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Abstract—This paper describes and analyzes low-density
parity-check code families that support variety of different
rates while maintaining the same fundamental decoder archi-
tecture. Such families facilitate the decoding hardware design
and implementation for applications that require communication
at different rates, for example to adapt to changing channel
conditions. Combining rows of the lowest-rate parity-check
matrix produces the parity-check matrices for higher rates. An
important advantage of this approach is that all effective code
rates have the same blocklength. This approach is compatible
with well known techniques that allow low-complexity encoding
and parallel decoding of these LDPC codes. This technique also
allows the design of programmable analog LDPC decoders. The
proposed design method maintains good graphical properties and
hence low error floors for all rates.

Index Terms—Channel coding, low-density parity-check
(LDPC) codes, multiple-rate codes.

I. INTRODUCTION

PRACTICAL communication systems often need to oper-
ate at several different rates. To keep the implementation

as simple as possible, the same basic hardware architecture
should be able to decode the encoded data at all possible
rates. One way to achieve this with Low-Density Parity-
Check (LDPC) codes is to generate higher-rate codes by
puncturing lower-rate codes, as proposed in [1], [2] and [3].
However, puncturing reduces the code blocklength, which
degrades performance. For the highest-rate codes, where the
puncturing is most severe, the performance degradation is
significant when compared to an LDPC code with the original
blocklength.
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Another way to achieve this is to generate lower-rate codes
by shortening higher-rate codes, as described in [2]. As with
puncturing, shortening reduces the code blocklength, which
degrades performance. For the lowest-rate codes where the
shortening is most severe, the performance degradation is
significant when compared to an LDPC code with the original
blocklength.

This paper presents a code structure that supports a wide
range of rates while maintaining a constant code blocklength.
The basic idea is to generate higher rate codes (called effective
codes in this paper) from a low-rate code (called the mother
code in this paper) by reducing the number of rows in its
parity check matrix. From an implementation point of view,
rows in the parity-check matrix correspond to check nodes. We
propose to reduce the number of rows by linearly combining
the mother code rows, which is equivalent to replacing a group
of check nodes with a single check node that sums all the
edges coming into each of the original check nodes. This is
also equivalent to the code that results by connecting the check
nodes of the mother code through a new check node, as seen in
Fig. 1. These equivalences hold as long as the combined check
nodes do not have any variable-node neighbors in common.

Multiple-rate codes can be designed by generating effective
codes solely by combining rows as discussed above, and
in this paper these codes are called Strict Row-Combining
(SRC) codes. A performance improvement can be obtained
by adding a few edges and deleting a few other edges in the
graph as the rows are combined. This allows the code to have
good variable-node degree distributions at each rate. In this
paper these codes will be called Row Combining with Edge
Variation (RCEV) codes. Both approaches will be presented
in the following subsections.

Section II describes the row-combining approach in detail.
Section III explains how row combining helps to simplify de-
coder architectures and consequently to reduce chip area. Sec-
tion IV describes how to lower the complexity of the encoder
and decoder of row-combining codes. A design method for
SRC codes is proposed in Section V. Section VI describes the
RCEV code design approach that results in an improvement in
performance by relaxing some constraints imposed in the SRC
design. Section VII compares the performance of SRC, RCEV,
single-rate stand-alone codes, and punctured codes. Section
VIII delivers the conclusions.

0090-6778/09$25.00 c© 2009 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on March 3, 2009 at 16:07 from IEEE Xplore.  Restrictions apply.



76 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 1, JANUARY 2009

Rate 3/4Rate 1/2

Fig. 1. Graph of a rate-3/4 LDPC code obtained from a rate-1/2 LDPC code
via row combining.

II. ROW-COMBINING CODES

Consider the example mother LDPC matrix in (1),

H 1
2

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(1)
This is a rate-1/2 mother LDPC matrix with blocklength 12
whose graph representation can be seen in Fig. 1. This is by
no means a good LDPC code but the reader should see it as
an example to explain row combining. Fig. 1 also shows that
replacing each pair of nodes with a new single node transforms
this rate-1/2 code into a rate-3/4 code. This is equivalent to
summing the rows of the mother LDPC matrix that correspond
to the check nodes that are combined, since the check nodes in
the example do not have any common neighbors. In general,
the mother matrix should be designed so that the rows that
will be combined don’t have ones in the same column.

