution and the dv = 15 degree distribution produced by density evolution.

54

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Eb / No (dB)

B
E

R
 o

r
W

E
R

Mao(dv = 3) BER
ACE(, 3) (dv = 3) BER
ACE(9, 4) (dv = 14) BER
Mao(dv = 3) WER
ACE(, 3) (dv = 3) WER
ACE(9, 4) (dv = 14) WER

∞

∞

Figure 4.5: Results for (1264, 456) codes.
The BPSK capacity bound at R = 0.36 is -0.394dB.

As we can see from Fig. 4.6, by choosing Arnold’s degree distribution, the ACE-

conditioned code (∞, 6)1 achieves convergence 0.4dB worse than Arnold’s code. This

may result from the fact that the ACE algorithm is based on random generation and

Arnold’s progressive edge-growth technique successfully puts more structure in codes.

We did not find error floors for the (∞, 6) code above BER = 10−8. By choosing the

density-evolution optimized distribution with dv = 15, the ACE-conditioned code (9,

4) achieves a threshold SNR 0.1dB better than that of Arnold’s code.

In summary, Arnold’s code is better than the ACE-conditioned code for Arnold’s

dv = 8 degree distribution, but that degree distribution is suboptimal. ACE condi-

tioning of the density evolution degree distribution produces the best performance.

Fig. 4.7 shows the performance of some good turbo codes and our LDPC codes

at block error rate 10−4. Also shown is the Shannon sphere-packing bound [Sha59]

[DDP98] for several code rates. This bound gives the best performance that a finite

1dACE = ∞ is achieved by extending the trellis until all the notes in the rightmost level are
inactive

55

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Eb / No (dB)

B
E

R
 o

r
W

E
R

Arnold(dv = 8) BER
ACE(, 6) (dv = 8) BER
ACE(9, 4) (dv = 15) BER
Arnold(dv = 8) WER
ACE(, 6) (dv = 8) WER
ACE(9, 4) (dv = 15) WER

∞

∞

Figure 4.6: Results for (4000, 2000) codes.
The BPSK capacity bound at R = 0.5 is 0.188dB.

length code can possibly achieve. As we can see, both turbo codes and LDPC codes

operate very close to the sphere-packing bound.

4.3 A Smart Decoder

We know in the BEC case, once a bit is recovered from erasure, it will not be erased

again, so the number of bit errors is non-increasing with respect to the number of

iterations. However, in the case of BIAWGN channels, we have observed a fluctuation

of the number of bit errors in the medium SNR region (the transition between the

error floor region and the waterfall region). A typical set of fluctuation curves at

SNR ≈ 1dB are shown in Fig. 4.8.

The number of information bit errors is denoted by the thin solid curve. The

meaning of the other two curves will be explained shortly. These curves apparently

show a periodic characteristic. The mechanism that governs the fluctuation is not

informationHow

Figure 4.7: Sphere packing bound and some known good codes.
�: some good rate 1/2 turbo codes (data from JPL); 4: rate 1/2 LDPC codes

severe BER fluctuation will occur. The amplitude of the oscillation decays slowly

with time. In some cases, the errors are completely eliminated after a long time such

as 1000 iterations. Therefore by allowing the decoder to run more iterations, we can

improve code performance slightly but this will cause a long delay in the decoding

process. However, simply by choosing a good decision point, we can severely reduce

the number of iterations needed and achieve lower BER in the medium SNR region

at the same time.

To choose a good decision point, we have to use an indicator. One candidate

is the number of hard-decision constraints violated, which can be computed as the

(Hamming) weight of the syndrome vector after each iteration

57

1

10

100

1000

10000

0 20 40 60 80 100 120 140 160 180 200

Number of Iterations

number of information bit errors
number of hard-decision constraints violated
number of soft-decision constraints violated

Hard decision curves
usually have flat valleys

Soft decision curves
usually have
sharp minima

Figure 4.8: Fluctuation in number of bit errors in a BIAWGN channel.

s = rHT = (c + e) HT = eHT , (4.7)

where c is a codeword, e is the binary error pattern and r is the corrupted codeword.

From Eq. 4.7, we can see that the syndrome s is the binary sum of columns of

H whose indices correspond to the positions of ones in the error pattern e. Because

H is sparse and e has low weight at medium to high SNR, the positions of ones in

these columns tend to be unique, thus the weight of s is approximately the weight of

e times the average column weight of H. By selecting the point where the syndrome

has minimal weight for our decision, we approximately minimize the weight of the

error pattern as well. However, since this is a hard-decision indicator, it usually has

flat valleys (see Fig. 4.8) which makes further choice of decision points within these

flat regions difficult.

58

This problem can be solved by using the soft-decision “syndrome”. We only have

to make a slight change to Eq. 2.9 to obtain this soft-decision indicator.

tanh
ssoft

2
=

dc
∏

j=1

tanh
vj

2
. (4.8)

Note that the product is taken over all the dc incident edges of a constraint nodes

in Eq. 4.8. For a satisfied constraint node, the value of ssoft is a large positive

number which forces the correspondent parity check to zero. Otherwise, for a violated

constraint node, the value of ssoft is negative. Thus we can find the number of

unreliable constraints by counting the number of negative soft syndromes among all

the constraint nodes. This indicator is denoted in Fig. 4.8 by the thick solid curve.

As we can see, it is a better indicator than its hard-decision counterpart since it

has a sharper minimum region. In our simulations, soft decision iterative decoding

is applied and a decision is made during the first 200 iterations when the smallest

number of constraints are violated.

To make a fair comparison between our codes and other researchers’ codes, we

did not use the smart decision point algorithm in Fig. 4.3, 4.5, and 4.6. It should be

noted that the smart algorithm can further reduce the error floor in those cases by

half an order in magnitude.

4.4 Summary

This chapter showed simulation results for our LDPC code construction algorithm.

We also introduced a “smart decision point algorithm” that chooses good decision

points for BIAWGN channels. The next chapter will discuss future work on LDPC

codes.

59

Chapter 5

Rate-Compatible LDPC Codes

Many factors can change the characteristics (or states) of communication channels.

These factors include multipath fading, temperature/moisture change, hostile jam-

ming, and user-specified settings. A robust communication system should provide

bandwidth close to capacity under various channel conditions. For example, the 3G

CDMA specification IS-856 supports 12 data rates ranging from 38.4 to 2,457.6 Kbps.

The corresponding code rate varies between 1/5 and 1/3.

Rate-compatible coding is appropriate for communication systems that may ex-

perience a range of operating SNRs but that seek to adhere to a single underlying

codec structure. Traditionally, to achieve rate-compatibility, we have to indepen-

dently build several subsystems that operate at different code rates, and switch be-

tween them according to channel state information. However, this scheme increases

the design, setup and maintenance cost. A more efficient and flexible rate-compatible

scheme is desired.

