
Efficient Computation of Convolutional Decoder
Reliability Without a CRC

A. Baldauf, A. Belhouchat, N. Wong, R. D. Wesel
University of California, Los Angeles, CA

{ambaldauf19,abelhouchat}@gmail.com {nsc.wong,wesel}@ucla.edu

Abstract—The reliability-output Viterbi algorithm (ROVA) of
Raghavan and Baum computes the probability that the codeword
selected by Viterbi decoding is in error, allowing unreliable decod-
ing to be identified without the overhead of a cyclic redundancy
check (CRC). ROVA can be used as a stopping criterion for
variable length (VL) codes with feedback. Separately, Polyanskiy
et al. proposed accumulated information density (AID) as a
stopping criterion for VL codes for computation of random
coding bounds. This paper compares the accuracy and complexity
of ROVA and AID. It turns out that AID is far less accurate than
ROVA. This paper proposes codeword information density (CID),
which modifies AID to improve its accuracy and leads to a lower-
complexity implementation of ROVA. The paper concludes with
an analytical expression for the random variable describing the
correct decoding probability computed by ROVA and uses this
expression to characterize how the probabilities of correct de-
coding, undetected error, and negative acknowledgement behave
as a function of the selected threshold for reliable decoding.

I. INTRODUCTION

Cyclic redundancy checks (CRCs) are often used to de-
tect errors in convolutional codewords [1]–[4]. CRCs play
an important role in many incremental redundancy hybrid
ARQs [4]–[7] but add overhead that can be significant for
short block-lengths. One alternative is the reliability-output
Viterbi algorithm (ROVA) [8]. ROVA computes the probability
that a Viterbi decoding decision is in error. This allows the
receiver to set a threshold on the ROVA-computed probability
to achieve a target undetected (codeword) error rate (UER)
without requiring a CRC.

ROVA was used in [9]–[11] to decide whether to request
additional feedback in an incremental redundancy hybrid ARQ
without the need for a CRC. For [9], ROVA was adapted as
described in [12] for tail-biting convolutional codes. Although
ROVA calculates codeword error probability exactly, it suffers
from high complexity. Fricke and Hoeher [11] developed an
approximation of ROVA that reduces complexity.

Another alternative to ROVA for controlling an incremental
redundancy hybrid ARQ is information density [13], which
computes an empirical estimate of the mutual information
of the channel. Symbol-wise accumulated information den-
sity (AID) as proposed by Polyanskiy et al. [13] sums the
information density of each received symbol in a prospective
codeword, providing a metric of codeword reliability with a
much lower complexity than ROVA.

This paper compares the accuracy of ROVA with that
of symbol-wise AID. After observing the low accuracy of
symbol-wise AID, we propose codeword information density

(CID) as a modification to symbol-wise AID. The CID also
computes an information density, but instead of adding the
density of each symbol, it computes a single information
density for the entire received codeword. CID gives better
accuracy than AID and turns out to be equivalent to ROVA.

Sec. II reviews the ROVA algorithm of [8]. Sec. III reviews
AID of [13] and shows that it is much less predictive of
reliable decoding than ROVA. Sec. IV proposes CID as
a modification of AID, shows that CID is equivalent to
ROVA, and uses the CID perspective to compute ROVA with
significantly less complexity than [8]. Sec. V presents an
analytical expression for the random variable describing the
correct decoding probability computed by ROVA and uses
this expression to characterize how the probabilities of correct
decoding, undetected error, and negative acknowledgement
behave as a function of the selected threshold for reliable
decoding. Sec. VI concludes the paper.

II. THE RELIABILITY OUTPUT VITERBI ALGORITHM

ROVA finds the probability that the nc-symbol codeword
x̂nc selected by maximum likelihood decoding is also the
transmitted codeword xnct (where xnc denotes the sequence
of codeword symbols x1, . . . , xnc). Given a received noisy
sequence ync = xnc + znc , the probability that x̂nc = xnct is

P (x̂nc = xnct |ync) =
P (x̂nc)fY |X(ync |x̂nc)∑

xnc∈C P (xnc)fY |X(ync |xnc)
(1)

=
fY |X(ync |x̂nc)∑

xnc∈C fY |X(ync |xnc)
(2)

where C is the set of valid codewords and f is the conditional
pdf of the received sequence given the transmitted sequence.
The simplification from (1) to (2) follows from the assumption
that all possible codewords are a priori equally likely.

