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Abstract

This paper addresses the problem of designing parallel concatenated nonlinear trellis codes (PC-NLTCs).
These codes have advantages over binary linear turbo codes for higher-order modulations or in applications
where a non-uniform distribution of ones and zeros in the output is optimal. Two applications are considered
in this work. First, this paper shows that for higher-order modulations using binary linear codes is too
restrictive. Simulation results are shown for a 2 bits/s/Hz 16-state nonlinear turbo code with 8PSK. This
code is less than 0.5 dB away from capacity at a BER = 10−5 with an interleaver length of 10000 bits, and
outperforms previous published linear turbo codes by around 0.2 dB. Simulation results are shown for each
application. Second, this paper presents the use of PC-NLTC codes in an Interleaver-Division Multiple Access
(IDMA)-based architecture with single-user decoding over the OR multiple access channel (OR-MAC). These
PC-NLTCs are designed specifically for the Z-Channel that arises in an OR-MAC channel when each user
treats the other users as noise. Over the OR-MAC single-user decoding permits operation at about 70%
of the full multiple access channel sum capacity. In order to reach the sum capacity of the OR-MAC with
single-user decoding, these codes employ a ones density of much less than 50%. To facilitate analysis of the
new codes, an extension of Benedetto’s uniform interleaver analysis to handle nonlinear constituent codes is
presented.
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I. Introduction

THIS paper demonstrates the benefits of using nonlinear constituent codes in parallel

concatenated trellis codes for certain applications. In one application, when using

higher-order modulations, there is an improvement in performance possible when the binary

parallel concatenated trellis codes are permitted to be nonlinear. In another application, they

provide a nonuniform distribution of transmitted ones and zeros, which cannot be provided

by linear codes.

Trellis-Coded Modulation (TCM) was proposed by Ungerboeck in 1982 [1]. Ungerboeck

presented a set-partitioning design technique which directly assigns constellation points to

the branches of the trellis. However, it has been shown that the codes Ungerboeck designed

This work was supported by the Defence Advanced Research Project Agency under SPAWAR Systems Center San
Diego Grant N66001-02-1-8938.
M. Griot, A. I. Vila Casado and R. D. Wesel are with the Electrical Engineering Department, University of California,
Los Angeles, CA 90095 USA (e-mail:[mgriot,avila,wesel]@ee.ucla.edu).

1



may be represented by a linear convolutional code with a mapper that assigns a series

of coded bits to a constellation point. This notion has remained with the appearance of

turbo codes. Therefore, parallel concatenated trellis coded modulation (PC-TCM) has been

traditionally designed using parallel concatenated convolutional codes with a bits-to-symbol

mapper [2][3][4].

This paper shows that for higher-order modulations the use of parallel concatenated linear

convolutional codes and a mapper constrains performance. Parallel concatenated nonlinear

trellis coded modulation (PC-NLTCM), which directly assigns constellation points to the

output branches of the constituent codes, can improve the performance. As an example,

simulation results are shown for a 2 bits/s/Hz 16-state nonlinear turbo code with 8PSK.

This code is less than 0.5 dB away from capacity at a BER = 10−5 with an interleaver

length of 10000 bits, and outperforms the best previous published linear turbo code by

around 0.2 dB in the waterfall region. Moreover, this improvement in performance comes at

no cost in increased implementation complexity since the decoding algorithm for linear or

nonlinear constituent trellis codes is the same.

As a second application, consider the OR channel, or its isomorphic channel, the Bi-

nary Multiplier Channel [5], as a target application for Interleaver-Division Multiple Access

(IDMA). There have been many contributions to the problem of providing multiple access.

However, many common forms of multiple access, such as time-division (TDMA), frequency-

division (FDMA), code-division (CDMA) or rate-splitting [6], require considerable coordi-

nation. The common approaches that do not require coordination, such as Aloha or CSMA,

require re-transmission which increases the maximum delay. One recent successful approach

for low-delay uncoordinated multiple-access is Interleaver-Division Multiple-Access (IDMA)

[7][8][9], which uses interleaving to distinguish among signals from different users. Com-

pletely uncoordinated transmissions using IDMA and decoding that treats all signals except

the desired signal as noise can theoretically achieve about 70% of the sum capacity over the

OR channel. By sacrificing 30% of the sum rate, this IDMA approach provides a significant

reduction in complexity over coordinated or joint approaches, while also providing low-delay

transmission, making it a practically attractive technique.

This paper presents an uncoordinated multiple access system employing IDMA on the OR-

MAC with single-user decoding (SUD), where other users are treated as noise. Nonlinear
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(and nonsystematic) codes are required to provide a ones density of much less than 50%,

which is necessary to achieve the SUD sum capacity. Ratzer et al. have addressed the

problem of designing codes with nonuniform distribution in the output, proposing sparse

LDPC codes over large finite fields, i.e. using symbols from GF (q) in the parity-check

matrix [10]. However, this solution requires a much more complex decoder than binary

LDPC codes, especially in the application considered in this work where the required low

ones densities would lead to large values of q. We propose the use of parallel concatenated

non-linear trellis codes (PC-NLTCs) which have the same decoding complexity as linear

turbo codes, provide a wide range of ones densities and approach the approximately 70%

SUD sum capacity.

