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Abstract

This paper provides an explicit expression for the capacity region of the two-user broadcast Z channel
and proves that the optimal boundary can be achieved by independent encoding of each user. Specifically,
the information messages corresponding to each user are encoded independently and the OR of these two
encoded streams is transmitted. Nonlinear turbo codes that provide a controlled distribution of ones and
zeros are used to demonstrate a low-complexity scheme that operates close to the optimal boundary.
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I. Introduction

Degraded broadcast channels were first studied by Cover in [1] and a formulation of the

capacity region was established in [2], [3] and [4]. Superposition encoding is the key idea

to achieve the optimal boundary of the capacity region for degraded broadcast channels [5].

With superposition encoding for degraded broadcast channels, the data sent to the user

with the most degraded channel is encoded first. Given the encoded bits for that user, an

appropriate codebook for the second most degraded channel user is selected, and so forth.

Hence superposition encoding is, in general, a joint encoding scheme. However, combining

independently encoded streams, one for each user, is an optimal scheme for some broadcast

channels including broadcast Gaussian channels [1] and broadcast binary-symmetric channels

[1] [2].

Successive decoding is a natural decoding scheme for superposition encoding [1] [2] [5].

With successive decoding for degraded broadcast channels, each receiver first decodes the
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Fig. 1. (a) Z channel. (b) Broadcast Z channel.

data sent to the user with the most degraded channel. Conditioning on the decoded data for

that user, each receiver determines the codebook for the user with the second most degraded

channel and decodes that data, and so forth until the desired user’s data is decoded. The

performance of successive decoding for degraded broadcast channels is very close to optimal

decoding under normal operating conditions.

Turbo codes [6] and Low-Density Parity-Check (LDPC) codes [7] perform close to the

Shannon limit. LDPC and turbo coding approach for broadcast channels were studied in

[8] and [9] respectively. In [8], LDPC codes provided reliable transmission over two-user

broadcast channels with additive white Gaussian noise (AWGN) and fading known at the

receiver only. In [9], a superposition turbo coding scheme performs within 1dB of the capacity

region boundary for broadcast Gaussian channels. Both of these approaches are designed

specifically for broadcast Gaussian channels and used linear codes. For multi-user binary

adder channels, nonlinear trellis codes were studied and designed in [10].

The Z channel is the binary-asymmetric channel shown in Fig. 1(a). The capacity of the

Z channel was studied in [11]. Nonlinear trellis codes were designed to maintain a low ones

density for the Z channel in [12] [14] and parallel concatenated nonlinear turbo codes were

designed for the Z channel in [13]. This paper focuses on the study of the two-user broadcast

Z channel X → Y1, Y2 shown in Fig. 1(b). This paper provides an explicit expression of the

capacity region for the two-user broadcast Z channel and shows that independent encoding

with successive decoding can achieve the boundary of this capacity region.

This paper is organized as follows. Section II introduces definitions and notation for
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Fig. 2. Broadcast channel.
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Fig. 3. Physically degraded broadcast channel.

broadcast channels. Section III provides the explicit expression of the capacity region for

the two-user broadcast Z channel and proves that independent encoding can achieve the

optimal boundary of the capacity region. Section IV presents nonlinear-turbo codes designed

to achieve the optimal boundary, and Section V provides the simulation results. Section VI

delivers the conclusions.

II. Definitions and Preliminaries

A. Degraded broadcast channels

The general representation of a discrete memoryless broadcast channel is given in Fig. 2.

A single signal X is broadcast to M users through M different channels A1, · · · , AM . If

p(yi, yi+1|x) = p(yi|x)p(yi+1|yi), then channel Ai+1 is a physically degraded version of chan-

nel Ai (and thus the broadcast channel X → Yi, Yi+1 is physically degraded) [5]. A phys-

ically degraded broadcast channel with M users is shown in Fig. 3. Since each user de-

codes its received signal without collaboration, only the marginal transition probabilities

p(y1|x), p(y2|x), · · · , p(yM |x) of the component channels A1, A2, · · · , AM affect receiver per-

formance. Hence, the stochastically degraded broadcast channel is defined in [2] and [5] as

follows:
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Let Ai be a channel with input alphabet X , output alphabet Yi, and transition probability

pi(yi|x). Let Ai+1 be another channel with the same input alphabet X , output alphabet Yi+1,

and transition probability pi+1(yi+1|x). Ai+1 is a stochastically degraded version of Ai if there

exists a transition probability q(yi+1|yi) such that

pi+1(yi+1|x) =
∑
yi∈Yi

q(yi+1|yi)pi(yi|x). (1)

A broadcast channel with receivers Y1, Y2 · · · , YM is a stochastically degraded broadcast

channel if every component channel Ai is a stochastically degraded version of Ai−1 for all

i = 2, · · · , M [2]. Since the marginal transition probabilities p(y1|x), p(y2|x), · · · , p(yM |x)

completely determine a stochastically degraded broadcast channel, we can model any stochas-

tically degraded broadcast channel as a physically degraded broadcast channel with the same

marginal transition probabilities.

Theorem 1 ([2] [4]) The capacity region for the two-user stochastically degraded broadcast

channel X → Y1 → Y2 is the convex hull of the closure of all (R1, R2) satisfying

R2 ≤ I(X2; Y2) R1 ≤ I(X; Y1|X2), (2)

for some joint distribution p(x2)p(x|x2)p(y1, y2|x), where the auxiliary random variable X2

has cardinality bounded by |X2| ≤ min {|X |, |Y1|, |Y2|}. (U was used as the auxiliary random

variable in [2] [4]. In this paper, we use X2 instead of U because the auxiliary random variable

corresponds to the second user’s encoded stream.)
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Fig. 4. OR operation view of Z channel.

