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ABSTRACT OF THE DISSERTATION

Universal Serially Concatenated Trellis Coded
Modulations and Rate-Compatible High-Rate
LDPC Codes

by

Wen-Yen Weng
Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 2006
Professor Richard D. Wesel, Chair

This dissertation presents you universal serially concatenated trellis-coded mod-
ulations (SCTCMs) that perform consistently close to the available mutual in-
formation for the periodic erasure channel (PEC), the periodic fading channel
(PFC) and the 2 x 2 compound matrix channel. For the PEC and PFC, the uni-
versal SCTCMs extend the near-capacity performance of serially concatenated
convolutional codes under AWGN to periodically time-varying channels. We use
both maximum-likelihood decoding criteria and iterative-decoding criteria to de-
sign these universal SCTCMs. Each component of the SCTCM including the
constituent codes, constellation, labeling, and interleaver are carefully chosen to

achieve universality.

For the space-time channel, by de-multiplexing the symbols across the an-
tennas, universal SCTCMs for the period-2 PFC deliver consistent performance
over the eigenvalue skew of the matrix channel. Within the family of channels
having the same eigenvalue skew, a time-varying linear transformation (TVLT) is

used to mitigate the performance variation over different eigenvectors. Because of

Xix



their consistent performance over all channels, the proposed codes will have good

frame-error-rate (FER) performance over any quasi-static fading distribution.

A graph-conditioning algorithm called the approximate cycle extrinsic mes-
sage degree (ACE) algorithm is used to construct high-rate (R > 1/2) irregular
LDPC codes. For high-rate LDPC codes, due to the large number of degree-2
variable nodes in the optimal degree distribution, it is more difficult to condi-
tion the graph. By constraining the number of degree-2 nodes, the ACE algo-
rithm can dramatically lower the error floor with little compromise of the thresh-
old. The same design criteria are suitable for rate-compatible applications using

information-nulling.

Another rate-compatible technique uses row-combining, which combines rows
of a lower-rate parity-check matrix to form one or more higher-rate parity-check
matrices according to predefined combining rules. The resulting LDPC codes
are called Constant Blocklength Multiple-Rate (CBMR) LDPC codes. This row-
combining approach fits well with an efficient hardware architecture known as
the irregular partitioned permutation (IPP) LDPC code. We identified all the
constraints that the IPP codes and row-combining placed on the parity-check
matrix and designed the row-combined IPP (RC-IPP) codes. The implementation
issues of encoding and decoding for RC-IPP codes are exploited. As a result, the

RC-IPP codes have FER as good as that of the stand-alone codes at each rate.

XX



CHAPTER 1

Universal Serially Concatenated Trellis Coded
Modulation for Periodic Erasures and Periodic

Fading

1.1 Introduction

Often, design of channel codes focuses on the optimization of performance on
a specific channel such as the additive white Gaussian noise (AWGN) channel.
Powerful error-correcting codes such as turbo codes [6] and Low-Density Parity-
Check (LDPC) codes [7] have been shown to operate within a dB of the Shannon
limit on the AWGN channel. However, the performance can degrade significantly
over some specific channel realizations. Therefore, channel codes that extend this

performance to other channels of practical interest are highly desirable.

Root and Varaiya’s compound channel coding theory for linear Gaussian
channels [8] indicates that a single code can reliably transmit information at R
bits/symbol on each channel in the ensemble of linear Gaussian channels with mu-
tual information (MI) larger than the attempted rate. In related work, Sutskover
and Shamai [9] recently proposed a setting for decoding of LDPC codes jointly

with channel estimation for transmission over memoryless compound channels.

In [10, 11] the term universal was used to describe a channel code that has

a good bit-error-rate (BER) or frame-error-rate (FER) for every channel in a
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Figure 1.1: Channel model of the period-p PFC. The fading of the channel varies

periodically over time with period p.

family, ‘H, of channels. The code is said to be universal over H. These papers
presented trellis codes that approach universal behavior on space-time channels
with a proximity to the Shannon limit similar to that with which trellis codes

approach capacity on the AWGN channel.

Wesel et al. [12], [13] identified universal trellis codes (TCM) for the periodic
fading channel (PFC) as shown in Figure (1.1), where z; is the transmitted symbol
with average energy Fj, n; is the additive white Gaussian noise (AWGN) with
variance Ny/2 per dimension, and y; is the received symbol. The vector a =
l[ag a1 -+ a,_1] describes the nature of the time-varying attenuation behavior of

the channel.

Such channels appear in frequency-hopped or multicarrier transmissions as
well as diagonally-layered space-time architectures [14]. In a multi-carrier mod-
ulation system, the period of the fading is the number of sub-carriers. In a
frequency-hopped spread spectrum system, the period of the fading is the period
of the hopping pattern. Motivated by [12] and [13], it is natural to extend the
universal TCM scheme to a universal SCTCM scheme and take advantage of the
capacity-achieving capability of turbo codes to further improve the compound

channel performance.

As a subset of the PFC, the periodic erasure channel (PEC) has the symbols



either transmitted without any attenuation or has it completely erased, i.e., a; €
{0,1}, for : = 0,1,--- ,p — 1. The reason that the PEC is considered is because
there are fewer instances of channels in the PEC family to be considered than
that of the PFC and we have found that the erasures seem to impose the most
critical conditions for the code that results in the worse case performance in the

PFC family [14] [10].

In this chapter, serially concatenated trellis coded modulations (SCTCMs) are
presented with universal behavior on the period-2 PEC and the period-2 PFC.
The period-2 PFC is specified by

Yt = O(tmod2)Tt + T, (1.1)

where the attenuation vector is ¢ = [ag a1]. Assuming ay > ay, the period-2
PFC, a = [ag a41], can be normalized as the [1 q] channel with 0 < q < 1 where
q = a/ap.

As a subset of the PFC, the period-2 PEC consist of two instances of the
attenuation vector. When a = [1 0], every other symbol is erased, and when
a = [1 1], there are no erasures, the channel is the standard AWGN channel.
We have found (see [14] Section IV and [10] Theorem 3) that the performance
on the normalized [1 q| channel is approximately bounded by the [1 1] and [1 0]
channels. Hence, the problem of designing universal SCTCMs for the PFC can
be simplified to designing SCTCMs for the PEC.

Section 1.2 defines the channel model and the performance measure for univer-
sality. Section 1.3 extends the existing AWGN design rules for SCTCM schemes
under maximum-likelihood (ML) decoding to periodic erasure channels. Sec-
tion 1.4 presents design criteria for universal SCTCMs under iterative decoding
with particular emphasis on the inner TCM. The iterative decoding criteria in-

cludes the selection of constellation labeling, constituent code complexity, design



of interleaver and the inner code. Section 1.5 provides universal SCTCMS for
PEC transmitting at 0.5, 1 and 1.5 bits/symbol and demonstrates their univer-

sality on the PFC. Section 1.6 concludes the chapter.

1.2 Channel Models and Performance Measure

As in [10], [12], and [14], we use the excess mutual information (EMI) to mea-
sure the proximity with which the code approaches the theoretical limit of the
channel. For the period-2 PFC and PEC in Eq. (1.1), the mutual information
(MI) between the input symbol z and output symbol y with an equal allocation

of power, E, to each symbol in the period is

1 |a;|2E
i=0

According to the compound channel coding theorem [8], if MI > R, the error
probability of a universal code can decrease to zero in the limit as its blocklength

goes to infinity.

In practice, we design a finite-blocklength code transmitting at R-bits per
symbol that achieves its target BER, say 107°, at SNR* = E*/N,. The asterisks
(*) indicate that this is the SNR at which the target BER is achieved. Then, we
define the EMI of this code for the PFC as:

EMI(a) = MI(a, EY) — R. (1.3)

As in [10], [12], and [14], the MI we refer to is the unconstrained MI, i.e., the
MI achieved using a Gaussian codebook. For example, a 64-state trellis code of
[12] (Code 1) requires E,/Ny = 4.3 dB to achieve BER = 1075 on the AWGN
channel. Using Eq. (1.2) and (1.3), this corresponds to an EMI of 0.88 bits. The



same code requires E,/Ny = 9.4 dB at BER = 1075 when every other symbol is

erased. The EMI under periodic erasures is 0.64 bits.

In [1], the constrained MI, i.e., the MI achieved using a codebook with symbols
from that constellation, is used as the reference because it is the true theoretic
limit once we have selected the constellation. However, a desired throughput, R
bits/symbol, can be achieved using different constellation sizes, n bits/symbol,
with corresponding code rates R/n. Then, the EMIs computed using the con-
strained MI cannot be compared directly for different schemes. Therefore, we
choose the unconstrained MI over the constrained MI for convenience in compar-
ing SCTCMs transmitting at the same throughput but with different constellation

sizes.

At a fixed BER and with a fixed input information blocklength, the universal
channel coding problem is a multicriterion optimization problem. Our goal is
to find an SCTCM that is a Pareto optimal over all channels in the family.
Pareto optimality means that no SCTCM performs better on every channel in
the family. Typically, there will be several Pareto optimal SCTCMs. So, an

objective function is required for selecting among the Pareto optimal codes.

One possible objective function is the maximum EMI requirement over all the
channels in H, and hence the problem becomes a minimax problem. Although
Root and Varaiya [8] showed that EMI goes to zero over each of the channels in
the ensemble when the blocklength goes to infinity, it is still an open problem
how fast the EMI decreases as a function of the blocklength and whether the
EMI are the same for all channels. Empirical evidence thus far [10], [12], [14]
indicates that universal codes tend to have relatively constant EMIs when the

unconstrained MI is chosen as the reference. As a result of this constant EMI



property, it is natural to use the minimax criteria.

i EMI(H,). 1.4
min max EMI(H;) (1.4)

Another possible objective function is the average EMI per channel.
—_ 1
EMI = 7 > EMI(H;), (1.5)

This is equivalent to the objective function, Jy, in [12] to minimize the sum
of the MIs over the channel family. Since a universal code performs consistently
well on every channel in the family, we would expect that a universal code also
has minimum average EMI. Furthermore, average EMI criteria remains a good
objective function whether constrained or unconstrained MI is used. As a result,
we choose unconstrained MI as the reference and seek the code that minimizes
the average EMI as the universal channel code. Note that when unconstrained
MI is used as the reference, minimax and average EMI criteria yield almost the

same universal SCTCM performance.

To verify the universality of the proposed codes, codes are simulated over
all possible realizations of the channel ensemble. For the period-2 PEC, there
are only two instances. As for the period-2 PFC, which has infinite channel
realizations, we use a fine sampling of the channel space under the assumption of
continuity. For the normalized [1 q] PFC, the sampling is done over q between 0

and 1.

With turbo codes, it is possible to achieve lower EMI figures than the trellis
codes at similar BERs. The serially concatenated scheme is especially attractive
in designing for the compound channel because universality can be imposed on
the inner code which directly interfaces the channel. However, if we pick an
binary serially concatenated convolutional codes (SCCC) in the literature [3] and

map it to an 8PSK constellation, the SCTCM (SC-8, see Table 1.3) performs well



on AWGN, but it suffers under the periodic erasures. As seen in Figure 1.2 on
the period-2 erasure channels, a universal SCTCM that we designed, SC-5 (see
Table 1.3), requires slightly more EMI (0.012 bits, or equivalently 0.07 dB) on the
[1 1] channel to achieve BER = 107°, but its [1 0] channel performance is much
better (requiring 0.182 bits less, or 1.28 dB less than SC-8). The average EMI
requirement of SC-5 is 0.280 bits compared to 0.365 bits of SC-8. This example

illustrates the importance of code design to achieve universality.

1.3 Code Design Criteria under Maximum-Likelihood de-

coding

As shown in Figure 1.3, an SCTCM consists of a rate-R, outer convolutional
encoder (C,), an interleaver, a rate-R; inner convolutional encoder (C;), and a
two-dimensional 2"-point constellation mapper. The throughput of the overall
scheme is nR,R; bits per symbol. The uniform interleaver analysis [3] has shown
that the BER under ML decoding decreases exponentially with the effective free

Euclidean distance of the inner code. For a large interleaver size of Ny, bits

Es
—log BER o | (d, + 1)/2] log Ny, + & N (1.6)
0
where d, is the free Hamming distance of the outer code, and
1d,d? for d, even
62 = (1.7)
s(do — 3)d? + (h3))? for d, odd

where d; denotes the effective free Euclidean distance of the inner code, defined
to be the minimum Euclidean distance of error events caused by two information
bit errors, and A is the minimum Euclidean distance of error events caused by

three information bit errors.
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Figure 1.2: BER of universal SCTCM (SC-5) and non-universal SCTCM (SC-8)
on the [1 1] and [1 0] channels as a function of (a) EMI and (b) SNR (E}/N,).
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Figure 1.3: The SCTCM scheme.

The BER approximation in Eq. (1.6) extends to the period-2 PEC when the
input to the channel is considered to be a vector of two consecutive symbols. Two
necessary conditions for universal performance over the compound period-2 PEC

are:

1. The concatenated code should have positive redundancy under periodic

erasures, i.e., 2R, R; < 1.

2. The inner TCM should have nonzero effective free Euclidean distance under
periodic erasures. In particular, for a given number of states, the rate of
the inner TCM should be small enough to avoid parallel transitions. This

condition results from an extension of the uniform interleaver analysis of

13].

