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Abstract—Convolutional codes are widely used in many appli-
cations. The encoders can be implemented with a simple circuit.
Decoding is often accomplished by the Viterbi algorithm or the
maximum a-posteriori decoder of Bahl et al. These algorithms
are sequential in nature, requiring a decoding time proportional
to the message length. For low latency applications this this
latency might be problematic. This paper introduces a low latency
decoder for tail-biting convolutional codes TBCCs that processes
multiple trellis stages in parallel. The new decoder is designed
for hardware with parallel processing capabilities. The overall
decoding latency is proportional to the log of the message length.
The new decoding architecture is modified into a list decoder, and
the list decoding performance can be enhanced by exploiting
linearity to expand the search space. Certain modifications to
standard TBCCs are supported by the new architecture and
improve frame error rate performance.

Index Terms—Channel codes, convolutional codes, maximum
likelihood decoder, list decoding.

I. INTRODUCTION

We present a low latency Trellis decoder architecture for
tail-biting convolutional codes (TBCC) that works well on
parallel processing hardware like graphic processing units
(GPU’s). The design exploits the structure of trellis decoders
to maximize the number of simultaneous operations.

Convolutional codes are typically decoded via the Viterbi
algorithm [1], [2] that minimizes the frame error rate (FER),
or the algorithm introduced by Bahl, Cocke, Jelinek, and Raviv
[3] (BCJR), that minimizes the symbol error rate. Low delay
requirements have been a limiting factor for Viterbi decoders.
Several works have achieved a level of parallelism to address
this problem. Fettweis and Meyr [4] combined every P stages
of an K-stage trellis using a smaller trellis per each of the M
states, and achieved a linear speedup of P . Mohammadidoost
and Hashemi [5] optimized the memory access for both the
surviving path and the trace-back path on a GPU. Peng et
al. [6] introduce a method to achieve a high throughput also
using GPU. Their method is flexible enough for application
on general block codes and is shown to attain a throughput of
up to 1.8 Gb/s on convolutional codes. Zhihui et al. [7] and
Hanif et al. [8] show that part of the computations can be done
independently. In [7] a sequence is split into smaller segments
and the processing of each segment is further split into an
independent part and a dependent part. A matrix representation
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of the process is used in [8] that allows a GPU to exploit the
independence of some operations. Seshadri and Sundberg [9]
compare convolutional codes with LDPC coders under delay
constraints and show that convolutional codes outperform
LDPC in the more restrictive regime. In [10] Rachigner et
al. implement a List Viterbi Decoder with parallel processing
to increase throughput. An FPGA version of a Viterbi decoder
is also provided by Ben Asher et al. in [11], with parallelism
that can be tuned via a parameter P . The method provides
a linear speedup similar to that in [4], with a decoding time
proportional to N

P + P . List decoding has also been widely
studied. Elias [12] developed an (n, e, L) list decoder that
corrects all sets of e or fewer errors. Soong and Huang [13]
proposed a fast trellis search method to obtain a list of the best
L hypotheses in speech recognition. Seshadri and Sundberg [9]
also developed a list Viterbi decoder capable to find the best
L decoding estimates and combined it with an error-detecting
code to obtain significant performance improvements. Many
works have studied methods to reduce the complexity of list
decoders, and some can be found in [14]–[18].

A. Contributions

We implement very low latency Viterbi decoder for Tail
biting convolutional codes. Our decoder leverages the structure
of the code trellis to performs operations on the entire length
of the trellis simultaneously. The trellis length is reduced by
half at each step until a single stage trellis is obtained. The
number of steps required is proportional to the log2 of the
original trellis size, resulting in a significant decoding speed-
up. The cost of the lower delay is a significant increase in the
number of operations, which sets a constraint on the codes that
can be implemented with a given hardware. Part of the cost in
additional operations could be offset by the ease of managing
simultaneous operations that allows a more efficient use of
vector processors and GPUs. The main contributions of this
work are as follows:

• This work demonstrates a low delay trellis decoder im-
plementation for TBCC’s codes, suitable for GPU’s or
other parallel processing systems.

