Constant-Blocklength Multiple-Rate LDPC Codes for Analog-Decoding Implementations

Andres I. Vila Casado
Stefano Valle*
Wen-Yen Weng
Richard D. Wesel

*Stefano Valle is with STMicroelectronics
Outline

- Motivation
- Row-combining method
- Benefits of row-combining for an analog-decoder implementation
- Strict Row-Combining (SRC) codes design
- Row-Combining with Edge Variation (RCEV) codes
 - Shortcomings of SRC codes
 - Design technique of RCEV codes
- Conclusions
Motivation

- Practical communication systems need to operate at several different rates.
- The same basic hardware should be able to decode the data at all possible rates.
- For LDPC codes, this can be achieved by puncturing [Ha 02] or shortening [Jones 04].
- Both puncturing and shortening reduce the code blocklength as rate varies away from the mother code rate, which degrades performance.
- We present the row-combining method to generate multiple-rate LDPC codes that maintain the same blocklength across all the rates.
Rate-1/2 Mother LDPC Matrix

\[
H_{R=1/2} = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{bmatrix}
\]
Row-Combining to produce rate 3/4

\[H_{R=1/2} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \ end{bmatrix} \]
Row-Combining to produce rate $\frac{3}{4}$

$$H_{R=\frac{3}{4}} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$
Row-Combining to produce rate $3/4$

$H_{R=3/4} = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1
\end{bmatrix}$
Row-Combining to produce rate 5/6 and 2/3

\[H_{R=5/6} = \begin{bmatrix}
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{bmatrix} \quad H_{R=2/3} = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\end{bmatrix} \]
Analog Decoders

- Analog circuits that perform the operations needed in message passing are built and connected according to the graph of the code.
- Thus the decoder is a big analog circuit that oscillates until an equilibrium state is reached (or a maximum amount of time has passed).
- Show promise given that they require low power and are faster than their digital counterparts.
- A big setback is the lack of programmability (one analog decoding circuit per code).
- Row-combining codes allows different codes of different rates to be decoded with the same basic analog circuit.
Row-Combining and Analog Decoding

The higher-rate code is decoded by turning on the extra check-nodes and connecting them to the circuit.
Mother Code Check Nodes

Network of Soft-XOR Probability Gates
Strict Row-Combining (SRC) Codes

- Higher-rate codes are generated using only row-combining.
- All higher-rate codes have the variable-node degree distribution of the “mother” code.
- The check-node degree distribution of the higher-rate codes is given by the check-node degree distribution of the “mother” code and the row-combining strategy.
Design of SRC Codes

- Chose rates and blocklength.
- Chose variable-node degree distribution.
- Chose the rows to be combined in order to generate the higher-rate codes.
- Generate simultaneously the H matrices of the code.
The variable-node degree distribution is the same for all the rates.

The optimal variable-node degree distribution [Richardson 01] changes with the rate.

Thus, the variable-node degree distribution won’t be optimal for some of the chosen rates.
The check-node degree distribution should be concentrated according to theory [Richardson 01].

If the mother code has a uniform check-node degree distribution, combining equal-size groups of rows maintains a uniform check-node degree distribution.

In our previous examples, if the rate-1/2 “mother” code has a concentrated degree distribution, then the rate-3/4 and rate-5/6 codes also have a concentrated degree distribution.

Two check nodes that will be combined can not have any common neighbors.

The overall number of row combinations across all rates must be as low as possible.
H Matrix Design

- Randomly generate a column according to the degree distribution and rows that will be combined.
- Check if the column satisfies graph constraints set for all the rates
- If the constraints are satisfied, move to the next column and if not, throw it away and repeat the process.
SRC vs Stand-Alone Codes

Iterations = 15 Blocklength = 1944

Eb/N0 vs FER graph with different code rates (1/2, 2/3, 3/4, 5/6) and SRC vs Stand-Alone (SA) codes.
SRC vs Stand-Alone Codes

Iterations = 50 Blocklength = 1944
Non-Optimality of SRC Codes

- A fixed variable-node degree distribution limits the performance of SRC Codes
- Specifically, the main problem is related to the few degree two variable nodes for the lower rate codes
Degree-2 Variable Nodes

- Having more degree-2 variable nodes than check nodes guarantees the presence of cycles of degree-2 variable nodes which are stopping sets.
- Thus, the maximum amount of degree-2 variable nodes in a SRC code is the amount of check nodes of the highest rate code.
- This will limit the performance of the lower rate codes.
SRC vs Stand-Alone Codes

Iterations = 50 Blocklength = 1944
SRC vs Stand-Alone Codes

Iterations = 15 Blocklength = 1944
RCEV codes allow minor edge variation as rows are combined.

Edge variation is done by adding edges to degree-2 variable nodes as the rows are combined.

This allows the lowest-rate LDPC code to have an “optimal” number of degree-2 variable nodes while keeping the highest-rate LDPC code without degree-2 variable node cycles.
Row Combining with Edge Variation
SRC vs SA vs RCEV

Iterations = 50 Blocklength = 1944
Row Combining vs Puncturing

- Eb/No
- FER

Graph showing the performance of different puncturing rates (1/2, 4/5, 9/10) and RCEV (Row Combining) with varying Eb/No.
Conclusions

- Multiple-rate LDPC codes can be generated using a row-combining approach.
- All the codes can be decoded using the same analog circuit by turning on and off some parts of the circuit and switching on and off some connections.
- The advantage of the approach is that the codes have the same blocklength, thus maintaining good performance at all the rates.
- Also, graph conditioning algorithms can be used to design of the codes, producing good error floor performance at all the rates.
- For a large number of iterations (maximum decoding time), allowing edge variation improves the performance of the codes.