The natural application of ROVA is to set a threshold on the
ROVA value (2) computed as in [8] and consider codewords
with a ROVA value below the threshold as erasures because
they are not sufficiently reliable. Fig. 1 shows how varying the
threshold can control the UER. The empirical UER achieved
by Viterbi with a ROVA threshold is shown for each threshold
value from P (x̂nc = xnct |ync) = 0.7 to 1−10−4 in increments
of 10−4.

Also shown is the expected UER associated with the
threshold, which is computed as the UER implied by the
empirical average of observed ROVA values. There is excellent

10
-4

10
-3

10
-2

10
-1

10
0

ROVA Word Error Probability Thresholds

10
-4

10
-3

10
-2

U
n
d
e
te

c
te

d
 E

rr
o
r

R
a
te

Error Rates vs Rova Word Error Probability Thresholds

Actual Error Rate

Expected Error Rate Derived from ROVA

Fig. 1: Graph of empirical undetected (codeword) error rate (UER) as a
function of ROVA threshold on UER for 100,000 decodings of a 4-state,
rate-1/2 convolutional code with k = 128 message bits at SNR 4.5 dB.

agreement between the observed and expected UER. The av-
erage P (x̂nc = xnct |ync) will be substantially higher than the
threshold because the threshold is the lowest acceptable value.
As a result, the UER achieved when applying a threshold is
significantly below the the UER that corresponds to codewords
that have P (x̂nc = xnct |ync) exactly equal to the threshold.

A. Computing ROVA as in [8]

Algorithm 1 describes the procedure for computing the
ROVA value (2) computed as in [8]. Consider a trellis with 2v

states defined by the set S = {0, 1, . . . 2v − 1}. Let sm be the
trellis state after the mth transmitted symbol. Let the trellis
be initialized to state s0 = 0 and assume that terminating
input bits drive the state back to sn = 0 at the last (nth)
transmitted symbol xn. For each received symbol ym for
m ∈ {1, 2, . . . nc} and for every possible value i of the the
trellis state sm in S, two probabilities are computed in [8]:
Pm
i and P̄m

i . We now define these two probabilities.
Let x̂m(i) to be the symbol sequence corresponding to

the Viterbi survivor path terminating at state i after the mth

transmitted symbol. Pm
i is P (sm = i, x̂m(i) = xmt |ym),

which is the probability that i is the correct state after the mth

transmitted symbol and that the Viterbi algorithm has correctly
identified the survivor path to state i so that x̂m(i) = xmt . P̄m

i

is P (sm = i, x̂m(i) 6= xm|ym), which is the probability that
i is the correct state at symbol m but the Viterbi algorithm
has not correctly identified the survivor path to state i so that
x̂m(i) 6= xm. Thus P̄m

i is the probability that Viterbi decoding
has incorrectly pruned away the transmitted sequence xmt ,
which is a path to state i, after the mth transmitted symbol.

For each m, Algorithm 1 makes use of the scaling factor

∆m =

∑
T γ1γ2 . . . γm∑
T γ1γ2 . . . γm−1

, (5)

where γm is the branch metric for the mth symbol associated
with one of the paths in the trellis T so that γ1γ2 . . . γm
is a path metric for one of the paths in the trellis T and∑
T γ1γ2 . . . γm is the sum of all the path metrics in the first

m stages of trellis T regardless of whether they are survivors
in the Viterbi algorithm.

When m = nc, the state has been forced to zero by terminat-
ing input bits so that Pm

0 +P̄m
0 = 1, and P̄nc

0 = 1−Pnc
0 is the

Algorithm 1: The ROVA Algorithm as described in [8].
Initialization: For i, j ∈ S, let Tm be the set of valid trellis

branches possible during transmission of the mth symbol.
Each such trellis branch is defined by the ordered pair (i, j)
where i is the origin state and j is the destination state. Note
that this set is smallest at m = 1 when there are only 2k

branches emanating from s0 = 0 to s1 and at m = nc when
there are only 2k branches entering sn = 0. Initialize m = 0,
P 0
0 = 1 and P̄ 0

0 = 0
Iterations: The calculation of (2) in [8] proceeds as follows:

1) m = m+ 1
2) For each valid branch (i, j) ∈ Tm compute metrics

γm(i, j) = f
(
ym|xm(i, j)