The specific requirement on rate, expressed as a bound on k, to avoid parallel

transitions is described by the following lemma:

Lemma: For k > 1, an S-state rate-k/n inner encoder mapped to a 2"-point

constellation has zero minimum effective free Euclidean distance under erasure if

(g) > S. (1.8)

k

Proof: For k > 1, the encoder trellis has (5

) transitions per state to describe

the inputs with Hamming weight 2. If (’2“) > S, there are parallel transitions with



input Hamming weight 2 between states and shortest error events are 1-symbol

long, and that symbol is subject to erasure. m

For a 4-state inner code, the maximum £ for nonzero d; on the [1 0] channel is
less than or equal to 3 and for an 8-state inner code, the maximum k for nonzero

1.4 Code Design Criteria under iterative decoding

Unlike the ML-decoding design criteria which focus on maximizing the mini-
mum distance, the iterative decoding design criteria focus on finding codes with
low pinch-off thresholds. In general, iterative decoding design criteria employ
Extrinsic Information Transfer (EXIT) charts [15] or density evolution [16] to
predict the pinch-off thresholds of the SCTCMs. The height of the error floor
depends on the minimum distance of the code and cannot be predicted from these
techniques. Although not rigorously proved, it is generally observed by [7], [3],
[17] that for turbo codes and LDPC codes, there exists a tradeoff between low

pinch-off threshold and low error floor.

EXIT chart analysis predicts the waterfall region in the BER curve as the
blocklength goes to infinity. The technique analyzes iterative decoding by track-
ing the density (probability distribution) of the extrinsic information of soft-input
soft-output (SISO) a posteriori probability (APP) modules as this density evolves
from iteration to iteration. In [18], El Gamal and Hammons showed that when
the noise is Gaussian, the extrinsic information in the process of iterative de-
coding can be closely approximated by symmetric Gaussian distribution, where
the variance is twice the mean. Using Gaussian approximation, the threshold of

convergence of turbo codes can be predicted efficiently.
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The threshold can indeed be predicted accurately in this way on the [1 1]
channel. However, when the SCTCM is working on the [1 0] channel, the density
of the extrinsic information at the output of the inner SISO doesn’t follow a sym-
metric Gaussian distribution. This is because the erased bits tend to have lower
log-likelihood ratios (LLRs) than that of the unerased bits. So, the overall pdf
resembles a bi-modal, not necessarily symmetric, Gaussian mixture distribution.
This effect makes it difficult to analyze the outer and inner SISO separately. The
simple extrinsic information calculation resulting from the symmetric Gaussian
approximation becomes invalid. The exact densities must be manipulated to an-
alyze the SISOs. As a result, there is no computational advantage for this exact
density evolution over explicit simulation. Hence, our approach of finding the
threshold is to simulate the candidate SCTCMs and take the SNR with BER =
10! as its pinch-off threshold.

1.4.1 Design of the outer encoder

We use convolutional codes with large free Hamming distance as the outer code.
For design simplicity and because it is the inner TCM that directly interfaces the
channel, we fix the outer code and find the inner TCM such that the SCTCM
has the lowest pinch-off threshold. Table 1.1 lists the rate-1/2, 2-, 4- and 8-state

maximal free Hamming distance outer codes C, 1, Cy2, and C, 3 respectively.

1.4.2 Design of the inner TCM

Although we cannot use EXIT chart analysis with Gaussian approximation to
design SCTCMs with low thresholds on the [1 0] channel, some design guidelines
developed from EXIT chart analysis still help. They are described as follows:

11
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Figure 1.4: An example of state reduction. C%, a 4-state, rate-2/3 inner code and

its trellis-collapsed equivalent encoder under the [0 1] erasure channel.

e Complexity of constituent codes: It has been found that SCTCMs with

lower complexity constituent codes tend to have lower pinch-off thresholds.
However, the SCTCMs may suffer a high error floor because of the tradeoff.
So, low complexity convolutional codes are preferred if the corresponding

error floor is low enough to meet the BER requirement.

e Trellis-collapse check: An SCTCM that works on the [1 0] channel is equiv-

alent to another SCTCM with twice the code rate working on the AWGN
channel. In other words, because the erased symbols can’t transmit any
information at all, pairs of consecutive trellis stages collapse into a single
stage. Although in general Gaussian Density Evolution works for SCTCMs

on AWGN channel, it is not applicable for this equivalent trellis-collapsed

12



SCTCM because the LLR of inputs bits is exactly the same as that of the
original encoder under the [1 0] channel and the pdf doesn’t follow a sym-
metric Gaussian distribution. In other words, the trellis collapse is just
another way of looking at the problem. By checking the equivalent trellis-
collapsed inner codes, we found the following properties useful to reduce

the population of candidate codes.

1. State reduction: The number of states of the collapsed inner code may
become fewer than that of the original encoder because some registers
simply never affect the transmitted symbol and are thus useless. For
example, a 4-state, rate-2/3 inner code, C;5 (see Table 1.2), on the
[0 1] channel, becomes equivalent to a trellis-collapsed 2-state, rate-
4/3 code operating on the AWGN channel, as shown in Figure 1.4.
Here equivalent means having exactly the same input-output behavior
on the unerased symbols and the trellis collapsed equivalent encoder
does not produce the symbols that will ultimately be erased. By the it-
erative decoding design criteria, constituent encoders with fewer states
tend to yield lower pinch-off thresholds. This is especially important
for the [0 1], [1 0] channels.

2. Non-transmitted input bits: After collapsing the inner code, some
portion of the input bits to the inner code may not be transmitted at
all. Figure 1.5 gives an example of an inner code whose [0 1] channel
equivalent encoder has one non-transmitted bit per symbol. With this
encoder, no extrinsic information for this non-transmitted bit can be
extracted from the inner SISO. This structural defect is not desired

and it results in high error floors (higher than BER = 107%).

In essence, we search for inner codes whose trellis-collapsed equivalent

13
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Figure 1.5: An example of non-transmitted bits after trellis collapse on the [1 0]
channel. Note that no information of ug can be transmitted through the [1 0]

channel for this encoder.
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codes have state reduction and without non-transmitted bits. The qualified
codes are then simulated to find the best code that has the lowest pinch-off
threshold.

Constellation labeling

Constellation labeling affects the performance of SCTCM on both [1 1]
and [1 0] channels. As ten Brink [15] shows, the systematic bits play an
important role in SCTCM design. The EXIT chart analysis indicates that
systematic inner codes have higher initial extrinsic information in their
transfer curves than non-systematic codes and thus are more likely to have
low pinch-off thresholds. Using a similar concept, our constellation labeling

is selected such that the systematic bits of the inner code are best protected.

Here we take two extreme cases of 8-PSK labelings as examples to illus-
trate this idea. Assume that we have a systematic rate-2/3 inner code with
the two MSB as systematic bits. As shown in Figure 1.6, a Gray-labeled
8-PSK provides the best protection on the two systematic bits while natu-
ral labeling offers very poor protection. Figure 1.7 is the EXIT chart of an
SCTCM with the above two 8-PSK labelings working on the AWGN with
E;/N,=1.1 dB. The Gray-labeled inner TCM has already opened up the
decoding tunnel, while the tunnel of the Natural-labeled inner TCM is still
closed at this Fs/N,. The latter will require the F;/N,=3.2 dB to open the

tunnel.

When the inner TCM consists of a rate-3/4 code mapped to 16-QAM,
it is not possible as in 8-PSK to have maximal protection on each of the
systematic bits because there are three input bits but the constellation is

2-dimensional. In this case, a Gray-labeled 16-QAM in raster order using

hexadecimal [3, 1, 5, 7; 2, 0, 4, 6; a, 8, c, e; b, 9, d, f] provides the best
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Figure 1.7: EXIT chart showing the effect of constellation labeling. The inner
TCM with Gray-labeled 8-PSK has a significantly higher initial extrinsic informa-
tion compared to the same inner TCM with Natural-labeled 8-PSK at the same
Eg/N, = 1.1 dB because of better protection of systematic bits. The Gray-labeled
inner TCM has already opened up the decoding tunnel, while the tunnel of the
Natural-labeled inner TCM is still closed at this E;/N,. The latter will require
the E;/N, = 3.2 dB to open the tunnel.
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possible protection of the systematic bits.

Table 1.2 lists the proposed inner convolutional codes with code rate-1/3, -
2/3, and -3/4, and the corresponding design criteria used. The mapping is Gray-
labeled 8PSK or 16QAM. The ML-optimal inner TCM has the largest d;. As
for the iterative-decoding optimal inner TCM, we perform an exhaustive search
for inner TCMs whose trellis-collapsed equivalent codes have state reduction and
without non-transmitted bits. The qualified candidate codes are then simulated

to determine which one has the lowest threshold.

1.4.3 Interleaver design

The interleaver proposed is the extended spread interleaver [19] with a further
constraint depending on the outer code and the periodic erasure pattern. In-
tuitively, if the intermediate bits, i.e., the output bits of C,, that contain the
information of a single input information bit are all interleaved to erased sym-
bols, it becomes very difficult for the decoder to decode this input bit since only
a small amount of information is preserved through the parity bits. So, the in-
terleaver design aims to prevent the all-erased cases from happening for any of

the input bits.

For example, let’s design an interleaver for an SCTCM consisting of the rate-
1/2 (ko = 1,n, = 2) C,5 from Table 1.2 and a rate-3/4 systematic C; (k; =
3,n; = 4) with a 16-QAM constellation. The impulse response of C,5 is h =
[11 01 11 00 - - 00] indicating that five of the intermediate bits are associated with
a single input bit. A bit-interleaver of length Ny, is defined as {n (i) = 7,1 =
0,---, Nz — 1} which interleaves the i'" interleaver input to the j** interleaver

output. Then the further constraint of the interleaver considering the periodic-2

18



erasure patterns, [1 0] and [0 1], is:

1< Y {n(n, -1+ v)/k;] (modulo 2)} < [Sy| —1=4, V1=0,---, N, - 1,(1.9)

VESH
where N; is the input blocklength, S, = {w: h(w) =1} ={0,1,3,4,5}, n, = 2,
and k; = 3 in this example. Essentially, Eq. (1.9) guarantees that at least one of

these five bits will not have its inner-code output-symbol erased.

Compared with spread interleavers without this further constraint, the new
interleaver can improve the threshold of this SCTCM by about 0.05 bits of EMI
(0.4 dB of Es/N,) on the [1 0] and [0 1] channels while maintaining almost the

same performance on the [1 1] channel.

1.5 Example SCTCM Designs and Simulation Results

1.5.1 SCTCM Design of 0.5 bits per symbol

We used a rate-1/2 outer encoder and a rate-1/3 inner encoder mapping an 8-PSK
constellation to provide 0.5 bits/symbol overall throughput. The inner TCM still
has redundancy under period-2 erasures. An exhaustive search over the 8-state,
rate-1/3 systematic feedback encoders using the trellis-collapse check yielded sev-
eral inner encoders with reduced complexity and among these encoders, C;; has

the lowest threshold.

The proposed SCTCMs of 0.5 bits per symbol, SC-1, SC-2, and SC-3, are
listed in Table 1.3 using constituent codes in Table 1.1 and Table 1.2. SC-1 uses
a 4-state maximum free-distance outer code, C,, with C;;. This scheme has
an error floor around BER = 107° under the [1 0] channel. Two other codes,
SC-2 and SC-3, were designed to have lower error floors and their BER curves

are shown in Figure 1.8.
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Figure 1.8: Simulations of BER versus EMI for 0.5 bits/symbol SCTCMs under
the [1 1] and [1 0] period-2 PEC. SC- Block length=10,000 bits, 12 iterations.
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One method to lower the error floor is to use an outer encoder with larger free
distance at the expense of increased complexity. Using an 8-state maximal free-
distance outer code, C, 3, SC-3 lowered the error floor under periodic erasures to

BER=107%.

SC-2 is another alternative scheme whose inner code is ML-optimal and
doesn’t have complexity reduction after trellis collapse. SC-2, which concate-
nates C;o and C,9, is able to lower the error floor as expected because of its
larger free distance in the inner code. The performance difference between the
SCTCM designed by ML decoding criteria (SC-2) and iterative decoding criteria
(SC-3) at BER=10""° is quite small in this case. SC-2 requires the least average
EMI of 0.116 bits at BER = 10~® and SC-3 requires 0.117 bits. If a lower BER

is required, SC-2 obviously is a better choice.

1.5.2 SCTCM Design of 1.0 bit per symbol

Our 1.0 bit per symbol SCTCM uses a rate-1/2 outer code and an inner TCM
consisting of a rate-2/3 linear systematic recursive encoder with an 8-PSK con-
stellation. With a rate-2/3 inner encoder, the inner TCM has negative redundancy
and therefore zero minimum distance under period-2 erasures. However, it is still
possible to find an inner code with nonzero effective free distance. ML decoding
criteria suggest to choose the inner code with maximal effective free distance while
iterative decoding criteria concentrate on SCTCM with low pinch-off threshold
and allow the effective free distance to be zero. The proposed SCTCMs, SC-4
through SC-10, are listed in Table 1.3.

Figure 1.9 shows the BER performance of two SCTCM schemes (SC-4, SC-5)
using the same inner TCM (C;5) with a Gray-labeled 8-PSK found by iterative

decoding criteria. The difference here is the complexity of the outer code, SC-4
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Figure 1.9: Simulations of BER versus EMI for two 1.0 bit/symbol SCTCMs
which are only different in the complexity of the outer codes. SC-4 used a 2-state
outer code while SC-5 uses a 4-state outer code. Blocklength=10,000 bits, 12

iterations at the decoder.

uses a 2-state outer code while SC-5 uses a 4-state outer code. The comparison

shows that we need at least a 4-state C, to deliver the desired error floor.

