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Abstract—The main advantage of feedback in a point-to-point
memoryless channel is the reduction of the average blocklength
required to approach capacity. This paper presents a commu-
nication system with feedback that uses carefully designed non-
binary LDPC (NB-LDPC) codes and incremental transmissions
to achieve 92−94% of the idealized throughput of rate-compatible
sphere-packing with maximum-likelihood decoding (RCSP-ML)
for average blocklengths of 150-450 bits. The system uses active
feedback by carefully selecting each bit of additional incremental
information to improve the reliability of the least reliable variable
node. The system uses post processing in the decoder to further
improve performance. The average blocklengths of 150-450 bits
are small enough that feedback provides a throughput advantage
but also large enough that overhead that might be associated with
transmitter confirmation is more easily tolerated.

I. INTRODUCTION

Polyanskiy et al. [1] and Chen et al. [2] illustrated that by
using feedback, one can approach capacity in a small number
of channel uses (low latency). Polyanskiy et al. [1] introduced
variable-length coding with termination (VLFT) which the-
oretically approaches capacity at low latencies. In VLFT, the
receiver provides full noiseless feedback to the transmitter. The
transmitter consequently sends additional information over the
channel until it determines that the decoder has correctly
decoded the message. Termination, the “T” in VLFT, indicates
that when the receiver has decoded correctly, the transmitter
sends a noiseless transmitter confirmation (NTC) to terminate
the transmission. This termination takes place through a con-
trol channel apart from of the primary communication channel.

The classical results from [3] show that feedback does
not increase the asymptotic capacity of memory-less chan-
nels. Polyanskiy et al. [4] illustrated that in a non-feedback
communication system, the maximum achievable throughput
is significantly lower for short blocklengths of up to several
hundred bits. They later showed [1] that with feedback the
maximum achievable throughput can be greatly improved at
short blocklengths. They also concluded that variable-length
coding in conjunction with feedback theoretically results in
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expected throughput very close to capacity at several hundreds
of bits or less. Without using feedback one needs to use a long,
capacity-achieving coding technique such as LDPC codes over
several thousands of bits to achieve similar performance.

Chen et al. [2] and Williamson et al. [5] analyzed a VLFT
scheme based on rate-compatible sphere-packing with an ML
decoder (RCSP-ML). RCSP is an approximation of the per-
formance of repeated incremental redundancy with noiseless
transmitter confirmation (IR-NTC). The idea of RCSP is to
extend sphere-packing analysis from a single fixed-length code
to a family of rate-compatible codes. For the ideal family
of rate-compatible codes, each code in the family achieves
the perfect packing and is decoded by a maximum-likelihood
(ML) decoder.

Chen et al. [6] also simulated a VLFT scheme using
tail-biting convolutional codes. The simulation results are
for very short, punctured rate-compatible tail-biting convo-
lutional codes. For the 2-dB binary-input AWGN channel
(BI-AWGNC), rate-compatible tail-biting convolutional codes
with feedback achieve about 95% of the idealized RCSP-ML
throughput (RRCSP) for average blocklengths up to 50 bits.
However, for average blocklengths of 100 bits and larger,
the throughput of the convolutional code decreases. This
performance degradation worsens as the average blocklength
increases because the performance of the convolutional code
does not improve as the length of code increases.

As Chen et al. mention in [6], rate-compatible codes for
IR-NTC systems that approach the performance predicted by
RCSP-ML in the VLFT setting still remain to be identified
for expected latencies (average blocklengths) of 200 to 600
bits. The primary purpose of this paper is to demonstrate that
non-binary LDPC (NB-LDPC) codes with incremental trans-
missions that depend on the decoder state information fed back
to the transmitter can attain 92−94% of the predicted RCSP-
ML throughput in the VLFT setting for average blocklengths
of 150 to 450 bits. This latency region is important because it
is still short enough that feedback provides a real advantage but
also long enough that good VLFT performance can translate
to good VLF performance when ideal termination is replaced
by a practical termination scheme within the primary channel.

In this paper similar to [6], an incremental redundancy (IR)
scheme is used to give information to the receiver one bit at a
time. A genie in form of NTC informs the receiver whether the



decoded codeword is correct determining if the next increment
needs to be sent. Since the transmissions continue until the
correct codeword is decoded, the probability of error is zero.