)
(3)

where xm(i, j) is the symbol transmitted on (i, j).
3) Compute the scaling factor

∆m =
∑

(i,j)∈Tm

γm(i, j)(Pm−1
i + P̄m−1

i) . (4)

4) For each j ∈ S with branches (i, j) ∈ Tm where Viterbi
has identified branch (i∗, j) to be the survivor branch to
j compute

Pm
j = ∆−1m γm(i∗, j)Pm−1

i∗

P̄m
j = ∆−1m

∑
(i,j)∈Tm

γm(i, j)(Pm−1
i + P̄m−1

i)− Pm
j

5) if m = nc conclude by reporting the ROVA value of Pnc
0

and the probability of codeword error as P̄nc
0 = 1−Pnc

0 ,
otherwise, go to step 1.

probability that the codeword selected by Viterbi is incorrect.
For m < nc and a particular state i ∈ S, Pm

i + P̄m
i will

generally be less than one. These values must be summed
over all states to account for all the probability:

2v−1∑
i=0

(
Pm
i + P̄m

i

)
= 1 . (6)

III. ACCUMULATED INFORMATION DENSITY

Polyanskiy et al. [13] used a threshold on information
density to decide when to terminate random codes to derive
bounds on throughput for codes with finite blocklength. The
information density of a received symbol yi with respect to a
selected codeword symbol x̂i is computed as

i(yj , x̂j) = log2

fY |X(yj |x̂j)
fY (yj)

. (7)

In (7), fY (yj) is computed assuming that each possible
symbol x ∈ X is drawn i.i.d. according to an input distri-
bution, either a pdf fX(x) or a pmf PX(x). For practical
communication systems in which a convolutional code is used
in conjunction with a constellation of possible transmitted
symbols, the input alphabet X is finite and is exactly the
constellation. For a typical encoder (without shaping), each
constellation point is equally likely so that PX(x) = |X |−1.

Accumulated information density (AID) sums (7) for each
symbol in the codeword to produce iAID(ync , x̂nc) as follows:

iAID(ync , x̂nc) =

nc∑
j=1

i(yj , x̂j) (8)

=

nc∑
j=1

log2

(
fY |X(yj |x̂j)
fY (yj)

)
(9)

= log2

(∏nc
j=1 fY |X(yj |x̂j)∏nc

j=1 fY (yj)

)
(10)

= log2

(
fY |X(ync |x̂nc)∑

xnc∈Xnc |X |−nfY |X(ync |xnc)

)
(11)

where Xnc is the set of all sequences of nc symbols. For
AID, the denominator in (11) includes every possible sequence
of nc symbols from the alphabet (constellation) X . However,
only sequences that are actually codewords could have been
transmitted. Including all possible sequences allows the com-
putation of AID to be symbol-wise and thus much simpler
than ROVA, but it introduces an inaccuracy.

Algorithm 2 below provides a procedure for computing iAID.
Let Ns be the number of states |S| and Nb be the number
of branches entering each state. When Nb = 2, Algorithm
1 requires about 6Ns multiplications per trellis stage, but
Algorithm 2 requires only about Ns multiplications.

Algorithm 2: Computation of iAID.
Initialization: For i, j ∈ S, let Tm be the set of valid trellis
branches as defined in Algorithm 1. Initialize m = 0, Γ0

0 = 1,
Π(0) = 1.
Iterations:

1) m = m+ 1
2) Compute branch metrics γm(i, j) as in Algorithm 1.
3) For each j ∈ S with branches (i, j) ∈ Tm where Viterbi

has identified survivor branch (i∗, j) compute

Γj
m = Γi∗

m−1γm(i∗, j) . (12)

4) Compute fY (ym) =
∑

x∈X |X |−1f(ym|x) and

Π(m) = Π(m− 1)fY (ym) (13)

5) if m = nc conclude by reporting

iAID(ync , x̂nc) = log2

Γ0
n

Π(n)
, (14)

otherwise, go to step 1.

Figs. 2 and 3 compare the efficacy of ROVA and AID
by plotting histograms of metric values for correctly and
incorrectly decoded sequences. For AID, the sequences are or-
ganized by their accumulated information density. For ROVA,
they are organized by word-error probability. The better sep-
aration (smaller overlap area) seen in Fig. 2 as compared to
Fig. 3 between the histograms for correctly and incorrectly
decoded sequences suggests that ROVA is more effective at
distinguishing correct codewords from incorrect codewords.