B. The broadcast Z channel

The Z channel, shown in Fig. 1(a), is a binary-asymmetric channel with the transition

probability matrix

T =


1 α

0 1− α


 ,

where 0 ≤ α ≤ 1. If symbol 1 is transmitted, symbol 1 is received with probability 1. If

symbol 0 is transmitted, symbol 1 is received with probability α and symbol 0 is received

with probability 1−α. We can model the Z channel as the OR operation of the channel input

X and Bernoulli noise N with parameter α as shown in Fig. 4. In an OR Multiple Access

Channel, each user appears to transmit over a Z channel when the other users are treated

as noise [13]. Thus, in an OR network with multiple transmitters and multiple receivers,

each transmitter transmitting to more than one receiver sees a broadcast Z channel if other

transmitters transmitting to those receivers are treated as noise. The two-user broadcast Z

channel with the marginal transition probability matrices

T1 =


1 α1

0 1− α1


 T2 =


1 α2

0 1− α2




is shown in Fig. 1, where 0 ≤ α1 ≤ α2 ≤ 1. Because broadcast Z channels are stochastically

degraded, we can model any broadcast Z channel as a physically degraded broadcast Z
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Fig. 5. Physically degraded broadcast Z channel.

channel as shown in Fig. 5, where

α∆ =
α2 − α1

1− α1

. (3)

III. Optimal Transmission Strategy for the Two-User Broadcast Z

Channel

Since the broadcast Z channel is stochastically degraded, its capacity region can be ob-

tained directly from Theorem 1. The capacity region for the broadcast Z channel X → Y1 →
Y2 as shown in Fig. 6 is the convex hull of the closure of all (R1, R2) satisfying

R2 ≤ I2 = I(X2; Y2)

= H
(
(µ̄2γ + µ2µ1)(1− α2)

)− µ̄2H
(
γ(1− α2)

)− µ2H
(
µ1(1− α2)

)
, (4)

R1 ≤ I1 = I(X; Y1|X2)

= µ̄2

(
H(γ(1− α1))− γH(1− α1)

)
+ µ2

(
H(µ1(1− α1))− µ1H(1− α1)

)
, (5)

for some probabilities µ1, µ2, γ, where µ1 = Pr(x = 0|x2 = 0), µ2 = Pr(x2 = 0),

γ = Pr(x = 0|x2 = 1), H(·) is the binary entropy function, µ̄1 = 1− µ1, µ̄2 = 1− µ2 and

α2 = Pr{y2 = 1|x = 0} = 1− (1− α1)(1− α∆). (6)

Each particular choice of (µ1, µ2, γ) in Fig. 6 specifies a particular transmission strategy

and a rate pair (I1, I2). The optimal boundary of a capacity region is the set of all Pareto
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optimal points (I1, I2), for which it is impossible to increase rate I1 without decreasing rate

I2 or vice versa. A transmission strategy is optimal if and only if it achieves a rate pair

point on the optimal boundary. We call a set of transmission strategies sufficient if all rate

pairs on the optimal boundary can be achieved by using these strategies and time sharing.

Furthermore, a set of transmission strategies is strongly sufficient if these strategies can

achieve all rate pairs on the optimal boundary without using time sharing. Equations (4)

and (5) give a set of pentagons that yield the capacity region through their convex hull,

but do not explicitly show the optimal transmission strategies or derive the boundary of the

capacity region.

A. Optimal transmission strategies

The following theorem identifies a set of optimal transmission strategies and provides an

explicit expression of the boundary of the capacity region.

Theorem 2: For a broadcast Z channel with 0 < α1 < α2 < 1, the set of the optimal

transmission strategies (µ1, µ2, γ), which satisfy

γ = 0, (7)

1

(1− α1)(eH(1−α1)/(1−α1) + 1)
≤ µ1 ≤ 1, (8)
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and

ln(1− µ1(1− α1))
(
H(µ1(1− α2))− µ1(1− α2) ln

1− µ2µ1(1− α2)

µ2µ1(1− α2)

)

= ln(1− µ1(1− α2))
(
H(µ1(1− α1))− µ1H(1− α1)

)
, (9)

are strongly sufficient. In other words, all rate pairs on the optimal boundary of the capacity

region can be achieved by using exactly the transmission strategies described in (7-9) without

the need of time sharing. Furthermore, applying (7-9) to (4) and (5) yields an explicit

expression of the optimal boundary of the capacity region.

Before proving Theorem 2, we present and prove some preliminary results. From (4) and

(5), we can see that the transmission strategies (µ1, µ2, γ) and (γ, 1− µ2, µ1) have the same

transmission rate pairs. Therefore, we assume γ ≤ µ1 in the rest of the section without loss

of generality.

Theorem 3: For a broadcast Z channel with 0 < α1 < α2 < 1, any transmission strategy

(µ1, µ2, γ) with 0 < µ2 < 1, 0 < γ < µ1 is not optimal.

The proof is given in Appendix A.

Corollary 1: The set of all the transmission strategies with γ = 0 is sufficient for any

broadcast Z channel with 0 < α1 < α2 < 1.

Proof: From Theorem 3, we know that the transmission strategy (µ1, µ2, γ) is optimal

only if at least one of these four equations µ2 = 0, µ2 = 1, γ = µ1, γ = 0 is true. Hence

the set of all the transmission strategies with µ2 = 0, µ2 = 1, γ = µ1 or γ = 0 is sufficient.

