
Informed Dynamic Scheduling for
Belief-Propagation Decoding of LDPC Codes

Andres I. Vila Casado, Miguel Griot and Richard D. Wesel
Department of Electrical Engineering, University of California, Los Angeles, CA 90095-1594

Email: avila@ee.ucla.edu, mgriot@ee.ucla.edu, wesel@ee.ucla.edu

Abstract— Low-Density Parity-Check (LDPC) codes are
usually decoded by running an iterative belief-propagation,
or message-passing, algorithm over the factor graph of the
code. The traditional message-passing schedule consists of
updating all the variable nodes in the graph, using the same
pre-update information, followed by updating all the check
nodes of the graph, again, using the same pre-update in-
formation. Recently several studies show that sequential
scheduling, in which messages are generated using the lat-
est available information, significantly improves the conver-
gence speed in terms of number of iterations. Sequential
scheduling raises the problem of finding the best sequence of
message updates. This paper presents practical scheduling
strategies that use the value of the messages in the graph
to find the next message to be updated. Simulation re-
sults show that these informed update sequences require
significantly fewer iterations than standard sequential sched-
ules. Furthermore, the paper shows that informed schedul-
ing solves some standard trapping set errors. Therefore, it
also outperforms traditional scheduling for a large numbers
of iterations. Complexity and implementability issues are
also addressed.

Index Terms— Belief propagation, message-passing sched-
ule, error-control codes, low-density parity-check codes.

I. Introduction

Belief Propagation (BP) provides Maximum-Likelihood
(ML) decoding over a cycle-free factor-graph representa-
tion of a code as shown in [1] and [2]. In some cases, BP
over loopy factor graphs of channel codes has been shown
to have near ML performance. BP performs well on the bi-
partite factor graphs composed of variable nodes and check
nodes that describe LDPC codes.

However, loopy BP is an iterative algorithm and there-
fore requires a message-passing schedule. Flooding, or
simultaneous scheduling, is the most popular scheduling
strategy. In every iteration flooding simultaneously up-
dates all the variable nodes (with each update using the
same set of pre-update data) and then, updates all the
check nodes (again, with each update using the same pre-
update information). Recently, several papers have ad-
dressed the effects of different types of sequential, or non-
simultaneous, scheduling strategies in BP LDPC decoding.
The idea was introduced as a sequence of check-node up-
dates in [3] and [4] and as a sequence of variable-node up-
dates in [5]. It is also presented in [6] under the name of
Layered BP (LBP), in [7] as serial schedule, in [8] as shuf-
fled BP, in [9] as row message passing, column message
passing and row-column message passing, among others.

This work was supported by the state of California and ST Micro-
electronics through UC discovery grant COM 03-10142.

Simulations and theoretical tools in these works show
that sequential scheduling converges twice as fast as flood-
ing when used in LDPC decoding. It has also been shown
that sequential updating doesn’t increase the decoding
complexity per iteration, thus allowing the convergence
speed increase at no cost [9]. In [10], where a global frame-
work for the analysis of LDPC decoders is introduced, the
complexity is assumed to be independent from the sequen-
tial scheduling chosen. Furthermore, different types of se-
quential schedules such as sequential check-node updat-
ing, sequential variable-node updating and sequential mes-
sage updating have very similar performance results [9].
Given their similarities, the different types of sequential
updates will be referred in this paper as Standard Sequen-
tial Scheduling (SSS). In the simulations presented in this
paper the SSS strategy used for comparison is LBP, a se-
quence of check-node updates, as presented in [4] and [6].

Sequential updating poses the problem of finding the or-
dering of message updates that results in the best conver-
gence speed and/or code performance. The current state of
the messages in the graph can be used to dynamically up-
date the schedule, producing what we call an Informed Dy-
namic Schedule (IDS) and presented in [11]. To our knowl-
edge, the only well defined informed sequential scheduling
is the Residual Belief Propagation (RBP) algorithm pre-
sented by Elidan et al. in [12]. They proposed it for general
sequential message passing, not specifically for BP decod-
ing.