Fig. 2: Normalized histograms of ROVA error values for correct and incorrect
decodings for 1 million decodings for a 64-state, rate-1/3 convolutional code
with k = 32 message bits and SNR = 1.0dB. The minimal overlap between
the incorrect and correct decodings indicates that setting a decision threshold
using ROVA is an effective way to reduce undetected errors.

Fig. 3: Normalized histograms of correct and incorrect AID values for 1
million decodings for the same scenario as Fig. 2. There is considerable
overlap between the incorrect and correct decodings.

Fig. 4 shows UER versus throughput for ROVA and AID,
where the throughput is a function of the threshold that
determines whether to accept the Viterbi result as reliable.
Throughput is defined as the ratio of correctly decoded se-
quences that passed the threshold to the total number of
received sequences. Fig. 4 confirms the poor performance
of AID that was suggested in Figs. 2 and 3 . For a given
target UER, AID supports a much lower throughput than
ROVA. Despite its lower complexity, AID turns out to be too
inaccurate to use as a decoder reliability metric in practice.

0.4 0.5 0.6 0.7 0.8 0.9 1

Throughput

10
-6

10
-5

10
-4

10
-3

U
n
d
e
te

c
te

d
 E

rr
o
r

R
a
te

Throughput vs Undetected Error Rate

AID

ROVA

CID

Fig. 4: Undetected error rate (UER) as a function of throughput for ROVA,
AID, and CID showing the operating points of (throughput,UER) achievable
with thresholds on ROVA, AID, and CID metrics. ROVA and CID give
identical performance as expected by (19).

IV. CODEWORD INFORMATION DENSITY: ROVA REDUX

We propose a new metric, the codeword information density
(CID), which is computed for the codeword selected by Viterbi
as follows:

iCID(ync , x̂nc) = log2

fY |X(ync |x̂nc)∑
xnc∈C P (xnc)fY |X(ync |xnc)

(15)

CID operates on the complete sequences ync and x̂nc and
is limited to only consider valid codewords xnc ∈ C. This
gives a higher complexity, but higher accuracy relative to AID.
Algorithm 3 below provides a procedure for computing iCID.

Algorithm 3: Computation of proposed iCID (and ROVA).
Initialization: For i, j ∈ S, let Tm be the set of valid trellis
branches as defined in Algorithm 1. Initialize m = 0, Γ0

0 = 1,
S0
0 = 1.

Iterations:
1) m = m+ 1
2) Compute branch metrics γm(i, j) as in Algorithm 1.
3) Compute Γj

m as in Algorithm 2.
4) For each j ∈ S compute

Σj
m =

∑
(i,j)∈Tm

Σi
m−1γm(i, j) . (16)

5) if m = nc conclude by reporting either

iCID(ync , x̂nc) = log2

(
Γ0
n

P (xnc)Σ0
n

)
, or (17)

Pnc
0 =

Γ0
n

Σ0
n

(18)

otherwise, go to Step 1.

Comparing (2) and (15), we find that ROVA and CID
have almost the same formula. Starting with (2), including
a P (xnc) term in the denominator and taking a logarithm
produces (15). Consequently, CID and ROVA have a one-to-
one transformation given by

iCID(ync , x̂nc) = log2

(
Pnc
0

P (xnc)

)
. (19)

CID and ROVA turn out to be identical metrics, revealing a
lower-complexity approach to computing ROVA. Considering
the common case of a rate-1/n convolutional code where
Nb = 2, per trellis stage the original ROVA algorithm requires
approximately 6Ns multiplications, AID requires only Ns

multiplications, but is inaccurate. The CID inspired ROVA
computation in Algorithm 3 requires only 2Ns multiplies and
computes the identical ROVA value of Pnc

0 as Algorithm 1.

V. ANALYTICAL EXPRESSION FOR THE Pnc
0 DISTRIBUTION

An analytical expression for the distribution of Pnc
0 reveals

the relationship between the selected threshold and the induced
UER (as shown in Fig. 1) and between the selected threshold
and the induced throughput. The analysis below assumes
BPSK symbols 1 and -1 are transmitted over an additive white
Gaussian noise (AWGN) channel with noise variance σ2.

