
High Speed Channel Coding Architectures for the
Uncoordinated OR Channel

H. Chan1, M. Griot1, A. Vila Casado1, R. Wesel1, I. Verbauwhede1,2

{herwin, mgriot, avila, wesel, ingrid }@ee.ucla.edu

1 Electrical Engineering Dept.
UC Los Angeles, USA

2 Dept. ESAT/SCD-COSIC
K.U.Leuven, Belgium

ABSTRACT
Though it promises high bandwidths, the optical medium is not
popular in local area networks. This is because current optical
networks do not offer the ease of use and setup that an
uncoordinated multiple access network such as Ethernet offers.
By careful design and implementation of high speed channel
coding architectures, we show that it is possible for optical
networks to exhibit these desirable properties while maintaining
high optical transmission rates. This paper presents an
interleaver-division multiple access (IDMA) architecture
implemented with a rate 1/20, 64-state Viterbi decoder and a
word-based interleaver. These structures allowed us to achieve
optical data rates of 2Gbps in FPGA implementation and 5.4Gbps
for 0.18um ASIC implementation. The techniques presented can
be adapted for other similar architectures.

1. Introduction
This paper describes the design of high speed signal processing
architectures that are used to implement an uncoordinated access
network in an OR channel. Specifically, an interleaver-division
multiple access (IDMA) architecture implemented with a fully
parallel Viterbi decoder and a word-indexed interleaver is
discussed. To understand some of the design decisions, it is
important to understand where such a channel exists and how we
can use it to improve current networking standards.

Ethernet is a very popular standard for networking because of it's
uncoordinated properties. Nodes can access the network at any
time without informing any higher level authority. When two
nodes happen to transmit at the same time, a collision is detected
and the two nodes wait a random amount of time before
attempting to re-transmit. In cases where there are many nodes in
the system trying to transmit, Ethernet degrades rapidly [1].
Total useful network bandwidth is greatly reduced. In addition,
the delay in which a message experiences before reaching the
receiver is increased. This situation is caused by the inability of
the system to transfer data when a collision occurs.

This need not be the case. In the CANbus network [2], collisions
between data of several transmitters are used to determine the
priority of the messages. Though CANbus only allows collisions
in the header of a data transmission to determine priority, it
illustrates that electrical signals can be used as an OR channel,
and that data can be transmitted when a collision occurs.

An OR channel is a channel that behaves like an N-input OR gate,
where N is the number of nodes transmitting simultaneously. If

we assume on-off keying, if any node transmits a '1' data bit, all
the receivers will see a '1' bit in the channel. If all nodes transmit
a '0' bit, then the receivers will see a '0' in the channel. In the
CANbus network, the '1' bit is called the dominant bit since its
value hides the presence of any '0' bits. A passive optical star
network can also be used as an OR channel. Physically, the
dominant '1' bit is represented by the presence of light and the '0'
bit is presented by the absence of light.

In our system, we assume the presence of collisions in the OR
channel and implement novel channel codes to ensure that data is
correctly transmitted. The nodes in the system are assumed to be
uncoordinated and need not even be aware of the existence of
other nodes in the system. When applied to the optical channel,
our system is able to combine uncoordinated multiple access
properties with optical bandwidth. There are no transmission
delays and throughputs are guaranteed regardless of the number
of simultaneously transmitting nodes.

This paper is organized as follows. Section 2 introduces the
general channel coding architecture and discusses the
implementation details of the Viterbi decoder and interleaver
blocks specifically. Section 3 shows the speed and size of the
result for both ASIC and FPGA targets and Section 4 draws some
conclusions.

2. Channel Coding Architecture
We developed a channel coding architecture to demonstrate the
feasibility of uncoordinated access in the optical channel at
optical data rates (Figure 1). A rate 1/20 code has been designed
to protect data from interference in an OR channel.

Reed Solomon
Code

(255, 237)

Trellis
Encode

1/20

interleaver

sync

Reed Solomon
Decode

(255, 237)

Trellis Decode
1/20

deinterleaver

sync

Bit
align

OR
channel

interference

Large feedback loop
for rx synchronization

Figure 1. Channel coding architecture

During code design, the interference signal was assumed to have
a random uniform distribution, therefore interleavers are used

after channel coding to randomize the position of the code bits.
This combination allows us to recover data at a BER of 1e-5. A
Reed Solomon block code is added at the back end to reduce the
BER further to 1e-9. Since our target physical layer is the optical
channel, data throughput is the main design criterion. The Viterbi
decoder and interleaver blocks have been identified as the
bottlenecks of the system and novel architectures are developed
to mitigate their effects.

