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Abstract— This paper considers a scenario in which a trans-
mitter wishes to communicate n symbols (Galois field elements)
to an arbitrary number of receivers. Each receiver knows some
of the original n symbols, and we desire a transmission that
allows each receiver to learn the entire n-symbol message from
the fewest possible transmitted symbols. Specifically, we assume
that receiver i knows ki of the original n symbols (and their
respective indices in the information vector). The value ki and
the values of the indices are unknown to the transmitter. With
the proposed rate-compatible transmission scheme, each receiver
i can recover the original n symbols after receiving the first
n − ki transmitted symbols, the smallest number of symbols
for which this is theoretically possible. The proposed scheme
is based on the properties of maximum distance separable codes.
A low complexity decoder implementation essentially performs
Berlekamp-Massey erasure decoding of an affine shift of a Reed-
Solomon code.

I. INTRODUCTION

In this paper, we consider a problem referred to as “rate-

compatible fountain communication” in [1]. Our model con-

sists of a single transmitter in possession of a vector of n
information symbols, denoted Xn, and N receivers (indexed

by i ∈ {1, . . . , N}). Each receiver possesses some random

subset of the information symbols. We define ki to be the

number of information symbols that are known to receiver

i and assume that receiver i knows the indices of those ki

symbols in the original message vector Xn. Neither the ki’s

nor the locations of the known symbols at each receiver are

known to the transmitter.

For example, if n = 3 and Xn = (x1, x2, x3), then receiver

i might possess a vector Y n
i = (x1, ?, x3), where “?” denotes

an erased symbol. The goal is for the transmitter to generate

a sequence of symbols Sn, so that the receiver can learn the

entire sequence of symbols after receiving the fewest possible

symbols of Sn, with the ultimate limit being n−ki symbols. In

the example of this paragraph, receiver i would like to learn

the erased value of x2 after receiving one symbol from the

transmitter.

This sort of information sharing is a useful endgame to a

situation where each peer in a group of nodes knows a subset

of the desired n symbols. As soon as one of the nodes learns

all n symbols, that node can transmit the rate-compatible

broadcast sequence described in this paper to efficiently bring

all other peers to complete knowledge of the n symbols.

Another application (similar to the example in [1]) for this

model is the following: Suppose a software provider multicasts

updates to its subscribers, and that a major software upgrade

to be released consists of n smaller updates of equal size.

Assume subscriber i has already installed ki of the updates

(for example, through an automated update service), and wants

to download as few of the remaining updates as possible (due

to resource or cost constraints) to obtain the major upgrade.

Also due to resource or cost constraints, the software provider

would like each subscriber to receive the minimum possible

number of updates while still allowing every subscriber to

obtain the major upgrade.

This problem can be analyzed using information theory, and

we can achieve optimal performance in a practical manner

through an application of maximum distance separable (MDS)

codes. This paper is organized as follows. Section II gives a

brief information-theoretic analysis of the problem. Practical

coding schemes that achieve optimal performance are devel-

oped for progressively more general scenarios in Section III.

Section IV delivers the conclusions.

II. AN INFORMATION THEORY PERSPECTIVE

Let X be a finite alphabet, and let Xn be a vector drawn

uniformly at random from Xn. Let Y n
i = (yi,1, . . . , yi,n) be a

randomly “erased” version of Xn as described in the example

in Section I. Assume that Y n
i consists of ki known symbols

(ki could possibly be increasing with n) and that ki satisfies

limn→∞(n − ki) = ∞ for each i.
The astute reader will notice that each channel looks like

a Slepian-Wolf scenario with (Xn, Y n
i ) being the pair of

observations to be recovered, and Y n
i available noiselessly at

the receiver (i.e. a corner point in the achievable region). The

key difference between this problem and a traditional Slepian-

Wolf problem is that the transmitter must carefully design the

Slepian-Wolf compression of Xn so that each receiver can

successfully decode after receiving its respective minimum

number of symbols. This paper presents a rate-compatible

version of Slepian-Wolf coding for this corner point and shows

its practical implementation.

