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Abstract—This paper considers finite-blocklength achievability
for rate-compatible codes. For a fixed number of messages, ran-
dom coding analysis determines a sequence of achievable error
probabilities for a sequence of blocklengths. However, traditional
random coding achievability draws each code independently so
that it does not show that a family of rate-compatible codes can
achieve that sequence of error probabilities. Using random code
extension, this paper shows achievable frame error rates for rate-
compatible channel codes with finite blocklengths. This paper also
shows that when a threshold decoder is used, the rate-compatible
constraint does not affect the achievable error rates for a class of
input-invariant channels. The results are applied to the binary-
input symbol-wise independent fading channel with channel state
information at the receiver, and binary-input AWGN channels
using Chernoff bounds.

I. INTRODUCTION

Incremental redundancy (IR) systems with receiver confir-
mation are widely used in modern communication systems.
Receiver confirmation refers to a class of feedback systems
where the confirmation (a decision to conclude a transmission
session) is determined at the receiver. For detailed discussion
on different types of confirmation see [1]. To achieve high
expected throughput, modern incremental redundancy systems
often use a good family of rate-compatible channel codes that
provides better error protection as the number of received
symbols increases.

Rate-compatible punctured convolutional (RCPC) codes and
rate-compatible punctured turbo (RCPT) codes are among
the most popular rate-compatible channel codes used in IR
systems. Another ideal candidate to construct a family of
rate-compatible codes is Low-Density Parity-Check (LDPC)
codes. Aiming to achieve high throughput in Hybrid automatic
repeat request (HARQ) systems in various classes of channels,
numerous heuristics have been proposed to construct rate-
compatible LDPC codes. The first work in the construction
of rate-compatible LDPC codes appears to be [9]. See also
[10]–[12] and the references therein. Recently we proposed a
class of rate-compatible LDPC codes called protograph-based
Raptor-like (PBRL) LDPC codes [13]. This class of rate-
compatible LDPC codes is constructed by extending a base
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code, motivating the study of finite-blocklength achievability
for rate-compatible codes based on code extension.

For a sequence of codes that asymptotically achieves ca-
pacity, finite-blocklength analysis can be considered from two
perspectives: 1) the rate of convergence of the error probability
as a function of blocklength and 2) the back-off of the channel
coding rate from the asymptotic capacity as a function of the
blocklengths and the desired error probabilities. From the first
perspective, the channel coding rate is fixed and the analysis is
focused on the error probability. This type of analysis appeared
in the work of Feinstein, Shannon and Gallager [2]–[4], among
others. The analysis from the second perspective first appeared
in the work of Weiss, Dobrushin and Strassen [5]–[7]. Recently
Polyanskiy, Poor and Verdú [8] revisited finite-blocklength
analysis from the second perspective. A thorough review is
provided and new non-asymptotic achievability bounds and
converse are proposed in [8].

This paper studies the finite-blocklength performance for
rate-compatible codes using random coding. The main contri-
butions of this paper are:

1) Achievability for Rate-compatible Codes: This paper
provides a channel coding achievability for rate-compatible
codes. We show that for a class of channels where the infor-
mation density is invariant of the input sequence, referred to as
input-invariant channels, the achievable error probabilities for
rate-compatible codes are identical to the error probabilities
for regular codes using a threshold decoder. In other words,
we show that the dependence testing (DT) bound in [8] is
achievable over the input-invariant channels for a family of
rate-compatible codes of various rates.

2) Computation of DT bounds using Chernoff bounds:
For binary-input AWGN channel, numerical integrations is
required to compute the DT bound exactly. We used Chernoff
bounding technique to reduce the computational complex-
ity. We provide an example for binary-input symbol-wise
independent fading channel with channel state information
(CSI) at the receiver, which includes binary-input additive
white Gaussian noise (BI-AWGN) channel as a special. The
bounding technique naturally provides lower bounds on the
error exponent. The same bounding technique is applicable
to other memoryless channels including binary symmetric
channels (BSC).

