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Abstract—The Consultative Committee for Space Data Systems
(CCSDS) standard for high photon efficiency uses a serially-
concatenated (SC) code to encode pulse position modulated laser
light. A convolutional encoder serves as the outer code and an
accumulator serves as the inner code. These two component
codes are connected through an interleaver. This coding scheme
is called Serially Concatenated convolutionally coded Pulse Posi-
tion Modulation (SCPPM) and it is used for NASA’s Deep Space
Optical Communications (DSOC) experiment. For traditional
decoding that traverses the trellis forwards and backwards ac-
cording to the Bahl Cocke Jelinek and Raviv (BCJR) algorithm,
the latency is on the order of the length of the trellis, which has
10,080 stages for the rate 2/3 DSOC code. This paper presents
a novel alternative approach that simultaneously processes all
trellis stages, successively combining pairs of stages into a meta-
stage. This approach has latency that is on the order of the log
base-2 of the number of stages. The new decoder is implemented
using the Compute Unified Device Architecture (CUDA) plat-
form on an Nvidia Graphics Processing Unit (GPU). Compared
to Field Programmable Gate Array (FPGA) implementations,
the GPU implementation offers easier development, scalability,
and portability across GPU models. The GPU implementation
provides a dramatic increase in speed that facilitates more thor-
ough simulation as well as enables a shift from FPGA to GPU
processors for DSOC ground stations.
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1. INTRODUCTION
The Consultative Committee for Space Data Systems
(CCSDS) standard uses a Serially Concatenated convolution-
ally coded Pulse Position Modulation (SCPPM) that features
a convolutional code with only four states but 7560 trellis
stages for rate-1/2. Traditional decoders work sequentially
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through these many stages, constraining throughput. This
paper presents an alternative method that simultaneously
processes all trellis stages allowing a dramatic increase in
throughput and lowering the latency of decoding. Parallel
trellis processing can be realized on both Graphics Processing
Unit (GPU) and Field Programmable Gate Array (FPGA)
implementations. GPU implementation can provide multi-
ple benefits: easier development, scalability, and portability
across GPU models. With the rapid advancement of technol-
ogy, the same implementation remains functional on future
GPU devices and compiler versions.

Background

Convolutional codes are typically decoded via the Viterbi
algorithm [1], [2] that minimizes the frame error rate (FER),
or the algorithm introduced by Bahl, Cocke, Jelinek, and
Raviv [3] (BCJR), that minimizes the symbol error rate. Low
delay requirements have been a limiting factor for Viterbi
decoders. Several works have achieved a level of parallelism
to address this problem. Fettweis and Meyr [4] combined
every P stages of an K-stage trellis using a smaller trellis per
each of the M states, and achieved a linear speedup of P .
Mohammadidoost and Hashemi [5] optimized the memory
access for both the surviving path and the trace-back path
on a GPU. Peng et al. [6] introduce a method to achieve
a high throughput also using GPU. Their method is flexible
enough for application on general block codes and is shown
to attain a throughput of up to 1.8 Gb/s on convolutional
codes. Zhihui et al. [7] and Hanif et al. [8] show that
part of the computations can be done independently. In [7]
a sequence is split into smaller segments and the processing
of each segment is further split into an independent part and
a dependent part. A matrix representation of the process is
used in [8] that allows a GPU to exploit the independence
of some operations. Seshadri and Sundberg [9] compare
convolutional codes with Low Density Parity Check (LDPC)
codes under delay constraints and show that convolutional
codes outperform LDPC in the more restrictive regime. An
FPGA version of a Viterbi decoder is also provided by Ben
Asher et al. in [10], with parallelism that can be tuned via a
parameter P .

Concatenated convolutional codes like the SCPPM code are
often decoder iteratively, see the parallel concatenated Turbo
codes by Berrou et al. [11] and serially concatenated codes
by Benedetto et al. [12]. In iterative decoding, two or
more decoders alternate to produce a-posteriori probabilities
that are used as input to the other decoders in the next
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Figure 1: SCPPM Encoder model. The information
generates a bit sequence to which a 32-bit error detecting
CRC sequence and two zeros are appended, to obtain a
K-bit, e.g. K = 7560 when the rate is 1/2. The K-bit
sequence is encoded with an outer convolutional code and
the output is interleaved with a quadratic interleaver. The
interleaved sequence is encoded with a two-state recur-
sive convolutional code or accumulator, and the output
sequence is modulated with pulse-position modulation.

iteration. The process repeats until a stopping condition is
met. The SCPPM code stops when no error is detected by
an error detecting sequence or when the maximum number of
iterations is exceeded. The serially concatenated (SC) pulse-
position modulation (PPM) code consists of two serially
concatenated convolutional codes with an interleaver between
the two codes and is depicted in Fig. 1.