RBP is a greedy algorithm that organizes the message
updates according to how different is the message generated
in the current iteration from the message generated in the
previous iteration. The intuition is that the bigger this
difference, the further from convergence this part of the
graph is. Therefore, propagating this message first will
make BP converge at a higher speed.

Simulations show that RBP LDPC decoding has a higher
convergence speed than SSS but its error-rate performance
for a large enough number of iterations is worse. This be-
havior is commonly found in greedy algorithms, which tend
to arrive at a solution faster, but arrive at the correct solu-
tion less often. We propose a less-greedy IDS in which all
the outgoing messages of a check-node are generated simul-
taneously. We call this IDS node-wise RBP. It converges
both faster and more often than SSS.

Both RBP and node-wise RBP require the knowledge of
the message to be updated in order to pick which message
to update. This means that several messages are com-



puted and not passed. Thus, increasing the complexity of
the decoding per iteration. We propose using the min-BP
check-node update algorithm explained in [13] and [14] to
simplify the ordering metric and significantly decrease the
complexity for both informed scheduling strategies while
maintaining the same performance. Also, an analysis of
the hardware issues that may arise in a parallel implemen-
tation of these informed sequential scheduling strategies is
presented.

This paper is organized as follows. Section II reviews
LDPC decoding and the flooding and SSS schedules. Sec-
tion III explains how to implement RBP decoding for
LDPC codes. This section also introduces and justifies
node-wise RBP. Section IV addresses some complexity and
implementability issues. The simulation results of all the
message-passing schedules are compared and discussed in
Section V. Section VI delivers the conclusions.

II. BP decoding for LDPC codes

In general, BP consists of the exchange of messages be-
tween the nodes of a graph. Each node generates and
propagates messages to its neighbors based on its current
incoming messages. The vector of all the messages in the
graph is denoted by m and mk denotes the k’th message
in the vector m. The function that generates mk from m
is denoted by fk (m).

The LDPC code graph is a bi-partite graph composed
by N variable nodes vj for j ∈ {1, . . . , N} that represent
the codeword bits and M check nodes ci for i ∈ {1, . . . ,M}
that represent the parity-check equations. The exchanged
messages correspond to the Log-Likelihood Ratio (LLR)
of the probabilities of the bits. The sign of the LLR in-
dicates the most likely value of the bit and the absolute
value of the LLR gives the reliability of the message. In
this fashion, the channel information LLR of the variable
node vj is Cvj = log

(
p(yj |vj=0)
p(yj |vj=1)

)
, where yj is the received

signal. Then, for any ci and vj that are connected, the two
message generating functions, mvj→ci

= fvj→ci
(m) and

mci→vj = fci→vj (m), are:

mvj→ci =
∑

ca∈N (vj)\ci

mca→vj + Cvj , (1)

mci→vj = 2× atanh


 ∏

vb∈N (ci)\vj

tanh
(mvb→ci

2

)

 , (2)

where N (vj) \ci denotes the neighbors of vj excluding ci,
and N (ci) \vj denotes the neighbors of ci excluding vj .

BP decoding consists of the iterative update of the mes-
sages until a stopping rule is satisfied. In flooding schedul-
ing, an iteration consists on the simultaneous update of all
the messages mv→c followed by the simultaneous update of
all the messages mc→v. In SSS, an iteration consists on the
sequential update of all the messages mv→c as well as all
the messages mc→v in a specific pre-defined order. The al-
gorithm stops if the decoded bits satisfy all the parity-check
equations or a maximum number of iterations is reached.

III. Residual Belief Propagation (RBP)

RBP, as introduced in [12], is an informed scheduling
strategy that updates first the message that maximizes an
ordering metric called the residual. A residual is the norm
(defined over the message space) of the difference between
the values of a message before and after an update. For a
message mk, the residual is defined as:

r (mk) = ‖fk (m)−mk‖ . (3)

The intuitive justification of this approach is that as
loopy BP converges, the differences between the messages
before and after an update go to zero. Therefore if a mes-
sage has a large residual, it means that it’s located in a
part of the graph that hasn’t converged yet. Therefore,
propagating that message first should speed up the pro-
cess. Elidan et al. create a priority queue, ordered by the
value of the residual, so at each step the first message in
the queue is updated and then the queue is reordered using
the new information.
A. RBP decoding for LDPC codes

In LLR BP decoding, all the message spaces are one-
dimensional (the real line). Therefore, the residuals are
the absolute values of the difference of the LLRs.