Punctured codes have long been used to achieve rate-compatibility. Mandel-

baum [Man74] first proposed punctured Reed-Solomon codes with incremental re-

dundancy. Cain et al. [CCG79] introduced punctured convolutional codes with code

60

rates (n − 1)/n. This methodology was extended by Hagenauer [Hag88] to Rate-

Compatible Punctured Convolutional (RCPC) codes, which allowed many continu-

ous error protection level within a data frame. Soon after the invention of turbo codes

[BGT] in the early 1990s, Barbulescu et al. [Bar95] developed the Rate-Compatible

Punctured Turbo (RCPT) codes. Wesel [WLS] introduced punctured trellis codes,

with emphasis on avoiding catastrophic events by proper selection of puncturing pat-

terns. The puncturing pattern design was also discussed in [KS]. Ha et al. [HM] ap-

plied rate-compatible puncturing to the newly rediscovered low-density parity-check

(LDPC) codes.

Compared to the family of convolutional codes and turbo codes (which include

convolutional codes as constituent codes), LDPC codes can provide more flexible

rate-compatible communications. For convolutional codes, punctured bits have to

be distributed periodically with short period. In addition, to avoid catastrophic

events, puncturing patterns have to be carefully chosen, which further limits the

rate-variability. LDPC codes, on the other hand, are based on large random bipartite

graphs, or equivalent matrices. Many well-established methods are available in graph

theory and linear algebra to operate on LDPC codes, allowing for almost arbitrary

code rates. Catastrophic events are alleviated by the intrinsic randomness of LDPC

codes, and further by the technique to be proposed in this contribution.

5.1 Overview of the Proposed Rate-Compatible

LDPC Codes

Fig. 5.1 shows an example of how the proposed method achieves low rate 0.2 and

high rate 0.8 from a length-104 mother code that has rate R0 = 0.5. Information bits

61

5000 bits 3750 bits

info nulled

info sent

parity sent

1250

1
 1
 1
 1
 1
 1
 1
 1

(a) Information nulling to achieve R = 0.2.

5000 bits 3750 bits

0
1
 1
 1
 1
 1
 1
 1
 1

info sent

parity sent

parity punctured

1250

(b) Parity puncturing to achieve R = 0.8.

Figure 5.1: Proposed rate-compatible scheme for center rate R0 = 0.5.

62

are on the left side (white area) and parity bits on the right side (shaded area).

To achieve R = 0.2 from the rate 0.5 mother code, zeros are used instead of

payload data for the leftmost 3750 information bits in the encoding/decoding process.

To achieve R = 0.8 from the rate 0.5 mother code, the rightmost 3750 parity bits

are punctured. The number of information bits nulled and the number of parity bits

punctured can be varied to achieve a wide range of code rates. For reasons to be

described, rates above R0 are achieved exclusively through parity puncturing and

rates below R0 exclusively through information nulling. We will propose a column

degree assigning algorithm that endeavors to fit the degree sequence associated with

a given code rate to the sequence that is asymptotically optimal for that rate.

5.2 Weight-Assigning Algorithm

We use density evolution ([RSU01][HM]) to find the node-wise degree distribution

λ̃
(R)
i , 0 ≤ R ≤ 1. To reduce design complexity, variable degree is only allowed to be

2, 3, 4, or 10. λ̃
(R)
i is further normalized to

L̃
(R)
i =















1−R0

1−R
λ̃

(R)
i , if 0 ≤ R ≤ R0,

λ̃
(R0)
i

(

1− π
(R)
i

)

, if R0 < R ≤ 1,

(5.1)

where L̃i represents the fraction of degree-i variables of the rate-R scheme with

respect to the mother code and π
(R)
i (see [HM]) represents the fraction of punctured

degree-i variables. L̃i is plotted in Fig. 5.2.

The curves in Fig. 5.2 must be extrapolated to code rate 0 and 1 for a full

63

JJ;K;JMLJNKNO
J;KPOQLJNKSR
J;K;RMLJNKST
J;K;TMLJNKVU
J;KMU;LJNKSL

J JNKML OWYXPZN[]\Y^`_Y[
a bcd e
f g hij k il
c iik
g mn cg
o png b
q

rtsngf
j i

uwvyxuwv{zuwv}|uwv�~��

Figure 5.2: Normalized node-wise degree distribution L̃i.

description of the mother code. The extrapolation must satisfied

L̃
(0)
i + L̃

(1)
i = L̃

(R0)
i , (5.2)

because L̃
(0)
i describes the normalized distribution of the parity portion of H, L̃

(1)
i

describes the normalized distribution of the information portion of H, and their sum

c

Column Degree Allocation

ni = 0, i = 2, 3, ..., dv − 1;

for (column η = 1; η ≤ n; η++)

x = η
n
;

if (x < R0)

pi = n×
{

L̃
(R0)
i − L̃

(R0−x)
i

}

− ni, i = 2, 3, ..., dv − 1;

else

pi = n× L̃
(1−x+R0)
i − ni, i = 2, 3, ..., dv − 1;

endif

j = arg max
i
{pi};

Assign the degree of column η to j;

nj++;

end

5.3 Advantage of the Proposed Scheme

We propose the lower triangular structure in Fig. 5.1 for two reasons.

5.3.1 Efficient Encoding

First, the parity matrix satisfies the structure proposed by [RU01] and hence has an almost

linear time encoder.

A traditional LDPC encoder involves multiplying the message vector and the dense

generator matrix. The computation complexity of this algorithm is O(n2). Richardson and

Urbanke [RU01] proposed an encoder with a lower triangular structure similar to Fig. 5.1.

Their approach can be described as:

65

1. Construct a random parity matrix

H =







A B T

C D E






, (5.3)

where T is a lower-triangular matrix. A and C correspond to information bits and

all other submatrix form a square matrix corresponding to parity bits. A codeword

is also divided into three parts: c = (m p1 p2), where m represents the message

(information bits), p1 and p2 represent the parity bits.

2. Obtain an alternative parity matrix by row-transform

H =







A B T

−ET−1A + C −ET−1B + D 0






. (5.4)

3. Define Φ = −ET−1B+D. If Φ is non-singular, we can calculate pT
1 = −Φ−1(−ET−1A+

C)mT in almost linear time, and calculate pT
2 = −T−1(AsT + BpT

1) in linear time

with back-substitution.

The proposed algorithm performs puncturing on p2. Our approach is different from the

one described in [RU01] in two ways. First, we construct the matrix in a column-by-column

fashion instead of by column and row permutation. The size of the upper triangular matrix

is adjustable as long as it covers all the punctured bits in the highest rate scheme. Second,

in our algorithm, Φ is guaranteed to be non-singular by the full-rankness of H.

5.3.2 Error Floor Suppression

Second, the proposed structure can suppress error floors. Recall that to form a stopping

set, each constraint neighbor of a variable set must connect to this variable set at least

twice. Any column (variable) subset of portion (2) in Fig. 5.1(b) is not a stopping set,

66

because the leftmost column of this subset has at least a neighbor (the upmost “1” of this

column) that is singly connected to this set.

