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Abstract—Non-binary quasi-cyclic (NB-QC) codes are a
class of graph-based codes with high performance and
implementation-friendly structure. In this paper, we introduce
a new method for designing NB-QC codes with improved per-
formance in the low error-rate region. Specifically, we propose a
construction which reduces the number of non-binary absorbing
sets, which are known to cause errors when decoding non-binary
LDPC codes. Our construction is based on a careful selection
of the code design parameters. Simulation results demonstrate
the superior performance of codes designed according to our
technique compared to existing state-of-the-art NB-QC codes.

I. INTRODUCTION

Non-binary quasi-cyclic (NB-QC) LDPC codes are an im-
portant class of non-binary codes defined on graphs. NB-
QC codes offer superior error-correcting performance and
implementation friendly structure. They are well suited for
emerging data storage applications requiring very low error
rates. Design of NB-QC codes is an active area of research;
some recent constructions include [1], [2] and [3].

Under message-passing decoding, certain non-codewords
compete with the codewords to be the output of the decoder.
The existence of these non-codeword objects significantly un-
dermines the performance of (non-binary) graph-based codes.
It was shown in [4] by Poulliat, Fosorrier and Declercq that
short cycles in the Tanner graph of a non-binary LDPC (NB-
LDPC) code, which satisfy certain weight conditions result
in non-codeword errors. Inspired by the (early version of
the) results in [4], Peng and Chen constructed NB-QC codes
by utilizing a cycle elimination algorithm which attempts to
remove all cycles shorter than a certain length [5]. Due to the
fact that not all cycles in the Tanner graph may be problematic,
Bazarsky, Presman, and Litsyn in [6] restrict the cancellation
of cycles only to those that violate a given set of ACE spectrum
constraints [7].

We showed in our recent work that decoding errors in
the output of NB-LDPC can be combinatorially described by
certain substructures in the Tanner graph of these codes. We
refer to these substructures as non-binary absorbing sets. In
this paper, by applying insights from [8], we present an ap-
proach towards constructing high-performance NB-QC codes.
In particular, we eliminate a collection of non-binary absorbing
sets (NB ASs) by optimizing the construction parameters that
specify lifting and labeling operations. This is achieved by

canceling only a single cycle in each of the ASs of interest.
Therefore, compared to cycle-only approaches, which try to
cancel all cycles that violate certain conditions as in [5], [6],
our approach is capable of canceling more ASs of various
sizes. Simulation results show the effectiveness of our code
design approach compared to state-of-the-art NB-QC codes:
the performance improvement is more than one order of
magnitude for the codes over GF(4).

This paper is organized as follows. In Section II, we review
the construction of NB-QC codes using lifting along with the
definition of NB-ASs. In Section III, we first analyze how
the conditions in the definition of non-binary absorbing sets
map to the choice of parameters in the design steps for NB-
QC codes. We then present our method to design NB-QC
codes with a reduced number of problematic absorbing sets.
Section IV includes our simulation results which demonstrate
the superior performance of our codes in the error floor region.
Section V concludes the paper.

II. PRELIMINARIES AND BACKGROUND

In this section, the construction of NB-QC codes using the
lifting approach is presented. We also revisit the definition
of NB-ASs. We introduce the notation necessary for the
discussion in our work.

A. Construction of NB-QC codes using lifting

Assume that the following parameters are given:
• n: the number of columns in the binary base matrix,
• m: the number of rows in the binary base matrix,
• z: the lifting factor,
• dv: the weight of each column in the binary base matrix,
• dc: the weight of each row in the binary base matrix.
The construction of a (dv, dc)-regular NB-QC code over

GF(q) using lifting involves the following steps [6]:
1) Choosing the protograph: The construction starts with

the choice of an m × n binary parity-check matrix H with
column weight dv and row weight dc. The parity-check
matrix H can be equivalently represented by a bipartite graph
G = (V,C, F ) called the Tanner graph, with the usual notation
of V being the set of variable nodes vi, i ∈ {1, . . . , n}, C
being the set of check nodes cj , j ∈ {1, . . . ,m}, and the set



F describing the edges between the nodes in V and C. The
Tanner graph G is called the protograph of the NB-QC code.