Eq. (2) gives the effective rate-3/4 LDPC matrix that results
from the row combining described in Fig. 1, where combining
rows 1 and 4 of the mother matrix produces row 1 of the
effective matrix, combining rows 2 and 5 of the mother matrix
produces row 2 of the effective matrix, and combining rows
3 and 6 of the mother matrix produces row 3 of the effective

matrix,

H 3
4

=

⎛
⎝ 1 1 1 0 0 0 1 1 1 0 0 0

1 0 0 1 1 0 0 0 1 1 1 0
0 0 1 0 1 1 1 0 0 0 1 1

⎞
⎠ .

(2)
It is easy to see that many different rates can be obtained

from the same mother code by changing the way rows are
combined. For example using the mother code described in
(1), combining three rows at a time generates the rate-5/6
LDPC matrix shown in (3). In this rate-5/6 matrix the first
row results from combining the odd rows of the mother matrix
and the second row results from combining the even rows of
the mother matrix,

H 5
6

=
(

1 1 1 0 1 1 1 0 1 1 1 0
1 0 1 1 1 0 1 1 1 0 1 1

)
. (3)

In general, row combining changes the rate without chang-
ing the blocklength or the basic architecture of the decoder.

III. IMPACT OF ROW COMBINING ON THE HARDWARE

ARCHITECTURE

A. Digital Decoders

The main goal of row-combining is to simplify the support
of multiple rates. In general, row-combining won’t lead to a
faster decoder for any particular rate but provides a simple
overall architecture with a smaller chip area required to
support all the needed rates. Here are a couple of examples
of how decoder simplification might be accomplished.

If the message passing is done through a memory, there
is a list of memory addresses that tell the processor which
variable-to-check messages to compute in order to compute a
check-to-variable message. With row-combining, changing the
rate of the code can be achieved by replacing the lists for the
combined check nodes with a single list that is the union of
those lists, thus changing only the quantity of messages read.
This is a simple change that can be done on the fly with a
careful implementation.

Another possible hardware implementation can be devel-
oped using the fact that the code produced by row combining
is equivalent to the code that results from connecting the
check nodes through another check node as shown in Fig.
1. An efficient hardware implementation would decode the
higher rate code by performing the extra-message generation
on top of the message computing done for the low rate
codes, thus maintaining the basic hardware architecture. This
idea was used in [4], where an architecture that exploits our
row-combining structure was implemented. These examples,
while not exhaustive, capture the essence of the simplification
facilitated by row combining.

On top of these simplified multiple-rate decoders, the fact
that the codes are designed such that the check nodes that will
be combined don’t have any neighbors in common guarantees
some degree of parallelism. Check nodes that will be com-
bined can be processed in parallel because they will never try
to access the information of the same variable node. There are,
of course, many ways to achieve parallelism. Our point here
is that row combining is completely compatible with LDPC
codes that support highly parallel decoding architectures.
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B. Analog Decoders

Analog decoders of turbo-like codes were introduce si-
multaneously in 1998 by Hagenauer [5] and Loeliger et al.
[6]. A good in-depth discussion of this alternative decoding
hardware can be found in [7]. Analog decoders are analog
circuits that oscillate until an equilibrium state is reached.
Analog decoding shows promise because the decoders require
low power and the convergence is typically faster than with
digital decoders. Digital decoders can use the same hardware
to decode different LDPC codes by re-programming the chip.
Their analog counterparts are not programmable, and they
need different circuits to decode different LDPC codes. Since
many applications need various codes with different rates, the
lack of programmability of analog decoders makes them less
attractive than digital decoders when it comes to LDPC codes.

However, row-combining codes allow programmable analog
decoders. An analog decoder that works for all the rates would
consist of the circuit that decodes the mother code, with
switches that turn on and off the connections to the new check
nodes that increase the rate of the code. These connections are
shown in Fig. 1 with dashed lines.

IV. LOW COMPLEXITY ENCODING AND DECODING

A. Block Structure for High-Speed Decoder Implementation

Despite the intrinsic parallelism of the decoding process,
the first attempts to design high-throughput LDPC decoders
encountered significant interconnection problems. In fact, the
exploitation of such parallelism requires the use of several
check-and variable-node processors, each connected to differ-
ent memories in order to access several messages simultane-
ously. The random character of the node connection in the
Tanner graph results in difficult memory/processor placement
and intractable-routing problems.