Figure 1.10 shows a set of simulations with a fixed outer code, C, 2, and three
different 4-state inner codes. SC-7, using a maximal-d; (for both [1 1] and [1 0]
channels) inner code, C;6. On the other hand, the inner codes of SC-5 and
SC-6 both have reduced complexity without non-transmitted bits after the [0 1]
channel trellis collapse. SC-5, SC-6 and SC-7 have similar performance on the
[1 1] channel. On the [1 0] channel, SC-5 and SC-6, which are designed according
to iterative decoding criteria, converge earlier than ML-optimal code, SC-7. SC-6

has the lowest threshold but its error floor is observed at BER = 107%. Among
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Figure 1.10: Simulations of BER versus EMI for three 1.0 bit/symbol SCTCMs
with different 4-state inner codes. Solid lines for the [1 1] channel and dashed
lines for the [1 0] channel. All three SCTCMs perform similarly on the [1 1]
channel, but on the [1 0] channel, the tradeoff between low pinch-off thresholds
(Iterative-designed SC-5,6) and low error floor (ML-designed SC-7) is observed.
Blocklength=10,000 bits, 12 iterations.

the three codes, if the objective BER is 107°, SC-6 will be a better choice whose
average EMI requirement is 0.270 bits. However, if an error floor lower than 10~°
is required, SC-5 can trade a little bit on pinch-off threshold for lower error floor
which is not observed till 10~7.

SC-9 and SC-10 use 8-state inner TCMs designed to be iterative decoding
optimal and ML-optimal respectively. The BER performance are shown in Figure
1.11. Compared to the 4-state inner TCM schemes, SC-5, SC-6 and SC-7, the

increased complexity did not help reduce the pinch-off thresholds via increased
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Figure 1.11: Simulations of BER versus Excess MI for two 1.0 bit/symbol
SCTCMs with 8-state inner code. SC-9 has lowest pinch-off threshold while
SC-10 has maximal inner effective free distance. Blocklength=10,000 bits, 12

1terations.

minimum distances. Divsalar [16] and ten Brink [15] also reported this kind of
effect. Again, the iterative decoding optimal code outperforms ML-optimal code
on the [1 0] channel (0.155 bits less EMI) without sacrificing on the [1 1] channel
(0.003 bits more EMI).

As a result, the search for universal SCTCMs over compound periodic era-
sure channel should start from low complexity constituent encoders, applying
the trellis-collapse checks, and avoiding high error floors. Because of the tradeoff
between pinch-off threshold and error floor, the optimal code depends on the

operating BER.
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1.5.3 SCTCM Design of 1.5 bits per symbol

Using the same criteria as in previous searches, we designed 1.5 bits/symbol
SCTCMs by concatenating a rate-1/2 outer code with an inner TCM consisting
of a linear recursive systematic rate-3/4 inner code with a 16-QAM constellation.
We see a very similar situation as in the 1.0 bit/symbol design. As shown in Figure
1.12, SC-11 and SC-12 designed by iterative decoding criteria outperformed ML-
optimal SC-13. Note that SC-11 and SC-12 use 4-state inner codes while SC-13
must use an 8-state inner code to guarantee nonzero d;. At BER = 107°, SC-11
requires 0.375 bits of average EMI and the difference between [1 1] and [1 0]
channel performances is less than 0.01 bits. SC-12 performs slightly better than
SC-11 but its error floor is observed at BER = 107 on the [1 0] channel. SC-13
has similar performance as SC-11 and SC-12 on the [1 1] channel but degrades

significantly on the [1 0] channel.

1.5.4 SCTCM on AWGN channel with inner code rate greater than
One

A surprising discovery of this work is that an SCTCM which has zero effective
free distance in the inner code can perform well as long as the overall rate is less
than 1. For the negative redundancy inner TCM, not only is the free distance
certainly zero, the effective free distance may also be zero. Such an SCTCM
definitely violates the ML decoding design criteria, which seeks to maximize d;.
However, in some cases a high error floor is not observed which means that the
overall free distance of the SCTCM is still nonzero and large enough. This makes
sense because the uniform interleaver analysis of the ML criteria is only an av-
erage performance over all the possible interleavers and considers the worst case

distance of the SCTCM by concatenating all the weight-2 input error events to-
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Figure 1.12: Simulations of BER versus EMI for three 1.5 bit/symbol SCTCMs.
Solid lines for the [1 1] channel and dashed lines for the [1 0] channel. All three
SCTCMs perform similarly on the [1 1] channel, but on the [1 0] channel, the iter-
ative-optimal SCTCMs, SC-11 and SC-12, perform better than the ML-optimal
SC-13. No error floor is observed for these SCTCMs until BER=10"". All simu-

lations are run with blocklength of 10,000 bits and 12 iterations at the decoder.
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gether. But the concatenated weight-2 error event may never happen with a
suitable interleaver. The ML criterion provides some helpful insight to the design
of STCTM but doesn’t necessarily guarantee that SCTCMs that violate the de-
sign criterion are bad codes. For example, SC-5 under [1 0] channel can be seen
as a rate-2/3 code with zero effective free distance (rate-1/2 C,. concatenated
with rate-4/3 C* in Figure 1.4) mapping 8-PSK under AWGN with throughput
equals 2.0 bits/symbol. We simulated the equivalent SCTCM on AWGN and the
BER curve is, of course, exactly the same as the original SCTCM on the [1 0]
channel. Thus, this is an example of an SCTCM performing well despite having

an inner code with zero d;.

Let’s compare this SCTCM whose inner code rate has negative redundancy
and zero d; with a conventionally designed SCTCM in the literature. Divsalar
[20] proposed an SCTCM with rate-1 inner code on 8-PSK which performs better
than our SCTCM by less than half a dB at the BER = 107° with the input
blocklength of 10,000 bits. Although our punctured SCTCM performs worse, it
is surprising that the difference is quite small which means that an SCTCM with
negative redundancy and even zero d; in the inner code can still be a reasonably
good code. However, it is worth noting that it takes careful interleaver design and
constellation labeling selection for those punctured SCTCMs to perform closely
to conventional SCTCMs. The remaining performance degradation after all the
design efforts could be due to the rate allocation of a rate-1 inner code is better
than a rate-4/3 inner code. However, a more likely reason is that the erasure
channel forces the erased bits and the unerased bits to have different reliabilities.
So, in the equivalent collapsed encoder, the LLR’s of the bits corresponding to
the erased bits in the original scheme are inevitably lower. The unerased bits
must pass their information to the erased bits through the code structures so

that eventually all the bits can be correctly decoded. This is the inherent defect

27



of punctured codes compared to un-punctured codes.

1.5.5 Periodic fading channel performance

As mentioned in the introduction, we are interested in how a universal SCTCM
designed for the PEC performs on the PFC normalized as [1 q] channels where
0 < q < 1. Figure 1.13 shows the EMI requirements of SC-2, SC-5, and SC-11
(the best code at each throughput with an error floor < 1077) on [1 q] channels
for q=0.2, 0.4, 0.6 and 0.8. For all three codes, the EMI requirements are ap-
proximately bounded by that of [1 1] and [1 0] channels. This result is consistent
with [14] section IV and [10] theorem 3. Also, the MI requirement is relatively
flat over q for all three cases indicating consistently good performance for all
channels. Therefore, these universal SCTCMs designed for periodic erasures are

also universal for periodic fading.

LDPC codes are found to have universal property on the period-2 PFC with-
out much special design effort [1]. Comparing these two capacity-approaching
coding schemes, a well-designed universal SCTCM for period-2 channels can yield
comparable or even slightly smaller EMI requirements than LDPC codes. As
shown in Figure 1.15, at 1.0 bit/symbol, the average EMI requirement between
SC-5 and a comparable LDPC code designed using approaches proposed in [1]
differ by only 0.006 bits of EMI at BER = 103,

However, when the period of channel increases, it becomes more and more
difficult to design a universal SCTCM because the number of channels to be
considered grows exponentially with the length of the period and it is prohibitively
complex to apply the proposed design rules on each of the channels. To compare
with the LDPC code on the four period-256 fading channels in [1] (See Figure 5
and 6), we designed a period-2 universal SCTCM, SC-14, transmitting at rate-1/3
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Figure 1.13: Periodic fading channel performances of SC-2, SC-5, and SC-11. q
is the attenuation factor in the normalized period-2 fading channel denoted as

[1 q] channel. EMI is computed for target BER of 107°.
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on QPSK. SC-14 does not have the universal performance on these period-256
channels because the short constraint length of the inner code makes it vulnerable
to long deep fades. For the first three channels, the faster the channel varies, the
less likely are these problematic long deep fades. So, the performance on a channel
with more ISI taps is better. (See Figure 1.14, the dotted lines.) As expected,
the SCTCM cannot work at all if 125 consecutive tones are erased. However,
LDPC code works well in this severe case. If we use a random channel interleaver
to break up the long deep fades, SC-14 then performs uniformly well on the
first three channels (Figure 1.14, the solid lines) but still loses to the LDPC
code by about 0.11 bits of EMI. As for the fourth channel, random channel
interleavers result in performance difference of more than 10dB depending on
how well the deep fades are separated. The best performance is given by a 2-
by-128 block interleaver resulting in a channel with every other symbol erased
which then becomes similar to a period-2 channel. Since our SCTCM is designed
to have optimal performance under the [1 0] channel, it is not surprising that
the SCTCM slightly outperforms the LDPC code by 0.04 bits of EMI for this
particular interleaver. However, this is impractical because for a random fading
channel, it is impossible to design a “proper” channel interleaver for the SCTCM.
Hence, LDPC codes seem to be a more reasonable choice than turbo codes to

achieve universality for periodic fading with longer periods.

1.6 Conclusions

The design of universal SCTCMs in this chapter aims to maintain turbo per-
formance under periodic erasures with as little compromise as possible on the
AWGN performance. At BER = 1075, the proposed SCTCMs transmitting at

0.5 bits/symbol, 1 bit/symbol and 1.5 bits/symbol require an average EMI of
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Figure 1.14: The performance of SC-14, the universal SCTCM on period-2 chan-
nels, on the four period-256 channels (See [1], Figure 5). Dotted lines are simula-
tion results without channel interleavers. Note that the code doesn’t work at all
on the fourth channel where 125 consecutive erasures happen. Solid lines show
that the performances are improved when channel interleavers are used. These

results can be compared directly to LDPC code results (See [1], Figure 6).
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Figure 1.15: The EMI requirement for the best codes proposed whose error
floors are lower than 10=7. SC-2, SC-5 and SC-11 transmit at 0.5, 1.0, and
1.5 bit/symbol respectively. A 1.0 bit/symbol LDPC code is also shown for com-

parison. Solid lines for the [1 1] channel and dashed lines for the [1 0] channel.
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0.116, 0.270, 0.370 bits respectively on the compound period-2 periodic erasure

channels.

Typical 1 bit/symbol SCTCMs [21] at similar complexity require 0.350 bits of
EMI at BER = 10~ under AWGN. The proposed 1 bits/symbol SCTCM requires
0.094 and 0.066 bits less EMI on the [1 1] and [1 0] channels respectively. Fig. 1.15
shows the EMI requirement for the best three codes proposed whose error floors
are lower than 10~7. Note that SC-3, SC-6 and SC-12 are also competitive
SCTCMs but with higher error floors.

An interesting outcome of our experiments is that it is possible to work under
periodic erasures with an inner TCM that has negative redundancy when every
other symbol is erased even if the effective free Euclidean distance under periodic
erasures is zero. Although zero effective free distances on the inner code may
result in very high error floors, the trellis-collapse checks help avoid the defect by

disallowing non-transmitted bits.

The maximum-likelihood decoding criterion and iterative decoding criterion
yield SCTCMs with very different performances. The ML-optimal SCTCMs have
larger effective free distances and thus lower error floors but their pinch-off thresh-
olds are usually higher. On the other hand, SCTCMs which are designed solely
based on low pinch-off thresholds may have higher error floors. It is still an open
issue to determine the position of error floor of a specific SCTCM. In this chapter,
we proposed criteria to avoid very high error floors. The trade-off between low
pinch-off thresholds and low error floors is more evident under periodic erasures

when most of the redundancy is removed.

The universal SCTCMs we designed for periodic-2 erasures are also universal
over periodic-2 fading channels. As a result of careful design, SCTCMs can

have comparable performance to LDPC codes on period-2 channels. But when
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the period of the channel goes higher, it becomes difficult to design a universal
SCTCM and a channel interleaver is required. An SCTCM can perform as good as
an LDPC code on a period-256 channel only if the channel interleaver is properly
designed according to the fading pattern. On the other hand, LDPC codes stay
universal without much special design effort or channel interleavers, which makes
LDPC codes a better choice than turbo codes for universal channel coding on

periodic fading channels with large periods.
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Table 1.1: Outer convolutional encoders of rate—% with memory v

Encoder | Crit. | k| n | v G(D)
Con ML |1]2]1 [1+D D]
Coz2 ML |1]2]2 1+ D?* 14 D+ D?
Cos ML |12 |3 |[14+D?+D* 1+ D+ D?+ D?|

1+D D 1+D
D 1 1

Cou ML | 2|3]2

)
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Table 1.2: Inner convolutional encoders of rate-% with memory v
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Table 1.3: SCTCM schemes SC-1 to SC-13 transmitting at 0.5, 1.0 and 1.5
bits/symbol resulted from the searches by either ML decoding criteria or iterative
decoding criteria. The operating E,/N, are measured at BER = 107° on the [1 1]
and [1 0] channels to compute the corresponding EMI. Simulations of BERs are
run down to 1077. None of these SCTCMs has error floor observed on the [1 1]
channel, so only error floors on the [1 0] channel are reported. Note that SC-8 is
originally a BPSK, AWGN code designed according to ML criteria [3] but here it
is mapped to an 8-PSK as an example of non-universal SCTCMs. SC-1 to SC-13
have input blocklength equals 10,000. SC-14 is designed to compare with the
LDPC code in [1] which is rate-1/3 mapping QPSK with block length 5,000.

SC|Co|Ci|vo|ui| R | Ci EMI E,/N,(dB) | Err.

