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Abstract—In 1982 Ungerboeck presented a set-partitioning
design technique for trellis coded modulation (TCM). Although
this technique directly assigns constellation points to the branches
of the trellis, it has been shown that the codes Ungerboeck
designed may be represented by a linear convolutional code with a
mapper that assigns a series of coded bits to a constellation point.
This notion has remained with the appearance of turbo codes.
Therefore, parallel concatenated trellis coded modulation (PC-
TCM) has been traditionally designed using parallel concatenated
linear convolutional codes with a bits-to-symbol mapper. This
paper shows that in the case of PC-TCM the use of convolutional
codes and a mapper could be too restrictive, and that designing
a nonlinear turbo code directly assigning constellation points to
the output branches of the constituent codes can improve the
performance. Also, an extension of Benedetto’s uniform inter-
leaver for nonlinear constituent codes is presented. Simulation
results are shown for a 2 bits/s/Hz 16-state nonlinear turbo code
with 8PSK. This code is within 0.5 dB away from capacity with
an interleaver length of 10000 bits, and outperforms previous
published linear turbo code by around 0.2 dB.

Index Terms— Channel coding, information rates, turbo codes,
nonlinear codes, PSK, trellis codes, parallel concatenated trellis
codes

I. INTRODUCTION

Trellis Coded Modulation (TCM) was proposed by Unger-
boeck in 1982 [1], where he presented a set-partitioning design
technique which directly assigns constellation points to the
branches of the trellis. However, it has been shown that the
codes Ungerboeck designed may be represented by a linear
convolutional code with a mapper that assigns a series of coded
bits to a constellation point. This notion has remained with the
appearance of turbo codes. Therefore, parallel concatenated
trellis coded modulation (PC-TCM) has been traditionally
designed using parallel concatenated convolutional codes with
a bits-to-symbol mapper [2][3][4].

This paper shows that for higher-order modulations the
use of parallel concatenated linear convolutional codes and
a mapper constrains the performance. Parallel concatenated
nonlinear trellis coded modulation (PC-NLTCM), which di-
rectly assigns constellation points to the output branches of
the constituent codes, can improve the performance. As an
example, simulation results are shown for a 2 bits/s/Hz 16-
state nonlinear turbo code with 8PSK. This code is less than
0.5 dB away from capacity at a BER = 107° with an
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interleaver length of 10000 bits, and outperforms the best
previous published linear turbo code by around 0.2 dB in the
waterfall region. Moreover, this improvement in performance
comes at no cost in increased implementation complexity since
the decoding algorithm for linear or nonlinear constituent
trellis codes is the same.

To facilitate analysis of the new codes, an extension of
Benedetto’s uniform interleaver for nonlinear constituent codes
is presented. It is shown that the same design criteria for linear
turbo codes can be applied to nonlinear turbo codes. Namely,
we generalize the notion of effective free distance for nonlinear
codes, and show that this is an important metric to maximize
when designing constituent codes for a PC-NLTCM.

This paper is organized as follows. Section II reviews the
general structure of the PC-NLTCM. Section III introduces
an extension of Benedetto’s uniform interleaver analysis for
nonlinear codes. Section IV shows an example where PC-
NLTCM can outperform the best reported PC-TCM with
mapper. Section V delivers the conclusions.