To facilitate analysis of the new codes, an extension of Benedetto’s uniform interleaver

for nonlinear constituent codes is presented. It is shown that the same design criteria for

linear turbo codes can be applied to nonlinear turbo codes. Namely, we generalize the notion

of effective free distance for nonlinear codes, and show that this is an important metric to

maximize when designing constituent codes for a PC-NLTC.

This paper is organized as follows. Section II shows the structure of the parallel con-

catenated nonlinear trellis structure. Section III shows an extension of Benedetto’s uniform

interleaver analysis to bound the bit-error rate of parallel concatenated nonlinear codes.

Section IV proposes the use of PC-NLTCM with a higher-order modulation over the AWGN

channel. Section V introduces the use of PC-NLTCs over the OR-MAC using IDMA with

single-user decoding. Section VI delivers the conclusions.

II. Parallel concatenated nonlinear codes

The structure of the PC-NLTC encoder was introduced in [14]. It is in essence the well-

known turbo-code structure first proposed in [11] for systematic linear encoders, except

that the output label is assigned directly to each branch of the trellis by a look-up table

rather than a linear function of the state and the input bits. A similar replacement of a

linear operation with a look-up table has been successfully proposed for a decision feedback

equalizer to equalize channels with trailing nonlinear inter-symbol interference [12]. Looking

at Fig. 1, the encoder consists of two constituent nonlinear trellis encoders (labeled NLTC)

linked by an interleaver (labeled Π). Each trellis encoder uses kb input bits per trellis section.

The NLTC includes a 2ν-state trellis structure (block S), and a look-up table (block LUT).
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The block S stores the current trellis state, while the look-up table stores the output for

each branch of the trellis. In the case of higher-order modulation applications, each output

consists of n0 constellation points, resulting in a total rate of kb/(2n0) bits/symbol. In the

OR-MAC application, each output consists of n0 bits, resulting in an overall rate of kb/(2n0).

The look-up table is built so that the optimal ones distribution is transmitted. For the two

applications considered in this work the trellis codes are non-systematic. Also, in case of

kb > 1, symbol interleaving [4] will be assumed. We will denote the input block length in

bits as Kb, and the interleaver length in symbols as Ks = Kb/kb. Also, we will denote the

input symbol alphabet size as q = 2kb .

III. Error Rate Bound of Parallel Concatenated Nonlinear Codes

Benedetto and Montorsi proposed a method to evaluate the bit error probability of a

parallel concatenated coding scheme averaged over all interleavers of a certain length in [13].

This upper bound is known as the uniform interleaver bound, and assumes the use of a

Maximum-Likelihood (ML) decoder. However, this bound cannot be applied to PC-NLTCs

because it assumes a parallel concatenation of linear codes. Hence, an upper bound to the

BER is found assuming the all-zero word is transmitted. For nonlinear codes all data-words

need to be considered when finding the upper-bound. Thus, an extension of the bounding

technique proposed in [13] for a parallel concatenation of nonlinear codes is required. In

order to do that, a new probabilistic interleaver will be defined, which produces similar

equations to the linear case.

Also, the analysis in [13] assumes a parallel concatenation of systematic codes. Since

the codes used in this work are non-systematic, the new error upper-bounding technique

will be derived assuming non-systematic constituent encoders. Nevertheless, it should be

clear how to modify the equations in the case of systematic nonlinear codes. Finally, the

analysis contemplates constituent encoders with more than one input bit per trellis section,

i.e. kb ≥ 1. In that case, a symbol-interleaver [4] is assumed, and the symbol error rate

(SER), i.e. the average number of kb-bit symbols that are in error, will be computed. Note

that for kb = 1 the symbol error rate is the bit error rate.

A. Uniform symbol-interleaver with re-mapping for nonlinear codes

In this section we extend the uniform interleaver bounding technique in [13] to nonlinear

constituent codes. The main difference is that for nonlinear codes we can no longer assume
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that the all-zero codeword is transmitted. We propose a new definition of uniform interleaver

that extends the results, conclusions and design criteria drawn in [13] to nonlinear constituent

codes.

Definition 1: A Uniform Symbol-Interleaver with Re-mapping (USIR) of length Ks (the

number of input symbols) for nonlinear codes is a probabilistic device defined as follows:

There are two operations considered in the interleaver. First, the uniform interleaver selects

any of the Ks! possible permutations of the symbol positions with equal probability. Second,

for each position, the value of the symbol can be re-mapped to any of the q = 2Kb possible

values with equal probability. The re-mapping can be different for different positions, but in

a fixed position it must be an invertible function over the q-ary symbols, i.e. no two different

symbols can be re-mapped to a same symbol.

The reason for this extension is that for nonlinear codes we need to consider all the possible

input pairs. The uniform interleaver as defined in [13] would maintain the Hamming weight

of both input words and their Hamming distance, which would make the equations more

complicated and would make it harder to draw conclusions from them (see [14]). With this

new definition, any input word can be mapped to any other input word, no matter their

Hamming weight. Thus, the only value preserved after the interleaver is the symbol-wise

Hamming distance between any two input pairs. This is a generalization of the analysis

for linear codes, since the Hamming weight of the erroneous input word, which is the value

preserved in [13] is the Hamming distance between the correct input word (the all-zero word)

and the erroneous word.

