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ABSTRACT
Rate-adaptive coding enables reliable communication while efficiently utilizing the available channel
mutual information in free-space optical (FSO) communication. While adaptive coding has been explored
in numerous articles, the effect of feedback delay is often overlooked. To adapt the code rate to current
channel conditions, the transmitter must sense the channel or rely on receiver feedback. FSO channel state
information (CSI) cannot be reliably estimated at the transmitter because optical scintillation caused by
atmospheric turbulence may differ for signals traveling in opposite directions. In real-world FSO systems,
feedback from the receiver provides CSI. Even if the receiver sends accurate CSI, the channel conditions
might change by the time the feedback reaches the transmitter and the new signal travels to the receiver.
To mitigate throughput performance degradation caused by feedback delay, this paper applies linear and
quadratic prediction to estimate future CSI and dynamically select the appropriate low-density parity-check
(LDPC) code rate. Protograph-based Raptor-like (PBRL) LDPC codes supporting a wide range of rates are
designed, facilitating convenient rate switching. When CSI is known without delay, dynamically selecting
LDPC code rate appropriately maximizes throughput. This work explores how such prediction behaves as
the feedback delay is increased from no delay to a delay equal to the coherence time of a fading channel.
Optical channels with coherence times of 5 ms and 10 ms are explored, where 10 ms channel is meant
to model the optical channel of a Low Earth Orbit (LEO) satellite.

INDEX TERMS channel state information, free-space optical channel, LDPC codes, rate-adaptive coding

I. INTRODUCTION
A. Background

FREE-SPACE OPTICAL (FSO) communication [1] of-
fers numerous benefits including high data rates, vast

unlicensed free spectrum, high immunity to interference,
highly secure links and easy installation [2]–[4]. FSO chan-
nels can be used for communications over distances of
several kilometers as well as ultra-long distances including
ground-to-satellite, satellite-to-satellite communications, and
interplanetary communications [4].

FSO links are sensitive to channel fading caused by
atmospheric turbulence, varying weather conditions, and
changes in the distance between the transmitter and receiver.
Because of this fading, hybrid communication systems are
sometimes deployed where an RF link is used when the
FSO link fails [5]–[8]. A novel coding paradigm called
“Hybrid Channel Coding” that constructs non-uniform and
rate-compatible low-density parity-check (LDPC) codes to
achieve the combined channel capacity of parallel FSO and
RF channels is introduced in [9].
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Simulation analysis in [9] shows that Hybrid Channel
Codes can increase the average throughput more than 33%
compared to prior systems.

FSO fading has also been mitigated by adaptive parameter
selection techniques such as those explored in [10]–[14].
The authors of [10] introduced a rate-adaptive transmission
scheme employing intensity modulation and direct detection
over FSO channels. The scheme uses repetition coding and
variable silence periods to exploit the potential time-diversity
order available in the fading channel.

Similarly, the study in [11] investigated punctured digital
video broadcast satellite standard (DVB-S2) LDPC codes
combined with channel interleavers to utilize time diversity.
The combination of channel coding and bit interleaving in
[11] improves performance in turbulence conditions.

In [12], three adaptive modulation schemes have been
explored: (i) variable-rate variable-power adaptation, (ii)
channel inversion, and (iii) truncated channel inversion
schemes. CSI is estimated at the receiver and fed back
to the transmitter through RF channel without considering
feedback delay. The results show that channel inversion
scheme gives similar performance compared to variable-rate
variable-power scheme when turbulence is weak but suffers
from significant performance degradation when turbulence is
strong.

To mitigate FSO fading, a scheme to estimate the channel
state information (CSI) at the receiver for Raptor and punc-
tured LDPC code rate selection is proposed in [13]. The
receiver sends estimated CSI through a feedback channel to
the transmitter where the code rate is selected to accom-
modate estimated fading channel conditions. The proposed
feedback scheme for both coding schemes is evaluated over
a short transmission range such that feedback delay is not
significant compared to the coherence time of the fading.

A rate-adaptive scheme using LDPC codes with optimized
puncturing is compared to uncoded FSO system and coded
FSO system using LDPC codes with random puncturing
scheme in [14]. Results show that rate-adaptive systems
perform well in realistic FSO systems over different weather
conditions. For example, under rainy weather conditions
uncoded FSO systems suffer from outages 87% of the time.
In contrast, LDPC rate-adaptive systems can successfully
utilize 75% to 80% of the signaling rate resulting in a
significant increase in throughput. In [14], the rate is selected
based on the CSI estimate at the receiver and sent back to the
transmitter through an error-free feedback channel. However,
in [14] the code rate selection does not consider how delay
in the feedback channel can impact performance.

This paper investigates the effect of feedback delay on
rate-adaptive FSO system with LDPC coding. Rate-adaptive
LDPC codes provide significant coding gain [15] and effi-
cient encoding and decoding with low hardware complex-
ity [16], [17]. LDPC codes comprise the standard coding
technique in Digital Video Broadcasting - Satellite, Second
Generation (DVB-S2) [18] and are also utilized by Version
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FIGURE 1. Simplified block diagram illustrating round-trip delay in using
feedback for rate control. The first half of the round-trip delay is the
duration from when the receiver sends back the predicted rate until the
transmitter receives it. The second half of the round-trip delay is the
duration for the signal encoded at the selected rate to travel from the
transmitter to the receiver.

3.1.0 of the Optical Communications Terminal (OCT) Stan-
dard Developed by the Space Development Agency of the
United States Space Force [19].

To minimize performance degradation caused by feedback
delay, this paper uses predictive models to estimate fading
channel conditions and dynamically select LDPC code rate.
This achieves reliable communication while efficiently uti-
lizing the available channel mutual information. The three
predictive models explored are zero-order prediction, linear
prediction, and quadratic prediction.

This work examines how these predictive models behave
as the feedback delay is increased from no delay to a
delay equal to the coherence time of the channel. Optical
channels with coherence times of 5 ms and 10 ms are
explored. Protograph-based Raptor-like (PBRL) LDPC codes
with rates 8/9, 8/10, ..., 8/80 are designed using reciprocal
channel approximation (RCA) [20] allowing convenient rate
switching.