Consider the computed conditional pdf fY |X(ync |x̂nc) in
(2) as a random variable F and recall that for an AWGN
channel it is computed as

F =

nb∏
i=1

1√
2πσ2

e−
(yi−x̂i)

2

2σ2 (20)

where nb is the number of binary symbols in xnc . For
example, with a rate-1/3 convolutional code, nb = 3nc. If
x̂nc = xnct , using a subscript to denote the Hamming distance
dH(x̂nc , xnct) = 0,

F0 =

nb∏
i=1

1√
2πσ2

e−
z2i
2σ2 (21)

where zi is the AWGN in the ith symbol. If dH(x̂nc , xnct) = 1,
with the one difference bit in the jth symbol, then

F1 =
1√

2πσ2
e−

(zj+2)2

2σ2

nb∏
i=1,i6=j

1√
2πσ2

e−
z2i
2σ2 (22)

= e−
4+4zj

2σ2

nb∏
i=1

1√
2πσ2

e−
z2i
2σ2 (23)

= e−
4+4zj

2σ2 F0 (24)

where the mean of Gaussian describing the jth symbol in
(22) is shifted by the difference between the true and decoded
values of xj . For our BPSK modulation, this difference is
always 2. This can be generalized to any Hamming distance.
For dH(x̂nc , xnct) = m,

Fm = e−
4m+

∑m
`=1 4z`

2σ2 F0 (25)

Because Viterbi decoding only considers valid codewords
xnc ∈ T , the multiplicity of each possible value of
dH(x̂nc , xnct) is a function of the specific convolutional code
used to encode the message, and for a terminated trellis
dH(x̂nc , xnct) has some maximum value D. Let Am be the
number of valid codewords x̂nc with dH(x̂nc , xnct) = m,
which by linearity is the number of valid codewords with
Hamming weight w:

Aw = |{x̂nc ∈ T : dH(x̂nc , xnc0) = w}| , (26)

where xnc0 is the transmitted codeword for the all-zeros input.
Viterbi selects the correct codeword with high probability,

and when it doesn’t the selected x̂nc usually has similar value
of fY |X(ync |x̂nc). Thus we can approximate fY |X(ync |x̂nc)
with F0 so that

Pnc
0 ≈

F0

F0

∑W
w=0Awe

−
4w+

∑w
`=1

4z`

2σ2

, (27)

which can also be expressed as

Pnc
0 ≈

(
1 +

W∑
w=1

Awe
− 4w+

∑w
`=1 4z`

2σ2

)−1
. (28)

The expression for Pnc
0 given in (28) includes a sum of W

log-normal random variables. Because the magnitude of the

log10(1-P0
n)

-14 -12 -10 -8 -6 -4 -2 0

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

0

0.2

0.4

0.6

0.8

1
Monte Carlo
Sim. Viterbi + Alg 3

Fig. 5: Cumulative histogram of log10(1−Pnc
0) computed by simulation of

Viterbi/Algorithm 3 and by Monte Carlo of (28) with W truncated to 21 for
64-state, rate-1/3 convolutional code with n = 32 at SNR 1.0 dB.

terms decreases rapidly, it can be approximated by summing
a few of the most significant terms. Fig. 5 compares the
cumulative histogram of Pnc

0 found by a simulation of Viterbi
decoding with Pnc

0 computed as described in Algorithm 3 with
the cumulative histogram of Pnc

0 given in (28) generated by
Monte Carlo using W = 21, which involves active terms for
w = 15 to w = 21 and neglects terms with w > 21. Seven
active terms provides an excellent approximation in Fig. 5.

For the following analysis, P (C) is the probability of
Viterbi selecting the correct codeword, P (E) is the probability
of Viterbi selecting an incorrect codeword, i.e., UER, and
P (NACK) is probability of negative acknowledgement, i.e.
rejecting the selected codeword because Pnc

0 < T .
The expression of (28) indicates a probability distribution

fP on the computed probability of correct decoding Pnc
0 . The

corresponding computed probability of incorrect decoding is
1 − Pnc

0 . Thus, with Pnc
0 > T required to accept the Viterbi

decoding result, we have the following expressions:

P (C) =

∫ 1

p=T

pfP (p)dp (29)

P (E) =

∫ 1

p=T

(1− p)fP (p)dp (30)

P (NACK) =

∫ T

p=0

fP (p)dp . (31)

Fig. 6 compares the application of (29), (30), and (31) using
the cumulative histogram of Pnc

0 generated by Monte Carlo
using M = 21 (shown in Fig. 5) to the values of P (C), P (E),
and P (NACK) obtained by simulation of Viterbi decoding
with Pnc

0 computed as described in Algorithm 3 and then
applying the threshold T to decide if the codeword selected
by Viterbi should be accepted.