Theorem 1: Rate-Compatible Slepian-Wolf. For any ε > 0,

there exists a coding scheme so that the probability of any

receiver being unable to recover Xn from Y n
i and (1+ε)(n−

ki) transmitted symbols approaches zero as n → ∞.
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Proof: Assign each of the information vectors a random

label Sn ∈ Xn (each label drawn uniformly at random). Let

Sn(Xn) denote the label assigned to a particular Xn. This

assignment is our random codebook and is made available to

the transmitter and receivers. The transmitter, in possession of

Xn broadcasts Sn(Xn) to the receivers.

For receiver i, there are |X |n−ki different possible Xn’s

that are compatible with its own observation Y n
i . Call this set

A(Y n
i ). Upon receiving (1 + ε)(n − ki) of the symbols of

Sn(Xn), denoted Vi, receiver i checks for a X̃n ∈ A(Y n
i )

such that Sn(X̃n) begins with Vi. By construction, at least

one such X̃n exists (i.e. the original information vector Xn).

If more than one such exists, an error is declared. Denote this

error event Ei. By a union bound argument, it can be shown

that:

Pr(Ei) ≤
∑

X̃n∈A(Y n
i )

X̃n �=Xn

Pr(Sn(X̃n) starts with Vi)

=
∑

X̃n∈A(Y n
i )

X̃n �=Xn

|X |−(1+ε)(n−ki)

≤ |X |−ε(n−ki) → 0 as n → ∞ (1)

Where (1) follows since limn→∞(n−ki) = ∞ by assumption.

Since the number of receivers is finite, another union bound

yields: Pr(
⋃N

i=1 Ei) → 0 as n → ∞.

Therefore, almost any random mapping Sn : Xn → Xn

provides a sufficiently good coding strategy so that the cutset

bound is achieved simultaneously to each receiver.

When framed in the context of rate-compatible Slepian-

Wolf coding, the above proof resolves the theoretical issues.

Although the argument above gives the desired result, it has

two main drawbacks (as is common with most information

theory proofs), one is decoding complexity and the other is

the fact that we require n → ∞ for good performance. In

many real-world applications, n may be quite small. The

remainder of this paper demonstrates practical schemes that

provide perfect rate-compatible fountain communication even

at small blocklengths.

III. PRACTICAL CODING SCHEMES

We limit our attention to linear coding schemes because

they are sufficient to our purpose while also providing ease

of analysis and implementation. Their practical sufficiency

is established by the algorithms presented below. However,

linear coding schemes are sufficient for the proof of Theorem

1 by randomly generating a matrix M ∈ Xn×n and letting

Sn(Xn) = MXn (assuming Xn is a column vector and

performing the matrix-vector multiplication modulo |X |).
Remark 1: At this point in the paper, we shift gears from

an information-theoretic analysis to a coding-theoretic analysis

and our notation will reflect this. In particular, capital letters

(such as A, G, H , etc.) will represent matrices and boldface

letters (such as x, s, etc.) will be used to represent vectors.

The dimensions of each should be clear from context. The jth

element of a vector x is denoted x(j). All vectors are column

vectors. Linear codes are described by an ordered pair (n, k),
or a triple (n, k, d), where n is the blocklength, k is the code

dimension, and d is the minimum Hamming distance between

two codewords.

A. General Solution When Transmitter Knows k

For pedagogical reasons, consider first the scenario of a

single receiver with k known symbols. For this initial scenario,

the number of known symbols, k, is also known the the

transmitter. However, the transmitter does not know which
n − k symbols have been erased.

The solution to the problem at hand hinges on the the answer

to the following question. Suppose we are constructing an n×
n matrix A whose first k rows are k different natural basis

vectors (vectors that are all zero except for a single one). Is it

possible to choose the last n− k rows of A so that A always

has full rank, regardless of which k natural basis vectors form

the first k rows of A? The answer is yes, as shown in the

following lemma.

Lemma 1: Let A be an n×n matrix of Galois field elements

for which the first k rows are k different natural basis vectors.

If the Galois field is large enough to admit a linear maximum

distance separable (MDS) code of length n and dimension

n−k, then choosing the last n−k rows of A to be a generator

matrix for this MDS code guarantees that A always has full

rank, regardless of which k natural basis vectors form the first

k rows of A.

Proof: We show that A must be full rank by arguing

that no non-zero linear combination of the rows can be equal

to 0. If the last n − k rows of A form a basis for an MDS

code C, then any nonzero linear combination of the last n −
k rows has Hamming weight at least dmin(C) = n − (n −
k) + 1 = k + 1. However, since the first k rows are unique

natural basis vectors, any linear combination of the first k
rows has Hamming weight at most k. Thus, no nonzero linear

combinations of the rows of A can be 0.

