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Abstract— This paper describes and analyzes low-density
parity-check codes for a variety of different rates that all
share the same fundamental decoder architecture. This
technique allows the design of programmable analog LDPC
decoders for different rates. An important advantage of
this approach is that all effective code rates have the same
blocklength as opposed shortening and puncturing that re-
duce the effective blocklenght as the rate changes. The pro-
posed design method maintains good graphical properties
and hence low error floors for all rates.

Index Terms— Analog Decoding, Channel coding, Low-
Density Parity-Check (LDPC) codes, Multiple-rate codes.

I. Introduction

PRACTICAL communication systems often need to op-
erate at several different rates. To keep the imple-

mentation as simple as possible, the same basic hardware
architecture should be able to decode the encoded data
at all possible rates. One way to achieve this with Low-
Density Parity-Check (LDPC) codes is to generate higher-
rate codes by puncturing lower-rate codes as proposed in
[1], [2] and [3]. However, puncturing reduces the code
blocklength, which degrades performance. For the highest-
rate codes, where the puncturing is most severe, the per-
formance degradation is significant when compared to an
LDPC code with the original blocklength.

Another way to achieve this is to generate lower-rate
codes by shortening higher-rate codes, as described in [2].
As with puncturing, shortening reduces the code block-
length, which degrades performance. For the lowest-rate
codes where the shortening is most severe, the performance
degradation is significant when compared to an LDPC code
with the original blocklength.

The row-combining technique, introduced in [4], gener-
ates LDPC codes with a structure that supports a wide
range of rates while maintaining a constant code block-
length. The basic idea is to generate higher rate codes
(called effective codes in this paper) from a low-rate code
(called the mother code in this paper) by reducing the num-
ber of rows in its parity check matrix. This reduction is
achieved by linearly combining the rows, which is equiva-
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lent to replacing a group of check nodes with a single check
node that sums all the edges of the original check nodes.

In this paper these codes will be called Strict Row Com-
bining (SRC) codes. SRC codes have good behavior at
some high rates, but there is a loss in performance at low
rates due to the strict constraints row-combining places in
the design of the code in [4].

A performance improvement is obtained by adding a few
edges in the graph as the rows are combined. This allows
the code to have good variable-node degree distributions
at each rate. In this paper these codes will be called Row
Combining with Edge Variation (RCEV) codes.

In general, row combining allows the analog decoder de-
signer to build one circuit that can decode codes of different
rates by simply switching on and off some connections in
the circuit. This makes analog decoders very attractive
for applications that need a wide variety of rates where
puncturing and shortening would significantly shorten the
effective blocklength of the codes.

Section II describes the row-combining approach. Sec-
tion III explains how row combining can be used to build
a programable analog decoder. A design method for SRC
codes is proposed in Section IV. Section V describes the
RCEV code design approach that results in an improve-
ment in performance with respect to SRC codes. Section
VI compares the performance of SRC, RCEV, single-rate
stand-alone codes and punctured codes. Section VII deliv-
ers the conclusions.

II. Row-Combining Codes

Consider the example mother LDPC matrix in (1),

H 1
2

=




1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 1 1




. (1)

This is a rate-1/2 mother LDPC matrix with blocklength
12 whose graph representation can be seen in Fig. 1. This
is by no means a good LDPC code but the reader should
see it as an example to explain row combining. Fig. 1
also shows that replacing each pair of nodes with a new
single node transforms this rate-1/2 code into a rate-3/4
code. This is equivalent to summing the rows of the mother
LDPC matrix that correspond to the check nodes that are
combined, since the check nodes in the example do not
have any common neighbors. In general, the mother matrix
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Fig. 1. Graph of a rate-3/4 LDPC code obtained from a rate-1/2
LDPC code via row combining.

should be designed so that the rows that will be combined
don’t have ones in the same column.

The following is the effective rate-3/4 LDPC matrix that
resulted from the row combining described in Fig. 1, where
the resulting row 1 comes from combining rows 1 and 3 of
the mother matrix, row 2 comes from combining rows 2
and 4 and row three results from the combination of rows
3 and 6:

H 3
4

=




1 1 1 0 0 0 1 1 1 0 0 0
1 0 0 1 1 0 0 0 1 1 1 0
0 0 1 0 1 1 1 0 0 0 1 1


 . (2)

It is easy to see that many different rates can be obtained
from the same mother code by changing the way rows are
combined. This method changes the rate without changing
the blocklength or the basic architecture of the decoder as
explained in section III. Furthermore, the variable-node
degree distribution remains the same as the rate changes.