The rest of the paper is organized as follows: Sec. II
presents the main results of finite-blocklength analysis for rate-



compatible codes. Sec. III presents the Chernoff bounding
techniques through an example of binary-input symbol-wise
independent fading channel with CSI at the receiver, which
also applies to BI-AWGN channel as a special case. Numerical
results of the error exponent for BI-AWGN channel are
presented. Finally Sec. IV concludes the paper.

II. RATE-COMPATIBLE CHANNEL CODING

A. Notation

This subsection briefly introduces our notation. Consider a
pair of input and output product spaces X = Xn and Y =
Yn. We denote a random variable (r.v.) by a capitalized letter
and its associated instances by the corresponding italicized
lowercase letter. For example X denotes a r.v. taking values x
in X. We use the following shorthand when the dimension n
of a product space is relevant: xn = (x1, x2, . . . , xn), where
xn denotes an n-dimensional vector, xj the jth element of xn,
and xji the ith to jth elements of xn.

A codebook C is a collection of M elements in X: C =
{c1, . . . , cM}, cj ∈ X. A decoder is a (possibly randomized)
mapping from the output space Y to a decoder output set
{0, 1, . . . ,M} where 0 indicates that the decoder cannot
decode and declares an error. Because of the possible random-
ization, the mapping is denoted by the conditional distribution
PD|Y where D is the r.v. of the decoder output A codebook
and a decoder that has the property PD|X(j|cj) ≥ 1− ε, ∀j ∈
{1, . . . ,M} is called an (M, ε) code. In other words, an (M, ε)
code has M codewords and a maximal error probability less
than ε. To emphasize the dimension n, a code for the product-
space channel PY n|Xn : Xn 7→ Yn is sometimes denoted as
an (n,M, ε) code.

For a product-space channel PY |X : X 7→ Y and an input
distribution PX , let the distribution of (X, X̄, Y ) be:

PXX̄Y (x, x̄, y) = PX(x)PX(x̄)PY |X(y|x) , (1)

i.e., the distribution of X̄ is identical to X but independent of
Y . Define the information density as

i(x; y) = log
dPY |X(y|x)

dPY (y)
, (2)

where PY =
∑
x∈X PY |X(y|x)PX(x) is the marginal proba-

bility induced by PX and PY |X . Whenever there are multiple
r.v.’s involved in the expression we often use P[·] to denote the
probability measure with respect to (w.r.t.) the corresponding
probability distributions.

B. Related Results

This subsection reviews the relevant theorem shown in [8].
Theorem 1 (Thm. 21, [8]): For any input distribution PX

and a measurable map γ : X 7→ [0,∞], there exists a code
with M codewords such that the maximal error probability ε
satisfies

ε ≤PXY [i(X;Y ) ≤ γ(X)]

+ (M − 1) sup
x
PY [i(x;Y ) > γ(x)] . (3)

For the case of average error probability see [8]. This paper
only studies the case for maximal error probability and will
refer Thm. 1 as DT bound.

C. Achievability for Rate-Compatible Codes

This subsections derives the random-coding achievability
for rate-compatible codes. We first define a family of rate-
compatible codes as follows:

Definition 1: Let n1 < n2 < · · · < nm be integers. A
collection of codes {Cj}mj=1 is said to be a family of rate-
compatible codes if each Cj is an (nj ,M, εj) code that is
the result of puncturing a common mother code, and all the
symbols in the higher-rate code {Cj} are also in the lower rate
code {Cj+1}.

A family of rate-compatible codes can be constructed by
finding a collection of compatible puncturing patterns satis-
fying Def. 1 from an (N,M) mother code, N ≥ nj , j =
1, . . . ,m. Note that the puncturing becomes straightforward
if we reorder the symbols of the mother code so that the
symbols of C1 are first, followed by the symbols of C2 and
so on. In view of this observation, we assume without loss
of generality (w.l.o.g.) that the coordinates are reordered such
that the puncturing of the mother code is in a sequential order.
In other words xnj

1 ∈ Cj , j = 1, 2, . . .m.
Let N = {n1, n2, . . . , nm} be a set of integers such that

ni < nj if i < j. An (N ,M, ε) code is a family of rate-
compatible codes with a collection of possibly randomized
decoders D = {Dj}mj=1 and a collection of error probabilities
ε = {εj}mj=1 such that:

PDj |Xnj

(
i|xnj

1

)
≥ 1− εj , (4)

where we let xnj

1 be the ith codeword in Cj . We will focus on
the case with a collection of two codes: N = {n1, n2},D =
{D1, D2} and ε = {ε1, ε2}. Using induction generalizes the
case to m > 2.

