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Abstract—Following Poulliat et al.’s design of (2, dc) non-
binary LDPC (NB-LDPC) codes, this paper designs high-rate ir-
regular NB-LDPC codes by addressing the problem of minimum
symbol distance. The design procedure first identifies all stopping
sets up to weight five in an LDPC code and enumerates them
via a message passing algorithm. For each identified stopping
set, careful labeling forces its corresponding parity-check sub-
matrix to be full rank, thereby preventing the stopping set from
being a sub-code and ensuring a minimum distance of at least
six symbols. Simulation results for codes designed through this
procedure show a significant improvement in the error-floor
region over randomized labeling.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are a class of
linear block codes with sparse parity-check matrices that
were discovered by Gallager [1] and later shown to approach
capacity [2]. LDPC code design techniques can be categorized
as being algebraic or non-algebraic. Algebraic techniques
design the code analytically as in [3] and others. Non-algebraic
techniques, which are the focus of this paper, construct codes
by optimizing some of the properties of the code’s underlying
graph such as girth, degree distribution, cycle extrinsic mes-
sage degree etc. [4], [5]. Non-zero labels for the parity-check
matrix are then chosen from a finite Galois field GF(q) with
q > 2 yielding non-binary LDPC (NB-LDPC) codes [6].

Proper selection of non-zero labels for an NB-LDPC code
can lead to a better performance than randomized labeling in
both the waterfall and the error-floor regions. In this regard,
optimum labeling schemes for (2, dc) codes were identified
through optimization in [7], where cycle cancellation and
stopping-set mitigation were employed to avoid low-weight
sub-codes. For high-rate codes (r ≥ 0.8) with a moderate
block-length of around n = 2000 bits that are the focus of
this paper, the techniques of [7] cannot be applied to improve
the minimum row distance beyond two bits for low values of
q because of check nodes with high degrees.

This paper demonstrates a code design technique that im-
proves the error floor of high-rate, irregular NB-LDPC codes

This research was supported by a gift from the Broadcom Foundation and
National Science Foundation (NSF) grants CCF-1162501 and CCF-1161822
(JPL Task Plan 82-17473). This research was carried out in part at the
Jet Propulsion Laboratory (JPL), California Institute of Technology, under
a contract with NASA.

over random labeling. Our contributions include an exhaustive
listing of stopping-set structures up to weight five and an
algorithm, based on [8], to enumerate them. We extend cycle
cancellation [7] to stopping-set cancellation (SSC) to prevent
these stopping sets from being sub-codes. We demonstrate
these steps by designing a protograph-based code with a low
iterative-decoding-threshold [9] degree distribution. Signifi-
cant improvement is seen in the error-floor region as a result of
increase in minimum symbol distance of the NB-LDPC code.

The paper is organized as follows: Section II presents
background material and notation. Section III lists all stopping-
set structures up to weight five of LDPC codes. Section IV
presents the enumeration algorithm using two particular struc-
tures as examples. Section V presents an example design of
a protograph-based NB-LDPC code through SSC and follows
up with simulation results. Section VI concludes the paper.

II. BACKGROUND AND NOTATION

An LDPC code is defined by a sparse parity-check matrix
H containing m rows and n columns, whose entries belong to
a finite field GF(q). The rate of the code is given by r ≥ n−m

n ,
with equality if H is full rank. A bipartite undirected Tanner
graph G(V,C,E) is an alternative representation for H . The
columns of H form the variable-node set V and the rows of
H form the check-node set C. The edge set E has elements
eij : Hji > 0 which connect elements from V with elements
from C. The number of edges connected to a node is its degree.
The girth g of a graph is the length of its shortest cycle.

A protograph [10] Gp(Vp, Cp, Ep) is a Tanner graph with
np = |Vp| and mp = |Cp|, where np and mp are relatively
small. The edge set EP allows multiple edges connecting
a variable-check node pair. To obtain a code G(V,C,E), a
protograph Gp is lifted by a factor N through two operations.
Gp is first copied N times to produce n = npN variable
nodes, m = mpN check nodes and |E| = |Ep|N edges. The
variable node connections are then permuted within each set of
N edge copies to obtain the graph G(V,C,E). The edges are
labeled with non-zero elements from GF(q) for an NB-LDPC
code. Practical implementation advantages are obtained when
edge permutations form circulant sub-matrices in H .

