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Abstract—An algorithm is proposed to encode low-density
parity-check (LDPC) codes into codewords with a non-uniform
distribution. This enables power-efficient signalling for asymmet-
ric channels. We show gains of 0.9 dB for additive white Gaussian
noise (AWGN) channels with on-off keying modulation using 5G
LDPC codes.

Index Terms—LDPC codes, probabilistic shaping, forward-
error correction, asymmetric signalling.

I. INTRODUCTION

This paper explores low-density parity-check (LDPC) coded
communications over asymmetric channels such as the addi-
tive white Gaussian noise (AWGN) channel with on-off keying
(OOK). To approach capacity, one must usually use shaping so
that signal points are not equally likely (probabilistic shaping),
not uniformly spaced (geometric shaping), or both [1]–[5].

A popular technique called probabilistic amplitude shaping
(PAS) [6], [7] uses a distribution matcher (DM) to perform
shaping before the forward error correction (FEC) encoder,
e.g., a constant composition DM (CCDM) [8]. PAS factors
the target channel-input distribution as PX = PS · PA where
PS is the uniform distribution used for parity bits and PA

relates to the input amplitudes. PAS can approach capacity
for symmetric channels where the capacity-achieving PX is
symmetric. An especially attractive feature of PAS is its
flexibility: PAS can be combined with any (systematic) FEC
code, it permits fine rate adaptation, and it performs well with
long [7] and short [9] block lengths.

PAS does not directly apply to channels where the optimal
input distribution is asymmetric. For example, for the AWGN
channel with OOK modulation, the authors of [10] propose
a time sharing (TS) scheme that combines FEC with a non-
uniform OOK signaling. In the TS scheme, a DM generates
non-uniform bits from a uniform message, and a systematic
FEC encoder appends uniformly-distributed parity bits.

Another probabilistic shaping scheme for OOK is presented
in [11] that uses the method by Honda and Yamamoto [12].
Here, polar codes perform joint distribution matching and
FEC by using a polar decoder to encode message bits into
a subset of the code with the desired distribution. The polar
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coding scheme (asymptotically) generates OOK symbols with
the capacity-achieving distribution and performs better than
the TS scheme. It is, however, tied to the use of polar codes.

Several schemes have been proposed to shape LDPC codes
non-uniformly by using a decoder to encode; see [13], [14].
However, these schemes may encode to an invalid codeword
under belief propagation (BP) encoding. The papers [15], [16]
report that spatial coupling and guided decimation can combat
this problem, and the paper [14] proposes an outer FEC code to
correct encoding errors. These workarounds do not guarantee
a valid encoding.

The paper [17] proposes linear layered probabilistic shaping
(LLPS) that shapes the codewords of a linear block code with
two DMs: The message bits are shaped with a conventional
DM and encoded systematically. A syndrome distribution
matcher (SDM) shapes the parity bits by reserving ℓ bits
and determining them to achieve a non-uniformly distributed
codeword. However, the SDM requires enumerating all 2ℓ

combinations of these ℓ bits which is infeasible for large ℓ.
This paper proposes an efficient algorithm to approximate

LLPS for LDPC codes. The algorithm uses systematic encod-
ing and sequentially determines ℓ bits of the systematic part of
the codeword. It it based on a BP-like algorithm on the Tanner
graph of the generator matrix. The algorithm is sub-optimal but
it has several attractive features: it generates a valid codeword,
it can be implemented efficiently, and it provides reasonable
power gains.

This paper is organized as follows: Section II introduces
the AWGN channel with OOK modulation, LDPC codes,
and LLPS. Section III presents the proposed algorithm and
Section IV provides simulation results. Section V concludes
the paper.