A convolutional code is a linear block code that encodes
an information sequence into another coded sequence of
symbols. The input sequence could be a sequence of bits,
and the outputs could be bits or words comprised of two or
more bits each. A convolutional code (CC) consists of a set
of states {0, . . . ,M − 1} and two sets of linear functions
{f0, f1, . . . , fM−1}, {h0, h1, . . . , hM−1}, where fi maps an
input symbol to one or more output symbols and hi defines a
state transition that maps input symbol from source state i to
a destination state j. The ratio of k input symbols to n output
symbols per encoding operation defines the code rate k

n .

The model of the SCPPM encoder is depicted in the left side
of Fig. 1. At the beginning, an error detecting 32-bit cyclic
redundancy check (CRC) code sequence is appended to the
information sequence. Then, the information sequence, with
the 32-bit CRC sequence, is encoded with a four-state, non-
recursive, zero-terminated convolutional code, which will be
called the “outer code.” The output of the outer code is
interleaved with a quadratic interleaver, and the interleaved
sequence is encoded with a two state recursive convolutional
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Figure 2: Illustration of the free-space optical channel.
The transmitter emits a pulse of light at each symbol’s
pulsed slot, and the receiver counts the number of photos
received at each slot. The input to the decoder are the
photon counts for every slot of every symbol.

code, which will be called the inner code or accumulator.
The output sequence of the inner code is split into symbols
that are between two and eight bits long, and each symbol is
modulated with a pulse position modulation.

Contribution

Serially concatenated convolutional codes are traditionally
decoded by message-passing decoders, with a separate BCJR
decoder implemented for each component convolutional
code. Each component BCJR decoder takes as input the
output of the other component BCJR decoders and the chan-
nel symbol probabilities, according to the encoding graph.
Each decoder computes new a-posteriori probabilities that
are passed along to the other component BCJR decoders.
The BJCR decoders traditionally compute the reliabilities by
working sequentially through the trellis first in the forward
direction and then in the backward direction [3]. This
paper presents a method to break the BCJR algorithm [3]
dependency on the values at each previous stage and instead
simultaneously compute many stages to increase throughput
and lower the latency of decoding.

Organization

The rest of the paper proceeds as follows: Sec. 2 describes
the SCPPM code and a version of the BCJR algorithm by
Bahl et al. [3] used by the standard SCPPM decoder. Sec.
3 introduces our method to transform the BCJR algorithm to
allow higher parallelism and lower the decoding time. Sec. 4
describes the implementation of the algorithms using a GPU
and CUDA. Sec. 5 shows simulation results in terms of
runtime performance and frame error rate vs. average photon
rates, and Sec. 6 concludes the paper.

2. THE SCPPM CODE
Let the input of a code be a sequence with entries in a finite
field U and outputs from a finite field F , which could be the
as U . A K-symbol input sequence U = U0, U1, . . . , UK−1
is mapped to an N output sequence X where N = K n

k .
In this work, the value of k will be k = 1 and the out-
put symbols are n-symbol words. Given an initial state
S0, a convolutional code maps a K-symbol input sequence
U to a unique output sequence X and a unique sequence
of state S1, S2, . . . , SK , via the output and state transition
functions. If the code is terminated, additional symbols are
appended to the input symbol sequence U, to ensure that
the last state Send, generally same as S0, is reached. In the
next two sections, we will call the input to the inner code
a K-bit sequence U and the output a N -bit sequence X,
which is mapped to M−ary PPM symbols C1, C2, . . . with
M ∈ {4, 8, 32, 64, 128, 256} each encoding m bits, where
m ∈ {2, 3, . . . , 8}. The encoder’s modulated output is a
vector of symbols C1, . . . ,CN/m, where symbol Ci is a
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Figure 3: Illustration of pulse position modulation (PPM) of a codeword with 8-PPM slots per symbol. Each symbol
consists of 3-bits, that represent a position in 0, 1, . . . , 7. The 1st modulated symbol is 011 = 3, the 3rd modulated symbol
is 010 = 2, the i-th modulated symbol is 100 = 4, and the last symbol is 101 = 5. A pulse is transmitted for each symbol,
at positions 3, 2, 4, 5 for the 1st, 3rd, ith and last symbols respectively. No pulse is sent at any of the other slot positions
on each symbol.

vector Ci = {Ci,1, Ci,2, . . . , Ci,2m}, where Ci,j ∈ {0, 1}
and Ci has a single 1 entry. For convenience, each m-bits
symbol constructed from the output of the inner code will
be called an edge E, where E ∈ {0, 1, . . . , 2m − 1} and
the input to the inner code will also be grouped into symbols
Ui ∈ {0, 1, . . . , 2k − 1}. Since the inner code is rate 1, the
value of k for the inner code is will be k = m.

Channel Model

The channel model is a Poisson channel defined by a back-
ground noise rate of Kb average photons per non-pulsed PPM
slot and Ks +Kb average photons per pulsed PPM slot.

