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Introduction
When transmitting data over a noisy channel, the noise can cause =
information bits to be distorted at the receiver, resulting in the receiver o o1 o1 I Code 13 vs. Code 14:
selecting the wrong codeword. Error correcting codes add bits for Cin o e " - Rate—% 8PSK codes with period 5.
redundancy to enable detection and correction of errors at the receiver. 11110 < an s . Code 13 maximizes
. . 1 . . 2 -
This project uses a rate-- 64-state 8PSK-modulated trellis code, which Lol tosl gL 3.68 £ 10| o 2.;10g(RED;") for each periodic
L |=—8=—=01111, Simulation . . .
sends three encoded bits as one symbol per information bit. Periodic 11011 366 3.2 | [ e pattern j considered in the
puncturing — intentional omission of certain symbols — has been 10111 331 3.22 s channel [.4]- |
implemented to reduce the number of symbols sent, where patterns poiil 208 208 o | |11 Tt nn g * Code 14 is designed e perform
are denoted as ones and zeros (zeros indicate omitted symbols). 01110 2.27 2.27 s el better over progre55|(ve
. . , _ 11100 3.03 3.03 ool A puncturing patterns (11111
ThIS .prOJ.ect has conflrmgd. the results of previous papers by e — — - SNR(dB) 01111 01011 01010).
investigating the characteristics of the trellis encoder, as well as 10011 3.03 557
simulating the bit error rate in comparison to truncated and non- 01011 5 .40 5 .40 :
truncated bit error rate (BER) union bounds. Ongoing progress includes Y0110 279 2.79 T Kev findines:
developing union bound equations for the frame error rate (FER). 01101 — 5 40 Y 85:
' ' * Residual Euclidean distances
11010 2.93 2.93 I
/ \ . o e o for both codes 13 and 14
[ melredpatem 1 ' ' 85 [ e match values reported in [4].
1 0 1 ﬂl]:ll]i 1_33_ 1_33 - 00111, Simulatiun . . .
e N @l _glow _g 0w _g | [0, Simudatn  As the signal to noise ratio
A A 01010 1.33 1.61 " | —&—00101, Simulation . .
¥ ¥ . S g S {7151 Troncato union ouns (SNR) increases, the bit error
10100 1.78 2.27 25| 00111, Truncated Union Bound
- & ‘o e F % / e | ——0101 Tuncats non Buns rate (BER) curves from our
~ A/ 7 01001 2.57 1.78 [ | —5ot01, Trncated Union Bound : :
K0 Lo | e etmsans )\ simulations and the truncated
10 O, 10 . A ~ 10 1']":'1'] 1'2? 1'14 10 0 2 4 ] 8 10 12 14 16 .
e o - VA SNR(dE) union bound curves converge
o o) iv 9 _ Reci - ' for both codes 13 and 14.
o o F'g(‘j 214 Rhe5|due_3l Eu?lldeanzdlstgnaces of quels 13 Fig. 3 — Truncated union bound (solid lines) vs. Code 13 performs as well or
s ® o e an i fs hown In co udmns an I' re;peczllve YT collected data (lines with circular points) vs. better than Code 14, except for
S alpunEties Sl SEIO NS (UG [PERISITES 1S CeEs true union bound for non-punctured pattern .
e uclmstls column 1 , 01111. Code 13 is better for
OF RURETHIEC Syeais ' (dashed line) for a) Code 13 and b) Code 14. 00111 and 00011. but neither
ST of these appear in our
. 1 . . - . X Code 13
Fig. 1 — Four-state rate-z punctured Viterbi diagram. These results indicate: 10° | | | | orogressive puncturing
* Though the literature notes that Code 14 W ——
performs slightly better than Code 13 for N .. '
Method progressive puncturing patterns, the oo | N
advantages of Code 14 are minor. . '\ N
* The truncated union bound provides a = 10 . ' ext steps:
Implement a Viterbi algorithm using C++. good expectation of the true union bound o] . | * Add feedback using the
at high SNRs. At lower SNRs the truncated o i Simuaton \ reliability output Viterbi
union bound is considerably lower than | 2= owt0, Simaatien 3 ' algorithm (ROVA).
the true union bound. O o v s U S * Identify best order of
Zm:l resLdt:al Euclideian di;tanced (rr;ipi?u.:n IEUCtlLO;efa" * Though the true union bound is a good Y ek punctured symbols to send
ISstance petween any two coaeworas or intinite ien or . .
specific puncturing p:ttems. ® match for the non-punctured pattern data, . . o during incremental
we are still finishing developing the true Fig. 4 — Collected data (lines with circular retransmissions.

union bound for punctured patterns. points) and FER equation for non-punctured « Add list decoding:

= Run simulations using UCLA’s Hoffman2 Cluster to find BER pattern (dashed line) for Code 13. * List decoding ranks the most
r vs. SNR for punctured patterns and FER vs. SNR for non- . ' likely decoded sequences for
* FER equations based on the bit error rate union bounds developed in [1], [2], and [3].  Correction involves
_ * Dan Song (CSL, UCLA) adapted the BER true union bound for FER. comparing to all these
AL 5 UCLIENE) P (et uele Ell) R Ee] Uil * This project has adapted this general FER union bound to the case of puncturing, as options (which is inefficient).
union bound for non-punctured pattern using MATLAB,; _ S
compare with the simulation results. follows: * At some point, entries in the
FER < Q(J/RED?(@)e,/(2Ny) gRED*(@ex/(4No) YL T, (W) (1ot punctured list are unnecessary: they
The truncated union bound is N, (a)Q (\/REDZ(&)ex/(ZNO)) where =2 [fro . 7 4= {O,punctured create more errors than they
_ aj aj aj— -
N, (@) is the number of bits that are incorrect among the nearest T,(W) = |dg,ca,] ﬂl b~ A~ [ [b~ 1] @[ B is a vector of punctured pattern correc.t. _ _
. . . . w=e *No ;-1 \| & 4 oL g l|, _ o amo - Symbolswithlength p * Imposing a maximum list
neighbor paths (paths that share the same residual Euclidean distance, /= w=e *No ¢ v is the encoder memory lenath will ”
or RED) Ex/NO is the magnitude of SNR. ddi =ddj -1 Z 51] is the reduced state eenr]cgrieswiln ?Z;);muner_]fﬁzleessary
The union bound equation used for the non-punctured pattern is transition matrix » INC 5 Y-
1 — . 0Ty, (Wy,...Wy,I
- Q(/RED?(@)e,/(2Ny)eRED*(@ex/(4No) b 161 = ), where
aj]*/(4No)
=1, W, =e % 0/,
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