II. PRELIMINARIES

A. Channel Model

Consider the AWGN channel with OOK modulation:

Y = X +N (1)

where the transmit symbol X has alphabet {0, A} and N is
an additive white Gaussian noise term with zero mean and
variance σ2. We write p0 = PX(0) and the signal-to-noise
ratio (SNR) is

γ =
(1− p0)A

2

σ2
. (2)
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A non-uniform distribution PX for X can be beneficial under
an average transmit power constraint such as E[X2] ≤ P .
We map codeword symbol 0 to the 0-symbol and codeword
symbol 1 to the A-symbol. Although this paper focuses on
the AWGN channel with OOK modulation, the scheme can
be applied to any binary-input asymmetric channel.

B. LDPC Codes

LDPC codes [1] are linear block codes with a sparse parity
check matrix. They can be represented by a bipartite graph,
called a Tanner graph, with variable nodes (VNs) representing
the codeword symbols and check nodes (CNs) representing the
parity checks. LDPC codes can be efficiently decoded using
BP that iteratively exchanges likelihoods of the codeword bits
between the check and variable nodes. Let LVi→Cj be the
message from VN i to CN j and LCj→Vi

be the message
from CN j to VN i. The message update rules at the variable
and check nodes are

LVi→Cj
= Li +

∑
k∈N (Vi),k ̸=j

LCk→Vi
(3)

LCj→Vi
= 2 tanh−1

 ∏
k∈N (Cj),k ̸=i

tanh
(
LVk→Cj

/2
) (4)

where Li is the log-likelihood ratio (LLR) of the code bit
associated with VN i and N (Vi) is the index-set of all
neighbours of VN i, and similarly for N (Cj). The a posteriori
probability (APP) LLR of VN i is

LAPP
i = Li +

∑
k∈N (Vi)

LCk→Vi (5)

and used to decide whether code bit i is zero (LAPP
i ≥ 0) or

one (LAPP
i < 0). The BP decoder is usually terminated once a

valid codeword is found or one reaches a maximum number
of iterations.

C. Linear Layered Probabilistic Shaping (LLPS)

LLPS [17] is an architecture to encode any linear code of
length nc and dimension kc to non-uniform codewords. The
output of a DM is encoded systematically. To obtain parity bits
with non-uniform distribution with binary entropy H2(p0), one
needs to determine approximately

ℓ ≈ (nc − kc)

(
1

H2(p0)
− 1

)
(6)

bits using a SDM.
Consider systematic encoding of a vector v of kc − ℓ bits

output by a DM. The parity check matrix H is partitioned as
H = [Hs|Hp] where Hs is a m×(kc−ℓ) matrix and Hp is a
full-rank m×(m+ℓ) matrix with m = nc−kc. Next, calculate
the syndrome η = vHT

s and observe that any c = [v|p] is a
valid codeword if p is chosen such that pHT

p = η is fulfilled.
There are 2ℓ valid solutions for p and one can, e.g., choose
the one with lowest Hamming weight wH(p):

p = argmin
p′∈{0,1}m+ℓ

wH(p
′) s.t. p′HT

p = η. (7)

The authors of [17] further decompose Hp to solve (7) by
enumerating over ℓ bits. This allows to shape a linear code
with a desired distribution but has high complexity since 2ℓ

possibilities must be enumerated to solve (7). LLPS with SDM
is thus feasible only for high-rate distribution matching with
small ℓ (close-to-uniform distributions) and short blocklengths.

III. SHAPED LDPC CODES

A. Principles of Shaped LDPC Codes

We propose an efficient BP-like algorithm for LLPS that
approximates the solution of (7). Consider an (nc, kc) LDPC
code with parity-check matix H and systematic generator
matrix Gsys = [Ikc

|Gp] where Ikc
is the kc × kc identity

matrix and Gp is a kc × (nc − kc) matrix. The codeword c is
related to the input u by

c = uG = [u |uGp]. (8)

We reserve ℓ of the kc systematic bits for shaping. These
shaping bits are a function of the remaining kc − ℓ systematic
bits and chosen such that the parity bits uGp have a non-
uniform distribution. The encoding procedure to determine the
shaping bits is described in the next subsection.