In order to solve these problems, LDPC codes can be
designed to have an inherent structure as suggested by Man-
sour and Shanbag in [8]. This approach also enables the
implementation of high -speed decoders without memory
fragmentation such as those presented in [9] and [10]. In [8]
the LDPC matrices have a block structure that consists of
square sub-matrices each of size p. Each square sub-matrix is
either a zero sub-matrix or a structured sub-matrix.

An example that illustrates the structured sub-matrices
proposed in [8] for p = 4, is shown in (4). This sub-matrix,
labelled as S2, results from performing a right cyclic shift of 2
columns on the identity matrix of size p. Each sub-matrix Si

is produced by cyclically shifting the columns of an identity
matrix to the right i places,

S2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ . (4)

This structured LDPC matrix allows the decoder to use
at least p processors in parallel and doesn’t preclude the
implementation of faster decoders that use a multiple of p
processors as suggested in [4].

B. Low-complexity Encoding Using Back Substitution

The parity-check matrix should also allow a simple encoder
implementation. In [11] and [12] a low-complexity encoder
for LDPC codes is found if its parity-check matrix H0 is
composed of two matrices H0 = [H1|H2] where H2 is a
square sub-matrix that has a particular structure. For those
codes encoding complexity grows linearly with the code
length. In [11] H2 is a bi-diagonal matrix so the encoding
process is simply multiplying the input vector by HT

1 and
then processing by an accumulator.

Unfortunately it is difficult or impossible to maintain a bi-
diagonal structure for the H2 portion of the mother LDPC
matrix and all of the effective LDPC matrices in the context of
row combining. One solution found to this problem is to use a
model presented in [12] where H2 is a lower triangular matrix.
This will allow a low-complexity encoder based on back-
substitution as explained in [12]. Back substitution obtains
the parity bits by solving a sequence of linear equations that
have only one unknown bit. This structure can be maintained
for all the rates, as will be shown in the following subsection.

C. Structured Row-Combining Codes

The challenge presented when trying to design a structured
row-combining code is that the mother code (denoted by M )
and all the effective codes (denoted by E) must have both
the sub-matrix structure (for parallel decoding) and the lower
triangular structure (for low-complexity encoding).

There is an easy way to maintain the sub-matrix structure
for all the effective codes. Instead of combining individual
rows, rows of sub-matrices will be combined so that if sub-
matrix A and sub-matrix B are combined it implies that row i
of A and row i of B will be combined for i = {1, ..., p}. The
resulting sub-matrix will be equivalent to the superposition of
sub-matrix A and sub-matrix B.

If the exact sub-matrix structure of [8] is to be maintained
for all the effective codes, the mother code and all effective
codes have to be designed so that among the combined
sub-matrices at most only one is non-zero (and has the Si

structure). However, if the sub-matrix that results from the
superposition of two or more non-zero Si sub-matrices also
has good parallel properties (which depends on the hardware
architecture of the decoder), this design criteria can be relaxed
to include such superpositions.

Furthermore, it’s desirable that the the square H2 sub-
matrices of both the mother code and all effective codes have a
lower triangular structure that would allow back-substitution
encoding. This is achieved by imposing a constraint in se-
lection of the rows to be combined, assuming that the H2

sub-matrix of the mother code is lower triangular. Let us
assume that row-combining generates an effective code Ei

that has ri check-nodes. As long as the bottom ri rows of
the mother code remain in their pre-row-combining relative
positions and are not combined among themselves, the square
H2 sub-matrix (with size ri) of the effective code Ei is lower
triangular. The examples presented in Section II satisfy this
condition. The size-6 square H2 sub-matrix of the rate-1/2
mother LDPC matrix shown in Eq. (1) is lower triangular.
The effective rate-3/4 code has ri = 3 check-nodes and the
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Fig. 2. Structured LDPC matrix.

combining is performed so that the bottom 3 rows are not
combined among themselves and remain in their pre-row-
combining relative positions. It can be seen in Eq. (2) that
the size-3 square H2 sub-matrix of the effective rate-3/4 code
is also lower triangular.

