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Abstract—This paper uses extrinsic-information-transfer
(EXIT)-function analysis employing the reciprocal channel
approximation (RCA) to obtain optimal LDPC code degree
distributions for initial hard decoding (one-bit quantization of
the channel output) and for decoding with the soft information
provided by additional reads in both SLC (two-level cell) and
MLC (four-level-cell) Flash memory. These results indicate
that design for hard decoding can provide irregular degree
distributions that have good thresholds across the range of
possible decoding precisions. These results also quantify the
potential benefit of irregular LDPC codes as compared to
regular LDPC codes in the flash setting and compare the
RCA-EXIT thresholds of word-line voltages optimized for
maximum mutual information (MMI) and word-line voltages
that explicitly minimize the RCA-EXIT threshold of a specific
LDPC degree distribution. Along the way, this paper illustrates
that the MMI optimization of word-line voltages for five
reads is a quasi-convex problem for the Gaussian model of
SLC Flash. The paper also uses RCA-based EXIT analysis
to show that for the same spectral efficiency of 0.9 bits per
cell, rate-0.45 non-binary LDPC codes on MLC Flash systems
provide thresholds more than 0.5 dB better than rate-0.9 binary
LDPC codes on SLC Flash with the same number of reads (i.e.
three reads that would provide hard decisions for MLC and
limited soft information for SLC). The MLC approach has a
potential threshold improvement of more than 1.5 dB over the
SLC approach when both systems have access to the full soft
information.

I. INTRODUCTION

Single-level-cell (SLC) NAND Flash memory cells have
two charge levels. More recent multi-level-cell (MLC) Flash
memory cells have four charge levels. The current SLC and
MLC Flash systems commonly use binary low-density parity-
check (LDPC) codes to protect the information stored in
memory cells from distortion introduced by wear-out noise,
retention loss, and cell-to-cell interference [1]. Flash memory
cells traditionally employ hard decoding. However, multiple
reads with distinct (optimized) word-line voltages provide
additional soft information that significantly improves the
error-correction capability of the LDPC codes used in Flash
systems [2], [3]. These additional reads significantly increase
decoding time, so they might only be employed when needed
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to facilitate successful decoding. Thus a single LDPC code
might be decoded first with hard-decoded symbols and later
with soft information. This is an example of a feedback
communication system with multiple decoding attempts where
incremental redundancy is transmitted only when needed.

Results in [3] suggest that the best LDPC degree distribu-
tions are different for these different decoding scenarios. This
paper uses RCA-based EXIT function analysis to investigate
the optimization of LDPC degree distributions and word-line
voltage optimization in light of the multiple decoding attempts.

The remainder of the paper proceeds as follows: Sec. II
provides an overview of Flash with multiple reads and the
maximum-mutual-information (MMI) approach for selecting
word-line voltages. The contributions of this section are the
illustration that the word-line voltage optimization for the five-
read Gaussian model of SLC flash is a quasi-convex problem
and the consideration of three-read and five-read word-line
thresholds from the perspective of multiple decoding attempts.

Sec. III presents RCA-based EXIT-function analysis. Sec.
IV applies this technique to optimize degree distributions for
LDPC codes for various precision levels for both SLC and
MLC Flash. The contributions of these sections include the
use of RCA-based EXIT analysis to study the effect of decod-
ing precision on degree-distribution optimization, an explicit
quantification of the trade-off associated with selecting a single
code for multiple decoding attempts at increasing precision
levels, a validation of the use of the MMI-optimized word-
line voltages of [3] for RCA-EXIT based degree distribution
optimization, and a demonstration of the potential benefit of
using MLC even when the information density is in the range
traditionally associated with SLC. Sec. V concludes the paper.

II. MULTIPLE-READ FLASH SYSTEMS

In this paper we assume i.i.d. Gaussian threshold volt-
ages for each charge level in SLC or MLC Flash mem-
ory cells. These models are equivalent to 2-level or 4-level
Pulse-Amplitude Modulation with additive white Gaussian
(N (0, σ2)) noise (AWGN). Fig. 1 shows the model of the
threshold voltage distribution as a mixture of the two identi-
cally distributed Gaussian random variables that comprise the
SLC model. Since the levels are at +1 and −1, the average
energy (Eavg) of this model is 1.