The feedback delay is the round-trip delay, i.e., the time
between when the receiver makes the rate prediction and
when the LDPC codeword at the selected rate arrives at the
receiver experiencing a fade. A simple block diagram in Fig.
1 illustrates the round-trip feedback delay. The first half of
the round-trip delay is the time it takes for the rate selection
signal to travel back to the transmitter after the receiver
predicts the rate. The second half of the round-trip delay
is the signal propagation time from the transmitter to the
receiver. Thus, the receiver experiences the fade one round-
trip time after sending the prediction.

Note that there is an additional small time at the transmit-
ter to compute the codeword after receiving the prediction.
However, this could be very small or even negligible since
the transmission can start even slightly before the rate
guidance arrives since the rate determines the total number
of symbols and the transmitter will always send at least the
number of symbols for the highest rate. An additional time
also occurs for the receiver to compute the prediction, which
is negligible compared to the total feedback delay.

The optical channel with a coherence time of 10 ms is
meant to model the optical channel of a Low Earth Orbit
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TABLE 1. Orbital distances and corresponding round-trip feedback delays

of common LEO systems.

Orbital Round-Trip

LEO system Distance Feedback Delay

(km) (ms)

Starlink (SpaceX) 340− 570 2.2− 3.8

International Space Station (ISS) 408− 420 2.7− 2.8

Hubble Space Telescope 535 3.6

TROPICS (NASA) 550 3.6

Planet Labs’ Dove Satellites 400− 500 2.7− 3.4

Kuiper (Amazon) 590− 630 4.0− 4.2

Landsat (NASA/USGS) 705 4.7

Sentinel (ESA) 700− 786 4.6− 5.2

Iridium Next 780 5.2

NOAA JPSS 824 5.5

OneWeb 1200 8.0

Globalstar 1400 9.3

(LEO) satellite. A typical LEO system usually operates
at altitudes ranging from around 160 kilometers (km) (99
miles) to 2, 000 km (1, 240 miles). The distance between
an Earth station and a LEO satellite corresponding to the
specific round-trip feedback delay time is calculated as
c× td/2, where c = 3× 108m/s is speed of light and td is
round-trip feedback delay time. The round-trip delay times
of 2− 10 ms correspond to distances of 300 to 1500 km.

Table 1 provides the orbital distances of various common
LEO systems. The International Space Station (ISS), for
example, has an orbital distance of 408 − 420 km while
SpaceX’s Starlink satellites orbit Earth at a distance of about
340− 570 km above sea level. The project Kuiper satellites
will have an orbit between 590 and 630 kilometers. The
Iridium satellites orbit at about 780 km. Earth observation
satellites such as Landsat satellites operate around 705 km.

B. Contributions
The following contributions are from our previously pub-
lished conference paper [21].

• Design of 72 PBRL LDPC codes supporting a wide
range of rates from 8/9 to 8/80. The rates are designed
using RCA [20] to minimize the decoding threshold.

• The analysis shows when CSI is known with no delay,
dynamically selecting LDPC code rate based on the CSI
maximizes throughput. Such throughput is referred as
the zero-delay throughput in this paper.

• Zero-order, linear, and quadratic prediction models are
explored to estimate fading channel CSI and dynami-
cally select the LDPC code rate. The optical channel
coherence time used for analysis is 10 ms and round-

trip feedback delay times explored range from no delay
to delay equal to 4 ms.

This paper extends [21] by:

• Providing a detailed analysis of the channel model and
the simulation method used to generate realizations of
temporal fading.

• Incorporating estimation of CSI at the receiver to make
prediction models more applicable for real-world im-
plementation.

• Studying optical channels with shorter coherence times
such as 5 ms in addition to the explored coherence time
of 10 ms.

• Improving the linear and quadratic prediction mod-
els by optimizing the number of fading channel gain
samples used to predict future channel conditions and
appropriately select LDPC code rate.

• Extending round-trip feedback delay times from no
delay to delay equal to the coherence time of optical
channel.

• Analyzing computational complexity of the proposed
prediction models.

• Exploring how round-trip delay affects common LEO
systems in terms of their orbital distance.

C. Organization
The rest of the paper proceeds as follows. Sec. II introduces
the system architecture and FSO channel model. Sec. III
presents a estimates FER for LDPC codes in the modeled
channel using the normal approximation. Sec. IV describes
LDPC codes designed for a wide range of rates. Sec. V
describes three prediction models and presents throughput
results achieved by using these predictive models to select
the LDPC code rate. Sec. VI concludes this paper.

II. System Architecture and Fading Channel Model
A. System Architecture
Fig. 2 describes the high-level system architecture. The
receiver estimates the fading channel and uses it to decode
the current codeword. The receiver also uses the estimated
channel gains to predict the future channel gain and corre-
sponding LDPC code rate at a specified future time, which
is based on the delay required to transmit the code rate to
the transmitter. The receiver selects the future LDPC code
rate such that selected code rate achieves frame error rate
(FER) lower than 10−6 for predicted channel gain value.

Fig. 3 shows FER curves for a subset of the designed
LDPC codes as a function of fading channel gain. None of
our LDPC code rates suffer from an error floor above 10−6.
The highest code rate (8/9) is the rightmost curve.

The channel gain values corresponding to FERs 10−6 in
Fig. 3 for each code rate are referred as “crossing points”
and shown in Table 2 in the LDPC Simulation Crossing
Point column. The crossing points in Table 2 are calculated
by subtracting baseline average power on detector (Pave) of
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FIGURE 2. High-level system block diagram. The fading channel gain is
estimated at the receiver and used to decode the current codeword as
well as to predict the future channel gain and corresponding LDPC code
rate based on the round-trip delay. The receiver selects the future LDPC
code rate such that selected code rate achieves frame error rate (FER)
lower than 10−6 for predicted channel gain value. The time required for
the transmitter to receive a predicted codeword via the feedback channel
is equal to half of the round-trip delay.
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FIGURE 3. Frame Error Rate (FER) Vs. Channel Gain for LDPC code rates
8/9 to 8/77 in descending order from right to left.