• We propose two list decoder versions of the parallel trellis
stage decoder that produces a fixed size list with no
additional delay for the first version and a significant
performance increase with a small delay penalty for the
second version. The improved performance of the list
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Fig. 1. System model describing a convolutional code, the channel and a
trellis based decoder.

decoders could allow to achieve a target FER with a
simpler code and low delay.

• We also propose the use of a block code different from
a convolutional code to further improve the performance
without changing the parallel trellis stage decoder.

B. Organization

The rest of the paper proceeds as follows: in Sec. II we
discuss the encoder, channel and decoder model. In Sec. III
we introduce our low latency parallel trellis stage decoder and
two list decoder versions with similar latency, using the same
architecture. In Sec. IV we show simulation results of our
decoders and in Sec. V we conclude the paper.

II. SYSTEM MODEL

The model consists of an encoder that receives a K-symbols
information sequence U and transmits an N -symbols sequence
X; a noisy channel that adds a noise component Wi to each
symbol Xi to produce a channel sequence Y, where Yi =
Xi + Wi, i = 0, 1, . . . , N − 1; and a decoder that receives
the channel sequence Y and produces an estimate Û of the
information sequence, as describes in Fig. 1. We restrict our
focus to tail-biting convolutional codes. The encoder for these
codes are fully described by a digital circuit that implement
a finite-state machine with k inputs, n outputs, ν memory
elements and M states. The number of states M is given by the
number of possible values in the circuit’s memory. To obtain
k inputs, the information sequence U = U0, U1, . . . , UK−1 is
split into k streams and n-output streams are produced. The
code rate is given by k/n, the number of input streams divided
by the number of output streams. In the rest of the paper we
only consider binary codes with input and output symbols in
the binary field GF (2), where Ui ∈ {0, 1} and M = 2ν

and with a single input stream, k = 1. We use binary phase
shift keying modulation (BPSK) of the code output, that is
Xi ∈ {−1, 1} for X = X1, X2, . . . XN , where N = K n

k . The
channel used in our simulations is the additive white Gaussian
noise (AWGN) channel, where Wi ∼ N (0, σ2) for some noise
variance σ2 computed from the signal to noise ratio (SNR).

A. Decoding Latency Problem

The problem we address in this paper is to design a
maximum likelihood (ML) decoder for TBCC with decoding
latency of order O(log(K)), where K is the length of the
information sequence U. By latency we mean the time taken
by the decoder to produce an estimate Û from the time when
the full received sequence Y becomes available, which we
denote by T . Let fy|x(Y | X) be the likelihood function of
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Fig. 2. Construction of a 2-step, fully connected, trellis stage i with four
states, from two initial 1-step, not fully-connected, trellis stages 2i, 2i+ 1.

Y, the p.d.f. (or p.m.f.) of Y given an input sequence X. The
problem can be expressed by:

find Û = argmax
x

fy|x(Y | x) (1)

subject to T ∝ O(log(K)) (2)

III. THE PARALLEL TRELLIS STAGE DECODER (PTS)

We implement a trellis based decoder for convolutional
codes with a high level of parallelism. Fettweis and Meyer [4]
and Ben Asher et al. pre-processed M stage trellis segments
first, and used the Viterbi Algorithm on a new trellis, called
an M -step trellis in [4], rather than on the original K-stage
trellis, which was called a 1-step trellis in [4]. We borrow the
notation of [4] to define a 2m-step survivor trellis which is an
M -step trellis as defined in [4], with no parallel branches and
where M = 2m. Our design consists of recursively reducing
a pair of 2m-step survivor trellis stages into a single stage
of a 2m+1-step trellis. The latency in [4] and [11], when the
next M -step stage is constructed in advance, is a function of
N/M +M , which is linear in N for fixed M . Furthermore,
the pre-processing method to obtain an M -state trellis segment
in [4] takes linear time, and the method in [11], grows in
complexity exponentially with M , via O(2M ). In both cases
the largest M that can be effectively used is limited to small
values. Note that a ν-step trellis becomes fully connected when
the 1-step trellis is binary, see Fig. 2, where 2ν is the number
of states. Furthermore, there will be 2ν paths connecting every
start and end state of a 1-step trellis segment 2ν stages long,
see Fig. 3. Instead of the linear speedup in [4], [11], we target
a logarithmic decoding time, with a complexity equivalent to
that in [11] when M = ν.

