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Abstract—This paper studies variable-length coding with noise-
less feedback for discrete memoryless channels. Yamamoto and
Itoh’s two-phase scheme achieves the optimal error-exponent,
but due to the block-coding nature it is not optimal in the
expansion of the message size logM . Polyanskiy et al. showed
that with feedback, the back-off from capacity is logarithmic in
the expected latency ℓ. The O(log ℓ) back-off is achieved by
using an incremental redundancy (IR) scheme that only utilizes
feedback to determine the stopping time. However, the achievable
error-exponent of the IR scheme is not optimal. This paper shows
that a two-phase coding scheme where each phase uses an IR
scheme achieves the optimal error-exponent while maintaining an
expansion on the message size that yields the O(log ℓ) back-off.

I. INTRODUCTION

Shannon showed in 1956 that even in the presence of

full feedback (i.e., instantaneous feedback of the received

symbol) the capacity for a single-user memoryless channel

remains the same as without feedback [1]. The next phase

in the information-theoretic analysis of feedback showed that

feedback can greatly improve the error-exponent. Numerous

papers including [2]–[6] explicitly showed this improvement.

Burnashev’s seminal work [7] showed an elegant expression of

the optimal error-exponent for a discrete memoryless channel

(DMC) with noiseless feedback. Burnashev employed a tech-

nique that can be considered as a form of active hypothesis

testing [8], which uses feedback to adapt future transmitted

symbols based on the current state of the receiver.

An important advantage of using feedback is the ability to

decide when to stop transmitting additional symbols about

the intended message. A mutual agreement, or a confirma-

tion, must take place to enable reliable communication. This

can happen in two ways [9]: Receiver confirmation (RC)

occurs when the receiver decides whether it has decoded with

sufficient reliability (e.g. passing a checksum) to terminate

communication and feeds this decision back to the transmitter.

The alternative to RC is transmitter confirmation (TC), in

which the transmitter decides (based on feedback from the

receiver) whether the receiver has decoded with sufficient

reliability (or even if it has decoded correctly, since the

transmitter knows the true message).
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TC schemes often use distinct transmissions for a message

phase and a confirmation phase. Practical TC and RC systems

can usually be assigned to one of two categories based on

when confirmation is possible. Single-codeword repetition

(SCR) only allows confirmation at the end of a complete

codeword and repeats the same codeword until confirmation.

In contrast, incremental redundancy (IR) systems [10] transmit

a sequence of distinct coded symbols with numerous op-

portunities for confirmation within the sequence before the

codeword is repeated. In some cases of IR, the sequence

of distinct coded symbols is infinite and is therefore never

repeated. If the sequence of symbols is finite and thus repeated,

we call this a repeated IR system.

Forney’s analysis [11] provided an early connection between

these practical system designs and theoretical analysis by

deriving error-exponent bounds for a DMC using an SCR-RC

scheme. Following Forney’s work, Yamamoto and Itoh [12]

replaced Forney’s SCR-RC scheme with a SCR-TC scheme in

which the receiver feeds back its decoding result (based only

on the codeword sent during the current message phase). The

transmitter confirms or rejects the decoded message during a

confirmation phase, continuing with additional message and

confirmation phases if needed. This relatively simple SCR-

TC scheme allows block codes to achieve the optimal error-

exponent of Burnashev for DMCs.

The main contribution of this paper is to tie the results

of error-exponent and non-asymptotic analysis together for

communications with noiseless feedback. Specifically, this

paper studies a two-phase coding scheme where both phases

use variable-length codes instead of fixed-length codes. For

this two-phase scheme, we obtain the same expansion of

the message size as in [13] up to logarithmic terms, while

achieving the optimal error-exponent.

The rest of the paper is organized as follows: Sec. II

introduces the notation and definition used throughout the

paper, and Sec. III briefly reviews relevant previous works.

Sec. IV states the main results and provides the proofs of the

results. Finally Sec. V concludes the paper.