−48.1 dBm from Pave for which LDPC code rate achieves
FER of 10−6.

The selected LDPC code rate is sent back to the trans-
mitter through an error-free feedback channel with round-
trip feedback delay time td. The information message is

TABLE 2. LDPC codes with channel gain crossing points. Each code rate

achieves FER of 10−6 for corresponding crossing point.

Code LDPC Simulation Normal Approx.

Rate Crossing Point [dB] Crossing Point [dB]

8/9 -0.1522 -0.5550

8/10 -0.7672 -1.4700

8/11 -1.2802 -2.0800

8/12 -1.7596 -2.5400

8/13 -2.0459 -2.9200

8/14 -2.5409 -3.2500

8/15 -2.8154 -3.5300

8/16 -3.1276 -3.7800

8/18 -3.5267 -4.2100

8/20 -3.8154 -4.5000

8/24 -4.4457 -5.1600

8/28 -4.8492 -5.6300

8/34 -5.3644 -6.1900

8/42 -5.7939 -6.7700

8/55 -6.3336 -7.4800

8/77 -6.8036 -8.3200

generated at the transmitter side and encoded with LDPC
encoder with rate equal to the code rate received via the
delayed feedback channel.

B. Fading Channel Model
The channel model (given the fade power ρ) is an asymmet-
ric Gaussian model based on experimentally measured gains
in communications performance of a laboratory-based, free-
space optical communications system using an avalanche
photodiode detector (APD) at the receiver for signal detec-
tion [22]. Following [8] and [23], to compute realizations of
temporal fading a sequence of independent and identically
distributed (i.i.d.) Gaussian random numbers zi is filtered
by a low-pass finite impulse response (FIR) filter with the
frequency response described in (1).

H(f) =

√
σL

2τ0
√
π exp

(
−1

2
(πτ0f)

2

)
. (1)

The filtered zi values produce a band-limited discrete
sequence xi of correlated Gaussian random variables with
variance σ2

L = ln (σT
2 + 1), where σ2

T is the Power Scintil-
lation Index (PSI) characterizing the depth of scintillations.

Generated samples xi are transformed to obtain the de-
sired log-normal distribution of correlated fading realizations
ρTi

as follows:

ρTi
= exp (xi − σL

2/2) . (2)
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FIGURE 4. Fading channel gain realizations ρTi
in dB as a function of

time for turbulence coherence time of a) 5 ms and b) 10 ms.

-20 -10 0 10 20

Delay  (msec)

0

0.2

0.4

0.6

0.8

1

A
u

to
co

rr
el

at
io

n
 R

(
)

FIGURE 5. Autocorrelation function Rρ(τ) for turbulence coherence time
of τ0 = 10 ms.

Fig. 4 depicts fading channel realizations ρTi in dB for
turbulence coherence times of 5 ms and 10 ms.

The autocorrelation function of the log amplitude of
scintillation is approximated as

Rρ(τ) = (ln(σ2
T + 1))2 exp[−(τ/τo)

2] , (3)

where τ0 denotes turbulence coherence time [22]. Turbulence
coherence time represents a time interval during which the
change in fading characteristics of the channel is very small.

Fig. 5 shows autocorrelation function for turbulence co-
herence time of 10 ms as a function of delay τ . As the delay
increases, the most recent observed fade and the predicted
fade are less and less correlated, and becoming completely
uncorrelated when delay becomes longer than two times the
coherence time. The less correlated the two fades are, the
harder it is to predict the future fade.

The modulation scheme used is On-Off keying (OOK)
such that each OOK slot contains either the signal (bit 1) or
background noise (bit 0). Bit 1 is modulated to µ1 and bit
0 is modulated to µ0, where µ1 is the signal current when
the signal is ON and µ0 is signal current when the signal

TABLE 3. Constants and variables used to calculate signal current µ1 and

total noise σ1 when signal is ON, and signal current µ0 and total noise σ0

when signal is OFF.

Symbol Quantity Value Unit

q electron charge 1.6× 10−19 C

G Avalanche Photodiode gain APD 15

R responsivity 0.9 A/W

B electronic filter bandwidth 1250 MHz

k impact coefficient 0.2

Idark dark current 2.1× 10−8 A

DTIA Transimpedance Amplifier 2× 10−12 A√
Hz

(TIA) input noise

current density

Pave average power on detector −48.1 dBm

rext extinction ratio 11 dB

P1 power on detector Pave +
rext
2

dBm

when bit 1 is sent

P0 power on detector Pave − rext
2

dBm

when bit 0 is sent

p1 power on detector 10P1/10 mW

when bit 1 is sent

p0 power on detector 10P0/10 mW

when bit 0 is sent

is off. Additive white Gaussian noise (AWGN) is added to
the signal so that observations for both signal (ON) for bit
1 and signal (OFF) for bit 0 are modeled using Gaussian
distributions N ∼ (µ1, σ

2
1) and N ∼ (µ0, σ

2
0). Here, σ1

and σ0 denote total noise when the signal is on and off,
respectively. Thus, the log-likelihood ratio (LLR) used by
LDPC decoder is given by:

LLR =
1

2
ln

σ2
0

σ2
1

+
(y − µ0)

2

2σ2
0

− (y − µ1)
2

2σ2
1

. (4)

Equations (5)–(12) describe the calculations of µ1, σ1, µ0

and σ0. The meanings and values of the variables and
constants used in the equations are given in Table 3. Note
that F is the APD excess noise factor, and ρ(t) is the fading
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realization at time t.