When µ2 = 0, µ2 = 1 or γ = µ1, the transmission rate for the second user, I2 in equation

(4), is zero. (This optimal rate pair is the point B in Fig. 7(a), which will see later.)

Since this point can also be achieved by the transmission strategy with γ = 0, µ2 = 1 and

µ1 = arg max(H(x(1−α1))−xH(1−α1)), all the optimal rate pairs on the optimal boundary

of the capacity region can be achieved by using the transmission strategies with γ = 0 and
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time sharing. Thus, the set of all the transmission strategies with γ = 0 is sufficient. Q.E.D.

From Corollary 1, we can set γ = 0 in Fig. 6 without losing any part of the capacity region

and so the designed virtual channel X2 → X is a Z channel. Since we can consider the

output of a Z channel as the OR operation of two Bernoulli random variables, an independent

encoding scheme that works well for the broadcast Z channel will be introduced later in this

paper.

Applying γ = 0 to (4) and (5) yields

R2 ≤ I2 = H(µ2µ1(1− α2))− µ2H(µ1(1− α2)), (10)

R1 ≤ I1 = µ2H(µ1(1− α1))− µ2µ1H(1− α1). (11)

By Corollary 1, the capacity region is the convex hull of the closure of all rate pairs (R1, R2)

satisfying (10) and (11) for some probability µ1, µ2. However, not all transmission strategies

of (µ1, µ2, γ = 0) achieve the optimal boundary of the capacity region. Since any optimal

transmission strategy maximizes I1 + λI2 for some nonnegative λ, we solve the optimization

problem of maximizing I1 +λI2 for any fixed λ ≥ 0 in order to find the constraints on µ1 and

µ2 for optimal transmission strategies. Theorem 4 provides the solution to this maximization

problem.

Theorem 4: The optimal solution to the maximization problem

maximize I1 + λI2 (12)

subject to I2 = H(µ2µ1(1− α2))− µ2H(µ1(1− α2))

I1 = µ2H(µ1(1− α1))− µ2µ1H(1− α1)

0 ≤ µ2 ≤ 1, 0 ≤ µ1 ≤ 1,

is unique and it is given below for any fixed λ ≥ 0.
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Define

ϕ(x) =
ln(1− (1− α1)x)

ln(1− (1− α2)x)
(13)

and

ψ(x) =
1

xeH(x)/x + x
. (14)

Case 1: if 0 ≤ λ ≤ ϕ(ψ(1−α1)), then the optimal solution is µ∗2 = 1, µ∗1 = ψ(1−α1), which

satisfies (8) and (9), and the corresponding rate pair is I∗1 = H(µ∗1(1− α1))− µ∗1H(1− α1),

I∗2 = 0.

Case 2: if λ ≥ ϕ(1), then the optimal solution is µ∗2 = ψ(1−α2), µ
∗
1 = 1, which also satisfies

(8) and (9), and the corresponding rate pair is I∗1 = 0, I∗2 = H(µ∗2(1− α2))− µ∗2H(1− α2).

Case 3: if ϕ(ψ(1− α1)) < λ < ϕ(1), then the optimal solution given below also satisfies (8)

and (9):

µ∗1 = ϕ−1(λ) =
eλ − 1

eλ(1− α2)− (1− α1)
(15)

and

ln(1− µ∗1(1− α1))
(
H(µ∗1(1− α2))− µ∗1(1− α2) ln

1− µ∗2µ
∗
1(1− α2)

µ∗2µ
∗
1(1− α2)

)

= ln(1− µ∗1(1− α2))
(
H(µ∗1(1− α1))− µ∗1H(1− α1)

)
. (16)

The proof is given in Appendix B. Combining Case 1,2 and 3, we conclude that (µ1, µ2)

is a maximizer of (12) if and only if the pair (µ1, µ2) satisfies (8) and (9). In other words,

if (µ1, µ2) doesn’t satisfy (8) or (9), (µ1, µ2) can not be a maximizer of (12), and thus

the transmission strategy (µ1, µ2, γ = 0) is not optimal. Since the set of the transmission

strategies with γ = 0 is sufficient by Corollary 1, the set of all the transmission strategies

satisfying (7-9) is also sufficient. Therefore the capacity region is the convex hull of the

closure of all rate pairs (R1, R2) satisfying (10) and (11) for some µ1, µ2 which satisfy (8)

and (9).
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Fig. 7. (a) The capacity region and two upper bounds. (b) Point Z can not be on the boundary of the
capacity region.

A sketch of the capacity region is shown with two upper bounds in Fig. 7(a). From Case

1 in Theorem 4, the point B corresponds to the largest transmission rate for the first user.

The first upper bound is the tangent of the capacity region at the point B, and its slope is

−1/ϕ(ψ(1 − α1)). From Case 2, the point A provides the largest transmission rate for the

second user. The second upper bound is the tangent of the capacity region at the point A,

and its slope is −1/ϕ(1). Case 3 gives us the optimal boundary of the capacity region except

the points A and B.

Given α1 and α2, which completely describe a two-user degraded broadcast Z channel, the

optimal boundary of the capacity region can be explicitly described by (8-11). For any µ1

in the range of (8), the value of the unique associated µ2 follows from (9). The curve of the

optimal boundary of the capacity region is then the set of (I1, I2) pairs satisfying (10) and

(11) for these µ1 and associated µ2. For example, for α1 = 0.15 and α2 = 0.6, the range

of optimal µ1 values is 0.445 ≤ µ1 ≤ 1, the range of optimal µ2 values implied by (9) is

0.392 ≤ µ2 ≤ 1, and the associated capacity region boundary is plotted in Fig. 13.