Since we determine bits from the systematic part of the
code, any choice of the shaping bits gives a valid codeword.
The remaining kc − ℓ systematic bits are assumed to be the
output of a DM (we use the CCDM [8]) with rate RDM =
k/(kc − ℓ), where k is the length of the uniform information
sequence to be transmitted. The overall transmission rate is

R = k/nc = RDM(kc − ℓ)/nc = RDMRc − ℓ/nc.

where Rc = kc/nc is the code rate of the LDPC code.

B. Encoding

The algorithm encodes on the Tanner graph of the generator
matrix using a BP-like algorithm that successively determines
the ℓ shaping bits using ℓ iterations over the graph, i.e., each
iteration determines one shaping bit. Fig. 1 shows an example
with nc = 9, kc = 6, and ℓ = 2.

The VNs of the Tanner graph are divided into three groups:
• Message VNs: the kc − ℓ systematic VNs of the DM

output v are fixed by setting the LLR Li of VN i to +∞
or −∞ for a DM output 0 or 1, respectively.

• Parity VNs: the nc−kc VNs of the parity bits have LLR
Li = log(p0/(1− p0)) ≜ +L, which corresponds to the
target distribution.

• Shaping VNs: the ℓ systematic VNs of the shaping bits
are initialized with the LLR value Li = 0. When making
the final decision on these bits in (9), we will add the
same offset +L as for the parity VNs in order to induce
the target distribution on the shaping bits as well.

Fig. 1b depicts the systematic message and shaping VNs on
the bottom and the parity VNs on the top.

In the example, the LLRs of the message VNs are initialized
according to the DM output v = [0, 0, 1, 0]. All check-to-
variable node messages are initialized with 0 and all variable-
to-check node messages are initialized with the LLR of the
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G =


1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 1 1 0
0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 1 1


(a) Systematic generator matrix used for this
example.
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(b) Tanner graph after initializing with the mes-
sage bits.
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(c) Tanner graph with check-to-variable mes-
sages after the first check node update.
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(d) Tanner graph after deciding the first shaping
bit.
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(e) Tanner graph with check-to-variable mes-
sages after the second check node update.
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−∞
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+∞
s2
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(f) Tanner graph after deciding the second shap-
ing bit.

Fig. 1: Example of the encoding procedure with nc = 9, kc = 6, ℓ = 2, and DM output v = [0, 0, 1, 0]. The subfigures show (a) the generator matrix of
the code and (b)-(f) the steps of the proposed encoding algorithm.

variable node. Thus, all messages from the message VNs are
±∞, all messages from the shaping VNs are 0, and all mes-
sages from the parity VNs are +L. Edges that carry messages
from fixed VNs are marked as green-dotted (Li = +∞) or
red-dashed (Li = −∞) in Fig. 1. These edges do not need
to be updated and have a limited impact in the check node
operations.

The algorithm now performs ℓ iterations on the graph to
determine the ℓ shaping bits. Each iteration consists of the
following steps.

• CN updates: update the check-to-variable messages to via
(4). The update rule has three possible outcomes: if a CN
has more than one edges to undetermined shaping VNs,
all messages are 0. If a CN has exactly one edge to an
undetermined shaping VN, then the message on this edge
will be +L or −L, depending on whether the number of
incoming −∞-message is even or odd; see Fig. 1c.

• Determine one shaping bit (decimation step): for all
undetermined shaping VNs i, calculate

L̃APP
i = LAPP

i + L (9)

with LAPP
i from (5). Choose one of the VNs with largest

|L̃APP
i |. Fix the corresponding shaping bit using

si =

{
0, L̃APP

i ≥ 0

1, else
(10)

and change the LLR Li of VN i accordingly. Further,
update the messages on the edges connected to this VN.
We remark that the L̃APP

i are always integer multiples of
L and can be interpreted as how many parity bits are (in
this iteration) set to zero compared to how many are set
to one. The offset +L in L̃APP

i is then applied to bias the
shaping bits towards the non-uniform target distribution.
In the example, we have L̃APP

1 = 0 and L̃APP
2 = +2L and

thus fix s2 = 0. The updated graph is shown in Fig. 1d.
Observe that fixing s2 = 0 determines the third parity bit
to be 0, as illustrated by the outgoing APP LLR of +∞.