II. NOTATIONS AND DEFINITIONS

Denote the input alphabet as X and the output alphabet as

Y . Capital letters represent random variables (r.v.’s) and the

associated instances are denoted by small letters. For example,

Xn denotes an n-dimensional r.v. with instances xn taking

values in Xn. Denote the jth to kth elements of xn as xk
j .
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A discrete memoryless channel (DMC) PY |X : X 7→ Y
without feedback has finite input and output alphabets and

follows

PY n|Xn(yn|xn) =

n
∏

j=1

PY |X(yj |xj) .

For DMCs with feedback we consider an input process

{Xj}∞j=1 and a sequence of channels {PYj |Xj
}∞j=1. Let the

finite dimensional distribution of (Xn, X̄n, Y n) be:

PXn,Y n,X̄n(xn, yn, x̄n)

= PXn(xn)PXn(x̄n)

n
∏

j=1

PYj |XjY j−1(yj |xj , yj−1),
(1)

i.e., the distribution of X̄n is identical to Xn but independent

of Y n. The information density i(xn; yn) is defined as

i(xn; yn) = log
dPY n|Xn(yn|xn)

dPY n(yn)
. (2)

In this paper we only consider channels with essentially

bounded information density i(X;Y ).
Let D(P ||Q) be the divergence between two distributions

P and Q. For a given DMC PY |X , denote C as the capacity

of the channel and let C1 be defined as:

C1 = max
x,x′∈X

∑

y∈Y

PY |X=x(y) log
PY |X=x(y)

PY |X=x′(y)
(3)

= max
x,x′∈X

D(PY |X=x||PY |X=x′) . (4)

In order to be self-contained, we state the definition of

variable-length feedback (VLF) codes in [13]:

Definition 1: An (ℓ,M, ǫ) variable-length feedback code

(VLF code) is defined as:

1) A common r.v. U ∈ U with a probability distribution

PU revealed to both transmitter and receiver before the

start of transmission.

2) A sequence of encoders fn : U ×W ×Yn−1 → X that

defines the channel inputs Xn = fn(U,W, Y n−1). Here

W is the message r.v. uniform in W = {1, . . . ,M}.

3) A sequence of decoders gn : U × Yn → W providing

the estimate of W at time n.

4) A stopping time τ ∈ N w.r.t. the filtration Fn =
σ{U, Y n} such that E[τ ] ≤ ℓ.

5) The decision Ŵ = gτ (U, Y
τ ) satisfies P [Ŵ 6= W ] ≤ ǫ.

The fundamental limit of variable-length feedback codes is

given by the following quantity:

M∗
f (ℓ, ǫ) = max{M : ∃ an (ℓ,M, ǫ) VLF code }. (5)

A stop-feedback code is a VLF code that satisfies the

following property:

fn(U,W, Y n−1) = fn(U,W ) . (6)

In other words, the encoder only uses feedback to determine

whether it is time to stop transmitting for the current message.

VLF codes generally include TC and RC feedback systems,

and stop-feedback codes are common RC systems in practice;

the receiver computes the reliability of the decoded symbols

as in [14] or uses a cyclic redundancy check (CRC) to inform

the transmitter to stop or continue, which requires only 1 bit

of information.

Moving toward a TC system, we introduce the following

definition of sequential probability ratio test (SPRT) for simple

hypothesis testing based on [15]:

Definition 2: Let Pθ be the distribution associated with the

hypothesis Hθ. Let Λn be the log-likelihood ratio of the

observed samples Yj , j = 1, 2, . . . :

Λn = log

∏n

j=1 P1(Yj)
∏n

j=1 P0(Yj)
(7)

=

n
∑

j=1

Λ(Yj) . (8)

Let t0 < 0 < t1 be the decision thresholds to be optimized.

After the nth observation, the sequential test uses the following

decision rule:

Stop sampling and accept

{

H1 if Λn ≥ t1

H0 if Λn ≤ t0
,

Otherwise take another sample.