2.1 Trellis Encoder
To protect data in the OR channel, we designed a non-linear
binary trellis code that uses 20-bit codewords and contains 64
states. The design of the encoder consists of a 6 bit register used
to address memory that contains all the 128 possible codewords.
Each clock cycle a new data bit is shifted into the register and a
new 20 bit codeword is produced. Details of the trellis code
design procedure are presented in [3].

2.2 Viterbi Decoder
In DSP implementations, the Viterbi decoder focused on the
acceleration of a single branch metric calculation and careful
memory management for storing the results. This means for
decoding a single code word, several clock cycles (depending on
the number of states in the trellis code) are needed. Hardware
architectures such as [4, 5] has focused on area efficient
architectures. For common wireless applications, such as
802.11b and 802.16a, [6] describes a fast parallel hardware
implementation that decodes at 160Mbps on a FPGA.

For our non-linear trellis code that uses 20-bit codewords and
contains 64 states, a traceback length of 35 is used in the Viterbi
decoder. The technique used to design the decoder is to
parallelize and pipeline all operations as much as possible. Care
was taken to find structures where feedback paths are as short as
possible. The overall architecture of the Viterbi decoder is shown
in Figure 2.

dist

dist
cmp+

sel

dist

dist
cmp+

sel

dist

dist

…

Shf reg

Path Metric

Path

Sorting
Network

Received codeword

Minimum
path
metric

-

Figure 2. Viterbi decoder architecture

The Viterbi decoder can be divided into several different stages,
each of these stages will be discussed individually in detail:
• calculation of metric
• accumulation and selection of metric
• finding of minimum path
• subtraction of accumulated result

2.2.1 Branch Metric
Because the Viterbi decoder is being designed for the OR channel,
the branch metric used is different from traditional designs. In an

OR channel, it is impossible to receive a 0 bit when a 1 bit has
been transmitted by any of the nodes. Because of this, in the
comparison between the received codeword and branch
codeword, if any of the received bits is 0 when a 1 is expected the
branch metric is set to a maximum value of 20. Errors in which a
1 is received when a 0 is expected are summed together to give
the branch metric in the normal case. The logic used to
implement this function is shown in Figure 3. In our 64 state
codes, 128 branch metrics are calculated in parallel; the logic
used to calculate this function makes up one stage in our pipeline.

input code

input • code or

sum

<

Input
codeword

State
distance

’20’

20 20

20

5

10

10

10

5

10

Minimum
distance

Figure 3. Calculation of path metric

2.2.2 Accumulation and Selection
There are two possible branches that lead to each of the 64 state
nodes. The path with the smallest path metric (which is an
accumulation of past branch metrics) is chosen as the most likely
path that was taken to reach the node. Path metric calculation is
performed by adding the path metric of the source nodes to their
respective branch metrics. The two sums are then compared and
the path with the lowest metric is selected. Sixty-four of these
calculations are performed in parallel and constitutes a single
stage in our pipeline. Further pipelining of this stage is
impossible since the calculation of the path metric involves a
feedback path from previous path metric calculations. Figure 3
shows the implementation of this function.

2.2.3 Finding Minimum Path
The most likely bit that was transmitted is the bit at the head of
the path with the lowest path metric. At each cycle, 64 path
metrics are calculated and their respective paths are accumulated.
A sorting network is used to select the path with the smallest
accumulated metric. A minimum time sorting network based on
Batcher’s odd-even merging algorithm [7] is used. This is a
recursive algorithm that sorts a group of unordered numbers
(Figure 4) and contains the following three steps:

1. Divide the numbers in to two groups
2. Sort the two groups of numbers separately
3. odd-even merge the two groups of numbers.

64 numbers
unsorted

64 numbers
sorted

Odd-even merge

1+ceil(log232)

Sort 32 numbers 32
sorted

32
sorted

32
unsorted

32
unsorted

Merge
16

Sort 16

Sort 16

Figure 4. Block diagram of sorting network

The algorithm can be completely implement using only two input
comparators. For the sorting of n numbers, the number of
comparators grows in)log(2nnO . The delay through the

network is
��
�

�
��
�

� +
2

log1 n . For our system of 64 states, this

translates to 543 comparators with a delay of 21 comparators.
However, since there are no feedback paths in the sorting
algorithm, the architecture can be fully pipelined to achieve very
fast throughputs.

2.2.4 Subtraction of accumulated result
The minimum path metric is fed back to the Viterbi decoder and
subtracted from all 64 accumulated path metrics. This is to
ensure that the register values do not overflow. The sorting
network used to find the minimum path is heavily pipelined, so
the value used is several cycles behind the values that are
currently calculated. This delay in the results translates to larger
possible accumulated path metrics which may necessitate the use
of larger operators (like adders) with may slow down the system.
Therefore, care was taken to pipeline the sorting network only to
the degree that is necessary to avoid unnecessary increases in
hardware and possible increases in critical path delays. The
sorting network in our design is pipelined to have 6 cycles of
delay.

