
Optimizing Flash based Storage 
Systems
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• Lifetime

• Reliability

• Latency

• Throughput
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• Reliability/Latency/Throughput: Error Correction Code 

(ECC) Parallelization and Incremental Redundancy

• Lifetime: Channel Estimation and Write Voltage 

Optimization
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Approaching Capacity Using Incremental 

Redundancy Without Feedback

Haobo Wang, Sudarsan V. S. Ranganathan, and Richard Wesel
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• (Latency/Throughput) How to accelerate 

ECC for Flash?

Use parallel short codes to replace a long 

codeword!

• (Reliability) How to recover the data from 

a failed codeword more efficiently?

Lower the rate of the codeword adaptively!
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Motivation/Application for Storage



• Previous work: Approaching Capacity with Short 

Blocklengths using Incremental Redundancy and 

ACK/NACK Feedback [Vakilinia et al. TCOM 2016]

• New Idea: Approaching Capacity using Many Short-

blocklength Codes with Incremental Redundancy in Parallel 

Without Feedback

– Concept

– Design methods and design examples
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k bits of user information
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A Rate-compatible Encoder

Rate-Compatible 

Encoder 

Initial 

Transmission
Increments



Transmitter
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Incremental Redundancy with Feedback

ReceiverChannel



ReceiverTransmitter
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Incremental Redundancy with Feedback

Channel
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ReceiverTransmitter
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Incremental Redundancy with Feedback

Channel



Receiver

ACK

Transmitter
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Incremental Redundancy with Feedback

Channel
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Variable-length Code Parameter in This Work

𝓁1 = 𝓁2 = 𝓁3= 𝓁4 = 𝓁Δ

𝑅𝑡
𝐹𝐵

=
𝑘(1 − 𝜖𝐹𝐵)

𝑙0 + 𝛽𝐹𝐵𝓁Δ

In this presentation, we will compare our feedback-free 

design against corresponding constant-increment-size 

feedback codes.



• In general, a VL error correction code 

(ECC) with feedback has a higher rate 

than a feedforward ECC at comparable 

block length.

• We want to approach the rate of the 

feedback scheme without feedback.
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Keep in mind



• Previous work: Approaching Capacity with Short 

Blocklengths using Incremental Redundancy and 

ACK/NACK Feedback

• New Idea: Approaching Capacity using Many Short-

blocklength Codes with Incremental Redundancy in Parallel 

Without Feedback

– Concept

– Design methods and design examples
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• We use many VL codewords in parallel.

• Send the highest-rate part of each VL codeword. 

Some VL codewords need increments.

• From ergodicity, we know the total amount of 

redundancy needed by all the codewords.

• We use inter-frame coding [Zeineddine et al. 

JSAC 2016] to linearly encode the increments
– Deliver exactly the right amount of redundancy for each VL codeword.

– We expand the analysis to any point-to-point channel, and design actual 

codes.
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Principal Concept
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Inter-frame Code [Zeineddine et al. JSAC 2016]
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Inter-frame Code [Zeineddine et al. JSAC 2016]
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Inter-frame Code [Zeineddine et al. JSAC 2016]
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Inter-frame Code [Zeineddine et al. JSAC 2016]



24

Inter-frame Code [Zeineddine et al. JSAC 2016]
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Inter-frame Code [Zeineddine et al. JSAC 2016]
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Low Density Generator Matrix (LDGM) [Cheng et al. Allerton 

1996] Code
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Low Density Generator Matrix (LDGM) [Cheng et al. Allerton 

1996] Code



LDGM Code
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Left nodes Right nodes



Inter-frame code at the Decoder
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+  Noise



Decoder structure

30

VL decoders 

initialized with 

𝑋0
(𝑖)

.
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Statistics of VL Code in Inter-frame Code Analysis

(0) (1) (2) ( 1)m 

{ (0), (1), , ( 1) }(, )mm    

is the probability of decoding correctly for the 

first time after         transmissions.

( ),  n n m 

1n 



Inter-frame Code – Peeling Decoder

• Every systematic 

node has a degree 

of 3 (𝑚 = 3).

Initialization:

• Every VL decoder 

observes its noisy 

highest-rate 

codeword 𝑋0
(𝑖)

.