The stopping time for the SPRT is therefore given as:

τ = inf{n : Λn ≥ t1 or Λn ≤ t0}. (9)

Let E0 and E1 be the events where the test selects hypotheses

H0 and H1, respectively. Let α be the error of the first kind,

P0[E1], and β be the error of the second kind, P1[E0].
Many interesting results follow from SPRT [15] [16]. Some

relevant results are the following:

α

1− β
≤ exp{−t1} , (10)

β

1− α
≤ exp{t0} . (11)

Further simplifying the inequalities we have

α ≤ exp{−t1} , (12)

β ≤ exp{t0} , (13)

which are useful when both α and β are very small. We first

define a class of VLF codes called two-phase feedback codes:

Definition 3: Let f
(1)
n and f

(2)
n be two sequences of stop-

feedback encoders. An (ℓ,M, ǫ) two-phase feedback code is

an (ℓ,M, ǫ) VLF code with encoders satisfying the following

properties:

{fn} = {f (1)
1 , f

(1)
2 , . . . , f (1)

τ1
, f

(2)
1 , f

(2)
2 , . . . } , (14)

where τ1 is a stopping time w.r.t. the filtration Fn = σ(U, Y n).
Note that due to the transition from f (1) to f (2), a two-

phase feedback code is no longer a stop-feedback code,

although it consists of two stop-feedback codes. Def. 3 is

one step toward “more active” feedback codes compared to

stop-feedback codes, and the definition includes stop-feedback

codes as a special case by choosing τ1 = ∞. The level of

“activeness” can generally increase as we increase the number

of phases m with several stopping times between the phases

τ1 ≤ τ2 ≤ · · · ≤ τm. We focus on two-phase results in

this paper (m=2). For notational convenience we denote the
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fundamental limit of a two-phase feedback code as M∗
2-ph(ℓ, ǫ),

the maximum M such that there exists an (ℓ,M, ǫ) two-phase

feedback code. Note that by definition M∗
2-ph(ℓ, ǫ) ≤ M∗

f (ℓ, ǫ).

III. PREVIOUS WORK

In the error-exponent literature, Burnashev showed that the

optimal error-exponent is E(R) = C1(1 − R/C), where C1

is given in (3). As observed by Naghshvar and Javidi [8],

reformulating the problem of channel coding with noiseless

feedback as an active hypothesis testing problem yields an

explicit policy that has error probability achieving Burnashev’s

error-exponent. In this light, Burnashev’s original achievability

approach can be seen as an active hypothesis testing policy.

Yamamoto and Itoh [12] showed that a two-phase block-

coding scheme achieves the same error-exponent. The result

is surprising because despite being a simple block-coding

scheme with ARQ, a relatively “inactive” scheme, the error-

exponent is the same as complicated coding schemes that are

extremely active. This is because the cost of using block codes

vanishes as the blocklength goes to infinity.

The drawback of a block-coding scheme is evident when

the average rate is analyzed in the non-asymptotic regime.

Polyanskiy et al. [13] showed that stop-feedback codes achieve

the following expansion :

logM∗
f (ℓ, ǫ) =

ℓC

1− ǫ
−O(log ℓ) . (15)

On the other hand, the achievability result based on active

hypothesis testing in [8] can be stated as

logM∗
f (ℓ, ǫ) ≥ ℓC − C log(1/ǫ)

C1
−O(1) , (16)

which shows that the constant terms can be significant when

ǫ is very small while ℓ is only moderately large.