Crit. floor
[11] | [10] | Avg. || [11] | [10] ([10])

1 21121305 I 0.106 | 0.120 | 0.113 || -2.82 | 1.35 107°

2 2 12 |2]3[05]| ML |0.112 ] 0.120 | 0.116 || -2.76 | 1.35 || <1077

1 1313]05 I 0.107 | 0.126 | 0.117 || -2.80 | 1.42 10-¢

4 1|5 |1 [2]10| T ||0274| N/A | N/A || 1.52 | N/A || 1078
5025 |2[2]10| I ||0.256 0304|0280 1.43 | 7.07 || <1077
6 |2 |4|2|2|10] I | 0256]|0284[0270| 1.42| 692 || 10°°
7126 ]2|2|1.0]| ML | 0252|0442 | 0.347 | 1.41 | 8.05 | <1077
8 | 2|3 |2|2]|1.0]|ML*| 0244|0486 | 0.365 | 1.36 | 8.35 | <1077
9 | 2|7 |2[3]10| I ||0.267|0.330]0299 | 1.48 | 7.26 || <1077
1028 |2]3]1.0| ML | 0.264 |0.485|0.375 | 1.47 | 835 || <107
1292215 1 |[0377]0372]0.375 | 4.27 | 10.93 | <107

12 1 2 (102 | 2| 1.5 I 0.382 | 0358 | 0.370 || 4.29 | 10.84 1077

132|112 |3]| 15| ML || 0.396 | 0.603 | 0.500 || 4.35 | 12.42 || <1077

14| 4 |12 2 |1]2/3 I 0.176 | 0.258 | 0.217 || 3.06 | 6.98 10°°
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CHAPTER 2

Universal Serially Concatenated Trellis Coded

Modulation for Space-Time Channels

2.1 Introduction

As mentioned in Chapter 1, design of channel codes often focuses on the opti-
mization of performance on a specific channel such as the additive white Gaus-
sian noise (AWGN) channel. Powerful error-correcting codes such as turbo codes
[6] and Low-Density Parity-Check (LDPC) codes [7] have been shown to operate
within a dB of the Shannon limit on the AWGN channel. Motivated by Root and
Varaiya’s compound channel coding theory [8], we take a different approach to
design universal channel codes that perform consistently on not just one channel
but a family of channels. Designing criteria of universal SCTCMs for the peri-
odic erasure channels (PEC) and periodic fading channels (PFC) are discussed

in Chapter 1.

In this chapter, we extend results in Chapter 1 to design universal SCTCMs for
the space-time channel or the Multiple-Input Multiple-Output (MIMO) channels

y = Hx + n, (2.1)

where H denotes the N, x N, channel matrix, x is the N; x 1 vector of transmitted
symbols, one for each transmit antenna, n ~ N (0, N,Iy,) denotes the additive

white Gaussian noise vector, and y is the N, X 1 vector of received symbols. N;

38



and N, are the number of transmit antennas and receive antennas respectively

in the MIMO system.

Numerous turbo TCMs [22][23] [24] [25] have been designed to optimize av-
erage performance for space-time Rayleigh fading channels. Typically, recursive
space-time trellis codes that satisfy the slow-fading criteria are used as constituent
codes. These codes perform well on the intended channel or distribution. How-
ever, the performance can degrade significantly over some specific channel real-

1zations.

In [26, 27], Zheng et al. examine the trade-off between diversity and multi-
plexing in MIMO systems. This trade-off turns out to be related to universal
behavior. In [28], Tivildar and Viswanath give a precise characterization of ap-
proximately universal codes. These universal codes are also universally optimal in
their trade-off between diversity and multiplexing. Tse and Viswanath provide an
excellent overview of universal codes and their role in the diversity-multiplexing

tradeoff in [29].

The proposed space-time SCTCM scheme uses an SCTCM designed for the
PFC and de-multiplexes the output symbols into V; symbol streams (as designed
in [11, 30]). With this de-multiplexing scheme, the PFC is equivalent to diagonal
MIMO channels and thus is as a subset of the MIMO channels. The PFC-
universal SCTCMs designed in Chapter 1 show their universality over eigenvalue
skew. However, nearly singular channels still display a variation due to the par-
ticular eigenvectors. The performance difference over eigenvectors can be largely
mitigated, but not completely eliminated, by a time-varying linear transformation
(TVLT) technique introduced in [4]. The current scheme employs a generalized

form of TVLT, which uniformly sweeps three phase parameters over [0, 27).

Using the universal SCTCM of 0.5, 1.0 and 1.5 bits per symbol for the PFC, we
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propose SCTCMs which transmits 1, 2, and 3 bits per channel use with consistent

performance on the 2 x 2 space-time channel.

The rest of the chapter is organized as follows. Section 2.2 defines the channel
model and the parameters used to sample the channel space. Section 2.3 presents
the MIMO-SCTCM system and the corresponding SCTCMs used. Section 2.4
analyzes the TVLT technique. Section 2.5 presents the consistent excess mutual
information (EMI) requirement of universal SCTCMs and their performance on

the quasi-static Rayleigh fading channel. Section 2.6 concludes the chapter.

2.2 The Space-Time Channels

For the space-time channel in Eq. (2.1), the MI between the input vector x and

output vector y is

E,
min(N¢,Ny)
E
= E log, (1 + —5/\1‘) . (2.3)
i=1 No

where E; is the energy per symbol per transmit antenna, H is the Hermitian
matrix of H and A1, A, -+, Amin(w,,n,) are the eigenvalues of HH'. From this
point on, we will assume that N, = N, = N. For N; # N,, the same analysis
applies with N = min(N,, N,) since the smallest |N, — N;| eigenvalues of HH'

will be zero.

The search of universal SCTCM in this chapter will focus on the 2 x 2 matrix

channels. Assume that A\; > Ay and define the eigenvalue skew xk = i—f, then the
MI is given by
Es Es
MI (H, Es) = 10g2 (]_ + EAI) <1 + ﬁoﬁ)q) y (24)
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To verify the universality of the proposed codes, codes are simulated over all
possible realizations of the channel ensemble. Since the 2 x 2 space-time channel
has infinite channel realizations, we use a fine sampling of the channel space under

the assumption of continuity.

The 2 x 2 space-time channel is parameterized as follows. First, by singular

value decomposition (SVD), H can be written as
H = UAVT, (2.5)

where U and V' are unitary matrices. Using the following notations:

A 0 cos sin 1
e | VRO e | 0 T pgye | 0] g
0 VX —sin®y cosyY 0 e¥
VT can be written as
V= et D(w)M(¢)D(8). (2.7)
At the receiver, we multiply on the left by a unitary matrix
P = e " D(—w)U! (2.8)

so that the equivalent channel becomes

H, = AM(¢)D(6)

= 0 cos sin ¢ - e??
= It ¢ ¢ i . (29)
0 Narr —sing cos ¢ - e’

Note that k = i—f and A; + Ay is normalized to 1. We will use Eq. (2.9) as
the channel model to evaluate the performance of SCTCMs on the 2 x 2 channel

space by sampling over k, ¢ and 6.
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Figure 2.1: The de-multiplexed SCTCM MIMO scheme

2.3 Space-Time SCTCM Scheme

The proposed space-time SCTCM scheme, see Figure 2.1, consists of a rate-R°
outer convolutional encoder, C°, an interleaver, a rate-R’ inner convolutional
encoder, C*, and a two-dimensional 2"-point constellation mapper. The symbols
are de-multiplexed into N, symbol streams. If TVLT is used, the N;-symbol vector
is multiplied by a time-varying N;-by-N; unitary matrix before transmission.
Therefore, the throughput of the overall scheme is n.R° R N, bits per transmission.
On the decoder side, it is assumed that the decoder has perfect channel state
information and the decoder also knows exactly the TVLT unitary matrices.
Therefore, the LLR of the symbols can be calculated and passed to the turbo
decoder. Note that the received symbols form a N, x 1 vector and each received
symbol is a superposition of /V; transmitted symbols. So, the inner SISO is based
on the collapsed trellis which combines N; trellis stages together into a super-

trellis.

In Chapter 1, universal SCTCMs were designed for the period-2 fading chan-
nels with fading pattern [1 q] where q is a real number and 0 < q < 1. Note that

a 1-dimensional SCTCM over the scalar [1 q| period-2 fading channels is equiv-
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Table 2.1: Universal SCTCMs for period-2 PFC proposed in Chapter 1 transmit-
ting 0.5, 1.0 and 1.5 bits per symbol.

SC C° ok Constellation | BPS
2 | [1+D? 14D+D? | [I o255 1+ D] 8PSK 0.5
10 5
5 | [1+D? 1+D+D? * 8PSK 1.0
0 1 1+D
| 1+D2 |
(100 2]

2 2 D

11| [14+D? 14D+D% | {0 1 0 2, 16QAM 1.5
1+D
00 1 b

alent to the proposed de-multiplexed space-time SCTCM system over the 2 x 2
matrix channels in (2.9) when k = g% and ¢ = § = 0, i.e., the diagonal channels.
The performance of a diagonal channel is usually the best one among the set of
channels with the same eigenvalue skew. The universal SCTCMs over the [1 q]
channel are good starting point since they deliver universal performances over &,
but there is still the issue of non-diagonal channels.

The code design criteria under maximum-likelihood (ML) decoding and it-
erative decoding are proposed in Section 1.3 and 1.4. Using these criteria, the
best SCTCMs found for 0.5, 1.0 and 1.5 bits per symbol with BER error floors
lower than 107 are listed in Table 2.1. The same codes will be used in the

corresponding 1.0, 2.0 and 3.0 bits per transmission space-time SCTCM systems.

2.4 Time-Varying Linear Transformation (TVLT)

The 2 x 2 space-time channel is parameterized using x and the channel angles ¢
and # as shown in Eq. (2.9). The angle ¢ determines the amount of interference

between the two antennas. When | cos(¢)|=1 or 0, the channel is diagonal with
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no interference. On the other hand, the interference is the largest when | cos ¢| =
|sin ¢| = % The other parameter, , represents the phase difference between
the constellations of the two antennas. Our experiments showed that although
the MI is only a function of k, different ¢ and 6 can result in very different
performances for SCTCM especially when & is close to zero (the singular channel

case).

We need to characterize EMI as a function of ¢ and # but this is computa-
tionally difficult. Similar to the constellation labeling experiments in Sec. 1.4,
we propose an approximate method to predict the EMI performance by observ-
ing the correlation between the EMI and the initial extrinsic information (IEI).
The higher the IEI of the inner SISO is, the more likely the whole inner-SISO
EXIT curve stays above the outer-SISO EXIT curve and thus lower convergence
threshold. Note that the IEI can be easily calculated by numerically computing
the parallel independent decoding capacity of the systematic bits of the inner

code.

Figure 2.2 shows the EMI requirement and the corresponding inner-SISO IEI
of SC-11 at E,/N, = 6.35 dB as a function of ¢ where § = k = 0. It is clear
that the EMI requirement and the IEI are closely related. Based on the above
observations, achieving a uniform IEI over ¢ and 6 is way to enhance consistent
EMI behavior and thereby approach universal performance. We tested three very

different approaches to achieve a uniform IEI over ¢ and 6.

Our first idea was to design a combination of constellation and labeling that
delivers a more uniform IEI over ¢ and € than the conventional schemes us-
ing PSK/QAM and Gray labeling. Different constellation shapes were tested.
However, their performances were still as dependent on ¢ and 6 as those of

the PSK/QAM constellations. For example, we tried three different 16-point
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Figure 2.2: The inner-SISO IEI at E,/N, = 6.35 dB and corresponding EMI per
antenna for SC-11 as a function of ¢ when x = # = 0. It is observed that IEI is
highly correlated with EMI and thus can be used as a tool to facilitate the code

search and to understand and approximate the TVLT performance.
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Figure 2.3: (12,4)-PSK constellation and labeling.

constellations including Gray-labeled 16QAM, (12,4)-PSK (see Figure 2.3), and
Gray-labeled 16PSK. Figure 2.4 shows the IEI of SC-11 using these constellations
as a function of ¢ when k = 0 and # = 0. In all three cases, the IEI depends
on ¢ in a similar way that the IEI has maximum when there is no interference
and has minimum when the interference is the largest. Therefore, the shape of
the constellation only has marginal effect on the IEI, and the universality of the

SCTCM is not improved by changing the shape of the constellation.

As for the labeling, no other labeling is found to have the IEI that dominates
the IEI of the Gray labeling. For example, Figure 2.5 shows the IEI for the
16QAM constellation using the Gray labeling, natural labeling, mixed labeling

and set partition labeling as shown in Figure 2.6.

The Gray labeling dominates the other labelings in this example because it
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Figure 2.4: IEI of three different 16-point constellation including Gray-labeled
16-QAM, (12,4)-PSK and Gray-labeled 16-PSK as a function of ¢ when x = 0
and 6 = 0.

has the best protection on the systematic bits. It is possible though to design a
labeling which yields higher IEI for certain (¢, #) angles, but at the same time, it
also decreases the TEI at other angles. As a result, labelings other than the Gray

labeling yield a less uniform IEI and an equal or inferior worst-case performance.

Motivated by [31], our second idea was to make the two constellations of the
two antennas correlated. Instead of mapping the n coded bits to a 2"-point 2D
constellation, the general form of a correlated constellation considers the two
transmitted antennas together and uses 2n consecutive bits to map a 22"-point
4D constellation (2D per antenna). However, the performance becomes worse

because increasing the number of constellation points actually decreases the IEIL.