A. Parallel Trellis Stages Decoder Architecture

Our parallel decoder attains logarithmic decoding time by
recursively combining every two stages of a 2m-step survivor
trellis into a 2m+1 step survivor trellis until a single stage
remains. The speedup derives from the ability to construct all
the stages of the 2m+1-step trellis simultaneously. The starting
trellis could be a 1-step trellis, as shown in Fig. 2, with h = 1,
or could be an h-step trellis for some h ≤ 2ν. We found
convenient to use from ν to ν+3 stages wide initial segments
. For ease of notation, we will call a h2m-step survivor trellis,
that combines h2m stages of a 1-step trellis, just a 2m-step
trellis, even if h > 1, and let L denote the number log2 of the
number of stages in the initial h-step trellis, so that K = h2L.
The building block of our parallel decoder is a module reduces
two 2m-step survivor trellis stages into a single stage of a
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Fig. 3. Construction of a 2m+1-step, fully connected, survivor trellis stage
i from two 2m-step, fully connected, survivor trellis stages 2i, 2i+ 1.

2m+1-step survivor trellis. At each step m = 2, 3, . . . , L the
decoder uses 2L−m of these modules in parallel, which we
describe next.

The trellis reduction module consists of two fundamental
operations. The first is a trellis expansion, that obtains all the
paths that connect every source state s of the first 2m-step
survivor trellis to every destination state d of the second 2m-
step survivor trellis through every intermediate state r, where
s, r, d = 0, 1, . . . , 2ν−1. The second fundamental operation is
to select, for every s, d pair, the single best intermediate state
r that defines path connecting s and d. A stage i of a 2m-step
trellis is fully defined by the edges connecting each source
state s to each destinations state d, (s, d) ∈ {0, 1, . . . , 2ν−1}2,
see Fig. 3. The module reduces stages 2i and 2i + 1 of of a
2m-step survivor trellis into stage i of a 2m+1-step survivor
trellis, see left of Fig. 3. Let the negative log domain metric
of the branches from source state s to destination state d that
define stage i of a 2m-step survivor trellis be δs,di,m, and let

δ′s,r,di,m+1 ≜ δs,r2i,m + δr,d2i+1,m . (3)

The first fundamental operation is to obtain every δ′s,r,di,m+1, for
each i = 0, 1, . . . , 2L−m−1−1, and every s, d = 0, 1, . . . , 2ν−
1. If the 2m-step survivor trellis is fully connected, then every
state r ∈ {0, 1, . . . , 2ν − 1} will be a valid intermediate state,
and the number of branches with metric δ′s,r,di,m+1 at each stage
i will be 23ν . Otherwise, r could be from a smaller subset,
like the trellis of Fig. 2, where a single intermediate state r of
the 1-step trellis connects every s, d of the 2-step trellis. In the
second operation, the branch metrics δs,di,m+1 of the 2m+1-step
survivor trellis are selected from the metrics δ′s,r,di,m+1’s, via:

δs,di,m+1 ≜ min
r∈{0,1,...,2ν−1}

{δ′s,r,di,m+1} . (4)

This method allows to cap the number of edges of every 2m-
step survivor trellis stage at 23ν edges, which is reached when
the trellis becomes fully connected see right of Fig. 2 and both
ends of Fig. 3.