A stopping set S is a set of a variable nodes whose b
neighboring check nodes have at least two edges connected



to S. With no variable nodes of degree 1, a stopping set is
always a cycle or an interconnection of cycles [5]. The sub-
matrix HS corresponding to the stopping set is of size b× a,
where a is the weight of the stopping set. A sub-code is a
stopping set that has a non-trivial null-space associated with
its sub-matrix. We categorize a stopping set as wide, square, or
tall depending upon the structure of its sub-matrix as follows:

1) A wide stopping set has a > b and is always a sub-code
since a wide sub-matrix Hs always has a non-trivial null-
space. These stopping sets are “unavoidable” sub-codes
as labeling cannot prevent them from being sub-codes.

2) A stopping set is square if a = b and tall if a < b.
In an NB-LDPC code, these stopping sets are sub-codes
only if their sub-matrices are rank-deficient. They can be
prevented from being sub-codes through proper labeling.

For an NB-LDPC code, the weight of the smallest stopping-
set sub-code in H is the minimum symbol distance. The
labeling scheme introduced in [7] for (2, dc) NB-LDPC codes
prevented square stopping sets (cycles) from being sub-codes
and maximized the minimum distance of wide sub-codes
yielding an improved performance. Empirically, for our high
rate and moderate block-length, irregular NB-LDPC codes
that are labeled randomly have a high error floor for degree
distributions with low iterative-decoding thresholds mainly due
to very low-weight tall and square stopping-set sub-codes.

III. STOPPING-SET STRUCTURES UP TO WEIGHT FIVE

This section catalogs1 all stopping-set structures up to
weight five in LDPC codes. The catalog facilitates the identi-
fication of stopping sets through a simple algorithm, thereafter
which tall and square stopping sets can be labeled carefully
for NB-LDPC codes. We denote square, wide and tall stopping
sets as ss, sw and st respectively. In all figures, circles
represent variable nodes and squares represent check nodes.
O and T are labels specific to the algorithm of Sec. IV.

Remark 1: In this work, we consider LDPC codes with girth
g > 4 without variable nodes of degree 1.

Lemma 1: Any stopping set of weight a has variable nodes
of degrees at most a− 1.

Proof: A variable node of degree a needs at least a other
variable nodes to form a stopping set with girth g > 4.

A. Square Stopping-Set Structures up to Weight Five

Lemma 2: All variable nodes in weight-three structures have
degree 2. There are no tall structures of weight three.

Proof: The first part of the Lemma follows from
Lemma 1. The proof of the second part is described in [7]
as a structural property of (2, dc) LDPC codes. As a result,
every weight-three stopping set is a length-six cycle formed
by variable nodes of degree 2. We call this structure ss1.

There are two square structures of weight four. The first,
ss2, is a simple length-eight cycle similar to ss1. The other
structure, ss3, is shown in Fig. 1(a).

1See http://www.seas.ucla.edu/csl/resources/manuscripts/ISIT 2014 ss
catalog.pdf for a complete catalog of these structures.
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Fig. 1. Two non-trivial square stopping-set structures
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Fig. 2. The square stopping-set structure ss6 contains the sub-graph shown
in (a). An example ss6 stopping set is shown in (b).
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Fig. 3. A sub-code and its constituent square structure of weight five

Lemma 3: In an LDPC code with girth g > 4, a weight-a
square structure cannot contain variable nodes of degree both
a− 2 and a− 1. There can be at most two variable nodes of
degree a− 2 or one variable node of degree a− 1.

Proof: Any violation of the lemma leads to a length-four
cycle in an a× a sub-matrix which is a contradiction.

The remaining square structures all have weight a = 5. For
all variable nodes having degree 2, the only possible configu-
ration is ss4, a simple length-ten cycle. For one variable node
having degree 4, the only possible structure is ss5 (similar to
ss3), which is shown in Fig. 1(b).

Fig. 2(a) shows the only way two variable nodes of degree
3 can be present when a = 5 and g > 4. If check nodes 1, 2,
3 and 4 form at least three of the four possible connections
through variable nodes of degree 2, we have square structure
ss6, an example of which is shown in Fig. 2(b). Presence of
all the four possible connections leads to four ss6 stopping
sets and a weight-six sub-code.

