
1

UCLA Electrical Engineering Department UCLA Electrical Engineering Department -- Communication Systems LaboratoryCommunication Systems Laboratory

Overcoming LDPC Trapping Sets with 
Informed Scheduling

Andres I. Vila Casado
Miguel Griot

Richard Wesel



2

Outline

Message-passing scheduling
Simultaneous vs sequential loopy BP
Sequential scheduling problem

Informed scheduling strategies:
Residual Belief Propagation (RBP)
Node-wise RBP

Reduced complexity strategies
Informed scheduling and trapping sets
Conclusions and open problems



3

Simultaneous (Flooding) Schedule

On every iteration
All variable nodes are 
simultaneously updated
All check nodes are 
simultaneously updated



4

Standard Sequential Schedule (SSS)

Update messages 
sequentially:

[Mansour 03] (CN sequence)
[Kfir 03] (VN sequence)
[Hocevar 04] (LBP)
[Sharon 04] (Serial Schedule)
[Zhang 05] (Shuffled BP)
[Radosavljevic 05] 

Has been shown to converge 
at twice the speed than 
simultaneous scheduling
What is the best sequence?



5

Residual Belief Propagation (RBP)

Algorithm proposed by Elidan et al. for general 
loopy BP solutions
Define residual as: 

As BP converges, the residuals go to 0
RBP is a greedy algorithm that propagates the 
message with the largest residual

new oldr m m= −



6

RBP for LDPC decoding

Propagate message with biggest 
residual
The variable-to-check messages that 
change will have the same residual so 
they are the biggest
Therefore, RBP can be simplified

Propagate check-to-variable message with 
biggest residual
Propagate variable-to-check messages that 
change



7

Node-wise RBP

RBP greediness makes it converge faster but 
less often
Node-wise RBP simultaneously propagates all 
the outgoing messages from a check node
The check-node updated is the one that has the 
message with the biggest residual
This means that correcting messages are 
simultaneously send to all variable nodes that 
could be in error
Node-wise RBP converges less fast than RBP 
but more often



8

Results

0 5 10 15 20 25 30 35 40 45 50
10-5

10-4

10-3

10-2

10-1

100

Iterations

FE
R

Eb/No = 1.75 dB

Simultaneous (Flooding)
SSS (LBP)
RBP
Node-wise RBP



9

Complexity

Residual computation requires the values of the 
messages to be propagated
Many of those computations are then “wasted” 
since many of those messages aren’t propagated
Using the min-BP check-node update to 
compute residuals significantly reduces the 
complexity
Approximate RBP (ARBP) and node-wise ARBP 
are the min-BP versions of RBP and node-wise 
RBP respectively



10

Results

0 5 10 15 20 25 30 35 40 45 50
10-5

10-4

10-3

10-2

10-1

100

Iterations

FE
R

Eb/No = 1.75 dB

RBP
ARBP
Node-wise RBP
Node-wise ARBP



11

Results 802.11n code rate 1/2

0 20 40 60 80 100 120 140 160 180 200
10-5

10-4

10-3

10-2

10-1

100

Iterations

FE
R

Eb/No = 1.75 dB

Simultaneous (Flooding)
SSS (LBP)
ARBP
Node-wise ARBP



12

Results 802.11n code rate 5/6

0 20 40 60 80 100 120 140 160 180 200
10-5

10-4

10-3

10-2

10-1

100

Iterations

FE
R

SNR = 6 dB

Simultaneous (Flooding)
SSS (LBP)
ARBP
Node-wise ARBP



13

Why does informed scheduling work faster?

As mentioned before RBP focuses on the part of 
the graph that has not converged thus there are 
less “wasted” updates
Furthermore, our informed scheduling 
strategies tend to chose to update nodes that 
have recently received new information



14

We understand faster, but why better?

Performance plots show that our informed 
scheduling strategies perform not only faster 
but better than SSS
There are many noise realizations that aren’t 
corrected after 200 SSS iterations but are 
corrected after few NW-ARBP iterations
This difference can’t be explained with the 
argument of the “wasted” updates



15

SSS Errors

Let us characterize the following type of noise 
realizations

AWGN Channel
SSS (LBP) decoding doesn’t converge after 200 
iterations
NW-ARBP iterations converges after few iterations
Rate ½ 802.11n code
n=1944, k=972
SNR = 1.75 dB, waterfall region

Most of these errors look similar let us see an 
example



16

SSS (LBP) decoding behavior

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Iterations

Number of bits in error
Number of unsatisfied check nodes

Near-Codewords [MacKay 03]
Trapping Sets [Richardson 03]



17

SSS (LBP) decoding behavior

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coded bits

Pr
ob

ab
ili

ty
 o

f b
it 

in
 e

rr
or



18

Informed Scheduling and Trapping Sets

Solves

Unsatisfied CN

Satisfied CN

Update 3583



19

Informed Scheduling and Trapping Sets

Solves

Unsatisfied CN

Satisfied CN

Update 3584



20

Informed Scheduling and Trapping Sets

Solves

Unsatisfied CN

Satisfied CN

Update 3585



21

Informed Scheduling and Trapping Sets

Solves

Unsatisfied CN

Satisfied CN

Update 3586



22

Informed Scheduling and Trapping Sets

Solves

Unsatisfied CN

Satisfied CN

Update 3587



23

Informed Scheduling and Trapping Sets

Unsatisfied CN

Satisfied CN



24

Conclusions

Scheduling significantly affects the performance 
of loopy BP LDPC decoding
RBP and ARBP are good strategies for a small 
number of iterations or high target error-rates
Node-wise RBP and node-wise ARBP perform 
better than SSS for all iterations
Furthermore, NW-ARBP helps solve trapping set 
errors



25

Open problems

Informed scheduling on the error-floor region
Joint SSS (LBP) and informed scheduling
Extensions to other applications that use loopy BP:

Turbo Codes
Turbo equalization
Joint demodulation and decoding

Extensions to applications outside the 
communications area


	Overcoming LDPC Trapping Sets with Informed Scheduling
	Outline
	Simultaneous (Flooding) Schedule
	Standard Sequential Schedule (SSS)
	Residual Belief Propagation (RBP)
	RBP for LDPC decoding
	Node-wise RBP
	Results
	Complexity
	Results
	Results 802.11n code rate 1/2
	Results 802.11n code rate 5/6
	Why does informed scheduling work faster?
	We understand faster, but why better?
	SSS Errors
	SSS (LBP) decoding behavior
	SSS (LBP) decoding behavior
	Informed Scheduling and Trapping Sets
	Informed Scheduling and Trapping Sets
	Informed Scheduling and Trapping Sets
	Informed Scheduling and Trapping Sets
	Informed Scheduling and Trapping Sets
	Informed Scheduling and Trapping Sets
	Conclusions
	Open problems