5.3.3 Why Nulling and Puncturing?

Alternatively, information nulling or parity puncturing can be conducted separately to

achieve rate compatibility. However, neither technique works as well as the proposed hybrid

technique when used over a wide range of rates. If only information nulling is employed,

the high rate codes will contain a relatively large number of columns, leading to a large

number of cycles and stopping sets. These code structures negatively affect the performance

of message passing decoders (see [RSU01]). If we use parity puncturing alone to get a rate

0.8 code from a rate 0.2 code, we will have to puncture 75% of the bits (i.e., 93.75%

parity bits). Such heavy puncturing significantly increases the error floor because a large

punctured set increases the chance of punctured stopping sets, and punctured stopping

sets cannot be corrected ([DPT+02] [TJVWa]). In addition, heavy puncturing reduces the

effective block length of high rate codes. Short block length harms code performance. In

the above example, the rate 0.8 code only transmits 25% of the bits that are transmitted

for rate 0.2. In contrast, for the proposed scheme, the rate 0.8 code transmits 62.5% of the

total bits.

5.4 Simulation Results

Simulation results for Additive White Gaussian Noise (AWGN) channels are shown in

Fig. 5.3. The degree distribution profile of the mother code is described by Fig. 5.2.

The mother code is generated by the ACE algorithm with the further constraint that

columns be allocated per the degree allocation technique of the previous section. The

parity matrix is also constructed to have a semi-lower triangular form as this prevents

stopping set activation due to parity puncturing.

67

�Y�<�<�����
�Y�<�<�����
�Y�<�<�����
�Y�<�<�����
�Y�<�<�����
�Y�<�<���<�
�Y�<�<�����
�Y�<�<�����

���N� ���N� ��� ��� ��� ��� � � ������������;�����

� ¡ ¢Y£Y£Y£N¤<¢Y¢Y¢Y¥N¦<£Y§Y¨¢Y£Y£Y£N¤<¥Y©Y¢Y£N¦<£Y§Yª¢Y£Y£Y£N¤<«�¬M­<®N¦<£Y§Y«¢Y£Y£Y£N¤<ªY®Y®Y®N¦<£Y§Y¥¢Y£Y£Y£N¤�¬;£Y£Y£Y£N¦<£Y§Y¢®Y®Y®Y®N¤<ªY®Y®Y®N¦<£Y§N­©�¬M­<®N¤<«�¬M­<®N¦<£Y§Y®¬;©Y¢Y£N¤<¥Y©Y¢Y£N¦<£Y§Y©¢Y¢Y¥N¤<¢Y¢Y¢Y¥N¦<£Y§�¬

Figure 5.3: Es/N0 simulation results. AWGN channel.

It should be noted that when we applied the ACE algorithm to the multi-rate scheme,

we enforced lower rate codes to have higher ACE parameters. We enforce dACE = 9 and

set ηACE to be 6, 5, 4 and 3 for R = 0.1, 0.2, 0.3 and 0.4 respectively. This step is crucial

to further suppress the error floor of low rate code schemes.

The error floors of R = 0.6 and 0.7 are too low to be detected. Highest rates R = 0.8

and 0.9 do not show a distinct error floor. Instead, their curves transit gradually from a

steep waterfall region to the error floor region. The mother code R = 0.5 has an error floor

just above 10−8. With the decrease of code rate, higher error floors are observed.

Fig. 5.4 plots Shannon capacity and the Eb/N0 needed for the simulation code to reach

BER = 10−6. It shows an asymmetric degradation around R0 = 0.5.

On the high rate side, R = 0.6 has a larger gap to capacity than other codes. This

is because the R = 0.6 parity matrix has a larger portion of active triangular columns,

which reduces the randomness of the code. In contrast, the highest rate code R = 0.9,

has no active triangular columns. In addition, high rate codes enjoy smaller performance

68

¯M°
¯N±
²
±
°
³
´
µ

² ²V¶ ± ²·¶ ° ²·¶·³ ²·¶Q´ ²V¶·µ ²·¶·¸ ²·¶·¹ ²·¶Qº ²V¶=» ±¼`½¿¾`ÀÂÁ¿Ã¿Ä`À

E
b/

N
o

Å Æ ÇÈ

ÉtÊÌËÎÍ�ÍÐÏ�Í
ÉÂÑ�ÒEÓÕÔ�Öt×�ØÚÙ�Û�ÜtÝ

Figure 5.4: Gap to BPSK capacity bound.

gap because coded systematic bitstreams asymptotically approach the uncoded bitstream

at R→ 1.

On the low rate side, the gap to capacity increases more rapidly as the code rate

decreases. The reason is two-fold. First, low rate codes are shorter, e.g., code R = 0.1 has

only 5556 bits instead of 10000 bits. Second, when the normalized degree distribution (Fig.

5.2) was constructed, the distribution around R = 0.1 was changed slightly to satisfy (5.2).

Therefore, the deviation of low rate distributions from the density evolution distribution is

larger.

5.5 Summary

We combined information nulling and parity puncturing techniques for LDPC codes. The

proposed scheme achieves close-to-capacity performance across a wide range of code rates.

69

Chapter 6

Compression of Correlated Sources

Using LDPC Codes

In previous chapters, we have discussed LDPC codes used in channel coding scenarios.

In this chapter, we will further apply LDPC codes to compressing memory correlated

binary sources, where the correlation between sources is defined by a Hidden Markov Model

(HMM). In order to achieve this goal, the standard approach in density evolution is modified

to incorporate the HMM. The proposed scheme is then applied to the design of irregular

LDPC codes that optimize the system performance.

6.1 Finite-State Markov Channels and

Gilbert-Elliott Channels

A Finite-state Markov Channel (FSMC) can be modelled as a markov chain Sn which takes

values in a finite space C of memoryless channels with finite input and output alphabets.

The conditional input/output probability is p(yn|xn, Sn), where xn and yn denote the chan-

nel input and output respectively. The channel transition probabilities are independent of

the input. If the transmitter and receiver have perfect channel state information (CSI),

70

then the capacity of the FSMC is just the statistic average over all states of the corre-

sponding channel capacity [MBD89]. On the other hand, with no CSI or the transition

structure, capacity is reduced to that of the Arbitrarily Varying Channel [CK81]. An in-

termediate case was considered in [GV96], where the channel transition structure of the

FSMC is known.

A correlated source pair can be defined on a binary FSMC as follows. The correlation

between the sources is generated in the following way:

• Generate a symmetric i.i.d. sequence U1 (P (u1
k = 0) = P (u1

k = 1) = 1/2).

• Define the sequence U2 as u2
k = u1

k ⊕ ek, where ⊕ indicates modulus 2 addition and

ek is a binary random variable generated by an HMM λ = {A, B, π}. Let the set of

states in this model be Sj , 0 ≤ j ≤ S − 1. Defined on these states, there are three

parameters in this model: A = (aij) is the matrix of transition probabilities among

states (where aij = Pt(Sj |Si), 0 ≤ i, j ≤ S−1 is the transition probability from state

Si to state Sj), B = (bjv) is the list that gives the bit probability to associate with

each state (where bjv = Po(v|Sj), 0 ≤ j ≤ S − 1, v ∈ {0, 1} is the probability of

getting output v in state Sj), π is the initial distribution of each state.