In light of Lemma 1, we can solve the problem where a

transmitter wants to communicate x, to a receiver with a vector

y consisting of k of the n symbols (the other n − k symbols

are erased). In this case, we assume that the value of k is

known to the transmitter. The coding strategy is defined by

G, a generator matrix for an (n, n − k) MDS code known

both to the transmitter and receiver. The transmitter sends the

(n − k)-vector s = Gx, and the receiver is able to recover x
via Gaussian elimination.

B. Reed-Solomon Solution When Transmitter Knows k

The above method is optimal, achieving zero probability

of error with zero overhead, for this simplified scenario in

which the transmitter knows k. However, it’s complexity can

be reduced. Without loss of generality, the (n, n − k) MDS

code may be assumed to be a (shortened if necessary) Reed-

Solomon code. For Reed-Solomon codes, we can replace

Gaussian elimination (which has computational complexity
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of O
(
(n − k)3 + k(n − k)

)
: O (k(n − k)) operations are re-

quired to remove the k known symbols from the system of

equations, and O
(
(n − k)3

)
operations are required to solve

the remaining system of n − k equations) with a simpler

decoder. The resulting approach not only reduces complexity,

but lays the foundation for a solution to the general case.

Recall the well known fact that the dual code of an (n, n−
k, k+1) Reed-Solomon Code, C, is an (n, k, n−k+1) Reed-

Solomon Code. Therefore, we observe that G=HT , where

H is the parity check matrix of the dual (n, k, n − k + 1)
Reed-Solomon Code, C⊥. We address the complexity issue by

appealing to the efficiency of the erasure-correcting version of

the Berlekamp-Massey algorithm for C⊥.

Theorem 2: In the single-receiver scenario where the re-

ceiver has k symbols (k known to the transmitter), the receiver

can recover x from n− k transmitted symbols with decoding

complexity O
(
k2 + (n − k)

)
.

Proof: Suppose that the transmitter knows k, which

allows the transmitter and receiver to select an appropriately

dimensioned H as described above. Assume without loss of

generality that HT is of the form HT = [I | P ]. (I is the

identity matrix). The transmitter sends the (n − k)-vector

s = HT x, which can be interpreted as the syndrome of x
with respect to C⊥. In fact, by the structure of H , we observe

that xT =
[
sT 0T

]
+ cT

x , where cx is a codeword in C⊥.

Upon receiving s, the receiver adds its k known symbols

to the corresponding symbols of
[
sT 0T

]
producing ĉx. We

define ĉx to be equal to cx with the n − k coordinates

erased corresponding to the symbols which are unknown to

the receiver. Since dmin(C⊥) = n − k + 1, the receiver can

uniquely decode ĉx to cx using the erasure-correcting version

of the Berlekamp-Massey algorithm. The decoding process is

completed by recovering x as xT =
[
sT 0T

]
+ cT

x . It is well

known that the erasure-correcting version of the Berlekamp-

Massey algorithm has O(k2) complexity. The decoding com-

plexity plus the O(n − k) intermediate operations required

gives the desired result.

The decoding procedure is summarized in Algorithm 1.

As stated in the proof of Theorem 2, classical erasure de-

coding of an (n, k) Reed-Solomon code has O(k2) complexity

(e.g. [2]). However, several works such as [3]–[5] have shown

that the decoder can be modified for erasure-only decoding

resulting in significantly lower complexity (e.g. O(n log2
2(n))

in [4]). The result of [5] could be particularly useful to the

problem at hand because their work demonstrates how to

prepare a decoder to efficiently decode for a particular erasure

pattern. After the initial setup is complete, the decoding

procedure has complexity O((n − k)k + n). This type of

decoder is applicable to the software update example given

in Section I. In this example, the updates might be files

consisting of many symbols. Coding would be done across

the corresponding symbols in each of the files. Hence, if a

particular file (update) is ! missing, the same erasure pattern

would be applicable to each of the decoding operations. Of

course, all of these complexities depend on n and k, and

therefore certain methods may be more efficient than others

Algorithm 1 Decoding procedure for a single receiver with k
known symbols

for i = 1 to n do {Construct ĉx}
if y(i) �= ? and i ≤ n − k then

ĉx(i) = y(i) + s(i)
else

ĉx(i) = y(i)
end if

end for

Decode ĉx → cx

for i = 1 to n do {Recover x from cx}
if i ≤ n − k then

x(i) = cx(i) + s(i)
else

x(i) = cx(i)
end if

end for

given particular values of n and k. For this reason, and

to avoid confusion by switching between the many possible

decoding techniques, we will restrict our attention to classical

erasure decoding of Reed-Solomon codes for the remaining

discussion.

