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ABSTRACT 
Though it promises high bandwidths, the optical medium is not 
popular in local area networks.  This is because current optical 
networks do not offer the ease of use and setup that an 
uncoordinated multiple access network such as Ethernet offers.  
By careful design and implementation of high speed channel 
coding architectures, we show that it is possible for optical 
networks to exhibit these desirable properties while maintaining 
high optical transmission rates.  This paper presents an 
interleaver-division multiple access (IDMA) architecture 
implemented with a rate 1/20, 64-state Viterbi decoder and a 
word-based interleaver.  These structures allowed us to achieve 
optical data rates of 2Gbps in FPGA implementation and 5.4Gbps 
for 0.18um ASIC implementation.  The techniques presented can 
be adapted for other similar architectures.  
 
 
1.  Introduction 
This paper describes the design of high speed signal processing 
architectures that are used to implement an uncoordinated access 
network in an OR channel.  Specifically, an interleaver-division 
multiple access (IDMA) architecture implemented with a fully 
parallel Viterbi decoder and a word-indexed interleaver is 
discussed.  To understand some of the design decisions, it is 
important to understand where such a channel exists and how we 
can use it to improve current networking standards. 
 
Ethernet is a very popular standard for networking because of it's 
uncoordinated properties.  Nodes can access the network at any 
time without informing any higher level authority.  When two 
nodes happen to transmit at the same time, a collision is detected 
and the two nodes wait a random amount of time before 
attempting to re-transmit.  In cases where there are many nodes in 
the system trying to transmit, Ethernet degrades rapidly [1].  
Total useful network bandwidth is greatly reduced.  In addition, 
the delay in which a message experiences before reaching the 
receiver is increased.  This situation is caused by the inability of 
the system to transfer data when a collision occurs. 
 
This need not be the case.  In the CANbus network [2], collisions 
between data of several transmitters are used to determine the 
priority of the messages.  Though CANbus only allows collisions 
in the header of a data transmission to determine priority, it 
illustrates that electrical signals can be used as an OR channel, 
and that data can be transmitted when a collision occurs. 
 
An OR channel is a channel that behaves like an N-input OR gate, 
where N is the number of nodes transmitting simultaneously.  If 

we assume on-off keying, if any node transmits a '1' data bit, all 
the receivers will see a '1' bit in the channel.  If all nodes transmit 
a '0' bit, then the receivers will see a '0' in the channel.  In the 
CANbus network, the '1' bit is called the dominant bit since its 
value hides the presence of any '0' bits.  A passive optical star 
network can also be used as an OR channel.  Physically, the 
dominant '1' bit is represented by the presence of light and the '0' 
bit is presented by the absence of light. 
 
In our system, we assume the presence of collisions in the OR 
channel and implement novel channel codes to ensure that data is 
correctly transmitted.  The nodes in the system are assumed to be 
uncoordinated and need not even be aware of the existence of 
other nodes in the system.  When applied to the optical channel, 
our system is able to combine uncoordinated multiple access 
properties with optical bandwidth.  There are no transmission 
delays and throughputs are guaranteed regardless of the number 
of simultaneously transmitting nodes. 
 
This paper is organized as follows.  Section 2 introduces the 
general channel coding architecture and discusses the 
implementation details of the Viterbi decoder and interleaver 
blocks specifically.  Section 3 shows the speed and size of the 
result for both ASIC and FPGA targets and Section 4 draws some 
conclusions. 
 
 
2.  Channel Coding Architecture 
We developed a channel coding architecture to demonstrate the 
feasibility of uncoordinated access in the optical channel at 
optical data rates (Figure 1).  A rate 1/20 code has been designed 
to protect data from interference in an OR channel.   
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Figure 1.  Channel coding architecture 
 
During code design, the interference signal was assumed to have 
a random uniform distribution, therefore interleavers are used 



after channel coding to randomize the position of the code bits.  
This combination allows us to recover data at a BER of 1e-5.  A 
Reed Solomon block code is added at the back end to reduce the 
BER further to 1e-9.  Since our target physical layer is the optical 
channel, data throughput is the main design criterion.  The Viterbi 
decoder and interleaver blocks have been identified as the 
bottlenecks of the system and novel architectures are developed 
to mitigate their effects. 
 