As a special case of the FSMCs, a Gilbert-Elliott (G-E) channel has only two states: a

‘good’ state (S0) and a ‘bad’ state (S1). The input and output alphabets are binary and

the channel at any specific state is a BSC. The BER at the ‘good’ state is lower than the

BER at the ‘bad’ state.

For simplicity, we consider correlated sources defined on a G-E channel. There are four

parameters in this model: b is the transition probability from S0 to S1, g is the transition

probability from S1 to S0, pG and pB are the probabilities to generate a one in the ‘good’

and the ‘bad’ state respectively. This model is shown in Fig. 6.1 with parameters.

[MBD89] elaborated the relationship between channel capacities defined in three differ-

ent ways. The capacity of the interleaved channel, under the assumption of no memory, is

denoted by CNM . This capacity is lower than Cµ, the capacity of the E-B channel, where

71

Þ ß Þ à
b

g

1-b 1-g

0

1

0

1

1-pG

1-pG

pG

0

1

0

1

1-pB

1-pB

pB

Figure 6.1: The E-B channel model.

µ = 1 − b − g is called the memory measure. Cµ in turn is lower than CSI , which is the

capacity assuming that the CSI is perfectly available to the transmitter and the receiver.

For highly persistent channels (µ → 1) and highly oscillatory channels (µ → −1), Cµ is

very close to CSI .

6.2 Encoding and Non-Zero Syndrome Decoding

The well-known Slepian-Wolf result [SW73] states that when source encoding is performed

separately for each source and the correlation between the sources is also assumed to be

unknown at the encoder, the achievable compression region is given by R1 ≥ H(U1|U2),

R2 ≥ H(U2|U1), R = R1 + R2 ≥ H(U1,U2), where H(Ui|Uj) is the conditional entropy,

H(U1,U2) is the joint entropy, and Ri is the compression rate for sources i.

In this work we develop a density evolution analysis of the system proposed in [GFZb].

We consider (as in [LXG02]) the case of asymmetric compression, in which one of the

sources is perfectly available to the decoder and the other source is compressed as much

72

as possible. Without loss of generality, we will assume that R2 = 1 and source 1 is to

be compressed to a rate R1 as close to H(U1|U2) as possible. Since from an analytical

perspective the compression of U1 is equivalent to the compression of U1 ⊕U2 when U2

is known, we will focus on the decoding of the correlation pattern U1 ⊕U2. The encoding

diagram is described in Fig. 6.2.

áãâåäçæÎèãé êãëíìïîíðãñóò
êãëíìïîíðãñóò ô

ñõìöîíð÷ñóò
2Û

1Û

ø ù
ø ú û ü

ýÿþ � � � � � �

���
	���
��

Figure 6.2: Encoding process of correlated sources.

The Slepian-Wolf limit states that ‘neither encoder knows the other sequence being en-

coded’. This requirement can be achieved by the encoding and non-zero syndrome decoding

technique described below:

Encoding and Non-Zero Syndrome Decoding

1. Encoder 2 compresses sequence U2 into bitstream c2.

2. Encoder 1 calculates the syndrome of sequence U1 as s1 = U1HT, where H is

the LDPC parity matrix.

3. Decoder decompresses bitstream c2 into sequence U2.

4. Decoder calculates the syndrome of sequence U2 as s2 = U2HT.

5. Decoder decodes syndrome ∆s = s1−s2 by finding a sequence ∆U that satisfies

∆s = ∆UHT.

6. Decoder finds U1 = U2 + ∆U.

It should be noted that step 5 is not error-free. By optimizing the parity matrix of the

LDPC code, we can approach the Slepian-Wolf limit at very low error rate.

73

Fig. 6.3 shows the block diagram of the correlated source decoder.

variable
nodes

constraint
nodes

 +

 +

 +

 +

 +

 +

correlation pattern
nodes

u
v

u0 g t

Figure 6.3: Message passing in the correlated source decoder.

In addition to n variable nodes and n−k constraint nodes, the decoder has n correlation

pattern nodes. These nodes comprise a block where the forward-backward (F-B) algorithm

is used based on the transition trellis. Not including the F-B block, there are five types of

messages passing in this decoding structure:

1. u messages (from constraint nodes to variable nodes)

2. v messages (from variable nodes to constraint nodes)

3. u0 messages (a priori messages based on observation of channel corrupted signals)

4. g messages (from variable nodes to correlation pattern nodes)

5. t messages (from correlation pattern nodes to variable nodes)

74

The first three types of messages exist in the classic LDPC decoder. The other two

types of messages (g and t) are related to the correlation of the source model. According

to the principle of message passing, for an ‘equality’ function node, the output LLR should

be the sum of all the input LLRs (see [For01]). A variable node is by nature an ‘equality’

function node, therefore,

g =
∑dv

j=0
uj . (6.1)

The F-B block processes the input g messages based on the correlation model (b, g, pG,

pB). The output t messages of the F-B block will be further combined with u0 and u to

generate the outgoing v messages of variable nodes:

v = t +
∑dv−1

j=0
uj . (6.2)

The remaining problem is to model the relationship between the input and output of the

F-B block, i.e., to find the function f that defines t = f(g). The next section will solve

this problem.

6.3 LLR Evolution in the

Forward-Backward Algorithm

In order to design a density evolution scheme for correlated sources in which the correlation

is defined by HMMs [BCJR74], we need to understand how LLRs evolve in the F-B block.

Given that the kth correlation pattern bit e(k) is one with extrinsic probability p(k), we

need to update this probability for the next iteration (denoted as p′(k)). The basic unit in

the F-B trellis is shown in Fig. 6.4,

Define the forward state probability to be a row vector α(k) = [α
(k)
0 α

(k)
1], where α

(k)
i

is the probability that the kth correlation pattern bit is in state Si. Similarly we define

the backward state probability to be a column vector β(k) = [β
(k)
0 β

(k)
1]T . The boundary

75

S0 S0

S1 S1

k k + 1

e(k) = 0 (1-pG)(1-b)(1-p(k))

e(k) = 1 pG(1-b)p(k)

e(k) = 0 (1-pB)(1-g)(1-p(k))

e(k) = 1 pB(1-g)p(k)

e(k) = 0 (1-pB)g(1-p(k))

e(k) = 1 pBgp(k)

e(k) = 0 (1-pG)b(1-p(k))

e(k) = 1 pGbp(k)

Figure 6.4: The basic unit in the F-B trellis

conditions can be set to be the stationary distribution: α(0) = β(n)T =

[

g
g+b

b
g+b

]

. One

step in the F-B algorithm can be described as

α(k+1) = α(k)Q(k), (6.3)

and

β(k+1) = Q(k)β(k), (6.4)

where

Q(k) =







Q
(k)
00 Q

(k)
01

Q
(k)
10 Q

(k)
11






, (6.5)

Q
(k)
00 = (1− pG) (1− b)

(

1− p(k)
)

+ pG (1− b) p(k),

Q
(k)
01 = (1− pG) b

(

1− p(k)
)

+ pGbp(k),

Q
(k)
10 = (1− pB) g

(

1− p(k)
)

+ pBgp(k),

Q
(k)
11 = (1− pB) (1− g)

(

1− p(k)
)

+ pB (1− g) p(k).