Any pair of input words Um and Un such that dH(Um, Un) = i, can be mapped by the

USIR to any other pair of input words satisfying dH(Π(Um), Π(Un)) = i with probability:

P
(
(Um, Un) → (Π(Um), Π(Un))

∣∣∣dH(Um, Un) = dH(Π(Um), Π(Un)) = i
)

=
1

qKs · (q − 1)i · (Ks

i

) .

(1)
Consider any two output codewords Xm and Xn. The technique presented in this work

is valid for any channel for which an additive distance can be defined and for which the

pair-wise error probability can be upper-bounded by:

P (Xm → Xn) + P (Xn → Xm) ≤ ν(λd(Xm,Xn) + λd(Xn,Xm)) (2)

where the directional distance metric d(Xm, Xn), and the parameters ν and λ depend on the

5



channel. Note that d(Xm, Xn) and d(Xn, Xm) may not be equal in asymmetric channels. As

we will see in Sections IV and V, both the pair-wise probability of error of the AWGN and

the Z-Channel can be upper-bounded by an expression of the form shown in (2). Considering

the sum of both directional pair-wise error probabilities in (2) will be helpful when finding

the error bound over the Z-Channel, and is generally useful as shown in [15]. Define the

Input-Output Distance Enumerating Function (IODEF) of an (n,Ks) code C as

AC(I, D) =
∑

i,d

AC
i,dI

iDd, (3)

where AC
i,d is the number data-word pairs (U, Û) that satisfy dH(U, Û) = i , and the directional

distance between the corresponding codewords d(Xm, Xn) = d. I and D are placeholders.

Also define the Conditional IODEF (CIODEF) as:

AC
i (D) =

∑

d

AC
i,dD

d. (4)

Inserting Eq. (4) in Eq. (3), the expression for the IODEF can be rewritten as:

AC(I,D) =
∑

i

AC
i (D)I i. (5)

Using (2) and (3) the symbol error rate (SER) or bit error rate (BER) in case kb = 1 can be

upper bounded by (see Appendix I):

SER ≤ ν

Ks

· (1/q)Ks
∂AC(I, D)

∂I

∣∣∣∣∣
D=λ,I=1

. (6)

B. Parallel concatenation of block codes

Denote CP as the (n1 + n2, Ks) block code resulting from the parallel concatenation of

two codes, an (n1, Ks) block code C1 and an (n2, Ks) block code C2. We will assume an

interleaver of length Ks symbols, equal to the input word length, in order to simplify the

analysis (An extension can easily be made for the case when l consecutive codewords of the

constituent codes are used for one operation of the interleaver, as explained in [13]). The

directional distance is additive, so the directional distance of the concatenated codeword is

the sum of the directional distances between the corresponding constituent codewords.

Hence, the conditional IODEF of CP can be expressed (using (1)) as:
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ACP
i (D) =

AC1
i (D) · AC2

i (D)

qKs · (q − 1)i · (Ks

i

) . (7)

Notice that the USIR as defined in Sec. III-A can map any input word to any other input

word. Now, using (7) and (3) in (6), it can be observed that there are two terms of the form

(1/q)Ks , corresponding to the probability of the correct input word and the probability of

that input word being mapped to any other word after the interleaver. Define the Normalized

Input-Output Distance Enumerating Function (NIODEF) of a given (n,Ks) code C as

ÃC(I, D) =
∑

i,d

ÃC
i,dI

iDd, (8)

where ÃC
i,d = AC

i,d/q
Ks . Hence, the symbol error probability can be upper bounded by:

SER ≤ ν

Ks

∂ÃC(I, D)

∂I

∣∣∣∣∣
D=λ,I=1

. (9)

Now, using (4) and (8):

ÃCP
i (D) =

ÃC1
i (D) · ÃC2

i (D)

(q − 1)i · (Ks

i

) . (10)

Note that except for the term 1/qKs in Ãi,d, and the term 1/(q − 1)i the equations (8)-(10)

for a parallel concatenation of nonlinear codes are the same as for the linear case [13]. As it

turns out, all the conclusions and design criteria derived in [13] apply to nonlinear constituent

codes. See Appendix II for a thorough derivation. In particular, it is shown that feed-forward

encoders are not suitable for parallel concatenation, and that recursive convolutional codes

are required. Moreover, just as in [13] an important parameter to maximize is the effective

free distance, which we generalize for nonlinear codes as:

Definition 2: Effective free distance of a constituent code is the minimum distance

d(Xm, Xn) between the two outputs corresponding to any two possible input words Um and

Un with input Hamming distance dH(Um, Un) = 2.

IV. Nonlinear Turbo Codes for Higher-Order Modulations over AWGN

As expressed in Section I, PC-TCM has been traditionally designed using parallel con-

catenated convolutional codes with a bits-to-symbol mapper. However, using linear codes

turns out to be too restrictive for higher-order modulations. In this section we show with an

example that nonlinear codes improve performance for PC-TCM over AWGN using 8PSK.
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For the AWGN case, the pairwise probability of error can be upper bounded by:

Pe(Xm → Xn) = Q

(√
d2

E(Xm, Xn)
Es

2N0

)
≤ 1

2
e
− Es

4N0
d2

E(Xm,Xn)
, (11)

where Es/N0 is the signal-to-noise ratio and d2
E(Xm, Xn) is the squared Euclidean distance

assuming unity power transmission. Thus we obtain (2) with d(Xm, Xn) = d2
E(Xm, Xn),

ν = 1/2 and λ = e
− Es

4N0 . In the following example we will try to maximize the effective

squared Euclidean distance, and show it can be increased using PC-NTCM.