µ1(t) =
1

2
×R×G× ρ(t)× p1 = ρ(t)µ∗

1 (5)

µ0(t) =
1

2
×R×G× ρ(t)× p0 = ρ(t)µ∗

0 (6)

F = k ×G+ (1− k)×
(
2− 1

G

)
(7)

S1(t) = (2× q × µ1(t)×G× F )
1
2 (8)

S0(t) = (2× q × µ0(t)×G× F )
1
2 (9)

M = (2× q × F ×G2 × Idark)
1
2 (10)

σ1(t) =
[
B × ((S1(t))

2
+M2 +D2

TIA)
] 1

2

(11)

σ0(t) =
[
B × ((S0(t))

2 +M2 +D2
TIA)

] 1
2 (12)

The electronic filter bandwidth B value of 1250 MHz
is used for simulation purposes, but it can be higher in
practice. Note that for the baud rate of 2.5 Giga symbols
per second used in this paper, the time occupancy of each
codeword ranges from 3.6864 microseconds (µs) for the
highest code rate (8/9) to 31.539 µs for the lowest code rate
(8/77), which is relatively small compared to the turbulence
coherence times of 5 ms and 10 ms. The fading model
generates one fade value for every 1024 bits, which means
that different sections of a codeword will experience a
different fade. However, since the turbulence coherence time
is much longer than the time occupancy of a codeword, these
differences are negligible.

III. Normal Approximation of Frame Error Rate
For FSO On-Off Keying (OOK) with equally likely transmis-
sion of bits 1 and 0, consider the following channel model
when bit 1 (On) or bit 0 (Off) is transmitted:

y = µi + σin, i = 0 or 1 , (13)

where n is a zero mean, unit variance normal (Gaussian)
random variable. The mean µi already includes the fading
ρ(t) as described in Sec. B. The received value y is a
Gaussian random variable with probability density function
fi(y) which is normal distributed N (µi, σ

2
i ).

When bit 1 is transmitted the channel information density
is

i1(y) = 1− log2

(
1 +

σ1

σ0
e
− 1

2σ2
0
(y−µ0)

2+ 1

2σ2
1
(y−µ1)

2
)

(14)

and its nth moment after change of variable is

mn(i1) =

∫ ∞

−∞
f1(y)i

n
1 (y)dy =

∫ ∞

−∞

1√
2π

e−
z2

2 in1 (z)dz ,

where

i1(z) = 1− log2

(
1 +

σ1

σ0
e
− 1

2σ2
0
(σ1z+µ1−µ0)

2+ 1
2 z

2
)
.

When bit 0 is transmitted the channel information density is

i0(y) = 1− log2

(
1 +

σ0

σ1
e
− 1

2σ2
1
(y−µ1)

2+ 1

2σ2
0
(y−µ0)

2
)

(15)

and its nth moment after change of variable is

mn(i0) =

∫ ∞

−∞
f0(y)i

n
0 (y)dy =

∫ ∞

−∞

1√
2π

e−
z2

2 in0 (z)dz ,

where

i0(z) = 1− log2

(
1 +

σ0

σ1
e
− 1

2σ2
1
(σ0z+µ0−µ1)

2+ 1
2 z

2
)
.

The average of channel information density with equally
likely channel inputs of zero or one is

I =
1

2
[m1(i1) +m1(i0)] (16)

and the channel dispersion with equally likely channel inputs
of zero or one is

V =
1

2
[m2(i1) +m2(i0)]− I2. (17)

Both I(Pave) and V (Pave) are functions of the average
received power Pave at APD.

Using the Normal Approximation (NA) by Polyanskiy et
al. [24], the maximal achievable rate can be approximated
by

R∗(n, FER) = I −
√

V

n
Q−1(FER) +O(

log2 n

n
) , (18)

where Q−1(.) denotes inverse of the Gaussian Q-function
which is

Q(x) =

∫ ∞

x

1√
2π

e−
1
2y

2

dy. (19)

Then the normal approximation on frame error rate FERNA
can be calculated as

FERNA(Pave) = Q

(
I(Pave)−R+ log2(n)/2n√

V (Pave)/n

)
, (20)

where R represent the code rate, n = k/R is codeword block
length, k is the message block length, and O( log2 n

n ) ≈
log2(n)/2n. However, for k = 8192 the same FERs have
been obtained for all code rates by ignoring the O(.) term.

As an example, consider a laser with extinction ratio of
11 dB, and an APD detector, such that observations can be
expressed as, µ1 = α1Pave, µ0 = α0Pave, σ2

1 = β1Pave +
γ1, and σ2

0 = β0Pave + γ0, where α1 = 47.9, α0 = 3.8,
β1 = 1.3×10−6, β0 = 1×10−7 and γ1 = γ0 = 1.36×10−14.
In this paper block fading is considered where the fade power
ρ is constant over duration of codeword. This assumption
is valid when the coherence time of fading is larger than
duration of codeword. The fading power is normalized such
that E{ρ} = 1.

In the fading channel model, Pave is then replaced with
ρPave. For atmospheric fading the Power Scintillation Index
PSI = σT

2 = 10 is assumed.
The FERs using normal approximation for rates 8/9 to

8/77 are plotted in Fig. 6. The crossing points represent-
ing fading channel gain values at which FERs for normal
approximation are 10−6 are listed in Table 2. For LDPC
simulations, crossing points are computed based on the
reference point average Pave of −48.1 dBm.
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FIGURE 6. Frame Error Rate (FER) vs Channel Gain using Normal
Approximation (NA).

Fig. 7 presents a comparison between the crossing points
derived from LDPC simulations and those obtained through
the normal approximation. The gap between the simulated
LDPC code FER crossing points and those resulting from the
normal approximation of random code performance ranges
from 0.4 dB to 1.5 dB. The close proximity of the normal
approximation to the actual LDPC code performance adds
confidence that the LDPC codes are well-designed across the
entire range of rates.

One way to see how adaptively adjusting the rate can
improve performance for slow fading is to compute the
FERfixed that a fixed-rate system would provide. To compute
the theoretical performance of a fixed-rate scheme in slow
fading without feedback, we integrate the product of the
density f(ρ) of ρ from [23] and the FER from (20) (denote
that by F (Pave)) with Pave replaced with ρPave for a fixed-
rate random code, as shown below:

FERfixed =

∫ ∞

ρ=0

FERNA(ρPave)f(ρ)dρ , (21)

assuming that the pdf f(ρ) of fade power ρ is normalized
such that E{ρ} = 1. Such a computation reveals that the
FER performance for the fixed-rate scheme incurs a huge
performance loss.