II. PARALLEL CONCATENATED TRELLIS CODED
MODULATION

The structure of parallel concatenated nonlinear trellis codes
(PC-NLTCs) was introduced in [5] for binary outputs. It is
in essence the well-known turbo-code structure first proposed
in [6] for systematic linear encoders, except that the output
label is assigned directly to each branch of the trellis by a
look-up table rather than a linear function of the state and
the input bits. A similar replacement of a linear operation
with a look-up table has been successfully proposed for a
decision feedback equalizer to equalize channels with trailing
nonlinear inter-symbol interference [7]. Looking at Fig. 1,
the PC-NLTCM consists of two constituent nonlinear trellis
encoders (block NLTC) linked by an interleaver (block II).
The trellis encoder uses k; bits per trellis section. The NLTC
is composed by a 2”-state trellis structure (block S), and a
look-up table (block LUT). The block S stores the current
trellis state, while the look-up table stores the output for each
branch of the trellis. Each output consists of n. constellation
points, resulting in a total rate of k;/(2n.) bits/symbol. The
trellis codes considered in this work are non-systematic. Also,
in the application considered in this paper k; > 1, in which
case symbol interleaving [4] will be assumed. We will denote
the input block length in bits as K3, and the interleaver length
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Fig. 1. PC-NLTC structure.

in symbols as K, = Kj/k,. Also, we will denote the input
symbol alphabet size as g = 2%,

III. BIiT ERROR RATE BOUND OF PARALLEL
CONCATENATED NONLINEAR CODES

A method to evaluate the bit error probability of a parallel
concatenated coding scheme averaged over all interleavers of
a certain length has been proposed in [8]. This upper bound
is known as the uniform interleaver bound and assumes the
use of a Maximum-Likelihood (ML) decoder. However, this
bound cannot be applied to PC-NLTCs because it assumes a
parallel concatenation of linear codes. Hence, an upper bound
to the BER is found assuming the all-zero word is transmitted.
An extension of the bounding technique proposed in [8] for a
parallel concatenation of nonlinear codes was presented in [5].
However, the approach on [5] presented complex equations,
making it difficult to draw conclusions and design criteria from
them. In this paper, a new probabilistic device will be defined
as interleaver, which produces similar equations to the ones
presented in [8].

Also, the analysis in [8] assumes a parallel concatenation
of systematic codes. Since the codes used in this work are
non-systematic, the new error probability upper bounding
technique will be derived assuming non-systematic constituent
encoders. Nevertheless, it should be clear how to modify the
equations in the case of systematic nonlinear codes. Finally,
the analysis contemplates constituent encoders with more than
one input bit per trellis section. In that case, a symbol-
interleaver [4] is assumed, and the symbol error rate (SER),
i.e. the average number of kp-bit symbols that are in error,
will be computed. Note that for k, = 1 the symbol error rate
is the bit error rate (BER).

The main difference with linear codes, is that for nonlinear
codes we can no longer assume that the all-zero codeword
is transmitted. We propose a new definition of a uniform
interleaver that extends the results, conclusions and design
criteria drawn in [8] to nonlinear constituent codes.

Definition 1: A Uniform Symbol-Interleaver with Re-
mapping (USIR) of length K, (the number of input symbols)
for nonlinear codes is a probabilistic device defined as follows:
There are two operations considered in the interleaver. First,
the uniform interleaver selects any of the K ! possible permu-
tations of the symbol positions with equal probability. Second,
for each position, the value of the symbol can be re-mapped

to any of the ¢ = 2% possible values with equal probability.
The re-mapping can be different for different positions, but in
a fixed position it must be an invertible function over the g-ary
symbols, i.e. no two different symbols can be re-mapped to a
same symbol.

The reason for this extension is that for nonlinear codes
we need to consider all the possible input pairs. The uniform
interleaver as defined in [8] would maintain the Hamming
weight of both input words and their Hamming distance,
which would make the equations more complicated and would
make it harder to draw conclusions from them (see [5]). With
this new definition, any input word can be mapped to any
other input word, no matter their Hamming weight. Thus,
the only value preserved after the interleaver is the symbol-
wise Hamming distance between any two input pairs. This
is a generalization of the analysis for linear codes, since the
Hamming weight of the erroneous input word, which is the
value preserved in [8], is the Hamming distance between the
correct input word (the all-zero word) and the erroneous word.

