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Abstract—The complementary problems of masking and am-
plifying channel state information in the Gel’fand-Pinsker chan-
nel have recently been solved by Merhav and Shamai, and Kim
et al., respectively. In this paper, we study a related source coding
problem. Specifically, we consider the two-encoder source coding
setting where one source is to be amplified, while the other source
is to be masked. In general, there is a tension between these two
objectives which is characterized by the amplification-masking
tradeoff. In this paper, we give a single-letter description of this
tradeoff.

We apply this result, together with a recent theorem by
Courtade and Weissman on multiterminal source coding, to solve
a fundamental entropy characterization problem.

I. INTRODUCTION

The well known source coding with side information prob-
lem has an achievable rate region given by

Rx ≥ H(X|U), Ry ≥ I(Y ;U)

as originally shown by Ahlswede and Körner [1], and inde-
pendently by Wyner [2]. In this setting, the side information
encoder merely serves as a helper with the sole purpose of
aiding in the recovery of Xn at the decoder. However, for
given rates (Rx, Ry), there may be many different coding
schemes which permit recovery of Xn at the decoder. In
some cases, it may be desirable to select a coding scheme
that reveals very little information about the side information
Y n to the decoder. We refer to this objective as masking the
side information.

To motivate this setting, consider the following example.
Suppose X is an attribute of an online customer that an
advertiser would like to specifically target (e.g., gender), and
Y is other detailed information about the same customer (e.g.,
credit history). Companies A and B separately have databases
Xn and Y n corresponding to n different customers (the
databases could be indexed by IP address, for example). The
advertiser pays Companies A and B to learn as much about
the database Xn as possible. Now, suppose governing laws
prohibit the database Y n from being revealed too extensively.
In this case, the material given to the advertiser must be chosen
so that at most a prescribed amount of information is revealed
about Y n.

In general, a masking constraint on Y n may render near-
lossless reconstruction of Xn impossible. This motivates the
study the amplification-masking tradeoff. That is, the tradeoff

between amplifying (or revealing) information about Xn while
simultaneously masking the side information Y n.

Similar problems have been previously considered in the
information theory literature on secrecy and privacy. For
example, Sankar et al. determine the utility-privacy tradeoff
for the case of a single encoder in [3]. In their setting, the
random variable X is a vector with a given set of coordinates
that should be masked and another set that should be revealed
(up to a prescribed distortion). In this context, our study of the
amplification-masking tradeoff is a distributed version of [3],
in which utility is measured by the information revealed about
the database Xn. The problem we consider is distinct from
those typically studied in the information-theoretic secrecy
literature, in that the masking (i.e., equivocation) constraint
corresponds to the intended decoder, rather than an eavesdrop-
per.

We remark that the present paper is inspired in part by the
recent, complementary works [4] and [5] which respectively
study amplification and masking of channel state information.
We borrow our terminology from those works.

This paper is organized as follows. Section II formally
defines the problems considered and delivers our main results.
The corresponding proofs are given in Section III. Final
remarks and directions for future work are discussed in Section
IV.

II. PROBLEM STATEMENT AND RESULTS

Throughout this paper we adopt notational conventions that
are standard in the literature. Specifically, random variables are
denoted by capital letters (e.g., X) and their corresponding
alphabets are denoted by corresponding calligraphic letters
(e.g., X ). We abbreviate a sequence (X1, . . . , Xn) of n
random variables by Xn, and we let δ(ε) represent a quantity
satisfying limε→0 δ(ε) = 0. Other notation will be introduced
where necessary.

For a joint distribution p(x, y) on finite alphabets X × Y ,
consider the source coding setting where separate Encoders
1 and 2 have access to the sequences Xn and Y n, respec-
tively. We make the standard assumption that the sequences
(Xn, Y n) are drawn i.i.d. according to p(x, y) (i.e., Xn, Y n ∼∏n
i=1 p(xi, yi)), and n can be taken arbitrarily large.
The first of the following three subsections characterizes

the amplification-masking tradeoff. This result is applied to
solve a fundamental entropy characterization in the second



subsection. The final subsection comments on the connection
between information amplification and list decoding. Proofs
of the main results are postponed until Section III.

