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ABSTRACT OF THE DISSERTATION
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by

Tsung-Yi Chen

Doctor of Philosophy in Electrical Engineering
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Professor Richard D. Wesel, Chair

Focusing on the analysis and system design for single-user communication with noiseless feed-

back, this dissertation consists of two parts. The first part explores the analysis of feedback

systems using incremental redundancy (IR) with noiseless transmitter confirmation (NTC). For

IR-NTC systems based on finite-length codewords and decoding attempts only at certain speci-

fied decoding times, this dissertation studies the asymptotic expansion achieved by random cod-

ing, provides rate-compatible sphere-packing (RCSP) performance approximations, and presents

simulation results of tail-biting convolutional codes. The RCSP approximations show great

agreement with the convolutional code simulations. Both the approximations and the simula-

tions yield expected throughputs significantly higher than random codes at short latencies.

Motivated by the analyses and optimizations in the first part, the second part of this disserta-

tion proposes a new class of rate-compatible low-density parity-check codes, called Protograph-

Based Raptor-Like (PBRL) codes. Similar to Raptor codes, PBRL codes can efficiently produce

incremental redundancy, providing extensive rate compatibility. The construction and optimiza-

tion of PBRL codes suitable for both long-blocklength and short-blocklength applications are

discussed. Finally, this dissertation provides examples of constructing PBRL codes with dif-

ferent blocklengths. Extensive simulation results of the PBRL code examples and three other

standardized channel codes (3GPP-LTE, CCSDS and DVB-S2) are presented and compared.
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CHAPTER 1

Introduction

Feedback is ubiquitous in ensuring the reliability of delivering data between two remote ter-

minals, connected via wired or wireless media. Many elegant theories have been proposed to

enhance the performance of communication using feedback. In the information theory literature,

Burnashev, Elias, Schalkwijk and Kailath have shown in their seminal works that feedback can

help increase the reliability even in a class of channels where capacity remains unchanged with

feedback. The main goal of this dissertation is to study the implications of these elegant results

in practical systems, finding the connections between the feedback theory and system design.

This chapter presents a summary of related previous work on noiseless feedback in single-

user communication from both the perspective of information theory and that of system design.

A brief review of the design of rate-compatible channel codes is also included. After discussing

previous work, we summarize the main contributions of this dissertation.

1.1 Literature Review

1.1.1 Feedback in Information Theory

The first notable appearances of feedback in information theory are in 1956. Shannon showed

the surprising result that even in the presence of full feedback (i.e., instantaneous feedback of the

received symbol) the capacity for a single-user memoryless channel remains the same as without

feedback [Sha56]. That same year Elias and Chang each showed that while feedback does not

change the capacity, it can make approaching the capacity much easier [Eli56, Cha56]. Elias

1



showed that feedback makes it possible to achieve the best possible distortion using a simple

strategy without any coding when transmitting a Gaussian source over a Gaussian channel if the

channel bandwidth is an integer multiple of the source bandwidth. Chang showed that feedback

can be used to reduce the equivocation H(X|Y ) in a coded system to bring its rate closer to

capacity for finite blocklengths.

The next phase in the information-theoretic analysis of feedback showed that it can greatly

improve the error exponent. Numerous papers including [SK66, Sch66, Kra69, Zig70, NG08,

Gal10] explicitly showed this improvement. A key result in this area is the seminal work of

Burnashev [Bur76] which provides an elegant expression of the optimal error-exponent for DMC

with noiseless feedback. Burnashev employed a technique that can be considered as a form of

active hypothesis testing [NJ12], which uses feedback to adapt future transmitted symbols based

on the current state of the receiver.

Although active hypothesis testing provides a performance benefit, practical systems using

feedback have thus far primarily used feedback to explicitly decide when to stop transmitting

additional information about the intended message. This can happen in two ways: Receiver con-

firmation (RC) occurs when the receiver decides whether it has decoded with sufficient reliability

(e.g. passing a checksum) to terminate communication and feeds this decision back to the trans-

mitter. The alternative to RC is transmitter confirmation (TC), in which the transmitter decides

(based on feedback from the receiver) whether the receiver has decoded with sufficient reliability

(or even if it has decoded correctly, since the transmitter knows the true message).

TC schemes often use distinct transmissions for a message phase and a confirmation phase.

Practical TC and RC systems can usually be assigned to one of two categories based on when

confirmation is possible. Single-codeword repetition (SCR) only allows confirmation at the end

of a complete codeword and repeats the same codeword until confirmation. In contrast, incre-

mental redundancy (IR) systems [Man74] transmit a sequence of distinct coded symbols with

numerous opportunities for confirmation within the sequence before the codeword is repeated.

In some cases of IR, the sequence of distinct coded symbols is infinite and is therefore never re-

2



peated. If the sequence of symbols is finite and thus repeated, we call this a repeated IR system.

Forney’s analysis [For68] provided an early connection between these practical system de-

signs and theoretical analysis by deriving error-exponent bounds for a DMC using an SCR-

RC scheme. Following Forney’s work, Yamamoto and Itoh [YI79] replaced Forney’s SCR-RC

scheme with a SCR-TC scheme in which the receiver feeds back its decoding result (based only

on the codeword sent during the current message phase). The transmitter confirms or rejects the

decoded message during a confirmation phase, continuing with additional message and confir-

mation phases if needed. This relatively simple SCR-TC scheme allows block codes to achieve

the optimal error-exponent of Burnashev for DMCs.

Error-exponent results are asymptotic and do not always provide the correct guidance in

the low-latency regime. Polyanskiy et al. [PPV11] analyzed the benefit of feedback in the non-

asymptotic regime. They studied random-coding IR schemes under both RC and TC, and showed

that capacity can be closely approached in hundreds of symbols using feedback [PPV11] rather

than the thousands of symbols required without feedback [PPV10].

In [PPV11] the IR schemes provide information to the receiver one symbol at a time. For

the RC approach, the receiver provides confirmation when the belief for a prospective codeword

exceeds a threshold. For the TC approach, the transmitter provides confirmation using a spe-

cial noiseless transmitter confirmation (NTC) allowed once per message when the transmitter

observes that the currently decoded message is correct. This setup, referred to as variable-length

feedback codes with termination (VLFT) in [PPV11], supports zero-error communication. VLFT

codes are defined broadly enough to include active hypothesis testing in [PPV11], but the achiev-

ability results of interest use feedback only for confirmation.

When expected latency (average blocklength) is constrained to be short, there is a consid-

erable performance gap shown in [PPV11] between the SCR-TC scheme of Yamamoto and

Itoh [YI79] and the superior IR-TC scheme of [PPV11]. This is notable because the SCR-

TC scheme of Yamamoto and Itoh achieves the best possible error-exponent, demonstrating that

error-exponent results do not always provide the correct guidance in the non-asymptotic regime.

3



Using [PPV11] as our theoretical starting point, this dissertation explores the information-

theoretic analysis of IR-NTC systems at low latencies (i.e., with short average blocklengths)

under practical constraints and with practical codes.

1.1.2 Feedback in Practical Systems

The use of feedback in practical communication systems predates Shannon’s 1948 paper. By

1940 a patent had been filed for an RC feedback communication system using “repeat request” in

printing telegraph systems [Van43]. The first analysis of a retransmission system using feedback

in the practical literature appears to be [BF64] in 1964, which analyzed automatic repeat request

(ARQ) for uncoded systems that employ error detection (ED) to determine when to request a

repeat transmission.

In the 1960s, forward-error correction (FEC) and ED-based ARQ were considered as two

separate approaches to enhance transmission reliability. Davida proposed the idea of combining

ARQ and FEC [Dav72] using punctured, linear, block codes. The possible combinations of FEC

and ARQ came to be known as type-I and type-II hybrid ARQ (HARQ), which first appeared

in [LY82] (also see [LC04]). Type-I HARQ is an SCR-RC feedback system that repeats the

same set of coded symbols with both ED and FEC until the decoded message passes the ED

test. Recent literature and also in this dissertation refer to type-I HARQ as simply ARQ because

today’s systems rarely send uncoded messages. Type-II HARQ originally referred to systems

that alternated between uncoded data with error detection and a separate transmission of parity

symbols. Today, type-II HARQ has taken on a wider meaning including essentially all IR-RC

feedback systems.

Utilizing the soft information of the received coded symbols, Chase proposed a decod-

ing scheme for SCR-RC [Cha85] that applies maximal ratio combining to the repeated blocks

of coded symbols. Hagenauer [Hag88] introduced rate-compatible punctured convolutional

(RCPC) codes, which allow a wide range of rate flexibility for IR schemes. Rowitch et al.

[RM00] and Liu et al.[LSS03] used rate-compatible punctured turbo (RCPT) codes in an IR-RC
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system to match the expected throughput to the binary-input AWGN channel capacity.

When implementing an IR system using a family of rate-compatible codes, the IR trans-

missions will often repeat once all of the symbols corresponding to the longest codeword have

been transmitted and the confirmation is not yet received. Chen et al. demonstrated in [CSS10]

that a repeated IR system using RCPC codes could deliver bit error rate performance similar to

long-blocklength turbo and LDPC codes, but with much lower latency. The demonstration of

[CSS10] qualitatively agrees with the error-exponent analysis and the random-coding analysis in

[PPV11]. Using [CSS10] as our practical starting point, this dissertation explores the practical

design of IR-NTC systems at low latencies (i.e., with short average blocklengths) under practical

constraints and with practical codes.

Practical design for an IR scheme is primarily concerned with optimizing the incremental

transmissions, which includes design of a rate-compatible code family and optimization of the

lengths of the incremental transmissions. Practical constraints include limitations on the block-

length N of the lowest-rate codeword in the rate-compatible code family, the number m of in-

cremental transmissions, and the lengths of the incremental transmissions Ij, j = 1, . . . ,m.

Several papers have provided inspiration in practical deign of feedback systems. Uhlemann

et al. [URG03] studied a similar optimization problem assuming that the error probabilities of

each transmission are given. Finding code-independent estimates of appropriate target values for

these error probabilities is one goal of this dissertation.

In related work, [VST05] provides expressions relating throughput and latency to facilitate

optimization of the lengths of incremental transmissions in real-time for an IR-RC system. In

contrast with this dissertation, the receivers in [VST05] must send the optimized transmission

lengths in addition to the confirmation message in order to adapt the transmission lengths in

real time. Moreover, [VST05] used relatively large transmission lengths in order to accurately

approximate mappings from codeword reliability to block error rate, while our focus is on short

blocklengths.

Chande et al. [CF98] and Visotsky et al. [VTH03] discussed how to choose the optimal
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blocklengths for incremental redundancy using a dynamic programming framework. Their ap-

proach uses the error probabilities of a given code with specified puncturing to determine the

optimal transmission lengths for that code. Their work focused on fading channels and on longer

blocklengths than this dissertation.

Freudenberger’s work [FS04] differs from the present work in that the receiver requests spe-

cific incremental retransmissions by determining which segments of the received word are unre-

liable. This represents a step in the direction of a practical active hypothesis testing system.

In [FH09] the authors used a reliability-based retransmission criteria in a HARQ setting

to show the throughput gains compared to using cyclic redundancy checks for error detection.

While [FH09] shows simulation results for several values of the message size k, the results are

not discussed in terms of proximity to capacity at short blocklengths.

1.1.3 Design of Rate-Compatible Channel Codes

The incremental redundancy systems with receiver confirmation, i.e. IR-RC, are widely used

among modern communication systems, e.g. in 3GPP-LTE standard. A necessary element to

achieve high-throughput using IR-RC systems is to use a family of rate-compatible channel codes

that provides better error protection as the number of received symbols by the receiver increases.

Most modern systems rely on upper layer protocol to provide error detection such as cyclic

redundancy check, which is often analyzed separately from the physical layer.

As summarized in the previous chapter, RCPC and RCPT codes are among the most popular

rate-compatible channel codes used in IR-RC systems. A collection of rate-compatible punctur-

ing patterns must be carefully designed to ensure that a longer code (hence a lower code rate)

gives a better error protection than a shorter one. This incremental strength of error protection is

not always the case when puncturing a convolutional code as pointed out by Hagenaur [Hag88].

A rather complicated numerical optimization was performed to ensure this property even when

the search is restricted to puncturing patterns that are periodic. Similar to RCPC codes, rate-

compatible puncturing patterns for RCPT codes must be designed carefully to prevent undue
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performance loss.

As shown in [LSS03], a family of randomly punctured turbo codes can yield capacity-

approaching performance. A similar approach using pseudo-random puncturing of tail-biting

convolutional codes and terminated turbo codes is also adopted in the 3GPP-LTE standard [Gen08].

Random puncturing can often work well when the blocklength is large enough. In the short-

blocklength regime, however, random puncturing might not necessarily yield incremental strength

of error protection as blocklength increases.

Another ideal candidate to construct a family of rate-compatible codes is Low-Density Parity-

Check (LDPC) codes, which were first introduced by Gallager in his dissertation in 1963 [Gal63].

Gallager defines an (n, dv, dc) LDPC code as a length-n binary code with a parity-check matrix

containing dv ones in each column and dc ones in each row. This class of LDPC codes is now

referred to as regular LDPC codes. Gallager also proposed both soft-decision and hard-decision

iterative decoders that were based on message passing in his dissertation, and he showed sim-

ulation results for codes with blocklength around 500 bits using hard-decision decoding. He

concluded that the simulation results show great potential of LDPC codes for error correction,

yet his work received little attention until decades later.

Tanner [Tan81] proposed the construction of a class of long codes with shorter codes and

a bipartite graph. He also generalized the decoding algorithm proposed by Gallager. Tanner’s

work formed the foundation of representing LDPC codes using bipartite graphs. MacKay et al.

[Mac99] later showed by simulation that using message-passing algorithm with soft information,

LDPC codes also have capacity-approaching performance similar to turbo codes [BGT93]. They

also proposed several heuristics to construct good LDPC codes.

In contrast to regular LDPC codes, irregular LDPC codes have parity-check matrices consist

of a range of column weights and row weights. The portion of these weights can be described

by the so called “degree distributions”. Luby et al. [LMS01] showed that properly constructed

irregular LDPC codes can achieve rates even closer to capacity than the regular ones. Richardson,

Shokrollahi and Urbanke [RSU01] created a systematic method called “density evolution” to
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design and analyze the optimal degree distribution of LDPC codes based on the assumption that

the blocklength can be infinitely long.

Aiming to achieve high throughput in HARQ systems in various classes of channels, numer-

ous heuristics have been proposed to construct rate-compatible LDPC codes. The first work in

the construction of rate-compatible LDPC codes appears to be [LN02]. See also [YB04, JS07,

EHB09] and the references therein. A straightforward method of constructing rate-compatible

LDPC codes is by rate-compatible puncturing of a good mother code at a relatively low rate

to obtain the higher-rate codes, which is a similar approach as in [Hag88]. Ha et al. studied

the asymptotic behavior of rate-compatible LDPC codes based on density evolution [HKM04].

They also studied the design of puncturing patterns for LDPC codes with relatively short block-

lengths [HKK06]. Many heuristics have been proposed on designing better puncturing pattern

to enhance the error-rate performance and/or to allow efficient encoding. See for example,

[SHS08, KRM09, VF09].

Obtaining a family of rate-compatible LDPC codes is convenient and simple. However, it is

generally observed that finite-length LDPC codes suffer from a larger performance degradation

compared to turbo codes at high rates [YB04]. Another way to construct rate-compatible codes

is by the method of extending codes. Yazdani et al. studied the construction of RC-LDPC codes

based on a combination of extending and puncturing [YB04] and concluded that a combination of

the two methods yields better rate-compatible codes than just using puncturing alone. Imposing

several structural constraints on the LDPC codes, this dissertation uses the idea of extending a

high-rate code to obtain a family of rate-compatible codes.

The analysis of HARQ systems using rate-compatible LDPC codes has been studied by Sesia

et al. [SCV04] based on random coding and density evolution of infinite-length LDPC ensem-

ble. The focus in [SCV04] is on wireless fading channels whereas this dissertation focuses on

memoryless channels and studies both short-blocklength and long-blocklength regimes.

In recent years, a new class of LDPC codes called protograph LDPC codes, or protograph

codes, was introduced by Thorpe [Tho03] and studied extensively in [DDJ09]. The design of pro-
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tograph codes starts out by constructing a relatively small bipartite graph called the protograph.

After properly designing the protograph based on density evolution, the graph is copied many

times and the edges are permuted carefully to obtain a bipartite graph with a desired blocklength.

As indicated in [DDJ09], this type of construction allows efficient decoder implementation in

hardware with a similar reasons as in the class of quasi-cyclic LDPC codes [LC04].

The design of rate-compatible LDPC codes based on protograph first appeared in [Dol05].

Nguyen et al. further optimized the design of rate-compatible protograph by density evolution

and a greedy search of all possible rate-compatible protographs [NND12].

Using density evolution, this dissertation also studies the construction of rate-compatible

protograph codes. In contrast to [Dol05, NND12], we focus on the design of protograph that

has similar structure as a class of rateless codes called Raptor codes [Sho06]. Constraining our

design to the structure of Raptor codes makes the construction and optimization protograph codes

manageable while providing extensive rate-compatibility.

1.2 Summary of Contributions

This first part of this dissertation is concerned with IR-NTC feedback systems that use a rate-

compatible code family to send m incremental transmissions. The jth incremental transmission

has length Ij so that after i incremental transmissions the cumulative blocklength is ni =
∑i

j=1 Ij

and the decoder uses all ni symbols to decode. We are also concerned with the blocklength of

the lowest-rate codeword in the rate-compatible code family, which is N =
∑m

j=1 Ij .

Among its numerous other results, [PPV11] provides achievability result for an IR-NTC

system with zero-error probability in the non-asymptotic regime. The achievability uses random-

coding analysis for the case where N = ∞ (and thus m = ∞) and Ij = 1, ∀j.

The main contributions of this part of the dissertation are as follows:

1. This dissertation extends the IR-NTC random-coding result of [PPV11] to include the

constraint of finite N and of I > 1 where Ij = I ∀j. Though N is finite, our setup still
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supports zero-error probability through an ARQ-style retransmission if decoding fails even

after the N symbols of the lowest-rate codeword have been transmitted. We refer this type

of system as repeated IR-NTC. Our analysis yields two primary conclusions:

• Constraining the difference between N and the expected latency to grow logarithmi-

cally with the expected latency negligibly reduces expected throughput as compared

with N = ∞.

• An uniform incremental transmission length I causes expected latency to increase

linearly with I as compared to the I = 1 case.

2. This dissertation uses rate-compatible sphere-packing (RCSP) approximation as a tool for

analysis and optimization of IR feedback systems as follows:

• Exact joint error probability computations based on RCSP and bounded-distance

(BD) decoding are used to optimize the incremental lengths I1, . . . Im for small values

of m in a repeated IR-NTC system.

• Tight bounds on the joint RCSP performance under BD decoding are used to optimize

a fixed incremental length I (Ij = I ∀j) for repeated IR-NTC with larger values of

m.

• For non-repeating IR-NTC, exact joint RCSP computations under BD decoding are

used to optimize the incremental lengths I1, . . . Im to minimize expected latency un-

der an outage constraint.

• RCSP approximations yield decoding error trajectory curves that provide design tar-

gets for families of rate-compatible codes for IR-NTC feedback systems.

3. This dissertation provides simulations of IR-NTC systems based on randomly-punctured

tail-biting convolutional codes that demonstrate the following:

• For I = 1 and large N these simulations exceed the random-coding lower bound of

[PPV11] on both the BSC and the AWGN channel. For the BSC, the simulated per-

formance closely matches the RCSP approximation at low latencies. For the AWGN,
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the simulated performance is also similar, but with a gap possibly due to the constraint

of the convolutional codes to a binary-input alphabet.