Similar to Fig. 1, the shifted 4-level MLC threshold
voltage distribution is a mixture of four identically dis-
tributed Gaussian random variables. The voltage levels are
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Fig. 1: SLC threshold voltage model

Fig. 2: SLC equivalent discrete read channels
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beled assignment {00, 01, 11, 10} respectively. In this model
Eavg = 1, similar to the SLC model.

A. Progressive Quantization on Read Channels

Each time a cell is read, the result is a single bit indicating
whether the threshold voltage is above the word-line voltage
at the time of the read. As described in [2], [3], reading the
same SLC cell n−1 times (for n ≥ 2) with different word-line
voltages effectively produces an equivalent channel with two
inputs and n outputs as shown in Fig. 2.

In [2], [3], the word-line voltages for each quantization are
chosen by maximizing the mutual information (MI) between
the input and output of the equivalent discrete read chan-
nels. Let’s consider the MI for the three equivalent channels
corresponding to a single read, three reads, and five reads,
respectively. This set of channels might be seen by three LDPC
decoding attempts with progressively more reads.

Define Q(x) = 1√
2π

∫∞
x
e−u

2/2du, Q−σ (x) = Q(x−1σ ), and
let pij = pi + pj .

For the 1-read SLC in Fig. 2a, the MI can be expressed as

I(X;Y ) = 1−H(p1, p2) , (1)

where H is the entropy function. p1 = Q−σ (q) and p2 = 1−p1.
The quantization threshold (q) that maximizes the MI is q = 0.

For the 3-read SLC model in Fig. 2c with n = 4,

I(X;Y ) = H(p14, p23) + 1−H(p1, p2, p3, p4) , (2)

where p1 = Q−σ (q1), p2 = Q−σ (0)−p1, p3 = Q−σ (−q1)−p12,
and p4 = 1−Q−σ (−q1) with q1 the word-line voltage shown

Threshold q
2

T
h
re

s
h
o
ld

 q
1

 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

MI for 5 reads

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

A D
1

B C

E

D
2

Fig. 3: Mutual information vs. q1 and q2 for SLC5

in Fig 1. As described in [3], for 3-read SLC, the optimal q1
satisfies

dI

dq1
= 0. Since the MI is quasi-concave in q1, the

optimal q1 can be found by a bisection search algorithm.
For the 5-read SLC (SLC5) model in Fig. 2c with n = 6,

I(X;Y ) = H(p16, p25, p34) + 1−H(p1, p2, . . . , p6) , (3)

where p1 = Q−σ (q2), p2 = Q−σ (q1) − p1, p3 = Q−σ (0) − p12,
p4 = Q−σ (−q1) − Q−σ (0), p5 = Q−σ (−q2) − Q−σ (−q1), and
p6 = 1−Q−σ (−q2) for q1 and q2 shown in Fig 1.

Fig. 3 shows the contour plot of mutual information (MI)
vs. (q1,q2) for the 5-read case. The maximum MI points can
be obtained by solving the two partial differential equations
dI

dq1
= 0 and

dI

dq2
= 0. Assuming q2 ≥ q1, the MI is quasi-

concave in q1 for a fixed value of q2 and vice-versa (in each
dimension) and can be maximized by bisection search.