One way to combine the sub-matrix structure with the lower
triangular structure of H2 is to make H2 block lower triangu-
lar. This implies that the sub-matrices along the diagonal of
H2 will have the Si structure and all the sub-matrices that are
above this diagonal will be zero sub-matrices. The problem
with this structure is that the rightmost p columns (where p
is the size of the sub-matrices) will be degree-one columns
which will negatively affect the performance of the codes.
One possible solution of the problem is to make the bottom
right matrix have the bi-diagonal structure described in (5).
This structure allows back-substitution and only 1 column will
have degree 1,

Ss =

⎛
⎜⎜⎝

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎞
⎟⎟⎠ . (5)

Another solution can be seen in Fig. 2 which shows a
LDPC structure that allows both parallel decoding and low-
complexity encoding. In this structure the four bottom right
matrices are carefully designed such that they allow back-
substitution encoding. For the Si sub-matrices with subscripts
i = a, b, c, d, the subscripts (number of columns shifted) must
satisfy (a − c + d − b) mod p = 1. The sub-matrix labelled
S′

b is an Si sub-matrix with the first row set to all zeros.
This structure guarantees that the last 2p parity bits can be
generated by solving one parity check equation with one
unknown bit, thus allowing back substitution. In this structure
only 1 column has degree 1.

V. DESIGN OF STRUCTURED SRC CODES

This section proposes a design method for structured row-
combining codes given the blocklength of the code, the mother
and effective rates and the sub-block size p. Since only row
combining is allowed to generate the high-rate matrices, these
codes are called Strict Row-Combining (SRC) codes.

The first step is the selection of both the variable-node
degree distribution and the check-node degree distribution.

As seen in Fig. 1, the number of neighbors of the variable
nodes remains the same as the rate changes, thus the variable-
node degree distribution will also remain unchanged. This
implies that this degree distribution cannot be optimized for
the different rates of the code, so a degree distribution that’s
optimized for the highest-rate code is chosen. This is due to the
fact that row-combining imposes some specific constraints on
the variable-node degree distribution of the lower-rate codes,
which will be explained in detail in Section VI.

A concentrated degree distribution is a degree distribution
in which every node has the same degree or all the degrees
are within one of each other. Concentrated check-node degree
distributions tend to approximate theoretical optimality [13].
Therefore, the check node degree distribution of the mother
and effective codes should be concentrated, if possible.

The check-node degree distributions depend on the selection
of the rows to be combined. This selection is the next step
in the proposed design of SRC codes. Since the check-node
degree distribution of the mother code is concentrated, then
the check node degree distribution for the higher-rate effective
code will also be concentrated if all the rows in the effective
LDPC matrix result from combining the same number of rows
of the mother LDPC matrix. It is also necessary that the row
combining maintains the structure of the codes presented in
Section IV.

There is a simple way to achieve this if the desired
rates have the (a − 1)/a form. The mother code is set to
have a square matrix with a concentrated check node degree
distribution. Such a mother code has rate 0 and and is used
only to generate effective codes; it is not a useful stand alone
code. Combining a rows (or rows of sub-matrices in the case
of structured codes) at a time, generates a code with rate
(a − 1)/a as long as the total number of rows of the mother
matrix is a multiple of a. This effective code will have a
concentrated check node degree distribution. This shows that
SRC codes can maintain a concentrated check node degree
distribution among all its rates if they all are in the (a− 1)/a
form. Rates of this form comprise a useful set of rates. In
standards such as IEEE 802.11n, all LDPC code rates have
this form. Furthermore, puncturing and/or shortening can be
used with row combining in order to support more rates. As
long as the number of punctured and/or shortened bits is
small, the effective blocklength of the code is not significantly
diminished.

Given that two check nodes that will be combined cannot
have any common neighbors, row combining introduces some
constraints in the construction of the LDPC matrices. These
constraints may limit the degrees of freedom of the LDPC
design, especially in the case of structured LDPC codes where
two sub-matrices that will be combined can’t be both non-
zero. In order to minimize this problem, the overall number of
row combinations across all rates must be as low as possible.
This can be achieved by first choosing the row combining
that generates the highest-rate code. Once this is done, the
row-combining that generates the second highest rate-code
is chosen using as many row combinations from the highest
rate-code as possible. If all the row-combining strategies are
chosen this way the overall number of combinations will be
minimized. This minimization of the number of combinations
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is also beneficial from an implementation point of view.
The remaining issue is to assign the positions and right

cyclic shifts of the non-zero sub-matrices in the mother code.
It is well known that the performance of the LDPC codes
is limited by the fact that their graphs contain cycles which
compromise the optimality of the belief propagation decoding.
These cycles generate error floors in the performance of LDPC
codes in the high SNR regions. However, the negative effect of
the cycles can be reduced using graph-conditioning techniques
such as those described in [14] and [15]. So the last step in
the design will be to use the ideas described in these works,
adapting them to work on structured SRC codes.