• Simulations were also performed on the AWGN channel using m = 5 incremen-

tal transmissions with transmission increments Ij optimized using RCSP under the

assumption of BD decoding. These simulations exceeded the random-coding lower

bound of [PPV11] at low latencies for the same values of m and Ij . Also at suffi-

ciently low latencies, the simulations closely match the throughput-latency perfor-

mance predicted by RCSP with ML decoding.

Motivated by the first part of the dissertation, the second part of this dissertation focuses

on constructing a family of rate-compatible codes. In specific, we propose a new class of rate-

compatible LDPC codes called Protograph-Based Raptor-Like LDPC codes, or PBRL codes,

that has excellent performance across a wide range of blocklengths and SNRs. We provide the

construction of PBRL codes, optimization of PBRL codes, and examples of constructing PBRL

codes with long blocklengths and short blocklengths. Extensive simulations of PBRL codes are

presented in this part and the error rates of PBRL codes are compared to other modern channel

codes in three communication standards: the RCPT codes in the 3GPP-LTE standard [Gen08],

the LDPC codes in the DVB-S2 standard [DVB09] and the LDPC codes in the CCSDS standard

[CCS07].
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CHAPTER 2

Practical Limitations and Optimizations for IR-NTC

2.1 Overiew

2.1.1 Contributions

In [PPV11] Polyanskiy et al. studied the benefit of feedback using incremental redundancy (IR)

with noiseless transmitter confirmation (NTC) in the non-asymptotic regime providing achiev-

ability results based on an infinite-length random code when decoding is attempted at every

symbol. This chapter explores IR-NTC based on finite-length codes (with blocklength N ) and

decoding attempts only at certain specified decoding times. For IR-NTC with these constraints,

this chapter presents the asymptotic expansion achieved by random-coding, provides a rate-

compatible sphere-packing (RCSP) performance approximation, and presents simulation results

of tail-biting convolutional codes.

The information-theoretic analysis shows that values of N relatively close to the expected la-

tency yield the same random-coding achievability expansion as with N = ∞. However, the

penalty introduced in the expansion by limiting decoding times is linear in the interval be-

tween decoding times. For binary symmetric channels, the RCSP approximation provides an

efficiently-computed approximation of performance that shows excellent agreement with a fam-

ily of rate-compatible, tail-biting convolutional codes in the short-latency regime. For the ad-

ditive white Gaussian noise channel, bounded-distance decoding simplifies the computation of

the marginal RCSP approximation and produces similar results as analysis based on maximum-

likelihood decoding for latencies greater than 200. The efficiency of the marginal RCSP approx-
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imation facilitates optimization of the lengths of incremental transmissions when the number of

incremental transmissions is constrained to be small or the length of the incremental transmis-

sions is constrained to be uniform after the first transmission. Finally, an RCSP-based decoding

error trajectory is introduced that provides target error rates for the design of rate-compatible

code families for use in feedback communication systems.

2.1.2 Organization

We briefly summarize the organization of this chapter. Sec. 2.2 investigates the rate penalty

incurred by imposing the constraints of finite blocklength and limited decoding times on VLFT

codes. Sec. 2.2.3 investigates the penalty incurred by finite blocklengths, Sec. 2.2.4 studies the

penalty incurred by limiting decoding attempts, and Sec. 2.2.5 studies the penalty when both

limitations are applied. Finally a numerical example for the binary symmetric channel (BSC) is

presented in Sec. 2.2.6.

Sec. 2.3 describes the examples (used throughout the rest of the chapter) of IR-NTC sys-

tems using families of practical rate-compatible codes based on convolutional and turbo codes.

Sec. 2.4 presents the RCSP approximations and applies the approximations to provide numer-

ical examples for the BSC and the additive white Gaussian noise (AWGN) channel. Sec. 2.4

also explores ARQ, Chase code combining, and IR-NTC systems for the AWGN channels us-

ing RCSP approximation. Sec. 2.5 continues the RCSP-based exploration of the use of IR-NTC

on the AWGN channels studying the optimization of the increments {Ij}mj=1 based on RCSP

approximation. Finally Sec. 2.6 concludes this chapter.

2.2 Practical Constraints on VLFT

This section studies IR-NTC systems using the VLFT framework in [PPV11] with the practical

constraints of finite N and uniform increments I > 1.
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2.2.1 Review of VLFT Achievability

We will consider discrete memoryless channels (DMC) in this section and use the following

notation: xn = (x1, x2, . . . , xn) denotes an n-dimensional vector, xj the jth element of xn, and

xj
i the ith to jth elements of xn. We denote a random variable (r.v.) by capitalized letter, e.g., Xn,

unless otherwise stated. The input and output alphabets are denoted as X and Y respectively. Let

the input and output product spaces be X = X n,Y = Yn respectively. A channel used without

feedback is characterized by a conditional distribution PY|X =
∏n

i=1 PYi|Xi
where the equality

holds because the channel is memoryless. For codes that use a noiseless feedback link, we

consider causal channels {PYi|Xi
1Y

i−1}∞i=1 and additionally focus on causal, memoryless channels

{PYi|Xi
}∞i=1.

Let the finite dimensional distribution of (Xn, X̄n, Y n) be:

PXnY nX̄n(xn, yn, x̄n)

= PXn(xn)PXn(x̄n)
n∏

j=1

PYj |XjY j−1(yj|xj, yj−1),
(2.1)

i.e., the distribution of X̄n is identical to Xn but independent of Y n. The information density

i(xn; yn) is defined as

i(xn; yn) = log
dPXnY n(xn, yn)

d(PXn(xn)× PY n(yn))
(2.2)

= log
dPY n|Xn(yn|xn)

dPY n(yn)
. (2.3)

In this chapter we only consider channels with essentially bounded information density i(X;Y ).

This section extends the results in [PPV11] for VLFT codes. In order to be self-contained,

we state the definition of VLFT codes in [PPV11]:

Definition 1. An (ℓ,M, ǫ) variable-length feedback code with termination (VLFT code) is defined

as:

1. A common r.v. U ∈ U with a probability distribution PU revealed to both transmitter and

receiver before the start of transmission.
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2. A sequence of encoders fn : U ×W × Yn−1 → X that defines the channel inputs Xn =

fn(U,W, Y n−1). Here W is the message r.v. uniform in W = {1, . . . ,M}.

3. A sequence of decoders gn : U × Yn → W providing the estimate of W at time n.

4. A stopping time τ ∈ N w.r.t. the filtration Fn = σ{U, Y n,W} such that:

E[τ ] ≤ ℓ. (2.4)

5. The final decision Ŵ = gτ (U, Y
τ ) must satisfy:

P[Ŵ 6= W ] ≤ ǫ. (2.5)

VLFT represents a TC feedback system because the stopping time defined in item 4) above

has access to the message W , which is only available at the transmitter. As observed in [PPV11],

the setup of VLFT is equivalent to augmenting each channel with a special use-once input sym-

bol, referred to as the termination symbol, that has infinite reliability. We will refer this concept

as noiseless transmitter confirmation (NTC) for the rest of the dissertation.

NTC simplifies analysis by separating the confirmation/termination operation from regular

physical channel communication. The assumption of NTC captures the fact that many practical

systems communicate control signals in upper protocol layers.

The assumption of NTC increases the non-asymptotic, achievable rate to be larger than the

original feedback channel capacity because it noiselessly provides the information of the stop-

ping position. This increases the capacity by the conditional entropy of the stopping position

given the received symbols normalized by the average blocklength.

The following is the zero-error VLFT achievability in [PPV11]:

Theorem 1 ([PPV11], Thm. 10). Fixing M > 0, there exists an (ℓ,M, 0) VLFT code with

ℓ ≤
∞∑

n=0

ξn (2.6)

where ξn is the following expectation:

ξn = Emin
{
1, (M−1)P[i(Xn;Y n) ≤ i(X̄n;Y n)|XnY n]

}
. (2.7)
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The expression in (2.7) is referred to as the random-coding union (RCU) bound. We take the

information density before any symbols are received, i(X0;Y 0), to be 0 and hence ξ0 = 1.

Additionally, from the proof of [PPV11, Thm. 11], we have:

ξn ≤ E
[
exp

{
−[i(Xn;Y n)− log(M − 1)]+

}]
. (2.8)

The proof of Thm. 1 is based on a special class of VLFT codes called fixed-to-variable (FV)

codes [VS10]. FV codes satisfy the following conditions:

fn(U,W, Y n−1) = fn(U,W ) (2.9)

τ = inf{n ≥ 1 : gn(U, Y
n) = W}. (2.10)

The condition in (2.9) precludes active hypothesis testing since the feedback is not used by the

encoder to determine transmitted symbols. The condition in (2.10) enforces zero-error operation

since the stopping criterion is correct decoding.

In the proof of Thm. 1 each codeword is randomly drawn according to the capacity-achieving

input distribution
∏∞

j=1 PX on the infinite product space X∞. Given a codebook realization,

the encoder maps a message to an infinite-length vector and the transmitter sends the vector

over the channel symbol-by-symbol. Upon receiving each symbol, the decoder computes M

different information densities between the M different codewords and the received vector. The

transmitter sends the noiseless confirmation when the largest information density corresponds to

the true message. Averaging over all possible codebooks gives the achievability result.

2.2.2 Introducing Practical Constraints to VLFT

Define a VLFT code with the constraints of finite blocklength N and uniform increment I as

follows:

Definition 2. An (ℓ,M,N, I, ǫ) VLFT code modifies 2) and 4) in Definition 1 as follows:

2’) A sequence of encoders

fn+kN : U ×W × Yn+kN−1
kN+1 7→ X , k ∈ N
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that satisfies fn = fn+N .

4’) A stopping time τ ∈ {n1 + kI : k ∈ N} w.r.t. the filtration Fn s.t. E[τ ] ≤ ℓ and n1 is a

given constant such that n1 + kI|N for some k ∈ N.

Define the fundamental limit of message cardinality M for an (ℓ,M,N, I, ǫ) VLFT code as

follows:

Definition 3. Let M∗
t (ℓ,N, I, ǫ) be the maximum integer M such that there exists an (ℓ,M,N, I, ǫ)

VLFT code. For zero-error codes where ǫ = 0, we denote the maximum M as M∗
t (ℓ,N, I) and

for zero-error codes with I = 1 (i.e., decoding attempts after every received symbol) we denote

the maximum M as M∗
t (ℓ,N).

For a feedback system that conveys M messages with expected latency ℓ, the expected

throughput Rt is given as Rt = logM/ℓ. All of the results that follow assume an arbitrary

but fixed channel {PYj |Xj
}Nj=1 and a channel-input process {Xj}Nj=1 taking values in X where N

could be infinity.

2.2.3 The Finite-Blocklength Limitation

This subsection investigates (ℓ,M,N, I, ǫ) VLFT codes with finite N but retains decoding at

every symbol (I = 1). The achievability results are examples of IR-NTC systems (or FV codes

as described in Sec. 2.2.1), so that encoding does not depend on the feedback except that feedback

indicates when the transmission should be terminated.

In an IR-NTC system, the expected latency E[τ ] is given as:

E[τ ] =
∞∑

n=1

nP[τ = n] (2.11)

=
∑

n≥0

P[τ > n] (2.12)

=
∑

n≥0

P[En] (2.13)
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≤
∑

n≥0

P[ζn] , (2.14)

where

En = ∩n
j=1ζj (2.15)

and ζj is the marginal error event at the decoder immediately after the jth symbol is transmitted.

Equation (2.14) follows since En ⊂ ζn implies P[En] ≤ P[ζn].

Consider a code CN with finite blocklength N and symbols from X . Achievability results for

an (ℓ,M,N, 1, ǫ) “truncated” VLFT code follow from a random-coding argument. In particular

we have the following:

Theorem 2. For any M > 0 there exists an (ℓ,M,N, 1, ǫ) truncated VLFT code with

ℓ ≤
N−1∑

n=0

ξn (2.16)

ǫ ≤ ξN . (2.17)

where ξn is the same as (2.7).

The proof is provided in Appendix 2.A. Achievability results for ǫ = 0 can be obtained using

an (ℓ,M,N, 1, 0) “repeated” VLFT code, which repeats the transmission if the blocklength-N

codeword is exhausted without successful decoding. The transmission process starts from scratch

in this case, discarding the previous received symbols. Using the original N symbols through,

for example, Chase code combining would be beneficial but is not necessary for our achievability

result. Specifically, for an (ℓ,M,N, I, 0) repeated VLFT code we have the following result:

Theorem 3. For every M > 0 there exists an (ℓ,M,N, 1, 0) repeated VLFT code such that

ℓ ≤ 1

(1− ξN)

N−1∑

n=0

ξn, (2.18)

where ξn is the same as (2.7).

The proof is provided in Appendix 2.A. The rate penalty of using a finite-length (length-N )

codebook is quantified in the following theorem and its corollary:
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Theorem 4. For an (ℓ,M,N, 1, 0) repeated VLFT code with N = Ω(logM), we have the fol-

lowing upper bound on ℓ for a stationary DMC with capacity C:

ℓ ≤ logM

C
+ c . (2.19)

Let C∆ = C −∆ for some ∆ > 0 and N = logM/C∆. The O(1) term c due to the finite value

of N is upper bounded by the following expression:

c ≤ b2 logM

C(M b3/C∆)
+

b0 logM

C∆M b1∆/C∆
+ a (2.20)

where a depends on the mean and uniform bound of i(X;Y ), and bj’s are constants related to ∆

and M . The proof is provided in Appendix 2.A.

This choice of N may have residual terms decaying with M very slowly. However, our non-

asymptotic numerical results in Sec. 2.2.6 for a BSC indicate that this decay is fast enough for

excellent performance in the short-blocklength regime.

An asymptotic expansion of logM∗
t (ℓ,N) needs to be independent of M and requires N

growing with ℓ. However, the components of the correction term c in Thm. 4 depend on both

N (as logM/C∆) and M . Indeed for a fixed ℓ, the smallest M satisfying (2.19) and (2.20) is

achievable. The argument we make below is that for any fixed constant c = c0 > 0, there is an

ℓ0 that depends logarithmically on c−1
0 such that the expansion logM∗

t (ℓ,N) ≥ Cℓ − c0 is true

for all ℓ ≥ ℓ0. We first invoke the converse for an (ℓ,M,∞, 1, 0) VLFT code:

Theorem 5 ([PPV11], Thm. 11). Given an arbitrary DMC with capacity C we have the follow-

ing for an (ℓ,M,∞, 1, 0) VLFT code:

logM∗
t ≤ ℓC + log(ℓ+ 1) + log e . (2.21)

After some manipulation, Thms. 4 and 5 imply the following:

Corollary 1. For an (ℓ,M,N, 1, 0) repeated VLFT code, we can pick δ > log(ℓ+1)+log e
C

and let

N = (1 + δ)ℓ = ℓ + Ω(log ℓ) such that the following holds for a stationary DMC with capacity
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C:1

logM∗
t (ℓ,N) ≥ ℓC −O(1) . (2.22)

The proof is provided in Appendix 2.A.

To conclude this discussion of the penalty associated with finite blocklength, we comment

that N only needs to be scaled properly, i.e. N = ℓ+Ω(log ℓ), to obtain the infinite-blocklength

expansion of M∗
t (ℓ,∞) provided in [PPV11]. Therefore the restriction to a finite blocklength

N does not restrict the asymptotic performance if N is selected properly with respect to ℓ. The

constant penalty terms in the expansion are different for infinite and finite N , which might not

be negligible in the short-blocklength regime. Still, our numerical results in Sec. 2.2.6 indicate

that relatively small values of N can yield good results for short blocklengths.

2.2.4 Limited, Regularly-Spaced, Decoding Attempts

This subsection investigates (ℓ,M,N, I, ǫ) VLFT codes with N = ∞ but decoding attempted

only at specified, regularly-spaced symbols (I > 1). The first decoding time occurs after n1

symbols (which could be larger than I) so that the decoding attempts are made at the times

nj = n1+(j− 1)I . The relevant information density process i(Xnj ;Y nj) is on the subsequence

nj = n1 + (j − 1)I . The main result here is that the constant penalty now scales linearly with I:

Theorem 6. For an (ℓ,M,N, I, 0) VLFT code with uniform increments I and N = ∞ we have

the following expansion for a stationary DMC with capacity C:

logM∗
t (ℓ,∞, I) ≥ ℓC −O(I) . (2.23)

The proof is provided in Appendix 2.A.

In view of Thm. 6, the penalty is linear in the increment I . The increment I can grow slowly,

e.g., I = O(log ℓ) and still permit an expected rate that approaches C without the dispersion

1As opposed to the expression in [PPV11], we use a minus sign for O(1) term to make the penalty clear.
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penalty incurred when feedback is absence [PPV10]. In the non-asymptotic regime, however,

the increment I must be carefully controlled to keep the penalty small. Our numerical results in

Sec. 2.2.6 indicate that choosing I = ⌈log2 log2 M⌉ yields good results for short blocklengths.

Also, varying Ij to decrease with j can avoid a substantial penally while keeping the penalty

small.

2.2.5 Finite Blocklength and Limited Decoding Attempts

This subsection investigates (ℓ,M,N, I, 0) repeated VLFT codes with both finite N and I > 1.

When these two limitations are combined, a key parameter is m, the number of decoding attempts

before the transmission process must start from scratch if successful decoding has not yet been

achieved. The parameters m, n1, N and I are related by the following equation:

N = n1 + (m− 1)I (2.24)

Combining the results of Sec. 2.2.3 and Sec. 2.2.4 yields the following expansion for (ℓ,M,N, I, 0)

repeated VLFT codes on a stationary DMC with capacity C:

Theorem 7. For an (ℓ,M,N, I, 0) repeated VLFT with N = ℓ+ Ω(log ℓ) on a stationary DMC

with capacity C and ℓ sufficiently large

logM∗
t (ℓ,N, I) ≥ ℓC −O(I) . (2.25)

Specifically, if we choose N > ℓ + log(ℓ+1)+log e
C

and have decoding attempts separated by

an increment I , then the expansion is the same as the case with I > 0 and N = ∞ so that the

penalty term is linear in I .

Proof. The proof is based on the following lemma that provides an upper bound on ℓ for an

(ℓ,M,N, I, 0) repeated VLFT codes :

Lemma 1. For an (ℓ,M,N, I, 0) repeated VLFT code with N = Ω(logM), we have the follow-

ing upper bound on ℓ for a stationary DMC with capacity C:

ℓ ≤ (1 + P[ζN ])
−1 logM

C
+ P[τ0 ≥ m] +O(I) (2.26)
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≤ logM

C
+O(I) , (2.27)

where τ0 is the stopping time in terms of the number of decoding attempts up to and including

the first success.

The proof of the lemma is similar to Thm. 4 and the details are in Appendix 2.A.

The proof of Thm. 7 now follows. For an (ℓ,M,N, I, 0) repeated VLFT code, pick N as

follows:

N = (1 + δ)ℓ, where δ >
log(ℓ+ 1) + log e

ℓC
. (2.28)

The result follows by a similar argument as for Cor. 1 and by observing that for the condition of

δ, (1 + δ)ℓ = ℓ + Ω(log ℓ). The restriction on the initial blocklength n1 only makes a constant

difference.

Our earlier work [CSW11] used an intuitive choice of the finite blocklength: N = (1 + δ)ℓ

for a fixed δ > 0, i.e., a blocklength that is larger than the target expected latency by the fraction

δ. Theorem 7 validates such choice in terms of the optimality of the asymptotic expansion (since

δℓ ∈ Ω(log ℓ)), and indicates that the required overhead δ is decreasing as the target expected

latency grows.

2.2.6 Numerical Results

For practical applications that apply feedback to obtain reduced latency, non-asymptotic behavior

is critical. This section gives numerical examples of non-asymptotic results for a BSC. For a

BSC with transition probability p we use the RCU bound in [PPV10, PPV11]2, which gives the

following expression:

ξn ≤
n∑

t=0

(
n

t

)

pt(1− p)n−t min

{

1,M
t∑

j=0

(
n

j

)

2−n

}

.