Let’s use Fig. 3 to explore the effect of multiple decoding
attempts with progressive reads on word-line voltage optimiza-
tion. Note that the MI along the q1 = q2 line shows the three-
read MI performance as a function of q1. The optimal single-
read word-line voltage of zero (Point A) is also optimal as the
first read of three reads or five reads. However, The optimal
position of q1 for three reads is q1 = 0.61 (point B), while
the optimal position of q1 for five reads is q1 = 0.4 (with
q2 = 0.9, point C). We note that the MI obtained with three
reads is 0.6524 when q1 is optimized for three reads, 0.6439
when q1 is optimized for five reads with q1 = 0.4 (point D1),
and 0.6414 when q1 is optimized for five reads with q1 = 0.9
(point D2). Also, the MI obtained with five reads is 0.6634
when q1 is optimized for three reads (point E, with q1 = 0.61
and q2 = 0.28) and 0.6687 when q1 is optimized for five reads
(point C), assuming that q2 is chosen optimally in each case.
The MI differences are small in either case, but large enough
to have noticeable effects on frame error rate according to [3].
A greedy approach (optimizing q1 for three-read performance)
leads to the smallest degradation and would lower decoding
time by increasing the probability of decoding successfully



after three reads, but optimizing q1 for the five-read scenario
will produce the lowest probability of losing a page.

III. RCA-BASED EXIT FUNCTION ANALYSIS

In their density evolution analysis of binary-input AWGN
channels, Chung et al. [4] observed that the distribution of
the LLR messages at any iteration is approximately Gaussian.
They showed that based on a stability condition, the variance
of the Gaussian distribution has to be twice its mean. There-
fore, the Gaussian distribution could be fully characterized by
a single parameter. They also observed that due to a duality
property (reciprocal approximation) the LLR messages from
the variable to check nodes become additive at check nodes.

The references [5] and [6] applied similar ideas by using
the EXtrinsic mutual Information Transfer (EXIT) functions to
simplify the DE threshold analysis. EXIT functions in iterative
coding schemes characterize how a priori input information
to a decoder check or variable node converts into extrinsic
output information from the decoder check or variable node.
The EXIT functions track the evolution of the MI between the
variable-to-check messages and the variable node true value
(Ioutv ) and the MI between check-to-variable messages and the
variable node true value (Iinv ).

We now describe the use of EXIT functions with the
Gaussian approximation and RCA to compute LDPC decoding
thresholds for different number of reads. In the following
sections, similar to Fig. 2, pis represent the transition prob-
abilities. The LLRs are given by Lij = log pi

pj
. f chL (l)

represents the apriori channel LLR probability distribution
function (p.d.f.). The notation ⊕ represents the convolution
operator. δ(.) represents the Dirac delta function.

A. Binary LDPC Thresholds from RCA-based EXIT Functions

By the assumption of uniform input, symmetric channel,
and transmission of the all-zero codeword the initial channel
LLR (log P (Y |X=0)

P (Y |X=1) ) distribution at a variable node for the
single-read SLC channel in Fig. 2a is

f chL (l) = p1δ(l − L12) + p2δ(l − L21) , (4)

where Lij = log pi
pj

. This p.d.f. is effectively a p.m.f. with sup-

port at L12 = log(P (Y=1|X=0)
P (Y=1|X=1) ) and L21 = log(P (Y=2|X=0)

P (Y=2|X=1) ).
Since the all-zeros codeword is assumed to be transmitted,
the channel LLR takes the values of L12 and L21 with
probabilities p1 and p2 respectively. Similar expressions hold
for more reads, e.g. with five reads the channel LLR p.d.f. is

f chL (l)=p1δ(l − L16) + p2δ(l − L25) + p3δ(l − L34)

+p4δ(l − L43) + p5δ(l − L52) + p6δ(l − L61) , (5)

with the pis as defined previously for the five-read channel.
For the full soft-information (i.e. in the limit of infinitely
many reads of the flash cell) BI-AWGN channel, LLR =
log(P (Y=y|X=0)

P (Y=y|X=1) ) = 2
σ2 y where σ2 is the variance of the

Gaussian noise. Therefore, the LLR is normally distributed
with a mean of 2

σ2 and variance of 4
σ2 :

f chL (l) = N (2/σ2, 4/σ2) . (6)

In the first iteration (initialization step) of the threshold
calculation algorithm, the extrinsic mutual information from
a variable node is calculated by Ioutv = J(f chL (l)) where

J(fL(l)) = 1−
∫
L

log2(1 + e−l)fL(l)dl (7)

J(fL(l)) is a function of the LLR distribution fL(l) which
gives the mutual information of a binary-input symmetric-
output channel with the LLR distribution of fL(l). For in-
stance, for the 1-read SLC channel we can alternatively
calculate the mutual information of (1) as J(f chL (l)) where
f chL (l) is given in (4). If the LLR distribution is in form of
N (µ, 2µ), JN (µ) = J(N (µ, 2µ)).