Now we consider the weight-five square structures with one
variable node of degree 3. The weight-seven sub-code shown
in Fig. 3(a) has six square stopping sets of weight five of
the form shown in Fig. 3(b) which is denoted ss7. Removing
either v1 or v2 in Fig. 3(a) leads to a weight-six sub-code
which contains only two ss7 structures.

The next square structure, ss8, is shown in Fig. 4(a). The
wide stopping set sw1 in Fig. 5(a) is a union of ss1 and ss7
and it contains two ss8 stopping sets. Stopping set sw2, shown
in Fig. 5(b), is a union of ss1 and ss3. Removing the unfilled
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Fig. 4. Two weight-five stopping-set structures

(a) sw1 (b) sw2

Fig. 5. Two wide structures of weight six

variable node from sw2 leads to an ss8 stopping set.
Lemma 4: ss7 and ss8 are the only square structures of

weight five with only one variable node of degree 3.
Proof: A weight-five square structure with only one

variable node of degree 3 contains exactly two cycles and
the possible cycle lengths are six and eight, where at least one
cycle must be of length six. More cycles or longer cycles force
a higher-weight structure. Two length-six cycles lead to ss7
and one cycle each of length six and eight lead to ss8.

B. The Only Wide Weight-Five Stopping-Set Structure

A 3× 4 wide structure cannot be present in an LDPC code
with girth g > 4. Moreover, a 4 × 5 stopping set has only
variable nodes of degree 2 in order to satisfy g > 4. For a code
with girth g > 4, the lowest possible weight of a wide structure
with variable nodes of degree 2 is 5 and is achieved by the
structure shown in Fig. 4(b). This structure should be avoided
while constructing the code in order to achieve a minimum
distance of six symbols since any labeling leads to a sub-code.

C. Tall Stopping-Set Structures up to Weight Five

Recall that Lemma 2 precludes weight-three tall structures
and hence we begin the discussion with weight-four tall
structures. We will examine the possible variable node degrees
in a tall structure, which we identify by a list of degrees. For
example the list 3322 denotes a structure with two variable
nodes of degree 3 and two variable nodes of degree 2.

Lemma 5: A stopping-set structure with only one variable
node of degree larger than 2 is either square or wide.

Proof: Since structures with only variable nodes of degree
2 are either square or wide [7], addition of another variable
node of a higher degree can only lead to a square or a wide
structure since no new check nodes are introduced in this
process. A square structure is formed if the variable nodes
of degree 2 do not contain any stopping set to begin with.

We start with the degree list 3322. The following Lemma,
referred to as the sharing constraint, will be used in this
section whenever required.

Lemma 6: Two variable nodes of degree 3 in a weight-four
tall structure share exactly one check node.

Proof: If these two variable nodes do not share exactly
one check node, two additional variable nodes are not suffi-
cient to complete the structure with girth g > 4.

1 0
1 0
1 1
0 1
0 1

 completion
=⇒


1 0 1 0
1 0 0 1
1 1 0 0
0 1 1 0
0 1 0 1

 (st1)

Consider the two variable nodes of degree 3 that share a check
node. The above sub-matrix (on the left), upon completion,
leads to a unique stopping-set structure for 3322 and this
structure is denoted st1.

Similar to the above argument, it can be shown by con-
structing a sub-matrix that 3332 is not a valid configuration.
The 3333 stopping set, denoted st2, is a unique structure that
is a obtained from st1 by “promoting” both variable nodes of
degree 2 to degree 3 through one additional check node.

Now we consider the weight-five tall stopping-set structures.
• 33222: We consider first the case where the two variable

nodes of degree 3 do not share a check node. As shown
below, a unique completion leads to the tall structure st3.

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

 (st3),


1 0 1 0 0
1 0 0 1 0
1 1 0 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 0 1

 (st4)

For the case where the two variable nodes of degree 3
share one check node, st4, shown above and in Fig. 6(b),
is the only unique completion.

• 33322: There are two non-isomorphic structures st5 and
st6 with the same number of check nodes. The set of
three variable nodes of degree 3 has to satisfy the sharing
constraint in such a way that they share exactly one check
node between each pair. This leads to the two possible
structures which are not described here and can be seen
through sub-matrices similar to the above ones.