A. The Amplification-Masking Tradeoff
Formally, a (2nRx , 2nRy , n) code is defined by its encoding

functions

fx : Xn → {1, . . . , 2nRx} and fy : Yn → {1, . . . , 2nRy}.
A rate-amplification-masking tuple (Rx, Ry,∆A,∆M ) is
achievable if, for any ε > 0, there exists a (2nRx , 2nRy , n)
code satisfying the amplification criterion:

∆A ≤
1

n
I (Xn; fx(Xn), fy(Y n)) + ε, (1)

and the masking criterion:

∆M ≥
1

n
I (Y n; fx(Xn), fy(Y n))− ε. (2)

Thus, we see that the amplification-masking problem is an
entropy characterization problem similar to that considered in
[6, Chapter 15].

Definition 1: The achievable amplification-masking region
RAM is the closure of the set of all achievable rate-
amplification-masking tuples (Rx, Ry,∆A,∆M ).

Theorem 1: RAM consists of the rate-amplification-
masking tuples (Rx, Ry,∆A,∆M ) satisfying

Rx ≥ ∆A − I(X;U)
Ry ≥ I(Y ;U)

∆M ≥ max {I(Y ;U,X) + ∆A −H(X), I(Y ;U)}
∆A ≤ H(X).

 (3)

for some joint distribution p(x, y, u) = p(x, y)p(u|y), where
|U| ≤ |Y|+ 1.

Observe that RAM characterizes the entire tradeoff between
amplifying Xn and masking Y n. We remark that maximum
amplification ∆A = H(X) does not necessarily imply that
Xn can be recovered near-losslessly at the encoder. However,
if an application demands near lossless reproduction of the
sequence Xn, Theorem 1 can be strengthened to include this
case. To this end, define a rate-masking triple (Rx, Ry,∆M ) to
be achievable if, for any ε > 0, there exists a (2nRx , 2nRy , n)
code satisfying the masking criterion (2), and a decoding
function

X̂n : {1, 2, . . . , 2nRx} × {1, 2, . . . , 2nRy} → Xn

which satisfies the decoding-error criterion

Pr
[
Xn 6= X̂n(fx(Xn), fy(Y n))

]
≤ ε.

Definition 2: The achievable rate-masking region RM is
the closure of the set of all achievable rate-masking triples
(Rx, Ry,∆M ).

Corollary 1: RM consists of the rate-masking triples
(Rx, Ry,∆M ) satisfying

Rx ≥ H(X|U)

Ry ≥ I(Y ;U)

∆M ≥ I(Y ;X,U)

for some joint distribution p(x, y, u) = p(x, y)p(u|y), where
|U| ≤ |Y|+ 1.

B. An Entropy Characterization Result

As we previously noted, the amplification-masking trade-
off solves a multi-letter entropy characterization problem by
reducing it to single-letter form. The reader is directed to [6]
for an introduction to entropy characterization problems. Here,
we apply our results to yield a fundamental characterization
of the information revealed about Xn and Y n, respectively,
by arbitrary encoding functions fx and fy (of rates Rx, Ry).

Definition 3: Define the regionR?(Rx, Ry) as follows. The
pair (∆X ,∆Y ) ∈ R?(Rx, Ry) if and only if, for any ε > 0,
there exists a (2nRx , 2nRy, n) code satisfying∣∣∣∣∆X −

1

n
I(Xn; fx(Xn), fy(Y n))

∣∣∣∣ ≤ ε, and∣∣∣∣∆Y −
1

n
I(Y n; fx(Xn), fy(Y n))

∣∣∣∣ ≤ ε.
Let R?(Rx, Ry) be the closure of R?(Rx, Ry).