Let us analyze the behavior of RBP decoding for LDPC
codes in order to simplify the decoding algorithm. Initially,
all the messages mv→c are set to the value of their corre-
spondent channel message Cv. No operations are needed
in this initialization. This implies that the residuals of
all the variable-to-check messages r(mv→c) are equal to
0. Then, without loss of generality, we assume that the
message mci→vj has the residual r∗, which is the biggest
of the graph. After mci→vj is propagated, only residuals
r(mvj→ca) change, with ca ∈ N (vj) \ci.

The new residuals r(mvj→ca) are equal to r∗, because r∗

was the change in the message mci→vj and Eq. 1 shows
that the message update operations of a variable node are
only sums. Therefore, the messages mvj→ca

have now the
biggest residuals in the graph.

Assuming that propagating the messages mvj→ca won’t
generate any new residuals bigger than r∗, RBP can be
simplified. Every time a message mc→v is propagated, the
outgoing messages from the variable node v will be updated
and propagated. This facilitates the scheduling since we
need only to maintain a queue Q of messages mc→v, or-
dered by the value of their residuals, in order to find out
the next message to be propagated. RBP LDPC decoding
is formally described in Algorithm 1, the stopping rule will
be discussed in Section VI.

There is an intuitive way to see how RBP decoding works
for LDPC codes. Let us assume that at a certain moment
in the decoding, there is a check node ci with residuals
r(mci→vb

) = 0 for every vb ∈ N (ci). Now let us assume
that there is a change in the value of the message mvj→ci .
The biggest change in a check-to-variable message out of
ci (therefore the largest residual) will happen in the edge
that corresponds to the incoming variable-to-check message
with the lowest reliability (excluding the message mvj→ci).



Algorithm 1 RBP decoding for LDPC codes
1: Initialize all mc→v = 0
2: Initialize all mvj→ci

= Cj

3: Compute all r(mc→v) and generate Q
4: Let mci→vj be the first message in Q
5: Generate and propagate mci→vj

6: Set r(mci→vj
) = 0 and re-order Q

7: for every ca ∈ N (vj) \ci do
8: Generate and propagate mvj→ca

9: for every vb ∈ N (ca) \vj do
10: Compute r(mca→vb

) and re-order Q
11: end for
12: end for
13: if Stopping rule is not satisfied then
14: Position=4;
15: end if

Let us denote by vk the variable node that is the destina-
tion of the message that has the largest residual r(mci→vk

).
Then, the message mvk→ci

has the smallest reliability out
of all messages mvb→ci , with vb ∈ N (ci) \vj .

This implies that, for this particular scenario, once
there’s a change in a variable-to-check message, RBP will
propagate first the message to the variable node with the
lowest reliability. This makes sense intuitively. In some
sense the lowest reliability variable node needs to receive
new information more than the higher reliability ones.

The negative effects of the greediness of RBP are appar-
ent in the case of unsatisfied check nodes. RBP will sched-
ule to propagate first the message that will “correct” the
variable node with the lowest reliability. This is the most
likely variable node to be in error. However, if that variable
node was already correct, changing its sign will likely gener-
ate new errors, making the BP convergence more difficult.
This analysis helps us see why RBP corrects the most likely
errors faster but has trouble correcting “difficult” errors as
will be seen in Section V. We define “difficult” errors as
the errors that need a large number of message updates to
be corrected.

B. Node-wise RBP decoding for LDPC codes

In order to obtain a better performance for all types of
errors, perhaps a less greedy scheduling strategy must be
used. As noted earlier, some of the greediness of RBP came
from the fact that it tends to propagate first the message to
the less reliable variable nodes. We propose to simultane-
ously update and propagate all the check-to-variable mes-
sages that correspond to the same check node ci, instead
of only propagating the message with the largest residual
r(mci→vj ). It can be seen, using the analysis presented
earlier, that this algorithm is less likely to generate new er-
rors. We call this less greedy strategy node-wise RBP and
it’s performance can be seen in Section V. Node-wise RBP
is similar to LBP; it is a sequence of check-node updates.
However, unlike LBP, which follows a pre-determined or-
der, the check node to be updated next is chosen dynam-
ically according to the residuals of the check-to-variable

messages. Node-wise RBP is formally described in Algo-
rithm 2.