2.3 Interleaver
Interleavers, which permute the order of data bits, are commonly
used to randomize the data stream to improve the performance of
error correcting codes. Much work in this area has been focused
on the design of interleavers in conjunction with convolutional
and turbo codes. Interleaver specifications are found in the IEEE
802.16a, 802.11a/g and 802.11n standards. The interleavers
found in these systems are different from the ones in which we
design in two significant ways:
1. The interleaver pattern is static for a particular standard; in

our system, they are used to protect a transmission from
interference in an OR channel.

2. The supported data rates are in the order of 100Mbps; optical
channels support data rates that are at least an order of
magnitude faster.

In our system, each transmitter uses a unique interleaver pattern.
This pattern is chosen from a set of patterns determined at design
time to have good cross correlation properties. The role of the
interleaver in our system is similar to its role in an IDMA system.
In that system [8], interleavers are used to distinguish nodes in a
wireless CDMA system and increase channel capacity. The
interleaver design, therefore, must be flexible enough to
accommodate a family of permutation sequences that work well
together. Interleaver design for IDMA has been examined [9],
however, the focus has been on performance efficiency rather
than high-speed implementation. As a consequence, those results
are unable to support our high data rates.

A de-interleaver is used at the receiver to recover the initial
sequence. Its architecture is the same as the interleaver
architecture; the permutation sequences, however, are run in
reverse order to recover the original uninterleaved signal.

For our 1600-bit interleaver implementation, we adopted a
randomized write-by-row, read-by-column scheme. As seen in

Figure 5, data can be broken into square blocks of 400 bits. Each
of the 20 rows and columns are indexed. Groups of 20 incoming
bits are written to a randomly indexed row. When the data block
is filled, the bits are read out of the block one column at a time in
a random order.

61 62 80

…
41 42 60

…
21 22 40

…
80

61
62

…

60

41
42

…

40

21
22

…

20

1
2

…

1 2 20

…
Incoming
bits

Outgoing
bits

Read
indices

Write indices

(a) (b)
Figure 5: Indexed write-by-row, read-by-column interleaver

The 400-bit-square block forms the basic unit of our interleaver
design. In order to produce the necessary randomness, four of
such blocks were used in our final implementation. Like the
indexing within the blocks, the inputs and outputs of the four
blocks are accessed independently and randomly.

This scheme provides us with enough randomness to operate on
the optical channel. In our interleaver design, 4 square blocks of
400 bits are used, giving us a total of 80 indexed locations. This
corresponds to a design space of (80!)2 > 1e+237 possible
permutation sequences to choose from. For the desired channel
rate of 2 Gbps, using the 20-bit wordsize of our trellis code, our
target operating frequency for the interleaver is 100MHz.

2.4 Reed Solomon Code
When the Trellis decoder block makes an error, the errors usually
come in a burst of a few bits at a time. A Reed Solomon (RS)
code is a block code that operates on bytes at a time. This makes
it a very good choice to correct the residual errors and bring the
final BER to below 1e-9. A standard (255,237) RS code was
selected.

Since timing is not critical in this block, a standard architecture
design is used [10]. The data rate at the output of the NL-TCM
decoder is 100Mbps. Since the Reed Solomon code operates on
data blocks of 255 bytes (2040 bits), the time budget for the RS
decoder is 20.4us. We clocked the module at 50MHz, and in the
worse case the decoding operation takes 856 cycles (17.1us) to
complete.

3. Implementation Results
The coding structures were implemented in both FPGA and ASIC
targets and results are discussed in the following sections.

3.1 FPGA
The system blocks were implemented on the VirtexII-Pro FPGA
from Xilinx. Table 1 summarizes the size various blocks in the
design. The critical period is given for the transmitter and
receiver.

Table 1: Size and speed of transmitter and receiver blocks
implemented on the VirtexII-Pro FPGA

 Size
(slices)

Critical
period (ns)

Transmitter
Reed Solomon encode 189 5.3
NL-TCM encode 34 3.4
Interleaver 3387 7.7

Receiver
Reed Solomon decode 3686 9.0
NL-TCM decode (Viterbi) 10504 10.3
Interleaver 3387 7.7

The transmitter is implemented on the VirtexII Pro XC2VP20
FPGA which is contains 9,230 slices of logic. Each transmitter
design occupies 40% of the available area. The receiver is a
significantly larger design and is implemented on the XC2VP50
which has a capacity of 23,616 slices. The receiver design
occupies 70% of the available area. The maximum throughput
for an FPGA implementation is 2.0Gbps channel speed and is
limited by the Viterbi decoding block.