As explained in [14] not all cycles degrade the performance
of the code in the same way. Among the most dangerous
structures that can be found in LDPC bi-partite graphs are
stopping sets. A stopping set is a variable node set where
all its neighbors are connected to the set at least twice. This
implies that if all the variable nodes that belong to a stopping
set are unreliable, the decoding will fail.

Small stopping sets must be avoided. This is a complex
problem to attack directly. To indirectly increase the size of
stopping sets, [14] proposes the ACE algorithm, which is
based on maximizing the ACE metric of small cycles. The
ACE metric of a cycle is the sum of the number of neighbors
of each of the variable nodes in the cycle minus two times the
number of variable nodes in the cycle.

According to this algorithm, the LDPC matrix is constructed
by generating a single column randomly until one is found
where all the cycles of length less than or equal to a previ-
ously specified threshold (denoted as 2dACE) that contain its
corresponding variable node have an ACE metric higher than
or equal to another previously specified threshold (denoted as
ηACE). This process sequentially produces all the columns
starting from the one with the lowest degree.

The constraints specified in [15] also help to avoid small
stopping sets in the graph, particularly if applied to the high-
degree columns. In [15] two new metrics are defined called
βc and βp and they are the number check nodes connected
only once to a cycle or a path respectively. In the same
manner as the ACE algorithm, random columns are generated
and they must satisfy some constraints based on previously
specified thresholds which are denoted here as dSS , γc and
γp. Specifically, a randomly generated column is valid if all
the cycles of length less than or equal to 2dSS that contain its
corresponding variable node have a βc metric of value higher
than or equal to γc and if all the paths of length less than or
equal to dSS that contain its corresponding variable node have
a βp metric of value higher than or equal to γp.

The generation of the mother and effective matrices is done
using simultaneous graph conditioning. This means that the
previously described column by column generation is still used
and every column generated must satisfy the graph constraints
specified for the mother code and all the effective codes.
Different graph constraints can be used for different matrices,
which is necessary because the achievable values of these
constraints change with the rate as shown in [16]. In the
case of structured SRC codes, instead of a column by column
generation, all the columns that correspond to the same sub-
matrices will be generated at the same time.

The design procedure of structured SRC codes is shown
in Algorithm 1 where Vj denotes a set of variable nodes
that belong to a sub-matrix, V M

j denotes a column of sub-
matrices in the mother code M and V Ei

j denotes a column
of sub-matrices in the effective code Ei. Algorithm 1 may
not converge because the conditions are too restrictive. In that
case, we can relax the graph-constraints by lowering the values
of dACE , ηACE , dSS , γc, and/or γp. However, even if there
aren’t any graph-constraints, Algorithm 1 may not converge
because there may be too many effective rates that impose too
many constraints thus the number of effective-rates must be
lowered.

Algorithm 1 SRC code design
1: Choose rates, blocklength (n) and sub-matrix size (p)
2: Choose variable node degree distributions
3: Choose rows of sub-matrices to be combined in order to

generate the higher-rate codes
4: for all columns of sub-matrices Vj do
5: Randomly generate V M

j according to the degree distri-
bution selected in 2

6: if V M
j doesn’t satisfy the graph constraints set for M

then
7: Discard Vj and go to line 5
8: end if
9: for all effective codes Ei do

10: Compute V Ei

j according to the row combinations
selected in 3

11: if two non-zero sub-matrices are combined then
12: Discard Vj and go to line 5
13: end if
14: if V Ei

j doesn’t satisfy the graph constraints set for
Ei then

15: Discard Vj and go to line 5
16: end if
17: end for
18: end for

VI. ROW COMBINING WITH EDGE VARIATION (RCEV)
CODES

The main disadvantage with SRC codes is that the mother
code and all of the effective codes of an SRC code have
the same variable-node degree distribution. With strict row
combining, edges are neither created nor deleted. This is
problematic since in principle different rates require different
variable-node degree distributions for theoretical optimality,
as stated in [13]. Row combining with edge variation (RCEV)
codes allow the addition and deletion of edges as rows are
combined so the degree-distributions can be different for
different rates. The key to maintaining a simplified decoder
architecture is to make the number of additions and deletions
small compared to the total number of edges in the graph.