The final, single stage, 2L-step survivor trellis is constructed
from a 2L−1-step survivor trellis with only two stages. The
tail-biting constraint of a TBCC demands that the best path
starts and ends at the same state. Thus, for the 2L-step trellis
from stage 0 to stage L we need not construct every δ′s,r,di,m+1

and δs,di,m+1. Only the ones where s = d are needed, that
is, every δ′s,r,si,m+1 and δs,si,m+1, as shown in Fig. 4, since the
others define invalid paths. At this point there are 2ν valid
tail biting L-long edges from each source and destination pair
(s, s) , s = 0, 1, . . . , 2ν − 1. At this point, it only remains
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Fig. 4. Tail-bit step (last step) that constructs a single 2L-step, not fully-
connected, survivor trellis, from the last two 2L−1-step, fully-connected,
survivor trellis stages.

to recover the estimate Û. Note that an estimate can be con-
structed from any sequence of connected states s0, s1, . . . , s2L
for each base trellis stage, the edges connecting each si to
si+1, i = 0, 1, . . . , 2L and corresponding h-symbol inputs.

To recover the estimate Û defined in (1), we need the unique
sequence of states ŝ0, ŝ1, . . . , ŝ2L , with ŝ2L = ŝ0 , that define
the tail-biting path with the best metric. This metric will be
δŝ0,ŝ0L , where ŝ0 is the state s that minimizes, δs,sL given by:

ŝ0 ≜ argmin
s∈{0,1,...,2ν−1}

{δs,s0,L} . (5)

The rest of the state ŝ1, ŝ2, . . . , ŝ2L−1 obtained recursively,
with each ŝ(2i+1)2m−1 recovered from ŝi2m and ŝ(i+1)2m , for
m = L,L− 1, . . . , 1 and i = 0, 1, . . . , 2L−m−1 via:

ŝ(2i+1)2m−1 ≜ argmin{δ′s,r,di,m+1
r∈{0,1,...,2ν−1}

: s= ŝi2m , d= ŝ(i+1)2m} . (6)

These r values are the argument selected in (4), and could just
be looked-up using the “keys” s = ŝi2m and d = ŝ(i+1)2m , out
of the 2ν × 2ν saved in (4). Lastly, if the edges of the initial
h-step survivor trellis were selected from parallel edges, then
the arguments and inputs to those edges are also needed to
reconstruct Û. Otherwise, the input that define a transition
from each state ŝi to each state ŝi+1 are unique.

We claim that our parallel trellis stage decoder is a max-
imum likelihood (ML) decoder. An ML trellis decoder is
guaranteed to produce the codeword with the best (lowest)
square metric, defined in (1). To prove our claim it suffices to
show that our decoder also produces this metric. Note that the
tail-biting constraint demands that the ML path be a valid path
that starts and end at the same state. The parallel trellis stage
decoder first finds metrics δs,s0,L for each valid starting state s,
and then selects the best out of s = 0, 1, . . . , 2ν . Thus, we
only need to show that every δs,s0,L is the best (lowest) possible
metric for a path from s0 = s to s2L = s. The proof can be
argued with a contradiction.

Proof: The Parallel Trellis State is an ML Decoder:
Suppose that there is some δ∗s,s0,L < δs,s0,L. This δ∗s,s0,L

defines a sequence of δ∗s,di,m for m = 0, 1, . . . , L− 1 and
i = 0, 1, . . . , 2L−m − 1. Let m∗ be the minimum such m:

m∗ ≜ min
m

{δ∗s,di,m < δs,di,m : s, d ∈ {0, 1, . . . , 2ν − 1}2} (7)

m < m∗ =⇒ δ∗s,di,m = δs,di,m . (8)

If such δ∗s,s0,L < δs,s0,L exists, then m∗ exists, and m∗ ≤ L, since
L is a candidate. Since each δs,di,0 of the starting h-step trellis



is unique, then and m∗ cannot be 0, thus m∗ > 0. However, if
δ∗s,di,m∗ < δs,di,m∗ , then, there is a pair δ∗s,r2i,m∗−1 and δ∗r,d2i+1,m∗−1

where either δ∗s,r2i,m∗−1 < δs,r2i,m∗−1 or δ∗r,d2i,m∗−1 < δr,d2i+1,m∗−1,
which contradicts (8). The proof is complete.