The remainder of the paper proceeds as follows: Sec. II
provides an overview of the system and presents the NB-LDPC
code design. Sec. III presents the technique for determining
each bit of incremental transmission based on the decoder
state information provided through feedback to the transmitter.
Sec. IV describes the post-processing modifications made to
the NB-LDPC decoder to further improve performance. Sec.V
compares the proposed system to RCSP-ML in the VLFT
setting. Sec. VI concludes the paper.

II. VLFT WITH NON-BINARY LDPC CODES

Feedback cannot increase the capacity of point-to-point
channels, but it can facilitate higher throughput at significantly
lower latency than systems without feedback. The latency
improvement is made possible by capitalizing on favorable
noise realizations and attempting to decode early, instead of
needlessly sending additional symbols [5]. In case of an un-
favorable noise realization, additional information is required
which effectively lowers the communication rate to match the
operational capacity of the channel. Therefore, incremental
transmissions are necessary for coding systems with feedback.

A. System Overview

Traditionally, rate-compatible codes are designed by starting
from a low-rate mother code and increasing the rate by
puncturing the code. The proposed NB-LDPC coding scheme
does not explicitly involve puncturing. Rather, we design
a short, high-rate NB-LDPC code for which all symbols
are transmitted in the initial transmission. Each subsequent
transmission is a single bit carefully selected to help the
decoder as much as possible given its current decoding state.
The rate is gradually lowered by sending these additional bits,
each of which is a function of selected bits in the binary
representation of the non-binary symbols.

We choose high-rate protograph-based NB-LDPC codes in
this paper. See [7] for a discussion of protograph-based LDPC
design. The codes are irregular, having mostly degree-2 and
a few degree-1 variable nodes. Short-blocklength NB-LDPC
codes with only degree-2 variable nodes (regular) designed
over large Galois field sizes are known to perform well [8].
However, we observed that for short blocklengths and large
Galois field sizes, the addition of a few degree-1 variable
nodes improves the convergence of the decoder in the low
SNR region (see Fig. 2 and Table I). The operating SNR in
this paper is 2dB, similar to the work of [6].

It is crucial that the code used for the initial transmission
has a very high coding rate, even higher than the capacity.
The coding rate is lowered in case of decoding failure. For
example for SNR-2dB BI-AWGNC, the initial code can have
a rate of 0.75 to 0.8 while the capacity of the channel is 0.685.
By doing this we can take advantage of good noise realization
and decode correctly at a very low latency.

(a) Only degree-2 variable nodes
(regular)

(b) degree-1 and 2 variable
nodes (irregular)

Fig. 1: Two protographs with only degree-2 variable nodes and
a combination of degree-2 and 1 variable nodes

B. Desirability of degree-1 variable nodes

Simulation results of short-blocklength NB-LDPC codes
over large Galois fields show an improved convergence at low
SNR values for codes with degree-1 variable nodes. Fig. 2
shows the frame error rate (FER) comparison of the lifted
(copied and permuted) versions of the two rate-1/2 protographs
in Fig. 1 for low Eb/N0 values. These protographs are lifted
4 times and the NB-LDPC codes are over GF (28).
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Fig. 2: FER comparison of the lifted versions of the regular
(Fig. 1a) and irregular (Fig. 1b) protographs in Fig. 1

The FER for the protograph in Fig. 1b is better than
Fig. 1a. The FERs in Fig. 2 may seem high, but for feedback
with incremental redundancy, an initial FER of 0.02 is not
unreasonable.

The better FER for the protograph in Fig. 1b than the one
in Fig. 1a is justified by the smaller number of short cycles
present in the lifted version of the protograph in Fig. 1b.
Table I lists the number of l−cycles (cycles of length l) for
the two protographs in Fig. 1.