III. Impact of Row Combining on Analog
Decoding

Analog decoders of turbo-like codes were introduce si-
multaneously in 1998 by Hagenauer [6] and Loeliger et al.
[7]. A good in-depth look to this alternative decoding hard-
ware can be found in [8]. Analog decoders are circuits
that oscillate until an equilibrium state is reached. Ana-
log decoding shows promise because the decoders require
low power and the convergence is typically faster than with
digital decoders. Digital decoders can use the same hard-
ware to decode different LDPC codes by re-programming
the chip. Their analog counterparts are not programable,
and they need different circuits to decode different LDPC
codes. Since many applications need various codes with
different rates, the lack of programmability of analog de-
coders makes them less attractive than digital decoders for
some applications.

However, row-combining codes allows programable ana-
log decoders. If row combining is used, an analog decoder
that works for all the rates would consist of the circuit that
decodes the mother code, with switches that turn on and

off the connections to the new check nodes as shown in Fig.
1 that increase the rate of the code.

IV. Design of SRC Codes

This section proposes a design method for row-combining
codes given the blocklength of the code and the mother
and effective rates. Since only row combining is allowed
to generate the high-rate matrices, these codes are called
Strict Row-Combining (SRC) codes.

The first step consists on the selection of both the
variable-node degree distribution and the check-node de-
gree distribution. As seen in Fig. 1, the number of neigh-
bors of the variable nodes remains the same as the rate
changes, thus the variable-node degree distribution will also
remain unchanged. This implies that this degree distribu-
tion can not be optimized for the different rates of the code,
so a degree distribution that works reasonably well for all
the rates must be chosen.

A concentrated degree distribution is a degree distribu-
tion in which every node has the same degree or all the
degrees are within one of each other. Concentrated check-
node degree distributions tend to approximate theoretical
optimality [9].

The check-node degree distributions depend on the selec-
tion of the rows to be combined. There is a simple way to
achieve a concentrated check node degree distribution for
all the codes if the desired rates have the (a − 1)/a form.
The mother matrix will be a square matrix with a concen-
trated check node degree distribution. This square matrix
corresponds to a rate-0 LDPC code. Combining a rows at
a time, generates a code with rate (a− 1)/a as long as the
total number of rows of the mother matrix is a multiple of
a. This effective code will have a concentrated check node
degree distribution. This shows that SRC codes can main-
tain a concentrated check node degree distribution among
all its rates if they all are in the (a− 1)/a form.

The only thing left is to assign the positions and right
cyclic shifts of the non-zero sub-matrices in the mother
code. It is well known that the performance of the LDPC
codes is limited by the fact that their graphs contain cycles
which compromise the optimality of the belief propagation
decoding. These cycles generate error floors in the perfor-
mance of LDPC codes in the high SNR regions. However,
the negative effect of the cycles can be reduced using graph
conditioning techniques such as those described in [10] and
[11]. Therefore, the mother and effective matrices of SRC
codes will be generated using simultaneous graph condi-
tioning as described in [4].

V. Row Combining with Edge Variation (RCEV)
Codes

A. Disadvantages of SRC Codes

The main disadvantage with SRC codes is that the
row-combining approach doesn’t permit different variable-
node degree distribution for different rates. This is prob-
lematic since in principle different rates require different
variable-node degree distributions for theoretical optimal-
ity, as stated in [9].



One of the most critical elements in the variable-node
degree distribution design is the selection of the number of
degree-two variable nodes the codes have. In order to have
good error floor properties the number of degree-two vari-
able nodes can not exceed the number of check nodes as
shown in [12]. Having more degree-two nodes than check
nodes implies that there will be cycles composed by only
degree-two nodes and check-nodes. These cycles are stop-
ping sets and have been shown to degrade the performance
of the codes [10]. These cycles will grow smaller and more
numerous as the number of degree-two nodes increases, fur-
ther worsening the performance of the codes.

This implies that the maximum number of degree-two
variable nodes for a family of SRC codes is given by the
number of check nodes of the highest rate effective code.
This limits the performance of the lower rate codes since
their optimal degree-distribution generally requires a sig-
nificantly larger number of degree-two variable nodes [12].
The difference in the distributions depends on the rates of
both the mother code and all the effective codes. The loss
in performance due to this limitation increases as the range
of possible rates of the SRC codes grows larger.

B. Edge Variation

The previously presented problem can be avoided by im-
proving the row-combining method. By allowing the addi-
tion of edges as rows are combined, the degree-distributions
for the different codes can be different. The key to main-
taining a simplified decoder architecture is to make the
number of additions small compared to the total number
of edges in the graph.

