
Optimizing Flash based Storage
Systems

1

• Lifetime

• Reliability

• Latency

• Throughput

2

• Reliability/Latency/Throughput: Error Correction Code

(ECC) Parallelization and Incremental Redundancy

• Lifetime: Channel Estimation and Write Voltage

Optimization

3

Projects

• Reliability/Latency/Throughput: Error Correction Code

(ECC) Parallelization and Incremental Redundancy

• Lifetime: Channel Estimation and Write Voltage

Optimization

4

Projects

Approaching Capacity Using Incremental

Redundancy Without Feedback

Haobo Wang, Sudarsan V. S. Ranganathan, and Richard Wesel

5

• (Latency/Throughput) How to accelerate

ECC for Flash?

Use parallel short codes to replace a long

codeword!

• (Reliability) How to recover the data from

a failed codeword more efficiently?

Lower the rate of the codeword adaptively!

6

Motivation/Application for Storage

• Previous work: Approaching Capacity with Short

Blocklengths using Incremental Redundancy and

ACK/NACK Feedback [Vakilinia et al. TCOM 2016]

• New Idea: Approaching Capacity using Many Short-

blocklength Codes with Incremental Redundancy in Parallel

Without Feedback

– Concept

– Design methods and design examples

7

Outline

• Previous work: Approaching Capacity with Short

Blocklengths using Incremental Redundancy and

ACK/NACK Feedback [Vakilinia et al. TCOM 2016]

• New Idea: Approaching Capacity using Many Short-

blocklength Codes with Incremental Redundancy in Parallel

Without Feedback

– Concept

– Design methods and design examples

8

Outline

k bits of user information

9

A Rate-compatible Encoder

Rate-Compatible

Encoder

Initial

Transmission
Increments

Transmitter

10

Incremental Redundancy with Feedback

ReceiverChannel

ReceiverTransmitter

11

Incremental Redundancy with Feedback

Channel

Receiver

NACK

Transmitter

12

Incremental Redundancy with Feedback

Channel

ReceiverTransmitter

13

Incremental Redundancy with Feedback

Channel

ReceiverTransmitter

14

Incremental Redundancy with Feedback

Channel

Receiver

ACK

Transmitter

15

Incremental Redundancy with Feedback

Channel

16

Variable-length Code Parameter in This Work

𝓁1 = 𝓁2 = 𝓁3= 𝓁4 = 𝓁Δ

𝑅𝑡
𝐹𝐵

=
𝑘(1 − 𝜖𝐹𝐵)

𝑙0 + 𝛽𝐹𝐵𝓁Δ

In this presentation, we will compare our feedback-free

design against corresponding constant-increment-size

feedback codes.

• In general, a VL error correction code

(ECC) with feedback has a higher rate

than a feedforward ECC at comparable

block length.

• We want to approach the rate of the

feedback scheme without feedback.

17

Keep in mind

• Previous work: Approaching Capacity with Short

Blocklengths using Incremental Redundancy and

ACK/NACK Feedback

• New Idea: Approaching Capacity using Many Short-

blocklength Codes with Incremental Redundancy in Parallel

Without Feedback

– Concept

– Design methods and design examples

18

Outline

• We use many VL codewords in parallel.

• Send the highest-rate part of each VL codeword.

Some VL codewords need increments.

• From ergodicity, we know the total amount of

redundancy needed by all the codewords.

• We use inter-frame coding [Zeineddine et al.

JSAC 2016] to linearly encode the increments
– Deliver exactly the right amount of redundancy for each VL codeword.

– We expand the analysis to any point-to-point channel, and design actual

codes.

19

Principal Concept

20

Inter-frame Code [Zeineddine et al. JSAC 2016]

21

Inter-frame Code [Zeineddine et al. JSAC 2016]

22

Inter-frame Code [Zeineddine et al. JSAC 2016]

23

Inter-frame Code [Zeineddine et al. JSAC 2016]

24

Inter-frame Code [Zeineddine et al. JSAC 2016]

25

Inter-frame Code [Zeineddine et al. JSAC 2016]

26

Low Density Generator Matrix (LDGM) [Cheng et al. Allerton

1996] Code

27

Low Density Generator Matrix (LDGM) [Cheng et al. Allerton

1996] Code

LDGM Code

28

Left nodes Right nodes

Inter-frame code at the Decoder

29

+ Noise

Decoder structure

30

VL decoders

initialized with

𝑋0
(𝑖)

.

31

Statistics of VL Code in Inter-frame Code Analysis

(0) (1) (2) (1)m 

{ (0), (1), , (1) }(,)mm    

is the probability of decoding correctly for the

first time after transmissions.

(), n n m 

1n 

Inter-frame Code – Peeling Decoder

• Every systematic

node has a degree

of 3 (𝑚 = 3).

Initialization:

• Every VL decoder

observes its noisy

highest-rate

codeword 𝑋0
(𝑖)

.

• The parity nodes

are, likewise,

received from the

channel.
32

Inter-frame Code – Peeling Decoder

Iteration 1 (left):

• The systematic

nodes (VL

decoder) attempt

to decode with

their highest-rate

codewords.

• Each systematic

node succeeds

with probability

𝛿(0).

33

Inter-frame Code – Peeling Decoder

Iteration 1 (left):

• The ones that

succeed

• can compute

all their

increments.

• can remove

effect of their

increments

from parities.