The third idea, which fortunately does work, uses a time-varying linear trans-

formation (TVLT) to rotate the channel to different angles, hoping that the
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Figure 2.5: IEI of four different labelings for 16-QAM including Gray labeling,
natural labeling, mixed labeling and set-partition labeling. The IEI is shown as

a function of ¢ when Kk =0 and 0 = 0.

dependence on ¢ and # can be “averaged out”. This idea was first proposed in
[4]. In the current work, this concept is generalized so that a time-varying unitary

matrix,

Q: = D(B) M () D(v), (2.10)

is multiplied to the signal vector, x, before it is transmitted (see Eq. (2.6) for
definitions of M (-) and D(-)). By controlling the three parameters, this technique
creates a time-varying equivalent channel H = HQ,. Using (2.9) and suppressing

the subscript £,

o
Il

HQ
= [AM(9)D(0)][D(B)M () D(7)] (2.11)
= A[M(¢)D(0 + 5)M ()] D()-
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0010 0000 0100 0110

1010 1000 1100 1110

1011 1001 1101 1111

(a) Gray labeling

0000 0011 0001 0010

1100 1111 1101 1110

0100 0111 0101 0110

1000 1011 1001 1010

(¢) Mixed Labeling

® [ ] [ ] [ ]
0000 0001 0010 0011

® [ ] [ ] ®
0100 0101 0110 0111

® [ ] [ ] [ ]
1000 1001 1010 1011

[ ] [ ] [ ] [ ]
1100 1101 1110 1111

(b) Natural Labeling

[ ] [ ] [ ] [ ]
1000 1011 1100 1111

[ ] [ ] ([ ] [ ]
0001 0010 0101 0110

[ ] ([ ] [ ] [ ]
0100 0111 0000 0011

o [ ] [ ] [ ]
1101 1110 1001 1010

(d) Set-partition Labeling

Figure 2.6: 4 different labelings for 16-QAM
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Because M (¢)D(0 + )M («) is also unitary, it can be decomposed into

M(8)D(0+ B)M(a) = ¢ D(3,)M(3) D(Gr), (212
where
¢ = % cos™ ! (cos (2¢) cos (2ar) — sin (2¢) sin (2a) cos (6 + ), (2.13)

¢ =4 {cospcosa —singsinacos (f + ) — jsingsinasin (0 + 3)}, (2.14)

0, = £ {sin (2¢) cos (2a) + cos (2¢) sin (2c) cos (6 + B) + j sin (2a) sin (8 + B)},
(2.15)
Or = £ {cos (2¢) sin (2a) + sin (26) cos (2a) cos (8 + () + j sin (2¢) sin (6 + )} .
(2.16)
Note that €/¢ and D(éL) can be canceled out in the receiver. Hence the equivalent
channel, represented in the same form as that in Eq. (2.9), becomes I:qu =
AM(4)D(0), where ¢ is given by Eq. (2.13) and 0 = 0 + 7.

The ideal TVLT would vary «, (3, and v such that é and 0 both sweep
uniformly over [0,27). In that case, the SCTCM sees the same set of channels
regardless of the actual channel angles ¢ and #. Without any information of ¢
and 0 in the transmitter, the best strategy is to sample uniformly over the 3-
dimensional («, 3, y) space. For fixed o and S values, if v sweeps uniformly over
[0, 27), @ also varies uniformly. However, due to the nonlinearity in Eq. (2.13), ¢
is not swept uniformly and still depends on ¢ and . Therefore, the performance

of the SCTCM cannot be completely universal using TVLT.

Here we provide an analysis of the approximate performance of an SCTCM
with TVLT. From the simulation results, we propose a model for EMI as a func-

tion of ¢ and 6 as

EMI(¢, 0) ~ EMl,i, + Ki[1 — cos(49)]|[ K2 + cos(26)] (2.17)
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Figure 2.7: Simulated EMI requirement for SC-11 on singular channels (k = 0)
as a function of ¢ when § = 0 and # = 7/2. The proposed model for EMI in
Eq. (2.17) with EMI,;, = 0.40, K; = 0.0289 and K5 = 3.74 which minimizes the

mean square error corresponds well to the simulation results.
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where EMI,,,;n, K71 and K5 depend only on x and are found to minimize the mean
square error. Figure 2.7 shows that the model corresponds well to the simulated
EMI for SC-11 on singular channels (k = 0) with EMI,,;, = 0.40, K; = 0.0289
and Ky = 3.74. To obtain the approximation of EMI with TVLT, we assume
that the EMI is the average of the instantaneous EMIs. Further, we assume a
TVLT in which «, £, and vy are uniformly distributed, the average EMI with such
a TVLT is given by

1 o~
EMI(6.0) =~ ;22 20 2 EMIGO)
a Y
~ EMlpin + K14K2 - [6 — cos(4¢)] . (2.18)

where N, Nz and N,, are the number of «, 3 and 7 swept over [0, 2) respectively.
The full derivation of Eq. (2.18) is in the Appendix. Note that the dependence on

f is eliminated but the EMI still depends on ¢, although with a smaller variance.

A more relaxed sufficient condition than uniformly distributed «, £, and ¥

for Eq. (2.18) to hold is

Zej4a =0, 2005(20 +28) =0, Zcos(?’y) = 0. (2.19)
B ¥

[e%

Therefore, We propose two TVLT schemes:

e Fine-sampled TVLT (F-TVLT): Sweep «, 8 and « over [0,27) uniformly

2m

3/Ns Y

with a step size of where N, denotes the number of symbols per block.

e Simplified TVLT (S-TVLT): By Eq. (2.19), use « = 0 or 7/4, 5 = 0 or
7/2, and v = 0 or 7/2 which yields a total of 8 different unitary matrices
compared with N, matrices in F-TVLT.

As shown in Figure 2.8, TVLT makes the EMI requirements more concen-

trated and the overall performance is close to universal. Figure 2.9 shows the
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Figure 2.8: EMI requirements of SC-2, SC-5 and SC-11 over eigenvalue skew
and eigenvectors. The gray area is the EMI region without TVLT while the
shaded area is the EMI region with F-TVLT. The proposed SCTCMs perform

consistently close to channel capacity for any of the 2 x 2 channels.
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Figure 2.9: EMI requirements of SC-11 without TVLT and with F-TVLT and
S-TVLT over eigenvalue skew and eigenvectors. It is found that both TVLT

scheme deliver similar averaging effect which makes the code more universal.

EMI requirement of SC-11 without TVLT and with F-TVLT and S-TVLT re-
spectively. The S-TVLT performance is almost identical to that of the F-TVLT.

2.5 Simulation Results

Figure 2.8 shows the EMI for SC-2, SC-5 and SC-11 with and without F-TVLT
over eigenvalue skew. For the same eigenvalue skew, the maximum and minimum
EMIs are marked and the shaded region represents the region of operation. All
the simulations are done with an input blocklength of 10,000 bits, 12 iterations
at the decoder, and BER of 1072. The TVLT technique improves the universality
of the SCTCMs. As a result, SC-2 and SC-5 provide uniform EMI requirements
of no more than 0.15 bits and 0.26 bits per antenna respectively. SC-11 provides

a uniform EMI of no more than 0.41 bits except for the sudden increase to 0.53
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Figure 2.10: FER comparison of 2 bits/s/Hz codes including the SC-5 with
TVLT, two PCCC-BICMs (by Stefanov [2]), a binary SCCC (by Benedetto [3])
mapped to 8PSK (SC-8), and a PCTCM (by Shi [4]) over quasi-static Rayleigh

fading channel.

bits for the worst-case singular channel.

Next, we will compare the proposed universal SCTCMs with other coding
schemes designed specifically for Rayleigh fading environment in terms of both
average performance and universality (channel to channel performance). Among
them, the best Rayleigh fading performance comes from Stefanov’s [2] parallel
concatenated convolutional code with bit-interleaved coded modulation (PCCC-
BICM) which is 1.8 dB from the outage probability at FER=10"2. Turbo-TCMs
[24], [4], [32] are reported to operate at 2.0 to 2.2 dB from the outage probability.
The universal SC-5 with F-TVLT is only 1.5 dB from the outage probability.
SC-8, which maps a binary SCCC designed for AWGN channel by Benedetto [3]
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Figure 2.11: EMI requirement regions for SC-5 with F-TVLT and a binary SCCC
(by Benedetto [3]) mapped to 8PSK (SC-8) transmitting at 2 bits/s/Hz. SC-5
with F-TVLT provides a more consistent channel-by-channel performance than
SC-8, and a slightly better (0.1 dB) Rayleigh fading performance as shown in
Figure 6.

directly to 8PSK, is 1.6 dB from the outage probability. For the Rayleigh fading
performance, SC-5 and SC-8 were simulated with input blocklength of 260 bits,
which is the same as that in [2] and [24]. [4] and [32], however, have blocklengths
of 8,196 and 1,024 bits respectively. Moreover, the number of iterations in these
papers are not exactly the same. So a fair conclusion would be that these codes

all perform similarly on the Rayleigh fading channel.

On the other hand, Figure 2.11 and Figure 2.12 shows the EMI requirement
region for SC-5, SC-8 and two PCCC-BICMs, all with blocklength of 10,000 bits.
SC-5 clearly has a much narrower EMI region and hence is more universal than

others, especially after applying TVLT. Note that the PCCC-BICM in [2] was
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—e— Stefanov
0.7 —— Stefanov+8PSK

EMI per antenna

Figure 2.12: EMI requirement regions for two PCCC-BICMs (by Stefanov [2])
transmitting at 2 bits/s/Hz over the 2 x 2 matrix channel in Eq. (2.9). Using
a larger constellation (8PSK) improves the universality, but both codes are still

not as universal as SC-5.
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Figure 2.13: The effect of TVLT and Ut multiplication on the Rayleigh fading
performance of SC-5. The Ut matrix improves the FER significantly. The TVLT

helps more in the case of no U and helps little when U is applied.

originally rate-1/2 and mapped to a QPSK constellation to transmit 2 bits/s/Hz
over two antennas. The system, in the worst condition of kK = 0, ¢ = 0, becomes
uncoded and thus requires a very large EMI. Therefore, we also designed a rate-
1/3 PCCC-BICM mapped to 8-PSK. The worst case EMI is reduced to 0.8 bits

per antenna but it is still not as universal as SC-5.

In Sec. IV-C in [4], Shi found that by multiplying U (see Eq. (2.5)), i.e. the
R matrix in Shi’s notation, at the receiver, the FER improves significantly but
the effect of TVLT is invisible with or without U'. As shown in Figure 2.13, we
also found that U is indeed crucial for the SCTCM performance on the Rayleigh
fading channel. However, unlike Shi, who only uses real unitary matrices in their
experiments, our generalized TVLT matrices scan the whole compler unitary

matrix space and provide a better averaging effect. As a result, for SC-5, TVLT

o8



improves the FER by 0.9 dB at FER=10"2 in the case of no U' and merely 0.1
dB when UT is applied. In general, the averaging over channels in a Rayleigh

simulation hides the channel-by-channel consistency provided by the TVLT.

Since SC-5 requires a uniform EMI no more than 0.26 bits per antenna (i.e.
0.52 bits per transmission), SC-5 should be able to transmit 2 bits successfully
over any channel which provides an MI of more than 2.52 bits. Figure 2.10
shows that the FER of SC-5 with F-TVLT is close to the outage probability of
MI=2.52 bits. The beauty of the universal SCTCM is that SC-5 can perform
close to the outage probability of a MI=2.52 bits not only for Rayleigh fading

but any quasi-static fading channels.

2.6 Conclusions

Designs of universal space-time SCTCM schemes are proposed to deliver close-
to-capacity performance on any of the quasi-static 2 x 2 channels. Using the de-
multiplexing MIMO scheme, universal SCTCMs over PFC show their universality
over the eigenvalue skew because the PFC is equivalent to the diagonal channels.
Then for non-diagonal channels, it is found that the performance of SCTCM may
degrade significantly due to the convergence behavior of the iterative decoder.
We observed that the relation between EMI and IEI can be used to facilitate
the comparison of different constellations and labelings. Experiments with fixed
constellations and labelings could not achieve universal IEI. Hence, TVLT is used
to rotate the channel matrix over time and is shown to effectively mitigate the
dependency of EMI on the eigenvectors. As a result, the proposed SCTCMs
of 1.0, 2.0 and 3.0 bits per channel use require a consistent EMI of 0.11-0.15,
0.23-0.26 and 0.35-0.53 bits per antenna and are 1.9, 2.2, and 2.4 dB respectively

from the outage probability at FER=10"2 on the quasi-static Rayleigh fading
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channels. However, the main point of designing such codes is that they are not
designed specifically for Rayleigh fading, and will work close to the theoretical

limit on any quasi-static fading channel.
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CHAPTER 3

Lowering the Error Floors of Irregular

High-Rate LDPC Codes by Graph Conditioning

3.1 Introduction

Low density parity check (LDPC) codes have generated much research interest
because of their capacity approaching performance. Most of the work in the
literature focuses on low-rate and very long codes. The goal of this chapter is
to design high-rate LDPC codes with low encoding complexity and low error
floors. Yang et al. [33] proposed the specialized class of LDPC codes called
the extended irregular repeat-accumulate (IRA) codes that have low complexity
encoders. Richardson et al. [34] created the density evolution technique to
optimize the degree distributions in cycle-free bipartite graphs as the block length
and the number of iterations go to infinity. For finite block length, Tian et al. [17]
proposed an efficient graph conditioning algorithm called the approximate cycle
extrinsic message degree (ACE) algorithm to lower the error floor by avoiding
harmful short cycles. The ACE algorithm is effective for the construction of low-
rate LDPC codes. In this chapter, we explore the effectiveness of ACE algorithm
for high-rate (R > 1/2) code designs.

Following the common notation in the literature, £ and n denote the input

block length and codeword length respectively. Thus the code rate R = k/n.
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The parity check matrix, H, is an (n— k) X n sparse matrix which can be divided
into

H =[H, | Hy], (3.1)
where the two submatrices, H; and H,, have k£ and n — k columns respectively

as defined in [33].

