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Outline

Message-passing scheduling
Simultaneous vs sequential loopy BP
Sequential scheduling problem

Informed scheduling strategies:
Residual Belief Propagation (RBP)
Node-wise RBP

Reduced complexity strategies
Informed scheduling and trapping sets
Conclusions and open problems
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Simultaneous (Flooding) Schedule

On every iteration
All variable nodes are 
simultaneously updated
All check nodes are 
simultaneously updated
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Standard Sequential Schedule (SSS)

Update messages 
sequentially:

[Mansour 03] (CN sequence)
[Kfir 03] (VN sequence)
[Hocevar 04] (LBP)
[Sharon 04] (Serial Schedule)
[Zhang 05] (Shuffled BP)
[Radosavljevic 05] 

Has been shown to converge 
at twice the speed than 
simultaneous scheduling
What is the best sequence?
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Residual Belief Propagation (RBP)

Algorithm proposed by Elidan et al. for general 
loopy BP solutions
Define residual as: 

As BP converges, the residuals go to 0
RBP is a greedy algorithm that propagates the 
message with the largest residual

new oldr m m= −
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RBP for LDPC decoding

Propagate message with biggest 
residual
The variable-to-check messages that 
change will have the same residual so 
they are the biggest
Therefore, RBP can be simplified

Propagate check-to-variable message with 
biggest residual
Propagate variable-to-check messages that 
change
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Node-wise RBP

RBP greediness makes it converge faster but 
less often
Node-wise RBP simultaneously propagates all 
the outgoing messages from a check node
The check-node updated is the one that has the 
message with the biggest residual
This means that correcting messages are 
simultaneously send to all variable nodes that 
could be in error
Node-wise RBP converges less fast than RBP 
but more often
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Results
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Complexity

Residual computation requires the values of the 
messages to be propagated
Many of those computations are then “wasted” 
since many of those messages aren’t propagated
Using the min-BP check-node update to 
compute residuals significantly reduces the 
complexity
Approximate RBP (ARBP) and node-wise ARBP 
are the min-BP versions of RBP and node-wise 
RBP respectively



10

Results
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Results 802.11n code rate 1/2
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Results 802.11n code rate 5/6
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Why does informed scheduling work faster?

As mentioned before RBP focuses on the part of 
the graph that has not converged thus there are 
less “wasted” updates
Furthermore, our informed scheduling 
strategies tend to chose to update nodes that 
have recently received new information
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We understand faster, but why better?

Performance plots show that our informed 
scheduling strategies perform not only faster 
but better than SSS
There are many noise realizations that aren’t 
corrected after 200 SSS iterations but are 
corrected after few NW-ARBP iterations
This difference can’t be explained with the 
argument of the “wasted” updates
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SSS Errors

Let us characterize the following type of noise 
realizations

AWGN Channel
SSS (LBP) decoding doesn’t converge after 200 
iterations
NW-ARBP iterations converges after few iterations
Rate ½ 802.11n code
n=1944, k=972
SNR = 1.75 dB, waterfall region

Most of these errors look similar let us see an 
example
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SSS (LBP) decoding behavior
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SSS (LBP) decoding behavior
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Informed Scheduling and Trapping Sets
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Informed Scheduling and Trapping Sets
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Informed Scheduling and Trapping Sets
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Informed Scheduling and Trapping Sets
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Informed Scheduling and Trapping Sets
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Informed Scheduling and Trapping Sets
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Satisfied CN
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Conclusions

Scheduling significantly affects the performance 
of loopy BP LDPC decoding
RBP and ARBP are good strategies for a small 
number of iterations or high target error-rates
Node-wise RBP and node-wise ARBP perform 
better than SSS for all iterations
Furthermore, NW-ARBP helps solve trapping set 
errors
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Open problems

Informed scheduling on the error-floor region
Joint SSS (LBP) and informed scheduling
Extensions to other applications that use loopy BP:

Turbo Codes
Turbo equalization
Joint demodulation and decoding

Extensions to applications outside the 
communications area
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