34

Inter-frame Code – Peeling Decoder

Iteration 1 (left):

• The ones that

succeed

• can compute

all their

increments.

• can remove

effect of their

increments

from parities.

35

Inter-frame Code – Peeling Decoder

Iteration 1 (left):

• The ones that fail

• are retained.

• when additional

increments

become

available, they

can attempt

decoding again.

36

Inter-frame Code – Peeling Decoder

Iteration 1 (right):

• If all but one edge

are deactivated,

the parity node

can become a

known increment

to a systematic

node.

37

Inter-frame Code – Peeling Decoder

Iteration 1 (right):

• Systematic nodes

append available

increments to

lower their rate.

38

Inter-frame Code – Peeling Decoder

Iteration 2:

• The systematic

nodes (yet to

decode) decode

again if new

increments are

available to them.

39

Inter-frame Code – Peeling Decoder

Iteration 2:

• The ones that

successfully

decode can be

removed from the

graph along with

all their edges.

40

Inter-frame Code – Peeling Decoder

The process

continues until no

more systematic

nodes can be

recovered.

41

• Previous work: Approaching Capacity with Short

Blocklengths using Incremental Redundancy and

ACK/NACK Feedback

• New Idea: Approaching Capacity using Many Short-

blocklength Codes with Incremental Redundancy in Parallel

Without Feedback

– Concept

– Design methods and design examples

• Differential evolution for degree distribution

• Quasi-regular heuristic for degree distribution

42

Outline

• Choose a VL code and a maximum number of

transmissions (𝑚 = 5) allowed.

43

What need to be designed in an inter-frame system?

• Given a VL code with a fixed number of

transmissions (𝑚 = 5) allowed, there are 3 parts to

design.
– The initial transmission length (𝓁0) and increment length (𝓁Δ)

– The degree distributions of the inter-frame code

– The bipartite graph (parity matrix) of the inter-frame code

44

What need to be designed in an inter-frame system?

• Given a VL code with a fixed number of

transmissions (𝑚 = 5) allowed, there are 3 parts to

design.
– The initial transmission length (𝓁0) and increment length (𝓁Δ):

through brute-force search or sequential differential optimization

(SDO) [Vakilinia et al. TCOM 2016]

– The degree distributions of the inter-frame code

– The bipartite graph (parity matrix) of the inter-frame code

45

What need to be designed in an inter-frame system?

• Given a VL code with a fixed number of

transmissions (𝑚 = 5) allowed, there are 3 parts to

design.
– The initial transmission length (𝓁0) and increment length (𝓁Δ):

through brute-force search or sequential differential optimization

(SDO) [Vakilinia et al. TCOM 2016]

– The degree distributions of the inter-frame code

– The bipartite graph (parity matrix) of the inter-frame code:

through progressive edge growth (PEG) [Hu et al. IT 2005]

46

What need to be designed in an inter-frame system?

• Given a VL code with a fixed number of

transmissions (𝑚 = 5) allowed, there are 3 parts to

design.
– The initial transmission length (𝓁0) and increment length (𝓁Δ):

through brute-force search or sequential differential optimization

(SDO) [Vakilinia et al. TCOM 2016]

– The degree distributions of the inter-frame code

• Differential evolution

• Quasi-regular heuristics

– The bipartite graph (parity matrix) of the inter-frame code:

through progressive edge growth (PEG) [Hu et al. IT 2005]

47

What need to be designed in an inter-frame system?

• Previous work: Approaching Capacity with Short

Blocklengths using Incremental Redundancy and

ACK/NACK Feedback

• New Idea: Approaching Capacity using many Short-

blocklength Codes with Incremental Redundancy in Parallel

Without Feedback

– Concept

– Design methods and design examples

• Differential evolution for degree distribution

• Quasi-regular heuristic for degree distribution

48

Outline

• Given a 𝜹 = 𝛿 0 , 𝛿 1 ,… , 𝛿 𝑚 and 𝑚, the

objective is to find 𝜆 𝑥 , 𝜌 𝑥 .

• The peeling decoder can be analyzed using

density evolution.

• For a given 𝜆 𝑥 , 𝜌 𝑥 pair, density evolution

equations can predict the residual systematic-node

error rate after a large number of iterations.

• Differential evolution method can then be used to

find a 𝜆 𝑥 , 𝜌 𝑥 pair with a low-enough failure rate.

49

Design Degree Distributions using Differential Evolution

• Differential evolution is a type of genetic algorithm that

optimizes a problem by iteratively improving randomly

generated candidates regarding a metric.

• The candidates in our problem are randomly generated

𝜆(𝑥),𝜌(𝑥) pairs that have a certain LDGM rate 𝑅𝑖.

• The metric is for the codeword (systematic nodes) failure

probability 𝜖𝐹𝐹 to be as small as possible, and below 10−3.

• The LDGM rate 𝑅𝑖 is a meta-parameter that are chosen to

be as high as the optimization produces valid results.

50

Differential Evolution

51

Inter-frame Code – Rate of LDGM Code

52

Inter-frame Code – Throughput Rate

• For a pair of 𝜆(𝑥), 𝜌(𝑥), the codeword failure rate 𝜖𝐹𝐹
can be calculated using density evolution directly.

• An analytical characterization of 𝜖𝐹𝐹 can also be used in

differential evolution.