The received signal for each transmitted symbol i is vector
Yi,j and for each PPM slot j ∈ {0, . . . , 2m − 1} Yi,j is
modeled by the probability mass functions (p.m.f.) Pr(Yi,j =
y | Ci,j = 0) and Pr(Yi,j = y | Ci,j = 1) given by:

Pr(Yi,j = y | Ci,j = 0) =
Ky

b e
−Kb

y!
(1)

Pr(Yi,j = y | Ci,j = 1) =
(Kb +Ks)

ye−(Kb+Ks)

y!
. (2)

From now on, denote by pi,j(y)≜Pr(Yi,j=y | Ci,j = 1) the
channel’s p.m.f. in Eq. (2).

The BCJR Algorithm

The BCJR algorithm of Bahl et al. [3] is a standard compo-
nent of the decoder of concatenated codes because it produces
a-posteriori probabilities of its input and output sequences.
The inputs to the BCJR algorithm are the a-priori probabili-
ties of the input and output sequences, where one of the two
might be missing. The channel sequence symbol probabilities
in (1) and (2) provide the output symbol probabilities for
the inner-most decoder. In serially concatenated codes, the
information sequence symbol a-posteriori probabilities are
the output of only the outer-most decoder, thus the outer-
most decoder does not get updated a-priori probabilities of the
information sequence from other decoders. The outputs of the
BCJR algorithm are the vector of a-posteriori probabilities of
the input sequence U1, U2, . . . , UK given by Pr(Ui = u |
Y = y) for each u ∈ U and the vector of a-posteriori
probabilities of the output sequence X1, X2, . . . , XnK given

by Pr(Xi = x | Y = y) for each x ∈ F . Given code
functions fi and the channel p.m.f., we can directly compute
the probabilities Pr(Yi=yi | Ci,j=1) via:

Pr(Yi=y | Ci,j=1) (3)

=Pr(Yi,j=yi,j |Ci,j=1)
∏
l ̸=j

Pr(Yi,j=yi,l |Ci,l=0)

(4)

=
Pr(Yi,j=yj |Ci,j=1)

Pr(Yi,j=yi,j |Ci,j=0)

∏
l

Pr(Yi,j=yi,l |Ci,l=0)

(5)

For the rest of this section we explain how to compute the
output probabilities Pr(Ui = u | Y = y) from the channel
probabilities Pr(Yi=y | Ci,j =1) and a-priori probabilities
Pr(Ui = u; I) produced by the outer decoder, where I
stands for intrinsic input probabilities. Note that for the inner
decoder the input sequence U is the output sequence of the
outer decoder. In the next two sections we will refer to the
input of the inner decoder by U = U1,U2, . . . ,UN/m, with
Ui = Ui,1, Ui,2, . . . , Ui,m and the output a sequence of edges
E = E1, E2, . . . , EN/m. The probabilities Pr(Ei = e |
Y = y) that would be produced by the inner are not used
and thus are omitted. These probabilities are straightforward
to obtain, see [12]. Next we express the channel probabilities
Pr(Yi = yi | Ci,j = 1) as functions of the input and state
Si, that is, as Pr(Yi = yi | Si = s, Ui = f−1

s (j)) for each
symbol i = 1, 2, . . . , N/m, each slot j ∈ {0, 1, . . . , 2m − 1}
and each state s ∈ {1, 2, . . . ,M} as follows:

pi,j(y) = Pr(Yi,j = y | Ci,j = 1) (6)
= Pr(Yi,j = y | Ei = j) (7)

= Pr(Yi,j = y | Si = s, Ui = f−1
s (j)) (8)

We are interested in the conditional probabilities: Pr(Ui =
u | Y = y), which may be obtained from the joint
probabilities Pr(Ui = u,Y = y), i = 1, 2, . . . , N and the
marginal Pr(Y = y) by:

Pr(Ui = u | Y = y) =
Pr(Ui = u,Y = y)

Pr(Y = y)
. (9)
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Figure 4: SCPPM log(·) domain iterative decoder. The inputs to the inner decoder are the log(·) of the channel symbol
probabilities Pr(Yi,j = yi,j | Ci = j). The inner decoder produces “extrinsic” log-likelihood ratios of its input, which
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used as input in next iterations by the inner decoder. This process continues until a codeword of the CRC code is found
or the max iterations are exceeded.

The bottom Pr(Y = y) is a constant given Y that can
be ignored in many cases, or it can be computed via∑

u∈U Pr(Ui = u,Y = y). Then, is suffices to compute
the probabilities Pr(Ui = u,Y = y) as follows.