2) Lifting the protograph: The lifted matrix Ĥ is con-
structed by replacing each entry in matrix H with a z × z
matrix. The zero entries in H are replaced by z × z zero
matrices. Each non-zero entry corresponding to edge e in the
protograph is replaced by a (z, de) circular permutation matrix
(CPM). Here, (z, de) CPM refers to the z × z binary matrix
obtained by circularly shifting the rows of the identity matrix
by de places. Throughout the paper, de is called the lifting
parameter associated with the edge e. The corresponding
Tanner graph Ĝ of matrix Ĥ is called the binary lifted graph.

3) Edge weight assignment: In this step, non-binary
weights are assigned to the edges of the binary lifted graph.
Let α be a primitive element of GF(q). We choose a pa-
rameter λ such that (q − 1)|λz. We also select a parameter
ρe ∈ {0, 1, . . . , q − 2} for each edge e in the protograph G.
Then, the value of the non-zero element in the kth row of
the (z, de) CPM is replaced by αρe+(k−1)×λ. Throughout the
paper, we refer to ρe as the labeling parameter associated with
the edge e.

Note that the resulting NB-QC code has the length of
nz log2 q bits and the design rate of n−m

n . The construction
introduced in [1] is a special case of the NB-QC construction
using lifting when z = q−1, λ = 1 and de = ρe for any edge
e. The code designs in [2] and [9] are also special cases of
the NB-QC construction using lifting.
B. Non-binary absorbing sets

In this subsection, we review the definition of NB-ASs, that
are the non-codewords known to compete with the codewords
to be the output of a NB-LDPC decoder [8].

Consider V , with |V| = a, as a subset of variable nodes in
the Tanner graph corresponding to a parity-check matrix H̃
over GF(q). We form the ` × a matrix A consisting of the
columns in H̃ that correspond to the variable nodes in V . The
rows of matrix A correspond to the ` check nodes connected
to the variable nodes in V .

Definition 1. ([8]) The subset V of variable nodes is an (a, b)
absorbing set Aa,b over GF(q) if there exists an (` − b) × a
submatrix B, with elements bj,i, 1 ≤ j ≤ `− b, 1 ≤ i ≤ a, in
matrix A that satisfies the following conditions:
1)
∃x∈N(B) s.t. xi 6=0 for ∀i∈{1, . . . , a}and @i, dixT = 0, (1)

where N(B) is the null-space of matrix B and di, 1 ≤ i ≤ b
is the ith row of matrix D, where D is formed by excluding
the matrix B from A.

2)
∀i ∈ {1, 2, . . . , a} :

(
`−b∑
j=1

S(bj,i)

)
>

(
b∑

j=1

S(dj,i)

)
, (2)

where dj,i, 1 ≤ j ≤ b, 1 ≤ i ≤ a are the elements of the
matrix D and the function S is

S(y) =

{
1 when y > 0,
0 when y ≤ 0.

(3)

Note that a binary AS is a special case of the above
definition when the field size q is 2.
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Fig. 1. A non-binary (4, 4) AS over GF(8) based on the primitive polynomial
p(x) = x3 + x + 1 whose root is α. Circles indicate variable nodes, and
squares indicate check nodes.

Example 1. Consider the set of variable nodes V =
{v1, v2, v3, v4} and their ` = 10 connected check nodes, as
shown in Figure 1. The 10× 4 matrix A corresponding to the
structure in Figure 1 is formed as

A =


α5 0 0 α4 1 0 1 0 0 0
α4 α6 0 0 0 α4 0 1 0 0
0 0 α2 α2 0 α3 0 0 1 0
0 1 α4 0 1 0 0 0 0 1


T

. (4)

Consider that the first 6 rows of matrix A form the 6 × 4
submatrix B. For the input x = (1, α, α2, 1) (mapped to
(v1, v2, v3, v4) in the figure), the first condition in the Defi-
nition 1 is satisfied since x ∈ N(B) and the 4 check nodes,
c7, c8, c9, c10, are not satisfied. Furthermore, for the given
input x, each variable node in V is connected to three satisfied
check nodes and one unsatisfied check node. Therefore, the
second condition in Definition 1 is also satisfied. As a result,
for the the given input x, the structure in Figure 1 is a (4, 4)
NB-AS over GF(8).