The edge-addition strategy consists of assigning an opti-
mal variable-node degree distribution to the mother code.
It will be assumed that the number of degree-two nodes is
equal to the number of check nodes of the mother code ma-
trix which is a worst case scenario. Now, every time a row
is combined, an edge is added to a degree-two variable-
node so that the maximum number of degree-two nodes
continues to be the number of check nodes in the graph. If
the number of degree-two variable nodes of the mother ma-
trix is fewer than the number of check nodes, fewer edges
need to be added, which is better since it requires fewer
additions. This is the reason why having the number of
degree-two nodes equal to the number of check nodes of
the mother code matrix is the worst-case scenario.

RCEV codes are designed using the design steps for SRC
codes given in section IV, along with the edge variation
techniques described in this section.

VI. Performance Comparison

Fig. 2 shows the AWGN performance of a SRC code and
four stand-alone codes with rates corresponding to those of
the effective codes of the SRC code. The mother code is a
rate-0 code as explained in section IV. The effective codes
have rates 1/2, 2/3, 3/4, and 5/6. The blocklength of the
codes is 1944 bits and a maximum of 15 iterations was used
in the simulation.

Fig. 2 shows that the SRC codes perform very well under
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Fig. 2. Performance of SRC and Stand-Alone (SA) codes with block-
length 1944 on an AWGN channel. Maximum number of itera-
tions equal to 15.

these conditions (blocklength, and number of iterations).
The effect of the non-optimality of the variable-node de-
gree distribution for the rate-1/2 code is not noticeable
with 15 iterations. This is because for such a small number
of iterations performance is dominated by the high-degree
variable nodes. Thus, the lower-than-optimal number of
degree-two nodes of the rate-1/2 code does not dramati-
cally affect performance. For fifty iterations, the rate-1/2
code performance is affected, as we’ll see shortly.

This comparison at 15 iterations is practically important
since there are many applications that only allow a small
number of iterations of the digital decoder which translates
into a small maximum amount of time for analog decoders.
For example, in most wireless applications the channel de-
coding must be done in a very small amount of time.

Fig. 3 presents another comparison of the performance
on an AWGN channel of a SRC code, four stand-alone
codes, and a RCEV code. The row-combining codes have
effective rates 1/2, 2/3, 3/4 and 5/6. The blocklength of
the codes is 1944 bits and a maximum of 50 iterations was
used in these simulations.

As expected, Fig. 3 shows the loss in performance of
the SRC low rate codes. The SRC rate-1/2 code show a
performance gap of more than 0.2 dB with respect to the
stand-alone codes with the same blocklength and this is
due to their inadequate variable-node degree distribution.

As observed in Fig. 3 the FER of the lower rates of the
RCEV code are significantly better than those of the lower
rates of the SRC code and close to the stand-alone codes.
This gain follows from the improved degree distributions
of the RCEV codes over those of the SRC codes. For the
high rate codes there is very little difference between the
performances of the RCEV and SRC codes, since their de-
gree distributions are very similar. RCEV techniques allow
the optimization of the degree distributions for each rate.

A comparison in the performance of RCEV codes and
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Fig. 3. Performance of SRC, RCEV, and Stand-Alone (SA) codes
with blocklength 1944 on an AWGN channel. Maximum number
of iterations equal to 50.

punctured LDPC codes is shown in Fig. 4. The punctured
codes correspond to the ones presented in [3]. The RCEV
code was designed to have a very similar degree distribu-
tion to the punctured code so that the comparison would
be fair. The blocklength of the punctured codes is 1024
while the blocklength of the RCEV codes is 1030. There
is a clear performance gap between the higher rate codes.
This is due to the fact that puncturing reduces the effective
blocklength of the code.

VII. Conclusions

As we know from information theory, channel codes ap-
proach capacity-achieving performance as blocklength goes
to infinity. Both theory and practice confirm that codes
with longer blocklengths perform better. Recently, punc-
turing and shortening have been used to provide a variety
of rates in the context of a single decoder architecture,
but these techniques shorten the code blocklength as rates
move away from the rate of the mother code.

Multiple-rate LDPC codes that avoid this blocklength re-
duction can be generated using a row-combining approach.
SRC codes allow the use of a simple decoder that can be
used to decode the mother and all the effective rates. The
design of these codes impose some constraints that barely
affect the performance when the codes are used at a small
number of iterations (small maximum decoding time). As
the maximum number of iterations (maximum decoding
time) used increases, the performance gap between SRC
codes and stand-alone codes also increases.

RCEV codes relax these constraints, and show a gain in
performance with respect to SRC codes for a large number
of iterations (large maximum decoding time). This increase
in performance comes at a cost of architecture complexity.
The performance of RCEV codes is very close to the perfor-
mance of stand-alone codes for a large number of iterations.

These codes become attractive for applications that re-
quire both performance close to capacity and a low decoder
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Fig. 4. Performance of RCEV codes and punctured LDPC codes.

complexity.
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