Now we prove Theorem 2. Since we have proved that the set of all the transmission

strategies satisfying (7-9) is sufficient, we only need to show that any rate pair on the

optimal boundary of the capacity region can be achieved without using time sharing.

Proof by contradiction: Suppose the point Z in Fig. 7(b) is on the optimal boundary

of the capacity region for the broadcast Z channel and this point can only be achieved by

time sharing of the points X and Y , which can be directly achieved by using transmission
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Fig. 8. Communication system for 2-user broadcast Z channels.
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Fig. 9. Optimal transmission strategy for broadcast Z channels.

strategies satisfying (7-9). Clearly, the slope of the line segment XY is neither zero nor

minus infinity. Denote −k, 0 < k < ∞ as the slope of XY . The points X and Y provide the

same value of I1 + 1
k
I2. By Theorem 4, the optimal solution to the maximization problem of

max(I1 + λI2) is unique, and so neither X nor Y maximizes (I1 + 1
k
I2). Thus, there exists

an achievable point P such that this point is on the right upper side of the line XY . Since

and the triangle 4XY P is in the capacity region, the point Z must not be on the optimal

boundary of the capacity region (contradiction). Q.E.D.

B. Independent encoding scheme

The communication system for the two-user broadcast Z channel is shown in Fig. 8. In

a general scheme, the transmitter jointly encodes the independent messages W1 and W2,

which is potentially too complex to implement. Theorem 2 demonstrates that there exists

an independent encoding scheme which achieves the optimal boundary of the capacity region.

Since γ = 0 is strongly sufficient, the designed channel X2 → X is a Z channel. Thus, the

broadcast signal X can be constructed as the OR of two Bernoulli random variables X1 and

X2. This construction of X is an independent encoding scheme. The system diagram of

the independent encoding scheme is shown in Fig. 9. First the messages W1 and W2 are

encoded separately and independently. X1 and X2 are two binary random variables with
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Fig. 10. 16-state nonlinear turbo code structure, with k0 = 2 input bits per trellis section.

Pr{Xj = 1} = µ̄j and Pr{Xj = 0} = µj, where µ̄j + µj = 1 for j = 1, 2. The transmitter

broadcasts X, which is the OR of X1 and X2. From Theorem 2, this independent encoding

scheme with any choice of (µ1, µ2) satisfying (8) and (9) achieves a rate pair (I1, I2) arbitrarily

close to the optimal boundary of the capacity region if the codes for X1 and X2 are properly

chosen and have sufficiently large block lengths.

IV. Nonlinear-Turbo Codes for the Two-User Broadcast Z Channel

In this section we show a practical implementation of the transmission strategy for the

two-user broadcast Z channel. As proved in Section III, the optimal boundary is achieved

by transmitting the OR of the encoded data of each user, provided that the density of ones

of each of these encoded streams is chosen properly. Hence, a family of codes that provides

a controlled density of ones is required. We use the nonlinear turbo codes, introduced in

[13], to provide the needed controlled density of ones. Nonlinear turbo codes are parallel

concatenated trellis codes with k0 input bits and n0 output bits per trellis section. A look-up

table assigns the output label for each branch of the trellis so that the required ones density

is achieved. Each constituent encoder for the turbo code in this paper is a 16-state trellis

code with k0 = 2 and the trellis structure shown in Fig. 10. The output labels are assigned

via a constrained search that provides the required ones density for each case, using the

tools presented in [13] for the Z Channel. The output labels for the codes with rate pair

(R1 = 1/6, R2 = 1/6), which is simulated on a broadcast Z channel with α1 = 0.15, α2 = 0.6,

are listed in Table I.
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TABLE I
Labeling for constituent trellis codes. Rates R1 = 1/6, R2 = 1/6. Rows represent the

state s1s2s3s4, columns represent the input u1u2. Labeling in octal notation.

User 1 User 2
state input state input

00 01 10 11 00 01 10 11
0000 40 20 10 04 0000 07 34 62 51
0001 20 40 04 10 0001 34 07 51 62
0010 10 04 02 01 0010 25 16 43 70
0011 04 10 01 02 0011 16 25 70 43
0100 02 01 40 20 0100 61 13 54 26
0101 01 02 20 40 0101 13 61 26 54
0110 42 21 14 05 0110 23 15 52 64
0111 21 42 05 14 0111 15 23 64 52
1000 01 02 04 10 1000 70 43 16 25
1001 02 01 10 04 1001 43 70 25 16
1010 04 10 20 40 1010 51 62 34 07
1011 10 04 40 20 1011 62 51 07 34
1100 05 14 21 42 1100 64 52 15 23
1101 14 05 42 21 1101 52 64 23 15
1110 20 40 01 02 1110 26 54 13 61
1111 40 20 02 01 1111 54 26 61 13

1Y e

Decoder 2

Decoder 1 1X̂

2X̂

1Y�
Fig. 11. Decoder structure for user 1.

Receiver 1 uses successive decoding as shown in Fig. 11. Denote as X̂2 the decoded stream

corresponding to user 2. Since the transmitted data is x = x1(OR)x2, whenever a bit x2 = 1,

there is no information about x1, and x1 can be considered an erasure. Hence, the input

stream to Decoder 1 is

ŷ1 = e(y1, x̂2) =





y1 if x̂2 = 0,

e if x̂2 = 1.
(17)

Therefore, Decoder 2 sees a Z Channel with erasures as shown in Fig. 12. The tools
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Fig. 12. Perceived channel by each decoder.

presented in [13] were general enough to be applied to the Z Channel with erasures. Note

that if α1 is much smaller than α2 we can use hard decoding in Decoder 2 instead of soft

decoding without any loss in performance. Since the code for user 2 is designed for a Z

Channel with 0-to-1 crossover probability 1 − (1 − α2)µ1, and the channel perceived by

Decoder 2 in user 1 is a Z-Channel with crossover probability 1−(1−α1)µ1 < 1−(1−α2)µ1,

the bit error rate of x̂2 is negligible compared to the bit error rate of Decoder 1. In fact, in

all the simulations shown in Section V, which include 100 frame errors of user 1, none of the

errors were produced by Decoder 2.