Using the USIR, any pair of input words U and U such
that d (U, U) = i, can be mapped to any pair of input words
satisfying dy (II(U), IIU) = i with probability:

P((U,0) - @), 1(D))|
dg(U,U) = dg(IIU),I1(V)) = 2) = W

Consider any two words of length n, X = {z1, - ,z,}
and X = {Z#1,--+ ,Zn}, where the z;’s are constellation
points. For the AWGN, the probability of transmitting X, and

receiving a word which makes X more likely to have been
transmitted than X is:

o\ 2 =\ Es I _ B 2 (x,%)
Pe(X_’X)—Q< dE(X7X)2NO> Sie 4No )
e
where E;/Nj is the signal-to-noise ratio and d% (X, X) is the
squared Euclidean distance assuming unit-norm transmission.
Although we will be focusing in the AWGN channel the
technique presented in this work is valid for any channel for
which an additive distance can be defined and for which an
upper bound to the pair-wise error probability can be upper-
bounded by:

P(X — X) < p\X5) 3)

where the distance metric d(X' ,X), and the parameters v, A
depend on the channel. Note that (2) is equivglent to (3) with
d(X,X)=d%(X,X), v =1/2 and A\ = ¢~ %o, We will use
this last general notation throughout the rest of the derivations.

Define the Input-Output Distance Enumerating Function
(IODEF) of a given (n, K,) code C as

AC(I,D) =Y AZ,I'D?,
i,d

“4)

where Afd is the number data-word pairs (U, U) that satisfy

dy(U,U) =i, and the distance between the corresponding
codewords d(X,X) =d. I and D are placeholders.

(1



Also define the Conditional IODEF (I10DEF) as:
AS(D) =Y AC,D?. (5)
d

Inserting Eq. (5) in Eq. (4), the expression for the IODEF
can be rewritten as:

AC(I,D) =) AY(D)I". (6)

Using (3) and (4) the symbol error rate (SER) or bit error
rate (BER) in case k; = 1 can be upper bounded by:

K, 0A°(I, D)

oI ™

SER < - - (1/q)
s D=\,I=1

A. Parallel concatenation of block codes

Denote Cp as the (ny 4 na, K) block code resulting from
the parallel concatenation of two codes, an (n1, Ks) block
code C; and an (ng, K) block code Cs. We will assume
an interleaver of length K symbols, equal to the input word
length, in order to simplify the analysis (An extension can
easily be made for the case when [ consecutive codewords
of the constituent codes are used for one operation of the
interleaver, as explained in [8]). The directional distance
is additive, so the directional distance of the concatenated
codeword is the sum of the directional distances between the
corresponding constituent codewords.

Hence, the conditional IODEF of C'p can be expressed

(using (1)) as:
A7Y(D) - AT*(D)
" (a=1" ()
Notice that the USIR as defined in Sec. IIl can map any
input word to any other input word. Now, using (8) and (4)
in (7), it can be observed that there are two terms of the form
(1/q)%, corresponding to the probability of the correct input
word and the probability of that input word being mapped to
any other word after the interleaver. Define the Normalized

Input-Output Distance Enumerating Function (NIODEF) of a
given (n, K;) code C' as

A°(1,D) =Y A, I'D?, ©)
i,d

AP (D) = (8)

where A, = AY, /¢, Hence, the symbol error probability
can be upper bounded by:
v DAC(I, D)

SER < —

K, oI (19)

D=,I=1
Now, using (5) and (9):
. A9 (D) - A% (D
AZCP(D): 7 ( ) 1K< )
(¢—1)"- ( z)
Note that except for the term 1/¢s in fli’d, and the term
1/(q — 1)? the equations (9)-(11) for a parallel concatenation
of nonlinear codes are the same as for the linear case [8].

(1)

As it turns out, all the conclusions and design criteria derived
in [8] apply to nonlinear constituent codes, as we will prove
in Section III-B. In particular, it is shown that feed-forward
encoders are not suitable for parallel concatenation, and that
recursive convolutional codes are required. Moreover, just as
in [8] an important parameter to maximize is the effective free
distance, which we generalize for nonlinear constituent codes
as:

Definition 2: Effective free distance of a constituent nonlin-
ear code is the minimum distance d(X, X) between the two
outputs corresponding to any two possible input words U and
U with input Hamming distance d (U, U) = 2.