3.2 ASIC
The system blocks were synthesized using Synopsis Design
Compiler. The TSMC 0.18um CMOS standard cell library with
conservative wire load model was used. Table 2 summarizes the
size various blocks in the design. The critical period is given for
the transmitter and receiver.

Table 2: Size and speed of transmitter and receiver blocks
synthesized in 0.18um ASIC

 Size
(Kgates)

Critical
period (ns)

Transmitter
Reed Solomon encode 3 1.6
NL-TCM encode 9 1.3
Interleaver 39 3.7

Receiver
Reed Solomon decode 29 10.3
NL-TCM decode (Viterbi) 239 1.4
Interleaver 39 3.7

For the ASIC implementation, the receiver is limited by the Reed
Solomon decoder block to a channel speed of 4.6Gbps. The
implementation of this block, however, is not optimized and there
have been published results showing decoders that can handle
channel rates of up to 50Gbps. If one of these implementations is
used, the maximum throughput for an ASIC implementation is
5.4Gbps channel speed.

It is interesting to note that the interleaver is the bottleneck in the
ASIC while the Viterbi decoder is the bottleneck for FPGA. This
is due to increased routing delays within blocks that take up a
large area in the FPGA. Since the Viterbi decoder is at least 3
times larger than the interleaver block, the effect is more
pronounced.

4. Conclusions
An uncoordinated multiple access system using the optical
channel was introduced in this paper. This was accomplished by

careful design of a non-linear trellis code combined with
interleavers to differentiate the nodes in the system. To support
the high optical data rates, new coding architectures were
developed that took advantage of data parallelization and
pipelining techniques.

In addition to fully parallelizing the Viterbi architecture, care was
taken to minimize computational feedback paths in the system.
The feedback paths that existed were kept small. This allowed us
to pipeline the design to give the minimum critical path and
therefore the maximum throughput. In the design of the
interleaver, data was processed using 20-bit words. A novel
write-by-row, read-by-column scheme allows fast processing of
bits while maintaining the necessary freedom to choose good
permutation patterns.

The work done on uncoordinated access in optical networks
seems to be a very attractive idea for LANs that require high
bandwidth. Our implementation shows that current off the shelf
technology can be feasibly used to build such a system. The
architectures that we introduce in this paper can support
throughputs of up to 2.0 Gbps for FPGAs and 5.4 Gbps for
0.18um standard cell ASICs. In addition, the techniques
presented here can be used in other high speed channel coding
designs.

Acknowledgements
This work was supported by the Space and Naval Warfare
Systems Center – San Diego (contract No. N66001-02-1-8938).

References
[1] D. R. Boggs, J.C. Mogul, and C.A. Kent, “Measured Capacity of

an Ethernet: Myths and Reality,” ACM SIGCOMM ’88
Symposium on Communications Architectures and Protocols, pp.
222-234.

[2] CANbus specification
http://www.semiconductors.bosch.de/de/20/can/index.asp

[3] M. Griot, A. Vila Casado, W. Y. Weng, H. Chan, J. Basak, E.
Yablonovitch, I. Verbauwhede, B. Jalali, and R. D. Wesel,
“Interleaver-Division Multiple Access on the OR Channel,” First
Annual Workshop on Information Theory and its Applications,
San Diego, CA, February 2006.

[4] Y. Zhu and M. Benaissa, “A Novel ACS Scheme for
Area-Efficient Viterbi Decoders,” 2003.

[5] M. Guo, O. Ahmad, M. Swamy, and C. Wang, “A Low-Power
Systolic Array-Based Adaptive Viterbi Decoder and its FPGA
Implementation,” 2003.

[6] A. Abdul Shakoor, V. Szwarc, and T. Kwasniewski, “High Speed
Viterbi Decoder for W-LAN and Broadband Applications,”
2004.

[7] D. Knuth, The Art of Computer Programming Vol. 3 Sorting and
Searching, Addison-Wesley, Reading, MA, 1973, pp.229-232.

[8] L. Ping, L. Liu, and W. K. Leung, “A Simple Approach to
Near-Optimal Multiuser Detection: Interleaver-Division Multiple
Access,” IEEE Wireless Communications and Networking
Conference, pp. 391-396, 2003.

[9] I. Pupeza, A. Kavcic, and L. Ping, “Efficient Generation of
Interleavers for IDMA,” accepted IEEE International Conference
on Communications 2006.

[10] based on code found at http://www.humanistic.org/~hendrik/