Ultimately we obtain a single-letter description of
R?(Rx, Ry). However, in order to do so, we require some
notation. To this end, let:

RAM (Rx, Ry) = {(∆X ,∆Y ) : (Rx, Ry,∆X ,∆Y ) ∈ RAM} .
Symmetrically, let RMA be the region where Xn is subject
to masking ∆X and Y n is subject to amplification ∆Y . Let

RMA(Rx, Ry) = {(∆X ,∆Y ) : (Rx, Ry,∆X ,∆Y ) ∈ RMA} .
Finally, let RAA(Rx, Ry) consist of all pairs (∆X ,∆Y )
satisfying

Rx ≥ I(Ux;X|Uy, Q)

Ry ≥ I(Uy;Y |Ux, Q)

Rx +Ry ≥ I(Ux, Uy;X,Y |Q)

∆X ≤ I(X;Ux, Uy|Q)

∆Y ≤ I(Y ;Ux, Uy|Q)

for some joint distribution of the form

p(x, y, ux, uy, q) = p(x, y)p(ux|x, q)p(uy|y, q)p(q),
where |Ux| ≤ |X |, |Uy| ≤ |Y|, and |Q| ≤ 5.

Theorem 2: The region R?(Rx, Ry) has a single-letter
characterization given by

R?(Rx, Ry) =

RAM (Rx, Ry) ∩RMA(Rx, Ry) ∩RAA(Rx, Ry).

Moreover, restriction of the encoding functions to vector-
quantization and/or random binning is sufficient to achieve
any point in R?(Rx, Ry).

The second statement of Theorem 2 is notable since it
states that relatively simple encoding functions (i.e., vector
quantization and/or binning) can asymptotically reveal the
same amount of information about Xn and Y n, respectively,
as encoding functions that are only restricted in rate. In
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Fig. 1. The region R?(Rx, Ry) for joint distribution PX,Y given by (4)
and three different pairs of rates. Rate pairs (Rx, Ry) equal to (0.1, 0.7),
(0.4, 0.4), and (0.5, 0.6) define the convex regions bounded by the black,
blue, and red curves, respectively.

contrast, this is not true for the setting of three or more
sources, as the modulo-sum problem studied by Körner and
Marton [7] provides a counterexample where the Berger-Tung
achievability scheme [8] is not optimal. Thus, obtaining a
characterization like Theorem 2 for three or more sources
represents a formidable challenge.

We remark that the points in R?(Rx, Ry) with ∆X =
H(X) and/or ∆Y = H(Y ) also capture the more stringent
constraint(s) of near-lossless reproduction of Xn and/or Y n,
respectively. This is a consequence of Corollary 1.

To give a concrete example of R?(Rx, Ry), consider the
following joint distribution:

PX,Y (x, y) x = 0 x = 1
y = 0 1/3 0
y = 1 1/6 1/2.

(4)

By performing a brute-force search over the auxiliary random
variables defining R?(Rx, Ry) for the distribution PX,Y , we
have obtained numerical approximations of R?(·, ·) for several
different pairs of (Rx, Ry). The results are given in Figure 1.

C. Connection to List Decoding
We briefly comment on the connection between an ampli-

fication constraint and list decoding. As discussed in detail in
[4], the amplification criterion (1) is essentially equivalent to
the requirement for a list decoder

Ln : {1, . . . , 2nRx} × {1, . . . , 2nRy} → 2X
n

with list size and probability of error respectively satisfying

log |Ln| ≤ n(H(X)−∆A + ε), and
Pr [Xn /∈ Ln(fx(Xn), fy(Y n))] ≤ ε.

Thus maximizing the amplification of Xn subject to given rate
and masking constraints can be thought of as characterizing
the best list decoder in that setting.

III. PROOFS OF MAIN RESULTS

Proof of Theorem 1: Converse Part: Suppose
(Rx, Ry,∆A,∆M ) is achievable. For convenience, define
Fx = fx(Xn), Fy = fy(Y n), and Ui = (Fy, Y

i−1).
First, note that ∆A ≤ H(X) is trivially satisfied. Next, the

constraint on Rx is given by:

nRx ≥ H(Fx) ≥ H(Fx|Fy)

=

n∑
i=1

H(Xi|Fy, Xi−1)−H(Xn|Fx, Fy)

≥
n∑
i=1

H(Xi|Fy, Y i−1, Xi−1)−H(Xn|Fx, Fy)

= I(Xn;Fx, Fy)−
n∑
i=1

I(Xi;Ui) (5)

≥ n(∆A − ε)−
n∑
i=1

I(Xi;Ui). (6)

Equality (5) follows since Xi ↔ Fy, Y
i−1 ↔ Xi−1 form a

Markov chain, and inequality (6) follows since amplification
∆A is achievable.