• Luby et al. proposed using differential equations or the

and-or tree approach to analyze the decoding process

of the peeling decoder.

• We extend Luby et al.’s analysis to the inter-frame code

by using direct probabilistic arguments.

53

Predict the Failure Probability of the Peeling Decoder

• Initially, each VL decoder is assigned a generalized

erasure state drawn according to PMF 𝜹.

• Remove all the left nodes that decode, and their

incident edges.

• WHILE right-degree-one edges (i.e. available

increments) remain in the graph

– Randomly select one right-degree-one edge 𝑄𝑡.

– Remove 𝑄𝑡 (and its incident right node).

– Reduce the generalized erasure state of its incident left node by 1.

– IF the left node can decode (the generalized erasure state is 0)

• Remove the left node and its remaining incident edges.

– ENDIF

• ENDWHILE

54

Peeling Algorithm for Decoder Analysis

• As long as there is an edge connects to a

degree-1 right node, the peeling process

continues.

• Peeling process metric 𝑟1 𝑥 : the probability

that a randomly picked edge in the initial

bipartite graph has not been removed after 𝑡
iterations, and connects to a degree-1 right

node.

• We use 𝑟1(𝑥) to predict 𝜖𝐹𝐹.

55

Characterize the Peeling Process

• Define 𝑥(𝑡) or simply 𝑥 as the probability

that a randomly selected edge in the initial

graph that is not in the set {𝑄1, … , 𝑄𝑡}.

• In [Luby et al. IT 2001], 𝑥 is defined with a

differential equation to solve differential

equations to find 𝑟1(𝑥).

56

Definition of 𝑥

• 𝑝𝑙(𝑥): the probability that a randomly selected

edge in the initial graph has as its incident left

node a VL decoder that cannot decode after

{𝑄1, … , 𝑄𝑡} have been provided as potential

increments by all the other edges connecting to

that VL decoder.

• 𝑝𝑟(𝑥): the probability that a randomly selected

edge in the initial graph has as its incident right

node a node with exactly one edge remaining

after {𝑄1, … , 𝑄𝑡} have been provided as

increments to the VL decoders.
57

Characterize the Peeling Process

𝑟1 𝑥 = 𝑝𝑙 𝑥 𝑝𝑟 𝑥 − 𝑝𝑙 𝑥 1 − 𝑥

𝑝𝑙 𝑥 = ෍

𝜔=1

𝑚

𝛿(𝜔)෍

𝑖=1

𝑑𝐿

𝜆𝑖 ෍

𝑗=0

min 𝜔,𝑖 −1
𝑖 − 1
𝑗

1 − 𝑥 𝑗𝑥𝑖−1−𝑗

𝑝𝑟 𝑥 = 𝜌 1 − 𝑝𝑙(𝑥)

58

Characterize the Peeling Process

59

Characterize the Peeling Process

60

Characterize the Peeling Process

𝑥(𝜖)

𝜖𝐹𝐹 = ෍

𝜔=1

𝑚

𝛿 𝜔 ෍

𝑖=1

𝑑𝐿

Λ𝑖 ෍

𝑗=0

min 𝜔−1,𝑖
𝑖
𝑗

1 − 𝑥(𝜖)
𝑗
𝑥(𝜖)

𝑖−𝑗

Λ𝑖 =
𝜆𝑖/𝑖

σ
𝑗=1
𝑑𝐿 𝜆𝑖/𝑖

61

Probability of Failure 𝜖𝐹𝐹

VL decoderVL encoder

62

Convolutional Code as VL Code [Williamson et al. TCOM 2014]

Channel

k=64 bits, Rate-1/3,

1024-state, tail-

biting convolutional

code (TBCC) with

pseudorandom

puncturing [Ma et al.

TCOM 1986]

Binary-input

AWGN

Channel

with SNR=2

dB

Tail-biting

reliability-output

Viterbi algorithm

(ROVA)

[Raghavan et al.

TIT 1998]

63

Convolutional VL Code parameters with Constant-size Increments

•

• 𝜹 = 0.333, 0.449, 0.182,0.0316, 0.00402, 0.000505

𝓵𝟎 𝓵𝚫 for 𝒎 = 𝟓
(four

increments)

Throughput Rate 𝑅𝑡
(𝐹𝐵)

with ACK/NACK

Feedback

Percentage of

Capacity of 2dB

BI-AWGN

108 bits 16 bits 0.5208 81.10%

64

Design Example – Regular LDGM Code

• Systematic node degree: 4

• Parity node degree: 3

• LDGM code design rate 𝑅𝑖 = 0.4286

• Number of systematic nodes = 100,000

Throughput Rate

𝑅𝑡
(𝐹𝐵)

with ACK/NACK

Feedback

Throughput Rate

𝑅𝑡
(𝐹𝐹)

- inter-frame

code (regular LDGM)

0.5208 0.4945

65

Design Example – Irregular LDGM Code

• Maximum systematic node degree: 4

• Maximum parity node degree: 10

• LDGM code design rate 𝑅𝑖 = 0.48

• Number of systematic nodes = 100,000

Throughput Rate

𝑅𝑡
(𝐹𝐵)

with

ACK/NACK

Feedback

Throughput Rate

𝑅𝑡
(𝐹𝐹)

- inter-frame

code (regular

LDGM)

Throughput Rate

𝑅𝑡
(𝐹𝐹)

- inter-frame

code (irregular

LDGM)