An AS V over GF(q) is called elementary if all neighboring
satisfied check nodes have degree two and all neighboring
unsatisfied check nodes have degree one with respect to V ,
[8]. Elementary ASs are typically the most detrimental. In the
case of elementary ASs over GF(2), i.e., binary elementary
ASs, satisfied check nodes have even degrees and unsatisfied
check nodes have odd degrees. As a result, a binary AS is
elementary if and only if all its check nodes have degrees less
than or equal to two.

As shown in [8], in the case of non-binary elementary
ASs, the conditions in Definition 1 can be simplified. Let
Cp be an arbitrary cycle involving p distinct variable nodes
and p distinct neighboring check nodes in the Tanner graph
of a given code. We write Cp as the oriented traversal
c1 − v1 − c2 − v2 − · · · − cp − vp − c1, where v and c denote
the spanned variable and check nodes, respectively. Let w2k−1,
k ∈ {1, . . . , p} denote the non-binary weight on the ck − vk
edge, and let w2k, k ∈ {1, . . . , p} denote the weight on the
vk − ck+1 edge.

Lemma 1. ( [8]) A subset of variable nodes V is an elemen-
tary AS over GF(q) if and only if:

1) (Topological condition) For the induced subgraph cor-
responding to V and its neighboring check nodes, unla-
beling of all edges (converting all edge weights to one)
results in a binary elementary AS.

2) (Weight condition) For every cycle Cp (as described
above), the weights of the edges wi, i ∈ {1, 2, . . . , 2p},



satisfy the following equation:
p∏
k=1

w2k−1 =

p∏
k=1

w2k mod q. (5)

In order to avoid non-binary elementary ASs, it is necessary
to violate at least one of the two conditions in Lemma 1.

Example 2. Observe that the configuration in Figure 1 can be
interpreted as a (4, 4) non-binary elementary AS over GF(8).
First, after removing the edge weights, the resulting subgraph
is a binary AS with all its check nodes having degree one or
two. Therefore, the unlabeled subgraph (the subgraph without
the edge weights) is a binary elementary AS. Second, the edge
weights in each of the six cycles in the configuration satisfy
Equation (5). As an example, the edge weights in the cycle
spanning variable nodes v1, v2, and v3 satisfy:

α5 · α4 · α2 ≡ α4 · α3 · α4 mod q, (6)

where α specifies the primitive element of GF(8).
III. DESIGN OF NB-QC CODES BASED ON

ABSORBING SET ELIMINATION

In this section, we first analyze the necessary conditions for
the existence of a non-binary elementary AS in the Tanner
graph of a NB-QC code. We investigate how the topological
and weight conditions (introduced in Lemma 1) map to certain
equations which include the design parameters of NB-QC
codes. This analysis enables us to propose an algorithm to
design NB-QC codes with good error floor performance. In
our proposed algorithm, we design NB-QC codes with reduced
number of problematic elementary ASs by violating either the
topological or the weight conditions.

A. Topological and weight conditions in NB-QC codes

According to condition 1 in Lemma 1, an unlabeled non-
binary elementary AS is a binary elementary AS. Since each
binary AS is formed by a collection of cycles in the Tanner
graph, we first focus our analysis on a single cycle in the
protograph G defined in Section II. The following lemma
identifies the relationship between a cycle in protograph G
and its corresponding cycle(s) in the binary lifted graph Ĝ.

Lemma 2. ([6]) Consider a cycle Cp involving p distinct
variable nodes in the protograph with edges e1, e2, . . . , e2p.
After lifting, Cp results in z cycles of the same length in
the binary lifted graph if and only if the lifting parameters
dei , i ∈ {1, . . . , 2p} associated with the edges involved in Cp
satisfy the following condition:

p∑
i=1

de2i−1
=

p∑
i=1

de2i mod z. (7)

Otherwise, Cp results in one or more cycles of larger
lengths.

Corollary 1. Consider an (a, b) binary AS Aa,b in the proto-
graph G. After lifting G by the factor z to produce Ĝ, Aa,b
results in z ASs of the same size in Ĝ if for every cycle Cp of
length 2p in Aa,b, the lifting parameters dei , i ∈ {1, 2, . . . , 2p}
associated with edges of Cp satisfy (7).

Based on Corollary 1, we can prevent the existence of
absorbing sets in Ĝ by ensuring that for at least one cycle Cp
of AS Aa,b in G, the lifting parameters dei do not satisfy (7).