2We replace (M − 1) by M for simplicity.
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VLFT with N = ∞, [(181), PPV]

VLFT with N = log M
C

+ 10 log( log M
C

) + 30

VLFT with N = 1.43 log M
C

VLFT with N = 1.67 log M
C

Figure 2.1: Performance comparison of VLFT code achievability based on the RCU bound with

different codebook blocklengths.

Fig. 2.1 shows expected throughput (Rt) vs. expected latency (ℓ) performance of a VLFT

code with N = ∞ and three finite-N repeated VLFT codes over a BSC with p = 0.0789. Since

ℓ scales linearly with logM
C

, for one repeated VLFT code N scales as:

N =
logM

C
+ a log

(
logM

C

)

+ b , (2.29)

so that N = ℓ + Ω(log ℓ). The constants a, b > 0 were selected experimentally to be a = 10,

b = 30.

For the other two repeated VLFT codes, N = logM/C∆ where C∆ = C − ∆. We

chose ∆ = 0.3C and 0.4C, which are 43% and 67% longer, respectively, than the block-

length N = logM/C that corresponds to capacity. In other words, N = 1.43 logM/C and

N = 1.67 logM/C respectively.

Expected throughput for the finite-N repeated VLFT codes converges to that of VLFT with

N = ∞ before expected latency has reached 200 symbols. For expected latency above 75
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N = ∞, [(181), PPV], I = 1

N = log M
C

+ 10 log( log M
C

) + 30, I = ⌈log2 log2 M⌉

N = 1.43 log M/C , I = ⌈log2 log2 M⌉

N = 1.43 log M/C , I = ⌈0.15 log2 M⌉

I = N∗ (ARQ)

Figure 2.2: Performance comparison of VLFT code achievability based on the RCU bound with

uniform increment and finite-length limitations.

symbols, the only repeated VLFT code with visibly different throughput than the N = ∞ VLFT

code is the ∆ = 0.3C code.

As mentioned in Sec. 2.2.1, VLFT codes can have expected throughput higher than the orig-

inal BSC capacity of 0.6017 because of the NTC. This effect vanishes as expected latency in-

creases.

Fig. 2.2 shows the Rt vs. ℓ performance of a VLFT code with N = ∞ and I = 1 and repeated

VLFT codes with various decoding-time increments I . As in (2.25), when I grows linearly with

logM (i.e., ⌈0.15 log2 M⌉) then there is a constant gap from the I = 1 case. However, if I grows

as ⌈log2 log2 M⌉ then the gap from the I = 1 case decreases as expected latency increases. ARQ

performance (in which I = N∗, where N∗ is the optimal blocklength for M ) is also shown in the

figure, which reveals a considerable performance gap from even the most constrained repeated

VLFT implementation in Fig. 2.2.
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2.3 IR-NTC with Convolutional and Turbo Codes

The achievability proofs in [PPV11] and 2.2 are based on an IR-NTC scheme using random

codebooks. This section provides examples of IR-NTC based on practical codebooks: rate-

compatible families of turbo codes and tail-biting convolutional codes. The constraints of finite

N and I > 1 studied analytically in the previous section appear naturally in the context of these

codes.

2.3.1 Implementation of a repeated IR-NTC with Practical Codes

A practical way to implement repeated IR-NTC is by using a family of rate-compatible codes

with incremental blocklengths {ni}mi=1 where ni =
∑i

j=1 Ij . Defining an (n,M) code to be a

collection of M length-n vectors taking values in X , we define a family of rate-compatible codes

as follows:

Definition 4. Let n1 < n2 < · · · < nm be integers. A collection of codes {Cj}mj=1 is said to be

a family of rate-compatible codes if each Cj is an (nj,M) code that is the result of puncturing a

common mother code, and all the symbols in the higher-rate code {Cj} are also in the lower rate

code {Cj+1}.

A family of rate-compatible codes can be constructed by finding a collection of compatible

puncturing patterns [Hag88] satisfying Def. 4 for an (N,M) mother code. Note that the punctur-

ing becomes straightforward if we reorder the symbols of the mother code so that the symbols of

C1 are first, followed by the symbols of C2 and so on. From this perspective, the symbols trans-

mitted by VLFT in [PPV11] can be seen as an infinite family of rate-compatible codes resulting

from such an ordered puncturing.

When implemented using a family of rate-compatible codes {Cj}mj=1, repeated IR-NTC works

as follows. A codeword of C1 with blocklength n1 = I1 is transmitted to convey one of the M

messages. The decoding result is fed back to the transmitter and an NTC is sent if the decoding

is successful. Otherwise the transmitter will send I2 coded symbols such that the n2 = I1 + I2
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symbols form the codeword in C2 representing the same message. The decoder attempts to

decode with code C2 and feeds back the decoding result. If decoding is not successful after the

mth transmission where nm = N , the decoder discards all of the previously received symbols

and the process begins again with the transmitter resending the I1 initial coded symbols. This

repetition process continues until the decoding is successful.

In the special case where m = 1 the repeated IR-NTC reduces to SCR-NTC, which we refer

to as ARQ.

2.3.2 Randomly Punctured Convolutional and Turbo Codes

The practical examples of repeated IR-NTC provided in this chapter use tail-biting RCPC codes

and RCPT codes. The details of the rate-compatible codes used in this chapter are given as

follows:

The two convolutional codes we used in this chapter are a 64-state code and a 1024-state

code with generator polynomials (g1, g2, g3) = (133, 171, 165) and (2325, 2731, 3747) in octal,

respectively. The 64-state code is from the 3GPP-LTE [Gen08] standard and the 1024-state code

is the optimal free distance code from [LC04, Table 12.1b]. Both of the codes are implemented

as tail-biting codes [MW86] to avoid rate loss at short blocklengths.

The turbo code used in this chapter is from the 3GPP-LTE standard [Gen08], i.e., the turbo

code with generator polynomials (g1, g2) = (13, 15) in octal, with a quadratic permutation poly-

nomial interleaver.

Pseudo-random puncturing, also referred to as circular buffer rate matching in [Gen08], pro-

vides the rate-compatible families for both the convolutional and the turbo codes. The process

is shown in Fig. 2.3: the encoder first generates a rate-1/3 codeword. Then the output of each

of the encoder’s three bit streams passes through a “sub-block” interleaver with a blocklength

K. The interleaved bits of each sub-block are concatenated in a buffer, and bits are transmitted

sequentially from the buffer to produce the increments Ij as shown in Fig. 2.4. The sub-block in-

terleavers re-order the bits of the mother code so that sequential transmission of the bits produces
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v(1)K

v(2)K

v(3)K

Figure 2.3: Pseudo-random puncturing (or circular buffer rate matching) of a convolutional code.

At the bit selection block, a proper amount of coded bits are selected to match the desired code

rate.

I1
︷ ︸︸ ︷

v(1)1 . . . , v(1)K , v(2)1, v(2)2, . . . v(2)9
︸ ︷︷ ︸

I2

, . . . ,

Im
︷ ︸︸ ︷

v(2)K , . . . , v(3)K

Figure 2.4: Illustration of an example of transmitted blocks for rate-compatible punctured con-

volutional codes

an effective family of rate-compatible codes as discussed in Sec. 2.3.1.

We will use simulation results of repeated IR-NTC systems based on these RCPC and RCPT

codes to compare with our analysis in the following sections.

2.4 Rate-Compatible Sphere-Packing (RCSP)

The random-coding approach gives a tight achievable bound on expected latency when M is

sufficiently large. In the short-latency regime, however, practical codes can outperform random

codes, as noted in [WCW12]. To find a code-independent analysis that gives a better prediction

of practical code performance, we introduce the rate-compatible sphere-packing (RCSP) approx-

imation. As we will see in Sec. 2.5, RCSP can also facilitate the optimization of the increment

lengths Ij and provide a trajectory of target error rates for use in the design of a rate-compatible

code family.
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Shannon et al. [SGB67] derived lower bounds of channel codes for DMC by packing typical

sets into the output space. The typical sets are related to the divergence of the channel and an

auxiliary distribution on the output alphabet. For the AWGN channel, Shannon [Sha59] showed

both the lower bounds on the error probability by considering optimal codes on a sphere (the

surface of the relevant ball). The bound turns out to be tight even in the finite-blocklength regime

as shown in [PPV10]. One drawback for considering codes on a sphere is the computational

difficulty involved, even for a single fixed-length code.

RCSP is an approximation of the performance of repeated IR-NTC using a family of rate-

compatible codes. The idea of RCSP is an extension of the sphere-packing lower bound from

a single fixed-length code to a family of rate-compatible codes. For the ideal family of rate-

compatible codes, each code in the family would achieve perfect packing. Our analysis will

involve two types of packing: 1) perfect packing throughout the volume of the ball whose radius

is determined from the signal and noise powers or 2) perfect packing on the surface of the ball

whose radius is determined by the signal power constraint. We will also consider both maximum-

likelihood (ML) decoding and bounded-distance (BD) decoding.

Let {Cj}mj=1 be a family of rate-compatible codes. Let the marginal error event of the code Cj
at blocklength nj be ζnj

and let the joint error probabilities P[Enj
] be defined similar to (2.15):

Enj
= ∩j

i=1ζni
. (2.30)

The expected latency for a repeated IR-NTC can be computed as follows:

ℓ =
I1 +

∑m
j=2 IjP[Enj−1

]

1− P[Enm ]
. (2.31)

Applying the ideal of RCSP throughout the volume of the ball to (2.31) leads to the joint

RCSP approximation of the repeated IR-NTC performance. Since P[ζnj
] ≥ P[Enj

], replacing

P[Enj
] with P[ζnj

] produces a upper bound on expected latency as follows:

ℓ ≤
I1 +

∑m
j=2 IjP[ζnj−1

]

1− P[ζnm ]
. (2.32)
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Since P[ζnj
] is often a tight upper bound on P[Enj

] (examples will be shown in Sec. 2.5.3),

applying the ideal of RCSP throughout the volume of the ball to (2.32) produces the marginal

RCSP approximation of the expected latency in a repeated IR-NTC, which is very similar to the

joint RCSP approximation and more easily computed.

Performing ML decoding gives a lower bound on the expected latency for the repeated IR-

NTC, but makes the error probabilities difficult to evaluate. We initially analyze using BD decod-

ing to decode the ideal code family {Cj}mj=1. Subsequently we refine the analysis by bounding

ML decoding performance. Thus we will be considering both the joint and marginal RCSP

approximations and also considering both BD and ML decoding.

2.4.1 Marginal RCSP Approximation for BSC

For the BSC the optimal decoding regions are simply Hamming spheres. RCSP upper bounds

IR-NTC performance on the BSC by assuming that each code in the family of rate-compatible

codes achieves the relevant Hamming bound.

For a BSC with transition probability p the marginal error probability P[ζnj
] is lower bounded

as follows:3

P[ζnj
] ≥

nj∑

t=rj+1

(
nj

t

)

pt(1− p)n−t, (2.33)

where rj is chosen such that

M

rj−1
∑

t=0

(
nj

t

)

+
M∑

i=1

Ai = 2nj (2.34)

and

0 <
M∑

j=1

Ai < M

(
nj

rj

)

. (2.35)

We use (2.33) to compute the marginal RCSP approximation for the BSC. Note that for the BSC

and an (n,M) code with M uniform decoding regions that perfectly fill the space, ML decoding

is also BD decoding with an uniform radius.

3Formally, the sphere-packing lower bound for BSC follows from the fact that the tail of a binomial r.v. is

convex.
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For the BSC with p = 0.0789, Fig. 2.5 shows the marginal RCSP approximation with

m = ∞, the VLFT converse of [PPV11], the random-coding achievability of [PPV11], and

simulations of repeated IR-NTC using the 64-state convolutional code from Sec. 2.3.2. All sim-

ulation points have increment I = 1, finite codeword lengths N = 3k, and initial blocklength

n1 = k for k = 16, 20, 32, 64, respectively. To compare the choice of N = 3k with the results in

Sec. 2.2, take k = 32 as an example. For k = 32 the expected latency is ℓ = 49.62 in Fig. 2.5

and N = 96 corresponds to choosing a δ = 0.93. As we saw in Fig. 2.1, δ = 0.67 gives RCU

performance indistinguishable from N = ∞ so that N = 96 should be more than sufficient for

this example.

The convolutional code simulations give throughput-latency points that are very close to the

marginal RCSP approximation for expected latency less than 50. The simulation points for k =

16, 20, 32 are significantly higher than the random-coding achievability result of [PPV11]. The

simulation point for k = 64 falls below the random-coding achievability because the expected

latency is larger than the analytic trace-back depth of 60 bits (or 20 trellis state transitions) for

the 64-state convolutional code.

Note that in Fig. 2.5, the convolutional code simulation points, the marginal RCSP approxi-

mation curve, the VLFT achievability, and the VLFT converse curves are all above the BSC ca-

pacity because the NTC assumption provides additional information to the receiver as discussed

in Sec. 2.2.1.

2.4.2 RCSP Approximation for AWGN Channel

This subsection derives joint and marginal RCSP approximations for the AWGN channel under

both BD and ML decoding. Consider an AWGN channel Y = X + Z with an average power

constraint P 4. Let the signal-to-noise ratio (SNR) be η = P/σ2 where P is the signal power and

4We use the expectation average power constraint E
(
∑n

j=1
X2

j

)

≤ nP , which is not as strict as the summation

average power constraint
∑n

j=1
X2

j ≤ nP since it allows the codeword power be larger than P with low probability.

As shown in the Appendix 2.C, the sphere-packing property combined with the expectation average power constraint

will satisfy the summation average power constraint if the rate is less than capacity.
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Figure 2.5: In the short-latency regime, the marginal RCSP approximation can be more accurate

for characterizing the performance of good codes (such as the convolutional code in this figure)

than random-coding analysis. The additional information provided by the error-free termination

symbol of NTC leads to a converse and an operational rate for the convolutional code that are

above the original BSC capacity.

σ2 is the noise power. Assume without loss of generality (w.l.o.g.) that each noise sample has

a unit variance. The average power of a length-n received word is E[‖Y n‖2] ≤ n(P + σ2) =

n(1 + η). Sphere packing seeks a codebook that has M equally separated codewords within the

n-dimensional norm ball with radius router =
√

n(1 + η).

One can visualize a large outer sphere that contains M = 2nR decoding regions, Di, i =

1, . . . ,M , each with the same volume. Considering the spherical symmetry of i.i.d. Gaussian

noise Z, our bounded-distance decoding region is an n-dimensional Euclidean ball centered

around the message point. By conservation of volume, the largest radius of the decoding region
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has a volume satisfying

Vol(Di) = Knr
n

≤ 2−nR × Vol(Outer sphere)

= 2−nRKn

(√

n(1 + η)
)n

where Kn is the volume of the n-dimensional unit sphere. Solving for the radius of the decoding

region yields

r ≤ 2−R
√

n(1 + η). (2.36)

2.4.2.1 RCSP Approximation for AWGN under BD decoding

Using bounded-distance decoding on the AWGN channel gives the following decoding rule: the

decoder selects message j if the received word Y n ∈ Di for a unique i ∈ {1, . . . ,M} and

declares an error otherwise. Regardless of the transmitted codeword, the marginal error event for

BD decoding is ζn = {Zn : ‖Zn‖2 > r2} where r is the decoding radius. The error probability

for decoding region with radius r is then simply given by the tail of a chi-square random variable

with n degrees of freedom:

P[ζn] = 1− Fχ2
n
(r2) (2.37)

= Gχ2
n
(r2) (2.38)

where Fχ2
n

is the CDF of a chi-square distribution with n degrees of freedom.

Let M = 2k for an integer k. Assuming perfect sphere-packing (i.e., achieving (2.36) with

equality) at each incremental code rate, the radius at incremental code rate k/nj is given as:

r2j =
nj(1 + η)

22k/nj
. (2.39)

Note that the probability of a decoding error in the jth transmission depends on previous error

events. Conditioning on previous decoding errors ζnj
, j = 1 . . . ,m − 1 makes the error event
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Figure 2.6: The marginal RCSP approximation with BD decoding, and marginal RCSP with ML

decoding, for the AWGN channel. Similar to the BSC, the additional information provided by

the error-free termination symbol of NTC leads to a converse and an operational rate for the

convolutional code that are above the original BSC capacity.

ζnm more likely than the marginal distribution would suggest. Recall that Enm denotes ∩j≤mζnj
;

the joint probability P[Enj
], 1 ≤ j ≤ m is given as:

P[Enj
] =

∫ ∞

r21

∫ ∞

r22−t1

. . .

∫ ∞

r2j−1−
∑j−2

i=1 ti

Gχ2
Ij

(

r2j −
j−1
∑

i=1

ti

)

dFχ2
I1
(t1) . . . dFχ2

Ij−1
(tj−1), (2.40)

where the increments Ij are as defined in Sec. 2.3.1 and Gχ2
Ij

is defined in (2.38).

Using P[Enj
] or P[ζnj

] as derived above, we can compute the expected latency ℓ of the re-

peated IR-NTC by using the joint BD RCSP approximation as in (2.31) or the marginal BD

RCSP approximation as in (2.32). The expected throughput Rt is given by k/ℓ.
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2.4.2.2 Marginal RCSP Approximation under ML decoding

To compute the marginal RCSP approximation with ML-decoding, we apply Shannon’s sphere-

packing lower bound5 [SGB67]. We use the asymptotic approximation in [SGB67] to estimate

the lower bounds of the marginal error probabilities. The approximation formula in [SGB67]

does not work well for rates above capacity, providing negative values that are trivial lower

bounds. To obtain a good estimate in these cases we replace those trivial probabilities with the

ones suggested by the marginal RCSP approximation using BD decoding.

For the 2dB AWGN channel, Fig. 2.6 shows the VLFT converse of [PPV11], the random-

coding lower bound of [PPV11], the marginal RCSP with BD decoding, and marginal RCSP

with ML decoding, all with m = ∞ and I = 1. To approximate the behavior of m = ∞ we

found numerically that m = 10k is sufficient in this example. Also shown in Fig. 2.6 is the

simulation of the repeated IR-NTC with step size I = 1 and k = 16, 32, and 64 using the

64-state convolutional code from Sec. 2.3.2.

Similar to the BSC example, Fig. 2.6 shows that the VLFT converse based on Fano’s in-

equality [PPV11] and the marginal RCSP approximation with ML decoding are both above the

asymptotic capacity due to the information provided by NTC. The marginal RCSP approxima-

tion with BD decoding is not as accurate as the curve with ML decoding in the short-latency

regime. The difference between the two curves, however, becomes small beyond the expected

latency of 200.

For k = 16 and 32, the convolutional code simulations of repeated IR-NTC (even with

a finite N of 3k) with binary modulation outperform the corresponding points on the curve

for VLFT random-coding achievability with N = ∞ and unconstrained input to the channel.

The two simulation points generally follow the curve of the marginal RCSP approximation with

ML decoding, but with a gap. We suspect that this gap is due to the use of binary modulation

rather than an unconstrained input in the simulation. As with the BSC example, for k = 64

5We bound the error probability using Shannon’s argument: the optimal error probability for codewords inside

a ball with radius
√
nP is lower bounded by the optimal error probability for codewords with one extra dimension

lying on a sphere surface with radius
√

(n+ 1)P .
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Figure 2.7: ARQ for RCSP, turbo code, 64-state and 1024-state convolutional codes simulations

with different initial blocklengths.

the performance of the simulation falls short as the expected latency goes beyond the analytic

trace-back depth of the 64-state convolutional code.