The constraint on Ry is trivial:

nRy ≥ H(Fy) ≥ I(Fy;Y n) =

n∑
i=1

I(Yi;Fy|Y i−1)

=

n∑
i=1

I(Yi;Fy, Y
i−1) =

n∑
i=1

I(Yi;Ui).

Similarly, we obtain the first lower bound on ∆M :

n(∆M + ε) ≥ I(Y n;Fx, Fy) ≥ I(Y n;Fy) =

n∑
i=1

I(Yi;Ui).

The second lower bound on ∆M requires slightly more work,
and can be derived as follows:

n(∆M + ε) ≥ I(Y n;Fx, Fy)

= I(Y n;Xn, Fy) + I(Xn;Fx, Fy)− I(Xn;Fx, Y
n)

≥ I(Y n;Xn, Fy) + n∆A − I(Xn;Fx, Y
n)− nε (7)

≥
n∑
i=1

I(Yi;X
n, Fy|Y i−1) + n∆A −H(Xn)− nε

≥
n∑
i=1

I(Yi;Xi, Ui) + ∆A −H(Xi)− ε,

where (7) follows since amplification ∆A is achievable.
Observing that the Markov condition Ui ↔ Yi ↔ Xi is

satisfied for each i, a standard timesharing argument proves
the existence of a random variable U such that U ↔ Y ↔ X
forms a Markov chain and (3) is satisfied.

Direct Part: Fix p(u|y) and suppose (Rx, Ry,∆A,∆M )
satisfy (3) with strict inequality. Next, fix ε > 0 sufficiently
small so that it is less than the minimum slack in said
inequalities, and set R̃ = I(Y ;U) + ε. Our achievability
scheme uses a standard random coding argument which we
sketch below.



Codebook generation. Randomly and independently, bin
the typical xn’s uniformly into 2n(∆A−I(X;U)+ε) bins. Let
b(xn) be the index of the bin which contains xn. For l ∈
{1, . . . , 2nR̃}, randomly and independently generate un(l),
each according to

∏n
i=1 pU (ui).

Encoding. Encoder 1, upon observing the sequence Xn,
sends the corresponding bin index b(Xn) to the decoder. If
Xn is not typical, an error is declared. Encoder 2, upon
observing the sequence Y n, finds an L ∈ {1, . . . , 2nR̃} such
that (Y n, Un(L)) are jointly ε-typical, and sends the unique
index L to the decoder. If more than one such L exists, ties
are broken arbitrarily. If no such L exists, then an error is
declared.

This coding scheme clearly satisfies the given rates. Further,
each encoder errs with arbitrarily small probability as n→∞.
Hence, we only need to check that the amplification and
masking constraints are satisfied. To this end, let C be the
random codebook. We first check that the amplification and
masking constraints are separately satisfied when averaged
over random codebooks C.

To see that the (averaged) amplification constraint is satis-
fied, consider the following:

I(Xn;Fx, Fy|C) = H(Xn|C)−H(Xn|b(Xn), L, C)
≥ nH(X)− n(H(X)−∆A + δ(ε)) (8)
= n(∆A − δ(ε)),

where (8) follows since Xn is independent of C and, averaged
over codebooks, there are at most 2n(H(X)−∆A+δ(ε)) se-
quences xn in bin b(Xn) which are typical with Un(L), where
L ∈ {1, . . . , 2nR̃}. The details are given in the Appendix.