• The parity nodes 

are, likewise, 

received from the 

channel.
32



Inter-frame Code – Peeling Decoder

Iteration 1 (left):

• The systematic 

nodes (VL 

decoder) attempt 

to decode with 

their highest-rate 

codewords.

• Each systematic 

node succeeds 

with probability 

𝛿(0).
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Inter-frame Code – Peeling Decoder

Iteration 1 (left):

• The ones that 

succeed

• can compute 

all their 

increments.

• can remove 

effect of their 

increments 

from parities.
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Iteration 1 (left):

• The ones that 

succeed

• can compute 

all their 

increments.

• can remove 

effect of their 

increments 

from parities.
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Inter-frame Code – Peeling Decoder

Iteration 1 (left):

• The ones that fail

• are retained.

• when additional 

increments 

become 

available, they 

can attempt 

decoding again.
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Inter-frame Code – Peeling Decoder

Iteration 1 (right):

• If all but one edge 

are deactivated, 

the parity node 

can become a 

known increment 

to a systematic 

node.
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Inter-frame Code – Peeling Decoder

Iteration 1 (right):

• Systematic nodes 

append available 

increments to 

lower their rate.
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Inter-frame Code – Peeling Decoder

Iteration 2:

• The systematic 

nodes (yet to 

decode) decode 

again if new 

increments are 

available to them.
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Inter-frame Code – Peeling Decoder

Iteration 2:

• The ones that 

successfully 

decode can be 

removed from the 

graph along with 

all their edges.
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Inter-frame Code – Peeling Decoder

The process 

continues until no 

more systematic 

nodes can be 

recovered.
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• Previous work: Approaching Capacity with Short 

Blocklengths using Incremental Redundancy and 

ACK/NACK Feedback

• New Idea: Approaching Capacity using Many Short-

blocklength Codes with Incremental Redundancy in Parallel 

Without Feedback

– Concept

– Design methods and design examples

• Differential evolution for degree distribution

• Quasi-regular heuristic for degree distribution
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• Choose a VL code and a maximum number of 

transmissions (𝑚 = 5) allowed.
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What need to be designed in an inter-frame system?



• Given a VL code with a fixed number of 

transmissions (𝑚 = 5) allowed, there are 3 parts to 

design.
– The initial transmission length (𝓁0) and increment length (𝓁Δ)

– The degree distributions of the inter-frame code

– The bipartite graph (parity matrix) of the inter-frame code
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What need to be designed in an inter-frame system?



• Given a VL code with a fixed number of 

transmissions (𝑚 = 5) allowed, there are 3 parts to 

design.
– The initial transmission length (𝓁0) and increment length (𝓁Δ):

through brute-force search or sequential differential optimization 

(SDO) [Vakilinia et al. TCOM 2016]

– The degree distributions of the inter-frame code

• Differential evolution

• Quasi-regular heuristics

– The bipartite graph (parity matrix) of the inter-frame code: 

through progressive edge growth (PEG) [Hu et al. IT 2005]
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What need to be designed in an inter-frame system?



• Previous work: Approaching Capacity with Short 

Blocklengths using Incremental Redundancy and 

ACK/NACK Feedback

• New Idea: Approaching Capacity using many Short-

blocklength Codes with Incremental Redundancy in Parallel 

Without Feedback

– Concept

– Design methods and design examples

• Differential evolution for degree distribution

• Quasi-regular heuristic for degree distribution
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• Given a 𝜹 = 𝛿 0 , 𝛿 1 ,… , 𝛿 𝑚 and 𝑚, the 

objective is to find 𝜆 𝑥 , 𝜌 𝑥 .

• The peeling decoder can be analyzed using 

density evolution.

• For a given 𝜆 𝑥 , 𝜌 𝑥 pair, density evolution 

equations can predict the residual systematic-node 

error rate after a large number of iterations.

• Differential evolution method can then be used to 

find a 𝜆 𝑥 , 𝜌 𝑥 pair with a low-enough failure rate.
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Design Degree Distributions using Differential Evolution



• Differential evolution is a type of genetic algorithm that 

optimizes a problem by iteratively improving randomly 

generated candidates regarding a metric.

• The candidates in our problem are randomly generated 

𝜆(𝑥),𝜌(𝑥) pairs that have a certain LDGM rate 𝑅𝑖.

• The metric is for the codeword (systematic nodes) failure 

probability 𝜖𝐹𝐹 to be as small as possible, and below 10−3.

