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System Model and Problem Statement
Universal recovery in a broadcast network

Consider a network of N nodes.

Node i begins with a set of packets Pi ⊆ {p1, . . . , pk}.
Each node broadcasts packets to its neighbors. One transmission
consists of one packet.
Links are noiseless and interference-free. Each node knows the
network topology and which packets each node already knows.
“Universal Recovery” is achieved if some transmission scheme permits
each node to recover all k packets.

Question

What is the minimum number of transmissions required for universal
recovery?
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Transmission Strategies
The scheduling of transmissions

Definition (Transmission Strategy)

Let bji be the number of transmissions by node i during round j. The set

of values {bji}i,j is called a transmission strategy.

For the previous example, b11 = 1, b13 = 1, and b22 = 2 is a transmission
strategy that permits universal recovery.

Given a transmission strategy that permits universal recovery, the
encoding operations can be efficiently computed using the algorithm
developed by Jaggi et al.
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Transmission Strategies in Rr Permit Universal Recovery

Theorem

For a fixed number of communication rounds r, a transmission strategy in
which node i makes at most bji transmissions during round j permits

universal recovery if and only if {bji} ∈ Rr.

Proof.

1 Create an equivalent single-source network coding problem.

2 Take any source-sink cut in the network coding graph and reduce to a
minimal cut.

3 Each minimal cut corresponds to a constraint defining Rr (and vice
versa).

4 Thus, a transmission strategy permits universal recovery iff
{bji} ∈ Rr.
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The Region Rr
A Set of Transmission Strategies

Definition (The region Rr ⊂ ZN×r
+ )

{bji} ∈ Rr if and only if:

∀∅ ( S0 ⊆ · · · ⊆ Sr ( [N ] satisfying Sj ⊆ Γ(Sj−1)
for each j ∈ [r], the following inequalities hold :

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

b
(r+1−j)
i ≥

∣∣∣∣∣ ⋂
i∈Sr

Pc
i

∣∣∣∣∣ .
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An Example
3-Node Line Network Revisited

Constraints defining Rr

r∑
j=1

∑
i∈Sc

j∩Γ(Sj−1)

b
(r+1−j)
i ≥

∣∣∣∣∣ ⋂
i∈Sr

Pc
i

∣∣∣∣∣

p1 p2 p3 

S0 = {1}, S1 = S2 = {1, 2} ⇒ b13 ≥ 1
S0 = S1 = {1}, S2 = {1, 2} ⇒ b22 ≥ 1
S0 = S1 = S2 = {1} ⇒ b12 + b22 ≥ 2
By symmetry: b11 ≥ 1. All other sequences of sets give redundant
constraints.
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Sequences of Networks

We can consider sequences of networks indexed by k.

The packet distributions are denoted {Pi(k)}Ni=1.

Naturally, we have |
⋃N

i=1 Pi(k)| = k.

Definition (Well-behaved sequence of packet distributions)

A sequence of packet distributions is well-behaved if

PS , lim
k→∞

1
k

∣∣∣∣∣⋃
i∈S
Pi(k)

∣∣∣∣∣
exists for all subsets S ⊆ {1, . . . , N}.

PS is the limit of the empirical probability that any node in S receives
a particular packet.

Let Pc
S = 1− PS .

Convergence can take place in probability.
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Border Nodes
Characterized by simple cuts
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Per-round Transmission Constraints
Simple Cuts Suffice

Theorem

For a fixed network topology, τ , k/r fixed, and a well-behaved sequence
of packet distributions {Pi(k)}Ni=1, if node i is allowed to transmit bi times
per round and ∑

i∈∂(S)

bi > τPc
S , ∀ ∅ ( S ( [N ]

then universal recovery is possible for all sufficiently large k.

Interpretation: If border nodes have the ability to relay the packets S
is missing, then universal recovery is possible.
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Per-round Transmission Constraints
A corresponding converse

Theorem

Universal recovery is not possible if node i is allowed to make at most bi
transmissions per communication round and there is some set
∅ ( S ( [N ] for which

∑
i∈∂(S)

bi <
1
r

∣∣∣∣∣⋂
i∈S
Pc

i

∣∣∣∣∣ .

Interpretation: The nodes in ∂(S) form a bottleneck which is “too
tight”.