One of the most critical differences in the optimal variable-
node degree distribution for different rates, is the number of
degree-two variable nodes. In order to have good error floor
properties the number of degree-two variable nodes cannot
exceed the number of check nodes as shown in [16]. Having
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more degree-two nodes than check nodes implies that there
will be cycles composed by only degree-two nodes and check-
nodes. These cycles are stopping sets and have been shown to
degrade the performance of the codes [14]. These cycles will
grow smaller and more numerous as the number of degree-
two nodes increases, further worsening the performance of the
codes.

As a result, the maximum number of degree-two variable
nodes for a family of SRC codes is given by the number
of check nodes of the highest-rate effective code. This limits
the performance of the lower rate codes since their optimal
degree-distribution generally requires a significantly larger
number of degree-two variable nodes [13]. The difference in
the distributions depends on the rates of both the mother code
and all the effective codes. The loss in performance due to
this limitation increases as the range of possible rates of the
SRC codes grows larger.

In order to avoid this problem in RCEV codes, the number
of degree-two variable nodes in the mother code is set to be the
optimal for the lowest-rate code. For high-rate effective codes,
edges are added to some degree-two variable nodes so that the
maximum number of degree-two nodes is less than or equal
to the number of check nodes in the graph. Therefore, when
generating the effective code Ei, there is a set of degree-two
variable nodes (SEi) that have degree 3 in the code Ei.

This, unfortunately, is not the only problem generated by
the common degree-distribution. Layered Belief Propagation
(LBP), a decoding method that improves the convergence
speed and allows a low complexity hardware architecture, was
introduced in [17] and [18]. LBP decoding requires the parity-
check matrix to be divided into sub-matrices that can have at
most one “1" per column and one “1" per row. Thus, in order
to generate an LDPC code that can be decoded with LBP, the
maximum variable-node degree is the number of sub-matrices
in a column, which is the number check nodes divided by the
size of the sub-matrices. For SRC codes that support LBP, the
maximum variable-node degree must be the same for all rates,
and it is given by the number of check nodes of the highest
rate code divided by the size of the sub-matrices. As stated in
[13], increasing the maximum variable-node degree results in
a better code. The SRC common degree-distribution imposes
a strict limit on the maximum variable-node degree, and thus
a performance limit when LBP decoding is used.

The technique used in RCEV codes to avoid this problem
is the following. If during the row combining, a non-zero
sub-matrix is added to another non-zero sub-matrix, one of
them is discarded in order maintain the structure mentioned
before. This allows RCEV codes to have different maximum
variable-node degrees for different rates which will improve
the performance of the lower rate codes.

RCEV codes are designed using the steps for SRC codes
given in Section V, along with the edge variation techniques
described in this section as shown in Algorithm 2.

VII. PERFORMANCE COMPARISON

The following figures show the performance of row-
combining codes, designed using all the techniques presented
above, on the AWGN channel with a flooding LDPC decoder.

Algorithm 2 RCEV code design
1: Choose rates, blocklength (n) and sub-matrix size (p)
2: Choose variable node degree distributions
3: Choose the variable-node sets SCi

4: Choose rows of sub-matrices to be combined in order to
generate the higher-rate codes