• The LDGM rate 𝑅𝑖 is a meta-parameter that are chosen to 

be as high as the optimization produces valid results.
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Differential Evolution
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Inter-frame Code – Rate of LDGM Code



52

Inter-frame Code – Throughput Rate



• For a pair of 𝜆(𝑥), 𝜌(𝑥), the codeword failure rate 𝜖𝐹𝐹
can be calculated using density evolution directly.

• An analytical characterization of 𝜖𝐹𝐹 can also be used in 

differential evolution.

• Luby et al. proposed using differential equations or the 

and-or tree approach to analyze the decoding process 

of the peeling decoder.

• We extend Luby et al.’s analysis to the inter-frame code 

by using direct probabilistic arguments.
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Predict the Failure Probability of the Peeling Decoder



• Initially, each VL decoder is assigned a generalized 

erasure state drawn according to PMF 𝜹. 

• Remove all the left nodes that decode, and their 

incident edges.    

• WHILE right-degree-one edges (i.e. available 

increments) remain in the graph

– Randomly select one right-degree-one edge 𝑄𝑡.

– Remove 𝑄𝑡 (and its incident right node).

– Reduce the generalized erasure state of its incident left node by 1.

– IF the left node can decode (the generalized erasure state is 0)

• Remove the left node and its remaining incident edges.

– ENDIF

• ENDWHILE
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Peeling Algorithm for Decoder Analysis



• As long as there is an edge connects to a 

degree-1 right node, the peeling process 

continues.

• Peeling process metric 𝑟1 𝑥 : the probability 

that a randomly picked edge in the initial 

bipartite graph has not been removed after 𝑡
iterations, and connects to a degree-1 right 

node.

• We use 𝑟1(𝑥) to predict 𝜖𝐹𝐹.
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Characterize the Peeling Process



• Define 𝑥(𝑡) or simply 𝑥 as the probability 

that a randomly selected edge in the initial 

graph that is not in the set {𝑄1, … , 𝑄𝑡}. 

• In [Luby et al. IT 2001], 𝑥 is defined with a 

differential equation to solve differential 

equations to find 𝑟1(𝑥).
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Definition of 𝑥



• 𝑝𝑙(𝑥): the probability that a randomly selected 

edge in the initial graph has as its incident left 

node a VL decoder that cannot decode after 

{𝑄1, … , 𝑄𝑡} have been provided as potential 

increments by all the other edges connecting to 

that VL decoder.

• 𝑝𝑟(𝑥): the probability that a randomly selected 

edge in the initial graph has as its incident right 

node a node with exactly one edge remaining 

after {𝑄1, … , 𝑄𝑡} have been provided as 

increments to the VL decoders.
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Characterize the Peeling Process



𝑟1 𝑥 = 𝑝𝑙 𝑥 𝑝𝑟 𝑥 − 𝑝𝑙 𝑥 1 − 𝑥

𝑝𝑙 𝑥 = ෍

𝜔=1

𝑚

𝛿(𝜔)෍

𝑖=1

𝑑𝐿

𝜆𝑖 ෍

𝑗=0

min 𝜔,𝑖 −1
𝑖 − 1
𝑗

1 − 𝑥 𝑗𝑥𝑖−1−𝑗

𝑝𝑟 𝑥 = 𝜌 1 − 𝑝𝑙(𝑥)
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Characterize the Peeling Process

𝑥(𝜖)



𝜖𝐹𝐹 = ෍

𝜔=1

𝑚

𝛿 𝜔 ෍

𝑖=1

𝑑𝐿

Λ𝑖 ෍

𝑗=0

min 𝜔−1,𝑖
𝑖
𝑗

1 − 𝑥(𝜖)
𝑗
𝑥(𝜖)

𝑖−𝑗

Λ𝑖 =
𝜆𝑖/𝑖

σ
𝑗=1
𝑑𝐿 𝜆𝑖/𝑖
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Probability of Failure 𝜖𝐹𝐹



VL decoderVL encoder
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Convolutional Code as VL Code [Williamson et al. TCOM 2014]

Channel

k=64 bits, Rate-1/3, 

1024-state, tail-

biting convolutional 

code (TBCC) with 

pseudorandom 

puncturing [Ma et al. 