2.1  Trellis Encoder 
To protect data in the OR channel, we designed a non-linear 
binary trellis code that uses 20-bit codewords and contains 64 
states.  The design of the encoder consists of a 6 bit register used 
to address memory that contains all the 128 possible codewords.  
Each clock cycle a new data bit is shifted into the register and a 
new 20 bit codeword is produced.  Details of the trellis code 
design procedure are presented in [3]. 
 
2.2  Viterbi Decoder 
In DSP implementations, the Viterbi decoder focused on the 
acceleration of a single branch metric calculation and careful 
memory management for storing the results.  This means for 
decoding a single code word, several clock cycles (depending on 
the number of states in the trellis code) are needed.  Hardware 
architectures such as [4, 5] has focused on area efficient 
architectures.  For common wireless applications, such as 
802.11b and 802.16a, [6] describes a fast parallel hardware 
implementation that decodes at 160Mbps on a FPGA.   
 
For our non-linear trellis code that uses 20-bit codewords and 
contains 64 states, a traceback length of 35 is used in the Viterbi 
decoder.  The technique used to design the decoder is to 
parallelize and pipeline all operations as much as possible.  Care 
was taken to find structures where feedback paths are as short as 
possible.  The overall architecture of the Viterbi decoder is shown 
in Figure 2. 
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Figure 2.  Viterbi decoder architecture 

 
The Viterbi decoder can be divided into several different stages, 
each of these stages will be discussed individually in detail: 
• calculation of metric 
• accumulation and selection of metric 
• finding of minimum path  
• subtraction of accumulated result 
 
2.2.1  Branch Metric 
Because the Viterbi decoder is being designed for the OR channel, 
the branch metric used is different from traditional designs.  In an 

OR channel, it is impossible to receive a 0 bit when a 1 bit has 
been transmitted by any of the nodes.  Because of this, in the 
comparison between the received codeword and branch 
codeword, if any of the received bits is 0 when a 1 is expected the 
branch metric is set to a maximum value of 20.  Errors in which a 
1 is received when a 0 is expected are summed together to give 
the branch metric in the normal case.  The logic used to 
implement this function is shown in Figure 3.  In our 64 state 
codes, 128 branch metrics are calculated in parallel; the logic 
used to calculate this function makes up one stage in our pipeline. 
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2.2.2  Accumulation and Selection 
There are two possible branches that lead to each of the 64 state 
nodes.  The path with the smallest path metric (which is an 
accumulation of past branch metrics) is chosen as the most likely 
path that was taken to reach the node.  Path metric calculation is 
performed by adding the path metric of the source nodes to their 
respective branch metrics.  The two sums are then compared and 
the path with the lowest metric is selected.  Sixty-four of these 
calculations are performed in parallel and constitutes a single 
stage in our pipeline.  Further pipelining of this stage is 
impossible since the calculation of the path metric involves a 
feedback path from previous path metric calculations.  Figure 3 
shows the implementation of this function. 
 
2.2.3  Finding Minimum Path 
The most likely bit that was transmitted is the bit at the head of 
the path with the lowest path metric.  At each cycle, 64 path 
metrics are calculated and their respective paths are accumulated.  
A sorting network is used to select the path with the smallest 
accumulated metric.  A minimum time sorting network based on 
Batcher’s odd-even merging algorithm [7] is used.  This is a 
recursive algorithm that sorts a group of unordered numbers 
(Figure 4) and contains the following three steps: 

1. Divide the numbers in to two groups 
2. Sort the two groups of numbers separately 
3. odd-even merge the two groups of numbers. 
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The algorithm can be completely implement using only two input 
comparators.  For the sorting of n numbers, the number of 
comparators grows in )log( 2nnO .  The delay through the 

network is 
��
�

�
��
�

� +
2

log1 n  .  For our system of 64 states, this 

translates to 543 comparators with a delay of 21 comparators.  
However, since there are no feedback paths in the sorting 
algorithm, the architecture can be fully pipelined to achieve very 
fast throughputs. 
 