2.4.3 Marginal BD RCSP for ARQ and IR-NTC in AWGN

This subsection provides examples of applying the marginal RCSP approximation using BD

decoding for the AWGN channel. Note that all examples use BD decoding and we will simply

use the term “marginal RCSP approximation”.
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2.4.3.1 ARQ

Consider ARQ (SCR-NTC) on an AWGN channel. Based on the marginal RCSP approximation

the expected latency ℓ is given as

ℓ =
n1

1− P[ζn1 ]
(2.41)

=
n1

Fχ2
n1
(r21)

, (2.42)

and expected throughput Rt = k/ℓ is given as

Rt,ARQ = RcFχ2
n1
(r21) (2.43)

where Rc = k/n1 is the initial code rate and r1 is the decoding radius of the codeword with

length n1. Note that in the case of ARQ (SCR-NTC), the joint RCSP and marginal RCSP ap-

proximations are identical since there is only a single transmission before repetition.

Fig. 2.7 shows the Rt vs. Rc (expected throughput vs. initial code rate) curve for the RCSP

with ARQ. The SNR is 2 dB and the initial blocklengths are n1 = 64, n1 = 704 and n1 = 10, 000.

For each curve in Fig. 2.7, the initial blocklength n1 is fixed as we vary the number of messages

M = 2k and the initial code rate Rc = k/n1 changes accordingly. Note that for ARQ, the initial

blocklength is also the lengths of the possible subsequent transmissions.

For blocklengths n1 = 704 and n1 = 10000, Fig. 2.7 compares RCSP with the 3GPP-LTE

turbo codes. Each point of the dash-dot turbo-code curves represents a different turbo code

with the same blocklength but different code rate (different k). Interestingly, after the initial

negligible-codeword-error region where expected throughput equals code rate, the RCSP curve

and the turbo code curve are very similar for both n1 = 704 and n1 = 10, 000. Furthermore, in

this region the difference between the code rate Rc associated with a given throughput for RCSP

and for the turbo code is about 0.1 bits for both n1 = 704 and n1 = 10, 000 despite the large

difference between these two blocklengths.

For blocklength n1 = 64, Fig. 2.7 compares the marginal RCSP approximation to the perfor-

mance of 64-state and 1024-state tail-biting convolutional codes. The marginal RCSP approx-
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Figure 2.8: Rt vs. Rc for ARQ, ARQ with Chase combining and IR-NTC with n1 = 64.

imation closely predicts the performance of these good tail-biting convolutional codes. Thus,

while the turbo codes achieve higher throughputs than the convolutional codes, the convolu-

tional codes perform closer to the RCSP approximation for their (short) blocklengths than do the

turbo codes relative to the RCSP approximation for their (longer) blocklengths.

RCSP with its optimistic decoding radius r1 and suboptimal bounded-distance decoding is

a mixture of optimistic and pessimistic assumptions. These plots, however, show that RCSP

can provide accurate guidance for good short-blocklength codes such as tail-biting convolutional

codes.
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2.4.3.2 Chase Combining and IR-NTC

In the ARQ scheme, the same complete codeword is transmitted at each retransmission. One

way to utilize these repetitions is to apply the combining scheme proposed by Chase [Cha85].

The Chase scheme uses maximal ratio combining of L repeated codewords at the receiver. If

the L codewords are transmitted directly through the AWGN channel with the same SNR, the

combining process increases the effective SNR at the receiver by a factor of L.

The side information that the previous block was decoded unsuccessfully (available from the

absence of the NTC) implies that the instantaneous noise power in the previous packet is larger

than the expected noise power. The error probability is lower bounded (and the throughput is

upper bounded) by ignoring this side information.

As shown in Fig. 2.8, Chase combining of all received packets for a message does not signif-

icantly increase the highest possible throughput. Note that the RCSP curve for Chase combining

uses the throughput upper bound that ignores the side information of previous decoding failures.

Chase combining does provide a substantial throughput improvement for higher-than-optimal

initial code rates, but these improved throughputs could have also been achieved by using a

lower initial code rate and no Chase combining.

We now present an RCSP approximation and code simulations of repeated IR-NTC as de-

scribed in Sec. 2.3.1. The exact computation of the joint RCSP approximation is challenging

when m is large. We use the marginal RCSP approximation here to compute the Rt vs. Rc curve

for the repeated IR-NTC.

Fig. 2.8 shows an Rt vs. Rc curve computed based on the approximation of RCSP for the

repeated IR-NTC scheme with n1 = 64, m = 10 and a uniform increment I = 10. We use a

uniform increment to avoid the need to optimize each increment although the computation also

admits non-uniform increments. We choose m = 10 because experimental results show that

for m > 10 the throughput improvement is diminishing. Note that we include AWGN channel

capacity in Fig. 2.8 only as a point of reference since finite-latency capacity with NTC is higher

than the asymptotic capacity as shown in Sec. 2.4.2.
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Fig. 2.8 also shows repeated IR-NTC simulations of two tail-biting convolutional codes and

a turbo code, where the relevant codes are described in Sec. 2.3.2. The simulated turbo code

saturates at a lower throughput than the 64-state and 1024-state tail-biting convolutional codes,

which are both ML decoded. We expect that turbo codes with better performance at short laten-

cies can be found. Still, the convolutional code performance is outstanding in this short-latency

regime.

Fig. 2.8 shows that ARQ achieves a throughput of less than 0.5 bits. and Chase combining

provides little improvement over ARQ, with less than 0.01 bits increase in expected through-

put. In contrast, the 1024-state convolutional code simulation of repeated IR-NTC achieves a

throughput of 0.638 bits. This coincides with the observation in [PPV11] that IR is essential in

achieving high throughput with feedback in the finite-blocklength regime, even though the SCR

scheme proposed by Yamamoto and Itoh [YI79] achieves the optimal error-exponent shown by

Burnashev [Bur76].

We conclude this section by comparing Fig. 2.7 and Fig. 2.8. As shown in Fig. 2.7, the

expected throughput of an ARQ using the blocklength-10, 000 turbo code is 0.56 bits with an

expected latency of 10, 016 bits. Fig. 2.8 shows that the repeated IR-NTC using the 1024-state

convolutional code achieves a higher expected throughput of 0.64 bits with an expected latency

of only 100 bits!

2.5 Optimization of Increments

Sec. 2.4.3 studied throughput by fixing the initial blocklength n1 and varying the number of

information symbols k, which correspondingly varied the initial code rate Rc. This produces

curves of expected throughput Rt vs. initial code rate Rc. In contrast, this section fixes k and

studies throughput by optimizing the set of increments {Ij}mj=1 for the repeated IR-NTC scheme

as presented in Sec. 2.3.1. This produces curves of expected throughput Rt vs. expected latency

ℓ. The optimization uses BD decoding to compute the expected throughput for both joint and

marginal RCSP approximation. For the rest of the chapter we will assume BD decoding unless
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otherwise stated. However, numerical results for ML decoding are also presented and compared

to BD decoding.

We first consider exact computations of the joint RCSP approximation for relatively small

values of m. We begin with the special case of m = 1, which is ARQ. We then provide re-

sults for cases where m > 1 and study how increasing m improves performance. We introduce

Chernoff bounds on the joint RCSP approximation and compare these bounds with the marginal

RCSP approximation. We then use the marginal RCSP approximation to optimize the perfor-

mance of repeated IR-NTC for large m but constrained to have uniform increments after the

initial transmission. Then we optimize increments for non-repeating IR-NTC constraining both

the maximum number of incremental transmissions and the probability of outage. Finally, we

introduce the concept of the decoding error trajectory, which provides the RCSP approximation

of error probability at each incremental transmission. It is a useful guide for rate-compatible

code design for feedback systems.

2.5.1 Choosing I1 for the m = 1 Case (ARQ)

Recall that for repeated IR-NTC the special case of m = 1 is ARQ. In this case, when the

message is fixed to be k bits, the RCSP approximation6 of expected throughput is a quasi-concave

function of the code rate Rc in (2.43). Thus a unique optimal code rate R∗
c for the repeated

codewords can be found numerically [BV04] to maximize the RCSP approximation of Rt for a

given k.

Table 2.1 presents the optimal code rates R∗
c = k/I∗1 and transmission lengths n1 = I∗1 for

ARQ. Fig. 2.9 plots the maximum RCSP approximation of throughput vs. expected latency ℓ for

ARQ as the red curve with diamond markers. Both Table 2.1 and Fig. 2.9 apply the constraint

that the lengths I∗1 must be integers. These results for ARQ are discussed together with the results

of m > 1 in the next subsection.

6Note that for the m = 1 case there is no distinction between the joint RCSP approximation and the marginal

RCSP approximation.
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Table 2.1: Optimized transmission lengths n1 = I∗1 and initial code rates R∗
c for ideal-sphere-

packing ARQ with information lengths k and SNR η = 2dB.

k 16 32 64 128 256

n1 = I∗1 31 60 116 222 429

R∗
c 0.516 0.533 0.552 0.577 0.597

2.5.2 Choosing Increments {Ij} to Maximize Throughput

In Sec. 2.4.3.2 we demonstrated one repeated IR-NTC scheme with m = 10 transmissions that

could approach capacity with low latency based on RCSP. Specifically, the transmission lengths

were fixed to I1 = 64 and I2, . . . , I10 = 10, while k was varied to maximize throughput.

This subsection presents optimization results based on exact numerical integrations comput-

ing the joint RCSP approximation. Both k and the number of transmissions m are fixed, and a

search identifies the set of transmission lengths {Ij}mj=1 that maximizes the joint RCSP approx-

imation of expected throughput using BD decoding. Based on the optimized increments, this

subsection also provides the marginal RCSP approximation of the expected throughput using

ML decoding.

For m > 1, identifying the transmission lengths Ij which minimize the latency ℓ is not

straightforward due to the joint decoding error probabilities in (2.40). Restricting to a small m

allows exact computation of (2.40) in Mathematica, avoiding the marginal approximation. We

study the cases when m ≤ 6 based on numerical integration.

The computational complexity of numerical integration for (2.40) increases with the trans-

mission index j. Because of this increasing complexity we limited attention to a well-chosen

subset of possible transmission lengths. Thus our results based on numerical integration may be

considered as lower bounds to what is possible with a fully exhaustive optimization.

Table 2.2 shows the results of the m = 5 optimization (i.e., the set of lengths Ij found to

achieve the highest throughput) and the corresponding throughput for the joint RCSP approx-
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Table 2.2: Optimized RCSP transmission lengths for m = 5 and SNR= 2 dB using non-uniform

increments.

k I1 I3 I3 I4 I5 Rt Opt.

16 19 4 4 4 8 0.6019

32 38 8 8 8 12 0.6208

64 85 12 8 12 16 0.6363

128 176 14 14 14 28 0.6494

256 352 24 24 24 48 0.6593

imation. Table 2.2 also shows that for every value of k the initial code rate k/I1 is above the

channel capacity of 0.6851. These high initial code rates indicate that feedback is allowing the

decoder to capitalize on favorable noise realizations by attempting to decode and terminate early.

Fig. 2.9 shows the optimized joint RCSP approximation of Rt vs. ℓ for m = 1, 2, 5, 6 on

an AWGN channel with SNR 2 dB. As m increases, each additional retransmission increases

the expected throughput but the amount of that increase diminishes. The points on each curve

in Fig. 2.9 represent values of k ranging from 16 to 256 information bits. Fig. 2.9 shows, for

example, that by allowing up to four retransmissions (m = 5) with k = 64, the joint RCSP

approximation has a throughput Rt = 0.636 bits or 93% of the original AWGN capacity7 with

an expected latency of 101 symbols. Similar results are obtained for other SNRs.

Fig. 2.9 also shows the Rt vs. ℓ curves for marginal RCSP approximation using ML decoding.

The increments in Table 2.2 are used in the computation. The curves for ML decoding shows that

the effect of NTC starts to manifest at low latencies as m increases. Moreover, the differences

between the BD decoding curves and ML decoding curves are negligible for m > 1 and expected

latencies larger than 200. This observation motivates us to focus on the expected throughput

optimization using BD decoding, which simplifies the computation.

7As shown in Sec. 2.4 the finite-latency capacity with NTC is higher than the asymptotic capacity. However, for

small m the capacity increase due to NTC is small, and so we include the AWGN capacity as a point of reference.
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Figure 2.9: The Rt vs. ℓ curves using the joint RCSP approximation with BD decoding and the

marginal RCSP approximation with ML decoding for m = 1, 2, 5, 6. The transmission lengths

{Ij} are identified by joint RCSP approximation.

2.5.3 Chernoff Bounds for RCSP over AWGN Channel

Even using the less complex BD decoding, the computation of the joint RCSP approximation

based on numerical integration becomes unwieldy for m > 6. In this subsection we study

upper and lower bounds based on the Chernoff inequality and compare these bounds with the

marginal RCSP approximation of throughput, which is itself a lower bound on the joint RCSP

approximation. Similar to previous subsection we assume BD decoding unless otherwise stated.

Assume w.l.o.g. that the noise has unit variance. Let rj and nj be the decoding radius and

blocklength for the jth decoding attempt. As in earlier sections let ζnj
be the marginal error event

and Eni
= ∩i

j=1ζnj
is the joint error event. The main result of applying the Chernoff inequality
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to bound the joint RCSP approximation is the following theorem.

Theorem 8. Using the joint RCSP approximation with BD decoding for AWGN channel we have

for all 1 < i ≤ m that

P[Eni
] ≥ max

{

0,P[ζni
]−

i−1∑

j=1

P

[

ζni
∩ ζcnj

]
}

, (2.44)

P[Eni
] ≤ min {P1, P2, 1} , (2.45)

where P1 = P[ζni
] and P2 = P[ζni

∩ ζni−1
]. The pairs of joint events ζnm ∩ ζnj

, j = 1, . . . ,m− 1

can be bounded as follows:

P[ζnj
∩ ζnm ] ≤ inf

0≤u<1/2

P

[

χ2
nj

> (1− 2u)r2m

]

eur2m(1− 2u)nm/2
, (2.46)

P[ζcnj
∩ ζnm ] ≤ inf

0≤u<1/2

P

[

χ2
nj

≤ (1− 2u)r2m

]

eur2m(1− 2u)nm/2
. (2.47)

The bounds on pairs of joint events (2.46) and (2.47) can be extended to joints of more than two

events which leads to a slightly tighter upper bound for P[Eni
]. The proof of this extension and

the proof of Thm. 8 are provided in Appendix 2.B.

We observed numerically that the marginal probability P[ζnm ] in (2.45), which can be eval-

uated directly via the tail of a single chi-square random variable, is surprisingly tight for short

blocklengths. The tightness of the marginal was used in [PPV11] for (2.6), where the upper

bound on the error probability of each time instance is the marginal.

Using the marginal P[ζni
] as an upper bound on P[Eni

], the lower bound (2.44) shows that

the gap between the joint and marginal probability is upper bounded by applying (2.47) to
∑i−1

j=1 P

[

ζni
∩ ζcnj

]

. We found numerically that setting u = 1/2 − nm/(2r
2
m + 2k) in (2.47)

where k = log2 M , gives a tight upper bound on the gap, although this convenient choice of u is

not the optimal value.

Fig. 2.10 shows the Rt vs. ℓ curves for m = 5 using the optimized step sizes provided in

Table 2.2 of Sec. 2.5 and the values of k are shown in the figure. The channel SNR is 2 dB and the
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Figure 2.10: The Rt vs. ℓ curves for the joint RCSP approximation with m = 5 over the 2dB

AWGN channel. All curves use the optimized increments in Table 2.2.

asymptotic capacity is 0.6851 bits. The m = 5 curves shown include exact numerical integration

of the joint RCSP approximation, the upper bound on the joint RCSP approximation using (2.44)

and (2.47), the marginal RCSP approximation using both ML decoding and BD decoding, and

the random-coding lower bound using (2.8). Evaluating (2.6) would give a slightly better bound

than (2.8) for random coding but is very time-consuming to compute.

The throughput upper bound using (2.44) and (2.47) becomes tight for latencies larger than

100. The lower bound on the joint RCSP approximation using (2.45) and (2.46) is not shown

separately because it turns out to be identical to the marginal RCSP approximation. This is

because the Chernoff bound of the pairwise joint probabilities are often larger than the marginal

probabilities.
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Fig. 2.10 also plots the Rt vs. ℓ points of the 1024-state and 64-state convolutional codes

presented in Sec. 2.3.2. The simulation results demonstrate that both codes achieve throughputs

higher than the random-coding lower bound for k = 16 and k = 32. The more complex 1024-

state code gives expected throughput higher than random coding even for k = 64. For k = 16

and k = 32 the simulation points of the 1024-state code closely approach the marginal RCSP

approximation of the expected throughput using ML decoding.

Note that the lower bound of the expected throughput using random coding is significantly

below the RCSP approximations (joint RCSP approximation using BD decoding and marginal

RCSP using ML or BD decoding) for low expected latencies. However, for expected latencies

above 350 symbols the RCSP approximations and the lower bound based on random coding

produce very similar expected throughputs.

For random coding, an i.i.d. codebook is drawn using a Gaussian distribution with a zero

mean and a variance equal to the power constraint η. This type of random codebook generation

will sometimes produce a codeword that violates the power constraint. To address this, the

average power should be slightly reduced or codewords violating the power constraint should be

purged, either of which will lead to a slight performance degradation.

To conclude this subsection, we summarize two relevant observations to motivate the next

subsection: (1) When using BD decoding, the difference in expected throughput between the

joint RCSP approximation and the marginal RCSP approximation is negligible. (2) The differ-

ence between the joint RCSP approximation using BD decoding and marginal RCSP approxi-

mation using ML decoding is small for reasonably large expected latencies, e.g., 200 for m > 1.

These two observations allow us to focus on efficient optimizations based on marginal RCSP

approximation using BD decoding.

2.5.4 RCSP with Uniform Increments

For a specified k and for a fixed finite number of transmissions m, there are m variables {Ij}mj=1

that can be varied to optimize the throughput. The number of possible combinations of Ij’s
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Figure 2.11: Comparing marginal RCSP approximation with optimized uniform increment Ij =

I , m = 2, 8, 16, 32,∞, and joint RCSP approximation with optimized {Ij}mj=1, m = 5.

increases rapidly as m increases. Sec. 2.5.2 addressed the optimization problem for m ≤ 6 by

using the joint RCSP approximation. Motivated by the pattern seen in Table 2.2, this subsection

considers the large m case by restricting the transmissions to use uniform increments Ij = I for

j > 1. This yields a two parameter optimization: the initial blocklength n1 and the increment I .

To reflect practical constraints, we restrict the increment I to be an integer.

We also reduce computational burden by replacing the joint RCSP approximation with the

marginal RCSP approximation, and we only use BD decoding. Note that in Sec. 2.5.3 we saw that

the marginal RCSP approximation is operationally identical to lower bound on the joint RCSP

approximation using (2.45) and (2.46) and is a tight lower bound to the joint RCSP approxima-

tion. It is also relatively simple to compute using BD decoding since the relevant probability of

error is simply the tail of a chi-square.
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Table 2.3: Optimized RCSP n1 and nm for m = 5 and uniform increments.

k n1 n5 I Rt

16 17 47 6 0.5944

32 39 79 8 0.6164

64 83 143 12 0.6341

128 172 262 18 0.6475

256 353 483 26 0.6576

Fig. 2.11 presents the optimized performance with uniform increments for various m ranging

from 2 to ∞. In the optimization that produced this figure, the longest possible blocklength was

constrained to be less than ⌈6k/C⌉ where C is the capacity of the AWGN channel.

For the m = 5 case, it is instructive to compare optimized uniform increments with the

unconstrained optimal increments of Table 2.2. Table 2.3 shows the numerical results of the

uniform-increment optimization for m = 5 on the 2 dB AWGN channel. Comparing the m = 5

curves in Fig. 2.11 and the parameters n1, nm, I , and Rt in Tables 2.2 and 2.3 shows that the

constraint of constant increments Ij = I for j > 1 negligibly reduces expected throughput in

this case.