After initialization, (8-13) are performed. This process is
repeated until H(X) − Ioutv < ε′ (e.g. 10−7), where H(X)
is the entropy of the input in Fig. 2. This is the convergence
or the stopping criterion of the algorithm. If the threshold-
calculation algorithm fails at a particular noise level, the noise
level is decreased until the maximum noise level (minimum
Eb/N0) at which the algorithm converges is identified.

Iinc = 1− Ioutv (8)
µinc = J−1N (Iinc ) (9)

Ioutc =

m∑
j=1

ρiJN ((j − 1)µinc , 2(j − 1)µinc ) (10)

Iinv = 1− Ioutc (11)
µinv = J−1N (Iinv ) (12)

Ioutv =

n∑
i=1

λiJ(f
ch
L (l)⊕N ((i− 1)µinv , 2(i− 1)µinv ) (13)

Eq. (8) follows from the duality property between the
extrinsic information from a variable node (Ioutv ) and the
apriori information to a neighboring check node (Iinc ). Eq. (9)
follows from the monotonicity of J , hence the inverse exists,
as well as the assumption of normally distributed LLR mes-
sages at each iteration. µinc is the mean of the approximately
normally distributed LLR messages at check nodes. Eq. (10)
follows from the reciprocal approximation of the messages
exchanged between variable and check nodes, resulting in
additive messages at check nodes. Eq. (11) follows from the
duality property between Iinv and Ioutc . Eq. (12) follows the
monotonicity of J and the assumption of normally distributed
LLR messages. µinv is the mean of the approximately normally
distributed LLR messages at variable nodes. Eq. (13) follows
from the additive property of messages at variable nodes due
to the independence assumption of apriori LLR messages.

For the SLC channels with one or more reads, such as the
single-read and five-read cases of (4) and (5), the convolution
of the channel LLR p.d.f. (f chL (l)) and the LLR p.d.f. of
the incoming messages (N (µinv , 2µ

in
v )) from the neighboring

check nodes to variable node v in (13) results in a mean shift
LLR distribution of the messages from the check nodes. For
example, for the single-read case, f chL (l) ⊕ N (µinv , 2µ

in
v ) =

p1N (µinv − L12, 2µ
in
v ) + p2N (µinv − L21, 2µ

in
v ). However,



for BI-AWGN (6) the convolution results in the Gaussian
distribution N (µinv + 2/σ2, 2µinv + 4/σ2).

B. RCA-EXIT for Non-binary LDPC Codes for MLC

We use GF (4) NB-LDPC threshold analysis to find the best
code for the MLC Flash models. The J functional for MLC
under the assumption of uniform input is

J(fL(l)) = 2−
∫

log2(1 +

3∑
i=1

e−li)fL(l)dl . (14)

The channel LLR p.d.f. is described as follows:

f chL (l) =
1

4
(N (µch00,Σ

ch
00) +N (µch01,Σ

ch
01) (15)

+N (µch10,Σ
ch
10) +N (µch11,Σ

ch
11))

µch00 =

 2/5σ2

18/5σ2

8/5σ2

Σch
00 =

 4/σ2 12/σ2 8/σ2

12/σ2 36/σ2 24/σ2

8/σ2 24/σ2 16/σ2

 (16)

µch01 =

2/5σ2

2/5σ2

8/5σ2

Σch
01 =

 4/σ2 −4/σ2 −8/σ2

−4/σ2 4/σ2 8/σ2

−8/σ2 8/σ2 16/σ2


µch10 = µch00 µch11 = µch01 Σch

10 = Σch
00 Σch

11 = Σch
01

The p.d.f. vectors in Eq. (16) are obtained by using the
idea in [7] for cosets over GF (q) and the assumption that the
non-binary labels are selected at random and uniformly.