V. Results

We simulate the transmission strategy for the two-user broadcast Z channel with crossover

probabilities α1 = 0.15 and α2 = 0.6, using nonlinear turbo codes, with the structure shown

in Fig. 10. Fig. 13 shows the capacity region for the broadcast Z channel and identifies the

simulated rate pairs. It also shows the optimal rate pairs, which are used to compute the

ones densities of each code. The output labels for the codes with each simulated rate pair

are listed at [15]. For each of these four simulated rate pairs, the loss in mutual information

from the associated optimal rate is only 0.04 bits or less in R1 and only 0.02 bits or less in

R2. Table II shows bit error rates for each rate pair, the ones densities µ̄1 and µ̄2, and the

interleaver lengths K1 and K2 used for each code. For simplicity, we chose K1 and K2 so

that the codeword length n would be the same for user 1 and user 2, except for rate pairs

15
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rates.

TABLE II
BER for two-user broadcast Z channel with crossover probabilities α1 = 0.15 and α2 = 0.6.

R1 R2 µ̄1 µ̄2 K1 K2 BER1 BER2

1/12 1/5 0.106 0.56 4800 1700 2.54× 10−5 1.24× 10−5

1/6 1/6 0.196 0.5 2048 2048 7.01× 10−6 5.33× 10−6

1/3 1/9 0.336 0.3739 4608 1536 7.13× 10−6 6.70× 10−6

1/2 1/22 0.463 0.1979 5632 1024 9.27× 10−7 3.27× 10−6

R1 = 1/2 and R2 = 1/22, where one codeword length of user 2 is twice the length of user 1.

VI. Conclusions

This paper presented an optimal transmission strategy for the broadcast Z channel with

independent encoding and successive decoding. We proved that any point on the optimal

boundary of the capacity region can be achieved by independently encoding the messages

corresponding to different users and transmitting the OR of the encoded signals. Also,

the distributions of the outputs of each encoder that achieve the optimal boundary were

provided. Nonlinear-turbo codes that provide a controlled distribution of ones and zeros in

their codewords were used to demonstrate a low-complexity scheme that works close to the

optimal boundary.
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Appendices

Appendix A

Here we prove Theorem 3, which states that for a broadcast Z channel with 0 < α1 <

α2 < 1, any transmission strategy (µ1, µ2, γ) with 0 < µ2 < 1, 0 < γ < µ1 is not optimal.

In (4) and (5), denote

I1(µ1, µ2, γ) = I(X; Y1|X2)
∣∣
µ1,µ2,γ

(18)

I2(µ1, µ2, γ) = I(X2; Y2)
∣∣
µ1,µ2,γ

(19)

I1,2(µ1, µ2, γ) = (I1, I2)
∣∣
µ1,µ2,γ

. (20)

The transmission strategy (µ1, µ2, γ) achieves the rate pair I1,2(µ1, µ2, γ). The theorem is

true if we can increase both I1 and I2 when 0 < µ2 < 1, 0 < γ < µ1.

First compare the strategies (µ1, µ2, γ) and (µ1 + µ̄2δ1, µ2, γ − µ2δ1) for a small positive

number δ1 > 0.

∆1I1 = I1(µ1 + µ̄2δ1, µ2, γ − µ2δ1)− I1(µ1, µ2, γ)

' ∂I1(µ1 + µ̄2δ1, µ2, γ − µ2δ1)

∂δ1

∣∣∣
δ1=0

δ1

= −µ2µ̄2(1− α1)

(
ln

1− γ(1− α1)

γ(1− α1)
+ ln

µ1(1− α1)

1− µ1(1− α1)

)
δ1

< 0 (21)
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1
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Fig. 14. Capacity region and the changes of rate pairs.

and

∆1I2 = I2(µ1 + µ̄2δ1, µ2, γ − µ2δ1)− I2(µ1, µ2, γ)

' ∂I2(µ1 + µ̄2δ1, µ2, γ − µ2δ1)

∂δ1

∣∣∣
δ1=0

δ1

= µ2µ̄2(1− α2)

(
ln

1− γ(1− α2)

γ(1− α2)
+ ln

µ1(1− α2)

1− µ1(1− α2)

)
δ1

> 0. (22)

The small change of the rate pair (∆1I1, ∆1I2) is shown Fig. 14. Point A is the rate pair

of the transmission strategy (µ1, µ2, γ), the arrow ∆1 shows the small movement of the rate

pair (∆1I1, ∆1I2).

Second compare the strategies (µ1, µ2, γ) and (µ1 + (γ − µ1)δ2, µ2 + µ2δ2, γ) for a small

positive number δ2 > 0.