76

The F-B updating rule is given by

p
′(k)
0 = α(k)







(1− pG) (1− b) (1− pG) b

(1− pB) g (1− pB) (1− g)






β(k), (6.6)

p
′(k)
1 = α(k)







pG (1− b) pGb

pBg pB (1− g)






β(k), (6.7)

p′(k) =
p
′(k)
0

p
′(k)
0 + p

′(k)
1

. (6.8)

By using likelihood ratios instead of probabilities, a simpler representation of the F-B

algorithm is obtained as follows

Γ0 =







(1− pG) (1− b) (1− pG) b

(1− pB) g (1− pB) (1− g)






, (6.9)

Γ1 =







pG (1− b) pGb

pBg pB (1− g)






, (6.10)

l(k) =
1− p(k)

p(k)
, (6.11)

Q(k) = Γ0l
(k) + Γ1, (6.12)

l′(k) =
p
′(k)
0

p
′(k)
1

=
α(k)Γ0β

(k)

α(k)Γ1β(k)
=

[

g b

]

k−1
∏

i=0
Q(i)Γ0

n
∏

j=k+1

Q(j)







g

b







[

g b

]

k−1
∏

i=0
Q(i)Γ1

n
∏

j=k+1

Q(j)







g

b







(6.13)

77

≈ lim
k→∞

[

g b

]

k−1
∏

i=0
Q(i)Γ0

2k
∏

j=k+1

Q(j)







g

b







[

g b

]

k−1
∏

i=0
Q(i)Γ1

2k
∏

j=k+1

Q(j)







g

b







, (6.14)

where (6.14) is obtained by neglecting the “edge effect” at the beginning and the end of a

code (note that an LDPC code usually contains more than 103 bits).

For generic symmetric channels (see [RSU01]), the distribution of a variable output

LLR message is well approximated by a Gaussian distribution whose mean (m) and variance

(var) are related as var = 2m. If the channel is memoryless, we can use an all-zero codeword

to test the performance of all possible codewords. Thus the Gaussian distribution in the

test condition always has a positive mean with BPSK mapping: 0→ +1/1→ −1.

Our HMM model is characterized by bit-flipping. It follows that the initial LLR dis-

tribution is impulsive (see [RSU01]). However, after a few iterations, the LLR distribution

tends to be like a Gaussian. A caveat is that the traditional Gaussian approximation cannot

be directly applied when we use the non-zero-syndrome decoding for the HMM model: we

have to consider the sign of a correlation pattern bit. If the bit is 0, its F-B input Gaussian

has a positive mean m; if the bit is 1, its F-B input Gaussian has a negative mean −m.

The variance and m still satisfy var = 2m. To provide a normalized LLR, we change the

sign of the output LLR if its associated correlation pattern bit is 1. The resulting metric

represents the log-likelihood reliability of the output of the F-B algorithm.

Tab. 6.1 lists the parameters of three test sources. Source 1 is highly oscillatory,

while source 2 and 3 are highly persistent. The memory measure µ and the theoretical

compression rate Rµ
1 were described in [MBD89]. As mentioned before, we assume R2 = 1.

It should be noted that all these sources have 50% ones on average, therefore they are

incompressible with memoryless encoders. In this case, all the u0 messages in Fig. 6.3 are

zero.

78

source b g pG pB µ Rµ
1 ∆est ∆simu

1 0.99 0.935 0.05 0.925 -0.925 0.515 1.82 2.05
2 0.03 0.033 0.07 0.973 0.937 0.448 2.22 2.42
3 0.01 0.011 0.055 0.9895 0.979 0.279 3.05 3.28

Table 6.1: Statistics of the test sources.

The LLR simulation results using 5000 bits for source 1 are shown in Fig. 6.5. Ob-

viously, the output LLR distribution looks like two impulses with tails on their left sides.

The mean of this distribution is positive, which represents an improvement in the reliability

of correlation pattern nodes after an iteration. In contrast, without the F-B block, the a

priori LLRs (ū0) of source 1 is zero. We also see that for higher input LLR levels, the

output LLR distribution has smaller tails and tends to have finer granularity.

The F-B input-output characteristics of all the test sources are shown in Fig. 6.6(a).

The output corresponding to zero input is ū0 = 0. As the input level increases, the output

LLR saturates to a value that we call ∆. In Tab. 6.1, ∆simu represents the value of

∆ obtained from simulation and ∆est represents the estimate obtained with the method

described in the Appendix.

As will be discussed in the next section, for sources with low a priori messages such

as the test sources (where ū0 = 0), the decoding process can hardly converge. In order

to solve this problem, [GFZb] introduced periodic synchronization bits. Synchronization

bits are directly transmitted to the decoder with complete reliability. For these bits (6.12)

should be changed to

Q(k) =















Γ0, if this bit is 0,

Γ1, if this bit is 1.

(6.15)

The decoder structure with synchronization bits can be illustrated in Fig. 6.7. The g

messages passed from synchronization bits are either +∞ or −∞, because we have complete

confidence in their values. Effectively, the whole F-B block is broken into smaller F-B blocks

79

−4 −3 −2 −1 0 1 2 3 4
0

200

400

600

800

1000

1200

1400

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6 8 10 12 14 16

input LLR

o
u

tp
u

t
L

L
R

souce 1
souce 2
souce 3

 (a) All sources without synchronization bits

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8
input LLR

o
u

tp
u

t
L

L
R

0%

2%

5%

10%

14.3%

20%

25%

 (b) Channel 1 with synchronization bits

Figure 6.6: Input-output characteristics of the F-B block generated by simulation.

marked by the synchronization bits. Each smaller F-B block has deterministic staring bit

and ending bit.

Fig. 6.6(b) shows the Monte-Carlo simulation result for source 1 with different rate

of synchronization bits. Note that the initial LLR output increases with the introduction

of synchronization bits. Because synchronization bits introduce a transmission overhead,

there is an optimal percentage of synchronization bits for given source parameters. This

81

variable
nodes

constraint
nodes

 +

 +

 +

 +

 +

 +

correlation pattern
nodes

u
v

u0 g t

g = ±∞

Figure 6.7: Message passing with two synchronization bits.

issue will be addressed shortly.