The H, matrix must have n—k —1 weight-2 columns plus one weight-1 column

with a bi-diagonal structure [33], i.e.,

Hy

(3.2)

Then H; " is a matrix with all the upper-diagonal elements equal 1. Its generating
function is H% and can be easily implemented using an accumulator. Therefore,

the generator matrix, GG, of the extended IRA codes can be written as
G=[I|HH;"] (3.3)

which only requires a sparse matrix multiplication followed by an accumulator

and yields low encoding complexity as depicted in Figure 3.1.

The LDPC code is decoded by passing message on the bi-partite graph asso-
ciated with the parity-check matrix of the code. Richardson et al. [34] developed
density evolution technique to analyze and optimized the degree distributions of
the variable nodes and check nodes. The decoding threshold can be found for
infinite blocklength code and assuming the associated graph is tree-like. The de-

gree distribution can be defined from the edge’s point of view or from the nodes
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Figure 3.1: Low complexity encoder structure of the extended IRA LDPC code

which consists of a sparse matrix multiplication followed by an accumulator.

point of view. We will use the edge’s point of view following Richardson’s [34]
notations. A(z) = >, \iz'~! denotes the variable node degree distribution from

the edge’s perspective and p(z) = >, piz’~" represents the check node distribu-
tion. N, (/) denotes the number of degree-/ variable nodes in the Tanner graph.
In general, the weight-1 column should be avoided during the degree distribution
optimization. So, throughout the chapter, there is no degree-1 node in the degree

distributions. One of the degree-2 nodes is converted to degree-1 when the parity

check matrices of the extended IRA codes are constructed.

The rest of the chapter is organized as follows. Section 3.2 presents the code
design criteria and graph-conditioning algorithm. Section 3.3 applies the code
designed criteria to design long and medium blocklength high-rate LDPC codes
with low error floors. In Section 3.4, we propose a rate-compatible scheme using
information-nulling for high-rate LDPC codes and compare their performance to

stand-alone codes. Section 3.5 concludes the chapter.
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3.2 Code Design Criteria

3.2.1 Existing Criteria

Major criteria for designing the parity check matrix of the LDPC codes [33], [34]

are summarized as follows:

(1) Optimize the degree distributions using density evolution.
(2) Forbid cycles involving only degree-2 variable nodes and avoid length-4 cycles.

(3) Low-degree variable nodes are made to correspond to non-systematic bits.

3.2.2 ACE Algorithm

Definition 1 A variable node set is called a stopping set if all its neighbors are

connected to it at least twice.

The size of the smallest stopping set determines the error floor behavior.
However, it is hard to find the smallest stopping set because the complexity is

too high.

Definition 2 The approzimate cycle extrinsic message degree (ACE) of a length
2d cycle is Y, (d; — 2), where d; is the degree of the i variable node in the cycle.

An LDPC code has property (dacg, 1) if all the cycles whose length is 2dacg or
less have ACE values of at least 7. The ACE algorithm is an efficient Viterbi-like
linear complexity algorithm proposed in [17] to detect and avoid harmful short
cycles during code construction. Given the degree distribution, A(z), columns
of the parity check matrix are generated one at a time starting from low-degree

nodes. The edges of every new column are generated randomly and the ACE
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algorithm checks whether the (dacg,”) requirement is met. If not, this column
must be generated again. This step repeats until the whole parity check matrix

is generated.

It is more difficult to apply the ACE algorithm to high-rate codes than to
low-rate codes because with the same block length, high-rate codes have fewer
check nodes, i.e. columns are shorter in H, and the number of cycles will increase
which makes it harder to guarantee certain (dacg, n) values. For high-rate LDPC
codes, the optimal degree distributions usually have more than n — k£ degree-2
variable nodes and there always exist cycles between only degree-2 nodes [35].
Figure 3.2 gives two example of four length-4 degree-2 columns. The first matrix
has a length-8 cycle which is the longest cycle possible while the second matrix
has a length-4 cycle. Note that if N,(2) > n — k, any combination of n — &
degree-2 columns forms cycle(s) and these cycles are all stopping sets. Figure 3.3
shows the curves of the optimal ratio of degree-2 nodes and the ratio of parity
bits. The two curves cross each other at approximately R = 1/2. Therefore, if
we don’t constrain the number of degree-2 nodes and choose the optimal degree
distributions, the ACE algorithm can only help to lower the error floor a little,

but it is still high since too many loops with small ACE values.

To lower the error floor further, we must decrease the number of degree-2
variable nodes and adopt a degree distribution optimized with the constraint
Ny(2) < n— k. The error floor is lowered at the cost of a small increase in the
threshold SNR. This tradeoff between threshold and error floor is also observed
in many LDPC and turbo-code papers [3], [7], [17].

An exciting discovery is that for this constrained degree distribution, the
graph conditioning can be carried out successfully and lower the error floor dra-

matically. The semi-regular LDPC codes in [33] also constrain the number of
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Figure 3.2: An example of the number of degree-2 nodes equals to n — k, where
n—k = 4. There must exist cycles between these nodes and every cycle consisting
of all degree-2 nodes is a stopping set. Example (1) has a length-8 cycle and
example (2) has a length-4 cycle.

degree-2 nodes but use a regular H; to guarantee low error floors. Figure 3.4
shows the theoretical gap to BPSK capacity for the three types of codes. The
semi-regular design trades about 0.5 dB of threshold SNR for low error floors
while our design only requires 0.1 dB increase of threshold SNR to have a low

error floor because of the effective graph-conditioning algorithm.

3.3 Code Design Examples and Simulation Results

3.3.1 Long Block Length High-Rate LDPC Codes

Figure 3.5 includes design examples of rate-3/4 LDPC codes with blocklength
n = 10688 bits simulated on the AWGN channel using BPSK modulation for a
maximum of 200 iterations using message passing decoder. Three different degree

distributions are simulated here (See Table 3.1). Scheme-A is the optimal degree
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Figure 3.3: The ratio of degree-2 nodes, A,(2), in the optimal degree distribution
as a function of the code rate. Also plotted is the ratio of parity check bits which
equals 1 — R. Note that for approximately R > 1/2, \,(2) is greater than 1 — R

which results in loops between only degree-2 nodes.
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Figure 3.4: The gap to capacity for the optimal, constrained optimal, and
semi-regular degree distributions found using density evolution technique as a

function of the code rate.

distribution without any constraint. Scheme-B is the optimal degree distribution
with the constraint N,(2) < n — k while scheme-C is the semi-regular code with

a regular H; of column weight 5.

Our results show that for scheme-A, the BER error floor is at about 102 for a
randomly generated LDPC code without graph conditioning. The ACE algorithm
can only achieve (dacg, n) = (3, 4) for this degree distribution to improve the error
floor to a level between 10~* and 105, which is still high. Scheme-B without
graph conditioning, (B, -, -), has an error floor around BER = 107°. Scheme-
C uses the same design proposed in [33] which adopts a non-optimal degree
distribution and trades some threshold for a lower error floor. Note that we were
able to construct a (C, 5, 6) code but its performance is almost identical to the

(C, -, -) code at the BER above 10~7. This is because graph conditioning plays
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Figure 3.5: Simulation results for (8016,10688) codes for 200 iterations. The
BPSK capacity at R=3/4 is E;/N,=0.38 dB. Codes are labeled by (Scheme,

dAcE; 1)-

the role of lowering the error floor but the error floor of scheme-C is lower than
1077 even without any graph conditioning. The results of (B, 3, 4) and (B, 4,
6) are exciting because with proper graph conditioning, the error floor can be
lowered from 107° to at least 10~ 7 with little compromise (less than 0.1 dB) of
the threshold of convergence. As a result, at BER = 107°, our best code, (B, 4,
6), performs within 0.67 dB of the Shannon limit and is 0.38 dB better than the

semi-regular code.

3.3.2 Medium Block Length High-Rate LDPC Codes

For applications requiring high throughput such as the wireless local area network
(WLAN), high-rate LDPC codes are considered a good candidate channel coding

scheme. The decoder complexity and delay constraint limit the code length to be
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Table 3.1: The three degree distributions used in the long LDPC code design
example. Scheme-A is the optimal degree distribution, Scheme-B is optimal with
the constraint N,(2) < n —k, and Scheme-C is the semi-regular code with n — k&

degree-2 variable nodes and k degree-5 variable nodes.

Scheme-A Scheme-B Scheme-C
(optimal) | (constrained optimal) | (semi-regular)
Ao 0.1970 0.1250 0.1176
A3 0.0801 0.4460
A4 0.2410
As 0.0082 0.8824
A1 0.4078
A1z 0.0213
A4 0.4736
P16 1.0000
17 1.0000
P18 0.700
oo | 0.300
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less than a few thousand bits and the number of decoding iterations to be about
10-20. Unlike the previous example which adopts a long, length-10688, LDPC
code, here we will limit the codeword length to 2000 bits and design LDPC codes

using the afore mentioned criteria.

Figure 3.6 shows the simulation results of stand-alone rate-1/2, 2/3, 3/4, 4/5,
5/6 and 8/9 LDPC codes designed separately, all with n = 2000 bits. The variable
node degrees are limited to degree 2, 3, and 10 for implementation simplicity.
Note that the achievable (dacg,n) region is still an open problem for a given
blocklength and the degree distribution. Because of the linear complexity of
the ACE algorithm, it is not too computationally intensive to run the algorithm
starting from small (dacg,n) values and increase the constraint until such codes
cannot be constructed. Then several candidate codes with largest n for each dacg

value are simulated to determine the best code.

Note for the same rate (rate-3/4) and the same dacr = 4, the largest achiev-
able ACE value, 7, in the previous example is 6 while it decreases to 3 as the code
blocklength is reduced from 10688 to 2000. Although the achievable (dacg,n) is
smaller especially for the highest-rate code (rate-8/9), the graph conditioning al-
gorithm can still effectively lower the error floors. All the codes in Figure 3.6 have
error floors lower than 107%. Figure 3.7 plots the SNR gap to the capacity for
these stand-alone LDPC codes as a function of the code rate. Simulations are run
for 10 and 100 iteration respectively. SNRs are measured at BER = 1075. Also
plotted as a reference is the density evolution threshold which is the theoretical
limit of the given degree distributions used at each rate when the blocklength

and number of iteration go to infinity.

It is observed that the SNR gap to the capacity is larger at lower rates than

at higher rates when only 10 iteration is allowed due to throughput or delay
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Figure 3.6: BER curves of medium blocklength (n = 2000 bits) LDPC codes
constructed by the ACE algorithm with the constrained optimal degree distribu-
tion. The ACE algorithm applies well as in the long blocklength case, and the
proposed codes all have BER error floors lower than 107%. The simulations use

10 decoder iterations and the channel is AWGN channel. BER curves are labeled

as (Ra dACEa 77)

constraints. This is because for the same block length, low-rate codes have more
check nodes and each check node has a lower degree such that it requires more
iterations to converge. When the number of iterations is increased to 100, it is
found that all the stand-alone codes are about 1.2 to 1.5 dB from the capacity
at BER = 107°.
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Figure 3.7: When the allowed variable node degrees are only 2, 3 and 10, the
density evolution threshold of the constrained optimal code is consistently good.
The other two curves are the SNR gap to the capacity for the stand-alone codes
at BER = 107° on the AWGN channel. The simulations use 10 and 100 decoder

iterations respectively. All codes have blocklength of 2000 bits.
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3.4 Rate-Compatible LDPC Codes Using Information-

Nulling

Error correction codes are often designed for a certain code rate which matches
the error-correcting requirement of the worst case channel or the average channel
conditions. However, in some communication systems, the channel could be
time-varying such that different levels of error correcting capability is required.
Usually, the hardware implementation of channel codes is code-dependent and
non-reconfigurable. So it is inefficient to implement stand-alone, i.e., separately

designed, codes for each code rate.

The concept of rate-compatible codes aims to reduce the hardware complexity
by using only one encoder/decoder pair based on a single code called the mother
code, and the rate can be changed using techniques that do not increase the
hardware complexity by much. A rate-compatible technique provides a method
to vary the code rate from the mother code such that the resulted codes all have

good performances compared to stand-alone codes.

One common technique to achieve rate-compatibility is puncturing which re-
sults in so called rate-compatible punctured codes (RCPC) [36][37][38]. In punc-
turing, the lowest-rate code is chosen as the mother code. A portion of the parity
bits of the mother code is not transmitted, i.e., punctured, to achieve the desired
code rate On the decoder side, it is assumed that the decoder knows exactly the
positions of the punctured bit and treat them as erasures. In the message-passing
LDPC decoder, the log-likelihoods (LLRs) of the punctured bit are set to be zero

before the decoding iterations begins.

Another technique is information-nulling, a.k.a. code shortening. In this tech-

nique, the highest-rate code is the mother code and the code rate can be lowered
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by setting part of the information bits to be zeros. The decoder knows exactly the
positions of the nulled bits and treats them as having infinity reliability. In the
message-passing LDPC decoder, the LLRs of the nulled bit are set to be negative
infinity throughout the decoding process. Figure 3.8 illustrates the concepts of

puncturing and information-nulling and their effect on the parity check matrix.

Ha and McLaughlin [39] proposed the optimal puncturing ratio to puncture
LDPC codes using density evolution such that the punctured codes has good
thresholds when decoded using the iterative message-passing decoder. However,
this is not applicable to designing the eIRA LDPC codes because all the parity
bits of the eIRA codes have degree of 2 in order to have the low complexity
encoder. Besides, the graph-conditioning is difficult to be applied to the punc-
turing scheme and thus good graph conditioning is not guaranteed and thus the

punctured LDPC codes may suffer from high error floors.