Although not shown in [13], it is evident that feedback

cannot improve the
√
ℓ penalty term for a block-coding scheme

due to the channel dispersion V [17]. To see this, let the

fundamental limit of a code without feedback M∗(n, ǫ) be

as defined in [17]. Refining the analysis in [18]–[20], [17]

showed that

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(log n) . (17)

Let η ∈ (0, 1) be a parameter to be chosen later. The first

phase of the Yamamoto-Itoh scheme uses a length ηn = n1

block code with M codewords while the second phase uses

a length (1 − η)n = n2 block code with 2 codewords, rep-

resenting acknowledge (ACK) and not acknowledge (NACK),

respectively. Since the error probabilities in the second phase

(both P [ACK → NACK] and P [NACK → ACK]) can be

made exponentially small, the expected latency ℓ is given as

ℓ = n(1− ǫ)−1 + o(1),

where the overall error probability ǫ′ is given as

ǫ′ = ǫ exp{−n2C1 + o(n2)}. (18)

The two-phase block-coding scheme therefore gives the fol-

lowing expansion of M :

logM(ℓ, ǫ′) = n1C −
√

n1V Q−1(ǫ) +O(log n1) (19)

= ℓ1(1− ǫ)C −
√

ℓ1(1− ǫ)V Q−1(ǫ) +O(log ℓ1), (20)

where ℓ1 = ηℓ. The
√
ℓ penalty term will not disappear except

for the trivial case where ǫ = 1.

While stop-feedback codes achieve the expansion in (15),

the error-exponent is given as C −R instead of C1

(

1− R
C

)

.

Observing the results of [12], the key to achieving the optimal

error-exponent relies on the second phase. Motivated by the

observation, this paper studies the error-exponent and the

expansion for two-phase feedback codes.

IV. MAIN RESULTS

This section summarizes the main results of this paper.

All of the results focus on DMCs with bounded information

density.

Theorem 1: For a DMC with capacity C and a finite C1

we have

logM∗
2-ph(ℓ, ǫℓ) ≥ ℓC − (1 + δ) log ℓ−O(1), (21)

for some δ > 0. In addition, ǫℓ satisfies

− log ǫℓ = C1

(

ℓ−
logM∗

2-ph

C

)

+O(1) . (22)

Furthermore, for some δ > 0 and a fixed ǫ ∈ (0, 1) we have

logM∗
2-ph(ℓ, ǫ) ≥

ℓC

1− ǫ
− (1 + δ) log ℓ−O(1) . (23)

With the converse in [7, Lem. 1 and 2] and the above

theorem we can conclude that M∗
2-ph has the same expansion

as in (15) while also achieving the optimal error-exponent.

The fact that the optimal error-exponent is achievable with

a two-phase feedback code is expected due to [12]. The

interesting part is that the optimal expansion up to O(log ℓ)
terms in [13] is also achievable. Comparing the achievability

results shown in [13], we see that the pre-log factor is almost

the same, but with an increase from 1 to 1 + δ for an

arbitrary δ ∈ (0, 1). The implicit penalty in having a small

δ is that the constant term in (23) may be comparable to

the leading terms when ℓ is small and must be reviewed

carefully when evaluating the non-asymptotic performance.

For very short ℓ and small ǫ the achievability bound must

be computed numerically to obtain accurate estimates of the

expected throughput.

The converse of Theorem 1 follows from Burnashev [7].

The proof of the achievability using a two-phase feedback

code is separated into two parts in the following subsections.

A. Error Exponent of Two-Phase Feedback Codes

This subsection studies the error-exponent of two-phase

feedback codes and some of the non-asymptotic behavior. The

following lemma states that in the second phase where the

encoder attempts to confirm whether the message in the first

phase is decoded correctly or not, it is enough to have the

average blocklength ℓ2 scale logarithmically with ℓ1 rather

than linearly as for the achievability proof in [12]:
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Lemma 1: For a DMC with capacity C and C1 < ∞, there

exists an (ℓ,M, ǫℓ) two-phase feedback code such that

− log ǫℓ = C1

(

ℓ− logM

C

)

+O(1) . (24)

In other words, the optimal error-exponent is achievable with

two stop-feedback codes: an (ℓ1,M, ǫℓ1) stop-feedback code

and an (ℓ2, 2, ǫℓ2) stop-feedback code where ℓ2 = O(log ℓ1).