After ℓ iterations, the algorithm determined all ℓ shaping bits,
and in a final stage it calculates all parity bits and puts out a
valid codeword with a non-uniform distribution.

C. Decoding

Since all shaping bits are in the systematic part of the
codeword we need not modify the decoder. After decoding,
one simply discards the shaping bits. We remark that the
shaping bits could be used for error detection by re-encoding
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Fig. 2: FER with overall rate R = 2/3 and nc ≈ 1000 bits. The uniform
( ) and TS ( ) Wimax LDPC codes have nc = 1056 and are taken
from [11]. The TS scheme has code rate Rc = 0.75. The shaped Wimax
LDPC code ( ) has nc = 1056, Rc = 0.75, ℓ = 10 shaping bits,
and achieves an empirical distribution p0 = 0.65. The shaped 5G LDPC
code ( ) has nc = 1008, Rc = 0.78, 72 punctured bits, ℓ = 32, and
p0 = 0.69. The shaped polar code ( ) is from [11] and has nc = 1024
and p0 = 0.69.

the message and comparing the decoded shaping bits with the
re-encoded ones as in [18].

D. Discussion

The algorithm is based on the Tanner graph of the sys-
tematic generator matrix instead of the parity check matrix.
The former matrix is usually denser than the latter. From
the perspective of computational complexity this is not an
issue as the CN update (4) only needs to be calculated if
the effective CN degree is 1. However, if all check-to-variable
node messages are 0, then the algorithm must guess one bit.
The algorithm might thus perform poorly if the generator
matrix is excessively dense or if one approximates an extreme
distribution with many shaping bits. The behaviour improves
by optimizing the decimation strategy and the positions of the
shaping bits, by designing tailored codes, or by using more
complex decimation strategies. For example, one may choose
multiple shaping bits jointly or use brute-force search for the
first bits and encode the remaining bits for multiple choices.

IV. SIMULATION RESULTS

We simulated performance over an AWGN channel with
OOK modulation, as described in Sec. II-A. We compare our
scheme to the polar codes from [11] and the TS scheme from
[10] with LDPC codes.

For some curves we used 5G LDPC codes [19]. They are
all obtained from base graph 1. According to the standard,
some of the systematic bits are punctured. We place the
shaping bits within the punctured bits and slightly modify
(9) to L̃APP

i = LAPP
i , i.e., we discard the additional offset of
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Fig. 3: FER with overall rate R = 1/3 and nc ≈ 1000 bits. The LDPC
codes are from the 5G standard and have nc = 1056. The TS LDPC code
( ) has Rc = 1/2 (according to [10, Table I]). The shaped LDPC code
( ) has Rc = 2/3, 64 punctured bits, ℓ = 64 shaping bits, and empirical
p0 = 0.80. 3 The shaped polar code ( ) has nc = 1024 and uses both
SCL encoding and decoding with LSCL = 32 and has p0 = 0.83.

+L as the punctured bits do not need to have a non-uniform
distribution. If there are more punctured bits than shaping bits,
the remaining punctured bits are filled with information bits.

Fig. 2 considers the transmission rate R = 2/3 and com-
pares the frame error rates (FERs) of the proposed algorithm
to uniform signaling, the TS scheme from [10], and shaped
polar codes. With LDPC codes from the Wimax standard [20]
we gain approximately 0.88 dB compared to uniform signaling
and 0.17 dB compared to the TS scheme. For the shaped and
TS curves we used Rc = 0.75; the shaped curve was generated
using ℓ = 10 shaping bits. We can further improve by using
a 5G LDPC code. We chose a code with nc = 1008 (72
punctured bits) and used ℓ = 32. This gives an additional
0.1 dB of gain compared to the shaped Wimax LDPC code.
We further depict the shaped polar code from [11, Fig. 5]
for reference. The polar code has nc = 1024, is combined
with an outer 16 bit CRC, and a successive cancellation list
(SCL) decoder [21] with list size LSCL = 32 was used for
encoding and for decoding. Both schemes perform very close
to each other, but the polar code performs slightly better. This
is expected for such rather short block lengths and we remark
that the polar code has a tailored and optimized design, while
the off-the-shelf LDPC code was not designed for this purpose.