0.5208 0.4945 0.5102

66

Probability of Error Characterization of the 100,000

Systematic Node Codes

67

Design Example – Shorter LDGM Code

• Maximum systematic node degree: 4

• Maximum parity node degree: 10

• LDGM code design rate 𝑅𝑖 = 0.46

• Number of systematic nodes: 1000

Throughput Rate

𝑅𝑡
(𝐹𝐵)

with

ACK/NACK

Feedback

Throughput Rate

𝑅𝑡
(𝐹𝐹)

- inter-frame

code (irregular

LDGM)

0.5208 0.5044

68

Design Example – Comparison vs Capacity

VL Code

with

ACK/NACK

Feedback

100,000 systematic

nodes

1000 systematic

nodes

Regular

LDGM

Irregular

LDGM

Irregular

LDGM

Throughput rate 0.5208 0.4945 0.5102 0.5044

Percentage of

Capacity of 2dB

BI-AWGN

81.10% 77.01% 79.45% 78.55%

Percentage of

ACK/NACK

Feedback

Throughput

--- 95.0% 98.0% 96.9%

The throughput loss is the result of using more linear combinations

of increments (right nodes) than the feedback system.

69

Three Mechanisms of Throughput Loss

• The degree of the right node of interest

(RNOI) never decreases below two. (𝜂1)

• The degree of the RNOI decreases from

two or more to zero in a single iteration of

the peeling decoder so that it never

provides an increment. (𝜂2)

• The degree of the RNOI achieves the

value of one during an iteration so that it

provides an increment to a left node, but

other right nodes simultaneously provide

the remaining required increments to that

left node making the RNOI’s increment

superfluous. (𝜂3)

70

Probability of Failure Mechanisms

Quasi-regular

heuristic for the

right degree

distribution

• The right degree distribution of the 100,000-systematic-

node irregular LDGM code is:

71

Right Degree Distribution Example from Differential Evolution

Quasi-regular!

This is different from

the Poisson right

degree distribution

proposed in [Luby et

al. IT 2001] and

Zeineddine et al.

JSAC 2016] .

• Previous work: Approaching Capacity with Short

Blocklengths using Incremental Redundancy and

ACK/NACK Feedback

• New Idea: Approaching Capacity using many Short-

blocklength Codes with Incremental Redundancy in Parallel

Without Feedback

– Concept

– Design methods and design examples

• Differential evolution for degree distribution

• Quasi-regular heuristic for degree distribution

72

Outline

73

Quasi-regular heuristic for degree distribution

• Given a 𝜹 = 𝛿 0 , 𝛿 1 , … , 𝛿 𝑚 and 𝑚, the

objective is to find 𝜆 𝑥 , 𝜌 𝑥 .

• Set 𝜆 𝑥 = 𝑥3 for 𝑚 = 5 so that each left node has

the maximum capacity of receiving required

increments.

• Select 𝜌 𝑥 = 𝛼𝑥2 + 1 − 𝛼 𝑥3 for example where 𝛼
is the design parameter.

• Find 𝛼 that maximizes the throughput and

guarantees the target failure probability.

74

Which adjacent degrees to choose?

From a

𝜆 𝑥 , 𝜌 𝑥 pair

generated by

differential

evolution.

• For the VL code with feedback, define 𝛽𝐹𝐵 as the

expected number of increments required by a VL

decoder.

𝛽𝐹𝐵 = ෍

𝑖=1

𝑚−1

𝑖𝛿 𝑖 + 𝑚 − 1 𝛿(𝑚) = 𝔼 𝜹 − 𝛿(𝑚)

• For an inter-frame code, define 𝛽𝐹𝐹 as the average

number of combined increments per left node.

𝛽𝐹𝐹 = 𝑅𝑖
−1 − 1.

• Lower bound on 𝛽𝐹𝐹:
𝛽𝐹𝐹 ≥ 𝛽𝐹𝐵

75

Which adjacent degrees to choose?

• When the left degree distribution is regular, 𝜆 𝑥 =
𝑥𝑚−1, define 𝑎𝑅 as the average right node degree.

𝛽𝐹𝐹 =
0׬
1
𝜌 𝑥 ⅆ𝑥

0׬
1
𝜆 𝑥 ⅆ𝑥

=
𝑚 − 1

𝑎𝑅

𝛽𝐹𝐹 ≥ 𝛽𝐹𝐵 ⇒ 𝑎𝑅 ≤
𝑚 − 1

𝛽𝐹𝐵

76

Which adjacent degrees to choose?

• For the convolutional code example, 𝛽𝐹𝐵 = 0.9260, 𝑚 =
5.

𝑎𝑅 ≤
𝑚 − 1

𝛽𝐹𝐵
= 4.32

77

Which adjacent degrees to choose?

• 𝜆 𝑥 = 𝑥3, 𝜌 𝑥 = 𝛼𝑥2 + 1 − 𝛼 𝑥3, assume infinite large

bipartite graphs

78

Asymptotic Performance of 2-degree Quasi-regular Right Degree

Distribution from Density Evolution

𝜶 𝒂𝑹 𝜷𝑭𝑭 No.