C. Reed-Solomon Solution When Transmitter Doesn’t Know k

Theorem 2 illustrates how using the Berlekamp-Massey

algorithm and the structure of the HT can reduce decoding

complexity. The key to the strategy of Theorem 2 is viewing

x as a codeword in an affine shift of C⊥. The transmitter

communicates this shift via s and the receiver decodes as if it

were decoding to a codeword in C⊥ using standard techniques.

We can extend this logic to the general case where each

receiver has some arbitrarily sized subset of the original

symbols and this information is unknown to the transmitter.

The cost of this extension manifests itself in the computation

of the affine shift at each of the receivers.

In the proof of Theorem 2, the affine shift was directly

obtained from s as
[
sT 0T

]
. In the general case, each receiver

needs to solve a triangular system of n − ki equations (via

back-substitution) in order to recover the vector describing

the affine shift.

Theorem 3: In the general case, where receiver i knows ki

of the original symbols and ki is unknown to the transmitter,

receiver i can successfully recover x with decoding complexity

O
(
k2

i + (n − ki)2
)

after receiving n−ki transmitted symbols.

Lemma 1 suggests that handling a variety of k values re-

quires a sequence of progressively higher-rate MDS codes. De-

fine an encoding matrix such that for each j ∈ {1, 2, . . . , n},

the first j rows of the encoding matrix form the generator

matrix of an (n, j) MDS code. This is necessary so that any

receiver missing exactly j symbols can recover x from the

first j transmitted symbols. The existence of such a matrix is

guaranteed by the following lemma.
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Lemma 2: There exists an upper triangular matrix G such

that, for each j = 1, . . . , n, the first j rows of G form the

generator matrix of an (n, j) MDS code.

Proof: The proof is by construction. Define the following

isomorphism, V , between polynomials and vectors: V (p0 +
p1x + · · · + pn−1x

n−1) = [pn−1, . . . , p1, p0]. The generator

polynomial of a (shortened if necessary) (n, j) Reed-Solomon

code has the form g(n,j)(x) =
∏n−j−1

�=0 (x+α�), where α is a

primitive element. Clearly g(n,j1)(x) = g(n,j2)(x)t(x) for an

appropriate polynomial t(x) when j1 < j2. Therefore, defining

G as:

G =

⎡
⎢⎢⎢⎢⎣

V (g(n,1)(x))
V (g(n,2)(x))

. . .
V (g(n,n−1)(x))

V (1)

⎤
⎥⎥⎥⎥⎦

(2)

gives a matrix, G, whose first j rows form a generator matrix

of an (n, j) MDS code for j = 1, 2, . . . , n. Further, for each

j, deg(g(n,j)(x)) = n − j and g(n,j)(x) is monic. Therefore

G is upper triangular with 1’s on the diagonal.

Lemma 2 provides the essential tool to prove Theorem 3.

Proof: [Proof of Theorem 3] Let G be as defined in (2).

The matrix G defines the coding strategy and is thus known to

the transmitter and the receivers. The transmitter sequentially

transmits the symbols sj = gT
j x for j = 1, 2, . . . n, where gT

j

is the jth row of G. Define HT
j to be the submatrix formed by

the first j rows of G. By construction, HT
j = [Tj | Pj ], where

Tj is an upper triangular matrix and Pj is some j × (n − j)
matrix. Observe that Hj is the parity check matrix for an

(n, n − j) Reed-Solomon Code C(n,n−j). Therefore, sT
j =

[s1, . . . , sj ] is the syndrome of x with respect to C(n,n−j).

In particular, xT =
[
t1, . . . , tj ,0T

]
+ cT

x , where {ti}j
i=1 are

uniquely determined by sj and Tj and cx ∈ C(n,n−j).