TCOM 1986]

Binary-input

AWGN

Channel 

with SNR=2 

dB

Tail-biting 

reliability-output 

Viterbi algorithm 

(ROVA) 

[Raghavan et al. 

TIT 1998]
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Convolutional VL Code parameters with Constant-size Increments

•

• 𝜹 = 0.333, 0.449, 0.182,0.0316, 0.00402, 0.000505

𝓵𝟎 𝓵𝚫 for 𝒎 = 𝟓
(four 

increments)

Throughput Rate 𝑅𝑡
(𝐹𝐵)

with ACK/NACK 

Feedback

Percentage of 

Capacity of 2dB 

BI-AWGN

108 bits 16 bits 0.5208 81.10%
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Design Example – Regular LDGM Code

• Systematic node degree: 4

• Parity node degree: 3

• LDGM code design rate 𝑅𝑖 = 0.4286

• Number of systematic nodes = 100,000

Throughput Rate 

𝑅𝑡
(𝐹𝐵)

with ACK/NACK 

Feedback 

Throughput Rate 

𝑅𝑡
(𝐹𝐹)

- inter-frame 

code (regular LDGM)

0.5208 0.4945
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Design Example – Irregular LDGM Code

• Maximum systematic node degree: 4

• Maximum parity node degree: 10

• LDGM code design rate 𝑅𝑖 = 0.48

• Number of systematic nodes = 100,000

Throughput Rate 

𝑅𝑡
(𝐹𝐵)

with 

ACK/NACK 

Feedback

Throughput Rate 

𝑅𝑡
(𝐹𝐹)

- inter-frame 

code (regular 

LDGM)

Throughput Rate 

𝑅𝑡
(𝐹𝐹)

- inter-frame 

code (irregular 

LDGM)

0.5208 0.4945 0.5102
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Probability of Error Characterization of the 100,000 

Systematic Node Codes
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Design Example – Shorter LDGM Code

• Maximum systematic node degree: 4

• Maximum parity node degree: 10

• LDGM code design rate 𝑅𝑖 = 0.46

• Number of systematic nodes: 1000

Throughput Rate 

𝑅𝑡
(𝐹𝐵)

with 

ACK/NACK 

Feedback

Throughput Rate 

𝑅𝑡
(𝐹𝐹)

- inter-frame 

code (irregular 

LDGM)

0.5208 0.5044
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Design Example – Comparison vs Capacity

VL Code 

with 

ACK/NACK 

Feedback

100,000 systematic 

nodes

1000 systematic 

nodes

Regular 

LDGM

Irregular 

LDGM

Irregular

LDGM

Throughput rate 0.5208 0.4945 0.5102 0.5044

Percentage of 

Capacity of 2dB 

BI-AWGN

81.10% 77.01% 79.45% 78.55%

Percentage of 

ACK/NACK 

Feedback 

Throughput

--- 95.0% 98.0% 96.9%

The throughput loss is the result of using more linear combinations 

of increments (right nodes) than the feedback system.
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Three Mechanisms of Throughput Loss

• The degree of the right node of interest 

(RNOI) never decreases below two. (𝜂1)

• The degree of the RNOI decreases from 

two or more to zero in a single iteration of 

the peeling decoder so that it never 

provides an increment. (𝜂2)

• The degree of the RNOI achieves the 

value of one during an iteration so that it 

provides an increment to a left node, but 

other right nodes simultaneously provide 

the remaining required increments to that 

left node making the RNOI’s increment 

superfluous. (𝜂3)



70

Probability of Failure Mechanisms

Quasi-regular 

heuristic for the 

right degree 

distribution



• The right degree distribution of the 100,000-systematic-

node irregular LDGM code is:
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Right Degree Distribution Example from Differential Evolution

Quasi-regular!

This is different from 

the Poisson right 

degree distribution 

proposed in [Luby et 

al. IT 2001] and 

Zeineddine et al. 

JSAC 2016] .



• Previous work: Approaching Capacity with Short 

Blocklengths using Incremental Redundancy and 

ACK/NACK Feedback

• New Idea: Approaching Capacity using many Short-

blocklength Codes with Incremental Redundancy in Parallel 

Without Feedback

– Concept

– Design methods and design examples

• Differential evolution for degree distribution

• Quasi-regular heuristic for degree distribution
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Outline
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Quasi-regular heuristic for degree distribution

• Given a 𝜹 = 𝛿 0 , 𝛿 1 , … , 𝛿 𝑚 and 𝑚, the 

objective is to find 𝜆 𝑥 , 𝜌 𝑥 .