Iterations
% 𝑹𝒕

(𝑭𝑩) Codeword

Error Rate 𝝐𝑭𝑭

1 3 1.333 15 95.0% 7.09×10-4

0.531 3.398 1.177 20 96.8% 7.82×10-4

0.244 3.699 1.081 30 98.0% 8.35×10-4

0.168 3.788 1.056 40 98.3% 8.50×10-4

0.139 3.823 1.046 50 98.4% 8.56×10-4

0.108 3.861 1.036 100 98.6% 8.63×10-4

Regular

Irregular

79

Asymptotic Performance of 2-degree Quasi-regular Right Degree

Distribution from Density Evolution

80

Non-binary Low Density Parity Check (NB-LDPC) Code as

VL Code [Vakilinia et al. ISIT 2014]

Channel

k=24 symbols, 𝑛=32,

Rate-3/4, GF(256)

NB-LDPC [Davey et

al. Comm. Lett. 1998]

with bit-by-bit

incremental

redundancy (IR)

Binary-input

AWGN

Channel

with SNR=2

dB

Fast Fourier

transformation

based Q-ary sum

product algorithm

(FFT-QSPA)

[MacKay et al.

IMA 2000] with IR

VL encoder VL decoder

81

NB-LDPC VL Code parameters with Constant-size Increments

•

• 𝜹 = 0.309,0.464,0.194,0.0293,0.00318,0.00049

𝓵𝟎 𝓵𝚫 for 𝒎 = 𝟓
(four

increments)

Throughput Rate 𝑅𝑡
(𝐹𝐵)

with ACK/NACK

Feedback

Percentage of

Capacity of 2dB

BI-AWGN

302 bits 36 bits 0.5705 88.85%

• 𝜆 𝑥 = 𝑥3, 𝜌 𝑥 = 𝛼𝑥2 + 1 − 𝛼 𝑥3, assume infinite large

bipartite graph

82

Asymptotic Performance of 2-degree Quasi-regular Right Degree

Distribution from Density Evolution

𝜶 𝒂𝑹 𝜷𝑭𝑭 No.

Iterations
% 𝑹𝒕

(𝑭𝑩) Codeword Error

Rate 𝝐𝑭𝑭

0.597 3.336 1.199 20 97.4% 6.55×10-4

0.341 3.591 1.114 30 98.3% 6.82×10-4

0.273 3.666 1.091 40 98.5% 6.90×10-4

0.246 3.697 1.082 50 98.6% 6.93×10-4

0.217 3.730 1.072 100 98.7% 6.97×10-4

83

Asymptotic Performance of 2-degree Quasi-regular Right Degree

Distribution from Density Evolution

• Complexity: Number of systematic nodes 𝑛𝑐

• Error Performance: Probability of error 𝜖𝐹𝐹

• Latency: Number of iterations

84

Practical Constraints When Designing An Inter-frame Code

Trade-offs among the constraints!

• 𝜆 𝑥 = 𝑥3, 𝜌 𝑥 = 𝛼𝑥2 + 1 − 𝛼 𝑥3, 100 inter-frame code

iterations

85

Number of Systematic Nodes Required of 2-degree Quasi-regular

Right Degree Distribution

𝜶 = 𝟎. 𝟓𝟗𝟕 𝜶 = 𝟎. 𝟑𝟒𝟏

Throughput rate 0.5559 0.5609

Percentage of Capacity of

2dB BI-AWGN
86.57% 87.35%

Number of Systematic Nodes

Needed to Achieve the

Designed Throughput Rate

1000 10,000

86

Probability of Error for Different Designs Requiring Varying

Number of Systematic Nodes

• VL codes with ACK/NACK feedback can

approach capacity with short blocklengths.

• We used many short blocklength VL codes

in parallel without feedback to achieve 98%

of throughput of the underlying VL codes

with feedback.

• Inter-frame coding enables a distributed

decoding architecture for very high

throughputs.

87

Conclusions

• Reliability/Latency/Throughput: ECC Parallelization and

Incremental Redundancy

• Lifetime: Channel Estimation and Write Voltage

Optimization

88

Projects

Histogram-Based Flash Channel Estimation
and Dynamic Voltage Allocation

Haobo Wang, Tsung-Yi Chen, Richard D. Wesel

89

• How to reduce Flash memory’s wear-out?

Write to lower threshold voltages!

Motivation

90

• Channel Model

• Channel Parameter Estimation

• Dynamic (Write) Voltage Allocation

Outline

91

• We model the NAND flash memory cell data storage

process as

: sensed programmed state threshold voltage

: intended programmed state threshold voltage

: programming noise

: wear-out noise

: retention noise

p w rn n ny x   

x

y

pn

wn

rn

Channel Model

92

Programming Noise ()

f (x + np)

f (x + np + nw)

f (x + np + nw + nr)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Voltage

Programming

Noise Only

2

2

(0,) if 0
() where

(0,) if 0

e

p e p

p

N x
f n

N x


 



 
 



()pf n

pn

93

Wear-out Noise ()

f (x + np)

f (x + np + nw)

f (x + np + nw + nr)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Voltage

Programming

Noise Only

Programming and

Wear-out Noise

()pf n

1
 0

()

0 0

wn

w
w

w

e n
f n

n








 
 

() ()p wf n f n

wn

94

Voltage

f (x + np)

f (x + np + nw)

f (x + np + nw + nr)

Retention Noise ()
P

ro
b
a

b
ili

ty
 D

e
n

s
it
y

Programming

Noise Only

Programming and

Wear-out Noise

Programming, Wear-out and

Retention Noise

2

2

()

21
()

2

r r

r

n

r

r

f n e





 






()pf n

() ()p wf n f n

() () ()p w rf n f n f n 

rn

95

Sample PDF

f (x + np)

f (x + np + nw)

f (x + np + nw + nr)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Voltage

Programming

Noise Only

Programming and

Wear-out Noise

Programming, Wear-out and

Retention Noise

()pf n

() ()p wf n f n

() () ()p w rf n f n f n 

96

Replace number of P/E cycles

with accumulated voltage

• Channel degradation is usually modeled as a function of the

number of program/erase (P/E) cycles.