6.4 Density Evolution Optimization of

Irregular LDPC Codes for Correlated Sources

Chung et al. [CRU01] designed a density evolution optimization algorithm based on linear

programming and a Gaussian approximation. Divsalar et al. [DDP01] illustrated density

evolution for various turbo-like codes by examining the iterative decoding tunnel between

two SNR characteristic curves. The shape of this tunnel directly affects the convergence of

an iterative decoder. With similar methodology, we propose an iterative decoding tunnel

82

for LDPC codes. This method is applicable to binary erasure channels (BECs) as well

as binary-input additive white Gaussian noise channels (BI-AWGNCs). For simplicity,

we only introduce the BI-AWGNC analysis here. First we reformulate Chung’s density

evolution equation [CRU01] as

ūl =
∑

j

ρjΦ
−1







[

∑

i

λiΦ (ū0 + (i− 1)ūl−1)

]j−1






, (6.16)

ū1 = 0, (initial condition), (6.17)

where ū0 = 2
σ2 is the mean of the a priori log-likelihood ratios (LLRs) and ūl is the mean

of the LLRs generated by constraint nodes after the lth iteration. The Φ function is defined

to be

Φ (x) =















1√
4πx

∫

R
tanh

(

u
2

)

exp
(

− (u−x)2

4x

)

du, if x > 0,

0 if x = 0.

(6.18)

To examine the LLR evolution in an LDPC code system, we separate (6.16) into two

equations.

ūl =
∑

j

ρjΦ
−1
(

T̄ j−1
l−1

)

, (6.19)

T̄l =
∑

i

λiΦ (ū0 + (i− 1)ūl) , (6.20)

where T̄l = E
(

tanh vl

2

)

, v̄l is the mean of the LLRs generated by variable nodes after the

lth iteration. Equations (6.19) and (6.20) for an irregular rate 1/2 code (see [RSU01]) are

plotted as the upper curve and the lower curve in Fig. 6.8.

An iterative decoding process begins at the origin and get through the tunnel bounded

by the two curves in a manner similar to climbing a staircase. If the tunnel is open, the

decoding process succeeds with infinite LLR achieved. If there are bottlenecks inside the

tunnel, the LLR will block at the first (lowest) bottleneck.

The upper curve is fixed for given degree distributions and it always passes the origin.

83

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

T

u

Figure 6.8: Density evolution curves for an irregular LDPC code. dv = 12, σ = 0.80.
The upper curve represents (6.19) and the lower curve represents (6.20).

The position of the lower curve depends on both degree distributions and channel param-

eters. This curve passes point (T̄ = Φ(ū0), ū = 0). As the noise power (σ2) increases,

ū0 decreases and the two curves become closer to form a narrower tunnel. The threshold

noise power of a code is evaluated when the two curves touch. By imposing the constraint

that the iterative decoding tunnel is open, we can design the following linear programming

algorithm that optimizes the degree profile of irregular LDPC codes.

Traditional Optimization Algorithm:

For fixed ρ, maximize 1
1−R

=
∫

λ
∫

ρ
such that

dv
∑

j=2
λj = 1, λj ≥ 0,

∑

i

λiΦ (ū0 + (i− 1)ū) > T̄ for many
(

T̄ , ū
)

pairs that satisfy











ū =
∑

j

ρjΦ
−1
(

T̄ j−1
)

Φ (ū0) < T̄ < 1

,

λ2 < 1

ρ′(1) exp(ū0

4
)
.

The last inequality represents the stability constraint that enforces good code perfor-

mance at high LLR (see [RSU01]). The above algorithm is similar to Chung’s [CRU01]

original optimization technique while providing a more intuitive depiction of the iterative

84

decoding tunnel.

In the standard density evolution process, variable nodes are connected to half edges

representing a priori messages (ū0 in (6.20)). The density evolution algorithm extends nat-

urally to correlated sources. We only have to substitute ū0 with the F-B output generated

by the F-B input of the current iteration. For a degree-i variable this input is the sum of

ū0 and iūl, where ūl is the average LLR generated by constraint nodes in the lth iteration.

Thus the density evolution process for correlated sources can be described as

ūl =
∑

j

ρjΦ
−1
(

T̄ j−1
l−1

)

, (6.21)

T̄l =
∑

i

λiΦ (f(ū0 + iūl) + u0 + (i− 1)ūl) , (6.22)

where f(·) represents the input-output characteristics of the F-B block. The new density

evolution algorithm that considers the F-B characterization is given by

Proposed Optimization Algorithm:

For fixed ρ, maximize 1
1−R

=
∫

λ
∫

ρ

s.t.
dv
∑

j=2
λj = 1,

λj ≥ 0,

∑

i

λiΦ (f(ū0 + iūl) + u0 + (i− 1)ū) > T̄ for many
(

T̄ , ū
)

pairs that satisfy











ū =
∑

j

ρjΦ
−1
(

T̄ j−1
)

Φ (ū0) < T̄ < 1

,

λ2 < 1

ρ′(1) exp(ū0

4
)
.

Recall that for sources with small a priori messages we use synchronization bits, because

the lower curve in Fig. 6.8 starts from a point at or very close to the origin in this case. It

should also be noted that the f(·) function in the proposed algorithm represents the F-B

characteristics with corresponding percentage of synchronization bits.

85

6.5 Analytical and Simulation Results

For given source parameters, we can find the code that optimizes compression rate R1.

Let the fraction of synchronization bits be α, then the source-coding (compression) rate

is R1 = (1 − R + α)/(1 + α). Fig. 6.9 shows the R1 ∼ α curves for source 1 (both the

proposed and the traditional algorithm). Obviously, the proposed method achieves a better

compression rate with less synchronization bits.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

alpha

R
1

Traditional Optimization

Proposed Optimization

Figure 6.9: Theoretical R1 ∼ α curves for source 1.

Tab. 6.2 shows the optimum R1 and α data for the test sources. For regular codes,

we listed simulation results from [GFZb]. For irregular codes, we listed both theoretical

thresholds and simulation results for the proposed technique. All the simulations are per-

formed on codes with 16,400 bits. In general, the proposed algorithm generates irregular

codes that outperform regular codes. However, for source (3), the irregular code performs

worse than the best regular codes. The reason is that the Gaussian approximation used

in the proposed algorithm is inaccurate for the first several iterations, which compromises

the optimality of the proposed algorithm. Solution to this issue lies in an exact density

evolution analysis without the Gaussian approximation.

We also noticed that the degree profile generated with the proposed algorithm is signif-

86

source (R1, α)reg
SIMU (R1, α)irreg

THEO (R1, α)irreg
SIMU

1 (0.666, 0.20) (0.599, 0.05) (0.634, 0.15)
2 (0.582, 0.20) (0.544, 0.05) (0.577, 0.13)
3 (0.423, 0.08) (0.413, 0.02) (0.434, 0.06)

Table 6.2: Rcomp simulation result for regular codes and Rcomp threshold for irregular
codes.

icantly different from the one generated with the traditional algorithm. For source 1, the

traditional algorithm yields

λ(x) = 0.21704x + 0.18592x2 + 0.02477x5 + 0.23672x6 + 0.3355422, (6.23)

while the proposed algorithm yields

λ(x) = 0.19785x + 0.61618x2 + 0.11814x10 + 0.0678230. (6.24)

Obviously the codes optimized for correlated sources have higher concentration on degree-3

variables in stead of degree-2 variables.