• Set 𝜆 𝑥 = 𝑥3 for 𝑚 = 5 so that each left node has 

the maximum capacity of receiving required 

increments.

• Select 𝜌 𝑥 = 𝛼𝑥2 + 1 − 𝛼 𝑥3 for example where 𝛼
is the design parameter.

• Find 𝛼 that maximizes the throughput and 

guarantees the target failure probability.
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Which adjacent degrees to choose?

From a 

𝜆 𝑥 , 𝜌 𝑥 pair 

generated by 

differential 

evolution.



• For the VL code with feedback, define 𝛽𝐹𝐵 as the 

expected number of increments required by a VL 

decoder.

𝛽𝐹𝐵 = ෍

𝑖=1

𝑚−1

𝑖𝛿 𝑖 + 𝑚 − 1 𝛿(𝑚) = 𝔼 𝜹 − 𝛿(𝑚)

• For an inter-frame code, define 𝛽𝐹𝐹 as the average 

number of combined increments per left node. 

𝛽𝐹𝐹 = 𝑅𝑖
−1 − 1.

• Lower bound on 𝛽𝐹𝐹:
𝛽𝐹𝐹 ≥ 𝛽𝐹𝐵
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Which adjacent degrees to choose?



• When the left degree distribution is regular, 𝜆 𝑥 =
𝑥𝑚−1, define 𝑎𝑅 as the average right node degree.

𝛽𝐹𝐹 =
0׬
1
𝜌 𝑥 ⅆ𝑥

0׬
1
𝜆 𝑥 ⅆ𝑥

=
𝑚 − 1

𝑎𝑅

𝛽𝐹𝐹 ≥ 𝛽𝐹𝐵 ⇒ 𝑎𝑅 ≤
𝑚 − 1

𝛽𝐹𝐵
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Which adjacent degrees to choose?



• For the convolutional code example, 𝛽𝐹𝐵 = 0.9260, 𝑚 =
5.

𝑎𝑅 ≤
𝑚 − 1

𝛽𝐹𝐵
= 4.32
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Which adjacent degrees to choose?



• 𝜆 𝑥 = 𝑥3, 𝜌 𝑥 = 𝛼𝑥2 + 1 − 𝛼 𝑥3, assume infinite large 

bipartite graphs
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Asymptotic Performance of 2-degree Quasi-regular Right Degree 

Distribution from Density Evolution

𝜶 𝒂𝑹 𝜷𝑭𝑭 No. 

Iterations
% 𝑹𝒕

(𝑭𝑩) Codeword 

Error Rate 𝝐𝑭𝑭

1 3 1.333 15 95.0% 7.09×10-4

0.531 3.398 1.177 20 96.8% 7.82×10-4

0.244 3.699 1.081 30 98.0% 8.35×10-4

0.168 3.788 1.056 40 98.3% 8.50×10-4

0.139 3.823 1.046 50 98.4% 8.56×10-4

0.108 3.861 1.036 100 98.6% 8.63×10-4

Regular

Irregular
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Asymptotic Performance of 2-degree Quasi-regular Right Degree 

Distribution from Density Evolution
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Non-binary Low Density Parity Check (NB-LDPC) Code as 

VL Code [Vakilinia et al. ISIT 2014]

Channel

k=24 symbols, 𝑛=32, 

Rate-3/4, GF(256)

NB-LDPC [Davey et 

al. Comm. Lett. 1998] 

with bit-by-bit 

incremental 

redundancy (IR)

Binary-input

AWGN

Channel 

with SNR=2 

dB

Fast Fourier 

transformation 

based Q-ary sum 

product algorithm 

(FFT-QSPA) 

[MacKay et al. 

IMA 2000] with IR

VL encoder VL decoder
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NB-LDPC VL Code parameters with Constant-size Increments

•

• 𝜹 = 0.309,0.464,0.194,0.0293,0.00318,0.00049

𝓵𝟎 𝓵𝚫 for 𝒎 = 𝟓
(four 

increments)

Throughput Rate 𝑅𝑡
(𝐹𝐵)

with ACK/NACK 

Feedback

Percentage of 

Capacity of 2dB 

BI-AWGN

302 bits 36 bits 0.5705 88.85%



• 𝜆 𝑥 = 𝑥3, 𝜌 𝑥 = 𝛼𝑥2 + 1 − 𝛼 𝑥3, assume infinite large 

bipartite graph 
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Asymptotic Performance of 2-degree Quasi-regular Right Degree 

Distribution from Density Evolution

𝜶 𝒂𝑹 𝜷𝑭𝑭 No. 