Algorithm 2 Node-wise RBP decoding for LDPC codes
1: Initialize all mc→v = 0
2: Initialize all mvj→ci

= Cj

3: Compute all r(mc→v) and generate Q
4: Let mci→vj

be the first message in Q
5: for every vk ∈ N (ci) do
6: Generate and propagate mci→vk

7: Set r(mci→vk
) = 0 and re-order Q

8: for every ca ∈ N (vk) \ci do
9: Generate and propagate mvk→ca

10: for every vb ∈ N (ca) \vk do
11: Compute r(mca→vb

) and re-order Q
12: end for
13: end for
14: end for
15: if Stopping rule is not satisfied then
16: Position=4;
17: end if

Node-wise RBP converges both faster than SSS (in terms
of number of messages updated) and better than SSS (in
terms of FER of the code for a large number of iterations).
We can explain intuitively and demonstrate experimentally
that the lower error rates are achieved because informed
scheduling allows the LDPC decoder to overcome many
”trapping sets”. Trapping sets, or near-codewords, as de-
fined in [15], are small variable-node sets such that the
induced sub-graph has a small number of odd degree neigh-
bors. In [15], Richardson also mentions that the most trou-
blesome trapping set errors are those where the odd degree
neighbors have degree 1 (in the induced sub-graph), and
the even-degree neighbors have degree 2 (in the induced
sub-graph).

It is likely that node-wise RBP solves the variable nodes
in error by sequentially updating the degree-1 check-nodes
connected to them. When a variable node in a trapping set
is corrected, the induced sub-graph of the variable-nodes-
in-error will change as follows. At least one check node
that was degree-2, becomes degree-1 after the variable node
correction. This check node is likely to be picked as the
next check-node to be updated by node-wise RBP because
its messages will have large residuals. This update will
probably correct another variable node in the trapping set.

We corroborated this analysis by studying the behavior
of the decoders for the noise realizations that the SSS de-
coder could not solve for 200 iterations and that node-wise
RBP solved in a very small number of iterations (less than
10). We found that a large majority of the SSS errors in
these cases are caused by trapping sets that node-wise RBP
solved in the manner mentioned before.

IV. Complexity and Implementation

Given the surge in popularity of LDPC codes for practi-
cal implementations, it is interesting to address some issues



about the complexity of RBP and node-wise RBP when
compared to SSS and flooding.
A. Complexity per iteration

For an IDS we consider one iteration to have occurred
after the number of updates equals the number of updates
completed in an SSS or flooding iteration. For RBP, an
iteration will be counted after the number of check-to-
variable message updates equals the number of edges in
the LDPC graph. For node-wise RBP an iteration will be
counted after a number of check-node updates equals the
number of check-nodes of the code.

In [9], the authors prove that if the appropriate up-
date equations are chosen, the total number of operations
per iteration of all the sequential schedules is equal to the
number of operations per iterations of the flooding sched-
ule, making their complexity per iteration equal. Given
that both RBP and node-wise RBP are forms of sequential
updates, a sequence of message updates in the first case
and a sequence of check-node updates in the second, then
they also use, on average, the same number of message-
generating operations per iteration (using our definition of
iteration for informed schedules).

In order to maintain the same complexity, we use the
typical stopping rules in the decoding. Stop if at the end
of an iteration the decoded bits satisfy all the parity-check
equations, or a maximum number of iterations is reached.