The main idea of the achievability is to use stop-feedback

codes in both phases instead of fixed-length block codes. After

decoding the message W in the first phase, the message is fed

back to the transmitter and both the transmitter and the receiver

enter the second phase. The transmitter decides whether the

message is correct and transmits an ACK or NACK in the

second phase accordingly. The transmission is terminated if

an ACK is decoded in the second phase, otherwise the same

process repeats from the first phase.

Proof: The construction of a stop-feedback code for the

first phase follows closely to the proof of [13, Thm. 2] and

is largely omitted here. The relevant results of an (ℓ1,M, ǫ1)
stop-feedback code used in the first phase are stated as follows.

The error probability ǫ1 is upper bounded as

ǫ1 ≤ exp{logM − ℓ1C + a0} , (25)

and by definition the stopping time of the first phase τ1 satisfies

E[τ1] ≤ ℓ1 . (26)

Now we turn our attention to the second phase and construct

an (ℓ2, 2, ǫ2) stop-feedback code that conveys the confirmation

message ACK or NACK. Construct the codebook for the sec-

ond phase as a repetition code. In other words, the codebook

consists of two repeated sequence of the symbols xc and xe,

which stand for “confirmation” and “error”. The decoding of

the second phase can be accomplished by a sequential testing

of simple hypothesis H0 against an alternative H1 using the

SPRT. We sequentially observe Yj , j = 1, 2, . . . , which are

i.i.d. according to P0 = PY |X=xc
under H0 and according to

P1 = PY |X=xe
under H1.

Denote the mean of Λ(Y ) under PY |X=xc
as −Dc,e:

EPY |X=xc
[Λ(Y )] = −D

(

PY |X=xc
||PY |X=xe

)

(27)

= −Dc,e , (28)

and denote the mean of Λ(Y ) under PY |X=xe
as De,c:

EPY |X=xe
[Λ(Y )] = D

(

PY |X=xe
||PY |X=xc

)

(29)

= De,c . (30)

Choose xe and xc such that Dc,e = C1 ≥ C as defined in

(3), and therefore Dc,e ≥ De,c. Let λ be the uniform bound

of Λ(Y ) under both H0 and H1. Letting τ2 be the stopping

time of the second phase, we have by Wald’s identity that

C1E[τ2|H0] ≤ P0[E0](−t0 + λ)− P0[E
c
0]t1, (31)

De,cE[τ2|H1] ≤ P1[E1](t1 + λ) + P1[E
c
1]t0 . (32)

Let ξ0 = 1+
De,c

C1

and ξ1 = 1+ C1

De,c
. Choosing t0 = −ℓ2C1+

λ+ λ′ and t1 = ℓ2De,c − λ, we have under H0

E[τ2|H0] ≤ (1− α)

(

ℓ2 −
λ′

C1

)

− α

(

ℓ2De,c

C1
− λ

)

(33)

= ℓ2 − αξ0ℓ2 −
(1− α)λ′

C1
+ αλ , (34)

And under H1 we have

E[τ2|H1] ≤ (1− β)ℓ2 + β

(

−ℓ2C1

De,c

+
λ′ + λ

De,c

)

(35)

= ℓ2 − βℓ2ξ2 +
βλ′

De,c

+
βλ

De,c

. (36)

The overall expectation is given as

E[τ2] = P [H0]E[τ2|H0] + P [H1]E[τ2|H1] . (37)

Recalling from (12) that both α and β decrease to zero

exponentially with ℓ2, we can choose λ′ to be a constant such

that E[τ2] ≤ ℓ2 for a large enough ℓ2.