Iterations
% 𝑹𝒕

(𝑭𝑩) Codeword Error 

Rate 𝝐𝑭𝑭

0.597 3.336 1.199 20 97.4% 6.55×10-4

0.341 3.591 1.114 30 98.3% 6.82×10-4

0.273 3.666 1.091 40 98.5% 6.90×10-4

0.246 3.697 1.082 50 98.6% 6.93×10-4

0.217 3.730 1.072 100 98.7% 6.97×10-4
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Asymptotic Performance of 2-degree Quasi-regular Right Degree 

Distribution from Density Evolution



• Complexity: Number of systematic nodes 𝑛𝑐

• Error Performance: Probability of error 𝜖𝐹𝐹

• Latency: Number of iterations
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Practical Constraints When Designing An Inter-frame Code

Trade-offs among the constraints! 



• 𝜆 𝑥 = 𝑥3, 𝜌 𝑥 = 𝛼𝑥2 + 1 − 𝛼 𝑥3, 100 inter-frame code 

iterations
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Number of Systematic Nodes Required of 2-degree Quasi-regular 

Right Degree Distribution

𝜶 = 𝟎. 𝟓𝟗𝟕 𝜶 = 𝟎. 𝟑𝟒𝟏

Throughput rate 0.5559 0.5609

Percentage of Capacity of 

2dB BI-AWGN
86.57% 87.35%

Number of Systematic Nodes 

Needed to Achieve the 

Designed Throughput Rate

1000 10,000
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Probability of Error for Different Designs Requiring Varying 

Number of Systematic Nodes



• VL codes with ACK/NACK feedback can 

approach capacity with short blocklengths.

• We used many short blocklength VL codes 

in parallel without feedback to achieve 98% 

of throughput of the underlying VL codes 

with feedback.

• Inter-frame coding enables a distributed 

decoding architecture for very high 

throughputs.
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Conclusions



• Reliability/Latency/Throughput: ECC Parallelization and 

Incremental Redundancy

• Lifetime: Channel Estimation and Write Voltage 

Optimization
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Projects



Histogram-Based Flash Channel Estimation 
and Dynamic Voltage Allocation

Haobo Wang, Tsung-Yi Chen, Richard D. Wesel
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• How to reduce Flash memory’s wear-out? 

Write to lower threshold voltages! 

Motivation
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• Channel Model

• Channel Parameter Estimation

• Dynamic (Write) Voltage Allocation

Outline
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• We model the NAND flash memory cell data storage

process as

: sensed programmed state threshold voltage

: intended programmed state threshold voltage

: programming noise

: wear-out noise

: retention noise
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x

y
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wn

rn

Channel Model

92



Programming Noise (    )
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Wear-out Noise (    )
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Voltage
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Sample PDF
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Replace number of P/E cycles 

with accumulated voltage

• Channel degradation is usually modeled as a function of the

number of program/erase (P/E) cycles.
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Replace number of P/E cycles 

with accumulated voltage

• Channel degradation is usually modeled as a function of the

number of program/erase (P/E) cycles.

• The volume of charge passing through dielectrics actually

causes the degradation.
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Replace number of P/E cycles

with accumulated voltage

• Channel degradation is usually modeled as a function of the

number of program/erase (P/E) cycles.

• The volume of charge passing through dielectrics actually

causes the degradation.

• The use of the number of P/E cycles is approximately correct

when the volume of charge passing through the dielectrics is

the same for each P/E cycle.
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Replace number of P/E cycles 

with accumulated voltage

• Channel degradation is usually modeled as a function of the

number of program/erase (P/E) cycles.

• The volume of charge passing through dielectrics actually

causes the degradation.

• The use of the number of P/E cycles is approximately correct

when the volume of charge passing through the dielectrics is

the same for each P/E cycle.