Information-nulling, on the other hand, turns out to be a better approach
because the optimal degree distribution and good graph-conditioning can both
be guaranteed. In [40], Tian proposed an algorithm that combines the graph-
conditioning and information nulling to design rate-compatible LDPC codes.
With information-nulling, the equivalent parity check matrix of the lower rate
LDPC code results from deleting the columns of the mother code parity matrix

corresponding to the nulled bits.

Tian showed that for the low-rate range, 0.1 < R < 0.5, a rate-1/2 mother
can be constructed such that all of the shortened codes are still ensured certain
ACE constraint. Here we will take similar approach to design rate-compatible

LDPC codes for high-rate, 0.5 < R < 0.9, application.

A key requirement of the algorithm to work is the consistency of degree distri-

butions over the rate range. When a rate-R,,, lenth-n,, mother code is shortened
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(b) Information-Nulling

Figure 3.8: Two different rate-compatible techniques: (a) Puncturing uses the

Information-nulling starts from the highest-rate code and null part of the infor-

mation bits.



to rate-R' using information-nulling, the codeword length becomes

1-R
"= L 4

Let the constrained optimal variable node degree distribution from the node’s
perspective at rate-R for degree-l be \,(R,!), the number of variable nodes of
degree-l at rate-R' with code length-n’ is

1-R,

Nv(Rla l) = nl/\v(R,a l) = nm( 1— R

JAu(R',1) (3.5)

Figure 3.9 plots the the constrained-optimal number of variable nodes of
degree-2, 3, and 10 at each rate with n,, = 2000. Only three different vari-
able node degrees are allowed for design simplicity. Note that since N,(R,1) is a
non-decreasing function of the rate for each variable node degree, we can use the
following algorithm to construct a rate-compatible LDPC code which code rate

may be lowered using information nulling.

(1) Specify the corresponding code length at each rate of operation.

(2) Starting from the lowest-rate code, the process of generating the columns
from the current code to the next-rate code is called a stage. Calculate the

number of columns of each degree to be generated at each stage.

(3) Fix the dacg value and apply appropriate n values at each stage. Note
that low-rate codes in general has higher achievable n which means the ACE

constraint is also consistent.

The proposed rate-compatible codes have not only constrained-optimal degree
distributions but also good ACE constraint. Figure 3.10 shows the performance
of the rate-compatible code. Note that none of the codes suffers from high error

floor which means the graph-conditioning works effectively. Hence the shortened
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code is as good as a specifically designed constrained-optimal LDPC code with

the same length.

Compared to the same rate-compatible scheme but using a semi-regular codes
with degree-2 and degree-4 nodes as the mother code, the semi-regular codes
with no graph-conditioning have error floors even higher than the constrained-
optimal graph-conditioned codes and are 0.2 to 0.4 dB worse at BER = 107°.
We can definitely apply the ACE algorithm to the semi-regular codes to lower
their error floors but the threshold SNR will remain the same, which means the
semi-regular codes are still inferior to the constrained-optimal codes. We are also
interested in how much performance loss is resulted from the reduction of effective
blocklength in the information-nulling scheme. Figure 3.11 compares the SNR
gap to the capacity for the rate-compatible LDPC codes and stand-alone LDPC
codes when 10 and 100 iterations are used. A 1.0 dB loss is observed at rate-1/2
when compared to the stand-alone LDPC codes with a fixed code length due to
this shortened blocklength. In [41] and Chapter 4, rate-compatible LDPC codes
with constant blocklength is proposed to avoid this performance loss resulted

from the loss of blocklength in both information-nulling and puncturing schemes.

3.5 Conclusion

In this chapter, we applied the graph conditioning algorithm (ACE) to high-rate
irregular extended IRA LDPC codes and showed that it can effectively lower the
error floor even though the graph-conditioning becomes more difficult as the rate
increases. For code rate greater than 1/2, the optimal degree distribution has
more than n — k degree-2 nodes and it results in high error floors. The proposed
LDPC codes with constrained optimal degree distributions can trade only 0.1 dB

of threshold SNR for error floors which are several orders lower. This indicates
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Figure 3.9: The constrained optimal number of variable nodes of degree-2,
3, and 10 considering the code-shortening effect of information nulling. The
non-decreasing curves of each degree enables the construction of a rate-compatible

code with optimal thresholds at each rate.
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Figure 3.10: BER simulation results of rate-compatible LDPC codes using a
length-2000, rate-8/9 mother code. The code rates are lowered using informa-
tion-nulling. All codes are simulated for 10 iterations on the AWGN channel.
Solid lines represents the LDPC codes designed using the algorithm in Section
3.2 and dash lines show the simulation results using a semi-regular mother codes

without graph-conditioning.
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Figure 3.11: Comparison of the gap of the capacity for the rate-compatible LDPC
codes using informatio-nulling and stand-alone LDPC codes. The SNR gap is
measured at BER = 107° on the AWGN channel. The simulations use 10 and
100 decoder iterations respectively. The rate-compatible code uses a rate-8/9,
length-2000 mother code, and the stand-alone codes have blocklength of 2000
bits.
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that degree distributions near the optimal degree distribution are still quite good
in terms of threshold SNR and may be better than the optimal degree distribution
for practical block lengths. Code design examples from short block length (a few
hundred bits) to long block length (around 16000) all perform well with both low
SNR thresholds and low error floors. In addition, we proposed a rate-compatible
LDPC code design by combining information-nulling and graph-conditioning. By
designing a highest rate mother code with all the desired lower rates as the con-
straint, the proposed rate-compatible LDPC codes maintain constrained optimal
degree distribution and reasonably good ACE constraint throughout the high-
rate range. The rate-compatible schemes suffers a loss of about 1 dB at the

lowest rate (rate-1/2) due to the reduced effective blocklength.
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CHAPTER 4

Multiple-Rate Low-Density Parity-Check Codes
with Constant Blocklength

4.1 Introduction

The performance of an LDPC code using an iterative message-passing decoder
is determined by its convergence threshold and its error floor. Richardson et al.
[34] created the density evolution technique to optimize the degree distributions
in cycle-free bipartite graphs as the blocklength and the number of iterations
go to infinity. As for the error floor, it is generally believed that the height of
the error floor depends on the graph property of the Tanner graph associated
with the parity-check matrix. For finite-blocklength LDPC codes, it is inevitable
that there are cycles in the Tanner graph. Various techniques such as girth-
conditioning [42][43], or graph-conditioning based on stopping sets [17][44] focus

on avoiding harmful short cycles in the Tanner graph to lower the error floor.

In Section 3.4, the importance of having a rate-compatible channel codehas
been discussed. The goal of a good rate-compatible LDPC code is to have com-
parable performance as stand-alone LDPC codes designed specifically for each
rate while still maintains approximately the same hardware complexity of a sin-
gle LDPC code. Two different rate-compatible LDPC schemes, puncturing and

information-nulling, are discussed in Section 3.4. Puncturing can maintain opti-
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mal degree distribution throughout the rate range but good graph connectivity
is hard to be guaranteed. Information-nulling can not only maintain optimal
degree distribution but also guarantee good graph connectivity. However, both
puncturing and information-nulling have the problem of the reduction of effective
blocklength when more bits are punctured or nulled. The performance loss due
to the reduction of blocklength can be significant when the mother code length

is medium or short.

Therefore, we proposed a rate-compatible scheme called the row-combining
technique to design LDPC codes that keeps the code length constant while vary-
ing the code rate. Row-combining uses the lowest-rate code as the mother code
and combines the rows, i.e., the parity-check equations to become a higher-rate
code. In such a scheme, the variable-node degree distribution is constant for all

the rates and thus is not always optimal.

In practical communication systems, hardware complexity of the encoder and
decoder is an important issue for channel codes. The encoder and decoder im-
plementation for LDPC codes are quite different from that of the turbo code.
Turbo decoder uses the trellis structure of its constituent codes which provides
simplified organization for the implementation. On the other hand, the belief-
propagation LDPC decoder uses the Tanner graph of the underlying parity-check
matrix. Certain constraints or structures can be applied to the parity-check ma-
trix to facilitate the hardware implementation of LDPC encoder and decoder
[45][46][47]. These LDPC parity-check matrices are designed with the hardware

implementation in mind and thus are called hardware-aware LDPC codes.

The rest of the chapter is organized as follows. Section 4.2 explains the pro-
posed rate-compatible scheme using row-combining. Section 4.3 provides a brief

introduction of the irregular partitioned permutataion (IPP) codes which we
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think is an efficient and flexible architecture. IPP codes allow parallel processing
and can reduce the memory requirement. In Section 4.4, the hardware struc-
ture of the encoder and decoder of RC-IPP codes are proposed by making small
modifications to the IPP decoder. Section 4.5 presents an LDPC design exam-
ple for WLAN applications subject to various delay and hardware complexity

constraints. Section 4.6 concludes the chapter.

4.2 Row Combining

A simple example in Section II of [41] describes the technique of row-combining.

Assume that we rake a rate-1/2 mother LDPC matrix, H 1, as shown in Eq. (4.1).

1110000
1001100

o o O
o o O

(4.1)

Nl

o o o O
o O o O
= o o o o o

o o o O
o o o O
= o o O
o o o O
o O O
o O O

o

[aw]

—

—

—

0000O0T1

If we combine the first row with the fourth row, the second row with the fifth
row, and the third row with the the sixth row, it results in a rate-3/4 LDPC

parity-check matrix

[111000111000]
5=[100110001110]. (4.2)
001011100011

H

Similarly, more rows can be combined to form a even higher-rate LDPC code.

For example, combining three rows into one row results in a rate-5/6 code.

The idea of row-combining is motivated by empirical evidences that the op-
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timal average check node degree, d;, is approximately inversely proportional to
1 — R where R = k/n is the rate of the code, k is the number of information
bits and n is the blocklength. Therefore, for a fixed code length n, the number

of one’s, Ny, in the parity-check matrix is a constant.

Ny o= (n—k)xd (4.3)
x (k)X (4.4)
= (n—k)xnﬁk (4.5)
= n. (4.6)

If the mother code parity-check matrix is carefully designed such that two ones
representing the same variable node are never combined under any row-combining
rules, the total number of one’s remains constant. If each row of the new code
results from combining an equal number of rows of the mother code matrix, the
new check-node degree is concentrated, i.e., all the check nodes have the same
degree. It is found that the performance of LDPC codes with a concentrated
check-node degree perform better than those with a non-concentrated check-node
degree. Therefore, the check-node degree is kept as concentrated as possible when

designing the row-combining codes.

As for the variable-node degree distribution, row-combining results in a con-
stant variable node degree distribution which obviously is not optimal for all the
rates. In order to have low error floor properties, the number of degree-2 variable
nodes cannot exceed the number of check nodes as shown in Section 3.2. Since the
highest-rate code has the least number of check nodes, its optimal variable-node
degree distribution is chosen as the mother code variable-node degree distribu-
tion. This disadvantage limits the performance of the lower-rate codes because
their optimal variable-node degree distributions generally require more degree-2

nodes.
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The graph-conditioning using ACE algorithm to avoid harmful short cycles
can be applied to the row-combining rate-compatible scheme. In the ACE al-
gorithm, the parity-check matrix is constructed one column (variable node) at
a time. Each column generated randomly according to its degree is checked if
it satisfies the the ACE constraint given the existing columns. The process re-
peats until all the columns are successfully generated. For the row-combining
LDPC code design, the newly generated column not only has to pass the ACE
constraints of the mother parity-check matrix, it must also satisfy the ACE con-
straints of all the other higher-rate matrices generated according to predefined

row-combining rules.

4.3 Irregular Partitioned Permutation LDPC Codes

Among all the hardware architectures in the literature, we found that Hocevar’s
irregular partitioned permutation (IPP) structure [47] has several advantages over
other structures including low memory requirements, simplified addressing, sim-
plified routing, and high-degree of parallelism. It is also found that the proposed
row-combining technique can be applied to the IPP structure with small modifi-
cations to the encoder and decoder implementation to design the row-combined

IPP (RC-IPP) codes.

We will briefly introduce the IPP structure with focus on the design con-
straints it puts on the parity-check matrix. The constraints are summarized as

follows.

(a) The parity-check matrix of IPP LDPC codes consists of m x m sub-matrices
as the building blocks. Each sub-matrix is either an all-zero matrix or an

identity matrix whose rows have been shifted by a set amount. Assume
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Figure 4.1:
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An example of column grouping where in the macro matrix, the

columns form groups where in each group, there is at most one nonzero column

per row. The number of column groups is also the number of column sum blocks

(CSBs) in the IPP LDPC decoder (See Figure 4.2).

(c)

that H has j,s rows and nj, columns of blocks, the parity-check matrix has
dimension of (jpr-m) X (npr-m). The macro matrix, Hyy, is a jpr Xnp matrix
with entry being a “1” if the corresponding block is a shifted identity, and
being a “0” if the corresponding block is an all-zero matrix. The maximum
number of parallel row-processing is limited by the block size, m. Parallel

processing can increase the throughput but it also requires more hardware.

The degree distribution of the macro matrix is the same as that of the
parity-check matrix because each non-zero entry represents a shifted iden-
tity matrix which has exactly one 1 per row and one 1 per column. The
IPP structure requires the variable node degree and the check node degree
to be less or equal to jy; and nj; respectively. Since the good irregular
degree distributions usually require some high-degree nodes, this imposes

an upper bound on the level of parallelization for IPP LDPC codes.

A further constraint of the IPP structure is that the columns in the macro
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matrix form column groups such that in each group there is at most one non-
zero column per row. Figure 4.1 shows an example of a macro matrix whose
columns form eight column groups. The purpose of forming columns groups
is to reduce the number of bit update blocks, which more importantly

reduces the number of individual memories.