The weight condition in Lemma 1 implies that a non-binary
elementary AS not only satisfies the topological condition, i.e.,
the unlabeled subgraph is a binary elementary AS, but also the
edge weights in all of its cycles satisfy (5).

We study how the weight condition of non-binary elemen-
tary ASs maps to the NB-QC code construction. To analyze
the weight condition, we first consider a single cycle.

Lemma 3. ([5]) Consider that a cycle Cp in protograph G
with edges {e1, e2, . . . , e2p} results in z cycles of the same
length in the binary lifted graph Ĝ. The z copies of Cp satisfy
the weight condition in (5) if the labeling parameters ρei , i ∈
{1, . . . , 2p} associated with the edges involved in Cp satisfy
the following condition:

p∑
i=1

ρe2i−1 =

p∑
i=1

ρe2i mod q − 1. (8)

Based on Lemma 1, the edge weights of all the cycles in a
non-binary elementary AS satisfy the weight condition in (5).
Note that an elementary AS typically consists of more than one
cycle. Therefore, Lemma 3 implies the following corollary.

Corollary 2. Consider that an elementary AS Aa,b in the
protograph G results in z binary elementary absorbing sets of
the same size in Ĝ. After edge weight assignment, the z copies
of Aa,b result in z non-binary elementary absorbing sets if for
each cycle in Aa,b, the labeling parameters satisfy (8).

The above corollary offers an approach to avoid non-binary
elementary ASs in the edge weight assignment step of the
NB-QC code design. For a binary elementary AS present in
the binary lifted graph Ĝ, the labeling parameters should be
chosen such that the weight condition is not satisfied for at
least one cycle in the elementary absorbing set.

B. An algorithm to avoid absorbing sets in NB-QC codes

In this section, we propose an algorithm to design NB-QC
codes with an improved error floor performance. The main
idea is to avoid non-binary elementary ASs in the Tanner
graph of the designed NB-QC code. Based on the discussion
in Section III-A, an elementary AS Aa,b in G results in z
non-binary elementary ASs if the lifting and the labeling
parameters associated with the edges in Aa,b satisfy (7) and
(8). In design approach, by informed selection of the lifting
and the labeling parameters, we ensure that for each binary
AS in G, at least one cycle does not satisfy either (7) or (8).

The inputs to the algorithm are: 1) A binary protograph
G which determines the design rate, column weight and row
weight of the code; 2) The finite field size, q, of the resulting
NB-QC code; 3) The lifting factor, z.

The method is stated in Algorithm 1. We first con-
struct a random NB-QC code with random assignment of
the lifting and labeling parameters to all the edges in the
protograph G. Based on the parameters of G, we first
choose the set W of pairwise parameters (i.e., W =



{(a1, b1), (a2, b2), . . . , (ak, bk)} corresponding to the k ele-
mentary ASs which we wish to avoid1.

We then find the smallest AS (a, b) in W and form the set
U which includes all binary (a, b) ASs in protograph G. For
each AS in U , we determine if all its cycles satisfy (7). If they
do and if it is possible, we change the lifting parameters of
the edges to ensure that at least one cycle in the AS does not
satisfy (7). For each AS which is not avoided by the choice
of lifting parameters, we determine if all the cycles satisfy (8)
or not. If yes, the labeling parameter associated with an edge
will be changed to ensure that at least one cycle of the AS
does not satisfy (8). The new labeling parameter is chosen
such that the previously canceled NB-ASs remain canceled.
This process continues until either all ASs are canceled or no
more ASs can be canceled.

Note that step 6 in Algorithm 1, where we find all (a, b)
absorbing sets in the given photograph G, dominates the com-
putational complexity of our proposed algorithm. Although it
is proven that it is NP-complete to exhaustively find small
error-prone substructures (stopping sets and trapping sets) in
LDPC codes [10], several papers, such as [10] and [11], have
proposed algorithms to reduce the computational complexity.