IV. Low-Rate Protograph-based LDPC Codes Design
This paper uses the Protograph-Based Raptor-Like (PBRL)
[20] approach to design LDPC codes with information
blocklength k = 8192 and parity check matrix H described
by (22) for wide range of rates:

H =

[
HHRC 0
HIRC I

]
. (22)

Let n1 represent the number of variable nodes in HHRC,
of which np are punctured to improve the iterative decoding
threshold. Let m1 number of rows in HIRC matrix. In
equation (22) submatrix HHRC ∈ F(n1−k)×n1

2 represents a
highest-rate code (HRC) and submatrix HIRC ∈ Fm1×n1

2

represents an incremental redundancy code (IRC). PBRL
LDPC code supports rates from k

n1−np
to k

n1+m1−np
. The

rate is selected by deciding how many of the degree-1
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FIGURE 7. The crossing points in Table 2 are compared with crossing
points using normal approximation (NA).

variable nodes associated with identity matrix in (22) should
be punctured. This work designs the HIRC to support the
lowest code rate of 1/10. Thus, m1 = 72704 and n1 = 9216.

The parity check matrix HHRC for the highest rate
code is obtained by lifting a proto-matrix. The proto-matrix
HHRC−proto in (23) is adopted from [8].

HHRC−proto = [ 4 4 4 4 4 3 3 3 3 ] (23)

Unlike LDPC codes that start with a designed lowest rate
code and increase the rate by randomly puncturing variable
nodes hoping to not degrade performance, PBRL design
starts with a well-designed highest-rate code and obtains
lower-rate codes by carefully selecting the rows of HIRC.

The design of HIRC is completed in two steps. In the
first step, the proto-matrix HIRC [25] is designed line by
line in a greedy fashion by minimizing decoding threshold
of newly constructed protograph matrix computed using the
reciprocal channel approximation (RCA) algorithm [20]. The
RCA is a fast and accurate approximation to the density
evolution algorithm with deviation in accuracy of less than
0.01 dB. The decoding threshold of a protograph matrix
refers to the minimum channel noise that supports reliable
iterative decoding of LDPC codes with infinite code length
built from the protograph. The fully designed protograph
matrix of H for rate 1/10 consists of 72 rows (check nodes)
and 80 columns (variable nodes).

In the second step, the designed protograph matrix for
lowest code rate of 1/10 is lifted using approximate-
cycle extrinsic-message-degree (ACE) progressive-edge-
growth (PEG) algorithm [26] to replace each element in
protograph matrix with circulant matrices and obtain parity
check matrix H with longer block-length. The ACE-PEG
algorithm with parameters of dACE = 6 and η = 7 are
selected to ensure that all the cycles in the lifted parity check
matrix whose length is 12 or less have ACE values of at least
7.

The lifting process also consists of two steps. In the
first step, lifting number is 4 to remove parallel edges in
protograph matrix. In the second step, lifting number is
256 which gives a parity check matrix with information
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blocklength of 8192 bits. Fig. 3 shows FER as a function of
fading channel gain for a subset of the designed LDPC code
rates. Fig. 7 compares performance between designed LDPC
codes and the normal approximation and random coding for
FER of 10−6.

V. LDPC Rate Selection To Maximize Throughput
This section presents different predictive models for selecting
LDPC code rate based on the knowledge of channel gain
and feedback time delays. The fading channel gains are
estimated at the receiver and used to predict a future channel
gain considering the round-trip delay required to transmit the
feedback signal from the receiver back to the transmitter and
new signal from the transmitter to the receiver. The receiver
uses predicted channel gain values to select LDPC code rate
that achieves FER lower than 10−6 for predicted channel
gain. For the purpose of analysis, out of 72 designed code
rates a subset of 16 code rates with approximate differences
of 0.5 dB at crossing points at FER of 10−6 is selected. The
channel gain crossing points for which each LDPC code rate
decodes a codeword with FER of 10−6 are given in Table 2.

A. Instantaneous Channel State Information
As a baseline for comparison, we consider the case where the
feedback delay is zero and current channel state is known.
The LDPC code rate is selected to maximize throughput, i.e.
the code rate selected is the highest code rate that achieves
FER below 10−6 for the current known channel state. Actual
channel gain data is represented with black curve in Fig. 4 for
coherence times of 5 and 10 ms. Throughput achieved when
the transmitter knows the CSI with no delay is referred as
zero-delay throughput and it is used as a reference to evaluate
the performance of prediction models when feedback delay
is not zero.

Fig. 8 shows throughput as a function of time for optical
channel with coherence time of 10 ms for a) rate-adaptive
system when CSI is known at the transmitter with no delay,
referred as zero-delay throughput, b) when single LDPC
code rate 8/9 is used, and c) when single LDPC code rate
1/2 is used. The simulations, performed over 100 ms of
data, indicate that throughput achieved when using single
LDPC code rate is approximately 55.9% and 60.3% of zero-
delay throughput for rates 8/9 and 1/2 respectively. Note
that the optical channel realizations used for simulations
consist of 30% of very good turbulence conditions boosting
the performance of both 8/9 and 1/2 rates. As turbulence
conditions become worse, the performance of using a fixed
single rate drastically decreases, which is evident between
30 ms and 55 ms in Fig. 8 where both rates suffer from
constant failure, making the throughput zero fo a significant
fraction of the simulated time segment.

B. Delayed Channel State Information
Now we consider the practical scenario in which the feed-
back delay is not zero.

Coherence Time = 10 ms
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FIGURE 8. Throughput as a function of time for optical channel with
coherence time of 10 ms. a) Throughput achieved using rate-adaptive
LDPC coding when channel state information (CSI) is known. b)
Throughput achieved when using LDPC code rate 8/9 only. c)
Throughput achieved when using LDPC code rate 1/2 only.

1) CSI Estimation
Based on practical experience of the optical fading channel,
our fading model assumes that fading is constant over 1024
OOK symbols. Even between groups of 1024 OOK symbols
the fading changes very slowly. Because of this slow change
in the fading, estimation of the fading at the receiver is not
the key issue, the ability to predict future fading based on
the knowledge of the current fading is the critical issue.