∆2I1 = I1(µ1 + (γ − µ1)δ2, µ2 + µ2δ2, γ)− I1(µ1, µ2, γ)

' ∂I1(µ1 + (γ − µ1)δ2, µ2 + µ2δ2, γ)

∂δ2

∣∣∣
δ2=0

δ2

= −µ2δ2

{
γ(1− α1) ln

µ1

γ
+ (1− γ(1− α1)) ln

1− µ1(1− α1)

1− γ(1− α1)

}

= µ2δ2D(γ(1− α1) ‖ µ1(1− α1))

> 0 (23)
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and

∆2I2 = I2(µ1 + (γ − µ1)δ2, µ2 + µ2δ2, γ)− I2(µ1, µ2, γ)

' ∂I2(µ1 + (γ − µ1)δ2, µ2 + µ2δ2, γ)

∂δ2

∣∣∣
δ2=0

δ2

= µ2δ2

{
γ(1− α2) ln

µ1

γ
+ (1− γ(1− α2)) ln

1− µ1(1− α2)

1− γ(1− α2)

}

= −µ2δ2D(γ(1− α2) ‖ µ1(1− α2))

< 0, (24)

where D(p ‖ q) is the relative entropy between the distributions p and q. The arrow ∆2 in

Fig. 14 shows the small movement of the rate pair (∆2I1, ∆2I2).

Now we show that

∆1I2

∆1I1

<
∆2I2

∆2I1

< 0. (25)

∆1I2

∆1I1

<
∆2I2

∆2I1

⇔
D(γ(1− α2) ‖ µ1(1− α2)) + ln 1−γ(1−α2)

1−µ1(1−α2)

D(γ(1− α1) ‖ µ1(1− α1)) + ln 1−γ(1−α1)
1−µ1(1−α1)

>
D(γ(1− α2) ‖ µ1(1− α2))

D(γ(1− α1) ‖ µ1(1− α1))

⇔ D(γ(1− α1) ‖ µ1(1− α1))

ln 1−γ(1−α1)
1−µ1(1−α1)

>
D(γ(1− α2) ‖ µ1(1− α2))

ln 1−γ(1−α2)
1−µ1(1−α2)

⇔ f(x) =
D(γx ‖ µ1x)

ln 1−γx
1−µ1x

is monotonically increasing in the domain of 0 < x < 1

⇔ f ′(x) =

{
ln

γx

µ1x
ln

1− γx

1− µ1x
−

(
ln

1− γx

1− µ1x

)2

+ ln
γx

µ1x

(
1

1− γx
− 1

1− µ1x

)}
γ

(
ln

1− γx

1− µ1x

)−2

> 0. (26)
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Let a = 1− γx and b = 1− µ1x. We have 0 < b < a < 1 and want to show that

g(a, b) = ln
a

b
ln

1− a

1− b
−

(
ln

a

b

)2

+ ln
1− a

1− b

(
1

a
− 1

b

)
> 0. (27)

Since

∂2g(a, b)

∂a∂b
= − (a− b)2

a2b2(1− a)(1− b)
< 0, (28)

and

∂g(a, b)

∂a

∣∣∣
b=a

= 0 ∀0 < a < 1, (29)

it is true that

∂g(a, b)

∂a
> 0 ∀0 < b < a < 1. (30)

It follows from (30) and the fact g(b, b) = 0, ∀0 < b < 1 that g(a, b) > 0, ∀0 < b < a < 1.

Thus, the inequality (25) is true, which means that the slope of ∆1 is smaller than that of

∆2 in Fig. 14. Hence, the achievable shaded region is on the upper right side of the point A.

Therefore, we can increase both terms in the rate pair I1,2(µ1, µ2, γ) simultaneously and the

strategy (µ1, µ2, γ) is not optimal when 0 < µ2 < 1 and 0 < γ < µ1. Q.E.D.

Appendix B

Here we prove Theorem 4, which provides the unique optimal solution to the maximization

problem (12). In problem (12), the objective function I1 + λI2 is bounded and the domain

0 ≤ µ1, µ2 ≤ 1 is closed, so the maximum exists and can be attained. First we discuss some

possible optimal solutions and then we show that only one of them is optimal for any fixed

λ ≥ 0.

Case 0: If µ1 = 0 or µ2 = 0 or µ1 = µ2 = 1, then I1 = I2 = 0 and so it can not be optimal.
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Case 1: If µ2 = 1 and 0 < µ1 < 1, then I2 = 0 and

∂I1

∂µ1

= (1− α1) ln
1− µ1(1− α1)

µ1(1− α1)
−H(1− α1) = 0 (31)

⇒ µ∗1 =
1

(1− α1)(eH(1−α1)/(1−α1) + 1)
. (32)

Case 2: If µ1 = 1 and 0 < µ2 < 1, then I1 = 0 and

∂I2

∂µ2

= (1− α2) ln
1− µ2(1− α2)

µ2(1− α2)
−H(1− α2) = 0 (33)

⇒ µ∗2 =
1

(1− α2)(eH(1−α2)/(1−α2) + 1)
. (34)

Case 3: If 0 < µ1, µ2 < 1, then the optimum is attained when

µ2
∂(I1 + λI2)

∂µ2

− µ1
∂(I1 + λI2)

∂µ1

= 0

⇒ ln(1− µ∗1(1− α1)) = λ ln(1− µ∗1(1− α2)), (35)

and

∂(I1 + λI2)

∂µ2

= 0

⇒λ

{
H(µ∗1(1− α2))− µ∗1(1− α2) ln

1− µ∗2µ
∗
1(1− α2)

µ∗2µ
∗
1(1− α2)

}
=

(
H(µ∗1(1− α1))− µ∗1H(1− α1)

)

⇒ ln(1− µ∗1(1− α1))

{
H(µ∗1(1− α2))− µ∗1(1− α2) ln

1− µ∗2µ
∗
1(1− α2)

µ∗2µ
∗
1(1− α2)

}

= ln(1− µ∗1(1− α2))
(
H(µ∗1(1− α1))− µ∗1H(1− α1)

)
. (36)

For any fixed λ ≥ 0, the optimal solution is in Case 1, 2, or 3.