IV. LDPC DEGREE DISTRIBUTIONS FOR FLASH

The asymptotic threshold analysis of an LDPC code de-
pends on the degree distribution of its variable and check
nodes. λ(x) =

∑
i

λix
i−1 represents the variable-node degree

distribution where λi is the fraction of the total number
of edges connected to degree-i variable nodes. Similarly,
ρ(x) =

∑
j

ρjx
j−1 represents the check-node degree distri-

bution where ρj is the fraction of all edges that are connected
to degree-j check nodes. An LDPC code with variable-node
and check-node degree distributions λ(x) and ρ(x) has a rate
r = 1−

∫ 1
0
ρ(x)dx∫ 1

0
λ(x)dx

. For a particular code rate r, the code design
optimization consists of finding the variable-node and check-
node degree distributions that minimize the Eb/N0 threshold.

The degree-distribution optimization algorithm for a rate-
r code starts with finding the threshold for an initial (e.g.
regular) degree distribution that results in a rate-r code. While
the rate is kept constant, the parameters of λ(x) and ρ(x) are
slightly changed and the new threshold is calculated. Once
there is no more improvement in threshold by changing the
degree distribution, the degree distribution with the lowest
threshold is considered to be optimal. Table I shows the degree
distributions we obtained using this approach.

A. MMI vs. RCA-EXIT for Word-Line-Voltage Optimization

For a fixed degree distribution, RCA-EXIT analysis can
determine the word-line voltages that minimize the Eb/N0

threshold for a multiple-read Flash channel. This is an alterna-
tive approach to MMI word-line voltages. Fig. 4 shows the plot

TABLE I: Optimized degree distributions for the Gaussian
model of SLC Flash with 1,2,3, and 5 reads. MLC Flash with
3 reads, and both SLC and MLC with full soft information.

# Reads Coefficients
SLC λ2 λ3 λ7 λ8 λ27 ρ61

1 read 0.07 0.25 0.11 0.13 0.44 1
SLC λ2 λ3 λ7 λ25 ρ57

2 reads 0.1 0.21 0.25 0.44 1
SLC λ2 λ3 λ6 λ7 λ26 ρ56

3 reads 0.1 0.21 0.11 0.12 0.46 1
SLC λ2 λ3 λ5 λ8 λ25 ρ56

5 reads 0.11 0.21 0.09 0.14 0.45 1
SLC λ2 λ3 λ6 λ8 λ26 ρ56
soft 0.11 0.21 0.21 0.14 0.47 1

MLC λ2 λ3 λ4 λ7 λ8 λ11
0.16 0.31 0.1 0.18 0.1 0.15

3 reads ρ5 ρ6 ρ8 ρ22
0.45 0.16 0.1 0.29

MLC λ2 λ3 λ4 λ7 λ9 λ11
0.15 0.3 0.1 0.09 0.22 0.14

soft ρ5 ρ6 ρ8 ρ9 ρ22
0.44 0.07 0.1 0.11 0.27
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Fig. 4: Threshold Eb/N0 vs q for a regular and the optimized
rate-0.9 binary LDPC codes for 2-read SLC model

of the threshold Eb/N0 for each word-line voltage q1 = q for
the 2-read SLC model in Fig. 2b for two degree distributions.
Also shown is the curve showing the MMI word-line voltage
(qMMI ) for each Eb/N0. For a fixed degree distribution and q,
we find the minimum required Eb/N0 such that the threshold
calculation algorithm converges as was explained in III-A. The
optimal value of q and its corresponding Eb/N0 are shown
in Fig. 4 by the pair (q∗, Eb/N

∗
0 ). Eb/N

∗
0 is the absolute

minimum required Eb/N0 for the RCA-EXIT to converge for
at least one quantization threshold q. The threshold Eb/N0 at
qMMI is less than 1% away from the optimal Eb/N∗0 .