The following theorem gives the achievable improvement
in error probability by extending a code with an increment of
d symbols, i.e. letting n1 = n, n2 = n + d. For simplicity in
notation we denote X ∈ X and X ′ ∈ X′ where X′ = Xn+d.
Similarly x and x′ follow the same convention, i.e., x = x′

n
1 .

Theorem 2: For any input distribution PXn2 = PXn1PXd

and measurable maps γ : X 7→ [0,∞], γ′ : X′ 7→ [0,∞],
there exists an ({n1, n2},M, {ε1, ε2}) rate-compatible code
such that

ε1 ≤ P[i(X;Y ) ≤ γ(X)] + (M − 1) sup
x∈X

PY [i(x;Y ) > γ(X)]

(5)
ε2 ≤ P[i(X;Y ) ≤ γ(X)′ − δ]P[E] + P[Ec]

+ (M − 1) sup
x′∈X′

PY ′ [i(x′;Y ′) > γ′(x′)] (6)

where E =
{
i
(
X ′

n2

n1+1;Y ′
n2

n1+1

)
> δ
}

for some δ > 0.
Proof: The bound (5) follows from Thm 1 hence it suf-

fices to show (6). For a given code {c1, . . . , cM} that satisfies
(3), we draw the incremental codeword segments r1, . . . , rM



randomly and sequentially according to the marginal prob-
ability PXd . The generated new codewords are denoted as
{c′1, . . . , c′M}, c′j ∈ X′. Note that since PX′ = PXnPXd and
the channel is static and memoryless, we have

i
(
x′
n
1 ; y′

n
1

)
+ i
(
x′
n+d
n+1; y′

n+d
n+1

)
= i(x′; y′) . (7)

Let Fj be defined as

Fj = {y′ ∈ Y′ : i(c′j ; y
′) > γ′(c′j)} , (8)

and let Fj =
⋃j
i=1 Fi. The decoder outputs the smallest j

such that y′ ∈ Fj . The decoding region for codeword c′j
is therefore Fj \ Fj−1. Letting r1 = xd be the incremental
codeword segment for the first codeword, the error probability
for x′ = (c1, x

d) is given as

ε
(1)
2 (x′) = P[i(x′;Y ′) ≤ γ′(x′)|x′ = (c1, x

d)] . (9)

Averaging over all possible choice of xd for (9) according to
the distribution PXd we have

E[ε2(x′)] = P[i(c1;Y ) + i(Xd;Y d) ≤ γ′(x′)] (10)

= P[i(c1;Y ) ≤ γ′(X ′)− i(Xd;Y d), E]

+ P[i(c1;Y ) ≤ γ′(X ′)− i(Xd;Y d), Ec]
(11)

≤ P[i(X;Y ) ≤ γ(X)′ − δ]P[E] + P[Ec] , (12)

where E = {i(Xd;Y d) > δ}. Hence there must exist a choice
of incremental code segment r1 such that the resulting new
codeword c′1 = (c1, r1) satisfies (10) and (12). Now suppose
that we have found the incremental code segments for the first
j−1 codewords. If we choose xd as the jth codeword segment,
the error probability for x′ = (cj , x

d) is given as

ε
(j)
2 (x′) = P[{i(x′;Y ′) ≤ γ′(x′)} ∪ Fj−1] . (13)

Using the same averaging argument w.r.t. PXd , there must
exist a choice of xd such that for x′ = (cj , x

d)

ε
(j)
2 (x′) ≤ P[i(cj ;Y ) + i(Xd;Y d) ≤ γ′(X ′)] + P[Fj−1].