Lemma 1: Function ϕ(x) = ln(1−(1−α1)x)
ln(1−(1−α2)x)

is monotonically increasing in the domain of 0 ≤
x ≤ 1 when α1 < α2.
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Lemma 2: The solution in Case 1 can not be optimal when λ > ϕ(ψ(1− α1)).

Proof: When µ2 = 1 and µ1 = ψ(1 − α1),
∂I2
∂µ1

= 0 and ∂I1
∂µ1

= 0. Therefore, for any fixed λ,

∂(I1+λI2)
∂µ1

= 0. When λ = ϕ(µ1) = ϕ(ψ(1− α1)), (35) holds, and so

∂(I1 + λI2)

∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

=
∂(I1 + ϕ(ψ(1− α1))I2)

∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

= 0. (37)

Since ∂I2
∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

= ln(1− ψ(1− α1) · (1− α2)) < 0, when λ > ϕ(ψ(1− α1)),

∂(I1 + λI2)

∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

=
∂I1

∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

+ λ
∂I2

∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

a
<

∂I1

∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

+ ϕ(ψ(1− α1))
∂I2

∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

=
∂(I1 + ϕ(ψ(1− α1))I2)

∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

b
= 0, (38)

where (a) follows from the facts that ∂I2
∂µ2

∣∣∣
µ2=1,µ1=ψ(1−α1)

< 0 and λ > ϕ(ψ(1− α1)), and (b)

follows from (37). Therefore, Case 1 can not be optimal when λ > ϕ(ψ(1− α1)). Q.E.D.

Lemma 3: The solution in Case 2 can not be optimal when λ < ϕ(1).

Proof: When µ2 = ψ(1 − α2) and µ1 = 1, ∂I2
∂µ2

= 0 and ∂I1
∂µ2

= 0. Therefore, for any fixed λ,

∂(I1+λI2)
∂µ2

= 0. When λ = ϕ(µ1) = ϕ(1), (35) holds, and so

∂(I1 + λI2)

∂µ1

∣∣∣
µ2=ψ(1−α2),µ1=1

=
∂(I1 + ϕ(1)I2)

∂µ1

∣∣∣
µ2=ψ(1−α2),µ1=1

= 0. (39)
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Since ∂I2
∂µ1

∣∣∣
µ2=ψ(1−α2),µ1=1

= −ψ(1− α2) ln α2 > 0, when λ < ϕ(1),

∂(I1 + λI2)

∂µ1

∣∣∣
µ2=ψ(1−α2),µ1=1

=
∂I1

∂µ2

∣∣∣
µ2=ψ(1−α2),µ1=1

+ λ
∂I2

∂µ2

∣∣∣
µ2=ψ(1−α2),µ1=1

a
<

∂I1

∂µ2

∣∣∣
µ2=ψ(1−α2),µ1=1

+ ϕ(1)
∂I2

∂µ2

∣∣∣
µ2=ψ(1−α2),µ1=1

=
∂(I1 + ϕ(1)I2)

∂µ1

∣∣∣
µ2=ψ(1−α2),µ1=1

b
= 0, (40)

where (a) follows from the facts that ∂I2
∂µ1

∣∣∣
µ2=ψ(1−α2),µ1=1

> 0 and λ < ϕ(1), and (b) follows

from (39). Therefore, Case 2 can not be optimal when λ < ϕ(1). Q.E.D.

Lemma 4: The solution to (35) exists in (0, 1) and is unique for any λ in the range of

ϕ(0) < λ < ϕ(1).

Proof: Equation (35) is equivalent to ϕ(µ∗1) = λ. From Lemma 1, ϕ(µ1) is monotonically

increasing. Therefore, when ϕ(0) < λ < ϕ(1), the solution µ∗1is unique and µ∗1 ∈ (0, 1).

Q.E.D.

Lemma 5: The unique solution (µ∗1, µ
∗
2) to (35) and (36) in Case 3 is optimal if ϕ(ψ(1 −

α1)) < λ < ϕ(1).

Proof: From Lemma 4, the solution µ∗1 to (35) is unique if ϕ(ψ(1−α1)) < λ < ϕ(1). From

(36),

m(µ2) =
(
H(µ∗1(1− α2))− µ∗1(1− α2) ln

1− µ2µ
∗
1(1− α2)

µ2µ∗1(1− α2)

)
ln(1− µ∗1(1− α1))

− (
H(µ∗1(1− α1))− µ∗1H(1− α1)

)
ln(1− µ∗1(1− α2))

= 0. (41)
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Clearly, m(µ2) is monotonically increasing,

lim
µ2→0

m(µ2) = −∞ < 0, (42)

and

ϕ(ψ(1− α1)) < λ < ϕ(1)

⇒µ∗1 > ψ(1− α1)

⇒m(1) > 0. (43)

That means the unique solution µ∗2 to (36) is in the domain of 0 ≤ µ2 ≤ 1. Furthermore,

when ϕ(ψ(1 − α1)) < λ < ϕ(1), by Lemma 2 and Lemma 3, Case 1 or Case 2 can not be

optimal because

∂(I1 + λI2)

∂µ2

∣∣
µ2=1,µ1=ψ(1−α1)

< 0, (44)

∂(I1 + λI2)

∂µ1

∣∣
µ1=1,µ2=ψ(1−α2)

< 0. (45)

Therefore, Case 3 is optimal. Q.E.D.

Lemma 6: The unique solution (µ∗2 = 1, µ∗1 = ψ(1 − α1)) in Case 1 is optimal if 0 ≤ λ ≤
ϕ(ψ(1− α1)).