Looking at the uniform-increment curves in Fig. 2.11, we observe diminishing returns even

for m increasing exponentially. This implies that for a practical system it suffices to consider an

m smaller than 16.

2.5.5 Performance across a range of SNRs

To allow easy comparison across the various plots above, we have focused attention on the spe-

cific case of the 2 dB AWGN channel. The uniform-increment approach of the previous subsec-

tion allows us to efficiently explore performance across a range of SNRs. For expected latencies

constrained to be close to (but not greater than) 200 symbols, Fig. 2.12 plots the marginal RCSP

approximation of Rt vs. η for m = 1, 4, 8 and η ranging from 0 to 5 dB. The expected throughput
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Figure 2.12: Rt vs. η for ℓ ≤ 200, η = 0, 1, . . . , 5dB and m = 1, 4, 8.

Rt is obtained by finding the largest integer k such that the optimized initial blocklength n1 and

the uniform increment I yield expected latency ℓ ≤ 200. The actual expected latencies ranged

only between 197 and 200. We chose the constraint to be 200 since the difference between ML

decoding and BD decoding for the marginal RCSP approximation is small.

This plot shows the significant benefit of even limited IR as compared to ARQ over a range

of SNRs. For example, at 4 dB the curve for m = 1 (ARQ) is 0.155 bits from the original AWGN

capacity, but this gap reduces to 0.046 bits for m = 4 and 0.025 bits for m = 8. To see these gaps

from an SNR perspective, the horizontal line at expected throughput 8.7 bits shows that m = 1

(ARQ) performs within 1.3 dB of the original AWGN capacity while m = 4 is within 0.4 dB

and m = 8 is within 0.2 dB.

Recall that the marginal RCSP curves in Fig. 2.12 are for repeated IR-NTC, which generally
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can have throughputs above capacity because of the extra information communicated by the

NTC. We saw this in Figs. 2.5 and 2.6. However, this extra information is quite limited for

small values of m. A simple upper bound on the extra information per transmitted symbol to

communicate τ for repeated IR-NTC is log2(m + 1)/n1, where n1 is the initial blocklength.

We examine this upper bound for the case of 4 dB. For m = 1, n1 is 192 symbols and the upper

bound is 0.0052 bits. For m = 4 and m = 8 the values of n1 are 182 and 178 respectively, and the

upper bounds on the NTC per-symbol extra information are 0.0127 and 0.0177 bits respectively.

Thus, the small values of m along with practically reasonable expected latencies of around

200 symbols considered in Fig. 2.12 cause the extra information provided by NTC to be neg-

ligible. Note that for larger expected latencies, the per-symbol extra information of NTC will

become even smaller.

2.5.6 Optimizing Increments for Non-Repeating IR-NTC

Repeated IR-NTC has an outage probability of zero because it never stops trying until a mes-

sage is decoded correctly. However, this leads to an unbounded maximum latency. Using a

non-repeating IR-NTC scheme, optimization of transmission lengths using the joint RCSP ap-

proximation can incorporate a strict constraint on the number of incremental transmissions so

that the transmitter gives up after m transmissions. This optimization can also include a con-

straint on the outage probability, which is nonzero for non-repeating IR-NTC.

To handle these two new constraints, we fix m and restrict P[Enm ] to be less than a specified

poutage. Without modifying the computations of P[Enj
], the optimization is adapted to pick the set

of lengths that yields the maximum throughput s.t. P[Enm ] ≤ poutage. When there is a decoding

error after the mth transmission, the transmitter declares an outage event and proceeds to encode

the next k information bits. This scheme is suitable for delay-sensitive communications, in

which data packets are not useful to the receiver after a fixed number of transmission attempts.

50



0 50 100 150 200 250 300 350 400 450

0.5

0.6

0.7

SNR = 2.0 dB, Capacity = 0.6851

Expected Latency

E
x
p
ec

te
d

T
h
ro

u
g
h
p
u
t

 

 

AWGN Channel Capacity

Joint RCSP with m = 4, no constraint on p4

Joint RCSP with m = 4, p4 = 10−4

Joint RCSP with m = 4, p4 = 10−5

Joint RCSP with m = 4, p4 = 10−10

Figure 2.13: The effect of specifying a constraint on the outage probability p4 on the Rt vs. ℓ.

The expected number of channel uses ℓ is given by

ℓ = I1 +
m∑

j=2

IjP[Enj−1
]. (2.48)

The expected throughput Rt is again given by k/ℓ and the outage probability is P[Enm ].

Fig. 2.13 shows how the outage probability constraint affects the Rt vs. ℓ curve. The

maximum number of transmissions is fixed to be m = 4. The constraint values we consid-

ered for the outage probability (error probability of the fourth transmission P[En4 ] = p4) are

1 (no constraint), 10−4, 10−5 and 10−10. Stricter constraints on outage probability increase the

average latency ℓ. According to the joint RCSP approximation, however, it is exciting to see that

the loss in the expected throughput is only 0.022 bits around latency of 200 symbols compared

to the unconstrained Rt even with the outage constraint p4 = 10−10.
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Figure 2.14: A comparison of the decoding error trajectories of joint RCSP approximation,

marginal RCSP approximation, simulated ML-decoded convolutional codes and random-coding

lower bound for k = 64.

2.5.7 Decoding Error Trajectory with BD Decoding

The optimization of increments in Sec. 2.5.2 uses the joint RCSP approximation8 to find the

highest expected throughput Rt. The joint RCSP approximation provides a set of joint decoding

error probabilities P[Enj
], j = 1, . . . ,m, which we call the “decoding error trajectory”. If we can

find a family of rate-compatible codes that achieves this decoding error trajectory, then we can

match the throughput performance suggested by the joint RCSP approximation. For the short-

latency regime, e.g. k = 16 and k = 32, one should use the marginal RCSP approximation with

ML decoding to study the decoding error trajectory for a better approximation. To demonstrate

8Note that for joint RCSP approximation we only use BD decoding.

52



an example of the decoding error trajectory we focus our attention on the case of k = 64 and use

BD decoding throughout this subsection.

Fig. 2.14 presents the decoding error trajectories for k = 64 and m = 1, 2, 5, 6 using the joint

RCSP approximation. Each trajectory corresponds to a k = 64 point on the Rt vs. ℓ curve in

Fig. 2.9. For example, the decoding error trajectory for k = 64 and m = 2 consists of the two

blue square markers in Fig. 2.14 and corresponds to the point on the blue solid curve in Fig. 2.9

with k = 64,m = 2.

Fig. 2.14 also shows the decoding error trajectories for the random-coding lower bound using

(2.8) with m = 5, as well as the simulations of the two tail-biting convolutional codes presented

in Sec. 2.3.2 with m = 5. The dashed line is the decoding error trajectory using the marginal

RCSP approximation. The marginal RCSP approximation provides a good estimate that can

serve as a performance goal for practical rate-compatible code design across a wide range of

blocklengths.

While the 64-state code is not powerful enough to match the trajectory suggested by the joint

RCSP approximation, the 1024-state code closely follows the trajectory for m = 5 and therefore

has a performance very close to the joint RCSP (c.f. Fig. 2.10). Thus there exist practical codes,

at least in some cases, that achieve the idealized performance of RCSP.

Fig. 2.15 shows how the outage probability constraints affect the decoding error trajectory for

k = 128 and m = 4 using the joint RCSP approximation. Curves are shown with no constraint

on the outage probability p4 and for p4 constrained to be less than 10−4, 10−5 and 10−10. For

ease of comparison, the x-axis is labeled with the transmission index rather than blocklength as

in Fig. 2.14.

At each index, the blocklengths corresponding to the curves with different constraints are

different. For example, at transmission index two, the curve with p4 = 10−4 has blocklength

191 whereas the curve with p4 = 10−10 has blocklength 211. An important observation is that

even for relatively low outage probability constraints such as p4 = 10−10, the initial transmission

should still have a relatively high decoding error rate in order to take advantage of instantaneous
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Figure 2.15: The effect of specifying a constraint on the outage probability P[E4] = p4 on the

decoding error trajectory for k = 128.

information densities that may be significantly higher than capacity.

2.6 Concluding Remarks

Inspired by the achievability and converse results in [PPV11] and practical simulation results in

[CSS10], this chapter studies feedback communication systems that use incremental redundancy.

We focus on the convenient model of IR-NTC, in which a stream of incremental redundancy

concludes when a noiseless confirmation symbol is sent by the transmitter once the receiver has

successfully decoded.

VLFT achievability in [PPV11] uses a non-repeating IR-NTC system with an infinite-length

mother code and decoding attempted after each received symbol. The first part of this chapter

shows that a finite-length mother code (implying repeated IR-NTC to achieve zero-error com-

munication) with decoding attempted only at certain specified times can still approach the VLFT
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achievability curve. The finite-length constraint introduces only a slight penalty in expected la-

tency as long as the additional length of the mother code beyond the blocklength corresponding

to capacity grows logarithmically with the expected latency. This is a requirement that is eas-

ily met by practical systems. In contrast, the expected latency penalty associated with decoding

time limitations is linear in the interval between decoding times. This forces the intervals to grow

sub-linearly in the expected latency for systems to approach capacity.

The second part of this chapter introduces rate-compatible sphere-packing (RCSP) and uses

this tool to analyze and optimize IR-NTC systems for the AWGN channel. The joint RCSP ap-

proximation with BD decoding optimizes the incremental lengths I1, . . . , Im for small values of

m in a repeated IR-NTC system. We found that under BD decoding, the marginal RCSP ap-

proximation is a tight lower bound of the joint RCSP approximation of expected throughput and

simplifies the computation. This simplification allows optimization of the uniform incremental

length I for repeated IR-NTC with larger values of m. The marginal RCSP approximation can

also be computed for ML decoding, and the difference between ML decoding and BD decod-

ing is significant for short expected latencies. For expected latencies larger than 200 symbols,

however, we observed that the difference between ML and BD decoding becomes small.

For relatively small values of m and N , a repeated IR-NTC system can approach the ca-

pacity of the original AWGN channel with expected latencies around 200 symbols. We applied

the marginal RCSP approximation assuming BD decoding across a range of SNRs to an IR-

NTC system with m = 8 and expected latencies at or below 200 symbols. The results showed

throughputs consistently within about 0.2 dB of the performance corresponding to the original

AWGN capacity. The NTC introduces additional information that can generally cause IR-NTC

achievable rates to be above capacity. When m is less than 8 and the expected latency is above

200 symbols, however, this increase in throughput is limited to negligible values (less than 0.02

bits) so that comparisons with the original AWGN channel capacity are reasonable.

For non-repeating IR-NTC, we can use the joint RCSP approximation with BD decoding to

optimize the incremental lengths I1, . . . , Im under an outage constraint. Numerical result shows
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that for an expected latency above 200 symbols, strict outage probability constraints can be met

with minimal loss in throughput.

From a practical code design perspective, this chapter demonstrates an IR-NTC system for

m = 5 incremental transmissions based on a 1024-state, randomly punctured, tail-biting convo-

lutional code with optimized transmission increments. At short expected latencies, the resulting

IR-NTC system exceeds the random-coding lower bound of [PPV11] and closely matches the

throughput-latency performance predicted by RCSP for the AWGN channel at low latency.

Rate-compatible codes for IR-NTC systems that match the performance predicted by RCSP

remain to be identified for expected latencies between 200 and 600 symbols. This chapter demon-

strates that the decoding error trajectory based on the marginal RCSP approximation can provide

the target error probabilities for designing such rate-compatible codes. Approximations based

on both ML decoding and BD decoding can be used. BD decoding is easier to compute and we

showed that the difference between ML and BD decoding becomes small for m > 1 and expected

latencies larger than 200. The design of rate-compatible codes matching the marginal-RCSP de-

coding error trajectory for expected latencies between 200 and 600 symbols is a challenging open

problem in channel code design.

2.A Proofs for VLFT with Practical Constraints

Proof of Thm. 2. Consider a random codebook CN = {C1, . . . ,CM} with M codewords of

length-N and codeword symbols independent and identically distributed according to PX . To

construct a VLFT code consider the following (U, fn, gn, τ): The common random variable

U ∈ U =

M times
︷ ︸︸ ︷

XN × · · · × XN . (2.49)

is distributed as:

U ∼
M∏

j=1

PXN . (2.50)
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A realization of U corresponds to a deterministic codebook {c1, . . . , cM}. Let CW (n) denote the

nth symbol of the codeword CW , and let [Cj]
n denote the first n symbols of the codeword Cj .

The sequence (fn, gn) is defined as

fn(U,W ) = CW (n) (2.51)

gn(U, Y
n) = arg max

j=1,...,M
i([Cj]

n;Y n), (2.52)

and the stopping time τ is defined as:

τ = inf{n : gn(U, Y
n) = W} ∧N . (2.53)

The nth marginal error event ζn is given as:

ζn =

{
⋃

j 6=W

i(Cn
j ;Y

n) > i(Cn
W ;Y n)

}

. (2.54)

Following (2.11)-(2.14) we have

E[τ ] =
N−1∑

n=0

P[τ > n] (2.55)

≤
N−1∑

n=0

P[ζn]. (2.56)

As in [PPV11, (151)-(153)], the union bound P(ζn) ≤ ξn provides an upper bound on (2.14) as

follows:

E[τ ] ≤
N−1∑

n=0

ξn , (2.57)

where ξn is given in (2.7).

With a similar bounding technique, the error probability can be upper bounded as:

P[gτ (U, Y
τ ) 6= W ] = P[gN(U, Y

N) 6= W, τ = N ] (2.58)

= P

[
N⋂

j=1

ζj

]

(2.59)

≤ P[ζN ] (2.60)
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≤ ξN . (2.61)

In other words, the error probability is upper bounded by the error probability of the underlying

finite-length code CN .

Proof of Thm. 3. The proof follows from random coding and the following modification of the

triplet (fn, gn, τ) of Thm. 2: For k = 1, 2, . . . let (f ′
n, g

′
n) be defined as:

f ′
n(U,W ) =







fn(U,W ) if n ≤ N

fn−kN(U,W ) if kN < n ≤ (k + 1)N

g′n(U, Y
n) =







gn(U, Y
n) if n ≤ N

gn−kN(U, Y
n
kN+1) if kN < n ≤ (k + 1)N

Let the new stopping time τ ′ be defined as:

τ ′ = inf{n : g′n(U, Y
n) = W} . (2.62)

The error probability is zero because the definition of the stopping time τ ′ ensures that decoding

stops only when the decision is correct. As mentioned above, the new encoder/decoder sequence

(f ′
n, g

′
n) is simply an extension of the VLFT code in Thm. 2 by performing an ARQ-like repeti-

tion. The expectation of τ ′ is thus given as:

E[τ ′] =
N−1∑

n=0

P

[
n⋂

j=1

ζj

]

+ P

[
N⋂

j=1

ζj

]

E[τ ′] (2.63)

≤
N−1∑

n=0

P[ζn] + P[ζN ]E[τ
′] , (2.64)

which implies that:

E[τ ′] ≤ (1− P[ζN ])
−1

N−1∑

n=0

P[ζn] . (2.65)

Applying the RCU bound to replace each P[ζn] with ξn completes the proof.
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Proof of Thm. 4. We define a pair of random walks to simplify the proofs:

Sn , i(Xn;Y n) (2.66)

S̄n , i(X̄n;Y n) . (2.67)

Referring to (2.2), note that for any measurable function f we have the property:

E[f(X̄n, Y n)] = E[f(Xn, Y n) exp{−Sn}]. (2.68)

Letting PX to be a capacity-achieving input distribution, observe that Sn and S̄n are sums of i.i.d.

r.v.s with positive and negative means:

E[i(X;Y )] = C (2.69)

E[i(X̄;Y )] = −L , (2.70)

where C is the channel capacity and L is the lautum information [PV08]. The sequence {Sn −
nC}n is a bounded martingale based on our assumption that the information density of each

symbol is essentially bounded. Hence, by Doob’s optional stopping theorem we have for a

stopping time τ :

E[Sτ ] = CE[τ ] . (2.71)

Properties (2.68)-(2.71) are used in the rest of this appendix.

Using the definitions of (2.66) and (2.67) in (2.7) produces (2.72). Weakening the RCU

bound using (2.8) and replacing M − 1 with M in (2.8) for simplicity produces (2.73):

ξn = E
[
min

{
(1, (M − 1)P[S̄n ≥ Sn|XnY n]

}]
(2.72)

≤ E
[
exp{−[Sn − logM ]+}

]
. (2.73)

Applying (2.73) to Thm. 3 yields the following:

ℓ ≤ 1

(1− ξN)

N−1∑

n=0

E
[
exp

{
−[Sn − logM ]+

}]
. (2.74)
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Consider an auxiliary stopping time τ̃ w.r.t. the filtration Fn = σ{Xn, X̄n, Y n}:

τ̃ = inf{n ≥ 0 : Sn ≥ logM} ∧N . (2.75)

For a specified set E, use E[X;E] to denote E[X1E] where 1E is the indicator function of

the set E. We now turn our attention to computing the summation in (2.74). Letting E be the set

{τ̃ < N}, we have the following:

N−1∑

n=0

E
[
exp{−[Sn − logM ]+}

]
= E

[

τ̃ − 1 +
N−1−τ̃∑

k=0

exp
{
−[Sτ̃+k − logM ]+

}
;E

]

+NP[Ec] .

(2.76)

On E we have i(X τ̃ ;Y τ̃ ) ≥ logM and hence:

[Sτ̃+k − logM ]+ = [Sτ̃+k − Sτ̃ + Sτ̃ − logM ]+ (2.77)

≥ [Sτ̃+k − Sτ̃ ]
+

(2.78)

d
= [Sk]

+
(2.79)

where the last equality is equality in distribution and is true almost surely by the strong Markov

property of random walks. Applying (2.77)-(2.79) to (2.76) yields:

N−1∑

n=0

E
[
exp{−[Sn − logM ]+}

]
≤ E

[

τ̃ − 1 +
N−1−τ̃∑

k=0

exp{− [Sk]
+};E

]

+NP[Ec] . (2.80)

Using (2.68) we have the following:

E
[
exp{− [Sk]

+}
]
= P

[
S̄k > 0

]
+ P [Sk ≤ 0] . (2.81)

Sk and S̄k are sums of i.i.d. r.v.s with positive and negative means, respectively. Thus by the

Chernoff inequality, both terms decay exponentially in k, yielding

P
[
S̄k > 0

]
+ P [Sk ≤ 0] ≤ a1e

−ka2 , (2.82)

for some positive constants a1 and a2. Thus there is a constant a3 > 0 such that:

N−1−τ̃∑

k=0

E
[
exp{−[Sk]

+}
]
≤

N−1∑

k=0

E
[
exp{−[Sk]

+}
]

(2.83)
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≤
N−1∑

k=0

a1e
−ka2 (2.84)

=
a1e

−a2(1− e−(N−1)a2)

1− e−a2
(2.85)

= a3 . (2.86)

We assume that Sn has bounded jumps, and hence on the set E there is a constant a4 such that

Sτ̃ − logM ≤ a4C . (2.87)

Therefore from (2.71) we have that on the set E:

E[τ̃ ] ≤ logM

C
+ a4 . (2.88)

We are now ready to provide a bound on (2.74). Letting a5 = a3 + a4 and applying (2.83)-(2.86)

and (2.88) to (2.76) we have:

ℓ ≤ (1− P[ζN ])
−1

(
logM

C
+ a5 +NP[Ec]

)

. (2.89)

For a fixed M with random coding, there is a constant ∆ > 0 such that with C∆ = C −∆ and

N = logM/C∆ we have the following bound on error probability:

P[ζN ] ≤ b2 exp(−Nb3) , (2.90)

for some constants b2 > 0 and b3 > 0.

