

UCI A

Electrical Engineering

Communication Systems Laboratory

Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication

Richard D. Wesel, Emily E. Wesel, Lieven Vandenberghe, Christos Komninakis, and Muriel Medard

2018 Information Theory and its Applications Workshop February 13, 2018

1

Outline

- The Binomial Channel
- Capacity-Achieving Distribution
- Csiszar's Min-Max Capacity Theorem
- Dynamic Assignment Blahut-Arimoto
- Application to a Molecular Channel

The Binomial Channel

Channel input *X* is probability of success in a Bernoulli trial.

Channel output Y is number of successes in n Bernoulli trials.

Input Alphabet, Capacity Achieving Support

- The input alphabet is the unit interval, so it is uncountably infinite.
- ...so Blahut-Arimoto is awkward.
- However, the capacity-achieving input distribution has at most n+1 mass points from [Witsenhausen, Dubins].

H. S. Witsenhausen, "Some aspects of convexity useful in information theory," *IEEE Transactions on Information Theory*, vol. 26, no. 3, pp. 265–271, May 1980.

L. E. Dubins, "On extreme points of convex sets," *Journal of Mathe-* 4 *matical Analysis and Applications*, vol. 5, no. 2, pp. 237–244, 1962.

Capacity Achieving Distributions

Csiszar's Min-Max Capacity Theorem

$C = \min_{P_Y} \max_x D\left(P_{Y|X=x} \| P_Y\right)$

This theorem instructs us to find the capacity-achieving *output* distribution.

$$C = \min_{P_Y} \max_x D\left(P_{Y|X=x} \| P_Y\right)$$

A Stopping Criterion

$$C = \min_{P_Y} \max_x D\left(P_{Y|X=x} \| P_Y\right)$$

For any P_X and corresponding P_Y : $\max_x D\left(P_{Y|X=x} \| P_Y\right) \text{ is an upper bound.}$ I(X;Y) is a lower bound.

When $\max_{x} D\left(P_{Y|X=x} \| P_{Y}\right) \cdot I(X;Y)$ is small enough, declare victory.

$$C = \min_{P_Y} \max_x D\left(P_{Y|X=x} \| P_Y\right)$$

UCLA

Blahut-Arimoto found *n*=4 capacity

Use the n=4 solution for n=5

UCLA

n=3 solution for n=4, after Blahut-Arimoto

Split the center, shift towards maxima

UCLA

UCLA

Done!

Now for n=6, start with n=5 solution

UCLA

n=5 solution for n=6, after Blahut-Arimoto

15 iterations later

Now for n=9, start with n=8 solution

n=8 solution for n=9, after Blahut-Arimoto

Bump in the middle. Need new mass point.

UCLA

Bump in the middle. Need new mass point.

All is well, with 5 mass points for n=9.

Capacity Achieving Distributions

Dynamic Assignment Blahut-Arimoto (DAB)

If the termination condition is not met, the mass point locations need to be adjusted so that $D\left(P_{Y|X=x_{\max}^{(k)}} \| P_Y\right)$ is reduced. There are three possible adjustments as follows:

- 1) If the current number of mass points is even and $x_{\max}^{(k)}$ is closer to 0.5 than any of the mass points, a new mass point is introduced at 0.5.
- 2) If the current number of mass points is odd and $x_{\text{max}}^{(k)}$ is closest to the mass point at 0.5, then this mass point splits into two mass points $x = 0.5 \pm \delta(x_{\text{max}}^{(k)} 0.5)$.
- 3) If neither of the above two conditions is met, then DAB identifies the mass point location x_{closest} that is closest to $x_{\text{max}}^{(k)}$, not including the mass points at zero and one, which never move. This mass point is moved to

$$x_{\text{new}} = x_{\text{closest}} + \delta (x_{\text{max}}^{(k)} - x_{\text{closest}}).$$
 (23)

Also, the point at location $1-x_{\text{closest}}$ is moved to $1-x_{\text{new}}$ preserving symmetry.

DAB rocks!

Generates *n* particles in time τ .

UCLA

Generates *n* particles in time τ . Particles selected for release with probability σ .

Generates n particles in time τ .

Particles selected for release with probability σ .

Selected particles actually released with probability α .

Generates *n* particles in time τ .

Particles selected for release with probability σ . Selected particles *actually* released with probability α . Particles make it to receiver with probability ρ . Particles detected by receiver with probability β .

A Binomial Channel!

Channel output Y is number of detected particles of n generated.

Molecular Communication Capacity Results

Molecular Communication Capacity Results

Conclusions

- Dynamic Assignment Blahut-Arimoto uses Csiszar's Min-Max Capacity Theorem to compute capacity in cases where the alphabet is uncountable but capacity is achieved by a (small) finite support.
- It's much faster (and easier) than the ellipsoid algorithm.
- We used this method to study a molecular communication channel.