The figure also depicts achievable rates as vertical dashed
lines. As the distribution of the systematic part and the
distribution of the parity part are not necessarily the same, our
scheme also works in a TS manner. We depict the achievable
rate with the empirical distributions created by our algorithm
as “shaped TS capacity”. The “TS capacity” line corresponds
to the achievable rate with the TS scheme from [10]. For this
scenario, the achievable rate of our scheme is very close to

174

 2023 12th International Symposium on Topics in Coding (ISTC)



0 0.5 1 1.5 2
10−4

10−3

10−2

10−1

100

ca
pa

ci
ty

sh
ap

ed
T

S
ca

pa
ci

ty

SNR γ [dB]

FE
R

nc = 1056, Rc = 2/3, ℓ = 64

nc = 4224, Rc = 2/3, ℓ = 256

nc = 4224, Rc = 1/2, ℓ = 192

nc = 8448, Rc = 2/3, ℓ = 512

Fig. 4: FER with overall rate R = 1/3 of shaped 5G LDPC codes with
different code lengths and code rates. All curves with Rc = 2/3 have
empirical p0 = 0.80 and the curve with Rc = 1/2 has p0 = 0.71.

capacity and the gains observed in the FER curves match the
theoretical predictions.

Fig. 3 shows results for a transmission rate of R = 1/3.
Here, the theoretical shaping gain is 1.8 dB. The shaping gain
of the TS scheme is small due to the high number of uniform
parity bits for low transmission rates [10]. The proposed
scheme with a 5G code (64 punctured bits and ℓ = 64) gains
0.9 dB compared to uniform transmission. This is a bit less
then it could be expected from the achievable rates (and we
also observe that the FER waterfall is not accurately predicted
by the capacity for the shaped curve). We believe that this is a
code design issue and further gains are possible by designing
tailored codes. We remark that the target distribution for this
scenario is quite biased (p0 = 0.83) and our algorithm is not
fully capable of creating this distribution. Thus there is a gap
to capacity of approximately 0.4 dB (see ”shaped TS capacity”
in Fig. 3). The polar-coded curve was designed as in [11] and
we used an 8 bit CRC, |D| = 242, and SCL encoding and
decoding with LSCL = 32. The polar code outperforms the
proposed LDPC code (the worse slope could potentially be
improved by optimizing the CRC or using a larger list size).

Finally, Fig. 4 shows the FER performance of our encoding
scheme with R = 1/3 for codes of different length. We
see that the proposed scheme works for different lengths
(we depict nc = 1056, nc = 4224, and nc = 8448). The
fraction of shaping bits compared to the code length was kept
constant and for all three cases we obtain the same empirical
distribution of the parity bits. For nc = 4224 we further
depict a curve for a code with a lower code rate. The obtained
distribution is naturally less biased but the code has better
error correcting capability and the two curves for nc = 4224
lie very close to each other. This shows that our scheme can,
similarly to PAS, also be used for rate adaptivity.

V. CONCLUSION

We proposed an efficient BP-like algorithm for LLPS using
LDPC codes based on the Tanner graph of the systematic

generator matrix. It is sub-optimal compared to LLPS with
SDM, but still delivers a good FER performance in simulations
with standard LDPC codes. The algorithm allows for rate
flexibility and compared to other schemes for LDPC codes it
always generates a valid codeword. Further work to optimize
the algorithm can include tailored code-design and optimizing
the decimation strategy and the selection of the shaping bits.
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[7] G. Böcherer, P. Schulte, and F. Steiner, “Probabilistic shaping and
forward error correction for fiber-optic communication systems,” J.
Lightw. Technol., vol. 37, no. 2, pp. 230–244, 2019.
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