To analyze the overall error probability ǫ, observe that an

error occurs only when both phases make an error. Let R =
logM/ℓ1 and let M scale with ℓ1 as

logM = ℓ1C − η log ℓ1 − a0 , (38)

for some η > 0 to be chosen later. Recall from (25) that the

error probability in the first phase ǫ1 is upper bounded as

ǫ1 ≤ exp {−η log ℓ1} . (39)

Denoting the probability that a NACK is decoded in the

second phase as P [NACK], we have

P [NACK] = ǫ1(1− β) + (1− ǫ1)α (40)

≤ ǫ1 + α (41)

≤ exp{−aℓ1} (42)

for some a > 0. Recall that β = P1[E0] ≤ exp{t0} where

t0 = −ℓ2C1 + λ+ λ′. The overall error probability ǫ is:

ǫ = ǫ1P1[E0](1− P [NACK])−1 (43)

= exp {−η log ℓ1 + t0 +O(1)} (44)

= exp {−η log ℓ1 − ℓ2C1 +O(1)} . (45)

Letting ℓ2 = k log ℓ1, the overall error probability is

ǫ ≤ exp{− log ℓ1(η + kC1) + λ′ +O(1)} (46)

= exp {−ℓ1(η + kC1) (C −R) + λ′ +O(1)} . (47)

Choosing η and k such that η + kC1 = C1/C, e.g., k =
1/C1, η = C1/C − 1, we obtain

ǫℓ ≤ exp {−ℓ1C1 (1−R/C) +O(1)} . (48)

B. Asymptotic Expansion of M∗
2-ph

Lemma 2: For a DMC with capacity C and a finite C1 we

have for some δ > 0 that

logM∗
2-ph(ℓ, ǫ) ≥

ℓC

1− ǫ
− (1 + δ) log ℓ−O(1) . (49)
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Proof: It is not necessary to insist on the strict latency

constraint of the two stop-feedback codes to show the expan-

sion of the message size M . Hence we choose the thresholds

of the second phase to be t1 = ℓ2Dc,e−λ and t0 = −ℓ2C1+λ,

giving the expected latency in the second phase as follows:

E[τ2] ≤ ℓ2 + o(1) . (50)

To compute the overall expected latency, recall that we have

(42). Hence the overall expected latency is given as

E[τ ] = E[τ1 + τ2](1− P [NACK])−1 (51)

≤ (ℓ1 + ℓ2 + o(1)) (1 + b exp{−aℓ1}) (52)

=
logM

C
+

η log ℓ1
C

+ k log ℓ1 +O(1) . (53)

for some constant b > 0. Therefore we have:

logM ≥ ℓC − (η + kC) log ℓ1 −O(1) . (54)

To show (15) for a fixed error probability ǫ, we follow the

same argument as in [13]. Consider a system that operates

with an (ℓ′,M, ǫℓ′) code with probability p and terminates

immediately with probability 1 − p. The error probability is

given as 1 − p + pǫℓ and the expected latency is given as

ℓ = pℓ′. Setting p = 1−ǫ
1−ǫℓ′

and observing that 1− ǫℓ′ ≥ 1− ǫℓ
we obtain an (ℓ,M, ǫ) VLF code such that

logM ≥ ℓ′C − (η + kC) log ℓ′ −O(1) (55)

≥ ℓC(1− ǫℓ)

1− ǫ
− (η + kC) log ℓ−O(1) (56)

=
ℓC

1− ǫ
− (η + kC) log ℓ−O(1) , (57)

where the last equality holds because ǫℓ decreases exponen-

tially in ℓ as shown in (48). Observe that the pre-log factor is

increased from 1 to η + kC by introducing the second phase

to achieve the optimal error-exponent.

To solve for η and k satisfying η + kC1 = C1/C, note

that η and k must be positive. Hence k ∈ (0, 1/C) and η ∈
(0, C1/C). Letting k = (1 − ν)/C and η = νC1/C satisfies

the equation for all ν ∈ (0, 1). This gives η + kC = 1 +
ν(C1/C − 1). Properly choosing ν according to any given

δ > 0 yields the desired expansion:

logM ≥ ℓC

1− ǫ
− (1 + δ) log ℓ−O(1) , (58)

finishing the achievability of Thm. 1.