97

Replace number of P/E cycles

with accumulated voltage

• Channel degradation is usually modeled as a function of the

number of program/erase (P/E) cycles.

• The volume of charge passing through dielectrics actually

causes the degradation.

98

Replace number of P/E cycles

with accumulated voltage

• Channel degradation is usually modeled as a function of the

number of program/erase (P/E) cycles.

• The volume of charge passing through dielectrics actually

causes the degradation.

• The use of the number of P/E cycles is approximately correct

when the volume of charge passing through the dielectrics is

the same for each P/E cycle.

99

Replace number of P/E cycles

with accumulated voltage

• Channel degradation is usually modeled as a function of the

number of program/erase (P/E) cycles.

• The volume of charge passing through dielectrics actually

causes the degradation.

• The use of the number of P/E cycles is approximately correct

when the volume of charge passing through the dielectrics is

the same for each P/E cycle.

• We use a more precise metric named accumulated voltage

Vacc to directly characterize the volume of charge that has

passed since the first write.

100

Accumulated Voltage

The normalized accumulated voltage is , where

is the maximum of

When using fixed voltage levels, ≈ # PE Cycles.

: accumulated voltage over N P/E cycles,

: programmed threshold voltage of the jth P/E cycle

: threshold voltage of the erased state

 ()

1

N
j

acc p e

j

V V V


 

accV
()j

pV

eV

() , .j

p eV V j
max/accV V maxV

max/accV V

101

Channel Parameter Estimation

• Channel parameter estimation workflow:

Histogram
Measurement

Least Squares
Algorithm

Channel
Model

Estimated
Parameters

102

Parameter Vector

programming erase retention retention [, , , ,]

 We actually estimate [, , , ,], where p e rrm n

    

  





retention 0() rx x n   
2 2

retention 0() .rx x m   

103

Estimation Objective Function

• Estimation Objective Function is the squared Euclidean

distance between the predicted histogram and

measured histogram

: total number of cells in a page

: total number of cells in ith bin of measure histogram

: total number of cells in ith bin by estimation

: total number of bins

2
1

bin,i bin,i

0

ˆM

M

i

N N
C

N





 
   

 


N

bin,iN

bin,iN̂

M

104

More about Least Squares Algorithms

• Objective

• Minimize the cost function:

2
1

bin,i bin,i

0

ˆM

M

i

N N
C

N





 
   

 


105

More about Least Squares Algorithms

• Objective

• Minimize the cost function:

• Algorithm 1 – Gradient Descent

• Follow the descending gradient with a fixed step

size.

2
1

bin,i bin,i

0

ˆM

M

i

N N
C

N





 
   

 


106

More about Least Squares Algorithms

• Objective

• Minimize the cost function:

• Algorithm 1 – Gradient Descent

• Follow the descending gradient with a fixed step

size.

• Algorithm 2 – Gauss–Newton Algorithm

• Take each step based on quadratic approximation at

current point.

2
1

bin,i bin,i

0

ˆM

M

i

N N
C

N





 
   

 


107

More about Least Squares Algorithms

• Objective

• Minimize the cost function:

• Algorithm 1 – Gradient Descent

• Follow the descending gradient with a fixed step

size.

• Algorithm 2 – Gauss–Newton Algorithm

• Take each step based on quadratic approximation at

current point.

• Algorithm 3 – Levenberg–Marquardt Algorithm

• Rotate Gauss-Newton increment vector toward the

direction of descending gradient.

2
1

bin,i bin,i

0

ˆM

M

i

N N
C

N





 
   

 


108

Least Squares Algorithm Speed Comparison

0 10 20 30 40
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iteration

R
e
te

n
ti
o

n
 N

o
is

e
 P

a
ra

m
e

te
r

m
r

Gradient Descent

Gauss-Newton

Levenberg-Marquart

Ground Truth

109

Least Squares Algorithm Accuracy Comparison

R
e
te

n
ti
o

n
 N

o
is

e
 P

a
ra

m
e
te

r
n

r

0 500 1000 1500 2000 2500 3000 3500 4000

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

10bin 


r

P/E Cycle

Ground Truth

Estimation Result (Gradient Descent)

Estimation Result (Gauss-Newton)

Estimation Result (Levenberg-Marquardt)

110

Least Squares Algorithms Choice

• Algorithm 1 – Gradient Descent

• Convergence speed is too slow.

• Algorithm 2 – Gauss–Newton Algorithm

• Converge fast but lacks stability.

• Algorithm 3 – Levenberg–Marquardt Algorithm

• Good for parameter estimation.

111

Binning Strategy

• Bin-placement Paradigm

• Number of Bins

112

Bin-placement Paradigm

• Equal Interval (EI) Histogram
• Not actually equal. Bins covering erased state

distribution can be slightly wider.