• We use a more precise metric named accumulated voltage

Vacc to directly characterize the volume of charge that has

passed since the first write.
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Accumulated Voltage

The normalized accumulated voltage is               , where        

is the maximum of 

When using fixed voltage levels,                ≈ # PE Cycles.

: accumulated voltage over N P/E cycles, 

: programmed threshold voltage of the jth P/E cycle

: threshold voltage of the erased state

 ( )

1

N
j

acc p e

j

V V V


 

accV
( )j

pV

eV

( ) , .j

p eV V j
max/accV V maxV

max/accV V
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Channel Parameter Estimation

• Channel parameter estimation workflow:

Histogram
Measurement

Least Squares 
Algorithm

Channel 
Model

Estimated 
Parameters
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Parameter Vector

programming erase retention retention [ , , , , ]

 We actually estimate [ , , , , ],  where p e rrm n

    

  





retention 0( ) rx x n   
2 2

retention 0( )  .rx x m   
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Estimation Objective Function

• Estimation Objective Function is the squared Euclidean

distance between the predicted histogram and

measured histogram

: total number of cells in a page

: total number of cells in ith bin of measure histogram

: total number of cells in ith bin by estimation

: total number of bins
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More about Least Squares Algorithms

• Objective

• Minimize the cost function:

2
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More about Least Squares Algorithms

• Objective

• Minimize the cost function:

• Algorithm 1 – Gradient Descent

• Follow the descending gradient with a fixed step

size.
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More about Least Squares Algorithms

• Objective

• Minimize the cost function:

• Algorithm 1 – Gradient Descent

• Follow the descending gradient with a fixed step

size.

• Algorithm 2 – Gauss–Newton Algorithm

• Take each step based on quadratic approximation at

current point.
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More about Least Squares Algorithms

• Objective

• Minimize the cost function:

• Algorithm 1 – Gradient Descent

• Follow the descending gradient with a fixed step

size.

• Algorithm 2 – Gauss–Newton Algorithm

• Take each step based on quadratic approximation at

current point.

• Algorithm 3 – Levenberg–Marquardt Algorithm

• Rotate Gauss-Newton increment vector toward the

direction of descending gradient.
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Least Squares Algorithm Speed Comparison
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Least Squares Algorithm Accuracy Comparison
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Least Squares Algorithms Choice

• Algorithm 1 – Gradient Descent

• Convergence speed is too slow.

• Algorithm 2 – Gauss–Newton Algorithm

• Converge fast but lacks stability.

• Algorithm 3 – Levenberg–Marquardt Algorithm

• Good for parameter estimation.
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Binning Strategy

• Bin-placement Paradigm

• Number of Bins
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Bin-placement Paradigm

• Equal Interval (EI) Histogram
• Not actually equal. Bins covering erased state

distribution can be slightly wider.

• Maximum Mutual Information (MMI) Histogram
• Bins optimized for decoding.

• Equal Probability (EP) Histogram
• Each bin has the same number of cells.
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One metric to consider…

• Squared Euclidean Distance between the

Channel distribution and the histogram

induced by .

: channel distribution

: number of bins

: left boundary of the ith interval

: right boundary of the ith interval

: probability of the ith bin
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Square Euclidean Distance Comparison
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Square Euclidean Distance Comparison
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Another metric to consider…

• Effective Resolution

• Two adjacent zero-height bins can be combined as

one bin.

• Effective resolution is the number of bins after this

combination process.
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Equal-interval histogram loses resolution 

with retention effect.
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Effective Resolution Comparison
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Effective Resolution Comparison
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Equal probability histogram 

provides the highest 

effective resolution.
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Bin-placement Paradigm Choice

• Equal Interval Histogram
• Equal interval histogram does not adapt well to

retention loss.

• Maximum Mutual Information Histogram
• This histogram optimizes decoder performance, but

may not be the best for channel parameter

estimation.