On top of the message-generation complexity, informed
schedules incur two extra processes: residual computation
and ordering of the residuals. As defined in Section III, the
residual computation requires the value of the message that
would be propagated. This requires additional complexity
since there will be numerous message computations that
will only be used to calculate residuals. We propose to use
the min-BP check-node update approximation explained in
[13] to compute the approximate-residual as follows,

r(a) (mk) =
∥∥∥f

(a)
k (m)−m

(a)
k

∥∥∥ , (4)

where the superscript (a) stands for approximate and in-
dicates the min-BP approximation. The min-BP check-
node update consists of finding the two variable-to-check
messages with the smallest reliability. Then, the small-
est reliability is assigned as the check-to-variable message
reliability for all the edges except the one where the small-
est reliability came from. The second smallest reliability
is assigned to that remaining edge. The proper sign is
computed for all the check-to-variable messages. Thus, re-
placing all the residual functions for approximate-residual
functions in Algorithms 1 and 2, defines Approximate RBP
(ARBP) decoding and node-wise ARBP decoding. These
significantly simpler algorithms perform as well as the ones
presented in Section III, as will be seen in Section V. Note
that we only propose to use min-BP for the residual com-
putation. For the actual propagation of messages we use
the full update equations (1) and (2).

Even for node-wise ARBP, the practical trade-off be-
tween the increase in the per-iteration complexity and the
decrease in the number of iterations (and improved FER)

is difficult to address in general as it depends on specific
implementation choices. Our current research is addressing
this trade-off in detail.

B. Parallel Decoding

The possibility of having several processors computing
messages at the same time during the LDPC decoding has
become an intense area of research and an important rea-
son why LDPC codes are so successful. Furthermore, codes
with a specific structure have been shown to allow SSS de-
coding while maintaining the same parallelism degree ob-
tained for flooding decoding [4]. In principle, the idea of
having an ordered sequence of updates, that uses the most
recent information as much as possible, isn’t compatible
with the idea of simultaneously computing messages. How-
ever, since the ordering of the queue Q based on the new
results occurs after the update, it is possible that the sev-
eral parallel processors can work on different parts of the
graph while still using the most recent information.

We define the parallel node-wise ARBP scheduling strat-
egy as the node-wise ARBP strategy where instead of up-
dating only the check-node with the largest approximate
residual, p check-nodes are updated at the same time. The
p nodes that have the largest approximate residuals are
updated simultaneously. These p check nodes are not de-
signed to work in parallel, unlike the p check-nodes of a
p× p sub-matrix as defined in [4].

However, parallel processing may be implemented ex-
tending the hardware solutions presented in [16]. For in-
stance, if one or more check-nodes have in common one
or more variable nodes, they will all use the same previ-
ous information and compute the incremental variations
that are afterwards combined in the variable-node update.
There are hardware issues, such as memory clashes, that
still need to be carefully addressed when implementing par-
allel node-wise ARBP.

Parallel node-wise ARBP has a very small performance
degradation when compared with node-wise ARBP, as will
be seen in Section V. We defined and simulated the paral-
lel version of node-wise ARBP since it’s the simplest IDS
strategy and therefore, the most likely to be implemented.

V. Simulation Results

This section presents the AWGN performance of the dif-
ferent scheduling strategies presented above. All the simu-
lations are floating point and use the same rate-1/2 LDPC
code. The blocklength of the code is 1944 and it has the
same sub-matrix structure as the one presented in [4] with
sub-matrix size equal to 54x54.

The SSS results shown correspond to the sequential
check-node update introduced in [4]. This scheduling is
known as Layered Belief Propagation (LBP) and guaran-
tees a parallelism degree equal to the sub-matrix size of the
LDPC code (54 in our case). As shown in [9], different SSS
strategies produce almost identical results so its selection
doesn’t significantly affect the performance of the decoder.

Fig. 1 shows the performance of the scheduling strategies
discussed above, flooding, SSS (LBP), RBP, ARBP, node-



0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

F
E

R

Flooding
SSS (LBP)
RBP
ARBP
NW RBP
NW ARBP
Parallel NW ARBP

Fig. 1. FER Performance of flooding, SSS (LBP), RBP and node-
wise RBP vs. number of iterations for a fixed Eb/No = 1.75
dB

wise RBP, node-wise ARBP, and parallel node-wise ARBP,
as the number of iterations increases. The figure shows
that RBP has a significantly better performance than SSS
(LBP) for a small number of iterations, but a sub-par per-
formance for a larger number of iterations. Specifically, the
performance of RBP at 4 iterations is equal to the perfor-
mance of SSS (LBP) at 13 iterations, but the curves cross
over at 19 iterations. This suggests that RBP has trouble
with “difficult” errors as discussed earlier.