• 33332, 33333: 33332 has two non-isomorphic structures
which essentially differ in the number of check nodes that
are present (unlike st5, st6). The first, st7, is a simple ex-
tension of st2. The second structure, denoted st8, has one
check node more than st7. The structure corresponding
to 33333, denoted st9, is shown in Fig. 6(a).

For tall structures of weight five with variable node(s) of
degree 4, the sharing constraint is that a variable node of
degree 4 shares exactly one check node with every other
variable node in the structure. Because of this constraint, the
following sub-matrix, without loss of generality, will always
be present in these structures:

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
...

...
...

...
...

 . (1)



The resulting tall structures with variable nodes of degree 4 are
as follows: 43222-st10, 43322-st11, 43332-st12, 43333-st13,
44222-st14, 44332-st15, 44333-st16, 44433-sr17, 44444-
st18. There are no structures for 44322, 44422 and 44432.

Theorem 1: The eight square structures ss1, ss2, . . . , ss8,
the one wide structure and the eighteen tall structures
st1, st2, . . . , st18 are the only stopping-set structures of
weight five or less that can be present in any LDPC code.

Proof: The section’s discussion proves the theorem.

IV. STOPPING-SET-ENUMERATION (SSE) ALGORITHM

This section presents the stopping-set-enumeration algo-
rithm and provides two examples. The approach generalizes
to most structures described in the previous section. The
algorithm, inspired by [8], is based on message passing.

For a specified structure, the algorithm runs a message-
passing procedure from each potential origin node O as de-
noted in the figures. Depending upon the structure considered,
certain types of nodes can be removed from the graph during
initialization and the rest of the nodes are active. The first step
is to pass the index of the potential origin node O, after which
a fixed number of message-passing iterations is performed. At
each iteration, any active node that receives a message vector
appends its own index to the vector and then it passes the
modified message along all its edges except the one from
which it received the original message. That node is then
removed from the graph. The messages at the last nodes (if
any) are checked to see if the nodes form valid termination
nodes T leading to instances of the structure considered.

Example 1: Consider the tall structure st9 shown in
Fig. 6(a). To enumerate this, the algorithm begins by removing
all variable nodes except those with degree 3 from the Tanner
graph. Then a message-passing procedure is run once for each
check node as a potential origin node O. Three message-
passing iterations are needed to traverse from the potential
origin O to the possible termination nodes T . If st9 is present
for that potential O, in the third iteration the two termination
nodes T each receive messages along all 3 of their edges that
identify the same three variable nodes (v1, v2, v3 in Fig. 6(a))
to form the stopping set.

Example 2: Fig. 6(b) shows tall structure st4, which re-
quires a more complicated approach. The possible connectivity
between the origin check node O and the termination node
T2 through v3, which is of degree 3 and not part of the
stopping set, complicates the message passing. A message
passed via O → v3 → T2 will cause T2 to be removed
from the graph before the messages from v1 and v2 can reach
T2. To overcome this problem, the message-passing procedure
must be performed multiple times from each potential origin
check node, once for each pair of variable nodes of degree 3
neighboring the check node. By activating one such pair of
variable nodes for each message-passing procedure, a check
node can discover all st4 structures for which it is the origin
O. Four iterations are required for each procedure. T1 will
terminate in the third iteration while T2 terminates in the fourth
iteration when an st4 structure is found.

v3

TT

O

v1

v2

(a) Tall structure st9

O

v1

v3

v2

T1T2

(b) Tall structure st4

Fig. 6. Examples of stopping-set enumeration (SSE)

TABLE I
ITERATIVE-DECODING THRESHOLDS FOR NON-BINARY PROTOGRAPH

ENSEMBLES WITH mp = 1, np = 6 USING EXIT CHARTS [9]

Degree Distribution 16-QAM Threshold BIAWGNC Threshold
(Es/N0 dB) (Eb/N0 dB)

222222 11.19 2.81
322222 11.03 2.73
332222 10.98 2.56
333222 11.02 2.60
333322 11.03 2.69
333332 11.05 2.70
333333 11.18 2.75