(14)

Upper bounding the first term as in (10)-(12) yields:

ε
(j)
2 ≤ P[i(X;Y ) ≤ γ(X)′ − δ]P[E] + P[Ec]

+ P[Fj−1]
(15)

≤ P[i(X;Y ) ≤ γ(X)′ − δ]P[E] + P[Ec]

+ (j − 1) sup
x′∈X′

PY ′ [i(x′;Y ′) > γ′(x′)]. (16)

Hence there exists an incremental code segment xd for cj such
that c′j = (cj , x

d) has an error probability upper bounded as:

ε
(j)
2 ≤ P[i(X;Y ) ≤ γ(X)′ − δ]P[E] + P[Ec]

+ (j − 1) sup
x′∈X′

PY ′ [i(x′;Y ′) > γ′(x′)] .
(17)

By induction we arrive at (6).

For some special cases, e.g. binary-input symbol-wise in-
dependent fading channel, BI-AWGN channel, and BSC, the
achievability that can be shown using extension with random

codeword segments becomes more powerful. Specifically, we
have the following:

Theorem 3: If a memoryless channel has the input invari-
ance properties that 1) PY |X=x[i(x, Y ) ≤ α] is independent
of x for any α and 2) PY [i(x, Y ) ≤ α] is independent of x
for any α, then there exists an ({n1, n2},M, {ε1, ε2}) rate-
compatible code such that

ε1 ≤ E
[
exp{− [i(X;Y )− log(M − 1)]

+}
]
, (18)

and

ε2 ≤ E
[
exp{− [i(X ′;Y ′)− log(M − 1)]

+}
]
. (19)

Proof: For the stated input invariance conditions and a
fixed γ independent of the input, Thm 2 gives

ε1 ≤ P[i(X;Y ) ≤ γ] + (M − 1) sup
x∈X

PY [i(x;Y ) > γ] (20)

= PY |X=x[i(x;Y ) ≤ γ] + (M − 1)PY [i(x;Y ) > γ].
(21)

Starting from (14) in the proof of Thm 2 for the extended code
C2 and for j = M , we have

ε2 ≤ EXd

[
PY ′|X′=(cj ,xd)[i(cj ;Y ) + i(xd;Y d) ≤ γ′]

]
+ (M − 1) sup

x′∈X′
[PY ′ [i(x′;Y ′) > γ′]] (22)

= PY ′|X′=x′ [i(x′;Y ′) ≤ γ′]
+ (M − 1)PY ′ [i(x′;Y ′) > γ′] .

(23)

We can optimize the thresholds by viewing (21) and (23)
as the weighted average error of Bayesian hypothesis testing
problems between PY |X=x vs. PY and PY ′|X′=x′ vs. PY ′ ,
respectively. Hence similar to the analysis in [8] the optimal
thresholds for both γ and γ′ are log(M − 1).

Thus, applying the input invariance conditions to Thm. 2
results in a generalization of the DT bound in (3) to a family
of rate-compatible codes with different blocklengths as in (21)
and (23). Some examples of input-invariance channels are
BSC, BI-AWGN and binary-input symbol-wise independent
fading channel.

As shown in [8], DT bound can be computed exactly
for BSC and BEC. For other channels such as BI-AWGN
channel, however, the computation is intractable. We provide
Chernoff bounding technique through an example of binary-
input symbol-wise independent fading channel in the following
section. BI-AWGN channel is treated as a special case and the
error exponent of BI-AWGN channel is also provided.

III. CHERNOFF BOUNDING TECHNIQUES FOR
COMPUTATION OF DT BOUNDS

This section provides a concrete derivation for binary-input
symbol-wise independent fading channel verifying that the
conditions stated in Thm 3 hold. This channel is discrete input
continuous output memoryless channel. The channel produces
two outputs one yn and the other φn. The output φn provides
CSI to the receiver. Thus the results in Thm 3 applies. The



channel can be modeled as

yj = φjxj + zj ; j = 1, . . . , n (24)

where φjs are independent identically distributed fading sam-
ples available at decoder with density function PΦ(φ), and
E{Φ2} = 1. The samples zjs are independent zero-mean,
unit variance Gaussian noise samples. Let P be the averaged
received power. Thus the averaged received signal-to-noise
ratio is SNR = 2Es/No = P where Es/No is signal-to-
noise ratio for a coded symbol. In practice this model is valid
if a coherent receiver is used. The main goal is to show that
the information density i(xn;Y n,Φn) is independent of xn
when (Y n,Φn) ∼ PY n|Φn=φnPΦn and when (Y n,Φn) ∼
PY n|Xn=xn,Φn=φnPΦn . Let the input distribution be i.i.d.
where PX is uniform on {−