2.2.4  Subtraction of accumulated result 
The minimum path metric is fed back to the Viterbi decoder and 
subtracted from all 64 accumulated path metrics.  This is to 
ensure that the register values do not overflow.  The sorting 
network used to find the minimum path is heavily pipelined, so 
the value used is several cycles behind the values that are 
currently calculated.  This delay in the results translates to larger 
possible accumulated path metrics which may necessitate the use 
of larger operators (like adders) with may slow down the system.  
Therefore, care was taken to pipeline the sorting network only to 
the degree that is necessary to avoid unnecessary increases in 
hardware and possible increases in critical path delays.  The 
sorting network in our design is pipelined to have 6 cycles of 
delay. 
 
2.3  Interleaver 
Interleavers, which permute the order of data bits, are commonly 
used to randomize the data stream to improve the performance of 
error correcting codes.  Much work in this area has been focused 
on the design of interleavers in conjunction with convolutional 
and turbo codes.  Interleaver specifications are found in the IEEE 
802.16a, 802.11a/g and 802.11n standards.  The interleavers 
found in these systems are different from the ones in which we 
design in two significant ways: 
1. The interleaver pattern is static for a particular standard; in 

our system, they are used to protect a transmission from 
interference in an OR channel. 

2. The supported data rates are in the order of 100Mbps; optical 
channels support data rates that are at least an order of 
magnitude faster. 

 
In our system, each transmitter uses a unique interleaver pattern.  
This pattern is chosen from a set of patterns determined at design 
time to have good cross correlation properties.  The role of the 
interleaver in our system is similar to its role in an IDMA system.  
In that system [8], interleavers are used to distinguish nodes in a 
wireless CDMA system and increase channel capacity.  The 
interleaver design, therefore, must be flexible enough to 
accommodate a family of permutation sequences that work well 
together.  Interleaver design for IDMA has been examined [9], 
however, the focus has been on performance efficiency rather 
than high-speed implementation.  As a consequence, those results 
are unable to support our high data rates. 
 
A de-interleaver is used at the receiver to recover the initial 
sequence.  Its architecture is the same as the interleaver 
architecture; the permutation sequences, however, are run in 
reverse order to recover the original uninterleaved signal. 
 
For our 1600-bit interleaver implementation, we adopted a 
randomized write-by-row, read-by-column scheme.  As seen in 

Figure 5, data can be broken into square blocks of 400 bits.  Each 
of the 20 rows and columns are indexed.  Groups of 20 incoming 
bits are written to a randomly indexed row.  When the data block 
is filled, the bits are read out of the block one column at a time in 
a random order. 
 

61 62 80

…
41 42 60

…
21 22 40

…
80

61
62

…

60

41
42

…

40

21
22

…

20

1
2

…

1 2 20

…
Incoming
bits

Outgoing
bits

Read 
indices

Write indices

(a) (b)
Figure 5:  Indexed write-by-row, read-by-column interleaver 
 
The 400-bit-square block forms the basic unit of our interleaver 
design.  In order to produce the necessary randomness, four of 
such blocks were used in our final implementation.  Like the 
indexing within the blocks, the inputs and outputs of the four 
blocks are accessed independently and randomly.  
 
This scheme provides us with enough randomness to operate on 
the optical channel.  In our interleaver design, 4 square blocks of 
400 bits are used, giving us a total of 80 indexed locations.  This 
corresponds to a design space of (80!)2 > 1e+237 possible 
permutation sequences to choose from.  For the desired channel 
rate of 2 Gbps, using the 20-bit wordsize of our trellis code, our 
target operating frequency for the interleaver is 100MHz. 
 
2.4  Reed Solomon Code 
When the Trellis decoder block makes an error, the errors usually 
come in a burst of a few bits at a time.  A Reed Solomon (RS) 
code is a block code that operates on bytes at a time.  This makes 
it a very good choice to correct the residual errors and bring the 
final BER to below 1e-9.  A standard (255,237) RS code was 
selected. 
 
Since timing is not critical in this block, a standard architecture 
design is used [10].  The data rate at the output of the NL-TCM 
decoder is 100Mbps.  Since the Reed Solomon code operates on 
data blocks of 255 bytes (2040 bits), the time budget for the RS 
decoder is 20.4us.  We clocked the module at 50MHz, and in the 
worse case the decoding operation takes 856 cycles (17.1us) to 
complete. 
 