TABLE I: Small cycle count for the protograhs in Fig. 1

Protograph 4-cycles 6-cycles 8-cycles 10-cycles 12-cycles
Fig. 1.a 0 0 36 0 96
Fig. 1.b 0 0 6 0 16



(a) Rate-0.8 irregular protograph
with degree-1 and 2 variable
nodes

(b) Rate-0.75 irregular proto-
graph with degree-1 and 2 vari-
able nodes

Fig. 3: Rate-0.75 and rate-0.8 non-binary LDPC protographs

There is an issue with having degree-1 variable nodes in
NB-LDPC codes. The connection of these variable nodes to
cycles results in rank-deficient sub-matrices within the non-
binary parity-check matrix [9] leading to a low minimum
symbol distance. However, this issue is less problematic in
feedback systems where the incremental transmissions gradu-
ally increase the distance among candidate codewords.

C. Non-binary Code Designs

In this paper we design NB-LDPC codes with symbols from
GF (28) for three different information blocks (k) of 96, 192,
and 288 bits. The code for information block k = 96 (K = 12
GF (28) symbols) is the 3-times lifted version of the rate-0.8
protograph in Fig. 3a. For information blocks k = 192 and
k = 288 bits (K = 24, and K = 36 GF (28) symbols), the
protograph in Fig. 3b is lifted 8 and 12 times respectively to
obtain rate-0.75 codes. The reason for selecting a higher-rate
code for k = 96 is given in Sec. V and a complete description
of the non-binary codes used in this paper is available online1.

III. INCREMENTAL TRANSMISSIONS

Incremental transmissions are used progressively to lower
the rate of the codes designed in the previous section until
the transmission is decoded correctly. This section presents
how the incremental transmissions are created bit by bit in
the encoder and processed by the decoder.

A. Creating a bit for incremental transmission

In order to use a NB-LDPC code over binary-input channels,
each GF (2m) symbol is converted to m bits as follows: There
is a primitive element α associated with each Galois field.
Each non-zero element can be represented as a power of α so
that {GF (2m)} = {0, α0, α1, ..., α(2m−2)}.

There is also at least one primitive polynomial ρ(x) as-
sociated with GF (2m), satisfying ρ(α) = 0. The primi-
tive polynomial associated with GF (2m) and the property
αi + αi = 0 allow the larger powers of α to be derived as
polynomials of α with degrees of at most m−1. These limited-
degree polynomials yield an m-bit binary representation. For
example, consider GF (23) with primitive element of α. A
primitive polynomial for GF (23) is ρ(x) = x3+x+1 so that
α3+α+1 = 0, which implies that α3 = α+1. Table II shows
how each element of GF (23) can be uniquely represented in
3 bits (g3, g2, g1).

1http://www.seas.ucla.edu/csl/resources/index.htm

TABLE II: Binary representation of GF (8) elements

αi 0 1 α α2 α3 α4 α5 α6

Poly. 0 1 α α2 α+1 α2+α α2+α+1 α2+1
g3g2g1 000 001 010 100 011 110 111 101

The rate-KN non-binary LDPC codes proposed here initially
encode a sequence of Km bits (K GF (2m) symbols) into a
codeword of length Nm. The rate is lowered to Km

Nm+b where
b is number of additional incremental bits. Each additional bit
is created by an xor (⊕) combination of bits in the binary
representation of the GF (2m) symbols. For each variable
node, the reliability of each of the 2m−1 possible combi-
nations of the bits in the binary representation is computed.
For example, in GF (23) the reliabilities of the seven possible
combinations g1, g2, g3, g1⊕ g2, g2⊕ g3, g1⊕ g3, g1⊕ g2⊕ g3
are computed for each variable node. The combination with
the lowest reliability (looking over all combinations for all
variable nodes) is transmitted.

This is a form of active feedback in the sense that the
feedback is telling the transmitter what to transmitter rather
than telling the transmitter only whether additional bits from
a pre-determined rate-compatible code family. This is a gen-
eralization of the ideas of active hypothesis testing [10]. For
comparison, we also performed simulations using non-active
feedback, in which the additional bits are selected at random.

B. Using incremental transmissions in the decoder

The input frame consisting of K GF (2m) information sym-
bols is initially encoded by the rate-KN NB-LDPC encoder into
a sequence of length N GF (2m). These GF (2m) symbols are
converted by their binary representations to bits. The Nm bits
are modulated using BPSK and transmitted over an AWGN
channel. The additive noise is modeled as an independent,
zero-mean Gaussian random sequence with variance σ2. The
received Nm bits are grouped into N blocks of length m.
These binary blocks of size m are used to compute the
reliabilities (log-likelihood ratios) for each non-binary symbol.
As in [6], SNR is calculated as 1

σ2 , the ratio of the transmission
power over the noise variance.