We now turn our attention to the masking criterion. First
note the following inequality:

I(Y n;Fx, Fy|C) = I(Y n;L|C) + I(Y n; b(Xn)|L, C)
≤ I(Y n;L|C) +H(b(Xn)|C)−H(b(Xn)|Y n, C)
= I(Y n;L|C) + I(Xn;Y n)−H(Xn) +H(b(Xn)|C)
−H(b(Xn)|Y n, C) +H(Xn|Y n)

≤ I(Y n;L|C) + I(Xn;Y n)−H(Xn) +H(b(Xn)|C)
− I(b(Xn);Xn|Y n, C) +H(Xn|Y n)

= I(Y n;L|C) + I(Xn;Y n)−H(Xn) +H(b(Xn)|C)
+H(Xn|Y n, b(Xn), C) (9)

Two of the terms in (9) can be bounded as follows: First, since
L ∈ {1, . . . , 2nR̃}, we have

I(Y n;L|C) ≤ nR̃ = n(I(Y ;U) + ε).

Second, there are 2n(∆A−I(X;U)+ε) bins at Encoder 1 by
construction, and hence H(b(Xn)|C) ≤ n(∆A−I(X;U)+ε).
Therefore, substituting into (9) and simplifying, we have:

I(Y n;Fx, Fy|C) ≤ n(I(Y ;U,X) + ∆A −H(X))

+H(Xn|Y n, b(Xn), C) + n2ε. (10)

We now consider three separate cases. First, assume ∆A ≤
I(U ;X). Then,

I(Y ;X,U) + ∆A −H(X) ≤ I(Y ;X,U)−H(X|U)

= I(Y ;U)−H(X|Y ),

and (10) becomes

I(Y n;Fx, Fy|C) ≤ nI(Y ;U)− I(Xn; b(Xn)|Y n, C) + n2ε

≤ nI(Y ;U) + n2ε.

Next, suppose that ∆A ≥ I(X;U) + H(X|Y ). In this case,
there are greater than 2n(H(X|Y )+ε) bins in which the Xn

sequences are distributed. Hence, knowing Y n and b(Xn)
is sufficient to determine Xn with high probability (i.e.,
we have a Slepian-Wolf binning at Encoder 1). Therefore,
H(Xn|Y n, b(Xn), C) ≤ nε, and (10) becomes

I(Y n;Fx, Fy|C) ≤ n(I(Y ;X,U) + ∆A −H(X)) + n3ε.

Finally, suppose ∆A = I(X;U) + θH(X|Y ) for some
θ ∈ [0, 1]. In this case, we can timeshare between a code
C1 designed for amplification ∆′A = I(X;U) with probability
θ, and a code C2 designed for amplification ∆′′A = I(X;U) +
H(X|Y ) with probability 1 − θ to obtain a code C with the
same average rates and averaged amplification

I(Xn;Fx, Fy|C)
= θI(Xn;Fx, Fy|C1) + (1− θ)I(Xn;Fx, Fy|C2)

≥ n(I(X;U) + θH(X|Y )− δ(ε)) = n(∆A − δ(ε)).
Then, applying the inequalities obtained in the previous two
cases, we obtain:

I(Y n;Fx, Fy|C)
= θI(Y n;Fx, Fy|C1) + (1− θ)I(Y n;Fx, Fy|C2)

≤ θnI(Y ;U) + (1− θ)n(I(Y ;X,U) + ∆′′A −H(X)) + 3nε

= nI(Y ;U) + 3nε.

Combining these three cases proves that
1

n
I(Y n;Fx, Fy|C)
≤ max{I(Y ;U,X) + ∆A −H(X), I(Y ;U)}+ 3ε

≤ ∆M + 3ε.

To show that there exists a code which satisfies the am-
plification and masking constraints simultaneously, we con-
struct a super-code C̄ of blocklength Nn by concatenating
N randomly, independently chosen codes of length n (each
constructed as described above). By the weak law of large
numbers and independence of the concatenated coded blocks,

Pr

({
c̄ :

1

Nn
I(XNn; F̄x, F̄y|C̄ = c̄) > ∆A − δ(ε)

})
≥ 3/4

Pr

({
c̄ :

1

Nn
I(Y Nn; F̄x, F̄y|C̄ = c̄) < ∆M + δ(ε)

})
≥ 3/4

for N and n sufficiently large. Thus, there must exist one
super-code which simultaneously satisfies both desired con-
straints. This completes the proof that (Rx, Ry,∆A,∆M ) is



achievable. Finally, we invoke the Support Lemma [6] to see
that |Y| − 1 letters are sufficient to preserve p(y). Plus, we
require two more letters to preserve the values of H(X|U)
and I(Y ;U |X).