5: for all columns of sub-matrices Vj do
6: Randomly generate V M

j according to the degree distri-
bution of the lowest-rate code

7: if V M
j doesn’t satisfy the graph constraints set for M

then
8: Discard Vj and go to line 6
9: end if

10: for all effective codes Ei do
11: Compute V Ei

j according to the row combinations
selected in 4

12: if two non-zero sub-matrices are combined then
13: if The degree of V M

j is less than maximum
variable-node degree then

14: Discard Vj and go to line 6
15: else
16: Discard one of the non-zero sub-matrices
17: end if
18: end if
19: if V Ei

j doesn’t satisfy the graph constraints set for
Ei then

20: Discard Vj and go to line 6
21: end if
22: if Vj ∈ SEi then
23: randomly add a non-zero sub-matrix to V Ei

j

24: end if
25: end for
26: end for

Fig. 3 shows the performance of a structured SRC code family
and the corresponding four stand-alone codes selected for
the IEEE 802.11n standard [19]. The specifications of the
structured SRC code family are the following. The mother
code has rate 0, while the four effective codes have rates 1/2,
2/3, 3/4, and 5/6. The blocklength of the codes is 1944 bits, the
size of the sub-matrices is 27x27, a maximum of 15 iterations
was used in the simulation. It has at most one “1" per column
and one “1" per row given and therefore allows the simplified
decoder proposed in [17].

Fig. 3 shows that the SRC codes perform very well under
these conditions (blocklength, sub-matrix size, and number
of iterations). The sub-matrix size is small enough to allow a
sufficiently large maximum variable-node degree. The effect of
the non-optimality of the variable-node degree distribution for
the rate-1/2 code is small for 15 iterations. This is because for
such a small number of iterations performance is dominated by
the high-degree variable nodes. Thus, the lower-than-optimal
number of degree-two nodes of the rate-1/2 code does not
dramatically affect performance. For fifty iterations, the rate-
1/2 code performance is affected, as we’ll see shortly.

This comparison at 15 iterations is practically important
since there are many applications that only allow a small
number of iterations of the decoder. For example, in most
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TABLE I
VARIABLE-NODE DEGREE DISTRIBUTIONS OF STRUCTURED SRC AND RCEV CODES

SRC SRC RCEV RCEV RCEV RCEV
p=27 p=54 R=1/2 R=2/3 R=3/4 R=5/6

x λx x λx x λx x λx x λx x λx

1 .00014 1 .00014 1 .00014 1 .00015 1 .00014 1 .00015
2 .09496 2 .09496 2 .2554 2 .19021 2 .13308 2 .09971
3 .57151 3 .52389 3 .29327 3 .42863 3 .46673 3 .60009
7 .33338 6 .38101 10 .45119 8 .38101 9 .40005 6 .30005
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Fig. 3. Performance of structured SRC with p=27 and IEEE 802.11n codes
with blocklength 1944 on an AWGN channel. Maximum number of iterations
equal to 15.

wireless applications the channel decoding must be done in a
very small amount of time, which limits the maximum number
of iterations allowed.

Fig. 4 presents another comparison of the performance of a
structured SRC code, the four stand-alone codes selected for
the IEEE 802.11n standard, and a structured RCEV code. The
row-combining codes have a mother code with rate 0, while
the four effective codes have rates 1/2, 2/3, 3/4, and 5/6. The
variable-node degree distribution of both codes can be found
in Table I. The blocklength of the codes is 1944 bits, the size
of the sub-matrices of the row-combining codes is 54x54 and a
maximum of 50 iterations was used in these simulations. SRC
and RCEV codes of the same rate have similar total number of
edges. The maximum difference, found in the rate-3/4 code,
is a 7%.

As expected, Fig. 4 shows the loss in performance of
the SRC low rate codes. The SRC rate-1/2 code show a
performance loss of more than 0.2 dB with respect to the
IEEE 802.11n codes with the same blocklength and this is
due to their inadequate variable-node degree distribution.

As observed in Fig. 4 the FER of the lower rates of the
RCEV code are significantly better than those of the lower
rates of the SRC code. This gain follows from the improved
degree distributions of the RCEV codes over those of the SRC
codes. The magnitude of the difference between the degree
distributions of the rate-1/2 codes can be seen in Table I.
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Fig. 4. Performance of structured SRC with p=54, structured RCEV, and
IEEE 802.11n codes with blocklength 1944 on an AWGN channel. Maximum
number of iterations equal to 50.

For the high rate codes there is very little difference between
the performances of the RCEV and SRC codes, since their
degree distributions are very similar. RCEV techniques allow
the optimization of the degree distributions for each rate.