A simple fading channel gain estimation ρ̂(t) at the
receiver is performed as follows. From equations (5) and
(6) µ∗

1 = 1
2 × R × G × p1 and µ∗

0 = 1
2 × R × G × p0.

Then µ1(t) = µ∗
1 × ρ̂(t) and µ0(t) = µ∗

0 × ρ̂(t). For a single
value of ρ̂(t) we see 1024 observations of µ1(t) and µ0(t).
In our estimation model we assume that out of 1024 bits
there is equal possibility of getting bit 1 or bit 0, i.e. we
generate 1024 Bernoulli distributed zeros and ones1. The
receiver sees 1024 different observations of noisy signal
y(t) = µi(t) + Zσi, where i ∈ {0, 1} and Z is Gaussian
random variable with zero mean and unit variance. Then
estimated ρ̂(t) is given by

ρ̂(t) =
1

512

∑1024
j=1 yj(t)

µ∗
1 + µ∗

0

. (24)

To improve the estimation of the noisier channels, once
ρ̂(t) is obtained by (24) we average 9 adjacent measurements

1The generation of received noisy sequences of 1024 using Bernoulli
distributed zeros and ones can be justified since in optical transmitter and
specifically in the CCSDS optical standard usually a Pseudo-Randomizer
is used at transmitter (see [27]). In addition, in the optical standard, Gold
code sequences are used for frame synchronization (frame synch marker)
with almost balanced zeros and ones with a difference of 1 between the
two counts, which can also be used for CSI estimation provided that the
coherence time is longer than the duration of synch marker and a codeword.
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FIGURE 9. Comparison of actual and estimated fading channel gain data
for coherence time of 10 ms.

and use that value for ρ̂(t). Note that 9 channel gain samples,
each corresponding to 1024 bits, represent the duration of the
codeword with the highest code rate of 8/9.

Fig. 9 shows actual fading channel gain data generated
in MATLAB using fading channel model in Sec. B and
estimated fading channel gain data at the receiver given
by (24). When the channel is relatively good (e.g. above
−10 dB), the received signal is less affected by noise,
making the channel estimation more reliable and closer to the
actual channel gain values resulting in low estimation error.
When the channel is poor (e.g. below −10 dB), the received
signal is heavily corrupted by noise. This leads to higher
uncertainty in the estimation process, causing the estimated
fading channel gains to deviate significantly from the actual
values and appear noisy which can be observed near 35 ms,
140 ms and 170 ms in Fig. 9.

2) Zero-Order Prediction
The zero-order prediction model predicts fading channel
gain value in the future to be the same as the current
channel estimate at the receiver. Let fading channel gain
value estimated at the receiver at time tk be ρ̂k in dB and
let td denote the feedback channel delay time. The predicted
channel gain value ρ̃k+d at time (tk + td) is the same as
estimated value ρ̂k.

3) Linear Prediction
Let ρ̂ = [ρ̂1, ρ̂2, ..., ρ̂n], ρ̂i ∈ R represent fading channel gain
values estimated by the receiver. Let t = [t1, t2, ..., tn], ti ∈
R represent time instances that correspond to the estimated
fading channel gain values in ρ̂. Note that ρ̂n corresponds to
the current time instance tn, and all other samples in ρ̂ are
past samples estimated at the receiver. The receiver only has
knowledge of the past fading channel gain data measured at

the receiver. In order to make a prediction of channel gain in
the future, the estimated n samples is used to fit a polynomial
of a form:

p(t) = x1 + x2 t+ ...+ xm+1t
m. (25)

For each polynomial coefficient x a vector of errors e =
[p(t1)−ρ̂1, p(t2)−ρ̂2, ..., p(tn)−ρ̂n] is formed. As described
in [28], to find a polynomial that minimizes the norm of
the error vector e following norm approximation problem is
solved:

min
x

||e|| = ||Ax − ρ̂|| , (26)

where Aij = tj−1
i , i = 1, 2, ..., n, j = 1, 2, ..., (m + 1).

MATLAB function polyfit is used to solve problem in (26)
to obtain polynomial coefficients x. Once the polynomial
model is fitted, its coefficients are used to predict future
fading channel gain ρ̃tk at some time instance tk by plugging
tk into (25). The coding rate is predicted based on this
predicted fading channel gain value. In the simulations when
the codeword sent at this rate arrives at the receiver it will
experience fade coming from the actual fading channel data
which receiver never saw before. Note that the polynomial
coefficients change for every prediction as the receiver keeps
retraining the model in an “online” manner based on the new
data it receives. Since the receiver does not have knowledge
of the future true data, there is no testing or validation data.
The only way to know if the prediction was accurate is by
observing if the codeword that was sent at the predicted rate
was successfully decoded.

For linear prediction model, polynomial degree is m = 1
and number of samples used in fitting/training is n = 1220.

In this paper, the receiver starts prediction calculations
upon the receipt of the first codeword which code rate is
chosen to be 8/16 for simulation purposes. Since each fade
represents 1024 bits, the receiver will estimate 16 channel
gain values. This is the smallest number of samples used
to fit a polynomial to predict a future channel gain. As
more samples arrive at the receiver, each new prediction is
modeled using more samples. For the purpose of evaluating
prediction models the codewords received until first code-
word encoded with predicted rate arrives at the receiver are
considered as pilots and not used for analysis.

4) Training Samples Selection
The number of channel gain samples used in the prediction
models is determined using a greedy optimization approach
by solving the following minimization problem:

min
j

MSE =
1

N

N∑
i=1

(ρ̂i − ρ̃
(j)
i )2, j = 1, 2, ..., l ∈ N, (27)

where ρ̂i are estimated fading channel gain values at the
receiver, ρ̃(j)i are predicted channel gain values solving (26),
N is the number of data points and j represents the index
of vector with length l containing number of data points in
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FIGURE 10. Comparison of channel gain values for quadratic and linear
prediction with respect to the actual fading channel gain values when
coherence time is 10 ms and feedback delay ranges from 2 ms to 4 ms.

ms starting from 0.5 ms up to coherence time of optical
channel in increments of 0.5 ms. The number of data points
N used in (27) corresponds to number of predicted ρ̃

(j)
i in

(26) over duration of 200 ms for every j. For example, for
a channel coherence time of 5 ms, j would range from 1
to 10, where index j = 1 represents 0.5 ms worth of data
points and index j = l = 10 represents 5 ms worth of data.
The solution of (27) for the linear prediction model suggests
that 0.5 ms worth of data gives the best fitting performance
for both coherence times considered.