6.6 Appendix: Estimation of F-B Characteristics

If we consider only the two immediate neighbors of an correlation pattern bit, then (6.13)

becomes

l′(k) ≈

[

g b

]

Q(k−1)Γ0Q
(k+1)







g

b







[

g b

]

Q(k−1)Γ1Q(k+1)







g

b







. (6.25)

87

Source 1 is highly oscillatory (µ = 1 − b − g = 1 − 0.99− 0.935 = −0.925). The crossover

probability of the ‘good’ state is low (pG = 0.05) and that of the ‘bad’ state is very high

(pB = 0.925). Therefore, the two immediate neighofan correlation pattern bit tend

to64734l7.6a
19.1989 th0 or 1 (this

is also true for p4734l7.6a
19.1989ersistensources). The locations of the

two LLR are

a0 ≈

g

λ

Γ1Γ0Γ1







g

64734/R650 10.9091 Tf
10.116 38.169 Td
(3)Tj
19.197 TL
(7)'
6.98402 TL
(5)'
ET Q
1 i
2272 4695 917.625 3.6748 re
f
q 8.33333 0 0 8.33333 0 0 cm BT
/R650 10.9091 Tf
1 0 0 1 272.691 551.886 Tm
(�)Tj
/R641 10.9091 Tf
10.737 -17.136 Td
(g)Tj
15.55171

λ

Γ1Γ1Γ1







g

64734/R650 10.9091 Tf
10.116 38.169 Td
(3)Tj
19.197 TL
(7)'
6.98402 TL
(5)'
/R647 10.9091 Tf
11.502 25.416 j
/Rπ2.70, (6.26)

and

a1 ≈

g

λ

Γ0Γ1Γ0







g

64734/R650 10.9091 Tf
10.116 38.169 Td
(3)Tj
19.206 TL
(7)'
6.975 TL
(5)'
ET Q
2272 3675 917.625 3.6748 re
f
q 8.33333 0 0 8.33333 0 0 cm BT
/R650 10.9091 Tf
1 0 0 1 272.691 429.486 Tm
(�)Tj
/R641 10.9091 Tf
10.737 -17.136 Td
(g)Tj
15.55171

λ

Γ0Γ0Γ0







g

64734/R650 10.9091 Tf
10.116 38.169 Td
(3)Tj
19.197 TL
(7)'
6.98402 TL
(5)'
/R647 10.9091 Tf
11.502 25.425 Td
(π)Tj
/R644 10.9091 Tf
11.5003 0 Td
(2)Tj
/R641 10.9091 Tf
5.44362 0 Td
(.)Tj
/R644 10.9091 Tf
3.0327 0 Td
(42)Tj
/R641 10.9091 Tf
10.8872 0 Td
(.)Tj
/R644 10.9091 Tf
97.0197 0 Td
((6.27))Tj
-383.682 -66.168 Td
(The)Tj
23.0566 0 Td
(relativ)Tj
30.3049 0 Td
(e)Tj
9.12762 0 Td
(heigh)Tj
1 -22.41of the tw o impulsescanestimated g

g+b
≈ 0.486 and b

g+b
≈

0.514 respectively. Thus for source 1, mean of output LLRs is appro ximately 0.486 ×

2.70 + 0.514× 2.42 =.56, as comparedsim ulation result 2.05.

A more accurate estimate (∆est in T4734l7956431l71) canobtained 647345.7485
19.1989ytaking a weighted sumof all the p4734l7.6a
19.1989ossiblevalues of (6.25).every bit haswo states (‘good’ or ‘bad’)twoerror states (‘correct’ or ‘error’), the computation complexity is 43 = More neighorbits

give 64734l7.6a
19.1989etter

estimates withexp onentially increasing complexityMonte-Carlo sim ulationis faster when neighbits in our sim ulations)involved.88

6.7 Summary

In this chapter, we developed a density evolution analysis for compression of correlated

sources using irregular LDPC codes. This analysis involves a depiction of the iterative

decoding tunnel and a linear programming optimization method. Simulation results cor-

roborate the good prediction capabilities of the proposed analysis.

89

Bibliography

[AEH] D. M. Arnold, E. Eleftheriou, and X. Y. Hu. Progressive edge-growth Tanner

graphs. in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, Nov.

2001, 2:995–1001.

[AG] A. Aaron and B. Girod. Compression with side information using turbo codes.

in Proc. Data Compression Conf., Snowbird, Utah, April. 2002.

[Bar95] A. S. Barbulescu. Rate compatible turbo-codes. IEE Electronic Lett., 31:535–

536, Mar. 1995.

[BCJR74] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes

for minimizing symbol error rate. IEEE Trans. Inform. Theory, 20:284–287,

Mar. 1974.

[BDMP98] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Serial concatenation of

interleaved codes: performance analysis, design, and iterative decoding. IEEE

Trans. Inform. Theory, 44:909–926, May 1998.

[BGT] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-

correcting coding and decoding: Turbo codes. in Proc. IEEE Int. Conf. Com-

mun., Geneva, Switzerland, May 1993.

[BM] J. Bajcsy and P. Mitran. Coding for Slepian-Wolf problem with turbo codes.

in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, Nov. 2001.

90

[CCG79] J. B. Cain, G. C. Clark, and J. M. Geist. Punctured convolutional codes of rate

(n− 1)/n and simplified maximum likelihood decoding. IEEE Trans. Inform.

Theory, 25:97–100, Jan. 1979.

[CK81] I. Csiszá and J. Körner. Information theory: coding theorems for discrete

memoryless channels. New York: Academic Press, 1981.

[CRU01] S. Chung, T. Richardson, and R. Urbanke. Analysis of sum-product decoding of

low-density parity-check codes using a Gaussian approximation. IEEE Trans.

Inform. Theory, 47:657–670, Feb. 2001.

[DDP98] S. Dolinar, D. Divsalar, and F. Pollara. Code performance as a function of

block size. TMO Progress Report, 42(133), May 1998.

[DDP01] D. Divsalar, S. Dolinar, and F. Pollara. Iterative turbo decoder analysis based

on density evolution. IEEE J. Select. Areas Commun., 19:891–907, May 2001.

[DM98] M. C. Davey and D. J. C. MacKay. Low-density parity check codes over GF(q).

IEEE Commun. Lett., 2:165–167, June 1998.

[DPT+02] C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke. Finite length

analysis of low-density parity-check codes on the binary erasure channel. IEEE

Trans. Inform. Theory, 48:1570–1579, June 2002.

[For01] G. D. Forney. Codes on graphs: normal realizations. IEEE Trans. Inform.

Theory, 47:520–548, Feb. 2001.

[Fos01] M. Fossorier. Iterative reliability-based decoding of low-density parity-check

codes. IEEE J. Select. Areas Commun., 19:908–917, May 2001.

[FW] C. Fragouli and R. D. Wesel. Bit vs. symbol interleaving for parallel concate-

nated trellis coded modulation. in Proc. IEEE Global Telecommun. Conf., San

Antonio, TX, Nov. 2001, 2:931–935.

91

[Gal62] R. G. Gallager. Low-density parity-check codes. IRE Trans. Inform. Theory,

IT-8:21–28, Jan. 1962.

[Gal63] R. G. Gallager. Low-density parity-check codes. Cambridge, MA: MIT Press,

1963.