Recalling that Sn is a sum of i.i.d. r.v.’s with mean C, let N = logM/C∆ we have by the

Chernoff inequality that:

P[Ec] = P[SN < logM ] (2.91)

≤ b0 exp

{

−b1N

(

C − logM

N

)}

(2.92)

= b0 exp

{

−b1
logM

C∆

∆

}

. (2.93)

Combining (2.89) and (2.93) we have the following for ℓ:

ℓ ≤ (1− P[ζN ])
−1

(
logM

C
+ a5 +

logM

C∆

b0
M b1∆/C∆

)

(2.94)
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Now applying (2.90), notice that we are only interested in the first two terms of the expansion

(1− P[ζN ])
−1 = 1 + P[ζN ] + P[ζN ]

2 + . . . on [0, 1). Thus

ℓ ≤ logM

C
+

b0 logM

C∆M b1∆/C∆
+

b2 logM

C(M b3/C∆)
+ a6 (2.95)

for some a6 > 0. Hence for M large enough we have (2.19).

Proof of Cor. 1. We first choose N to scale with ℓ with a factor δ to be chosen later:

N = (1 + δ)ℓ . (2.96)

Then by the converse (Thm. 5) we have:

logM

N
≤ C +

log(ℓ+ 1) + log e− δℓC

(1 + δ)ℓ
(2.97)

≤ C − δ′ . (2.98)

The term δ′ on the right is positive by setting:

δ >
log(ℓ+ 1) + log e

ℓC
. (2.99)

Again by the Chernoff inequality we have:

P[τ ′ ≥ N ] = P[SN < logM ] (2.100)

≤ P[SN −NC < −Nδ′] (2.101)

≤ b′0 exp {−ℓ(1 + δ)b′1δ
′} . (2.102)

Since δ is chosen such that logM/N is less than capacity, we also have (2.90). By reordering

(2.89) we have for some b′2, b
′
3 > 0 such that:

logM

C
≥ ℓ

[

1− b2e
−ℓ(1+δ)b3 − (1 + δ)b′0e

−b′2ℓ
]

− b′3 , (2.103)

which implies logM∗
t (ℓ,N) ≥ ℓC −O(1) for N = (1 + δ)ℓ and large enough ℓ.
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Proof of Thm. 6. Consider the same random-coding scheme as in Thm. 3 with encoders f ′
n(U,W )

and decoders g′n(U, Y
n). The auxiliary stopping time τ̃ of Thm. 4 is altered to reflect the limita-

tion on decoding times as follows:

τ̃ = n1 + (j̃ − 1)I, (2.104)

where j̃ is also a stopping time given as:

j̃ = inf{j > 0 : Snj
= i(Xnj ;Y nj) ≥ logM} . (2.105)

The rest is similar to the proof of Thm. 4, but without the complication of a finite N :

ℓ ≤ n1 + I
∞∑

j=1

P[ζnj
] (2.106)

≤ n1 + I
∞∑

j=1

E

[

exp
{

−
[
Snj

− logM
]+
}]

(2.107)

≤ n1 + IE[j̃ − 1] + I

∞∑

k=0

E

[

exp

{

−
[

Snj̃+k
− logM

]+
}]

(2.108)

≤ E[τ̃ ] + I
∞∑

k=0

E
[
exp

{
−[Snk

]+
}]

(2.109)

≤ E[τ̃ ] + Ia3 (2.110)

≤ logM

C
+ Ia4 + Ia3 , (2.111)

for some a3 > 0 and some a4 > 0, where (2.110) follows by applying the Chernoff inequality and

(2.111) is a consequence of the jumps Snk
being bounded by Ia4C for some a4 > 0. Reordering

the equations gives the result.

Proof of Lem. 1. Consider the same random-coding scheme as in Thm. 6 with encoders f ′
n(U,W )

and decoders g′n(U, Y
n), an initial blocklength n1, and a uniform increment I . However, the num-

ber of increments is now limited to a finite integer m. The finite block-length is then given by

N = nm where nj = n1 + (j − 1)I . Similar to Thm. 4, define the auxiliary stopping time as:

j̃ = inf{j > 0 : Snj
≥ logM} ∧m. (2.112)
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Similar to Thm. 4 we have (2.113) to (2.117), shown as follows:

(1− ξN)ℓ ≤ n1 + I

m−1∑

j=1

E[exp{−[Snj
− logM ]+}] (2.113)

= E



n1 + (j̃ − 1)I + I

m−1−j̃
∑

k=0

exp

{

−
[

Snk+j̃
− logM

]+
}

;E





+ E[n1 + (m− 1)I;Ec]

(2.114)

≤ E[τ̃ ;E] + IE





m−1−j̃
∑

k=0

exp

{

−
[

Snk+j̃
− logM

]+
}

;E



+NP[Ec] (2.115)

≤ E[τ̃ ;E] + IE

[
m−1∑

k=0

exp
{
− [Snk

]+
}
;E

]

+NP[Ec] (2.116)

≤ logM

C
+NP[Ec]] +O(I). (2.117)

In (2.113) to (2.117), E is the set {j̃ < m}.

Let the scaling of m be

m =

⌈(
logM

IC∆

− n1

I

)

+ 1

⌉

(2.118)

which yields a similar choice of N as in the proof of Thm. 4:

N = n1 + (m− 1)I ≥ logM

C∆

. (2.119)

The rest of the proof follows as in the proof of Thm. 4.

2.B Chernoff Bounds for RCSP

This appendix gives the proofs of the upper and lower bounds provided in Sec. 2.5.3. Let

fχ2
n
= dFχ2

n
be the density function of a chi-square distribution with n degrees of freedom.

The following lemma gives upper and lower bounds on the joint of a pair or error events.

Lemma 2. For an AWGN channel, let {ζnj
}mj=1 be the error events of RCSP with bounded-

distance decoding. We have the following upper and lower bounds on the probability of a pair
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of joint error events ζnj
and ζni

where j < i ≤ m:

P[ζnj
∩ ζni

] ≤ inf
0≤u<1/2

P

[

χ2
nj

> (1− 2u)r2i

]

eur
2
i (1− 2u)ni/2

, (2.120)

P[ζcnj
∩ ζni

] ≤ inf
0≤u<1/2

P

[

χ2
nj

≤ (1− 2u)r2i

]

eur
2
i (1− 2u)ni/2

, (2.121)

P[ζnj
∩ ζni

] ≥ max
(
P[ζnj

]− w1,P[ζni
]− w2

)
, (2.122)

where w1 and w2 are given as:

w1 = inf
v≥0

evr
2
i P

[

χ2
nj

> (1 + 2v)r2j

]

(1 + 2v)ni/2
, (2.123)

w2 = inf
0≤v≤1/2

e−vr2i P

[

χ2
nj

≤ (1− 2v)r2j

]

(1− 2v)ni/2
. (2.124)

Proof. It suffices to show the bounds for ζn1 ∩ ζn2 . Let the set Aj
i (r

2
k) be defined as:

Aj
i (r

2
k) =

{
zji+1 : ‖zji+1‖2 > r2k

}
. (2.125)

Applying the Chernoff inequality to (2.40) for m = 2, we have

P[ζn1 ∩ ζn2 ] ≤
∫ ∞

r21

Eeuχ
2
I2fχ2

I1
(t1)

eu(r
2
2−t1)

dt1 (2.126)

=

∫ ∞

r21

(1− 2u)−I2/2e−u(r22−t1)fχ2
I1
(t1)dt1 (2.127)

= (1− 2u)−I2/2e−ur22

∫

A
I1
0 (r21)

e
−

(1−2u)
2

I1∑

i=1
z2i

(2π)I1/2
dzI11 (2.128)

=

∫

A
I1
0 ((1−2u)r21)

e
−

I1∑

i=1
z′2i /2

(2π)I1/2
dz′I11

(1− 2u)I2/2(1− 2u)I1/2eur
2
2

(2.129)

=
e−ur22P

[
χ2
I1
> (1− 2u)r21

]

(1− 2u)N2/2
, (2.130)

where (2.129) follows from a change of variable z′i = (1 + 2u)1/2zi. Taking the infimum over

u < 1/2 gives the result.
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We provide a sketch of the proof for (2.47) and the lower bound follows from (2.47). Observe

that P[ζn1 ∩ ζn2 ] = P[ζn1 ] − P[ζn1 ∩ ζcn2
] = P[ζn2 ] − P[ζn1 ∩ ζcn2

]. Let w1 = P[ζn1 ∩ ζcn2
],

w2 = P[ζcn1
∩ ζn2 ] and finding the upper bounds of them yield the lower bound. The upper bound

on w2 and also (2.47) follows from the above derivation by changing the integration interval

from (r1,∞) to [0, r1]. For the upper bound on w1, apply the Chernoff inequality with the form

P[X ≤ r] ≤ E[e−vX ]evr. Taking the infimum over v ≥ 0 gives the result.

The following theorem extends the upper bound of the above lemma for the m-transmission

joint error probability given in (2.40), which depends on the initial blocklength n1 = I1 and the

m− 1 step sizes I2, . . . , Im:

Theorem 9. Let ui < 1/2, i = 1, 2, . . . ,m be the parameters for each use of Chernoff bound in

the integral. Define hi, gi(u
m
1 ) by the following recursion:

h1 = u1

g1 = e−u1r2m(1− 2u1)
−Im

2 ,

hi = hi−1 + ui(1− 2hi−1),

gi = gi−1e
−ui(1−2hi−1)r

2
m−i+1 (1− 2hi−1)

−Im−i+1
2 .

Note the property that 1− 2hi =
∏

j≤i(1− 2uj). We have

P [Enm ] ≤ inf
um
1

gm−1(u
m
1 )P

[
χ2
I1
> (1− 2hm−1)r

2
1

]

(1− 2hm−1)I1/2
. (2.131)

Proof. The proof follows from changing the variables iteratively similar to the proof of Lem. 2.

Several versions of lower bounds of the joint error probability with m transmissions can be

obtained by different expansions of the joint events, and the recursion formulas follow closely to

those in Thm. 9 and Lem 2. The following corollary gives an example of one specific expansion

that yields a lower bound in a recursive fashion and the other formulas are omitted.
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Corollary 2. With the same recursion as in Thm. 9, the lower bound is given as:

P [Enm ] ≥ max {0, p} , (2.132)

where p is given as

P

[
m⋂

j=2

ζnj

]

− inf
um
1

gm−1(u
m
1 )P

[
χ2
I1
≤ (1− 2hm−1)r

2
1

]

(1− 2hm−1)I1/2
. (2.133)

Proof. Expand Em as

⋂

1≤j≤m

ζnj
=

⋂

2≤j≤m

ζnj
\
(
⋂

2≤j≤m

ζnj
∩ ζcn1

)

(2.134)

and the proof follows from applying Thm. 9 except for the last event ζn1 , which gives

P
[
χ2
I1
≤ (1− 2hm−1)r

2
1

]

instead of

P
[
χ2
I1
≥ (1− 2hm−1)r

2
1

]
.

Applying Thm. 9 for the case of m = 2 gives a proof of Thm. 8 as shown in the following.

Proof of Thm. 8. We first show that both (2.44) and (2.45) follow immediately from properties

of probability. For any two sets A,B we can write a disjoint union of A as

(A ∩ B) ∪ (A ∩ Bc) = A . (2.135)

Letting A = ζnm and B = Enm \ ζnm = Enm−1 , we can rewrite the expression of P[Enm ] as

P[Enm ] + P[ζnm ∩ Ec
nm−1

] = P[ζnm ] . (2.136)

We therefore have the following:

P [Enm ] = P[ζnm ]− P

[

ζnm ∩
m−1⋃

i=1

ζcni

]

(2.137)
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≥ max

[

0,P[ζnm ]−
m−1∑

j=1

P

{

ζnm ∩ ζcnj

]
}

, (2.138)

where the last inequality can be seen as the union bound on the second term of the first equality.

To show the upper bound, a straightforward probability upper bound of Enm gives

P
[
Enj

]
≤ P[ζnj

] , (2.139)

which can be computed with the tail of the chi-square CDF directly. Since P
[
Enj

]
≤ P[ζnj−1

∩
ζnj

], applying Lem. 2 for upper bounds on P[ζnj−1
∩ ζcnj

] finishes the proof.

Note that alternatively, we can rewrite the joint error probability to obtain different upper

bounds. For example, write P[Enj
], j ≤ m as

P

[
j
⋂

i=1

ζni

]

= P

[
j
⋂

i=1

ζni
∩ ζnm

]

+ P

[
j
⋂

i=1

ζni
∩ ζcnm

]

(2.140)

≤ P[ζm, ζj ] + P[ζj, ζj−1]− P[ζj, ζj−1, ζm] . (2.141)

Applying Thm. 9 to the first two terms and Cor. 2 to the last term gives another version of the

upper bound. Also note that for rates above capacity, only (2.139) is active since the Chernoff

bounds give trivial results.

2.C The AWGN Power Constraint for RCSP

Recall that for an n-dimensional input Xn for the AWGN channel with unit noise variance and

SNR η, the power constraint is given as
∑n

j=1 X
2
j ≤ nη. Assuming perfect packing of M = 2k

identical Euclidean balls Di with radii r into the outer sphere with radius router =
√

n(1 + η),

the radii for Di is r =

√
n(1+η)

2k/n
. The codeword point, which is located at the center of the

decoding region Di, is at least distance r from the outer sphere surface assuming perfect packing

and within the outer sphere.

Let Sn (r) = {yn :
∑n

i=1 y
2
i = r2} be the sphere surface with radius r. The set of x ∈ R

n

that is at least distance r away from the sphere surface with radius router =
√

n(1 + η) is given
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as

H(r) =

{

xn :
n∑

i=1

(xi − yi)
2 ≥ r2, ∀y ∈ Sn (router)

}

. (2.142)

Assuming R = k/n ≤ 1
2
log2(1 + η) we have 22k/n ≤ 1 + η and hence

r2 =
n(1 + η)

22k/n
(2.143)

≥ n . (2.144)

Therefore by setting R = 1/2 log(1 + η) the set H(r) becomes

H(r) =

{

xn :
n∑

i=1

(xi − yi)
2 ≥ n, yn ∈ Sn

(√

n(1 + η)
)
}

. (2.145)

Let Bn(r) be a ball with radius r: Bn (r) = {xn :
∑

i x
2
i ≤ r2}. With an additional constraint

that xn must also be in the ball with radius
√

n(1 + η), we conclude that the codeword points

must be in the ball Bn

(√
nη
)
. The maximum energy of a codeword is therefore within the power

constraint
∑n

j=1 X
2
j ≤ nη if k/n ≤ 1

2
log2(1 + η), the capacity of the AWGN channel.
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CHAPTER 3

Protograph-Based Raptor-Like LDPC Codes

In the previous chapter we studied the analyses and optimizations of repeated IR-NTC systems

using a family of rate-compatible codes. We showed that if one can construct a family of rate-

compatible codes that has marginal error probabilities hitting the decoding error trajectory sug-

gested by the RCSP approximation, the same capacity-approaching expected throughput can be

achieved with low latencies.

Motivated by the previous chapter, this chapter constructs a family of rate-compatible LDPC

codes called Protograph-Based Raptor-Like LDPC codes, or PBRL codes. PBRL codes allow ex-

tensive rate-compatibility and efficient encoding of incremental redundancy. After a brief intro-

duction to LDPC codes, protograph-based LDPC codes and Raptor codes, this chapter discusses

the construction and optimization of PBRL codes. To provide a thorough study of the proposed

PBRL codes, we give examples of constructing both long-blocklength and short-blocklength

codes. We present extensive simulation results of these examples and compare the performance

between PBRL codes and other standardized codes.

3.1 Introduction

This section briefly reviews the preliminaries of LDPC codes. We also briefly introduce protograph-

based LDPC codes, Luby-Transform (LT) codes and Raptor codes. These codes are the inspira-

tions of our PBRL codes.
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3.1.1 LDPC Codes and Protograph-Based LDPC Codes

Denote a binary linear block code that encodes k bits to n bits as an [n, k] code. A length-n

parity-check code is a binary linear block code whose codewords are a collection of row vectors

cj ∈ {0, 1}n, j = 1, 2, . . . , 2k all satisfy m linear parity-check constraints. These parity-check

constraints can be expressed as an equation in GF(2): HcT = 0 where H is an m × n binary-

valued matrix. If the rank of H is exactly m and we let m = n− k, then there are 2k codewords

and the parity-check code is also an [n, k] code.

As the name suggests, the 1s in the parity-check matrix of an LDPC code is sparse. LDPC

codes are most commonly represented by a bipartite graph, also known as Tanner graph. We

give a simple example of representing a parity-check code by a bipartite graph. Let H be a

parity-check matrix given as follows:

H =








1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1







, (3.1)

i.e. the [7, 4] Hamming code. In the bipartite graph representation, there are two groups of ver-

tices (we will use the name node rather than vertex for the rest of the dissertation): the check

nodes and the variable nodes. Each row of the represents a check node and each column repre-

sents a variable node. There is an edge between the ith check node and the jth variable node if

there is a 1 in the ith row and the jth column of H . The bipartite graph representation is given as

in Fig. 3.1 where the squares with “+” signs represent check nodes and black circles represent

variable nodes. The first variable node from the left of the graph represents the first column of

the parity-check matrix H , and the first check node from the left represents the first row of H .

Regarding the [7, 4] Hamming code as an LDPC code1, we note that it is in fact an “irreg-

ular” LDPC codes where the variable nodes have different node degrees. The degree profile

of an irregular LDPC code can be denoted by the “degree distribution” either from the node

1Though the example of [7, 4] Hamming does not manifest the “low-density” property of LDPC codes, it is a

simple example to illustrate the main ideas of representing an LDPC code using a bipartite graph.
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Figure 3.1: Bipartite graph representation of the [7, 4] Hamming code.

perspective or the edge perspective, which can be mapped from one to the other for a given

parity-check code. A degree distribution from the edge perspective is denoted by a pair of poly-

nomials λ(x) =
∑

j λjx
j−1 and ρ(x) =

∑

j ρjx
j−1, both with non-negative coefficients such

that λ(1) = 1, ρ(1) = 1. The coefficients λj and ρj denote the fraction of edges that connects to

variable nodes and check nodes with degree j, respectively. The details of the relations between

the two perspectives can be found in [RU08]. In the [7, 4] Hamming code example, the degree

distribution is given as

λ(x) =
1

4
+

1

2
x+

1

4
x2 , (3.2)

ρ(x) = x3 . (3.3)

The decoding of an LDPC code is based on message-passing algorithm, or belief propagation

(BP), on the bipartite graph of the code. A large volume of work has been dedicated to the

study of the decoding algorithm for LDPC codes. We refer readers to [MMC98, Ana01, KFL01,

VGW10] and the references therein. We will use the standard BP decoding for the binary-input

AWGN channels.

In order to facilitate efficient hardware implementation of the decoder, LDPC codes are of-

ten constructed with certain structures, e.g. quasi-cyclic LDPC codes and regular LDPC codes

[LC04]. Protograph-based LDPC codes, or simply protograph codes, also allows efficient hard-

ware implementation [DDJ09]. A protograph, or projected graph, is a bipartite graph with a

relatively small number nodes. A copy-and-permute operation, often referred to as the “lifting”

process, can be applied to the protograph to obtain larger graphs of various sizes, resulting in a
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Figure 3.2: Lifting process of the [7, 4] Hamming code.

larger LDPC code. After the lifting operation, the edges of the same type are permuted among

the protograph replicas. Fig. 3.2 shows an example of the lifting process for the [7, 4] Hamming

code. For clarity only three types of edges are permuted and each type is color coded with the

same color. Note that the protograph can also have parallel edges, i.e. multiple edges connect-

ing the same pair of variable node and check node. Parallel edges in a protograph can later be

removed through the lifting process. A detailed discussion on parallel edges in protographs can

be found in [DDJ09].