It is difficult to simultaneously optimize both degree distri-
bution and word-line voltage. Thus, even if the final word-line
voltage will be selected to explicitly minimize the threshold,
the MMI word-line voltage at a given Eb/N0 is an excellent
approximation when optimizing degree distributions. We use
the qMMI to optimize the degree distribution until the RCA-
EXIT no longer converges at an Eb/N0 and then adjust the q
to obtain the final small improvement in Eb/N0.



TABLE II: Thresholds for optimized degree distributions on
SLC flash with 1, 2, 3, and 5 reads as well as soft information.

Target 1 read 2 reads 3 reads 5 reads Soft

1 read 4.752 3.995 3.728 3.542 3.398

2 reads 4.922 3.943 3.658 3.470 3.324

3 reads 4.923 3.958 3.640 3.441 3.295

5 reads 4.926 3.973 3.649 3.437 3.288

Soft 4.926 3.982 3.662 3.443 3.275
Shannon-Limit 4.400 3.733 3.495 3.328 3.198

B. Optimized Degree Distributions for Each Precision Level

Table II shows the thresholds achieved by the various SLC
degree distributions with various levels of precision. As ex-
pected, for a specified number of reads, the degree distributions
optimized for that number of reads has the lowest threshold.
However, this table quantifies the relatively small performance
loss in threshold that is required for the same code to be used
with multiple decoding attempts using increased precision.

The largest performance loss occurs when using a degree
distribution optimized for 5 reads on the SLC 1-read channel.
Here, the loss is 0.17 dB. Any degree distribution except the
one designed for the single-read channel experiences the 0.17
dB loss. In contrast, if the degree distribution optimized for the
single-read SLC channel is used on the 5-read channel, only
0.11 dB of loss is incurred. Thus there is reason to consider
using the code designed for a single read. However, using
the degree distribution optimized for 5 reads would minimize
the probability of losing a page at the expense of additional
decoder latency for those times when additional reads might
have been avoided by using the degree distribution optimized
for one read. If it becomes feasible to switch among codes as
the Flash cells deteriorate over time, an optimized code for a
higher number of reads may replace the previously optimized
code with lower amount of precision.

Fig. 5 compares the threshold of regular LDPC degree
distributions with the optimized irregular degree distribution
(λ(x), ρ(x)) for each number of reads. There is roughly a gain
of 0.4 dB for the optimized codes compared to the regular
(x2, x29) and (x3, x39) codes.

For the same average energy, the optimized rate-0.45 non-
binary codes used in the MLC model have a much lower
threshold compared to the rate-0.9 codes for the SLC model.
MLC Flash degree distributions provide thresholds more than
0.5 dB lower than degree distributions for rate-0.9 binary
LDPC codes on SLC Flash with the same number of reads
(i.e. three reads that would provide hard decisions for MLC
and limited soft information for SLC). The MLC approach
has a potential threshold reduction of about 1.5 dB over the
SLC when both systems have access to full soft information.
This is consistent with the MI analysis of [8] showing that a
spectral efficiency of 0.9 is too high for binary PAM.

V. CONCLUSION

We have used RCA-EXIT analysis to optimize the degree
distribution of binary and non-binary LDPC codes with Eb/N0
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Fig. 5: Threshold Eb/N0 vs number of reads for spectral
efficiency of 0.9 bits per cell.

thresholds of about 0.1 dB away from the Shannon-Limit for
multiple-read models. While regular codes are usually used in
Flash systems due to their simple decoder implementation, the
optimized irregular binary codes have 0.4 dB lower threshold
than the regular codes across different number of reads.

We have examined and validated the use of MMI word-line
voltages in threshold-based degree distribution optimization.
For the same spectral efficiency, low-rate non-binary LDPC
codes for MLC Flash systems have lower thresholds compared
to high-rate LDPC codes used in SLC systems. In addition, it
is easier to design low-rate (e.g. rate-0.45) than high-rate (e.g.
rate-0.9) LDPC codes.
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