A receiver, missing exactly j symbols recovers x from the j
symbols of sj as follows. First, by back-substitution, {ti}j

i=1

is computed from Tj and sj . Then, similar to the proof of

Theorem 2, the receiver forms ĉx by adding its known symbols

to the corresponding symbols of {ti}j
i=1. The receiver can then

decode ĉx to cx using Berlekamp-Massey. Finally, the receiver

recovers x as xT =
[
t1, . . . , tj ,0T

]
+ cT

x .

The complexity O
(
k2

i + (n − ki)2
)

follows because

O
(
(n − ki)2

)
operations are required to solve the triangular

system of equations, and another O
(
k2

i

)
operations are

required to decode ĉx to cx using classical Reed-Solomon

erasure decoding methods.

The decoding procedure of Theorem 3 is summarized in

Algorithm 2.

D. A Further Generalization

One possible extension of Theorem 3 is to ask whether we

can develop a practical coding scheme such that a receiver

with ki packets can reconstruct the n symbols of x from any
subset of transmitted symbols of size n−ki. Again, the answer

is affirmative (note that in Theorem 1, the order of the received

Algorithm 2 Decoding procedure for receiver i with ki known

symbols

Compute tn−ki
= {tj}n−ki

j=1 by back-substitution:

tn−ki = T−1
n−ki

sn−ki

for j = 1 to n do {Construct ĉx}
if y(j) �= ? and j ≤ n − ki then

ĉx(j) = y(j) + t(j)
else

ĉx(j) = y(j)
end if

end for

Decode ĉx → cx

for j = 1 to n do {Recover x from cx}
if j ≤ n − ki then

x(j) = cx(j) + t(j)
else

x(j) = cx(j)
end if

end for

symbols is of no importance), but this generalization comes at

the price of higher complexity.

One way to accomplish this is to take a (2n, n) systematic

Reed-Solomon code and encode the information vector x into

cT
x = [xT sT ], where s is an n-vector of parity symbols. The

transmitter sends s, and the ith receiver, upon receiving n−ki

symbols of s, creates ĉx, which consists of n erased symbols

and n unerased symbols. At this point, it is possible for the

receiver to decode ĉx to cx and recover x by extracting the

first n systematic symbols from cx.

A second (yet intimately related) method of accomplishing

this is by using an n×n Cauchy matrix for the encoding matrix

at the transmitter. Cauchy matrices have the property that any

submatrix is non-singular (and also another Cauchy matrix).

Using this method, the receiver can eliminate its known sym-

bols from the set of linear equations and invert the remaining

(n − ki) × (n − ki) Cauchy matrix to recover the erased

symbols. Cauchy matrices have the property that inversion can

be performed with quadratic complexity - hence this method

is an improvement over standard Gaussian elimination.

The reason why these two methods are closely related is that

the parity check bits of a systematic Reed-Solomon generator

matrix form a Cauchy matrix [6, p. 75]. Hence, the two

methods are fundamentally equivalent - in the first method, we

use the Berlekamp-Massey algorithm to essentially invert the

Cauchy matrix, in the latter method the inversion is performed

directly.

Although a slightly higher complexity (and field size) is

required to allow a receiver to recover x from any sufficiently

large subset of transmitted symbols, this method may be

the most practical. For example, if the transmitter-receiver
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channels are not noiseless, but erasure channels with some

small erasure probability (like those channels found in the

internet), then this method would be preferred.

IV. CONCLUSION

In this paper, we studied a rate-compatible fountain com-

munication model consisting of a transmitter which possesses

a vector of n information symbols and N receivers, each

possessing erased versions of the original information vector.

The number or locations of the erasures can be different

for each receiver and are unknown to the transmitter. We

assumed that the ith receiver has ki known symbols. We

gave a brief argument which proves it is possible for the

transmitter to design a sequence of transmitted symbols so

that, with overwhelming probability for all i, receiver i can

successfully reconstruct the information vector after receiving

(1 + ε)(n− ki) of the transmitted symbols (ε can be taken to

be arbitrarily small).

The main contribution of this work was the development

of a theoretically optimal, zero-error rate-compatible trans-

mission scheme that works for finite blocklengths and small

field sizes. This scheme can be implemented using existing

Reed-Solomon decoders and should therefore be of practical

interest for scenarios where the system model is applicable

(e.g. content distribution over the internet, etc.).
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