Proof of Corollary 1: By setting ∆A = H(X), [1,
Theorem 2] implies that Xn can be reproduced near losslessly.
A simplified version of the argument in the direct part of
the proof of Theorem 1 shows that the masking criterion will
be satisfied for the standard coding scheme. The converse of
Theorem 1 continues to apply

Proof of Theorem 2: First, we remark that the strength-
ened version of [9, Theorem 6] states that RAA(Rx, Ry)
is the closure of pairs (∆X ,∆Y ) such that there exists a
(2nRx , 2nRy , n) code satisfying

∆X ≤
1

n
I(Xn; fx(Xn), fy(Y n)) + ε,

∆Y ≤
1

n
I(Y n; fx(Xn), fy(Y n)) + ε

for any ε > 0.
Suppose (∆X ,∆Y ) ∈ R?(Rx, Ry). By definition of

R?(Rx, Ry), Theorem 1, and the above statement, (∆X ,∆Y )
also lies in each of the sets RAM (Rx, Ry), RMA(Rx, Ry),
and RAA(Rx, Ry). Since each of these sets are closed by
definition, we must have

R?(Rx, Ry) ⊆
RAM (Rx, Ry) ∩RMA(Rx, Ry) ∩RAA(Rx, Ry).

Since each point in the sets RAM (Rx, Ry), RMA(Rx, Ry),
and RAA(Rx, Ry) is achievable by vector quantization and/or
random binning, the second statement of the Theorem is
proved.

To show the reverse inclusion, fix ε > 0 and suppose
(∆X ,∆Y ) ∈ RAM (Rx, Ry)∩RMA(Rx, Ry)∩RAA(Rx, Ry).
This implies the existence of (2nAMRx , 2nAMRy , nAM ),
(2nMARx , 2nMARy , nMA), and (2nAARx , 2nAARy , nAA) codes
satisfying:

∆X ≤
1

nAM
I(XnAM ; fAMx (XnAM ), fAMy (Y nAM )) + ε,

∆Y ≥
1

nAM
I(Y nAM ; fAMx (XnAM ), fAMy (Y nAM ))− ε.

∆X ≥
1

nMA
I(XnMA ; fMA

x (XnMA), fMA
y (Y nMA))− ε,

∆Y ≤
1

nMA
I(Y nMA ; fMA

x (XnMA), fMA
y (Y nMA)) + ε,

∆X ≤
1

nAA
I(XnAA ; fAAx (XnAA), fAAy (Y nAA)) + ε,

∆Y ≤
1

nAA
I(Y nAA ; fAAx (XnAA), fAAy (Y nAA)) + ε.

Also, by taking fMM
x , fMM

y to be constants, we trivially have
a (2nMMRx , 2nMMRy , nMM ) code satisfying

∆X ≥
1

nMM
I(XnMM ; fMM

x (XnMM ), fMM
y (Y nMM )),

∆Y ≥
1

nMM
I(Y nMM ; fMM

x (XnMM ), fMM
y (Y nMM )).

It is readily verified that, by an appropriate timesharing be-
tween these four codes, there exists a (2nRx , 2nRy , n) code
satisfying∣∣∣∣∆X −

1

n
I(Xn; fx(Xn), fy(Y n))

∣∣∣∣ ≤ δ(ε), and∣∣∣∣∆Y −
1

n
I(Y n; fx(Xn), fy(Y n))

∣∣∣∣ ≤ δ(ε).
This completes the proof of the theorem.

IV. CONCLUDING REMARKS

In this paper, we considered a setting where two sepa-
rate encoders have access to correlated sources. We gave a
complete characterization of the tradeoff between amplifying
information about one source while simultaneously masking
another. By combining this result with recent results by
Courtade and Weissman [9], we precisely characterized the
amount of information that can be revealed about Xn and
Y n by any encoding functions satisfying given rates. There
are three notable points here: (i) this multi-letter entropy
characterization problem admits a single-letter solution, (ii)
restriction of encoding functions to vector quantization and/or
random binning is sufficient to achieve any point the region,
and (iii) this simple characterization does not extend to three
or more sources/encoders.