5) Quadratic Prediction
The quadratic prediction model uses m = 2 in (25), using
past and current estimated CSI in a quadratic model to
predict future CSI for LDPC code rate selection. The number
of channel gain samples used in quadratic prediction is equal
to 1 ms and 2 ms for optical channels with coherence times
of 5 ms and 10 ms respectively. These values are obtained
by solving (27). For all prediction models, we observed that
adding a small margin of 0.25 dB to the original crossing
points determined in Table 2 when selecting LDPC code rate
at the receiver improved our FER performance.

Fig. 10 compares channel gain data obtained using lin-
ear and quadratic prediction models when feedback delay
increases from 2 ms to 4 ms with actual channel gain data
over the time interval of 10 ms to 100 ms. As feedback
delays increases, the prediction becomes worse. Quadratic
prediction becomes noisy when the channel is very bad,
mainly due to noisy fading channel gain estimation in this
area.

Fig. 11 a) shows actual and predicted channel gain values
for zero-order, linear and quadratic prediction when turbu-
lence coherence time is 10 ms and feedback channel delay

Coherence Time = 10 ms. Feedback Delay = 2 ms.
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quadratic prediction models for fading channel conditions in a).
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FIGURE 12. Percentage of zero-delay throughput achieved using
prediction models as a function of feedback delay when coherence time is
5 ms and feedback delay ranges from 1 ms to 5 ms. Quadratic
prediction model gives the best performance for shorter feedback delay
times (1 ms and 2 ms). Zero-Order prediction model gives the best
performance for longer feedback delay times. Simulation is performed for
80 ms.

is 2 ms. Fig. 11 b) shows throughput as a function of
time obtained using prediction models in Fig. 11 a). Linear
and quadratic prediction models give similar performance as
baseline zero-delay model, while zero-order prediction show
loss in throughput compared to other models.

C. Computational Complexity
Polynomial regression fits a polynomial function of degree
m to a data set. For linear (m = 1) and quadratic (m = 2)
prediction models, the computational complexity depends on
the number of data points n and polynomial degree m. The
computational complexity of the prediction models involves
the following steps:

• Complexity O(nm): Input data are transformed into
polynomial features. For linear prediction (m = 1) this
includes ti term, and for quadratic prediction (m = 2)
this includes ti and t2i terms, where i = 1, 2, ..., n. We
are not counting column of all ones in matrix A.
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FIGURE 13. Percentage of zero-delay throughput achieved using
prediction models as a function of feedback delay when coherence time is
10 ms and feedback delay ranges from 1 ms to 10 ms. Quadratic
prediction model gives the best performance for shorter feedback delay
times (1 ms to 5 ms). Zero-Order prediction model gives the best
performance for longer feedback delay times. Simulation is performed for
160 ms.

• Complexity O(nm2 + nm + m3): The least squares
solution involves solving:

x = (ATA)−1AT ρ̂.

– Compute ATA (matrix multiplication): O(nm2)
– Compute the inverse of ATA : O(m3)
– Compute AT ρ̂: O(nm)

Total complexity for both prediction models is O(nm2 +
2nm+m3). For the linear prediction model, n = 1220 for
both coherence times of 5 ms and 10 ms. For the quadratic
prediction model, the number of samples n is 2440 and
4880 for fading channels with coherence times 5 and 10 ms,
respectively.

D. Prediction Models Performance
Fig. 12 shows the percentage of zero-delay throughput
achieved using each prediction model and single rates 8/9
and 1/2 as a function of feedback delay when coherence time
is 5 ms. The feedback delay ranges from 1 ms to 5 ms and
data is collected for 160 ms. The quadratic prediction model
gives the best performance for shorter delay times achieving
95.2% and 74.5% of zero-delay throughput for feedback
delays of 1 ms and 2 ms, respectively. For feedback delays
3 − 5 ms, zero-order prediction outperforms linear and
quadratic models. Throughput achieved using single rates
8/9 and 1/2 are 39.6% and 55.5%, respectively.

Fig. 13 depicts the percentage of zero-delay throughput
achieved using each prediction models and single rates (8/9
and 1/2) as a function of feedback delay when coherence
time is 10 ms. The linear prediction model gives the best
performance for 1 ms and 2 ms feedback delays achieving
100.8% and 101.2% of zero-delay throughput, respectively.
Note that 101.3% is due to the linear prediction model
occasionally overestimating channel gain values at the peaks
where the values change direction from increasing to de-
creasing. At these peaks, the model sometimes successfully
selects a higher code rate compared to zero-delay model.
Since we are considering crossing points where the LDPC
code achieves FER below 10−6, the selected code rate might
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FIGURE 14. Comparison of zero-order, linear and quadratic predictions of
channel gain value at time instance of 65 ms for feedback delay of
10 ms and coherence time of 10 ms. The amount of data used for linear
and quadratic predictions is equal to 0.5 ms and 2 ms, respectively.

still have a high chance of success, which happened in the
simulation for 1 and 2 ms feedback delay.

Quadratic model outperforms other prediction models for
3 − 5 ms feedback delays achieving from 68.7% to 95.2%
of zero-delay throughput. Zero-order prediction achieves the
highest throughput for longer feedback delays 6− 10 ms.

Quadratic prediction is worse than linear and zero-order
predictions for longer feedback delays because it overesti-
mates channel gain values near peaks in data. For example,
Fig. 14 compares prediction models when predicting channel
gain value at time instance of 65 ms for feedback delay of
10 ms and coherence time of 10 ms. Quadratic prediction
overestimates channel gain values by 10 dB, which results
in selecting rate 8/9 that the true channel condition cannot
support as evident in Fig. 8 b). Zero-order prediction is the
only model that underestimates channel gain values at peaks
and selects a lower rate than what channel can support, which
results in successful decoding but smaller throughput than
baseline zero-delay throughput.