√
P ,
√
P}. The output distribution

PY n|ΦnPΦn is induced by the input and the channel with
unit noise power. Given a set of input and output sequence
(xn, yn, φn), the information density is given as

i(xn; yn, φn)

=

n∑
j=1

log
exp

{
−(yj − φjxj)2/2

}
1
2

(
exp

{
−(yj−φj

√
P )2

2

}
+ exp

{
−(yj+φj

√
P )2

2

})
= n log 2− 1

2

n∑
j=1

z2j

−
n∑
j=1

log

[
exp{−(yj − φj

√
P )2

2
+ exp{−(yj + φj

√
P )2

2
}
]

where zj = yj − φjxj .

Suppose without loss of generality that the first ν ∈ [0, 1]
portion of an input xn is +

√
P . The distribution i(xn;Y n, φn)

when Y n|Φn = φn ∼ PY n|Xn=xn,Φn=φn is the same as

Sn = n log 2− 1

2

n∑
j=1

Z2
j

−
νn∑
j=1

log

[
exp

{
−Z2

j

2

}
+ exp

{
−(Zj + 2φj

√
P )2

2

}]

−
n∑

j=νn+1

log

[
exp

{
−Z2

j

2

}
+ exp

{
−(Zj − 2φj

√
P )2

2

}]
where Zj ∼ N (0, 1). Note that Zj and −Zj have the same
distribution. Hence after some manipulation the distribution of
the information density is the same as

Sn = n log 2−
n∑
j=1

log
(

1 + exp
{

2φj
√
PZj − 2φ2

jP
})

.

If Y n|Φn = φn ∼ PY n|Φn=φn then we have

S̄n = n log 2−
νn∑
j=1

(Yj − φj
√
P )2

2
−

n∑
j=νn+1

(Yj + φj
√
P )2

2

−
n∑
j=1

log

[
exp

{
−(Yj − φj

√
P )2

2

}
+ exp

{
−(Yj + φj

√
P )2

2

}]
Note that since PY |Φ=φ is symmetric, Yj and −Yj given

Φj = φj have the same distribution. Therefore we have

S̄n = n log 2−
n∑
j=1

log
[
1 + exp

{
2φj
√
PYj

}]
(25)

Observe that both Sn and S̄n are independent of the input x
and hence Thm 3 holds for binary input independent fading
channel. In other words, there exists an ({n1, n2},M, {ε1, ε2})
code such that

ε1 ≤ P[Sn1
≤ γ1] + (M − 1)P[S̄n1

> γ1] (26)
ε2 ≤ P[Sn2

≤ γ2] + (M − 1)P[S̄n2
> γ2] (27)

In oder to evaluation the error probability for binary input
independent fading channel, we need to evaluate the following
for a fixed γ

′
:

ε ≤ P[Sn ≤ γ
′
] + (M − 1)P[S̄n > γ

′
] . (28)

Let Zj ∼ N (0, 1) and let Aj , Bj , j = 1, . . . , n be i.i.d. r.v.’s
defined as :

Aj = log 2− log
[
1 + exp{2φj

√
PZj − 2φ2

jP}
]
, (29)

Bj = log 2− log
[
1 + exp{2φj

√
PYj}

]
, (30)

where Yj , j = 1, . . . , n are i.i.d. r.v.’s distributed as the
marginal distribution induced by the uniform input distribu-
tion. The optimal γ

′
that minimizes (28) is γ

′
= log(M − 1)

if the probability can be evaluated without further bounding
the expressions in (28).