V. CODE DESIGN USING STOPPING-SET CANCELLATION

Our code design starts with a protograph Gp(Vp, Cp, Ep) :
|Vp| = np, |Cp| = mp with multiple edges between a variable-
check node pair. We lift the protograph through two steps by
factors f1 and f2 respectively, using circulant permutations,
to obtain a code of block-length n = np × f1 × f2. The
two-stage lifting is due to observations in [11] that indicate a
possibility of low minimum distance if circulant permutations
are assigned via single-stage lifting (we also observed this
empirically). If the largest number of parallel edges in Gp is
z, then f1 should satisfy f1 ≥ z to obtain a protograph Gp1

without multiple edges between any variable-check node pair.
However, f1 should be kept as small as possible since larger
values of f2 allow more parallelism in the implementation of
the decoder. Thus we choose mp = 1 resulting in the smallest
possible np and a large f2.

We consider protographs with variable-node degrees not
greater than 3 and select a degree distribution with a low
iterative-decoding threshold computed using EXIT charts for
protograph-based NB-LDPC codes [9] as shown in Table I.
The chosen protograph is of size mp = 1, np = 6 and
distribution 333222. With the lifting factors chosen as f1 = 3
and f2 = 29, two-stage lifting is performed using the circulant-
PEG algorithm avoiding the structure in Fig. 4(b). We thus
obtained a parity-check matrix of size 87 × 522 (r = 0.833)
with girth g = 6. The choice of this protograph over the
332222 which has a better threshold was due to the following:

1) The number of cycles of length 12 with only variable
nodes of degree 2 in the lifted code with same parame-
ters for the distribution 332222 was 10382 compared to
1421 of our chosen distribution.

2) Empirically, the code constructed from the distribution
332222 had a high error-floor with randomized labeling.



TABLE II
STOPPING SETS UP TO WEIGHT FIVE OR LESS FOR THE 333222 CODE

ID ss2 ss4 ss7 ss8 st1 st3 st4 st5/st6

# 29 377 58 29 29 145 232 29
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Fig. 7. BER/WER vs. SNR of the protograph-based NB-LDPC code designed
through SSE and SSC simulated using 16-QAM over AWGN channel

Table II shows the 928 stopping sets of weight five or
less identified using the stopping-set-enumeration algorithm
to enumerate each of the structures for our lifted 333222
code. The method of using error impulses [12] to enumerate
stopping sets gave the same result, but without a guarantee of
completeness and with extraordinarily long running times.

Let T denote the set of enumerated stopping sets. The
sub-matrix HSi

of each stopping set Si with weight ai in
T is assigned non-zero elements from GF(16) to satisfy the
following full-rank condition (FRC):

FRC : rank(HSi) = ai,∀i ∈ {1, 2, . . . , |T |}. (2)

Thus, the minimum distance obtained through this construc-
tion is at least six symbols provided all stopping sets in T are
cancelled and the structure of Fig. 4(b) is avoided. The variable
nodes not involved in any Si ∈ T are labeled randomly.

Figs. 7 and 8 present word-error rate and bit-error rate per-
formance of the designed code. Simulations were performed
using 16-QAM and BPSK over the AWGN channel with a
full-precision FFT-QSPA decoder along with a maximum of
100 decoding iterations. Randomized labeling of H that lead
to a minimum distance of four symbols (the lifted graph had
no ss1 structures) is compared against labeling satisfying (2)
that lead to a minimum distance of six symbols. We observed
error events corresponding to these stated values.

Fig. 7 shows the improvement in the error-floor region for
the designed protograph-based NB-LDPC code that has a min-
imum distance of six symbols. Fig. 8 compares the designed
code against an RS-based binary LDPC code [3]. The error
floor seen after stopping-set cancellation is still largely due to
convergence of decoder to low-weight codewords (weights 6
and 7) indicating possibilities for further improvement.
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Fig. 8. Comparison with RS-Based Binary-LDPC code over BIAWGNC

VI. CONCLUSION

This paper identifies all stopping-set structures up to weight
five of LDPC codes. This facilitates enumeration and subse-
quent cancellation of all such stopping sets, thereby improving
the error floor of a high-rate, irregular protograph-based NB-
LDPC code by a factor of ten. Cancellation of all such stop-
ping sets yields a minimum distance of at least six symbols.
The stopping-set-enumeration algorithm presented here might
be extended to identify larger stopping sets without knowing
their structures a-priori and to handle non-codewords.
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