B. Parallel Concatenation of Nonlinear Trellis Codes

Biglieri et al. presented a union bound in [9][10] for general
trellis codes, using a 22”-state trellis diagram. This concept can
be used to find A7 (I, D) for the case of parallel concatenated
nonlinear trellis codes.

As in [9], the product state diagram consists of state pairs,
(Se, Sr), where s, is the encoder state and s, the receiver state.
Following Biglieri’s notation, the product states can be divided
into two sets, the good states denoted by S and the bad states
denoted by Sp defined as

Sa ={(se,8r) | se = sr}, Sp={(se;8r) | 8¢ # sr}. (12)
By suitably renumbering the product states, we get the

transition matrix

Sac(I,D) | Ses(I, D)

S(I’D): SBG(I>D) ‘ SBB(I’D) ’

13)

where the N x N matrix Sgg (I, D) accounts for the transi-
tions between good product states, the N x (N? — N) matrix
Sap(I, D) accounts for the transition from good product
states to bad product states, and so forth. N is the number
of encoder states 2”. For each transition in the product state
diagram from product state S; to S, the branch label is:

(1/q)IdH(ue~,ur)Dd(ﬂce-wr)7 (14)

where u. and x. denote the input and output word for the
encoder states respectively, and u, and z, denote the input
and output word for the receiver. Note that since, there are
q = 2% possible inputs per trellis branch, (1/q) is the the
probability of each branch transition given a certain current
state.

Although A€ (I, D) can be computed using S(I,D), it
becomes very complex. To reduce complexity, two approxi-
mations can be made. Approximation I: Use the same idea
presented in [8]: every path in the trellis representation starts
and ends in the same state. Any possible incorrect word departs
from a good state to a bad state at some trellis section a
certain number of times m, and returns to a good state the
same number of times m. Approximation 2: In the encoding
process, at any trellis section, the encoder state can be any of
the possible N = 2Y states with equal probability.



Define the approximated single-error event function as:

E(I,D) = ps{Scr(I — Sgp) 'Spc}l, (15)

where p, = [ 7 -+ 7] is the probability distribution of the
encoder states and 1 = [11---1]T. Then, E(I, D) can be

written as:

E(I,D) =) e;4D"I". (16)
i,d
Now define:
E,(1,D) = [E(I, D)T = eagI'DY (D)

id

which counts every concatenation of j single-error events,
without leaving any trellis section between them, using Ap-
proximation 2. Every error event can be represented as a
concatenation of single-error events. Using Approximation 2,
a concatenation of j single-error events, with a total length [
can be positioned in

K.~ 147\ Ki
s ,l”)m 5 (18)

J g

K0l <

ways in the trellis. Note that the two sides of the inequality
in (18) are not exactly equal, since the error events start at
a particular state, and there might be positions where the
concatenation of two error events is not possible. However,
for K, large the upper bound becomes very tight. Also, the
symbols of the rest of the K, — [ positions of both input
words are equal and could be almost any of the possible ¢!
combinations, which divided by the term ¢’ appearing in
A; 4 gives ¢~ which is already counted by the terms (1/q)
appearing in the branch labels in S(I,D) (see (14)). The
approximation in (18) follows from the fact that Ky >> [,
K, >> j and the Stirling approximation (’;) ~ k'/i! for
k >> 1. Therefore, for each constituent code,

- Kz'
AC RN T!‘Ej(I,D).