Remark 1. The work in [8] presents an approach to cancel
NB-ASs in unstructured NB-LDPC codes by changing the
edge weights in the given Tanner graph. In the unstructured
case, the value of each edge weight can be changed to any
arbitrary non-zero value from GF(q). In contrast, for the NB-
QC codes, the edge weights must satisfy certain conditions to
ensure that the quasi-cyclic property is preserved. As described
in Section II-A, to satisfy the quasi-cyclic construction over
GF(q), the value of each non-zero element in the kth row
of the (z, de) CPM should be equal to αρe+(k−1)×λ, where
parameter λ is chosen such that (q − 1)|λz and parameter
ρe ∈ {0, 1, . . . , q − 2} is selected for each edge e in the
protograph G. The approach presented here preserves the NB-
QC structure by carefully modifying the lifting and labeling
parameters during the design process.

Note that our algorithm can be used to design both regular
and irregular NB-QC codes. In the case of irregular NB-QC
codes, the protograph G is an irregular Tanner graph.

IV. SIMULATION RESULTS

In this section, we present the results of our simulations
for different NB-QC codes2. We report bit error rate (BER)
figures to compare the performance of our designed codes with
other state-of-the-art NB-QC codes. We also present the error
profiles of the decoder for different code constructions which
explain the superior performance of our designed codes. The
following is the list of the code constructions that we consider:

1) Random construction: For the given protograph, we ran-
domly assign the lifting and labeling parameters to each edge.

1Note that the parameters of G, such as the column weight and girth
determine the ASs available in G. For example, (4, 4) ASs are possible only
when dv = 4. For other choices of dv , (4, 4) ASs do not exist in G.

2We have performed additional simulations and have observed similar
results for other choices of code parameters (blocklength, code rate, and
column weight).

Algorithm 1 Design of NB-QC codes with reduced number
of non-binary elementary ASs.

1: Inputs: Protograph G, field size q and lifting factor z.
2: Randomly assign a de ∈ {0, 1, . . . , z − 1} and a ρe ∈
{0, 1, . . . , q − 2} to each edge e in G.

3: Choose W , the set of all ASs to be canceled .
4: Let C = ∅ be the set of ASs which can not be eliminated

in the lifting process.
5: for ∀(a, b) AS ∈W do
6: Find U , the set of all ASs of size (a, b) in G.
7: for ∀S ∈ U do
8: Let FS be the set of all the cycles in S.
9: If at least one of the cycles in FS does not satisfy

(7), go to the next AS S in U .
10: Let ES be the list of all the edges involved in FS .
11: Find an edge e in ES such that there exist a d′e 6=

de which guarantees that at least one of the cycles in FS
does not satisfy (7). If the value exists, replace de with d′e
and go to 7, else C ← C ∪ S.

12: end for
13: end for
14: for ∀ absorbing set S ∈ C do
15: Let FS be the set of cycles of S.
16: If at least one of the cycles in FS does not satisfy (8),

go to next absorbing set S in C.
17: Let ES be the list of all the edges involved in FS .
18: Find edge e in ES such that there exist a ρ′e 6= ρe

which guarantees that at least one of the cycles in FS does
not satisfy (8). If the value exists, replace ρe with ρ′e.

19: end for

2) ACE construction: We compare our results with the
method recently introduced in [6]. The algorithm in [6] has
two steps. First, for each cycle in the given protograph G, the
algorithm finds the ACE value, which is defined as

∑
vi
dvi−2,

where dvi is the degree of the node vi, and the summation is
over all the variable nodes of the cycle. Then, it searches for
cycles in G which their associated ACE value is greater than
a bound which is given as an input to the algorithm. Then the
algorithm attempts to eliminate them in the lifted graph Ĝ, by
properly choosing the lifting parameters. In the second step,
the cycles in Ĝ that violate a non-binary ACE constraint are
found. Then, the algorithm attempts to cancel these cycles by
carefully choosing the labeling parameters.

3) Absorbing set (AS) construction: Based on our pro-
posed approach stated in Algorithm 1, we first identify a list of
problematic ASs to cancel. The algorithm attempts to cancel
these ASs by informed selection of the lifting and labeling
parameters. Note that unlike the ACE approach, we are able
to cancel more problematic ASs by canceling one cycle per
AS in the Tanner graph of the code.

Figure 2 shows the simulation results for the three differ-
ent constructions over field sizes q = 4, 8, 16, design rate
R = 0.69, column weight dv = 4 and row weight dc = 13,
transmitted over a binary-input additive white Gaussian noise
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Fig. 2. Performance comparison for NB-QC codes, with blocklength N =
1014 for codes over GF(4), N = 3549 for codes over GF(8) and N = 2028
for codes over GF(16), rate R = 0.69, and row weight dv = 4.