 
3.  Implementation Results 
The coding structures were implemented in both FPGA and ASIC 
targets and results are discussed in the following sections. 
 
3.1  FPGA  
The system blocks were implemented on the VirtexII-Pro FPGA 
from Xilinx.  Table 1 summarizes the size various blocks in the 
design.  The critical period is given for the transmitter and 
receiver. 
 



Table 1:  Size and speed of transmitter and receiver blocks 
implemented on the VirtexII-Pro FPGA 

 Size 
(slices) 

Critical 
period (ns) 

Transmitter   
Reed Solomon encode 189 5.3 
NL-TCM encode 34 3.4 
Interleaver 3387 7.7 

Receiver   
Reed Solomon decode 3686 9.0 
NL-TCM decode (Viterbi) 10504 10.3 
Interleaver 3387 7.7 

 
The transmitter is implemented on the VirtexII Pro XC2VP20 
FPGA which is contains 9,230 slices of logic.  Each transmitter 
design occupies 40% of the available area.  The receiver is a 
significantly larger design and is implemented on the XC2VP50 
which has a capacity of 23,616 slices.  The receiver design 
occupies 70% of the available area.  The maximum throughput 
for an FPGA implementation is 2.0Gbps channel speed and is 
limited by the Viterbi decoding block. 
 
3.2  ASIC  
The system blocks were synthesized using Synopsis Design 
Compiler.  The TSMC 0.18um CMOS standard cell library with 
conservative wire load model was used.  Table 2 summarizes the 
size various blocks in the design.  The critical period is given for 
the transmitter and receiver. 
 
Table 2:  Size and speed of transmitter and receiver blocks 
synthesized in 0.18um ASIC 

 Size 
(Kgates) 

Critical 
period (ns) 

Transmitter   
Reed Solomon encode 3 1.6 
NL-TCM encode 9 1.3 
Interleaver 39 3.7 

Receiver   
Reed Solomon decode 29 10.3 
NL-TCM decode (Viterbi) 239 1.4 
Interleaver 39 3.7 

 
For the ASIC implementation, the receiver is limited by the Reed 
Solomon decoder block to a channel speed of 4.6Gbps.  The 
implementation of this block, however, is not optimized and there 
have been published results showing decoders that can handle 
channel rates of up to 50Gbps.  If one of these implementations is 
used, the maximum throughput for an ASIC implementation is 
5.4Gbps channel speed. 
 
It is interesting to note that the interleaver is the bottleneck in the 
ASIC while the Viterbi decoder is the bottleneck for FPGA.  This 
is due to increased routing delays within blocks that take up a 
large area in the FPGA.  Since the Viterbi decoder is at least 3 
times larger than the interleaver block, the effect is more 
pronounced. 
 
 
4.  Conclusions 
An uncoordinated multiple access system using the optical 
channel was introduced in this paper.  This was accomplished by 

careful design of a non-linear trellis code combined with 
interleavers to differentiate the nodes in the system.  To support 
the high optical data rates, new coding architectures were 
developed that took advantage of data parallelization and 
pipelining techniques. 
 
In addition to fully parallelizing the Viterbi architecture, care was 
taken to minimize computational feedback paths in the system.  
The feedback paths that existed were kept small.  This allowed us 
to pipeline the design to give the minimum critical path and 
therefore the maximum throughput.  In the design of the 
interleaver, data was processed using 20-bit words.  A novel 
write-by-row, read-by-column scheme allows fast processing of 
bits while maintaining the necessary freedom to choose good 
permutation patterns. 
   
The work done on uncoordinated access in optical networks 
seems to be a very attractive idea for LANs that require high 
bandwidth.  Our implementation shows that current off the shelf 
technology can be feasibly used to build such a system.  The 
architectures that we introduce in this paper can support 
throughputs of up to 2.0 Gbps for FPGAs and 5.4 Gbps for 
0.18um standard cell ASICs.  In addition, the techniques 
presented here can be used in other high speed channel coding 
designs. 
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