Pr(Ui =u,Y=y) =
∑
s

Pr(Y=y, Ui=u, Si=s) (10)

=
∑
s

∑
e:fs(u)=e

Pr(Y = y, Ei = e, Ui = u, Si = s)

Since every next output is Ei = fs(u) and every next state is
Si+1 = hsi(u), then the event {Ui = u, Si = s} guarantees
that Pr(Y=y, Ui=u, Si=s, Si+1 ̸=hs(u))=0, and:

Pr(Y = y, Ui = u, Si−1 = s) (11)
=Pr(Y = y, Ui = u, Si−1 = s, Si = hs(u))

+ Pr(Y = y, Ui = u, Si−1 = s, Si ̸= hs(u))

=Pr(Y = y, Ui = u, Si−1 = s, Si = hs(u)) (12)
=Pr(Y=y, Ei=fs(u), Si−1=s, Si=hs(u)) . (13)

The rest of this section focuses on computing the probabil-
ities: Pr(Y = y, Ei = fs(u), Si−1 = s, Si = hs(u)) for
each i = 1, 2, . . . , N/m and each Ei = {0, 1, . . . , 2m − 1} .
Let the beginning state of an edge e be b(e) and the end state
be t(e). Also denote by Yj

i = yi, Yi+1, . . . , Yj , then:

Pr(Y = y, Ei = fs(u), Si−1 = s, Si = hs(u)) (14)
=Pr(Y = y, Ei = e, Si−1 = b(e), Si = t(e))

=Pr(Ei=e,YN
i =yN

i | Si−1=b(e),Yi−1
1 =yi−1

1 )

· Pr(Si−1 = b(e),Yi−1
1 = yi−1

1 ) . (15)

Need Pr(Ei = e,YN
i =yN

i | Si−1 = b(e),Yi−1
1 =yi−1

1 ) and
Pr(Si−1 = b(e),Yi−1

1 = yi−1
1 ) as functions of the channel

signal Y, the channel p.m.f and the a-priori probabilities
P (Ui = u), i = 1, 2, . . . , N/m. The first probability
Pr(Ei = e,YN

i = yN
i | Si−1 = b(e),Yi−1

1 = yi−1
1 ) may

be computed by:

Pr(Ei=e,YN
i+1=yN

i+1 | Si−1=b(e),Yi−1
1 =yi−1

1 ) (16)

= Pr(Ei=e,Yi=yi | Si−1=b(e),Yi−1
1 =yi−1

1 )

· Pr(YN
i+1=yN

i+1 | Si−1=b(e), Ei=e,Yi
1=yi

1)

= Pr(Ei = e,Yi=yi | Si−1 = b(e)) (17)

· Pr(YN
i+1 = yN

i+1 | Si = t(e)) (18)
= Pr(Yi=yi | Ei = e, Si−1 = b(e)) (19)

· Pr(Ei = e | Si−1 = b(e)) (20)

· Pr(YN
i+1 = yN

i+1 | Si = t(e)) (21)
= Pr(Yi=yi | Ei=e, Si−1=b(e)) Pr(Ui=U(e))

(22)

Pr(YN
i+1 = yN

i+1 | Si = t(e)) (23)

Since Ei = e =⇒ Si−1 = b(e), then the conditioning
Si−1 = b(e) in Pr(Yi=yi |Ei=e, Si−1=b(e)) is redundant,
that is Pr(Yi=yi |Ei= e, Si−1= b(e))=Pr(Yi=yi |Ei=
e). The probabilities Pr(Yi=yi |Ei=e), i = 1, 2, . . . , N/m
are obtained from the channel via equations (1), (2) and (7).
Then:

Pr(Y = y, Ei = e, Si−1 = b(e), Si = t(e)) (24)

= Pr(Si−1 = b(e),Yi−1
1 = yi−1

1 ) (25)
· Pr(Yi=yi, Ei = e | Si−1 = b(e)) (26)

· Pr(YN
i+1 = yN

i+1 | Si = t(e)) (27)

Computing the probabilities (25), (26) and (27)
Let the input symbol Ui consists of m bits, that is: Ui =
b0, b2, . . . , bm−1, with bj ∈ {0, 1}. Denote each bit of Ui
by bi,j . We wish to compute the probabilities of each bit:
Pr(Ui,j = 0 | Y = y) and Pr(Ui,j = 1 | Y = y). Let
γi(e), λi,j(s

′, s, b), αi(s), βi(s), σi(s), δi,j(s
′, s) be defined

4
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Figure 5: Trellis stage reduction operation. The building block of the proposed algorithm is a module that takes the
edge probabilities of two stages of an original trellis and computes the edges of an equivalent single step trellis.

by:

γi(e) ≜ Pr(Ei = e,Yi = yi | Si−1 = b(e)) (28)

λi,j(s
′, s, b) ≜ Pr(Si = s, Ui,j = b | Si−1 = s′) (29)

αi(s) ≜ Pr(Si = s,Yi
1 = yi

1) (30)

βi(s) ≜ Pr(YN
i+1 = yN

i+1 | Si = s) (31)

σi(e) ≜ Pr(Ei = e,Y = y) (32)

σi,j(b) ≜ Pr(Ui,j = b,Y = y) (33)

δi,j(s
′, s) ≜ Pr(Si+j = s,Yi

j = yi
j | Si = s′) (34)