• Equal Probability Histogram
• Every bin has an equal number of cells, good for

parameter estimation.
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Number of Bins Comparison

Levenberg-Marquardt Algorithm Iteration Count

Horizontal Line Segment: 

Range of Iteration Count

Vertical Line Segment: 

Mean of Iteration Count

Rectangle: Standard 

Deviation of Iteration Count

50 55 60 65 70 75 80

7-bin Histogram

10-bin Histogram

13-bin Histogram

Iteration Count
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Number of Bins Comparison

Levenberg-Marquardt Algorithm Iteration Count

Horizontal Line Segment: 

Range of Iteration Count

Vertical Line Segment: 

Mean of Iteration Count

Rectangle: Standard 

Deviation of Iteration Count

50 55 60 65 70 75 80

7-bin Histogram

10-bin Histogram

13-bin Histogram

Iteration Count

• 10-bin histogram strikes the right balance, which provides

sufficient information to narrow the set of possible channels

but not so large as to overstrain the optimization algorithm.
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Dynamic (Write) Voltage Allocation

• Fixed threshold voltage allocation provides unnecessary

margin at the beginning of Flash memory’s lifetime, causing

accelerated wear-out.

• Dynamic Voltage Allocation can reduce unnecessary wear-

out, and thus increase lifetime by using lower threshold

voltages for early writes.

• The threshold voltages can be gradually increased as

needed using a single scaling factor to combat channel

degradation.

• The target of the anti-degradation process is to maintain a

minimum mutual information as long as possible.
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DVA using Histogram-based Channel Estimation

Histogram
Measurement

Parameter
Estimation

Dynamic 
Voltage

Allocation

Channel
Model
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Histogram Measurement
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Parameter Estimation

Histogram
Measurement

Parameter
Estimation

Dynamic 
Voltage

Allocation

Ground Truth: [0.0099,0.3500,0.0500,0.0617,-0.5882]
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Parameter Estimation

Histogram
Measurement

Parameter
Estimation

Dynamic 
Voltage

Allocation

Ground Truth: [0.0099,0.3500,0.0500,0.0617,-0.5882]

Estimation Error: 10-4× [0.0101 0.0214 -0.1774 0.0405 -0.0044]
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Voltage Levels Adapted to Degraded Channel
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Dynamic Voltage Allocation Scaling Factor Example
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Dynamic Voltage Allocation Scaling Factor Example

131

0 1000 2000 3000 4000 5000 6000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P/E Cycles

S
c
a
lin

g
 F

a
c
to

r

 

 

Fixed Voltage Allocation

Dynamic Voltage Allocation



Dynamic Voltage Allocation Scaling Example

(P/E = 5000)
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Dynamic Voltage Allocation Scaling Factor Example
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Dynamic Voltage Allocation Scaling Example
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Monte Carlo Simulation Result for MLC Flash
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Conclusion

• Levenberg-Marquardt algorithm can provide accurate

channel parameter estimations using limited resolution

histograms.

• 10-bin equal-probability binning strategy is a good

choice for Flash channel estimation using least squares

algorithms.

• Dynamic voltage allocation with histogram-based Flash

channel estimation can extend lifetime significantly.
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• Flash can only place write voltage at certain 

positions. 

– Have results showing the impact is limited.
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Challenges



• Flash can only place write voltage at certain 

positions. 

– Have results showing the impact is limited.

• Impractical to estimate the channel on the fly. & 

Parameter difference between chips.

– Estimate offline. We only need a scaling curve 

guaranteeing the worst case error rate. 

– Machine learning.
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Thank you!
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Characterize the Peeling Process
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• For the inter-frame LDGM 

code,

𝛽𝐹𝐹 =
𝑛𝑖
𝑛𝑐

=
1
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− 1

• For any 𝜆(𝑥),𝜌(𝑥),
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Programming Noise (    )

• The uncertainty of the programmed threshold voltage

immediately after program operation can be modeled

by a Gaussian random variable.

• The variance of the programmed threshold voltage is

larger when left in the erased state than when actively

programmed.
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Wear-out Noise (    )

• Wear-out induces threshold voltage shift as a result of

traps generation and electron trapping/de-trapping

during P/E cycling. The number of traps grows as the

number of program/erase cycles increases.

• Trap behavior is modeled as random telegraph noise

(RTN). This causes the distribution of measured

thresholds features exponential tails.

• In some devices, the positive-shift tail is more

significant than the negative-shift one, so we use an

exponential distribution to model wear-out noise.
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Retention Noise (    )

• Retention loss is the reduction of programmed

threshold voltage over time caused primarily by electron

de-trapping.

• Retention noise is modeled as a Gaussian random

variable where the mean and variance depend on the

retention time and number of traps.
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Parameter Degradation Model

• Degradation Model

• Wear-out noise:

• Retention noise:
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MMI Histogram only provides resolution at decision boundaries.
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