Node-wise RBP, while not as good as RBP for a small
number of iterations, shows consistently better perfor-
mance than SSS (LBP) across all iterations. Specifically,
the performance of node-wise RBP at 18 iterations is equal
to the performance of SSS (LBP) at 50 iterations. The re-
sults for flooding are shown for comparison purposes, and
replicate the theoretical and empirical results of [4]-[9] that
claim that flooding needs twice the number of iterations as
SSS.

Fig. 1 also shows the performance of the approximate
residual schedules and compares them with the schedules
that use the exact residuals. It can be seen that both
ARBP and node-wise ARBP perform almost indistinguish-
ably from RBP and node-wise RBP respectively. We re-
iterate that the approximate residual diminishes the com-
plexity of residual computation significantly, thus making
ARBP, and node-wise ARBP more attractive than their
exact counterparts.

Furthermore, Fig. 1 also shows the performance of par-
allel node-wise ARBP. The relatively small loss in perfor-
mance when compared to node-wise ARBP is the price
for the throughput increase resulting from the parallelism.
The number p of check-nodes processed in parallel was

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
F

E
R

Flooding
SSS (LBP)
Node−wise ARBP
15 Iterations
50 Iterations

Fig. 2. FER Performance of flooding, SSS (LBP) and node-wise
ARBP for 15 and 50 iterations vs. Eb/No

set to 54, which is equal to the parallelism guaranteed by
SSS (LBP) decoding this structured LDPC code with sub-
matrix size equal to 54x54 [4].

The FER of node-wise ARBP vs. SNR and for 15 and
50 iterations (maximum) is presented in Fig. 2. The FER
of flooding and SSS (LBP) are also presented as references.
It can be seen that the SNR gap between node-wise ARBP
and SSS (LBP) is more pronounced for a small number of
iterations and/or a large SNR.

Fig. 3 and Fig. 4 show the performance of different
scheduling strategies for the blocklength 1944 rate-1/2 and
rate 5/6 LDPC codes selected for the IEEE 802.11n stan-
dard [17]. These simulations were run for a high number of
iterations (200) and show that node-wise ARBP achieves a
better FER performance that SSS (LBP). Fig. 4 also shows
that even for high rate codes, node-wise ARBP converges
both faster and better than SSS (LBP).

VI. Conclusions

This paper shows that, while maintaining the same
message-generation functions, IDS can improve the per-
formance of BP LDPC decoding.

RBP and its simplification ARBP are appropriate for
applications that have a high target error-rate, given that
RBP achieves these error-rates using significantly fewer it-
erations than SSS. They are also appropriate for high-speed
applications that only allow a small number of iterations.
However, for applications that require lower error rates and
allow larger delays RBP and ARBP aren’t appropriate.

For such applications node-wise RBP and its simplifica-
tion node-wise ARBP perform better than SSS for any tar-
get error-rate and any number of iterations. These node-
wise strategies achieve a lower error-rates by overcoming



0 50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

F
E

R

Flooding
SSS (LBP)
ARBP
Node−wise ARBP

Fig. 3. FER vs. number of iterations of the 802.11n blocklength-1944
rate-1/2 code using flooding, SSS (LBP), ARBP and node-wise
ARBP for a fixed Eb/No = 1.75 dB

trapping set errors that SSS cannot solve. Furthermore
a parallel implementation of node-wise ARBP was shown
to perform nearly as well as the original node-wise ARBP,
making this informed scheduling more attractive for prac-
tical implementations.

The improvement in performance of these informed
scheduling strategies were also shown for a high-rate code
(rate 5/6). However, they come with the cost of an increase
in complexity per iteration due to the residual computa-
tion and its ordering. The trade-off provided by node-wise
ARBP between increasing the per-iteration complexity and
reducing the number of iterations (while also reducing the
FER for a large number of iterations) requires further in-
vestigation in the context of specific implementations.