V. CONCLUDING REMARKS

This paper showed that the optimal error-exponent and the

same expansion of M up to O(log ℓ) terms is achievable by

two-phase feedback codes. The variable-length nature of stop-

feedback codes provides the gain to achieve the expansion

ℓC − O(log ℓ). Introducing a second phase using the SPRT,

which is a stop-feedback code, achieves the optimal error-

exponent and only affects the pre-log factor by a factor of

(1 + δ) for any δ > 0.

The ability to achieve the expansion shown in [13] can

be seen as the “sequentiality gain” [21] of feedback while

the ability to achieve a larger error-exponent can be seen

as the “adaptivity gain”. The result of this paper showed

that by introducing a little amount of “activeness”, i.e., the

second phase stop-feedback code, the optimal error-exponent

is achievable while maintaining almost the same expansion on

the message size M .

As discuss in [21], the “adaptivity” gain will become crucial

as the error probability ǫ tends to zero. Since we are free to

choose ℓ to be large in the expansion results, the pre-log factor

can be as close to the optimal one as possible. The implicit

penalty caused by the O(1) terms, however, must be reviewed

carefully when ℓ is small. Obtaining numerical results of actual

performance often requires a system simulation to evaluate the

tightness of the achievability bounds.

REFERENCES

[1] C. Shannon, “The zero error capacity of a noisy channel,” Information

Theory, IRE Transactions on, vol. 2, no. 3, pp. 8–19, 1956.
[2] J. Schalkwijk and T. Kailath, “A coding scheme for additive noise

channel with feedback–I: No bandwidth constraint,” IEEE Trans. Inf.

Theory, vol. IT-12, no.2, pp. 172–182, Apr. 1966.
[3] A. Kramer, “Improving communication reliability by use of an inter-

mittent feedback channel,” IEEE Trans. Inf. Theory, vol. 15, no. 1, pp.
52–60, 1969.

[4] K. S. Zigangirov, “Upper bounds for the error probability for channels
with feedback,” Probl. Pered. Inform., vol. 6, no.1, pp. 87–92, 1970.

[5] B. Nakiboglu and R. Gallager, “Error exponents for variable-length
block codes with feedback and cost constraints,” IEEE Trans. Inf.

Theory, vol. 54, no. 3, pp. 945 –963, Mar. 2008.
[6] R. G. Gallager, “Variations on a theme by Schalkwijk and Kailath,”

IEEE Trans. Inf. Theory, vol. 56, no.1, pp. 6–17, Jan. 2010.
[7] M. V. Burnashev, “Data transmission over a discrete channel with

feedback. random transmission time,” Probl. Inf. Transm, vol. 12, no. 4,
pp. 10–30, 1976.

[8] M. Naghshvar and T. Javidi, “Active sequential hypothesis testing,”
arXiv:1203.4626v3 [cs.IT], Oct. 2012.

[9] T.-Y. Chen, A. R. Williamson, N. Seshadri, and R. D. Wesel, “Feedback
communication systems with limitations on incremental redundancy,”
submitted for publication. Available: http://arxiv.org/abs/1309.0707.

[10] D. Mandelbaum, “An adaptive-feedback coding scheme using incremen-
tal redundancy (corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 3, pp.
388–389, 1974.

[11] J. Forney, G.D., “Exponential error bounds for erasure, list, and decision
feedback schemes,” IEEE Trans. Inf. Theory, vol. 14, no. 2, pp. 206–220,
1968.

[12] H. Yamamoto and K. Itoh, “Asymptotic performance of a modified
Schalkwijk-Barron scheme for channels with noiseless feedback,” IEEE

Trans. Inf. Theory, vol. 25, pp. 729–733, Nov. 1979.
[13] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Feedback in the non-
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