A. Design Example, 2-bits/s/Hz 16-state PC-NLTCM with 8PSK

In this section we will show that directly assigning constellation points to the trellis

branches of each constituent code can produce codes that outperform linear codes with

mapping. As an example, we will design a 2-bits/s/Hz 16-state PC-NLTCM with 8PSK and

compare its performance against the 16-state turbo code presented in [4]. In order to make

a fair comparison, we will use the same spread-interleaver technique used in that work and

the same interleaver length Kb = 10000 bits, and therefore Ks = 2500 symbols with kb = 4.

Each output branch of each constituent encoder consists of one 8PSK constellation point

(n0 = 1), which produces a code rate of 2 bits/s/Hz. This is an interesting comparison since

there hasn’t been any published work that shows a turbo code with symbol interleaving that

outperforms the code presented in [4] under same conditions.

The code in [4] has an effective free distance of deff,free = 1.171573. We present a 16-state

PC-NLTM that has deff,free = 2. For the design, we make the following observations. Since

kb = 4, there are 16 branches leaving each state with each of the 16 possible inputs. It is

clear that parallel branches should be avoided, so the trellis structure is fully connected, i.e.

there is one (and only one) branch connecting each of the 16 origin states with each of the

16 destination states. The design consists of assigning each branch and input symbol and an

8PSK constellation point. These assignments are constrained by the following conditions:

• Branches starting at a same state cannot be produced by the same input symbol.

• Branches merging to a same state cannot be produced by the same input symbol. This

constraint avoids error events with input Hamming distance equal to 1 and can be satisfied

by using recursive encoders.

Note that since the trellis is fully connected, any two branches leaving a same state at a

certain trellis section will produce 16 error events with input Hamming distance equal to 2
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in the following trellis section. In other words, there are 16 length-two error events starting

at each of the 16 states, which have an input Hamming distance of 2. Thus the effective

free distance of the code is upper bounded by these length-two error events. A first step in

the design is to assign output labels to each branch so that the minimum distance produced

by a length-two error event is maximized. Given the constraints stated above, there is no

need to consider the input symbols at this stage. Table I shows the output branch label

assignment. The constellation labeling for 8PSK used in this work is shown in Fig. 2. Each

row represents the starting state (Ss) of the branch, and each column represents the ending

state (Se). This output labeling produces a minimum length-two error-event distance of 2,

assuming a unit-norm constellation.

The next step is to search over all the possible input symbol assignments in order to avoid

error events of length three or more that have input Hamming distance of two, and output

distance of less than 2. From the conclusions drawn from the USIR analysis (Section III-B

and Appendix I), this search must be constrained to recursive trellis structures. We searched

over trellis structures of the form:

S = A · S + B · u mod 2, (12)

where S = [s1, s2, s3, s4]
T represents the state, and u = [u1, u2, u3, u4] represents the input

symbol. The trellis structure selected is given by:

A =




0 0 0 1

0 1 1 1

1 0 1 1

1 0 0 0




, B =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(13)

This trellis structure together with the output labeling of Table I produces a deff,free = 2.

Fig. 3 shows a performance comparison between the 2 bits/s/Hz 16-state turbo code for

proposed in [4], and the PC-NLTCM presented in this work. The same symbol interleaver

has been used for both codes. The interleaver length is Kb = 10000 bits, or Ks = 2500

symbols from the symbol interleaving perspective. It can be observed that the nonlinear

code outperforms the linear code by a little less than 0.2 dB. At BER = 10−5, the PC-

NLTCM is within 0.5 dB from the constrained capacity 2.8 dB.

Fig. 3 also shows the uniform-interleaver BER bounds for each code. The reason why the
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BER bound is not tight in the error floor is that the interleaver design plays an important role

in these high-rate applications, as shown in [4], and therefore an average interleaver would

perform much worse than the carefully designed one used here. However, at the constituent

code design stage, it gives a good prediction of which constituent code would perform better

than the other.

It is worth mentioning that this is merely one example where constraining the design to

a linear code with a mapper could be too restrictive, and directly assigning constellation

points to each branch could produce a larger effective free distance and a better parallel

concatenated code. General nonlinear turbo code design is a rich area for continued research.

V. Uncoordinated Multiple Access in the OR Channel : the Z-Channel

In the OR-MAC, if all users transmit a zero, then the channel output is a zero. However, if

even one user transmits a one, then the channel output is a one. This channel is isomorphic,

interchanging ones and zeros at both the transmitter and the receiver side, to the Binary

Multiplier Channel [5]. The information-theoretic capacity region of this channel is the

section of the positive orthant bounded by the unit nu-simplex, where nu is the number of

users. In other words, it is the region where all the rates are non-negative and the sum of

all rates is less than or equal to 1.