The IPP decoder uses iterative belief-propagation algorithm described as
follows. The log-likelihood of the variable-to-check message from variable
node j to check node m is denoted as

Loy = Z R;; — 2%, (4.7)

i€M(j),i#m

where M (j) is the set of check nodes connected to variable node j, 7; is
the received channel information for variable node j, and o? is the noise
variance. I;; denotes the check-to-variable node message from check node

7 to variable node j.

Rij == H Sign (qu'n) 1\ Z 4 (qu'n) (4'8)

neN(Q), n#j neN(i), n#j
where N (%) is the set of variable nodes connected to the check node i and

the function ¥(z) = log(tanh(||z/2||)) is implemented using look-up tables
(LUT).

The parallel decoder structure for IPP codes proposed in [5] consists of
modules of R storage memory (RSM), parallel adder block (PAB), parity-
check update block (PCUB), router, column sum block (CSB) and reserve
router as shown in Figure 4.2. Note that p rows are processed in parallel

and the columns form g column groups. Details of the blocks are provided

in [47][5].
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Figure 4.2: IPP LDPC decoder top level architecture with p parallel processing

units and g column sum units.
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4.4 Rate-Compatible IPP codes

In this section, we propose RC-IPP LDPC codes which has the IPP structure
and achieves rate-compatibility using the technique of row-combining. Row-
combining brings some additional constraints to the parity-check matrix. The
decoder structure and blocks in Figure 4.2 must also be modified accordingly.

The design procedures of RC-IPP codes are summarized as follows.

(i) Choose the code length, n, and block size, m.
(ii) Choose the target code rates and row-combining rules.

(iii) Design the parity-check matrix for the lowest-rate code using the optimal

degree distribution of the highest-rate code.

(iv) Generate lower-triangular macro matrix and design interleavers such that
column groups are formed for the IPP decoder. The macro matrix should
also satisfy the condition that no bi-diagonal sub-matrices are formed for

any of the row-combining rule.

v) Randomly generate the shift values of the sub-matrices column by column
g
and the resulting parity-check matrix must satisfy certain ACE constraints

at each rate according to the row-combining rules.

4.4.1 ZEncoder Structure

Usually, the hardware implementation complexity of of LDPC codes focuses on
the decoder because the encoder complexity is much lower than the decoder
complexity. Still, simple encoder with the complexity grows linearly with the

code length is desired. TRA codes [33] has a low-complexity encoder by forcing
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the parity section of H, i.e., Hy in Eq. (3.1), to be a staircase matrix as shown in
Eq. (3.2). The encoder then consists of a sparse matrix multiplication followed
by an accumulator. Richardson [34] developed an algorithm to build efficient
encoders based on swapping rows and columns to form an approximate lower

triangular parity-check matrix.

For the parity-check matrix with block structure, we use a combination of the
two methods where the macro matrix is lower-triangular and the bottom-right
sub-matrix is a staircase matrix. Using back-substitution, the parity bits can be
solved sequentially from top to bottom. For the last block row, the remaining
parity bits are calculated using exactly the same way as the IRA encoder. This
structure will have one degree-1 variable node. If row-combining is performed
at the macro matrix level properly, the low-triangular structure is preserved for
all the higher-rate codes such that all the resulting codes can be encoded using

back-substitution and sparse matrix multiplication followed by an accumulator.

4.4.2 Decoder Structure

The decoder structure of the RC-IPP LDPC codes follows that of the single-rate
IPP LDPC code proposed in [5] with minor modifications. The basic idea is to
use the decoder corresponding to the lowest-rate IPP code and reuse as much
hardware as possible when performing row-combining. When doing the check-
node update of the row-combined codes, the combined rows must be processed
at the same time. So, instead of processing p consecutive rows in the IPP code
decoder, the p parallel parity-check update block (PCUB) process p/N,. rows
from each of the N,. sub-matrices that are combined in the current code. Since
the RC-IPP LDPC code is designed such that no 1’s are combined in the macro

matrix level (i.e. no bi-diagonal sub-matrix is allowed), no memory conflict will
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occur when the parity-check update is performed in such an order.

One problem for this scheme is the router and reverse router. In [5], the
function of the router and reverse router is to assign the parity-to-variable and
variable-to-check messages to the correct column groups. Each block row may
require different routing depending on how the column group are formed. This
can cause trouble for the RC-IPP decoder when updating rows coming from
different block rows. A solution to this problem is to form complete column
groups. By complete, we mean that in the macro matrix, each group has exactly
one non-zero row per column (Note that the original requirement is at most one
non-zero row per column). If all the column groups are complete, the i message
always goes to the i"* column group and thus the router and the reverse router
can be eliminated. If the total number of 1’s in the macro matrix is not multiples
of the number of rows, the degree distribution will be tweaked such that complete

column groups can be formed for each column group.

The modified PCUB for RC-IPP decoder is shown in Figure 4.3. Each PCUB
has two additional inputs of the sign and magnitude of the sum of L, . from

other rows and also outputs the sign and magnitude of its own sum of L, _ to

dmn
other rows. Additional circuit are used to calculate and select the message S;,
and M;, from other PCUBs. These circuits and connections between PCUBs are
determined by the row-combining rules. For example, Figure 4.4 shows the con-
nection of PCUB; assuming that it takes messages from PCUB, when combining
every two rows and takes messages from both PCUB,; and PCUB3; when combin-
ing every 3 rows. A good row-combining rule should reuse the same combination

as often as possible which not only reduces the PCUB connection complexity but

also makes graph-conditioning easier.
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Figure 4.3: The architecture of parity-check update block (PCUB) for an RC-IPP

LDPC code. This is modified from the modules proposed in [5] such that it can

output LLRs to other PCUBs and also take inputs from them.
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Figure 4.4: The connection of PCUB; to PCUB,; and PCUBj; assuming that it

takes messages from those two PCUBs when performing row-combining.
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4.5 Example RC-IPP LDPC Code Design

Following the procedures in Section 4.4, we designed RC-IPP LDPC codes for
wireless LAN applications subject to various delay, throughput, and hardware
complexity constraints. The code length is a medium-length 1944 bits with the
sub-matrix size of 27 x 27. The target code rate is in the high-rate range between
1/2 and 7/8. Therefore, the macro matrix for the lowest-rate code (R = 1/2) is

a 36 x 72 matrix. The row-combining rules are described as follows

(1) Rate-2/3: Combine block rows 1-12 with rows 19-30.
(2) Rate-3/4: Combine block rows 1-18 with rows 19-36.

(3) Rate-5/6: combines block rows 1-12, 13-24, and 25-36 together.

The highest-rate for this application is 5/6 which has 12 block rows. So,
the maximum variable node degree cannot exceed 12. The row-combining rule
imposes another constraint on the maximum variable node degree. Note that
for all the positions subject to row-combining in any of the rule, at most one
can be nonzero. For the proposed row-combining rules, every four positions form
a set, e.g. {1,19,13,25}, where at most one of them can be nonzero. Thus the
maximum variable node degree is 36/4 = 9. Using the constrained optimal degree
distribution for the rate-5/6 code and limiting the possible variable node degree
to be 2, 3, and 9, the macro matrix, H,;, of the rate-1/2 code consists of 14

columns with degree 9, 46 columns with degree 3, and 12 columns with degree 2.

By ordering the column in descending column degrees and assign the low-
degree columns to the parity section of Hj;, we can form a lower-triangular Hj,

that is suitable for the low-complexity encoder presented in Section 4.4.1.
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Table 4.1: The column groups of the proposed RC-IPP codes. Every group
except the last group has exactly 36 nonzero blocks and there is exactly one
block for each row of H}, in a group. This complete group constraint eliminates
the requirement of router and reverse router in the IPP LDPC decoder which
enables the parallel processing of RC-IPP decoder.

Column Group | (1) | (2) | (3) | (4) | (B) | (6) | (7) (8) (9)
Column degrees | 9 9 19| 3 3 3 12132349 2

No. of columns | 4 4 4 12 (12|12 (684|212 1

As for the decoder, the columns are interleaved such that they form complete
column groups where every group has exactly one 1 per column and one 1 per row.
First we slightly tweak the variable node degree by converted a degree-2 column
into a degree-4 column, and then the complete column group can be formed for
this tweaked degree distribution as shown in Table 4.1. Note that the sum of the
column degrees in each group is exactly 36 which is equal to the number of rows.
The only exception is the 9% column group which consists of only the staircase
block. Figure 4.5 illustrates that the encoder uses the lower-triangular Hj,; and
by interleaving the columns, the column-grouped Hj, is suitable for the decoder

implementation.

Now that the macro matrix is fixed, shift values are generated randomly for
one block column at a time. If the resulting columns satisfy certain ACE pa-
rameters for all the possible rates subject to predefined row-combining rules, we
can proceed to the next block column. Otherwise, another set of shift values will
be generated. This step repeats until all the shift values are successfully gen-
erated. Slightly smaller ACE parameters can be met compared to unstructured
stand-alone codes or structured single-rate codes which means inferior graph con-

nectivity for the RC-IPP codes because of the increased constraints. However,
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Figure 4.5: The encoder uses the lower-triangular H,; which facilitates the en-
coder implementation. Note that the low-degree columns are assigned to the
parity parts of the matrix. By interleaving the columns of Hy; (in the macro
matrix level), the columns of H}, form complete groups and is thus suitable for
the flexible decoder implementation. The variable node degree distributions for

columns in each column group are listed in Table 4.1.
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no error floor is observed for the proposed codes until FER=10"% which means
that the ACE algorithm is still very effective in lowering the error floors of the
RC-IPP codes.

Simulation results in Figure 4.6 compares the FER of the proposed length-
1944 RC-IPP LDPC code and the unstructured stand-alone codes for 10 itera-
tions. If is found that these codes perform well under these conditions of block-
length and number of iterations. Note that the non-optimality of the degree
distribution is not noticed at the lower rates because the number of iteration is
small. As pointed out in [41], when the number of iteration is increased to 50,
the lower-rate row-combining codes suffer performance loss. The gap between
the stand-alone code and the RC-IPP code is reported to be the largest (about
0.3dB) at rate-1/2.

4.6 Conclusions

In this chapter, we proposed the technique of row-combining to achieve rate-
compatibility for LDPC codes. Row-combining has an advantage over punc-
turing or code-shortening because the effective blocklength code of the LDPC
code remains constant. On the other hand, row-combing also has an disadvan-
tage of constant variable node degree which is non-optimal. However, simulation
results show that the performance loss is only marginal and the overall per-
formance is very close to that of the stand-alone LDPC codes. Moreover, the
graph-conditioning technique, ACE algorithm, works well with row-combining

and thus low error floors are guaranteed for each of the target rates.

Rate-compatible scheme is only meaningful if it changes the code rate while

maintaining an affordable increase of the hardware complexity. Practical LDPC

99



0 _9_1/2
@Il AN R —5—2/3

N NG e 314
5/6
—— RC-IPP
'] - - — Stand-alone

Frame Error rate

Figure 4.6: Frame-error-rate of the proposed RC-IPP LDPC codes at rate-1/2,
rate-2/3, rate-3/4, and rate-5/6 for 10 decoder iterations. The FER of unstruc-

tured stand-alone codes at each rate is also plotted for reference.
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code design are subject to structural constraints in order to facilitate the hardware
implementation. It is found that the IPP LDPC codes has flexible and efficient
hardware implementation, and its decoder structure is suitable for decoding the

row-combining LDPC codes.

We proposed design procedures to design RC-IPP LDPC codes. The encoder
of the RC-IPP code requires the macro matrix to be low-triangular and the
encoding process uses back-substitution, sparse matrix multiplication followed
by an accumulator. On the decoder side, an interleaver is used to rearrange the
block columns into complete column groups such that it satisfies the efficient
IPP decoder constraints. Some modifications are made to blocks of the decoder
of the IPP LDPC code. With these modifications, the decoder can process all the
combined rows in parallel and thus achieve rate-compatibility with small increase
of hardware complexity of a single-rate IPP code decoder. Despite all these
constraints introduced by the IPP code and row-combing, graph-conditioning

can still be applied effectively to guarantee low error floors.
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APPENDIX

The derivation of the approximate average EMI with TVLT in Eq. (2.18) is as
follows. Assume that «, 3, and + are uniformly distributed over [0,27) and use

the EMI model in Eq. (2.17),
EMI* (¢ 0)

NoN;N, NB ZZZEMI (gs,é) (-9)
EMIin + W za: 25: [1 — cos (4</5ﬂ 27: [KQ + cos ( )] (.10)

= EMImin

N Nﬂ ZZ [1 — cos (4¢)} ; [KQ + cos <2§R + 27)} (.11)
= EMI,;, ﬁlxz ZZ [1 — cos (4(2))] (.12)

By Eq. (2.13), cos (QQS) = cos (2¢) cos (2a) — sin (2¢) sin (2a) cos (f + 3). Then,

Q

Q

1— cos (4&)
= 2 2cos? (2&) (.13)
= 2 —2cos? (2¢) cos? (2a) — 2sin? (2¢) sin? (2a) cos? (0 + B)
+ 4cos (26) sin (2¢) cos (2a) sin (2a) cos (0 + B) (.14)
5 1

= 7 7% (4¢) — %cos (4a) — %cos (20 + 20)

—g cos (4¢) cos (4a) + i cos (4a) cos (20 + 28)
-I-% cos (4¢) cos (20 + 25) — % cos (4¢) cos (4a) cos (20 + 23)
+ sin (4¢) sin (4a) cos (6 + B) . (.15)

The first two terms are constant over o and /3 while the averages of all the other

terms are zero for uniform « and uniform S. Therefore,

EMI* (¢, 6) ~ EMIL,y,; 1Ky [5 — cos(4¢)] . (.16)
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Note that a relaxed sufficient condition for Eq. (.16) and (.12) to hold is

Y et =0, (.17)

Z cos(260 + 23) = 0, (.18)
B

2005(27) =0, (.19)

which motivates the S-TVLT.
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