The probabilities Pr(Ui,j = 0 | Y = y) and Pr(Ui,j =
1 | Y = y) may be obtained from Pr(Ui,j = 0,Y = y) =
σi,j(0) and Pr(Ui,j = 1,Y = y) = σi,j(1) via Eq. (9), with:

Pr(Y=y) = Pr(Ui,j=0,Y=y) + Pr(Ui,j=1,Y=y)

= σi,j(0) + σi,j(1) . (35)

The values of σi,j(b), for b = 0, 1 and j =
1, 2, . . . , n, i = 1, 2, . . . , N/n may be obtained from
αi−1(b(e)), γi(e), βi(t(e)) as follows:

σi,j(b) = Pr(Y = y, Ui,j = b) (36)

=
∑

e:uj(e)=b

Pr(Y=y, Ei = e) (37)

=
∑

(s,e):uj(e)=b

Pr(Y=y, Ei=e, Si−1=s, Si=hs(e))

=
∑

(s,e):uj(e)=b

αi−1(b(e))γi(e)βi(t(e)) (38)

=
∑

e:uj(e)=b

σi(e) (39)

We have considered a set of edges that necessarily includes
repeated edge patterns. That is, if the number of inputs is 2k

and the number of states is 2ν , then there are 2ν2k edges to
consider. If the length of the edges is n < ν+k then there are
2ν+k−n edges with the same bit sequence. A different form
that unambiguously accounts for all edges.

The values of σi,j(b) may be computed using λi,j(s
′, s, b)

instead of γi(e) as follows:

σi,j(b) = Pr(Y = y,i,j = b) (40)

=
∑

u:uj=b

Pr(Y = y, Ui = u) (41)

=
∑
s′

∑
u:uj=b

Pr(Y = y, Ui = u, Si−1 = s′) (42)

=
∑
s′

∑
u:uj=b

Pr(Y=y, Ui=u, Si−1=s′, Si=hs′(u))

=
∑
s′

∑
s

Pr(Y = y, Ui,j = b, Si−1 = s′, Si = s)

=
∑
s′

∑
s

Pr(Si−1 = s′,Yi−1
1 = yi−1

1 ) (43)

· Pr(Yi=yi, Si=s | Si−1=s′) (44)

· Pr(YN
i+1=yN

i+1 | Si=s) (45)

=
∑
s′

∑
s

αi−1(s
′)λi,j(s

′, s, b)βi(s) (46)

Let the input that produces edge e as output be u(e) ≜
f−1
b(e)(e). Then, for each edge e and each i = 1, 2, . . . , N/n

the values of γi(e) are computed from the channel probabil-
ities Pr(Yi = yi | Ei = e) and the a-priori probabilities
Pr(Ui = u(e)) as follows:

γi(e) = Pr(Yi = yi, Ei = e | Si−1 = b(e)) (47)
= Pr(Yi = yi | Ei = e, Si−1 = b(e))

· Pr(Ei = e | Si−1 = b(e)) (48)
= Pr(Yi=yi | Ei=e) Pr(Ui=u(e) | Si−1=b(e))

= Pr(Yi = yi | Ei = e) Pr(Ui = u(e)) (49)

Note that two edges e and e′ may have the same value but
have different source state b(e) ̸= b(e′) or destination state
t(e) ̸= t(e′). In such case, we will still treat them as
different so that the source and destination states of each edge
are unique and the event {Si−1 = b(e)} is unambiguous.
However, the channel probabilities will be shared by these
edges.

Let γi(s′, u) ≜ γi(fs′(u)), then the probabilities λi,j(s, s
′, b)

may be computed from the values of γi(e) or γi(s
′, u) as

5



Figure 6: Binary tree representation of the process to compute the values of αi(s) for each i = 1, 2, . . . , N/m in a
logarithmic number of steps, represented by the tree depth. First the values of δi2j+1,i2j+1+2j (s

′, s) are obtained for
j = 1, 2, . . . , L, and each i = 1, 2, . . . , 2L−j and each s, s′ = 1, 2, . . . ,M and then used to compute all αi(s).

follows:

λi,j(s, s
′, b) =

∑
e:b(e)=s′,t(e)=s,uj(e)=b

γi(e) (50)

=
∑
s′

∑
u:uj=b,hs′ (u)=s

γi(fs′(u)) (51)

=
∑
s′

∑
u:uj=b,hs′ (u)=s

γi(s
′, u) (52)

The values of αi(s) and βi(s) are generally computed re-
cursively, where αi(s), s = 1, . . . ,M are used to obtain
αi+1(s) and βi+1(s), s = 1, . . . ,M are used to obtain βi(s),
via the Forward and Backwards algorithm [3]. In this paper,
we develop an algorithm to break the recursive dependencies,
which is explained in the next section. The standard method
to compute αi(s) and βi(s) for all i = 1, . . . , N and all
s = 1, . . . ,M follows:

αi(s) = Pr(Si = s,Yi
1 = yi

1) (53)

=
∑
s′

Pr(Si−1 = s′,Yi−1
1 = yi−1

1 , Si = s,Yi = yi)