The single rate choice of using only rate 1/2 seems to be
a preferable choice for feedback delays longer than 8 ms.
However, this is true only if the atmospheric turbulence is
not too strong to severely degrade the channel. In such cases,
long outages are possible as seen approximately between
30 ms and 80 ms in Fig. 8 b).

VI. Conclusions
For an FSO fading channel when CSI is known with no
delay, the throughput is maximized by selecting the rate
accordingly. This paper presents three prediction models to
mitigate FSO fading when feedback delay is not zero.

The simulation results indicate that the quadratic predic-
tion model is the overall best choice for round-trip feedback
delays shorter than half of the fading channel coherence
time τ0. For τ0 = 5 ms, quadratic model achieves from
95.2% to 74.6% of the zero-delay throughput as round-trip
feedback delay increases from 1 ms to ⌊τ0/2⌋ ms. For
a fading optical channel with a coherence time of 10 ms
simulation results show that using only a single LDPC code
rate 8/9 or 1/2 results in up to 55.9% or 60.3% of zero-
delay throughput, respectively. In comparison, for the same
channel for shorter feedback delays (1ms to 5ms) quadratic
model achieves (99.6−68.7)% of zero-delay throughput. For
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feedback delays 6 ms and 7 ms zero-order prediction model
achieves (66.3− 64.0)% of the zero-delay throughput.

While quadratic model works very well for shorter feed-
back delays, prediction for longer feedback delays can be
improved. Quadratic polynomial fitting fails to predict the
change in fading channel gain at the peaks where the channel
gain values change direction from increasing to decreasing,
and this leads to poor prediction for longer feedback delays.
Our future work will aim to mitigate this problem through
various approaches, including machine learning techniques
such as neural network regression.
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[23] Z. Kolka, V. Biolková, and D. Biolek, “Channel model
for monte-carlo simulation of data transmission on terrestrial
FSO paths,” in International Conference on Emerging Trends
in Engineering and Technology, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:53313155

[24] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[25] “LDPC HRC and IRC proto-matrices for FSO Channel.” [Online].
Available: http://www.seas.ucla.edu/csl/publications/published-codes-
and-design-tools

[26] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective avoidance of
cycles in irregular LDPC code construction,” IEEE Transactions on
Communications, vol. 52, no. 8, pp. 1242–1247, 2004.

[27] Consultative Committee for Space Data Systems (CCSDS), “Non-
Coherent Optical Communications Coding and Synchronization,”
CCSDS, Tech. Rep. CCSDS 142.0-P-1.1, November 2023, draft Rec-
ommended Standard (Pink Sheets).

[28] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004, ch. 6.5.3.

SEMIRA GALIJASEVIC (Student Member,
IEEE) received her BS degree (Summa Cum
Laude) and MS degree in Electrical Engineering
from the University of California at Los Angeles
(UCLA) in 2021 and 2023, respectively. She is
currently pursuing a Ph.D. degree in Electrical
Engineering at UCLA with the Communications
Systems Laboratory. Her research interests include
information theory, channel coding theory, LDPC
codes, adaptive coding in fading optical channels,
coding for storage, and optimal modulation design.

JINGCHAO LUO (Student Member, IEEE) is cur-
rently pursuing his BS degree in Electrical Engi-
neering at the University of California Los Angeles
(UCLA 2026). He is currently an undergraduate
researcher at the UCLA Communication Systems
Laboratory under Professor Richard Wesel. His
interests include channel coding theory, wireless
communications, digital signal processing, and
FPGA development.

12 VOLUME ,



DARIUSH DIVSALAR (Life Fellow, IEEE) re-
ceived the Ph.D. degree in electrical engineering
from UCLA, in 1978. Since then, he has been with
the Jet Propulsion Laboratory (JPL), California
Institute of Technology (Caltech), Pasadena, where
he is a Fellow. At JPL, he has been involved
with developing state-of-the-art technology for ad-
vanced deep-space communications systems and
future NASA space exploration. Since 1986, he has
taught graduate courses in communications and
coding at UCLA and Caltech. He has published

more than 295 papers, coauthored a book, contributed to three other books,
and holds 30 U.S. patents. Dr. Divsalar was a co-recipient of the 1986 paper
award of the IEEE Transactions on Vehicular Technology. He was also a
co-recipient of the joint paper award of the IEEE Information Theory and
IEEE Communication Theory societies in 2008. The IEEE Communication
Society has selected one of his papers for inclusion in a book entitled The
Best of the Best: Fifty Years of Communications and Networking Research.
He served as an Editor for the IEEE Transactions on communications from
1989 to 1996. A fellow of IEEE since 1997. He has received over 50 NASA
Tech Brief awards, a NASA Exceptional Engineering Achievement Medal
in 1996, IEEE Alexander Graham Bell Medal in 2014, an Ellis Island Medal
of Honor in 2023, and a NASA Distinguished Public Service Medal in 2023.
He has been elected to the National Academy of Engineering in 2024.

RICHARD WESEL (Fellow, IEEE) received the
B.S. and M.S. degrees in electrical engineering
from the Massachusetts Institute of Technology in
1989 and the Ph.D. degree in electrical engineering
from Stanford University in 1996. He is currently
a Professor with the Electrical and Computer En-
gineering Department, Henry Samueli School of
Engineering and Applied Science, UCLA, where
he is also the Associate Dean of Academic and
Student Affairs. His research interests include
communication theory with a particular interests in

short-blocklength communication with and without feedback, list decoding,
low-density parity-check codes, and optimal modulation design. Dr. Wesel
is a Fellow of the IEEE and has received the National Science Foundation
CAREER Award, the Okawa Foundation Award for Research in Information
Theory and Telecommunications, and the Excellence in Teaching Award
from the Samueli School of Engineering. He has served as an Associate
Editor for Coding and Coded Modulation and IEEE Transactions on
Communications and as an Associate Editor for Coding and Decoding and
IEEE Transactions on Information Theory.

VOLUME , 13