[GF] J. Garcia-Frias. Joint source-channel decoding of correlated sources over noisy

channels. in Proc. Data Compression Conf., Snowbird, Utah, Mar. 2001, pages

283–292.

[GFZa] J. Garcia-Frias and Y. Zhao. Data compression of unknown single and corre-

lated binary sources using punctured turbo codes. in Proc. 39th Allerton Conf.

Commun., Control and Comput., Oct. 2001.

[GFZb] J. Garcia-Frias and W. Zhong. LDPC codes for compression of multi-terminal

sourcs with hidden Markov correlation. to appear in IEEE Commun. Lett.

[GV96] A. J. Goldsmith and P. P. Varaiya. Capacity, multual information, and coding

for finite-state Markov channels. IEEE Trans. Inform. Theory, 42:868–886,

May 1996.

[Hag88] J. Hagenauer. Rate-compatible punctured convolutional codes (RCPC codes)

and their applications. IEEE Trans. Inform. Commun., 36:389–400, April 1988.

[HM] J. Ha and S. W. McLaughlin. Analysis and design of punctured LDPCCs

over Gaussian channel with erasures. in Proc. Int. Symposium Inform. Theory,

Lausanne, Switzerland, June 2002, page 30.

[JTM+] C. Jones, T. Tian, A. Matache, R. D. Wesel, and J. D. Villasenor. Robustness

of LDPC codes on periodic fading channels. in Proc. IEEE Global Telecommun.

Conf., Taipei, Taiwan, Nov. 2002.

92

[KFL01] F. R. Kschischang, B. J. Frey, and H. Loeliger. Factor graphs and the sum-

product algorithm. IEEE Trans. Inform. Theory, 47:498–519, Feb. 2001.

[KLF01] Y. Kou, S. Lin, and M. Fossorier. Low-density parity-check codes based on

finite geometries: a rediscovery and new results. IEEE Trans. Inform. Theory,

47:2711–2736, Nov. 2001.

[KS] H. Kim and G. L. Stüber. Rate compatible punctured turbo coding for W-

CDMA. in Proc. IEEE Int. Conf. Personal Wireless Commun., Hyderabad,

India, Dec. 2000, pages 143–147.

[LMSS01] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Improved low-

density parity-check codes using irregular graphs. IEEE Trans. Inform. Theory,

47:585–598, Feb. 2001.

[LXG02] A. D. Liveris, Z. Xiong, and C. N. Georghiades. Compression of binary sources

with side information at the decoder using LDPC codes. IEEE Commun. Lett.,

6:440–442, Oct 2002.

[Mac99] D. J. C. MacKay. Good error-correcting codes based on very sparse matrices.

IEEE Trans. Inform. Theory, 45:399–431, Mar. 1999.

[Man74] D. M. Mandelbaum. An adaptive-feedback coding scheme using incremental

redundancy. IEEE Trans. Inform. Theory, 20:388–389, May 1974.

[Mar82] G. A. Margulis. Explicit construction of graphs without short cycles and low

density codes. Combinatorica, 2(1):71–78, 1982.

[MB] Y. Mao and A. H. Banihashemi. A heuristic search for good low-density

parity-check codes at short block lengths. in Proc. IEEE Int. Conf. Commun.,

Helsinki, Finland, June 2001.

93

[MB01] Y. Mao and A. H. Banihashemi. Decoding low-density parity-check codes with

probabilistic scheduling. IEEE Commun. Lett., 5:414–416, Oct. 2001.

[MBD89] M. Mushkin and I. Bar-David. Capacity and coding for the Gilbert-Elliott

channels. IEEE Trans. Inform. Theory, 35:1277–1290, Nov. 1989.

[MWD] D. J. C. MacKay, S. T. Wilson, and M. C. Davey. Comparison of constructions

of irregular Gallager codes. in Proc. 36th Allerton Conf. Commun., Control

and Comput., Sept. 1998.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Francisco, CA: Morgan Kaufmann, 1988.

[PR] S. S. Pradham and K. Ramchandran. Distributed source coding using syn-

dromes (DISCUS): design and construction. in Proc. Data Compression Conf.,

Snowbird, Utah, Mar. 1999, pages 158–167.

[RSU01] T. Richardson, M. Shokrollahi, and R. Urbanke. Design of capacity-

approaching irregular low-density parity-check codes. IEEE Trans. Inform.

Theory, 47:638–656, Feb. 2001.

[RU01] T. Richardson and R. Urbanke. Efficient encoding of low-density parity-check

codes. IEEE Trans. Inform. Theory, 47:638–656, Feb. 2001.

[Sha59] C. E. Shannon. Probability of error for optimal codes in a Gaussian channel.

Bell Syst. Tech. J., 38:611–656, Oct. 1959.

[SVZ98] S. Shamai (Shitz), S. Verdu, and R. Zamir. Systematic lossy source/channel

coding. IEEE Trans. Inform. Theory, 44:564–579, Mar. 1998.

[SW73] D. Slepian and J. K. Wolf. Noiseless coding of correlated information sources.

IEEE Trans. Inform. Theory, 19:471–480, July 1973.

94

[Tan81] R. M. Tanner. A recursive approach to low complexity codes. IEEE Trans.

Inform. Theory, IT-27:533–547, Sept. 1981.

[TGFZa] T. Tian, J. Garcia-Frias, and W. Zhong. Compression of correlated sources

using LDPC codes. in Proc. Data Compression Conf., Snowbird, Utah, Feb.

2003.

[TGFZb] T. Tian, J. Garcia-Frias, and W. Zhong. Density evolution analysis of correlated

sources compressed with LDPC codes. in Proc. Int. Symposium Inform. Theory,

Yokohama, Japan, June 2003.

[TJVWa] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel. Selective avoidance of

cycles in irregular LDPC code construction. submitted to IEEE Trans. Com-

mun.

[TJVWb] T. Tian, C. Jones, John Villasenor, and Rick Wesel. Construction of irregu-

lar LDPC codes with low error floors. in Proc. IEEE Int. Conf. Commun.,

Anchorage, Alaska, May 2003.

[Var97] A. Vardy. The intractability of computing the minimum distance of a code.

IEEE Trans. Inform. Theory, 43:1757–1766, Nov. 1997.

[Wib96] N. Wiberg. Codes and decoding on general graphs. Ph.D. dissertation, Linkping

Univertisy, Linkping, Sweden, 1996.

[WLS] R. D. Wesel, X. Liu, and W. Shi. Periodic symbol puncturing of trellis codes.

in Proc. 31st Asilomar Conf. Signals, Systems and Comput., Nov. 1997.

[Wyn74] A. D. Wyner. Recent results in the Shannon theory. IEEE Trans. Inform.

Theory, 20:2–19, Jan. 1974.

95

[YSB] J. Yedidia, E. Sudderth, and J. Bouchaud. Projection algebra analysis of error-

correcting codes. in Proc. 39th Allerton Conf. Commun., Control and Comput.,

Oct. 2001, pages 662–671.

96