=
∑
s′

Pr(Si−1 = s′,Yi−1
1 = yi−1

1 )

· Pr(Si=s,Yi=y | Yi−1
1 =yi−1

1 , Si−1=s′) ,

Note that Pr(Si−1 = s′,Yi−1
1 = yi−1

1 ) = αi−1(s
′) and

given Si−1 = s′ the events {Si=s,Yi=yi} are independent
of Yi−1

1 =yi−1
1 , then:

αi(s) =
∑
s′

αi−1(s
′) Pr(Si=s,Yi=y | Si−1=s′)

=
∑
s′

αi−1(s
′)δi,i+1(s

′, s) . (54)

The values of βi(s) are computed starting from βN/n(s)
backwards as follows:

βi−1(s) = Pr(YN
i = yN

i | Si−1 = s) (55)

= Pr(Yi = yi,Y
N
i+1 = yN

i+1 | Si−1 = s) (56)

=
∑
s′

Pr(Yi=yi, Si=s′,YN
i+1=yN

i+1 | Si−1=s)

=
∑
s′

Pr(Yi = yi, Si = s′ | Si−1 = s) (57)

· Pr(YN
i+1=yN

i+1 | Si=s′,Yi=yi, Si−1=s)

Note that Pr(Yi = yi, Si = s′ | Si−1 = s) = δi−1,i(s, s
′),

and the event {YN
i+1=yN

i+1} is conditionally independent of
{Yi=yi, Si−1=s} given {Si=s′}, then:

βi−1(s) =
∑
s′

Pr(Yi=yi, Ui=Si=s′ | Si−1=s) (58)

· Pr(YN
i+1 = yN

i+1 | Si = s′) (59)

=
∑

e:b(e)=s

γi(e)βi(t(e)) (60)

=
∑
s′

δi,i+1(s, s
′)βi(s

′) (61)

Equation (61) concludes the review of the standard method to
obtain the values of αi(s), βi(s) and γi(e) needed to compute
each σi,j(b). However, with the recursive equations (54)
and (61) the values of αi(s) need to be computed before the
values of αi+1(s) and the values of βi(s) need to be com-
puted before the values of βi−1(s), for each i = 1, 2, . . . , N
and each s = 1, 2, . . . ,M . In the next section, we break
this dependency to enable computing the values of αi(s) and
βi(s) for many values of i at the same time.
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Figure 7: Binary tree representation of the process to compute the values of βi(s) for each i = 1, 2, . . . , N/m in a
logarithmic number of steps, represented by the tree depth. The same values of δi2j+1,i2j+1+2j (s

′, s) used to compute
each αi(s) are used to compute each βi(s).

3. TRELLIS REDUCTION OPERATIONS
In this section, we describe a method to compute the values of
αi(s), βi(s) for many stages i simultaneously. The goal is to
break the dependency of αi+1(s) on αi(s) and of βi−i(s) on
βi(s) and enable most of the speedup that parallel processing
hardware would provide if these values could be computed
independently.

The proposed method consists of a sequence of trellis reduc-
tion steps. These steps are shown in Fig. 5. At each step
values of δi,i+1(s

′, s) of a “reduced” trellis, that skips every
other stage, are computed from pairs of these values of an
original trellis. First the values of δi,i+1(s

′, s) are computed
as follows:

δi,i+1(s, s
′) =

∑
e:b(e)=s′,t(e)=s

Pr(Ei=e,Yi=yi | Si = b(e))

=
∑

e:b(e)=s′,t(e)=s

γi(e) (62)

= λi,j(s, s
′, 0) + λi,j(s, s

′, 1) , (63)

where j can be any single value from 0, 1, . . . , k − 1. Given
the values of δi,i+1(s

′, s) for all i and all s of an original
trellis, the values of δj,j+2(s

′, s) of a new trellis that joins
every two stages of the original trellis may be obtained by the

following recursion:

δi,i+2(s
′, s) = Pr(Si+2=s,Yi+2

i =yi+2
i | Si=s′) (64)

=Pr(Si+2=s,Yi+1
i =yi+1

i ,Yi+2
i+1=yi+2

i+1 |Si=s′)

=
∑
r

Pr(Si+1=r,Yi+1
i =yi+1

i | Si=s′) (65)

· Pr(Si+1=s,Yi+2
i+1=yi+2

i+1 |Si+1=r,Yi+2
i+1, Si)

=
∑
r

Pr(Si+2=s,Yi+2
i+1=yi+2

i+1 | Si+1=r) (66)

· Pr(Si+1=r,Yi+1
i =yi+1

i | Si=s′) (67)

=
∑
r

δi+1,i+2(r, s)δi,i+1(s
′, r) (68)

Equation (68) provides a method to compute the δi,i+2(s, s
′)

given the values of deltas δi,i+1(s, s
′) and δi+1,i+2(s, s

′)
of an original trellis. The initial values of δi,i+1(s, s

′) are
obtained from Eq. (62) and Eq. (68). Then the values of
δi,i+2(s, s

′) are obtained using Eq. (68), which become the
values of δi,i+1(s, s

′) on a new trellis with half the stages.
To avoid describing the trellis we are operating on, we will
define by δi,i+2(s

′, s) the values of δi,i+1(s
′, s) on the new

trellis obtained after the first trellis reduction step, then define
δi,i+4(s, s

′) the values of the new trellis after the second
reduction step, and so on. Note that the values of i must
be a multiple of number stages of the original trellis that
are combined in the most recent “new trellis,” and must be
a power of 2.