• Maximum Mutual Information (MMI) Histogram
• Bins optimized for decoding.

• Equal Probability (EP) Histogram
• Each bin has the same number of cells.

113

One metric to consider…

• Squared Euclidean Distance between the

Channel distribution and the histogram

induced by .

: channel distribution

: number of bins

: left boundary of the ith interval

: right boundary of the ith interval

: probability of the ith bin

()f y

1

2

2
1

0 1

()
i

i

M q
i

E q
i i i

H
D f y dy

q q




 

 
  

 


()f y

M

iq

1iq 

iH

()f y

1

()
i

i

q

i
q

H f y dy


  114

Square Euclidean Distance Comparison

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P/E Cycle

S
q
u
a
re

d
 E

u
c
lid

e
a
n
 D

is
ta

n
c
e

Equal Probability Histogram

Equal Width Histogram

MMI Histogram

115

Square Euclidean Distance Comparison

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P/E Cycle

S
q
u
a
re

d
 E

u
c
lid

e
a
n
 D

is
ta

n
c
e

Equal Probability Histogram

Equal Width Histogram

MMI Histogram

Equal probability histogram

provides the lowest squared

Euclidean distance.

116

Another metric to consider…

• Effective Resolution

• Two adjacent zero-height bins can be combined as

one bin.

• Effective resolution is the number of bins after this

combination process.

117

Equal-interval histogram loses resolution

with retention effect.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voltage

P
ro

b
a

b
il
it
y
 D

e
n

s
it
y

2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Voltage

N
u

m
b

e
r

o
f
C

e
ll
s

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Voltage

P
ro

b
a

b
il
it
y
 D

e
n

s
it
y

2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Voltage

N
u

m
b

e
r

o
f
C

e
ll
s

Loss of

Resolution

118

Effective Resolution Comparison

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

7

7.5

8

8.5

9

9.5

10

P/E Cycle

E
ff

e
c
ti
v
e
 R

e
s
o
lu

ti
o
n

Equal Probability Histogram

Equal Width Histogram

MMI Histogram

119

Effective Resolution Comparison

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

7

7.5

8

8.5

9

9.5

10

P/E Cycle

E
ff

e
c
ti
v
e
 R

e
s
o
lu

ti
o
n

Equal Probability Histogram

Equal Width Histogram

MMI Histogram

Equal probability histogram

provides the highest

effective resolution.

120

Bin-placement Paradigm Choice

• Equal Interval Histogram
• Equal interval histogram does not adapt well to

retention loss.

• Maximum Mutual Information Histogram
• This histogram optimizes decoder performance, but

may not be the best for channel parameter

estimation.

• Equal Probability Histogram
• Every bin has an equal number of cells, good for

parameter estimation.

121

Number of Bins Comparison

Levenberg-Marquardt Algorithm Iteration Count

Horizontal Line Segment:

Range of Iteration Count

Vertical Line Segment:

Mean of Iteration Count

Rectangle: Standard

Deviation of Iteration Count

50 55 60 65 70 75 80

7-bin Histogram

10-bin Histogram

13-bin Histogram

Iteration Count

122

Number of Bins Comparison

Levenberg-Marquardt Algorithm Iteration Count

Horizontal Line Segment:

Range of Iteration Count

Vertical Line Segment:

Mean of Iteration Count

Rectangle: Standard

Deviation of Iteration Count

50 55 60 65 70 75 80

7-bin Histogram

10-bin Histogram

13-bin Histogram

Iteration Count

• 10-bin histogram strikes the right balance, which provides

sufficient information to narrow the set of possible channels

but not so large as to overstrain the optimization algorithm.
123

Dynamic (Write) Voltage Allocation

• Fixed threshold voltage allocation provides unnecessary

margin at the beginning of Flash memory’s lifetime, causing

accelerated wear-out.

• Dynamic Voltage Allocation can reduce unnecessary wear-

out, and thus increase lifetime by using lower threshold

voltages for early writes.

• The threshold voltages can be gradually increased as

needed using a single scaling factor to combat channel

degradation.

• The target of the anti-degradation process is to maintain a

minimum mutual information as long as possible.

124

DVA using Histogram-based Channel Estimation

Histogram
Measurement

Parameter
Estimation

Dynamic
Voltage

Allocation

Channel
Model

125

Histogram Measurement

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voltage

P
ro

b
a

b
il
it
y
 D

e
n

s
it
y

2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Voltage

N
u

m
b

e
r

o
f
C

e
ll
s

Histogram
Measurement

Parameter
Estimation

Dynamic
Voltage

Allocation

126

Parameter Estimation

Histogram
Measurement

Parameter
Estimation

Dynamic
Voltage

Allocation

Ground Truth: [0.0099,0.3500,0.0500,0.0617,-0.5882]

127
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Voltage

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Parameter Estimation

Histogram
Measurement

Parameter
Estimation

Dynamic
Voltage

Allocation

Ground Truth: [0.0099,0.3500,0.0500,0.0617,-0.5882]

Estimation Error: 10-4× [0.0101 0.0214 -0.1774 0.0405 -0.0044]

128
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Voltage

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Ground Truth

Estimation

Voltage Levels Adapted to Degraded Channel

-2 -1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Voltage

P
ro

b
a

b
il
it

y
D

e
n
s
it

y

-2 -1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Voltage

P
ro

b
a

b
il
it

y
D

e
n
s
it

y

Histogram
Measurement

Parameter
Estimation

Dynamic
Voltage

Allocation

129

Dynamic Voltage Allocation Scaling Factor Example

130

0 1000 2000 3000 4000 5000 6000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P/E Cycles