For the binary-input fading channel, however, the probabil-
ity cannot be evaluated without a large number of multiple
numerical integrations. Therefore we focus on finding the
optimal threshold γ

′
in terms of the error exponent. For

independent fading channel we make the threshold γ
′

to be
dependent on fading samples. In particular we assume the
threshold γ

′
= γ + ζ

∑n
j=1 φ

2
j . We will optimize both γ and

ζ after applying Chernoff bounds to (28).
For an input sequence xn, we can write the information

density i(xn;Y n, φn) when Y n ∼ PY n|Xn=xn,Φn=φn as
Sn =

∑n
j=1Aj , and when Y n ∼ PY n|Φn=φn as S̄n =∑n

j=1Bj . To find the best error exponent we reserve the
choice of the threshold γ

′
= γ + ζ

∑n
j=1 φj and upper bound

the two terms by Chernoff bounds. Denoting Mn = log(M−1)
n ,

for any ρ > 0, η > 0, γ > 0 and ζ we have

ε ≤ P

[
Sn < γ + ζ

n∑
j=1

φ2
j

]
+ (M − 1)P

[
S̄n ≥ γ + ζ

n∑
j=1

φ2
j

]
(31)

≤ exp {−nfn(γ, ζ, ρ)}+ exp {−ngn(γ, ζ, η,M)} , (32)

where fn(γ, ζ, ρ) and gn(γ, ζ, η,M) are given as

fn(γ, ζ, ρ) = − logE[exp{−ρA1 + ρζφ1}]−
ργ

n
, (33)

gn(γ, ζ, η,M) = − logE[exp{ηB1 − ηζφ1}]−Mn +
ηγ

n
.

(34)

Taking derivative with respect to γ and finding the root yields



the following optimal γ∗:

γ∗ =
n

ρ+ η

(
log

E[exp{ηB1 − ηζφ1}]
E[exp{−ρA1 + ρζφ1}]

+Mn +
log η

ρ

n

)
.

(35)

Plugging it into (33) we get fn

fn(ζ, ρ, η,M) = − η

ρ+ η
logE[exp{−ρA1 + ρζφ1}

− ρ

ρ+ η
logE[exp{ηB1 − ηζφ1}]−

ρ

ρ+ η
Mn −

ρ

ρ+ η

log η
ρ

n
(36)

Plugging it into (34) we get gn

gn(ζ, ρ, η,M) = fn(ζ, ρ, η,M) +
log η

ρ

n
(37)

To simplify the expression and the optimization of the error
exponent, we perform the following change of variables η =
α−β
2β , and ρ = α−β

2(1−β) , where α ≥ β and β ∈ [0, 1]. Then we
can calculate (31) as

ε ≤ exp {−nE(n,M,α, β, ζ)} , (38)

where the exponent is

E(n,M,α, β, ζ)

= −(1− β) logE[exp{− α− β
2(1− β)

(A1 − ζφ1)}

− β logE[exp{α− β
2β

(B1 − ζφ1)}]− βMn −
h(β)

n

where h(x) is the binary entropy function h(x) = −x log x−
(1− x) log(1− x). Note that h(β) ≤ log(2). Finally we get

ε ≤ exp {−nE(n,M)} , (39)

The exponent E(n,M) is obtained by maximizing over ζ, α,
and β where 0 ≤ β ≤ α:

E(n,M) = sup
0≤β≤α,ζ

E(n,M,α, β, ζ) (40)

Note that the derivation here applies to other channels that
have the input invariance property. Setting ζ = 0 and φj = 1
for all j yields the BI-AWGN channel and hence the result
also applied to BI-AWGN channel. Fig. 1 shows the error
exponents of the DT bound and Gallager’s random coding
bound for the 0.187dB BI-AWGN channel. The gaps between
the two exponents are negligible when the rates are close to
capacity and the gap increases as the rates decreases.

IV. CONCLUSION

This paper studied the finite-blocklength analysis for rate-
compatible channel codes. In particular, this paper shows that
the DT bound in [8] is achievable for rate-compatible codes
for a class of input-invariant channels. Chernoff bounding
technique is used to compute these bounds for channels where
exact computation of DT bound is intractable. This paper also
provides a numerical example for the error exponent of the
BI-AWGN channel.
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