This capacity may be achieved with time-division multiple access, joint decoding of all

the transmitted sequences, or succesive decoding if the transmitted ones densities and rates

are carefully controlled [6]. All of these solutions require either coordination of all users or

a very complex decoder, especially for a large number of users.

As in [16] we consider a less complex alternative to joint decoding and successive decoding,

where each decoder treats all signals except the desired signal as noise. This transforms the

OR channel into the Z-Channel shown in Fig. 4. Assuming that all users have the same

transmitted ones density p1, the zero-to-one transition probability, denoted as α, is the

probability that any of the other users transmits a 1:

α = 1− (1− p1)
nu−1, (14)

which is a function of the number of users and the ones density employed by the users.

The maximum theoretical sum-rate with single-user decoding decreases as the number

of users increases, but it converges monotonically and rapidly to ln 2 ' 0.6931. This is a
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relatively small loss in rate for the substantial reduction in complexity. In order to be able

to achieve this maximum theoretical sum-rate, the optimal ones density of each individual

user decreases as the number of users increase. For example, the optimal density of ones

is p1 ' 0.2864 for 2 equal-rate users, p1 ' 0.1080 for 6 equal-rate users, and p1 ' 0.0558

for 12 equal-rate users. On the other hand, when maintaining equally likely ones and zeros

(p1 = 0.5) the maximum theoretical sum-rate rapidly decreases to zero with the number of

users.

One successful approach for uncoordinated multiple-access is IDMA. With IDMA, every

user has the same channel code, but each user’s code bits are permuted using an interleaver

drawn at random, unique with probability close to 1. The receiver is assumed to know the

interleaver of the desired user. Since the interleavers are independently and randomly picked

by each user, the resulting distributions of ones and zeros at each time are IID. Hence, with

IDMA in the OR-MAC, a receiver should see the desired signal corrupted by a memoryless

Z-channel. We compared the performance of nonlinear parallel concatenated trellis codes

under two channels: 1) a 6-user OR-MAC channel using IDMA and 2) the equivalent Z-

channel that the receiver would see if the errors were not generated by codewords but by

random errors. The performance was the same, which corroborates the theory. Thus, in the

context of IDMA, the remaining challenge is the design of a good code for the Z-Channel

with the desired transmitted ones density.

This code must satisfy the optimal ones density p1(nu) given by the number of users nu.

When treating other users as noise, p1(nu) → 1 − (1/2)1/nu when nu → ∞. Actually, even

for a relatively small number of users one can consider

p1(nu) ' 1− (1/2)1/nu . (15)

Another design parameter is the desired target sum-rate, which will be denoted as R+.

Theoretically, error-free transmission can be achieved if R+ ≤ ln 2. We set the target sum-

rate to R+ = 0.6, since an excess mutual information requirement of 0.1 bits is typical of

AWGN turbo codes with similar blocklengths operating at similar spectral efficiencies.

Given the design parameters p1(nu) and R+, the following parameters for the constituent

codes need to be chosen:

• The number of trellis states. Typically 2ν , where ν = 3, 4.
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• The number of bits per output branch n0. This value has to be chosen so that the sum-rate

is as close as possible to the target sum-rate:

nu ·
(
kb/(2 · n0)

) ' R+. (16)

• The Hamming weight of the output of each trellis branch. The average Hamming weight

of the output ŵb must satisfy:
ŵb ' p1(nu) · n0. (17)

For example, using a parallel concatenation of two 8-state NLTCs (ν = 3), for nu = 6, the

average number of ones per output trellis branch is

ŵb ' p1(nu) · n0 =
p1(nu) · nu

2 ·R+
· kb ' 0.54 · kb. (18)

If single-input encoders are used (kb = 1), at least 46% of the branches should have all-zero

outputs. This is the case for any number of users. Hence, single-input encoders would have a

very low minimum distance in this application, resulting in a poor performance. Therefore,

constituent trellis codes with kb ≥ 2 are required. Multiple-input convolutional codes for

turbo coding have been studied in [17][18][19] among other papers.

Using a trellis structure with kb = 2, for nu = 6 users and a target sum-rate of R+ = 0.6,

then n0 = 10, and ŵb ' 1.08.

The design of the PC-NLTC consists of choosing the trellis branch-structure and the

output values of the branches that satisfy the required ŵb.

A. Pairwise error probability for the Z-Channel

Let Xm and Xn be any two possible codewords of length Nb bits. The Directional Hamming

Distance for the Z-Channel dD(Xm, Xn) is the number of positions where Xm(i) = 0 and

Xn(i) = 1, with i = 1, · · · , Nb. Note that dD(Xm, Xn) is not necessarily equal to dD(Xn, Xm).

Let Y = {Y (1), · · · , Y (Nb)} be the received word. Given Y , any possible transmitted

codeword X must satisfy dD(Y,X) = 0, since there cannot be any one-to-zero transitions

on the Z-Channel. The most likely transmitted codeword X̂, is the codeword X satisfying

dD(Y, X) = 0, that minimizes the number of zero-to-one transitions. Hence, the maximum

likelihood decoder for the Z-Channel chooses the codeword X̂ as:

X̂ = argminX∈N
[
dD(X,Y )

]
, (19)
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where N is the set of codewords that satisfy dD(Y, X) = 0.