VI. CONCLUSION

This paper compared the ROVA algorithm of [8] to AID
from [13] and found that AID is less accurate because it
considers all xnc sequences as possible rather than restricting
attention only to valid codewords. When AID is modified
to consider only valid codewords, it becomes equivalent to

-8 -7 -6 -5 -4 -3 -2 -1 0

log(1-P0
n

c)

10-5

100

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

Comparison of Viterbi Simulation to Monte Carlo

P(C) Monte Carlo
P(C) Viterbi Simulation
P(E) Monte Carlo
P(E) Viterbi Simulation
P(NACK) Monte Carlo
P(NACK) Viterbi Simulation

Fig. 6: Comparison of P (C), P (E), and P (NACK) between ROVA proba-
bilities obtained by simulation for the code and channel of Fig. 5 and Monte
Carlo using (28) with W = 21.

ROVA, and reveals a lower complexity approach to ROVA as
compared to the algorithm presented in [8]. This paper also
derived an expression for the random variable that describes
the codeword reliability according to ROVA and showed how
it can be used to accurately model the probabilities of correct
decoding, undetected error, and negative acknowledgement
that will result when ROVA is used to determine whether a
codeword selected by Viterbi is sufficiently reliable.

REFERENCES

[1] C.-Y. Lou, B. Daneshrad, and R. D. Wesel, “Convolutional-code-specific
CRC code design,” IEEE Transactions on Communications, vol. 63,
no. 10, pp. 3459–3470, Oct 2015.

[2] H. Yang, S. V. S. Ranganathan, and R. D. Wesel, “Serial list Viterbi
decoding with CRC: Managing errors, erasures, and complexity,” in
IEEE Global Communications Conference, Abu Dhabi, UAE., Dec 2018.

[3] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC)
polynomial selection for embedded networks,” in Int. Conf. Dependable
Systems and Networks, Jun. 2004, pp. 145–154.

[4] European Telecommunications Standards Institute 3GPP TS 25.212
version 7.0.0 release 7. [Online]. Available: https://portal.3gpp.org

[5] C. Lott, O. Milenkovic, and E. Soljanin, “Hybrid ARQ: Theory, state
of the art and future directions,” in IEEE Inf. Theory Workshop (ITW),
Bergen, Norway, Jul. 2007.

[6] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker, “Applications
of error control coding,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp.
2531–2560, Oct. 1998.

[7] R. D. Wesel, N. Wong, A. Baldauf, A. Belhouchat, A. Heidarzadeh,
and J. Chamberland, “Transmission lengths that maximize throughput
of variable-length coding & ACK/NACK feedback,” in IEEE Global
Communications Conference, Abu Dhabi, UAE., Dec 2018.

[8] A. Raghavan and C. Baum, “A reliability output Viterbi algorithm with
applications to hybrid ARQ,” IEEE Trans. Inf. Theory, vol. 44, no. 3,
pp. 1214–1216, May 1998.

[9] A. R. Williamson, T.-Y. Chen, and R. D. Wesel, “Variable-length
convolutional coding for short blocklengths with decision feedback,”
IEEE Trans. on Comm., vol. 63, no. 7, pp. 2389–2403, Jul 2015.

[10] J. Fricke and P. Hoeher, “Reliability-based retransmission criteria for
hybrid ARQ,” IEEE Transactions on Communications, vol. 57, no. 8,
pp. 2181–2184, Aug 2009.

[11] J. C. Fricke and P. A. Hoeher, “Word error probability estimation by
means of a modified Viterbi decoder,” in 2007 IEEE 66th Vehicular
Technology Conference, Sep 2007.

[12] A. R. Williamson, M. J. Marshall, and R. D. Wesel, “Reliability-
output decoding of tail-biting convolutional codes,” IEEE Transactions
on Communications, vol. 62, no. 6, pp. 1768–1778, Jun 2014.

[13] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Feedback in the non-
asymptotic regime,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4903 –
4925, August 2011.