B. Decoding latency

The latency of our algorithm depends on the code param-
eters ν, L and h, and the hardware available. We proceed
to describe the lowest possible decoding delay. Suppose that
2L×23ν computing nodes are available and broadcasting data
across nodes does not cause delay. At each step m+1 each of
the 2L−m−1 stages could be processed simultaneously. For
each stage i, the decoder computes 22ν values of δs,di,m+1,
(s, d) ∈ {0, 1, . . . , 2ν−1}2, each selected from 2ν values of
δ′s,r,di,m+1 that could be computed simultaneously. Finding the
minimum δ′s,r,di,m+1, see equation (4), could take as low as ν time
units using binary search, which would require significantly
more hardware. In a more realistic scenario, constructing each
the 2m+1-step survivor trellis would take a time proportional
to ν. We also need to factor the time required to initialize the
h-step trellis with 2L stages, which entails computing the log
domain likelihood metrics δs,di,0 . There are a total of 2L × 22ν

such values, that for the AWGN channel, are sum of the square
differences between the h modulated output bits of each edge
and the h received symbols Yih, Yih+1, . . . , Y(i+1)h−1. With
the same number of processing nodes this could take a time
proportional to h time units. Reconstructing the estimate Û
could take as little as L time units and is a much simpler
process. If h = ν, a very convenient choice, the final decoding
time T could be a linear function of νL, in time units, that is,
of order O(νL). Since K = ν×2L, we could also express the
order of T by O(ν(log2(K)−log2(ν)). For fixed ν the latency
grows with the log of the block length, while the required
hardware would only increase linearly.

C. Complexity

The lower decoding latency of the parallel trellis stage
decoder comes at the price of increase computational com-
plexity. The operations are equivalent to running the Viterbi
algorithm once for every possible starting state. However, it
also allows 2ν parallel branches to form before comparing
and selecting a survivor, instead of the usual ν pairs for
every ν stages of a 1-step trellis. To make an estimate of
the number of operations, suppose h = ν and K = ν2L.
When m = 1 we need to compute all δs,di,2 . First we use
2L−1 × 23ν additions to obtain each δ′s,r,di,1 , see (3), then we
need about as many comparisons to select all δs,di,m+1, each out
of 2ν metrics δ′s,r,di,1 , see (4). The number of stages reduces
to half at every step m = 2, 3, . . . , L − 1, and the 2L-step
trellis constructed at step L requires fewer operations, but
this does not significant impact the computational complexity.
Thus, the computational complexity is of order 2L × 23ν ,
or O(Kν × 23ν), since K = ν × 2l. In contrast, a forward
pass of the standard Viterbi algorithm executes two additions
and one comparison per state at each stage, and achieves a

computational complexity of order O(ν2L×2ν) or O(K×2ν).
The Viterbi algorithm, however, does not produce the ML
estimate in a single pass. To guarantee ML performance it
would need to run 2ν times, once per starting state. In practice,
sub-optimal methods like the wrap-around Viterbi algorithm
(WAVA) [19] are used. WAVA requires running the Viterbi
algorithm more than once, and approaching ML performance
usually takes about four iterations. The complexity of WAVA is
also of order O(ν2l×2ν), provided the number of iterations is
constant for any ν, but this might not hold for larger ν values.
The complexity of our parallel trellis stage decoder is higher
by a factor of 22ν

ν which increases with ν. The point where
the complexities are similar is at about ν = 2. However, for
the increased complexity, we get a very low delay, parallel
processing, and ML performance.

D. Modification of the TBCCs

The parallel trellis stage decoder could support some mod-
ifications to the TBCC code to improve performance further.
Suppose that we select a starting trellis segment size h greater
than ν. This results in a starting h-step trellis with 2h−ν

parallel edges, each h-binary stages long. We could divert from
a convolutional code, and select the entries of the edges to
increase the code distance spectrum. The edge lengths could
be h = ν+1, ν+2, . . . , 2ν. Note that at h = 2ν there will be
2ν parallel edges for each state pair in an initial h-step trellis,
after which the complexity order starts increasing above that
of the trellis reduction steps. Note that the decoder architecture
depends on the length of the edges, the number 2L of initial
stages, and the number of states 2ν , but not on the entries of
the edges. Thus, a larger value of h allows us the freedom to
implement any block code with the same h-step trellis shape,
and and possibly improve the frame error rate performance at
no additional complexity or latency cost.