With α as the probability of a zero-to-one transition in the Z-Channel (see Fig. 4),

Eq. (19) can be used to derive the probability of transmitting Xm and decoding Xn under

ML decoding to be:

Pe(Xm → Xn) =





1
2
· αdD(Xm,Xn) ,WH(Xm) = WH(Xn)

αdD(Xm,Xn) ,WH(Xm) < WH(Xn)

0 ,WH(Xm) > WH(Xn).

where WH(·) denotes the Hamming weight. Therefore, considering the sum of the two

directional pair-wise error probabilities:

Pe(Xm → Xn) + Pe(Xn → Xm) = αmax(dD(Xm,Xn),dD(Xn,Xm)) ≤ 1

2
[αdD(Xm,Xn) + αdD(Xn,Xm)],

(20)
which is of the form of (2), with ν = 1/2 and λ = α, and with the directional distance

dD(Xn, Xm) as the distance metric.

B. Performance Results for the OR-MAC

As a first example, we designed a PC-NLTC for the 6-user case (nu = 6), using kb = 2 and

n0 = 10, which results on a sum-rate R+ = 0.6. The trellis structure is the same as the one

proposed on [19] for an 8-state (ν = 3) turbo code. An interleaver length of 8192 was used.

The optimal average number of ones per output branch is ŵb ' 1.08, which provides a ones

density p1 = 0.108. Exactly one 1 per output branch of ten bits was used. The resulting

ones density is p1 = 1/10 = 0.1, which corresponds to a crossover probability α = 0.40951.

Fig. 5 shows the BER and FER in terms of the crossover probability α, and the USIR

BER upper bound for ML decoding. The diamond shapes show the crossover probability

α = 0.40951 corresponding to the 6-user OR-MAC with single-user decoding. The FER for

the 6-user OR-MAC is 1.28 × 10−3, and the BER is 7.34 × 10−7. It can be seen that for

a low α the BER bound is close to the actual BER in the simulations. For large crossover

probabilities the iterative message passing algorithm diverges from the ML decoding bound,

as is the case for standard turbo codes in the AWGN channel at low SNR. The bound predicts

with accuracy the actual BER at the point of interest for the 6-user OR-MAC, α = 0.40951.

In order to plot the BER bound and not the SER bound, we assumed that any symbol error

is equally likely, the symbol in error is equally likely to have any of the 2kb − 1 possible
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values (leaving out the correct symbol), and therefore we used a correction factor on the

error bound of
BERbound ≈ kb · 2kb−1

2kb − 1
SERbound. (21)

C. Limitation on the number of users

As mentioned in Sec. V, a sum-rate of less than or equal to ln 2 ' 70% can be theoretically

achieved for any number of users in the OR-MAC, when each user treats the others as noise.

However, for a fixed number of input-bits per trellis section kb, fixed number of states ν,

fixed target sum-rate R+, and a fixed maximum tolerable BER, there may be a limitation

on number of users nu.

Denote Wb the total number of ones in all the 2kb+ν branches. Then

Wb ' p1(nu) · n0 · 2kb+ν . (22)

Given a certain number of users nu, and using (15-22), the total number of ones in all the

2kb+ν branches can be rewritten as:

Wb(nu) '
(kb · 2kb+ν

2 ·R+

)
·
(
nu · (1− (1/2)1/nu)

)
. (23)

Now,
lim

nu→∞
nu · (1− (1/2)1/nu) = ln 2, (24)

and is upper-bounded by that number. It actually converges rapidly to that value. Thus,

Wb(nu) → ln 2 ·
(kb · 2kb+ν

R+

)
, (25)

for a large enough number of users. For example, in the results shown in Sec. V-B, R+ = 0.6

and kb = 2, so Wb converges to 36.97. Fig. 6 shows the number of output bits per trellis

section n0 and the total number of ones in all the branches Wb vs. the number of users, for

a concatenation of 8-state (ν = 3) and 16-state (ν = 4) trellis codes. It can be seen that for

the 8-state encoder case, n0 is greater than the total number of ones in all branches for 22

users or more. In this case each of the Wb ones can be placed in a different position among

the possible n0 output bits. As the number of users increases, the number of output bits

n0 increases linearly, but the total number of ones remains the same. Thus, the best code

for 22 users is essentially the best code for any number of users greater than 22. The only

difference additional zeros concatenated to the output. However, while the code strength
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cannot be improved, the crossover probability

α(nu) = 1− (1− p1(nu))
nu−1 = 1− (1/2)(nu−1)/nu , (26)

increases with the number of users. Hence, the performance of the code will degrade as the

number of users increases above 22.

In order to show quantitatively the limitation in the number of users for a fixed number of

states, we designed a code for the 24-user case, for a target-rate of R+ = 0.6 and ν = 3. The

total number of ones in all the branches is fixed to 36 for more than 22 users in order to satisfy

the optimal ones density. Simulations were performed for 24, 30, 48, 60, 72 and 96 users. In

all those cases the sum-rate is 0.6. The ones density for each nu is p1(nu) = (36 ·p1)/(32 ·nu)

and α = 1 − (1 − p1)
nu−1. The best double-input 8-state trellis code concatenation for 24

users is the best code for 30, 48, 60, 72 and 96 users (with added zeros to the output). The

only thing that changes is α, thus degrading the performance as α increases. Table II shows

the FER and BER for each case. It can be observed that for 24 users, the performance is

similar to the performance of the code designed for 6 users. However, as the number of users

increases, α increases, and the performance is significantly degraded. Hence, for more than

24 users, a 16 state PC-NLTC should be used.