For ease of notation suppose that n = 1 and the number of
trellis stages is a power of 2 given by N = 2L+1 for some L.
The method to construct all values of δi,j(s′, s) of the form
δ2li,2li+2l(s

′, s) is illustrated in the trees at the top of Fig. 6
and Fig. 7, and is summarized in the following equations:
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Figure 8: CWER comparison for two implementations
with 15120 and 16384 stages. CPU version features the
original BCJR algorithm with no parallelization. GPU
uses a trellis reduction algorithm with the implementation
described in Section 4. Kb = 0 dB, 4 PPM

The steps to construct such δi,j(r, s
′) where i = 2l and j =

2l−1(i+ 1) are as follows:

δ2i,2(i+1)(s
′, s) =

∑
r

δ2i,2i+1(s
′, r)δ2i+1,2i+2(r, s) (69)

δ22i,22(i+1)(s
′, s) =

∑
r

δ22i,22i+2(s
′, r)δ22i+2,22(i+1)(r, s)

δ23i,23(i+1)(s
′, s) =

∑
r

δ23i,23i+22(s
′, r)

· δ23i+22,23(i+1)(r, s) (70)
...

...

δ2Li,2L(i+1)(s
′, s)=

∑
r

δ2Li,2Li+2L−1(s′, r)

· δ2Li+2L−1,2L(i+1)(r, s) (71)

The αi(s) and βi(s), i = 1, 2, . . . , 2L+1, s = 1, 2, . . . ,M
may also be computed are also computed in a logarithmic
number of steps, using the values of δ2li,2li+2l(s

′, s), l =
0, 1, . . . , L, once the values of δ0,2L(s′, s) and δ2L,2L+1(s′, s)
are obtained. This process is illustrated in the bottom trees
of Fig. 6 and Fig. 7. To start set α2i(s) = δ2i,0(s, 0),
βN−2i(s) = δN−2i,0(s, 0), then, for each j = 0, 1, . . . , L−1

and each i = 0, 1, . . . , 2L−j compute:

α2j+1i+2j (s) =
∑
r

α2j+1i(r)δ2j+1i,2j+1i+2j (s, r) (72)

β2j+1i−2j (s) =
∑
r

δi2j−2j ,i2j+1(s, r)βi2j+1(r) (73)

With Eq. (72) and Eq. (73) the values of α2j+1−2j (s) and
βi2j+1−2j (s) for fixed j can be computed in parallel, starting
from j = L,L − 1, . . . , 1, where L = log2(N). This
method allows to compute the βi(s) and βi(s) from which
future values depend in a logarithmic number of steps given
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Figure 9: Average iterations comparison for two imple-
mentations with 15120 and 16384 stages. The maximum
iteration number is set to 32. CPU version features the
original BCJR algorithm with no parallelization. GPU
uses a trellis reduction algorithm with the implementation
described in Section 4. Kb = 0 dB, 4 PPM

by L = log2(N). The same holds for the δi2j ,(i+1)2j (s
′, s)

values.

In the case where the code length is not a power of 2, like the
case of the SCPPM code with standard length N = 15120,
two sets of δ2li,2li+2l(s

′, s) may need to be computed, one
to compute all αi(s) and one to compute all βi(s). The set
to compute the values of αi(s) starts at the first stage, with
i = 0, 1, . . . , 2L−j for fixed j, and the set to compute the
values of βi(s) starts at the last stage N . That is, computing
instead δN−2li,N−2li+2l(s

′, s) for i = 0, 1, . . . , 2L−j for
fixed j. However, if N is multiple of a power of 2, say 2l

with l < L, then majority of the values of δ2ji,2ji+2j (s
′, s)

may be re-used, that is, all for which j ≤ l.

4. GPU IMPLEMENTATION VIA CUDA
The Graphics Processing Unit is a massively parallel comput-
ing device with thread numbers rising to thousands. Thread is
a single unit of execution that completes instructions sequen-
tially. While threads are not completely independent, separate
cores use the same instructions making development easier.
We choose CUDA as it allows control of individual threads
in contrast to other programming platforms supporting GPU
such as PyTorch. Synchronization may be performed even on
a subset of threads and memory is manually managed. More-
over, using CUDA’s finer memory management interface we
utilized data locality in trellis reduction operations.