We implemented the modification procedure to construct a
decoder for a rate 1/2, ν = 3 TBCC code with input length
40, with h = ν + 2 = 5, so that the initial trellis was a 5-
step trellis. Then, we modified the 10-symbol edges to obtain a
better performing block code. The performance of the original
TBCC and the modified block code are shown in Fig. 5.

E. Parallel Decoding of Trellis Stages for List Decoding

We now introduce two list decoder versions of our parallel
Viterbi algorithm. For both approaches, the encoder first adds
m redundancy bits to the K-long information sequence, using
a cyclic redundancy check (CRC) code, and then encodes the
K+m sequence using a tail-biting convolutional code. The m
redundancy bits allow the list decoder to check if an estimate
sequence Û is a valid codeword of the CRC code. When
the check fails, the estimate is rejected, and the list decoder
searches for a new estimate. The additional m redundancy bits
reduce the code rate by a a factor of (K −m)/K. The goal
is that the error detection capabilities offset the rate loss for
a better overall performance, measure by the frame error rate
FER Vs. the ratio of energy per information bit and noise
energy EbN0.
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Fig. 5. FER vs EsN0(dB) performance our parallel decoder designed for
three different TBCC codes with 3, 5 and 6 memory elements ν and two
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is an 8 state ν = 3 TBCC code with polynomials {13, 17} and K = 40.
The green dotted line with diamonds is a block code that modify the ν = 3
TBCC code and is decoded with the same decoder. The blue line with x is
and orange line with triangles are TBCC code with K = 64 and ν = 5, 6,
the polynomials are {43, 75} for ν = 5 and {133, 171} for ν = 6.

We know describe the first a parallel trellis stage list decoder
that exhibits the same latency as the original decoder. Note
that the parallel trellis stage decoder is already a list decoder,
in the sense that it produces 2ν estimate per at each of the
2ν valid starting (and ending) state pairs, for a total of 22ν

estimates, see right side of Fig. 4. However, even the second
best path is not guaranteed to be among them. Our first list
decoder produces even more estimates and guarantee that
at least the second most likely path is included in the list.
Remember that the number trellis stages reduces by half for
every m+1 = 1, 2, . . . , L. When selecting the survivor δs,di,m+1

out of all δ′s,r,di,m+1, (4), we could also keep the second best
path. The set of second best paths defines a second 2m+1-step
trellis with 2L−m−1 stages, for a combined total of 2L−m

stages. Then, at step m + 2 we could construct four 2m+2-
step trellises, each 2L−m−2 stages for a total of 2L−m stages.
At each step the number of trellises doubles and the size of
each is reduce by half. Thus the number of operations at each
step stays constant, at the level of the first step m = 1. The list
decoder produces a total 2L × 22ν list estimates, all of which
are produced at the same time, and with the same latency as
the basic version of the parallel trellis stage decoder. However,
only the best and second best paths are guaranteed to among
them, when h ≤ ν. The third and subsequent best paths are
not guaranteed, but can only be excluded if the first three most
likely paths start and end at the same state, and even then, the
third one might still be included.

The second list decoder version extends the first approach
by searching the neighboring tail-biting codewords of the
estimates produced by the first list decoder. For this decoder,
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Fig. 6. FER vs EsN0 (dB) performance of the two list decoders we
implemented and three reference curves. The top blue dotted line is the
performance of the code with 72 bit information bits and an 8 bit CRC
that is decoded without list decoding. The CRC can only be used for error
detection. The blue solid line with circles is the performance of of the code in
the previous line, but without the rare loss from the CRC bits; the orange solid
line with diamonds is for our parallel list decoder that produces a list of of
2l estimates per state; the solid magenta line with squares is the performance
of our second list decoder that searches a neighborhood around the estimates
generated by the previous list. For reference, we include the performance
of a serial list Viterbi decoder with maximum list size L = 16384, solid
green line. For all curves the code is a CRC aided TBCC code with ν = 5
polynomials {53, 75} octal, K = 72, and 8-bit CRC 0x1AB.

we first construct a list of tail-biting (TB) codewords with
monotonically increasing Hamming weights. This can be done
using the sieve method described in [20]. After getting all
the estimates produced by the first list decoder, each of the
estimates is then added to the neighboring TB codewords
through XOR operations, which increases the number of list
estimates by a factor equal to the number of TB codewords
in the explored neighborhood. Since the XOR operation is
fast, the overall decoding latency will be very similar to that
of the first parallel trellis stage list decoder. The additional
codewords explored using linearity provide an improvement
in the decoding performance, as shown in Fig. 6.