Fig. 7 shows the performance of a 16-state PC-NLTC designed for a 44-user OR-MAC.

The ones density of the code is p1 = 1/74 ≈ 0.0135, a little less than the optimal density

p1 = 1−(1/2)1/44 ≈ 0.0156. The sum-rate is R+ = 44/74 ≈ 0.595, and the interleaver-length

is Kb = 8192. Again, the diamond shapes show the crossover probability α = 0.442918

corresponding to the 44-user OR-MAC with single-user decoding. The FER is still around

10−3, but the BER is above 10−4. This is due to the fact that the crossover probability

corresponding to the 44-user OR-MAC falls in the waterfall region of the performance of the

code, as opposed to the 6-user OR-MAC case where it falls in the error floor region. For

more than 44 users, either the number of states or kb should be increased to maintain the

performance, increasing the decoding complexity as well. Fig. 7 also shows the performance

of the same code for 43 users. In that case the sum-rate is R+ = 43/74 ≈ 0.581 and the

BER is around 10−7.
VI. Conclusions

This paper addressed the problem of designing parallel concatenated nonlinear trellis codes

for two applications. The first application is the transmission of 8PSK over the AWGN chan-
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nel where PC-NLTC improves performance over parallel concatenated binary linear trellis

codes with bits-to-constellation-point mapping. The second application is the uncoordinated

multiple access to the OR channel with single user decoding where a non-uniform distribution

of ones and zeros in the transmission is required.

Parallel concatenated nonlinear trellis codes can be beneficial for higher-order modulations.

Although trellis coded modulation can achieve optimal performance using convolutional

codes with a proper labeling, we showed with an example that for parallel concatenated trellis

coded modulation using convolutional codes with labeling may be suboptimal under certain

scenarios. As an example, we have designed a rate 2 bits/s/Hz 16-state parallel concatenated

nonlinear trellis code for 8PSK, which outperforms the best previously reported linear turbo

code with labeling by 0.2 dB over AWGN under same conditions. This code is within 0.5 dB

away from capacity at a BER = 10−5. Moreover, this improvement comes with the same

decoding complexity as with convolutional codes as constituent codes.

For the second application, parallel concatenated nonlinear trellis codes have been de-

signed for the Z-channel, along with an IDMA-based architecture that allows uncoordinated

multiple access in the OR-MAC. With single-user decoding and no coordination a maximum

sum-rate of around 0.7 can be achieved. Simulation results using an 8-state PC-NLTC for

6 users and 24 users, with a sum rate of 0.6 (slightly less that 0.1 bits below the theoretical

SUD sum rate) and an interleaver length of 8192 bits show a BER below 10−6. Also, an

analysis on the limitation on the number of users, for a certain complexity, sum-rate and

BER has been shown. For a number of users between 24 and 44, a 16-state PC-NLTC must

be used to maintain a good performance. For more than 44 users, a PC-NLTC with more

states or more input bits per trellis sections would be required.

To facilitate analysis of the new codes, an extension of Benedetto’s uniform interleaver

analysis for nonlinear constituent codes was derived. It was shown that the design criteria for

linear codes can be generalized to nonlinear codes. In particular, we generalize the notion of

effective free distance for nonlinear constituent codes, and conclude that this is an important

parameter to maximize at the design stage.
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Appendix

I. SER bound expressed in terms of the IODEF

Denote as U all the possible qKs input words. Then the symbol error rate (SER) can be

upper bounded by the union bound:

SER ≤ 1

Ks

∑

Ui 6=Uj∈U
dH(Ui, Uj)P (Xi → Xj) =

1

2Ks

∑

Ui 6=Uj∈U
dH(Ui, Uj)

[
P (Xi → Xj)+P (Xj → Xi)

]
.

(27)
Using (2) then

SER ≤ ν

2Ks

∑

Ui 6=Uj∈U
dH(Ui, Uj)

[
λd(Xi→Xj) + λd(Xj→Xi)

]
=

ν

Ks

∑

Ui 6=Uj∈U
dH(Ui, Uj)λ

d(Xi→Xj).

(28)
Using the definition of IODEF in (4) then:

SER ≤ ν

Ks

(1/q)Ks
∑

i,d

iAC
i,dλ

d =
ν

Ks

(1/q)Ks
∂AC(I, D)

∂I

∣∣∣∣∣
D=λ,I=1

. (29)

II. Computing the SER Bound for Constituent Nonlinear Trellis Codes

Biglieri et al. presented a union bound in [20][21] for general trellis codes, using a 22ν-

state trellis diagram. This concept can be used to find ACP (I,D) for the case of parallel

concatenated nonlinear trellis codes.

