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To read information, apply a specified word-line voltage to the control gate.
The sense-amp comparator then provides a single bit of information (whether the
transistor is “on”, i.e. the drain current is above a specified threshold).
The threshold voltage is the lowest voltage at which the transistor turns on.
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Variations in Threshold Voltage

The threshold voltage is proportional to the amount of charge in the
floating gate.

The actual charge level written to the floating gate can vary with:
Overcharge in the write operation
Leakage in the retention period
Interference from nearby cells

So, there is a distribution associated with the threshold voltage.
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With two symmetric reads at q1 and �q1, the equivalent channel has an
erasure region.
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Additional reads result in additional outputs and more complicated
equivalent communication channel.
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Mutual Information Maximization for One Read

Find the read voltages to maximize the mutual information.

maximize I pX ;Y q � HpY q � HpY |X q

For the 1-read system, the optimized read is at zero.
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For 2,3 reads, there is a one parameter q1 that can be optimized.

For 5 reads, there are two parameters q1,q2 that can be optimized.

Fig. ?? shows the contour plot of mutual information (MI) vs. (q1,q2) for
the 5-read case. The maximum MI points can be obtained by solving the

two partial differential equations
dI

dq1
� 0 and

dI

dq2
� 0. Assuming

q2 ¥ q1, the MI is quasi-concave in q1 for a fixed value of q2 and
vice-versa (in each dimension) and can be maximized by bisection search.
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For the 5 reads, the Max MI is the solution of
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� 0 and
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� 0.

If q2 ¥ q1, MI is quasi-concave in q1 for a fixed value of q2 and vice-versa.
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We can sacrifice some MI at five reads to optimize the MI at three reads.

Fully optimized single-read channel [ x x 0 x x ]: MI � 0.560

Fully optimized for 3-read channel [ x -0.61 0 0.61 x ]: MI � 0.652

Progressive 5-read channel [-0.61 -0.28 0 0.28 0.61]: MI � 0.663
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The MI differences are small, but large enough to have noticeable effects
on frame error rate (according to [1]).

Optimizing q1 for three-read performance maximizes the probability of
decoding successfully after three reads.

Optimizing q1 for the five-read scenario will produce the lowest probability
of losing a page.

[1] Wang, J., et al. ”Enhanced Precision Through Multiple Reads for
LDPC Decoding in Flash Memories,” IEEE JSAC , May 2014
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LDPC Code Design and Threshold Calculation

In order to design LDPC codes that are matched to the Flash read
channel, we use EXIT functions with the Gaussian approximation and
Reciprocal Channel Approximation (faster alternative to Density Evolution)
to compute LDPC decoding thresholds for different number of reads.
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Two Read Scenario
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For a fixed degree distribution and q1, RCA-EXIT analysis can determine the
word-line voltages that minimize Eb{N0 threshold for multiple-read Flash channels.
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For a fixed degree distribution, there is a q1 that has the absolute Eb{N0

threshold for multiple-read Flash channels.
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Eb{N0 vs qMMI
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The threshold Eb{N0 achieved with q1 chosen to maximize MI is only 1% away
from the best possible Eb{N�

0 achieved with a density-evolution optimized q1.
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Optimized Degree Distributions
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The optimized degree distribution is found by calculating the threshold at
qMMI and further optimizing the q1.
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Different Optimized Codes for Different Number of Reads

Table: Thresholds for optimized degree distributions on SLC flash with 1, 3, and
5 reads as well as soft information.

Target 1 read 3 reads 5 reads Soft

Threshold Th. Th. Th. Th.

Optimized for 1 read 4.752 3.728 3.542 3.398

Optimized for 3 reads 4.923 3.640 3.441 3.295

Optimized for 5 reads 4.926 3.649 3.437 3.288

Optimized for Soft 4.926 3.662 3.443 3.275

Shannon-Limit 4.400 3.495 3.328 3.198

Different codes have different thresholds for different levels of quantization.
A code designed for one level of quantization is not the best for another level.
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Different Optimized Codes for Different Number of Reads

Table: Gap of thresholds for optimized degree distributions on SLC flash with 1,
3, and 5 reads as well as soft information.

Target 1 read 3 reads 5 reads Soft

threshold gap Th. gap Th. gap Th. gap Th. gap

Optimized for 1 read 0 0.088 0.105 0.123

Optimized for 3 reads 0.171 0 0.004 0.020

Optimized for 5 reads 0.174 0.009 0 0.013

Optimized for Soft 0.1740 0.022 0.006 0

The code optimized for a single read performs well across multiple reads.
There is reason to consider using the code designed for a single read.
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Regular LDPC Code Baselines and Bounds

1 read 3 reads 5 reads Soft
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

E
b
/N

0
 (

d
B

)

Spectral efficiency 0.9 threshold

 

 

SLC Shannon−Limit

SLC Binary (λ(x)=x
2
, ρ(x)=x

29
)

The threshold of two regular binary LDPC codes vs. Shannon-limit for different
number of reads.

Kasra Vakilinia (UCLA) ISITA 2014 October 27, 2014 27 / 33



ucla-std-blu-rgb-108.png

Non-Binary Code for SLC
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Optimized Binary LDPC Code
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Non-Binary code on MLC
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Huge gain can be achieved by using a rate-0.45 NB-LDPC code on MLC with the
same number of reads and for the same spectral efficiency of 0.9.
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Huge gain can be achieved by using a rate-0.45 NB-LDPC code on MLC with the
same number of reads and for the same spectral efficiency of 0.9.
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Table of Degree Distributions

# Reads Coefficients
SLC λ2 λ3 λ7 λ8 λ27 ρ61

1 read 0.07 0.25 0.11 0.13 0.44 1
SLC λ2 λ3 λ6 λ7 λ26 ρ56

3 reads 0.1 0.21 0.11 0.12 0.46 1
SLC λ2 λ3 λ5 λ8 λ25 ρ56

5 reads 0.11 0.21 0.09 0.14 0.45 1
SLC λ2 λ3 λ6 λ8 λ26 ρ56
soft 0.11 0.21 0.21 0.14 0.47 1

MLC
λ2 λ3 λ4 λ7 λ8 λ11

0.16 0.31 0.1 0.18 0.1 0.15

3 reads
ρ5 ρ6 ρ8 ρ22

0.45 0.16 0.1 0.29

MLC
λ2 λ3 λ4 λ7 λ9 λ11

0.15 0.3 0.1 0.09 0.22 0.14

soft
ρ5 ρ6 ρ8 ρ9 ρ22

0.44 0.07 0.1 0.11 0.27
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Conclusions

qMMI is the solution to
dI

dq1
� 0 (and

dI

dq2
� 0) and can be computed

quickly.

Optimized Degree Distributions can be found by calculating the threshold at
qMMI and further optimizing the q to get the lowest Eb{N0 thresholds.

Even though a code designed for one level of quantization is not the best for
another level of quantization, the code optimized for a single read performs
well across multiple reads.

Using a low-rate LDPC code on MLC for the same spectral efficiency as a
high-rate code on SLC can provide huge gain in terms of the thresholds.
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