(19)

J

Using (10), (11) and (19), and using again Stirling for
Ky >> 75, we get:

K§j1+j2*i*1) c .
(¢—1)

i,d1,j1 1,d2,j2

SER ~

1!
Z RN ¢
ig1dadinds I
(20)
Therefore, as K increases, the performance of the code will
be driven by the terms with the largest possible value of
(j1 + j2 — i — 1). For recursive encoders, that happens for
a concatenation of error events with ¢ = 2. Therefore, an
important parameter to maximize is the effective free distance
as defined in Sec. III-A. As for linear encoders, feed-forward
encoders lead to poor performance since ¢ can be equal to 1

in which case j; +jo—1—1=0.

C1 )\dl +d2 .

IV. DESIGN EXAMPLE, 2-BITS/S/HZ 16-STATE
PC-NLTCM wiTH 8PSK

In this section we will show that directly assigning con-
stellation points to the trellis branches of each constituent
code can produce codes that outperform linear codes with
mapping. As an example, we will design a 2-bits/s/Hz 16-state
PC-NLTCM with 8PSK and compare its performance against
the 16-state turbo code presented in [4]. In order to make
a fair comparison, we will use the same spread-interleaver
technique used presented in that work and the same interleaver
length K, = 10000 bits, and therefore Ky = 2500 symbols
with k;, = 4. Each output branch of each constituent encoder
consists of one 8PSK constellation point, which produces a
code rate of 2 bits/s/Hz. This is an interesting comparison since
there hasn’t been any published work that shows a turbo code
with symbol interleaving that outperforms the code presented
in [4] under same conditions. The code in [4] presents an
effective free distance of defffree = 1.171573.

We present a 16-state PC-NLTM that has def free = 2. For
the design, we make the following observations. Since k;, = 4,
there are 16 branches leaving each state with each of the
16 possible inputs. It is clear that parallel branches should
be avoided, so the trellis structure is fully connected, i.e.
there is one (and only one) branch connecting each of the 16
origin states with each of the 16 destination states. The design
consists of assigning each branch and input symbol and an
8PSK constellation point. These assignments are constrained
by the following conditions:

o Branches starting at a same state cannot be produced by
the same input symbol.

o Branches merging to a same state cannot be produced
by the same input symbol. This constraint avoids error
events with input Hamming distance equal to 1 and can
be satisfied by using recursive encoders.

Note that since the trellis is fully connected, any two
branches leaving a same state at a certain trellis section will
produce 16 error events with input Hamming distance equal to
2 in the following trellis section. In other words, there are 16
length-two error events starting at each of the 16 states, which
have an input Hamming distance of 2. Thus the effective free
distance of the code is upper bounded by these length-two
error events. A first step in the design is to assign output labels
to each branch so that the minimum distance produced by a
length-two error event is maximized. Given the constraints
stated above, there is no need to consider the input symbols at
this stage. Table I shows the output branch label assignment.
The constellation labeling for 8PSK used in this work is shown
in Fig. 2. Each row represents the starting state (Ss) of the
branch, and each column represents the ending state (.S¢). This
output labeling produces a minimum length-two error-event
distance of 2, assuming a unit-norm constellation.

The next step is to search over all the possible input symbol
assignments in order to avoid error events of length three or
more that have input Hamming distance of two, and output
distance of less than 2. From the conclusions drawn from



TABLE I
OUTPUT LABELS FOR 8PSK. THE ROWS INDICATE THE STARTING STATES
Ss, AND THE COLUMNS THE ENDING STATES Se. 81/82 INDICATES THAT
OUTPUT LABEL IS THE SAME FOR BOTH ENDING STATES.