The iterative decoder sends vectors of log-likelihood ratios
(LLRs) between variable and check nodes. In the initial
iteration the LLR associated with the belief that Vj = a,
the variable node j taking on the value a ∈ GF (2m),
with respect to the reference belief that Vj = 0 is defined
by LLRaj = log

(
P (Vj=a|Y )
P (Vj=0|Y )

)
, where Y is the information

received from the channel. Since the noise is independent
Gaussian, the prior LLR values obtained from the channel can
be calculated from the sum of the individual LLRs for each
received bit in the group of m bits. For example, for a variable
node j over GF (23), the channel prior LLR for α4 = (1, 1, 0)



is calculated as follows:

LLRα
4

j = log

(
P (Vj = a|Y )

P (Vj = 0|Y )

)
(1)

= log
P (g3(Vj) = 1|x3)P (g2(Vj) = 1|x2)P (g1(Vj) = 0|x1)
P (g3(Vj) = 0|x3)P (g2(Vj) = 0|x2)P (g1(Vj) = 0|x1)

= log
P (g3(Vj) = 1|x3)P (g2(Vj) = 1|x2)
P (g3(Vj) = 0|x3)P (g2(Vj) = 0|x2)

= − 2

σ2
(x3 + x2).

The decoding algorithm is initialized by sending these mes-
sages from variable nodes to check nodes. After this initial-
ization step, the decoding process continues by sending LLR
vectors iteratively from the variable nodes to their neighboring
check nodes and vice versa. Iterative message passing only
exchanges extrinsic information between connected nodes.

A hard decision about the original codeword is made when
the messages go back to the variable nodes. If this decision sat-
isfies the check-node constraints, the decoding is terminated.
Otherwise, the messages between variable and check nodes
are iteratively exchanged until a valid codeword is detected or
the maximum number of iterations is reached.

Once the decoder terminates iterations, it provides feedback
to the transmitter of the codeword it has identified (or that
it has failed to identify a codeword) and the least reliable
combination of bits identified as described in Section III-A. If
the codeword is correct, the transmitter sends the NTC which
terminates the transmission of that codeword. Otherwise, the
transmitter combines the requested bits using the xor operation
and transmits the new bit. The decoder re-computes the
initialization only for the variable node that has been updated
with an additional bit. Continuing the previous example, if bits
1 and 3 in variable node j are combined for the transmitted
incremental bit, the new initialization LLR is computed as:

LLR′ α
4

j = LLRα
4

j + log
P (g4(Vj) = (0⊕ 1)|xnew)

P (g4(Vj) = 0|xnew)
(2)

= LLRα
4

j −
2

σ2
(xnew). (3)

The rest of the iterative process is not changed. The transmis-
sion of addition bits based on lowest reliability combination
continues until the decoder decodes to the correct codeword.

This coding scheme makes the unreliable variable nodes
more reliable and let the decoder escape from the local minima
(trapping and absorbing sets) in case of non-convergence.
Additionally, this form of concatenation make the valid but
wrong codewords less probable than the correct codeword.

IV. POST PROCESSING

The performance of a belief-propagation (BP) decoder is
suboptimal compared to the optimal ML decoding. This sub-
optimality is usually due to the failure of the BP decoder
to converge to a valid codeword. Post-processing techniques
improve the performance of BP decoders by helping the
decoder converge to valid codewords more frequently.
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Fig. 4: Expected throughput Rt vs. expected latency λ for
VLFT with non-binary LDPC codes with feedback.

The post-processing technique used here is a modified
version of Random Initial State (RIS) algorithm which orig-
inally [11] resulted in improvements in the floor and water-
fall regions for a binary LDPC decoder. The RIS algorithm
explores the neighborhood of the received vector to find a
convergence region by adding a dithering random vector to
the received vector. The dithering slightly perturbs the initial
vector so that the decoder decodes to a nearby codeword.

In case of non convergence to a valid codeword, dithering
begins by choosing a vector with independent and identically
Gaussian distributed zero-mean components with variance of
σ′2 smaller than the variance of the channel noise. This process
is performed for a certain number of times t.