IV. SIMULATION RESULTS

We implemented several versions of the parallel trellis stage
decoder as neural network models using PyTorch to leverage
the parallel processing capabilities. To build the trellis, we
generated the input and modulated output of all the edges
in the trellis and saved them in separate data structures.
To compute the log domain square differences metrics for
each edge, we first subtract the modulated edge outputs from
the receive signal, then square the difference and sum the
components of each edge. From there the process consists of
constructing 2m+1-step survivor trellis segments out of every
pair of 2m-step survivor trellises, as depicted in Fig. 3. We
also implemented both list decoder versions for a ν = 5 rate
1/2 TBCC with h = ν and L = 4. For the linearity step of the



second list decoder we used 1024 TB neighboring codewords.
The total number of estimates produced by this list decoder is
given by 2L × 2ν × 1024 = 219, or about 500K.

Simulation results for the decoders we implemented are
provide. The performance of the original parallel trellis stage
decoder is shown in Fig. 5 and for the parallel trellis stage list
decoders in Fig. 6. The graphs show frame error rate (FER)
vs. ratio of bit energy and noise energy in dB, EbN0. In Fig.
5 we show the performance of three rate 1/2 TBCCs, one
with memory ν = 3, h = 5, and message size K = 40 and
two with ν = 5, 6, h = 8 and message size K = 64. These
decoders used 8 stages of an h-step trellises, with initial edges
length h = K/8. For the 8 state TBCC with ν = 3 we also
designed a modified code to obtain the performance of the
dotted green line with diamonds. This performance is better
than that of the original TBCC code, and the decoder is the
same.

Performance plots for the low latency list decoders we
proposed are shown in Fig. 6. We used a ν = 5 TBCC
with polynomials {53, 75} concatenated with an 8-bit CRC.
The trellises have 16 stages and edges length ν. The TBCC
input is a 72-bit information sequence and the 8-bit CRC.
The solid orange curve with diamonds is the performance
of the low latency list decoder. The solid magenta line with
squares is the performance of the same list decoder but with a
neighborhood search over 1024 neighboring TB codewords.
For reference we include the performance of a serial list
Viterbi decoder with maximum list size of 16K shown with
solid green line. We also show the performance of the same
code without list decoding, with and without adjusting for the
CRC rate loss, blue lines. The list decoder results show that
each version provides a significant performance improvement.
The first version improves the performance by about 0.5 dB
over the basic parallel trellis stage decoder at a target FER rate
of 10−4. The second version, with the linearity step, improves
the error rate by an additional 0.8 dB, and approaches the
ML decoding performance of a serial LVD with a gap of
0.4 dB. Increasing the linearity list size could further improve
the decoding performance and we leave that for future work.
These results show that our decoder design is suitable for
practical implementation on parallel processing systems.

V. CONCLUSION

By processing trellis stages in parallel, this paper demon-
strates a maximum likelihood decoder for tail-biting convo-
lutional codes with a latency proportional to the log of the
number of message bits. This low latency requires sufficient
hardware to perform a large number of operations in parallel,
proportional to the square of the number of states. We also
demonstrated two list-decoder enhancements that further im-
prove the performance of the decoder by about one to two dB.
Finally, we presented a modification of the code design that
takes advantage of the decoder structure to further improve
the performance.

Our parallel architecture can easily be modified to imple-
ment the BCJR algorithm [3], as building blocks on concate-

nated codes like turbo codes [21]. This application could be
better suited for our parallel decoder architecture, since the
constituent codes generally use smaller ν. This application is
currently a work in progress.
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