Ss:Se | 0/8 | 1/9 | 2/10 | 3/11 | 4/12 | 5/13 | 6/14 | 7/15
0 0 1 2 3 4 5 6 7
1 4 5 6 7 0 1 2 3
2 0 3 2 5 4 7 6 1
3 4 7 6 1 0 3 2 5
4 0 1 2 3 4 5 6 7
5 4 5 6 7 0 1 2 3
6 0 3 2 5 4 7 6 1
7 4 7 6 1 0 3 2 5
8 2 3 4 5 6 7 0 1
9 6 7 0 1 2 3 4 5
10 2 1 4 3 6 5 0 7
11 6 5 0 7 2 1 4 3
12 2 3 4 5 6 7 0 1
13 6 7 0 1 2 3 4 5
14 2 1 4 3 6 5 0 7
15 6 5 0 7 2 1 4 3
:
3e ol
4o e0
5® .,

o

Fig. 2. Labeling for 8PSK.

the USIR analysis (Section III-A and Appendix I), this search
must be constrained to recursive trellis structures. We searched
over trellis structures of the form:

S=A-S+B-u mod 2, 21
where S = [s1,s0,53,54]7 represents the state, and
u = [ug,us,us, uy| represents the input symbol. The trellis
structure selected is given by:

0001 1000

0111 0100
A=179011"B=] 0010 (22)

1000 0001

This trellis structure together with the output labeling of Table
I produces a deff free = 2.

Fig. 3 shows a performance comparison between the 2
bits/s/Hz 16-state turbo code for proposed in [4], and the PC-
NLTCM presented in this work. The same symbol interleaver
has been used for both codes. The interleaver length is
K = 10000 bits, or K = 2500 symbols from the symbol
interleaving perspective. It can be observed that the nonlinear
code outperforms the linear code by a little less than 0.2 dB.
At BER = 1075, the PC-NLTCM is within 0.5 dB from the
constrained capacity 2.8 dB.

Fig. 3 also shows the uniform-interleaver BER bounds for
each code. In order to plot the BER bound and not the SER
bound, we assumed that any symbol error is equally likely, the
symbol in error is equally likely to have any of the 2 — 1

10 T T T T
: —o—[4]
— — — Bound [4]
1072 —<+— PC-NLTCM |
PC-NLTCM bound
10
xr
w107}
)
10°}
10°F
10_7 L L L L
2.8 3 3.2 34 3.6 3.8
E,/N, [dB]
Fig. 3. BER vs. E,/Np comparison, for 2 bits/s/Hz 16-state parallel

concatenated codes with 8PSK.

possible values (leaving out the correct symbol), and therefore

we used a correction factor on the error bound of

kb . 21%71
2k — 1

The reason why the BER bound is not tight in the error
floor is that the interleaver design plays an important role in
these high-rate applications, as shown in [4], and therefore an
average interleaver would perform much worse than the care-
fully designed one used here. However, at the constituent code
design stage, it gives a good prediction of which constituent
code would perform better than the other.

It is worth mentioning that this is merely one example where
constraining the design to a linear code with a mapper could
be too restrictive, and directly assigning constellation points to
each branch could produce a larger effective free distance and
a better parallel concatenated code. General nonlinear turbo
code design is a rich area for continued research.

BERbOund ~ SERbound. (23)

V. CONCLUSIONS

Parallel concatenated nonlinear trellis codes can be ben-
eficial for higher-order modulations. Although trellis coded
modulation can achieve optimal performance using convo-
lutional codes with a proper labeling, we showed with an
example that for parallel concatenated trellis coded modulation
using convolutional codes with labeling may be suboptimal
under certain scenarios. As an example, we have designed
a rate 2 bits/s/Hz 16-state parallel concatenated nonlinear
trellis code for 8PSK, which outperforms the best previously
reported linear turbo code with labeling by 0.2 dB over
AWGN under same conditions. This code is within 0.5 dB
away from capacity at a BER = 107°. Moreover, this
improvement comes with the same decoding complexity as
with convolutional codes as constituent codes.



To facilitate analysis of the new codes, an extension of
Benedetto’s uniform interleaver analysis for nonlinear con-
stituent codes was derived. It was shown that the design criteria
for linear codes can be generalized to nonlinear codes. In
particular, we generalize the notion of effective free distance
for nonlinear constituent codes, and conclude that this is an
important parameter to maximize at the design stage.
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