The ideas presented in this work may be extended to
other communication solutions that use iterative BP, such
as turbo codes, turbo-equalization, iterative demodulation
and decoding of high-order constellations. The extensions
of the IDS strategies may also prove beneficial for loopy BP
solutions to problems outside the communications field.

References

[1] R.J. McEliece, D.J.C. MacKay, and Jung-Fu Cheng. Turbo de-
coding as an instance of Pearl’s “belief propagation” algorithm.
IEEE Journal on Selected Areas in Communications, 16:140–
152, February 1998.

[2] F. Kschischang, B. J. R. Frey, and H.-A. Loeliger. Factor graphs
and the sum-product algorithm. IEEE Trans. on Info. Th.,
47(2):498–519, March 2001.

[3] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam. High
Throughput Low-Density Parity-Check Decoder Architectures.
In Proc. 2001 Global Conference on Communications, pages
3019–3024, San Antonio, TX, November 2001.

[4] M.M. Mansour and N.R. Shanbhag. High-throughput LDPC
decoders. IEEE Trans. Very Large Scale Integration (VLSI)
Systems, 11:976–996, December 2003.

0 50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

F
E

R

Flooding
SSS (LBP)
ARBP
Node−wise ARBP

Fig. 4. FER vs. number of iterations of the 802.11n blocklength-
1944 rate-5/6 802.11n code using flooding, SSS (LBP), ARBP
and node-wise ARBP for a fixed SNR = 6.0 dB

[5] H. Kfir and I. Kanter. Parallel versus sequential updating for
belief propagation decoding. Physica A, 330:259–270, 2003.

[6] D. Hocevar. A reduced complexity decoder architechture via
layered decoding of LDPC codes. In Proc. Signal Processing
Systems SIPS 2004, pages 107–112, October 2004.

[7] E. Sharon, S. Litsyn, and J. Goldberger. An efficient message-
passing schedule for LDPC decoding. In Proc. 23rd IEEE Con-
vention of Electrical and Electronics Engineers in Israel, pages
223–226, September 2004.

[8] J. Zhang and M. Fossorier. Shuffled belief propagation decoding.
IEEE Trans. on Comm., 53:209–213, February 2005.

[9] P. Radosavljevic, A. de Baynast, and J.R. Cavallaro. Optimized
message passing schedules for LDPC decoding. In Proc. Thirty-
Ninth Asilomar Conference on Signals, Systems and Comput-
ers, pages 591–595, 2005.

[10] F. Guilloud, E. Boutillon, J. Tousch, and J.L. Danger. Generic
description and synthesis of LDPC decoder. Accepted for publi-
cation, IEEE Transactions On Communications.

[11] A. I. Vila Casado, M. Griot, and R. Wesel. Overcoming LDPC
trapping sets with informed scheduling. In Information Theory
and Applications Workshop, UCSD, San Diego, CA, January
2007.

[12] G. Elidan, I. McGraw, and D. Koller. Residual belief propaga-
tion: informed scheduling for asynchronous message passing. In
Proc. 22nd Conference on Uncertainty in Artificial Intelligence,
MIT, Cambridge, MA, July 2006.

[13] J. Chen and M. Fossorier. New optimum universal belief propa-
gation based decoding of LDPC codes. IEEE Trans. on Comm.,
50(3), March 2002.

[14] C. Jones, E. Valles, M. Smith, and J. Villasenor. Approximate-
MIN constraint node updating for LDPC code decoding. In
Proc. IEEE Military Communications Conference, pages 157–
162, October 2003.

[15] T. Richardson. Error floors of LDPC codes. In Proc. 41st Annual
Allerton Conf. on Comm., Monticello, IL, 2003.

[16] M. Rovini, F. Rossi, P. Ciao, N. L’Insalata, and L. Fanucci. Lay-
ered Decoding of Non-Layered LDPC Codes . In Proc. 9th EU-
ROMICRO Conference on Digital System Design, pages 537–
544, August 2006.

[17] IEEE P802.11n/D1.05 October 2006, Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) specifications -
Enhancements for Higher Throughput (Draft).