Question

What is the minimum number of transmissions required for universal
recovery?
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Nonsingular, d-regular, d-connected Networks
Definitions and Remarks

Definition (d-regular Networks)

A network is d-regular if each node is adjacent to d other nodes.

Definition (d-connected Networks)

A network is d-connected if at least d nodes must be removed in order to
disconnect the network.

Theorem (Bollobás): Almost every d-regular network is d-connected.

Definition (Nonsingular Networks)

A network is nonsingular if its adjacency matrix is nonsingular.

Conjecture (Costello and Vu): For d ≥ 3, almost every d-regular
network is nonsingular.
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Bounding Excess Transmissions by the Number of Nodes
A theorem for structured networks

Theorem

For all nonsingular d-regular, d-connected networks with ρ > 0 fixed,

Pi = ρ < PS , ∀i ∈ [N ], ∀S : {i} ( S,

and

(N − |S|) · Pc
i > d · Pc

S , ∀S : |S| > N − d

we can explicitly construct a vector {bji} that is within N transmissions of

optimum. Moreover, for this {bji}, we have that:

1
d

∑
i∈[N ]

|Pc
i (k)| ≤

∑
i∈[N ]
j∈[r]

bji ≤
1
d

∑
i∈[N ]

|Pc
i (k)|+N.
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Packets Available to d Nodes

Corollary

For all nonsingular d-regular, d-connected networks with each packet
available to at least d nodes, and

Pi = ρ < PS , ∀i ∈ [N ], ∀S : {i} ( S,

we can explicitly construct a vector {bji} that is within N transmissions of

optimum. Moreover, for this {bji}, we have that:

1
d

∑
i∈[N ]

|Pc
i (k)| ≤

∑
i∈[N ]
j∈[r]

bji ≤
1
d

∑
i∈[N ]

|Pc
i (k)|+N.

If each packet is originally available to d nodes, then almost all
transmissions are useful.
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Sparsely Distributed Packets

Corollary

For all nonsingular d-regular, d-connected networks with 0 < ρ < 1
d+1

fixed, and

Pi = ρ < PS , ∀i ∈ [N ], ∀S : {i} ( S,

we can explicitly construct a vector {bji} that is within N transmissions of

optimum. Moreover, for this {bji}, we have that:

1
d

∑
i∈[N ]

|Pc
i (k)| ≤

∑
i∈[N ]
j∈[r]

bji ≤
1
d

∑
i∈[N ]

|Pc
i (k)|+N.

If packets are sparsely distributed and each node has ∼ ρ× k packets,
then almost every transmission is useful.
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Independent and Identically Distributed Packets

Corollary

For all nonsingular d-regular, d-connected networks with

PS =
1− (1− q)|S|

1− (1− q)N
, ∀S ⊆ [N ]

for some 0 < q < 1, we can explicitly construct a vector {bji} that is within

N transmissions of optimum. Moreover, for this {bji}, we have that:

1
d

∑
i∈[N ]

|Pc
i (k)| ≤

∑
i∈[N ]
j∈[r]

bji ≤
1
d

∑
i∈[N ]

|Pc
i (k)|+N.

If packets are available independently at each node with probability q,
then almost every transmission is useful in recovering the set of
packets available to the network.
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Examples
Two hypothetical scenarios

N = 10, Ring Network

Ten servers connected in a ring collectively have 1000 files. Each server
has a unique 200-file subset. Between 4000 and 4010 file transfers are
required for each server to recover all files.

N = 1000, Fully Connected Network

1000 peers in a P2P network collectively have a movie consisting of
1,000,000 packets. Each peer has a random half of the movie (i.e.
500,000 randomly selected packets). Between 500,500 and 501,500 packet
transmissions are required for universal recovery.
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Conclusions and Extensions

Main Results

Defined a region Rr which characterizes all transmission strategies that
permit universal recovery.
Proved that it suffices to consider simple cuts in networks with a
per-round transmission constraint.
Bounded excess transmissions by the number of nodes for many
structured networks.

Extensions

Can include scenarios where helper nodes are present, etc.
Convergence in probability can replace “Well-behaved” and all results
hold with arbitrarily high probability as the total number of packets
grows.
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Thank You!
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