If the decoder fails to converge to a valid codeword after t
decoding attempts, the incremental bit is transmitted. If only
a unique valid codeword is detected, this codeword is fed
back to the transmitter. If the decoded codeword is correct
the next block of information is sent, otherwise, an additional
incremental bit is transmitted to decode the current block. RIS
algorithm may result in the decoder converging to multiple
valid codewords in the t decoding attempts. In this case, the
receiver computes the squared Euclidean distance between the
detected codewords and the received sequence and selects the
codeword with the smallest squared Euclidean distance.

V. RESULTS

Fig. 4 presents simulation results of VLFT communication
on the BI-AWGNC with BPSK modulation and soft-decision
decoding using the NB-LDPC codes described in Sec. II-C
with both active and non-active feedback as presented in Sec.
III. For comparison we present simulation results for the tail-
biting convolutional-code VLFT system of [6], RRCSP (the
throughput of RCSP-ML from [6]), the VLFT converse from



TABLE III: Throughput percentage of RCSP-ML throughput
achieved by convolutional and non-binary LDPC codes

Convolutional Code NB-LDPC Code
k 16 32 64 96 192 288 96 192 288
λ 22.1 46.3 99.4 156.7 339.2 531.5 146.4 301 456.6
Rt 0.72 0.69 0.64 0.61 0.57 0.54 0.65 0.64 0.63

RRCSP 0.76 0.72 0.7 0.697 0.689 0.688 0.697 0.689 0.688
% 95.2 96.1 92 88 82.1 78.7 94.1 92.6 92.2
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Fig. 5: Empirical probability of additional incremental bits
required to decode correctly in the VLFT setting for k=96 bits
and initial blocklengths of 120 and 128 bits corresponding to
rate-0.8 and rate-0.75 non-binary LDPC codes respectively

[1], and throughput for transmission without feedback [4] with
a decoding error probability of 10−6. The simulation points
follow Rt =

k
λ . For the VLFT systems, the probability of error

is zero because the transmitter informs the receiver when it has
decoded successfully using NTC.

The NTC provides a benefit that increases the original
channel capacity. As shown by the VLFT converse, RRCSP, and
even the convolutional VLFT simulation, NTC allows rates
higher than the original channel capacity when the average
blocklength is very small. As discussed in [6], [12], the benefit
of NTC (and the overhead associated with replacing NTC
with regular channel uses that reliably inform the receiver of
successful decoding) becomes smaller for larger blocklengths.
This is the primary motivation to consider blocklengths that
are several hundred bits, which is still short enough that
feedback provides a significant throughput advantage over the
no-feedback curve but long enough that a system without
NTC can be implemented without too much overhead for
the transmitter confirmation. Thus, even though convolutional
VLFT has higher throughputs (even throughputs above the
original capacity), NB-LDPC VLFT may have more practical
potential in the VLF setting.

Table III shows the throughput percentage of RRCSP, which
we view as a practical upper bound, obtained by NB-LDPC
VLFT with active feedback. The NB-LDPC codes with active
feedback attain throughputs higher than 92% of RRCSP. Active
feedback was essential. When non-active feedback was used
the performance was significantly worse. Post processing
provided a relatively small improvement, which was more
pronounced for shorter average blocklength.

Fig. 5 shows the normalized frequency of the number
of required incremental bits to decode correctly with active
feedback (but before post processing) for the k = 96 VLFT
NB-LDPC code. The reason to select a higher rate (rate-0.8
instead of rate-0.75) protograph is that very a few codewords
are decoded with no incremental transmissions. When code-
words are decoded with no incremental transmissions, the
transmission of unnecessary symbols reduces the throughput.

VI. CONCLUSIONS

In this paper, VLFT using non-binary LDPC codes and
active feedback identifying the most helpful incremental trans-
missions achieves 92−94% of RRCSP for average blocklengths
in the range of 150-450 bits. This range of blocklengths
is interesting because it is still small enough that feedback
provides a throughput advantage but also large enough to have
practical potential in the VLF setting. The application of non-
binary LDPC codes and active feedback to the VLF setting is
an area of ongoing research.
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