3.1.2 LT Codes and Raptor Codes

This section reviews the preliminaries of LT codes [Lub02] and Raptor codes [Sho06]. Intro-

duced by Luby [Lub02] and Shokrollahi [Sho06], LT codes and Raptor codes share many simi-

larities with LDPC codes and are shown to achieve binary erasure channel (BEC) capacity uni-

versally. Etesami et al. [ES06] explore the application of Raptor codes to binary memoryless

symmetric channels and derive various results, including the fact that Raptor codes are not uni-

versal except in BEC. Results on Raptor codes such as [Sho06] and [ES06] rely heavily on the

assumption of large information blocks.

An LT code is described by the output degree distribution Ω on its output symbols, which is

73



the node perspective of the degree distribution. Let n be a positive integer that denotes the number

of the input symbols. Let Ω = [Ω1,Ω2, . . . ,Ωn] be a distribution on a set of integers {1, 2, . . . , n}
such that Ωj denotes the probability of the value j being chosen. For the ith output bit, the

encoder first chooses an integer di randomly according to the distribution Ω. It then chooses di

input symbols uniformly (without replacement) from {1, 2, . . . , n}, and taking exclusive-or of

these chosen input bits yields the output bit. This encoding process continues indefinitely for

i = 1, 2, . . . , often concluding only when all interested receivers have been able to decode the

message.

Let C be an [n, k] linear code. A Raptor code is a serial concatenation of a code C, which

is also called the “precode,” and an LT code. A Raptor code is described by the parameters

(k, C,Ω(x)), where Ω(x) =
n∑

i=k

Ωix
i is the generator polynomial of the output degree distribution

of the LT code.

The decoding of the Raptor code is performed in two stages: the decoder first decodes the

LT code and recovers a fraction of the precoded symbols (or provides the soft information of

the precoded symbols in the case of AWGN channel). The decoder then attempts to recover the

remaining symbols by decoding the precoded symbols with the precode C.

Raptor codes can also be represented as a bipartite graph and BP decoding can be applied.

This is the inspiration for us to consider the bipartite graph structure of Raptor codes to build our

rate-compatible LDPC codes.

3.1.3 Organization

We briefly summarize the organization of this chapter. Sec. 3.2 introduces the structure of PBRL

codes. The encoding and decoding are also discussed in this section. Sec. 3.3 reviews the density

evolution process and discusses the optimization of PBRL codes. Sec. 3.4 studies a variant of

PBRL codes, called Punctured-Node PBRL (PN-PBRL) codes with an emphasis in the short-

blocklength regime. Examples of constructing PBRL and PN-PBRL codes with short block-

lengths and the corresponding simulation results are provided in Sec. 3.5. Extending the result in
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Figure 3.3: Protograph for a PBRL code with a rate-3/4 precode. The matrices shown in (3.6)

and (3.7) in Sec. 3.5 give the details of the edge connections in the LT code part.

Sec. 3.4, Sec. 3.6 investigates the construction and optimization of PN-PBRL codes in the long-

blocklength regime. An example of long-blocklength PN-PBRL codes and the corresponding

simulation results are presented in Sec. 3.7. Finally Sec. 3.8 concludes this chapter.

3.2 Protograph-Based Raptor-Like LDPC Code

This section introduces the structure of PBRL codes. The encoding and decoding of PBRL codes

are also discussed.

3.2.1 Introducing PBRL Codes

The structure of a PBRL code can be best illustrated by its protograph. Fig. 3.3 shows the

protograph of a PBRL code. This protograph consists of two parts: (1) a relatively simple
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protograph code (on the left) representing the protograph of the precode and (2) a number of

check nodes (on the right) that are each connected to several variable nodes of the first part and

an additional degree-one variable node. The second part represents the protograph of an LT

code. The highest rate of the code is rate 3/4, and subsequent lower-rate codes are obtained by

transmitting the variable nodes in the LT code protograph starting from the top node.

After the lifting operation, the first part can be seen as an LDPC precode, and the degree-

one variable nodes of the second part can be efficiently encoded with the precoded symbols in a

manner similar to the LT code. The structure of this protograph code resembles a Raptor code,

but with a deterministic (rather than random) encoding rule for combining the precoded symbols.

The rate of the precode in this example is 3/4. As we increase the number of transmitted degree-

one variable nodes in the LT part, the code rate is reduced gradually.

3.2.2 Decoding and Encoding of PBRL Codes

Consider the decoding of a traditional Raptor code that collects the precoded symbols and en-

codes them with an LT code. In the case of an LDPC precode used with an LT code, decoding

proceeds as follows: the decoder first performs BP decoding on the LT code and then performs

BP decoding on the precode. The two-stage decoding implies the use of two different BP de-

coders, each exchanging their extrinsic information after the iterative decoding.

In [Sol06], the authors commented that the complexity of Raptor codes is higher than rate-

compatible LDPC codes. In view of reducing system complexity, it is natural to consider a joint

decoding of the Raptor code. The PBRL code family has deterministic connections in the LT

code part and always transmits the output symbols of the precode, allowing joint decoding of the

LT code part and the LDPC precode. This property also guarantees that the BP algorithm will

always work for the initial transmission as well as the lower-rate codewords comprised of the

original transmission and additional incremental redundancy. For traditional Raptor codes that

use randomized encoding, the initial transmission may not contain enough information for BP

decoding to succeed even in a noiseless setting.
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For high-rate codes, the decoder can deactivate those check nodes in the LT part for which

the neighboring degree-one variable node is not used. At the highest rate, when only the precode

is transmitted, none of the check nodes in the LT part need to be activated, offering possible

complexity reduction.

The encoding of the PBRL codes is as efficient as Raptor codes: after encoding the precode,

the encoding of the LT code part only involves exclusive-or operations. A discussion on the

encoding of the protograph precode can be found in [DDJ09].

3.3 Optimization of Protograph-Based Raptor-Like LDPC Codes

This section proposes a design technique for finding good PBRL codes. Belief propagation

(BP) decoding is assumed and we begin by designing the protograph. Given a fixed initial code

rate, the design begins by finding a good protograph code to serve as the precode and then

optimize the protograph of the LT code part. Optimization of the precode protograph is the same

as finding a good protograph code. When lifting a protograph with random permutations, the

asymptotic meaning of a good protograph is to have its minimum distance growing linearly with

its blocklength. We refer readers to a seminal work by Divsalar et al. [DDJ09], which contains

an extensive study of finding good protograph codes.

3.3.1 Density Evolution with Reciprocal Channel Approximation

For the BI-AWGN channel, the asymptotic iterative decoding threshold [RU01] characterizes

the performance of the ensemble of LDPC codes based on a specified protograph. This threshold

indicates the minimum SNR required to transmit reliably with the underlying ensemble of codes

as the blocklength grows to infinity.

Computing the exact iterative decoding threshold for BI-AWGN requires a large amount of

computation. The reciprocal channel approximation (RCA) [Chu00, DDJ09] provides a fast and

accurate approximation to the density evolution originally proposed by Richardson et al. [RU01,
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RSU01]. Experimental results [DDJ09, Chu00] show that the deviation from the exact density

evolution is less than 0.01 dB. The following subsection describes an optimization process that

uses the approximated threshold.

The reciprocal channel estimation for BI-AWGN channel uses a single real-valued parameter

s, the SNR, to approximate the density evolution. Define the reciprocal SNR as r ∈ R such that

C(s) + C(r) = 1 where C(x) is the capacity of the BI-AWGN channel with SNR x:

C(x) = 1−
∫ ∞

−∞

log2
(
1 + exp{4

√
x(u−

√
x)}
) exp{−u2}√

π
du . (3.4)

The self-inverting reciprocal energy function R(x) = C−1 (1− C(x)) [Chu00] transforms pa-

rameters s and r to each other. In other words, r = R(s) and s = R(r).

Let se be the message passed along an edge e from a variable node to a check node and re

be the message passed along an edge e from a check node to a variable node. Let Ec be the set

of edges that connect to the check node c and Ev be the set of edges that connect to the variable

node v. The application of the RCA technique to the density evolution for a fixed channel SNR

schl is summarized as follows:

0) (Initial step) For edges e connected to punctured variable nodes, set se = 0. For all other

edges set se = schl.

1) The check node message passed along an edge e is generated by re =
∑

i∈Ec\e

R(si).

2) The variable node message passed along edge e is generated by se = schl +
∑

i∈Ev\e

R(ri).

3) Repeat the iterative process from step 1) unless the stopping condition is met.

Using the above computation, the values se is additive at the variable nodes and the values re is

additive at the check nodes for all edges. For a fixed precision, we apply the above procedure iter-

atively and tack the values of all messages se. The smallest value of schl that achieves unbounded

growth of all messages se is the approximated density evolution threshold and the search can be

obtained by a bisection search due to the monotonicity of the threshold [RU08]. This method
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of reciprocal channel approximation of the threshold will be used in the optimization process

described in the following subsection.

3.3.2 Optimizing the LT code Part for PBRL Codes

Given a precode protograph constructed based on the techniques described in [DDJ09], we pro-

ceed to construct the LT code part. To construct the protograph of the LT code part, first add a

new check node and a new degree-one variable node to the protograph. Connect the new check

node and the new degree-one variable node with an edge. Additional edges are added between

the new check node and the precoded variable nodes. Using the new degree distribution we

can use RCA to compute the threshold. We find the connection that gives the lowest threshold

among all possible connections, or a well-chosen subset of all possible connections. This process

continues until the underlying protograph reaches the lowest rate desired.

For a given precode protograph, the optimization procedure of the LT code part is summa-

rized as follows:

1. Add a new check and a new variable node that are connected to each other into the current

protograph.

2. Using RCA to approximate the threshold, find the optimal connection between the new

check node and the precoded symbols that gives the lowest threshold.

3. Update the protograph using the optimized one obtained in step 2). Start over with step 1)

if the lowest rate desired is not yet reached. Go to step 4) if the lowest rate is reached.

4. Lift the resulting protograph with the circulant permutations to match the desired initial

blocklength.

5. Select circulant permutations so that small cycles are avoided when the protograph is lifted.

The selection is based on the circulant progressive edge growth (PEG) algorithm [HEA05,

ADD04].
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Table 3.1: Thresholds of the PBRL Codes (Eb/N0 in decibels).

Rate Threshold Capacity Gap

6/8 2.196 1.626 0.570

6/9 1.804 1.059 0.745

6/10 1.600 0.679 0.921

6/11 1.464 0.401 1.063

6/12 1.358 0.187 1.171

6/13 1.250 0.018 1.232

6/14 1.136 -0.122 1.258

6/15 1.016 -0.238 1.254

6/16 0.922 -0.337 1.259

6/17 0.816 -0.422 1.238

6/18 0.720 -0.495 1.215

We observed that in the optimization process, parallel edges in the LT code part of the pro-

tograph should be kept to a minimum (at most one pair of parallel edges in our examples). This

prevents short-cycles in the lifting process. Fig. 3.3 is an example of an optimized PBRL code.

This code does not have any parallel edges in the LT code part. Experimental results indicate

that for PBRL codes with short blocklengths, direct lifting of the protograph with parallel edges

yields better codes than a two-stage lifting such as the one described in [DDJ09].

The initial code rate, or the precode code rate, is 3/4. The threshold of the precode is 2.196

dB (Eb/N0). Suppose that the code is lifted 32 times, the initial blocklength is then 256. With

a step size of 32, subsequent code rates 6/9, 6/10, . . . , 6/18 are obtained by transmitting the

output symbols of the LT code from each successive group of variable nodes starting from the

top.

The corresponding thresholds of each code rate are summarized in Table 3.1. We observe an

increase in the gap between the threshold and the capacity as the code rate decreases. This is due
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Table 3.2: Thresholds of the PN-PBRL LDPC Codes (Eb/N0 in decibels).

Rate Threshold Capacity Gap

6/8 2.020 1.626 0.394

6/9 1.638 1.059 0.579

6/10 1.468 0.679 0.789

6/11 1.352 0.401 0.951

6/12 1.248 0.187 1.061

6/13 1.186 0.018 1.168

6/14 1.018 -0.122 1.140

6/15 0.930 -0.238 1.168

6/16 0.848 -0.337 1.185

6/17 0.692 -0.422 1.114

6/18 0.602 -0.495 1.097

to the structural restrictions imposed on the protograph of the LT code part. Each subsequent

protograph inherits the connections of the next-higher-rate protograph; the new protograph can

only optimize over the connections emanating from the one additional check node. Also, the

new check node must connect with a new degree-one variable node. This diminishing return of

lowering the code rate is mitigated by introducing punctured variable nodes as we will discussed

in the following section.

3.4 Punctured-Node PBRL Codes with Short Blocklengths

This section introduces Punctured-Node PBRL codes (PN-PBRL codes) that have structure sim-

ilar to PBRL codes, but the protograph of the precode has at least one punctured (untransmitted)

node.

Fig. 3.4 shows an example of an optimized PN-PBRL code. Note that the first variable node
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Figure 3.4: Protograph of a PN-PBRL code with a rate-6/7 precode. The first node in the precode

is always punctured, denoted as a white circle. Lower-rate codes are obtained by transmitting

the variable nodes in the LT code protograph starting from the top node. The matrices shown in

(3.8) and (3.9) in Sec. 3.5 give the details of the edge connections in the LT code part.

of the precode protograph is punctured, giving a rate-6/7 precode. To obtain an initial code rate

of 3/4, the first variable node of the LT code protograph is transmitted. The optimization proce-

dure is the same as in Sec. 3.3 but with a slight modification at step 2. In the optimization step 2

for PBRL codes we simply search for the best connection since the precoded symbols are all of

the same type. In the case of PN-PBRL codes, whenever there is a tie in the decoding threshold

for different connections, preference is given to the one with no edge connected to the punctured

node. This heuristic helps prevent performance degradation when lifting the protograph to a

shorter code (for blocklength less than 1000).

The subsequent code rates of 6/9, 6/10, . . . , 6/18 are obtained by transmitting the variable

nodes of the LT code protograph from top to bottom. Regardless of the operating rate, the first

variable node of the precode protograph is always punctured. The PN-PBRL codes yield better
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Table 3.3: Thresholds of the PN-PBRL LDPC Codes with Parallel Edges(Eb/N0 in decibels).

Rate Threshold Capacity Gap

6/8 1.965 1.626 0.339

6/9 1.314 1.059 0.255

6/10 0.948 0.679 0.269

6/11 0.678 0.401 0.277

6/12 0.422 0.187 0.235

6/13 0.270 0.0179 0.252

6/14 0.118 -0.122 0.240

6/15 0.005 -0.238 0.243

6/16 -0.102 -0.337 0.235

6/17 -0.172 -0.422 0.250

6/18 -0.266 -0.495 0.229

thresholds as shown in Table 3.2.

We observed experimentally that adding more parallel edges connected between the punc-

tured variable node in the precode protograph and the check nodes in the LT code protograph

reduces the threshold significantly, as shown in Table 3.3. The gap between the threshold and

the capacity are all less than 0.34 dB. The lifted codes with blocklength 256, however, do not

manifest the gain obtained in threshold. This is because the large number of extra parallel edges

is likely to cause undesirable trapping sets or absorbing sets in the bipartite graph, especially

when a short blocklength such as 256 is used.

3.5 Examples and Simulations for Short-Blocklength PBRL Codes

This section provides examples of short-blocklength PBRL and PN-PBRL codes and presents the

frame error rate (FER) and bit error rate (BER) simulations of the codes. Lifting of the protograph
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is accomplished by circulant permutation of each edge, which allows efficient implementation

of the decoder. The design of the circulant permutation uses a greedy algorithm, called circulant

progressive edge growth algorithm, to avoid all length-4 cycles and minimizes the number of

length-6 cycles.

The PBRL and PN-PBRL codes that are considered in this section can be described as fol-

lows: let Hp be the parity-check matrix of the precode and HLT be the parity-check matrix of

the LT code excluding the degree-one variable nodes. Let σ be a 32× 32 identity matrix shifted

to the left by 1, I be the identity matrix and O be the all-zero matrix with proper dimensions.

Entries with multiple terms of σ indicate parallel edges in the protograph. The full parity-check

matrix for both examples can be expressed as

H =




Hp O

HLT I



 . (3.5)

For the PBRL code example, Hp is given as

Hp =




σ0 + σ1 + σ3 + σ7 σ24 σ14 σ17 + σ0 σ7 σ1 + σ6 σ21 σ21 + σ0

σ4 σ4 + σ9 σ0 + σ1 σ0 σ0 + σ2 σ0 σ0 + σ3 σ2



 ,

(3.6)

and HLT is given as

HLT =






























σ29 σ0 σ0 σ1 σ5 σ6 σ10 σ4

σ12 σ0 σ1 σ3 σ4 σ16 σ13 0

σ16 σ0 σ2 σ6 σ0 0 0 σ1

σ26 0 σ0 0 0 σ1 σ6 σ9

0 σ1 0 0 σ0 0 σ2 σ3

σ1 0 0 σ2 0 σ9 0 0

0 0 σ16 0 σ0 0 σ4 0

0 σ21 0 σ0 0 σ2 0 0

σ0 0 0 0 0 0 0 σ1

0 0 0 σ12 0 0 σ0 0






























. (3.7)

For the PN-PBRL code example the precode parity-check matrix Hp is given as

Hp =




σ0 + σ1 σ24 σ14 σ17 + σ5 σ7 σ1 + σ3 σ21 σ21 + σ0

σ4 σ0 + σ2 σ0 + σ3 σ31 σ6 + σ0 σ1 σ0 + σ1 σ2



 , (3.8)
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Figure 3.5: Frame error rate of the rate-compatible PBRL code family. Layered belief propaga-

tion is used for the decoder simulations.

and the LT code parity-check matrix HLT is given as

HLT =

































σ2 + σ0 0 0 0 0 0 0 0

σ29 σ0 σ2 σ0 σ9 σ6 σ7 σ6

σ12 σ0 σ4 σ1 σ5 σ4 σ10 0

σ16 σ0 σ5 σ6 σ1 0 0 σ11

σ26 0 σ0 0 0 σ2 σ9 σ0

0 σ1 0 0 σ0 0 σ3 σ0

σ1 0 0 σ0 0 σ0 0 0

0 0 σ16 0 σ0 0 σ2 σ0

0 σ21 0 σ0 0 σ1 0 0

σ0 0 0 0 0 0 0 σ1

0 0 0 σ12 0 0 σ0 0

































. (3.9)
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Figure 3.6: Frame error rate of the rate-compatible PN-PBRL code family. Layered belief prop-

agation is used for the decoder simulations.

Figs. 3.5 and 3.6 show the simulations of the PBRL and PN-PBRL code family with rates

6/8, 6/9, . . . , 6/18. Layered belief propagation is used for the decoder simulations shown in

Figs. 3.5 and 3.6. As shown in both figures, we observe a saturation of the performance. This

coincide with the decoding threshold results as as shown in Table 3.1 and Table 3.2. Also con-

sistent with the decoding threshold results, we see that the PN-PBRL code family outperforms

the PBRL code family with a slight increase of encoding complexity.

Considering Raptor codes with the same precode as the PBRL code and the output distribu-

tions drawn from [ES06] and [Sol06], the simulation results show that these Raptor codes with

information block of 192 bits have frame error rates much higher than both PBRL and PN-PBRL

codes. This result is not surprising because a relatively short block of information is consid-

ered: since the degrees of each output node are drawn at random according to the optimal degree
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Figure 3.7: Frame error rate of the rate-compatible RCPT code family. Iterative BCJR algorithm

is used for decoding with maximum 12 iterations.

distribution, a few hundreds of samples might not be enough to exhibit the optimal degree dis-

tribution. Fig. 3.7 shows the simulations of RCPT codes in 3GPP-LTE standard with the same

range of code rates and blocklengths. Different code rates of the RCPT codes are obtained by

pseudo-random puncturing described in [Gen08]. Although the RCPT code family performs bet-

ter at low SNR regime, it also suffers from an error floor as soon as the FER reaches 10−3 for

rate 3/4 and 10−5 for rate 1/3, respectively.