TABLE I
ERROR PROFILE FOR THE PERFORMANCE CURVES SHOWN IN FIGURE 2.

Error Type (6, 4) (6, 6) (7, 4) (8, 2) (8, 4) (9, 4) (10, 4) other
GF(4), N = 1014 bits, SNR= 3.2 dB, dv = 4

Random 88 14 10 33 5 8 19 15
ACE 26 8 10 4 0 4 8 21
AS 0 0 0 0 0 0 0 23

GF(8), N = 3549 bits, SNR= 2.8 dB, dv = 4
Random 32 9 11 18 2 6 9 13

ACE 0 0 0 0 0 4 9 21
AS 0 0 0 0 0 0 0 29

(AWGN) channel. The set of curves over GF(4) has the
following parameters: block length N = 1014 bits and lifting
factor z = 3. The figure also includes the set of curves
for GF(8) which have the following parameters: N = 3549
bits and lifting factor z = 7. For GF(16) set of curves,
N = 2028 bits and lifting factor z = 3. Note that the ACE
spectrum for the three ACE codes in Figure 2 is equal to
(τ̂

(b)
2 , τ̂

(b)
4 , τ̂

(b)
6 , τ̂

(b)
8 , τ̂

(b)
10 ) = (∞,∞, 6, 8, 10). Figure 2 shows

that both ACE and AS approaches significantly improve the
performance of the NB-QC code compared to the random
approach. The AS approach achieves a better performance
compared to the ACE approach since it focuses on canceling
only one cycle per AS, whereas the ACE approach cancels all
the cycles that violate the ACE constraints. Therefore, the AS
approach is capable of removing more ASs. The performance
comparison for different values of q and z reveals that the
performance improvement for both ACE and AS approaches
is more pronounced for smaller values of q and z, since for
larger values of q and z, there are fewer number of non-binary
absorbing sets to begin with (see [8] for more details). Table I
includes the error profiles for GF(4) and GF(8) curves in
Figure 2 at SNR= 3.2dB and SNR= 2.8dB, respectively. The
table confirms that the AS approach cancels more problematic
absorbing sets from the NB-QC code. The errors listed as
‘other’ in the table include ‘oscillating’ errors, in which the
decoder oscillates between different errors in its last few
iterations, and ‘non-absorbing set’ errors, in which the decoder
converges to an error which is not an AS.

Figure 3 presents the simulation results for codes con-
structed by the three different approaches over field sizes
q = 4, 8, design rate R = 0.54, column weight dv = 5 and
row weight dc = 11. The constructed codes over GF(4) and
GF(8) have N = 726 and N = 2541 bits, respectively. Note
that the ACE spectrum for the three ACE codes in Figure 2
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Fig. 3. Performance comparison for NB-QC codes, blocklength N = 726 for
codes over GF(4) and N = 2541 for codes over GF(8), R = 0.54, dv = 5.

TABLE II
ERROR PROFILE FOR THE PERFORMANCE CURVES SHOWN IN FIGURE 3.

Error Type (4, 8) (5, 9) (6, 8) (6, 10) (7, 9) (8, 6) (8, 8) (8, 10) other
GF(4), N = 726 bits, SNR= 3.3 dB, dv = 5

Random 49 12 19 6 8 2 4 6 17
ACE 13 3 5 2 2 0 5 5 25
AS 0 0 0 0 0 0 0 0 31

is equal to (τ̂
(b)
2 , τ̂

(b)
4 , τ̂

(b)
6 , τ̂

(b)
8 , τ̂

(b)
10 ) = (∞,∞, 9, 12, 15).

Similar to Figure 2, both the ACE approach and the AS
approach have significantly better performance in the error
floor region compared to the random construction of an NB-
QC code. Table II confirms the superior performance of the
AS approach: there exist fewer ASs in the error profile of the
code constructed by the AS approach.

V. CONCLUSION

In this paper, we first investigated the necessary conditions
for the existence of a non-binary elementary AS in NB-QC
codes. We then proposed an approach to choose the lifting and
labeling parameters in the design of NB-QC codes to avoid
problematic non-binary ASs. Our simulation results confirmed
the effectiveness of our code design algorithm; our codes
demonstrate superior error floor performance compared to
some state-of-the-art constructions.
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