Proof: When 0 ≤ λ ≤ ϕ(ψ(1 − α1)), Case 3 is not optimal because there is no solution

µ1 ∈ (0, 1) to (35). Case 2 is not optimal by Lemma 3. Hence, Case 1 is optimal. Q.E.D.

Lemma 7: The unique solution (µ∗2 = ψ(1− α2), µ
∗
1 = 1) in Case 2 is optimal if λ ≥ ϕ(1).

Proof: When λ ≥ ϕ(1), Case 3 is not optimal because there is no solution µ2 ∈ (0, 1) to

(36). Case 1 is not optimal by Lemma 2. Hence, Case 2 is optimal. Q.E.D.

From Lemma 5,6 and 7, Theorem 4 is immediately proved. Q.E.D.

24



References

[1] T. M. Cover. Broadcast channels. IEEE Trans. Inform. Theory, IT-18:2–14, January
1972.

[2] P. P. Bergmans. Random coding theorem for broadcast channels with degraded com-
ponents. IEEE Trans. Inform. Theory, IT-19:197–207, March 1973.

[3] P. P. Bergmans. A simple converse for broadcast channels with additive white Gaussian
noise. IEEE Trans. Inform. Theory, IT-20:279–280, March 1974.

[4] R. G. Gallager. Capacity and coding for degraded broadcast channels. Probl. Pered.
Inform., 10:3–14, July–Sept. 1974.

[5] T. M. Cover. Comments on broadcast channels. IEEE Trans. Inform. Theory, 44:2524–
2530, October 1998.

[6] C. Berrou, A. Glavieux and P. Thitimajshima. Near shannon limit error-correcting
coding and decoding: turbo-codes. Proc. ICC’93, pages 873–890, May 1993.

[7] R. G. Gallager. Low-Density Parity-Check Codes. PhD thesis, MIT, Cambridge, MA,
1963.

[8] P. Berlin and D. Tuninetti. LDPC codes for Gaussian broadcast channels. Signal Proc.
Advances in Wireless Commun., 2004 IEEE 5th Workshop on, pages 444–448, 2004.

[9] T. W. Sun, R. D. Wesel, M. R. Shane and K. Jarett. Superposition turbo-TCM for
multi-rate broadcast. IEEE Trans. on Commun., 52:368–371, 2004.

[10] P. R. Chevillat. N-user trellis coding for a class of multiple-access channels. IEEE Trans.
on Info. Theo., IT-27:114–120, 1981.

[11] S. W. Golomb. The limiting behavior of the Z-channel. IEEE Trans. Inform. Theory,
IT-26:372, May 1980.

[12] M. Griot, A.I. Vila Casado, W-Y. Weng, H. Chan, J. Basak, E. Yablanovitch, I. Ver-
bauwhede, B. Jalali and R. D. Wesel. Trellis codes with low ones density for the OR
multiple access channel. In IEEE ISIT 2006, July 2006.

[13] M. Griot, A.I. Vila Casado, and R.D. Wesel. Non-linear turbo codes for interleaver-
division multiple access on the OR channel. In GLOBECOM ’06. IEEE Global
Telecomm. Conf., 27 Nov. - 1 Dec. 2006.

[14] M. Griot, A. I. Vila Casado, W.-Y. Weng, H. Chan and R. D. Wesel. Nonlinear trellis
codes for binary-input binary-output multiple access channels with single-user decoding.
Accepted in IEEE Transactions on Communications.

[15] Nonlinear turbo codes for broadcast Z channels. [Online]. Available:
http://www.ee.ucla.edu/∼csl/files/codes/bzc.html.

25



Bike Xie (S’07) was born in Shanghai, China, in 1983. He received the B.S. degree in electronic
engineering from Tsinghua University, Beijing, China, in 2005, and the M.S. degree in electrical
engineering from University of California, Los Angeles, CA, in 2006. He is currently working
toward the Ph.D. degree in the Communication Systems Lab at the Department of Electrical
Engineering, University of California, Los Angeles.
His research interests are in the area of information theory with particular interest in the topics
of network information theory and channel coding.

Miguel Griot (S’05) received the B.S. degree in electrical engineering from the Universidad
de la Republica, Uruguay, in 2003, the M.S. and PhD degree in electrical engineering from the
University of California at Los Angeles, in 2004 and 2008 respectively. He is currently with
Qualcomm Inc., San Diego. His research interests include wireless communications, channel
coding, information theory, multiple access channels and broadcast channels.

Andres I. Vila Casado received his B. S. in electrical engineering from the Politecnico di
Torino, Turin, Italy in 2002. He received his M. S. and Ph. D. degrees in electrical engineering
from the University of California, Los Angeles in 2004 and 2007 respectively.
At UCLA and at Politecnico di Torino he conducted research on communication theory with a
focus on channel coding and information theory. He is currently a Research Scientist at Mojix,
Inc. where he conducts research on physical layer communications and Bayesian estimation for
RFID applications.

Richard D. Wesel is a Professor with the UCLA Electrical Engineering Department and is
the Associate Dean for Academic and Student Affairs for the UCLA Henry Samueli School of
Engineering and Applied Science. He joined UCLA in 1996 after receiving his Ph.D. in electrical
engineering from Stanford. His B.S. and M.S. degrees in electrical engineering are from MIT. His
research is in the area of communication theory with particular interest in channel coding. He has
received the National Science Foundation (NSF) CAREER Award, an Okawa Foundation award
for research in information and telecommunications, and the Excellence in Teaching Award from
the Henry Samueli School of Engineering and Applied Science. He has authored or co-authored
over a hundred conference and journal publications.

26