As in [20], the product state diagram consists of state pairs, (se, sr), where se is the

encoder state and sr the receiver state. Following Biglieri’s notation, the product states can
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be divided into two sets, the good states denoted by SG and the bad states denoted by SB

defined as
SG = {(se, sr) | se = sr}, SB = {(se, sr) | se 6= sr}. (30)

By suitably renumbering the product states, we get the transition matrix

S(I, D) =


 SGG(I, D) SGB(I,D)

SBG(I, D) SBB(I,D)


 , (31)

where the N×N matrix SGG(I,D) accounts for the transitions between good product states,

the N × (N2−N) matrix SGB(I,D) accounts for the transition from good product states to

bad product states, and so forth. N is the number of encoder states 2ν . For each transition

in the product state diagram from product state S1 to S2, the branch label is:

(1/q)IdH(ue,ur)Dd(xe,xr), (32)

where ue and xe denote the input and output word for the encoder states respectively, and ur

and xr denote the input and output word for the receiver. Note that since, there are q = 2kb

possible inputs per trellis branch, (1/q) is the the probability of each branch transition given

a certain current state.

Although ÃC(I,D) can be computed using S(I,D), it becomes very complex. To reduce

complexity, two approximations can be made. Approximation 1 : Use the same idea presented

in [13]: every path in the trellis representation starts and ends in the same state. Any

possible incorrect word departs from a good state to a bad state at some trellis section

a certain number of times m, and returns to a good state the same number of times m.

Approximation 2 : In the encoding process, at any trellis section, the encoder state can be

any of the possible N = 2v states with equal probability.

Define the approximated single-error event function as:

E(I, D) = ps{SGB(I − SBB)−1SBG}1, (33)

where ps = [ 1
N

1
N
· · · 1

N
] is the probability distribution of the encoder states and 1 = [11 · · ·1]T.

Then, E(I, D) can be written as:

E(I,D) =
∑

i,d

ei,dD
dI i. (34)
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Now define:
Ej(I, D) =

[
E(I, D)

]j

=
∑

i,d

ei,d,jI
iDd, (35)

which counts every concatenation of j single-error events, without leaving any trellis section

between them, using Approximation 2. Every error event can be represented as a concatena-

tion of single-error events. Using Approximation 2, a concatenation of j single-error events,

with a total length l can be positioned in

K[l, j] ≤
(

Ks − l + j

j

)
≈ Kj

s

j!
, (36)

ways in the trellis. Note that the two sides of the inequality in (36) are not exactly equal,

since the error events start at a particular state, and there might be positions where the

concatenation of two error events is not possible. However, for Ks large the upper bound

becomes very tight. Also, the symbols of the rest of the Ks− l positions of both input words

are equal and could be almost any of the possible qKs−l combinations, which divided by the

term qKs appearing in Ãi,d gives q−l which is already counted by the terms (1/q) appearing

in the branch labels in S(I, D) (see (32)). The approximation in (36) follows from the fact

that Ks >> l, Ks >> j and the Stirling approximation
(

k
i

) ≈ ki/i! for k >> i. Therefore,

for each constituent code,
ÃC ≈

∑
j

Kj
s

j!
Ej(I, D). (37)

Using (9), (10) and (37), and using again Stirling for Ks >> j , we get:

SER ≈
∑

i,j1,j2,d1,d2

ν
ii!

j1!j2!

K
(j1+j2−i−1)
s

(q − 1)i
eC1

i,d1,j1
eC1

i,d2,j2
λd1+d2 . (38)

Therefore, as Ks increases, the performance of the code will be driven by the terms with

the largest possible value of (j1 + j2 − i − 1). For recursive encoders, that happens for a

concatenation of error events with i = 2. Therefore, an important parameter to maximize

is the effective free distance as defined in Sec. III-B. As for linear encoders, feed-forward

encoders lead to poor performance since i can be equal to 1 in which case j1 + j2− i− 1 = 0.
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Fig. 2. Labeling for 8PSK.
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TABLE I
Output labels for 8PSK. The rows indicate the starting states Ss, and the columns the

ending states Se. s1/s2 indicates that the output label is the same for both ending states.

Ss : Se 0/8 1/9 2/10 3/11 4/12 5/13 6/14 7/15
0 0 1 2 3 4 5 6 7
1 4 5 6 7 0 1 2 3
2 0 3 2 5 4 7 6 1
3 4 7 6 1 0 3 2 5
4 0 1 2 3 4 5 6 7
5 4 5 6 7 0 1 2 3
6 0 3 2 5 4 7 6 1
7 4 7 6 1 0 3 2 5
8 2 3 4 5 6 7 0 1
9 6 7 0 1 2 3 4 5
10 2 1 4 3 6 5 0 7
11 6 5 0 7 2 1 4 3
12 2 3 4 5 6 7 0 1
13 6 7 0 1 2 3 4 5
14 2 1 4 3 6 5 0 7
15 6 5 0 7 2 1 4 3

TABLE II
FER/BER for OR-MAC, for large number of users nu

nu p1 α FER BER
24 2.8125× 10−2 0.48115 6.34× 10−4 4.37× 10−7

30 2.25× 10−2 0.48312 1.01× 10−3 1.88× 10−5

48 1.4062× 10−2 0.48605 0.006125 2.58× 10−4

60 1.125× 10−2 0.48702 0.0150 6.05× 10−4

72 9.375× 10−3 0.48766 0.0260 1.13× 10−3

96 7.0312× 10−3 0.48846 0.0531 2.98× 10−3
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