Finally, we remark that in the state amplification and
masking problems considered in [4] and [5], the authors obtain
explicit characterizations of the achievable regions when the
channel state and noise are independent Gaussian random
variables. Presumably, this could also be accomplished in our
setting using known results on Gaussian multiterminal source
coding, however, a compete investigation into this matter is
beyond the scope of this paper
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APPENDIX

Lemma 1: With all quantities defined as in the proof of
Theorem 1,

lim sup
n→∞

1

n
H(Xn|L, b(Xn), C) ≤ H(X)−∆A + δ(ε).

Proof: We follow the proof strategy of [10, Lemma
22.3] and make adjustments where necessary. For convenience,
define R̃x = ∆A − I(X;U) + ε and recall that ε was chosen
sufficiently small so that R̃x < H(X|U). Note that we can
express the random codebook C as a pair of random codebooks
C = (CB , CV Q), where CB is the “binning codebook” at
Encoder 1, and CV Q is the “vector-quantization codebook”
at Encoder 2.



Let E1 = 1 if (Xn, Un(L)) /∈ T (n)
ε and E1 = 0 otherwise.

Note that Pr({E1 = 1}) tends to 0 as n→∞. Consider

H(Xn|L, b(Xn), C)
≤ H(Xn, E1|L, b(Xn), C)
≤ 1 + nPr({E1 = 1})H(X)

+
∑

(l,b,cV Q)

p(l, b, cV Q|E1 = 0)

×H(Xn|L = l, b(Xn) = b, E1 = 0, CV Q = cV Q, CB).

Now, let N(l, b, cV Q, CB) be the number of sequences xn ∈
B(b) ∩ T (n)

ε (X|un(l)), where B(b) denotes the bin of x-
sequences which is labeled by index b and un(l) is the
codeword in the (fixed) codebook cV Q with index l. Note
that N(l, b, cV Q, CB) is a binomial random variable, where
the source of randomness comes from the random codebook
CB . Define

E2(l, b, cV Q, CB)

=

{
1 if N(l, b, cV Q, CB) ≥ 2E [N(l, b, cV Q, CB)],
0 otherwise.

Due to the binomial distribution of N(l, b, cV Q, CB), it is
readily verified that

E [N(l, b, cV Q, CB)] = 2−nR̃x

∣∣∣T (n)
ε (X|un(l))

∣∣∣ ,
Var(N(l, b, cV Q, CB)) ≤ 2−nR̃x

∣∣∣T (n)
ε (X|un(l))

∣∣∣ .
Then, by the Chebyshev lemma [10, Appendix B],

Pr({E2(l, b, cV Q, CB) = 1}) ≤ Var(N(l, b, cV Q, CB))

(E [N(l, b, cV Q, CB)])
2

≤ 2−n(H(X|U)−R̃x−δ(ε)),

which tends to zero as n → ∞ if R̃x < H(X|U) − δ(ε),
which is satisfied for ε sufficiently small. Now consider

H(Xn|L = l, b(Xn) = b, E1 = 0, CV Q = cV Q, CB)

≤ H(Xn, E2|L = l, b(Xn) = b, E1 = 0, CV Q = cV Q, CB)

≤ 1 + nPr({E2 = 1})H(X)

+H(Xn|L = l, b(Xn) = b, E1 = 0, E2 = 0, CV Q = cV Q, CB)

≤ 1 + nPr({E2 = 1})H(X)

+ n(H(X|U)− R̃x + δ(ε)),

which implies that

H(Xn|L, b(Xn), C)
≤ 2 + n(Pr({E1 = 1}) + Pr({E2 = 1}))H(X)

+ n(H(X|U)− R̃x + δ(ε))

≤ 2 + n(Pr({E1 = 1}) + Pr({E2 = 1}))H(X)

+ n(H(X)−∆A + δ(ε)).

Taking n→∞ completes the proof.
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