GPU groups threads into Streaming Multiprocessors (SMs)
that can be used to process relevant tasks using the same
data. Additionally, synchronization within an SM is faster,
compared to synchronization of all threads on a GPU. While
”global” memory is accessible from all threads, each SM
contains an additional faster ”shared” memory accessible
only from threads within an SM. Another memory level,
”local”, is only available within a thread and is the fastest.
The whole workload is divided among available SMs while
only the most accessed data is stored at local and shared
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Figure 10: Runtime of GPU and CPU decoders on 1000
codewords with 10 iterations each. Only decoder runtime
is measured (Linear scale runtime).

levels.

A naive implementation of the trellis reduction algorithm, as
described in Algorithm 1, stores all data in global memory
and assigns each thread a stage to process. As global memory
is significantly larger than the size of all required variables,
this approach is easily scaled up for larger number of stages,
but runtime is limited by the memory bandwidth.

The memory hierarchy suggests further optimizations. Large
arrays with rare accesses including the αi(s) and βi(s) values
are located in global memory, while the γi(e) values could
remain local to the thread as the values are unused by other
threads. On the other hand, the values of δi,j(s′, s) are both
compute-intensive and used by multiple threads. We place it
in shared memory by exploiting the tree structure of trellis.
The upper part of trellis as seen in Fig. 6 is divided into
blocks equal to the desired amount of SMs. Each block
uses only its own shared memory. This approach not only
improves memory access time but also removes the need for
synchronization between SMs during trellis processing, as
separate branches of the tree can be computed independently.

Shared memory usage acts as the main constraint for the im-
plementation on modern Nvidia GPU architectures. The data
structure containing the values of δi,j(s′, s) is proportional in
size to the code length and is divided between SMs. Given
a GPU with enough SMs, any code length can be decoded
using our implementation.

5. SIMULATION RESULTS
To verify the functionality of the proposed GPU implemen-
tation we compare GPU and baseline CPU implementations
in terms of codeword error rate (CWER) performance. For
the GPU implementation, we used 32 SMs with 256 threads
each. CWER is measured by running each simulation until
100 codeword errors are observed (except for the last point
in the GPU with N = 214 stages and N = 15120, where
the number of errors is about 50). We run the original BCJR
algorithm on the CPU and the trellis reduction algorithm on
the GPU using CUDA as described in Section 4. Performance
results in terms of codeword error rate vs. average photons
per pulsed slots Ks (dB) are presented in Fig. 8. The data
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Figure 11: Runtime of GPU and CPU decoders on 1000
codewords with 10 iterations each. Only decoder runtime
is measured (Log scale runtime).

was obtained with Kb = 0 dB and with 4 PPM. The curves
are essentially identical, verifying the equivalent functioning
of CPU and GPU decoders. Using this simulation framework,
Fig. 9 shows the average number of iterations required
to decode a single codeword. The maximum number of
iterations permitted is 32. As the noise is decreases, the
expected number of iterations also decreases. The curves
further confirm that the CPU and GPU implementations
require the same number of iterations to achieve decoding.
Thus, the runtime of a given number of iterations can be used
to estimate runtime for a given Ks value using either Fig. 10
or Fig. 11.

To evaluate the runtime benefits of the GPU implementation
over the CPU implementation, we decode 1000 codewords
with 10 iterations required to decode a single codeword on
average. In total 10000 iterations are performed to obtain a
single data point. Results are gathered for GPU and CPU
implementations and shown in Fig. 10 and Fig. 11. These
graphs show the same data; one uses a linear scale for the
Y-axis and the other uses a log scale. We used powers of 2
for the values of N to demonstrate how runtime increases as
a function of N for these two implementations. Both figures
show the significant decrease in runtime achieved by the GPU
implementation as compared with the CPU implementation.
More stages allow for more parallelism so that the GPU
runtime remains relatively constant even as N increases as
long as there are sufficient hardware resources. The exact
difference can be seen on the log scale graph in Fig. 11.
Even for 28 = 256 stages, GPU provides 38% speed-up. The
benefit rises to 15 times runtime reduction with 214 = 16384
stages.

6. CONCLUSIONS
This work shows an efficient method to execute in parallel
many of the computations of the BCJR algorithm that are gen-
erally computed sequentially. Provided sufficient hardware
resource, a GPU can effectively use the benefits of the trellis
reduction algorithm to significantly reduce the decoding time
of each codeword. The GPU implementation decode also of-
fers greater portability than other hardware implementations
like an FPGA. The runtime of the GPU implementation is
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improved up to an order of magnitude compared to CPU
when the blocklength reaches 214-bits.

Future Work

The current version of the algorithm relies on normalization
of the values to maintain numerical stability. The log domain
version of the algorithm has better stability properties, but
the latest implementation does not attain the run-time per-
formance of the original version. In the future, we plan to
explore optimizations of the log domain implementation and
better memory management to improve the run-time perfor-
mance. Further improvement in the run-time performance
may be attained by an integer version of the log domain
algorithm, aided by look-up tables.
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