Fig. 4 also shows that the RCEV codes perform close
to the IEEE 802.11n codes. As expected there is a small
loss due to the fact that RCEV codes must satisfy the row-
combining constraints. This slightly reduces the degrees of
freedom during the design process, thus making the set of all
the possible RCEV codes a subset of all the possible stand-
alone codes. Table II shows the graph-conditioning constraints
used to generate these row-combining codes and a detailed
description of them can be found in [20].

As mentioned before, the row-combining codes presented in
this section have a rate-0 mother code. We previously designed
codes that had a rate-1/2 mother code with the same variable-
node degree distribution [21]. This mother code forces the
effective rate-2/3 code to have a non-concentrated check-node
degree distribution. This translates into a 0.3 dB loss at a
FER of 10−3 in the performance of the rate-2/3 code when
compared to the 802.11n rate 2/3 code. Having a rate-0 mother
code reduces the loss to 0.1 dB as shown in Fig. 3.

A comparison in the performance of RCEV codes and
punctured LDPC codes is shown in Fig. 5. The punctured
codes correspond to the ones presented in [3]. The RCEV
code was designed to have very similar degree distributions
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TABLE II
GRAPH-CONDITIONING CONSTRAINTS OF STRUCTURED SRC AND RCEV CODES

Code SRC p=27 SRC p=54 RCEV
Rate 1/2 2/3 3/4 5/6 1/2 2/3 3/4 5/6 1/2 2/3 3/4 5/6

dACE 10 2 3 3 10 3 3 2 6 2 3 2
ηACE 3 4 3 3 3 3 3 4 3 4 3 4
dSS 4 4 4 4 4 4 4 4 4 4 4 4
γc 4 4 4 3 3 3 3 3 4 4 4 3
γp 4 4 4 3 3 3 3 3 4 4 4 3
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Fig. 5. Performance of RCEV codes and punctured LDPC codes.

to the punctured codes so that the comparison would be fair.
The blocklength of the mother code of the punctured codes is
1024 while the blocklength of the RCEV codes is 1030. There
is a clear performance gap between the higher rate codes.
This is due to the fact that puncturing reduces the effective
blocklength of the code.

Sphere-packing bounds [22] give a lower bound on the
SNR that can support reliable communication as a function of
blocklength. The gap between the sphere-packing bounds of
several rate-9/10 row-combining code and rate-9/10 punctured
codes with equal mother-code blocklength (based on the
different blocklengths) can be seen in Fig. 6. The loss in
performance of the punctured codes decreases as the mother-
code blocklength increases. However, the theoretical gap at a
blocklength of 1030 is half of the performance gap shown in
Fig. 5. That punctured codes aren’t always the best codes for
their effective blocklength may help to explain why there is a
bigger gap in the actual performance of the codes.

VIII. CONCLUSIONS

As we know from information theory, channel codes ap-
proach capacity-achieving performance as blocklength goes
to infinity. Both theory and practice confirm that codes with
longer blocklengths perform better. Recently, puncturing and
shortening have been used to provide a variety of rates in the
context of a single decoder architecture, but these techniques
shorten the code blocklength as rates move away from the rate
of the mother code.
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Fig. 6. Sphere-packing bound gap at a FER of 10−3 between row-combining
codes and punctured codes. Both codes have the same rate (9/10) and have
equal mother-code blocklength. The mother code of the punctured codes has
rate 1/2.

Multiple-rate LDPC codes that avoid this blocklength re-
duction can be generated using a row-combining approach.
Structures that reduce complexity of both encoder and decoder
can be applied and maintained through all the rates, and graph
conditioning algorithms can be applied to the design of the
codes to produce good error floor performances at all the rates.

Structured SRC codes allow the use of simple hardware
architectures (or programmable analog-decoding circuits) that
can be used to decode the mother and all the effective rates.
The design of these codes imposes some constraints that barely
affect the performance when the codes are used at a small
number of iterations. As the maximum number of iterations
increases, the performance gap between SRC codes and stand-
alone codes also increases.

RCEV codes relax the constraints required for SRC codes,
and show a gain in performance with respect to SRC codes
for a large number of iterations. This increase in performance
comes at a cost of architecture complexity. The performance
of RCEV codes is very close to the performance of stand-alone
codes for a large number of iterations.

These codes become attractive for applications that re-
quire both performance close to capacity and a low decoder
complexity due to the fact that RCEV codes have still a
strong inherent structure that can be exploited in the hardware
decoder.
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