S
c
a
lin

g
 F

a
c
to

r

Fixed Voltage Allocation

Dynamic Voltage Allocation

Dynamic Voltage Allocation Scaling Factor Example

131

0 1000 2000 3000 4000 5000 6000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P/E Cycles

S
c
a
lin

g
 F

a
c
to

r

Fixed Voltage Allocation

Dynamic Voltage Allocation

Dynamic Voltage Allocation Scaling Example

(P/E = 5000)

4800 4900 5000 5100

0.84

0.86

0.88

0.9

0.92

S
c
a
lin

g
 F

a
c
to

r

P/E Cycles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Voltage

Before DVA

After DVA

1.905 bits --> 1.935 bits

132

Dynamic Voltage Allocation Scaling Factor Example

133

0 1000 2000 3000 4000 5000 6000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P/E Cycles

S
c
a
lin

g
 F

a
c
to

r

Fixed Voltage Allocation

Dynamic Voltage Allocation

Dynamic Voltage Allocation Scaling Example

134

Voltage

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

Before DVA

After DVA

P/E = 5000

1.905 bits --> 1.935 bits

P/E = 3000

1.926 bits --> 1.935 bits

P/E = 1000

1.930 bits --> 1.935 bits

Monte Carlo Simulation Result for MLC Flash

0 1000 2000 3000 4000 5000 6000
1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

P/E Cycle

M
u
tu

a
l
In

fo
rm

a
ti
o
n
 (

b
it
)

DVA using Estimated Parameters (Monte Carlo)

Fixed Voltage Allocation

Mutual Information Target

135

Conclusion

• Levenberg-Marquardt algorithm can provide accurate

channel parameter estimations using limited resolution

histograms.

• 10-bin equal-probability binning strategy is a good

choice for Flash channel estimation using least squares

algorithms.

• Dynamic voltage allocation with histogram-based Flash

channel estimation can extend lifetime significantly.

136

• Flash can only place write voltage at certain

positions.

– Have results showing the impact is limited.

137

Challenges

• Flash can only place write voltage at certain

positions.

– Have results showing the impact is limited.

• Impractical to estimate the channel on the fly. &

Parameter difference between chips.

– Estimate offline. We only need a scaling curve

guaranteeing the worst case error rate.

– Machine learning.

138

Challenges

0 1000 2000 3000 4000 5000 6000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P/E Cycles

S
c
a
lin

g
 F

a
c
to

r

Fixed Voltage Allocation

Dynamic Voltage Allocation

Thank you!

139

140

141

Characterize the Peeling Process

142

Characterize the Peeling Process

• For the inter-frame LDGM

code,

𝛽𝐹𝐹 =
𝑛𝑖
𝑛𝑐

=
1

𝑅𝑖
− 1

• For any 𝜆(𝑥),𝜌(𝑥),

𝛽𝐹𝐹 =
0׬
1
𝜌 𝑥 ⅆ𝑥

0׬
1
𝜆 𝑥 ⅆ𝑥

≥ 𝛽𝐹𝐵

• When 𝜆 𝑥 = 𝑥3,

4න
0

1

𝜌 𝑥 ⅆ𝑥 ≥ 𝛽𝐹𝐵

143

Which adjacent degrees to choose?

Programming Noise ()

• The uncertainty of the programmed threshold voltage

immediately after program operation can be modeled

by a Gaussian random variable.

• The variance of the programmed threshold voltage is

larger when left in the erased state than when actively

programmed.

pn

2

2

(0,) if 0
() where

(0,) if 0

e

p e p

p

N x
f n

N x


 



 
 



144

Wear-out Noise ()

• Wear-out induces threshold voltage shift as a result of

traps generation and electron trapping/de-trapping

during P/E cycling. The number of traps grows as the

number of program/erase cycles increases.

• Trap behavior is modeled as random telegraph noise

(RTN). This causes the distribution of measured

thresholds features exponential tails.

• In some devices, the positive-shift tail is more

significant than the negative-shift one, so we use an

exponential distribution to model wear-out noise.

wn

1
 0

()

0 0

wn

w
w

w

e n
f n

n








 
 

145

Retention Noise ()

• Retention loss is the reduction of programmed

threshold voltage over time caused primarily by electron

de-trapping.

• Retention noise is modeled as a Gaussian random

variable where the mean and variance depend on the

retention time and number of traps.

rn

2

2

()

21
()

2

r r

r

n

r

r

f n e





 






146

Parameter Degradation Model

• Degradation Model

• Wear-out noise:

• Retention noise:

0.62

max

acc
w w

V
C A

V


 
   

 

0.62 0.3

0 max max

ln 1 acc acc
r r r

t V V
x A B

t V V


      
             

       

2
0.62 0.3

2

0 max max

0.1 ln 1 acc acc
r r r

t V V
x A B

t V V


      
            

       

147

MMI Histogram only provides resolution at decision boundaries.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Voltage

P
ro

b
a
b

ili
ty

 D
e

n
s
it
y

3.5 4 4.5 5 5.5 6 6.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Voltage

N
u
m

b
e

r
o
f
C

e
lls

148