For ease of comparison, Fig. 3.8 and 3.9 separately plot the FER and BER with rates 3/4

and 1/3 of the PBRL codes, PN-PBRL codes and RCPT codes. Note that in Figs. 3.8 and 3.9,

flooding is used for decoder simulations, which only gives slightly worse performance than the

layered belief propagation decoding used in Figs. 3.5 and 3.6. At rate 3/4, the PN-PBRL code

performs similarly to RCPT code and outperforms RCPT code when SNR is higher than 3 dB in
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Figure 3.8: Frame error rate and bit error rate of the PBRL code, PN-PBRL code and RCPT code

at code rate 3/4. Flooding is used for the decoder simulations. Both PBRL and PN-PBRL codes

outperform the RCPT codes at high Eb/N0 regime but perform slightly worse than the RCPT

code in the low Eb/N0 regime.

terms of FER. At rate 1/3, the PN-PBRL code starts to gain an advantage at SNR higher than

3.5 dB in terms of FER.

3.6 PN-PBRL Code Construction for Long Blocklengths

Motivated by the low thresholds observed in Table. 3.3, this section investigates the construction

and optimization of PN-PBRL codes with long blocklengths. Similar to its short-blocklength

counterpart, the design begins by finding a good protograph LDPC code to serve as a precode,

i.e. a protograph with linear growth of its minimum distance as a function of blocklength. The
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Figure 3.9: Frame error rate and bit error rate of the PBRL code, PN-PBRL code and RCPT code

at code rate 1/3. Flooding is used for the decoder simulations. Here the RCPT code outperforms

the PN-PBRL and PBRL code at low SNR range, but the PN-PBRL code starts to outperform

the RCPT code at around SNR 3.5 dB. There is no sign of an error floor for the both PBRL and

PN-PBRL code.

construction of the LT code part, however, requires different design criteria as for the short-

blocklength case in order to obtain good thresholds at each subsequent code rate.

First of all, we observed that the punctured node of the precode must connect to all check

nodes in the LT code part with at least a single edge. These edges induce high-degree punctured

variable nodes at low rates. We observe experimentally that the removal of these edges would

result in a notable degradation of the thresholds at low rates. This approach was originally

avoided in the design of short-blocklength PN-PBRL codes as described in Sec 3.4. For codes

with short blocklengths, the high-degree punctured node creates undesirable structures under BP
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decoding. Thus for short-blocklength codes, the resulting performance of the lifted codes does

not correspond to the threshold results in the cases we studied, making the optimization process

ad hoc rather than systematic. However, for longer blocklengths we see good agreement between

the thresholds and the simulated performance.

Second, additional parallel edges between the punctured variable node in the precode proto-

graph and the check nodes in the LT code protograph can further reduce the thresholds. Table 3.4

summarizes the thresholds of the code that has parallel edges between the punctured node and

every check node in the LT code part. The gaps between the thresholds and the capacities are

all less than 0.34 dB except the highest rate (the precode). The threshold of the rate-1/3 code is

−0.266 dB and the gap to BI-AWGN capacity is only 0.229 dB.

The lifted codes for low rates, however, do not manifest the gain obtained in terms of thresh-

olds. This is because that the connections of parallel edges hinder the flow of information from

the (lifted) degree-one variable nodes to the precoded variable nodes, preventing the BP decoder

from converging. The thresholds will slightly increase by limiting the number of parallel edges

between the punctured variable node and the check nodes in the LT code part, but the lifted code

graph will allow BP decoder to converge with a reasonable number of iterations.

For a given protograph precode with the property of linear growth in minimum distance, the

optimization procedure of the LT code part is summarized as follows:

1. Add a new check and a new variable node that are connected to each other into the current

protograph. Add an edge between the new check node and the punctured node in the

precode protograph.

2. Using RCA to approximate the threshold, find the optimal connections between the new

check node and the precoded symbols that gives the lowest threshold. The connection

between the new check node and the punctured node in the precode is retained.

3. Update the protograph using the optimized one obtained in step 2). Start over with step 1)

if the lowest rate desired is not yet reached. Go to step 4) if the lowest rate is reached.

90



Rate 6/7 LDPC Precode LT Code

Transmitted node

Punctured node

Figure 3.10: PN-PBRL code with a rate-6/7 precode producing thresholds shown in Table 3.5.

The first node in the precode is always punctured. Lower-rate codes are obtained by transmitting

the variable nodes in the LT code protograph starting from the top node.

4. Lift the resulting protograph with the circulant permutations to match the desired initial

blocklength.

5. Select circulant permutations so that small cycles are avoided when the protograph is lifted.

The selection is based on the circulant progressive edge growth (PEG) algorithm [HEA05,

ADD04].

Note that parallel edges are allowed in step 2 but should be kept to a small number in the opti-

mization process to avoid convergence problem in the lifted code graph.

Fig. 3.10 shows an example of the optimized protograph with at most two parallel edges

between the punctured variable node in the precode part and the check nodes in the LT code

part. The resulting thresholds obtained from the protograph in Fig. 3.10 are shown in Table 3.5.

We comment that the decoding thresholds in Table 3.5 are all lower than the thresholds in the
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Table 3.4: Thresholds of the PN-PBRL Codes with additional parallel edges to punctured node.

(Eb/N0 in decibels).

Rate Threshold Capacity Gap

6/7 3.077 2.625 0.452

6/8 1.956 1.626 0.330

6/9 1.314 1.059 0.255

6/10 0.948 0.679 0.269

6/11 0.678 0.401 0.277

6/12 0.422 0.187 0.235

6/13 0.270 0.0179 0.252

6/14 0.118 -0.122 0.240

6/15 0.005 -0.238 0.243

6/16 -0.102 -0.337 0.235

6/17 -0.172 -0.422 0.250

6/18 -0.266 -0.495 0.229

example in Sec. 3.4 (c.f. Table 3.2). This is mainly because we allow an extra parallel edge

and a high-degree punctured node in the protograph. The actual performance of a finite-length

code remains to be identified. The following section gives an example of constructing long-

blocklength PN-PBRL codes and presents the simulation results.

3.7 Examples and Simulations for Long-Blocklength PN-PBRL Codes

This section provides an example of a long-blocklength PN-PBRL code and presents the simu-

lation results. The protograph used for our example is that of Fig. 3.10 shown in Sec. 3.6.

As shown in [DDJ09], a two-stage lifting process is necessary to obtain good protograph

codes with long blocklengths. The first stage, also known as pre-lifting, uses a relatively small
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Table 3.5: Thresholds of the PN-PBRL Codes shown in Fig. 1. (Eb/N0 in decibels).

Rate Threshold Capacity Gap

6/7 3.077 2.625 0.452

6/8 1.956 1.626 0.330

6/9 1.392 1.059 0.333

6/10 1.078 0.679 0.399

6/11 0.798 0.401 0.397

6/12 0.484 0.187 0.297

6/13 0.338 0.018 0.320

6/14 0.144 -0.122 0.266

6/15 0.072 -0.238 0.310

6/16 0.030 -0.337 0.367

6/17 -0.024 -0.422 0.398

6/18 -0.150 -0.495 0.345

lifting number (i.e. the number of replicas) and aims to remove the parallel edges in the proto-

graph. The second stage then lifts the protograph resulting from the previous stage to the desired

blocklength. Suppose that the code is pre-lifted 4 times and then further lifted 682 times, the

resulting information blocklength is then 6× 4× 682 = 16368.

With a step size of 4 × 682 = 2728, subsequent code rates 6/8, 6/9, . . . , 6/18 are obtained

by transmitting the output symbols of the LT code from each successive group of variable nodes

starting from the top. The corresponding thresholds of each code rate are summarized in Ta-

ble 3.5. All possible rates from 1/3 to 6/7 with a resolution of 1 bit are indeed feasible by

adding one variable node at a time.

The lifting process of the protograph is accomplished by circulant permutation of each edge,

which allows efficient hardware implementation of the decoder. The design of the circulant

permutation is based on circulant PEG algorithm. The minimum loop size of the precode part is
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10 while the minimum loop size of the LT code part is 8.

The pre-lifted protograph of the PN-PBRL code is described as follows: Let Hp be the parity

check matrix of the precode and HLT be the parity matrix of the LT code part excluding the

degree-one variable nodes. Let σ be a 4 × 4 identity matrix shifted to the left by 1 and let 0

represent the 4 × 4 all-zero matrix. Let I is the identity matrix and 0 is the all-zero matrix with

proper dimensions. The parity-check matrix of the precode is given by

H =




Hp 0

HLT I



 (3.10)

where Hp and HLT are given in equations (3.11) and (3.12). Entries with multiple terms of σ

indicate parallel edges in the protograph.

Hp =




σ0 + σ1 σ3 σ1 + σ0 σ2 σ0 + σ1 σ0 σ2 + σ0 σ2

σ0 σ0 + σ1 σ0 σ0 + σ1 σ0 σ0 + σ1 σ0 σ0 + σ1



 . (3.11)

HLT =

































σ3 + σ0 0 σ0 0 0 0 0 0

σ1 + σ0 0 σ0 0 σ0 0 σ0 0

σ2 0 σ0 σ0 σ0 0 σ0 σ0

σ3 0 σ0 0 σ0 0 σ0 σ0

σ0 0 σ0 0 σ0 0 σ0 0

σ0 0 σ0 0 σ0 0 0 σ0

σ2 0 σ0 0 σ0 0 σ0 σ2

σ0 0 σ0 σ0 0 0 0 σ0

σ0 0 σ0 0 σ0 0 σ0 0

σ1 0 σ0 0 0 σ0 0 σ0

σ0 0 σ0 0 σ0 0 0 0

































. (3.12)

The pre-lifted protograph contains no parallel edges and is further lifted by 682 in a similar

fashion but using a larger matrix Σ: a 682×682 identity matrix shifted to the left by 1. The powers

of the matrix Σ, i.e. the assignments of the circulant for all edges in the pre-lifted protograph are

provided along with this dissertation as a supplemental file.

All simulations use BP decoding with flooding in this section. The iterative procedure will

terminate if the decoding is successful or if it reaches the maximum number of iterations. The
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Figure 3.11: Frame error rates and bit error rates for codes in the PN-PBRL example.

maximum iteration is 100 for all simulations if not otherwise stated. Simulation results with

50 iterations are also presented in the following for reader’s convenience to compare with the

DVB-S2 standard [DVB09].

Fig. 3.11 shows the simulations of the example PN-PBRL code family. The information

block size is k = 16368 and the simulated codes have rates 6/7, 3/4, 2/3, 1/2 and 1/3, respec-

tively. The blocklengths are 19096, 21824, 24552, 32736 and 49104, respectively. At a fixed

frame error rate of 10−5, the estimated gaps of these codes to the BI-AWGN capacity are sum-

marized in Table 3.6. The gaps range from 0.643 to 0.765 bits. Consistent with the threshold

results in Table 3.5, these PN-PBRL codes have capacity-approaching performance while pro-

viding extensive rate-compatibility.

Fig. 3.12 presents the frame error rates for DVB-S2 LDPC code, DVB-S2 LDPC code con-

catenated with an outer BCH code [DVB09], AR4JA codes (in CCSDS standard [CCS07]) and
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Table 3.6: SNRs Required to Achieve FER 10−5 for Code Example 1.

Rate Required SNR Capacity Gap to capacity

6/7 3.39 2.625 0.765

6/8 2.30 1.626 0.674

6/9 1.74 1.059 0.681

6/12 0.83 0.187 0.643

6/18 0.23 -0.495 0.725

PN-PBRL codes at rate 1/2 and rate 2/3. Note that the maximum iteration for LDPC+BCH is 50.

The blocklengths of the DVB-S2 codes are fixed to 64800 bits where the PN-PBRL and AR4JA

codes have a fixed information length of 16368 bits and blocklengths 32736 bits and 24552 bits

for rate 1/2 and rate 2/3, respectively. The overall rates of DVB-S2 codes after concatenation

are 0.497 bits and 0.664 bits.

Fig. 3.12 shows that in the waterfall region, the PN-PBRL codes outperform the best known

AR4JA codes [CCS07] up to the highest SNR we simulated. Fig. 3.12 also shows the perfor-

mance of the DVB-S2 LDPC codes concatenated with BCH codes (with maximum 50 iterations).

With shorter blocklengths and higher rates, the PN-PBRL codes still outperform the concate-

nated codes in the waterfall region. The error floor performance of PN-PBRL codes needs to be

simulated by FPGA and is left as potential future work.

3.8 Concluding Remarks

This chapter proposes a class of rate-compatible LDPC codes and provides a systematic proce-

dure of constructing practical codes. Motivated by the excellent performance of the repeated

IR-NTC scheme in the previous chapter, the first part of this chapter focuses on the construction

of PBRL codes with short blocklengths.

Optimization of PBRL codes is based on asymptotic results of LDPC codes, i.e., density

96



0.5 1 1.5 2 2.5 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DVB-S2, AR4JA and PN-PBRL Codes Frame Error Rate

Eb/N0 in dB

F
ra

m
e

E
rr

o
r

R
a
te

 

 

PN-PBRL Rate 1/2

DVB-S2 Rate 1/2

DVB-S2 Rate 1/2 50 Iter.

DVB-S2 + BCH

AR4JA 1/2

PN-PBRL Rate 2/3

DVB-S2 Rate 2/3

DVB-S2 Rate 2/3 50 Iter.

DVB-S2 + BCH

AR4JA 2/3

Figure 3.12: Frame error rates comparison for PN-PBRL codes, LDPC codes in the DVB-S2

standard, and AR4JA LDPC codes in the CCSDS standard.

evolution. Instead of the original density evolution, the reciprocal channel approximation is used

to obtain a fast and accurate approximation for the thresholds of PBRL codes. The assignment of

the circulants is based on circulant PEG algorithm. The simulation results show that although we

are operating in a short blocklength regime, optimization using density evolution still provides

useful guidance to improve the performance of the PBRL code.

To further improve the performance, this chapter introduces a modification of PBRL codes by

puncturing variable nodes in the precode protograph, referred to as PN-PBRL codes. PN-PBRL

codes have better performance but a slightly more complicated encoder for the initial transmis-

sion. These short-blocklength PN-PBRL codes outperform the RCPT codes in the 3GPP-LTE

standard [Gen08] at high SNRs and do not have error floors up to the highest SNRs studied. The

short-blocklength PN-PBRL codes perform worse than the RCPT codes at low SNRs.
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A threshold saturation is observed as the rate decreases in the optimization of PBRL codes.

Adding more parallel edges in the LT code part of the PN-PBRL protograph alleviates the satu-

ration issue. The lifted codes with short blocklengths, however, do not perform better than the

codes considered in Sec. 3.5. These low thresholds motivated us to extend the PN-PBRL code

design for long blocklengths.

The final part of this chapter discussed the optimization of PN-PBRL codes with long block-

lengths. The excellent threshold results of PN-PBRL codes manifest in the long-blocklength

regime as shown in Sec. 3.7. The long-blocklength codes shown in Sec. 3.7 demonstrate excel-

lent capacity-approaching performance and do not have error floors down to FER as low as 10−7.

The gaps are all within 0.8 dB to the BI-AWGN capacity across a variety of rates.
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Figure 3.13: Frame error rates for PN-PBRL codes with rates 6/7, 6/8, . . . , 6/18.

3.A Additional Simulation Results for Long-Blocklenth PBRL Codes

This appendix presents additional simulation results for long-blocklength PN-PBRL codes. The

same codes as in Sec. 3.7 are used. Fig. 3.13 shows simulations for all the possible code rates

associated with the constructed protograph : 6/7, /6/8, 6/9, . . . , 6/18. As shown in Fig. 3.13 the

waterfall performance for each rate is outstanding and as the rate decreases the frame error rate

improves. Error floor for each rate has not yet to be observed up to the highest SNR simulated. A

diminishing return is observed in the lower rate regime. Perhaps using an even larger protograph

could solve this issue.

Fig. 3.14 compares the PN-PBRL codes to the LDPC codes in the DVB-S2 standard. Note

that the blocklengths of the DVB-S2 codes are fixed to 64800 whereas the PN-PBRL codes

have blocklength 21824, 24552, 32736 and 49104 for rates 3/4, 2/3, 1/2 and 1/3, respectively.

Although having a set of blocklengths that are shorter than the DVB-S2 codes, PN-PBRL codes

still have comparable (often better) performance. Take the rate 1/2 PN-PBRL code for example:
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Figure 3.14: Frame error rates and bit error rates for both DVB-S2 (LDPC codes only) and

PN-PBRL codes.

with almost half of the blocklength, the PN-PBRL still out-performs the DVB-S2 code.
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CHAPTER 4

Conclusion

4.1 Summary of the Dissertation

The first part of this dissertation studied the benefit of noiseless feedback from both the perspec-

tive of information theory and that of practical system design. We first categorized the possible

assumptions for feedback systems and investigated a particular class of incremental redundancy

systems that assumes noiseless transmitter termination, the IR-NTC system. We analyzed the

IR-NTC system with the constraint of finite-length codewords and limited decoding times us-

ing random coding. As a function of expected latency ℓ, we proved the necessary growth rates

of the finite blocklength N and the decoding interval I to obtain asymptotic optimality. These

theoretical results provide practical guidance to system design.

This dissertation also proposed a novel approximation method, rate-compatible sphere-packing

approximation, providing useful guidance to practical system design. For repeated IR-NTC with

limited number of transmissions m, RCSP shows excellent agreement with our simulation re-

sults for a family of tail-biting rate-compatible convolutional codes. For expected latencies larger

than 200, the marginal RCSP approximation with BD decoding becomes an accurate estimate of

the performance for IR-NTC, allowing efficient optimization of IR-NTC. This dissertation also

demonstrated simulations of IR-NTC exceeding the corresponding random coding lower bounds.

The second part of this dissertation proposed a new class of rate-compatible LDPC codes

called PBRL codes. We provided the construction and optimization methods in both the short-

blocklength regime and the long-blocklength regime. We showed several examples of construct-

ing PBRL codes and provided simulation results, demonstrating the excellent performance of
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these codes.

4.2 Future Direction

This dissertation studied single-user communication with noiseless feedback over memoryless

channels, emphasizing on the non-asymptotic analysis. This dissertation then proposed a new

class of rate-compatible LDPC codes that has excellent performance at a wide range of block-

lengths and SNRs. We briefly discuss the some potential research directions to conclude this

dissertation.

The non-asymptotic analysis for noiseless feedback in this dissertation focuses on single-user

communication. It would be very interesting to study whether the same conclusion for the single-

user case would hold for more than one users. Many problems in network information theory

remain unsolved even without the complication of an additional feedback channel. However, it

would be interesting to study the non-asymptotic behavior for the networks with known capacity

region, e.g. the degraded broadcast channels.

In the context of single-user communication, it is known that the optimal error exponent

can be achieved by two extremely different approaches: Burnashev scheme and Yamamoto-Itoh

scheme. Burnashev used an extremely active approach that utilizes feedback to adjust the trans-

missions at every time instance, while Yamamoto and Itoh only used feedback to perform error

detection and confirmation. One would suspect that a highly active encoder would imply a higher

expected throughput. An interesting question to ask is whether it is possible to characterize the

performance of a system such that the resulting metric is monotonically increasing as the active-

ness of a system increases.

For the design of PBRL codes, we comment that in the short-blocklength regime, the asymp-

totic analysis of the PBRL codes might not be as accurate as for the long-blocklength codes.

Finding a better criterion for designing a good short blocklength code is an interesting direction

for future research. It is also observed that the low-SNR performance of these short-blocklength
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codes are not performing well in the waterfall region compared to turbo codes. Perhaps extend-

ing the PBRL codes to non-binary PBRL codes or using a novel decoding algorithm would help

mitigate the issue.
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