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Abstract—For a block-fading channel, this paper optimizes the
allocation of redundancy between packet-level erasure coding
(which provides additional packets to compensate for packet
loss) and physical layer channel coding (which lowers the
probability of packet loss). After some manipulation, standard
optimization techniques determine the trade-off between the
amount of packet-level erasure coding and physical-layer channel
coding that minimizes the transmit power required to provide
reliable communication. Our results indicate that the optimal
combination of packet-level erasure coding and physical-layer
coding provides a significant benefit over pure physical-layer
coding when no form of channel diversity is present within a
packet transmission. However, the benefit of including packet-
level erasure coding diminishes as more diversity becomes
available within a packet transmission. Even with no diversity
within a packet transmission, this paper shows that as the total
redundancy becomes large the optimal redundancy for packet-
level erasure coding reaches a limit while the optimal redundancy
for physical-layer coding continues to increase. Hence providing
limitless redundancy at the packet-level with rateless codes such
as fountain codes is not the best use of limitless redundancy for
block-fading channels.

Index Terms—Cross-layer coding, cross-layer optimization,
selection diversity, rateless codes, Rayleigh fading channels.

I. INTRODUCTION

W IRELESS channels require physical-layer coding in
order to combat the interference and noise faced by

every packet and some form of packet-level erasure coding
to deal with packets lost to severe fading. Because both
forms of coding draw from a common pool of available
redundancy, the transmitter should optimize the allocation
of redundancy between these two coding mechanisms. This
paper provides a convex-optimization approach to determine
the optimal allocation for wireless block fading channels. Ap-
plying this approach provides insight into how the allocation
of redundancy between these two coding mechanisms evolves
as more redundancy becomes available and how available
diversity affects the value of packet-level erasure coding.
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Several recent works [1],[2], and [3] consider system mod-
els similar to ours and jointly optimize the code rates at the
physical layer and packet level. In [3], the authors investigate
ARQ for the packet-level code and optimize the physical-layer
rate in order to maximize overall throughput. In [1] and [2], the
authors consider maximizing throughput (and the equivalent
dual problem of minimizing outage probability [1]) instead of
optimizing the system to work over the widest possible range
of SNR’s by minimizing the required transmit power as this
paper does. Neither [1] nor [2] considers the effect of diversity
on the optimal solution.

Luby et al. noticed the need to consider cross-layer effects
in the simulation-based analysis provided in [5] for 3GPP.
Vehkapera and Medard also note the importance of cross-
layer coding in [7]. In a similar vein to the present work,
the authors of [14] determine the total number of expected
channel uses required to transmit a packet if retransmission is
allowed. However, the packet-level coding in [14] is restricted
to retransmission. In this regard, this paper generalizes their
results. Xiao [15, Ch. 5],[16] considers the problem of jointly
balancing linear network coding with packet-length in multi-
hop networks to minimize expected delay (between the source
and sink nodes), but neither fading nor diversity are considered
in [15, Ch. 5],[16].

In recent years, “rateless” packet-level erasure coding
schemes (fountain codes) such as Raptor coding [4] have
gained widespread popularity. These schemes incrementally
add redundancy as required; in principle they can add a
limitless amount of redundancy.

In a pure erasure channel where packets are received
noiselessly unless they are erased, no physical layer coding
is necessary and it suffices to use a packet-level erasure code
designed for the particular probability of erasure. In scenarios
where this erasure probability is not known exactly, rateless
codes are frequently employed.

In contrast, on a channel where packets are never erased
but always distorted by AWGN with some known SNR that
remains constant from packet to packet, physical-layer channel
coding is essential and no packet-level erasure coding is
necessary. If the physical-layer code rate does not exceed
capacity we can expect to decode all packets reliably. On the
other hand, if the physical-layer code rate exceeds capacity,
all packets will be declared erasures overwhelming the erasure
code so that, again, it provides no benefit.

Wireless block fading channels are at neither of the two ex-
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tremes discussed above. Both packet-level and physical-layer
coding mechanisms play important roles, and the allocation
optimization presented in this paper becomes important to
obtaining the best performance.

It has been noted (see for example [6]) that rateless coding
can be used to drive the outage probability to zero in a
fading environment. A fundamental question is how to allocate
such a stream of incremental redundancy. Should it all be
applied to packet-level erasure coding as a “rateless” code
typically would do? Perhaps surprisingly, a key result of this
paper is that as the amount of available redundancy grows
large, additional redundancy should be allocated entirely to
the physical-layer channel code for block-fading wireless
channels. Thus, packet-level “rateless” erasure codes are not
the best approach for these channels.

Diversity is another important factor affecting the optimal
allocation of redundancy between the packet level and the
physical layer. This paper shows that packet-level erasure
coding provides essentially the same benefit as a form of di-
versity. Specifically, our results show that the optimal amount
of redundancy that should be applied to packet-level erasure
coding decreases as either the selection diversity order or the
number of block fades per packet increases. Either form of
diversity (or their combination) can become large enough that
packet-level erasure coding provides only a small benefit to
the communication system.

To summarize, this paper studies the optimal allocation
of redundancy between a packet-level erasure code and a
physical-layer channel code for a Rayleigh block-fading chan-
nel with or without selection diversity. The paper is organized
as follows: Section II introduces the communication model.
Section III expresses the tradeoff between the physical-layer
channel code rate, 𝑅𝐶 , and the packet-level erasure code
rate, 𝑅𝐸 , as an explicit optimization problem with a clear
solution path. Section IV discusses several special cases of
interest. The three subsections of Section IV each reduce
one of these special cases to a form that may be solved
explicitly using standard optimization methods. Section V
gives numerical results. Section VI shows that in the limit of
large redundancy, additional redundancy should be allocated
entirely to the physical-layer channel code. Thus, packet-level
“rateless” erasure codes are not optimal for fading channels.
Section VII delivers the conclusions.

II. COMMUNICATION MODEL

This paper considers a communication model where a single
transmitter attempts to deliver a message consisting of 𝑚
packets to a receiver employing 𝑁 -fold selection diversity.
In other words, the receiver has 𝑁 independent “looks" at
each transmitted packet and decodes the best one. (See [13,
p. 208] for a detailed discussion on selection diversity.) One
application for this model is a coded message broadcast to 𝑁
distinct but cooperating receivers through 𝑁 i.i.d. channels.
The receivers recover the original message by sharing at the
packet-level [8].

Let the transmission time be 𝑇 channel uses. The optimal
allocation of redundancy varies with 𝑇 . For a given trans-
mission time 𝑇 , the transmitter uses a packet-level erasure

code to encode the original 𝑚 information packets (each with
information content 𝑘 nats/packet1) into 𝑚/𝑅𝐸 erasure-coded
packets. The quantity 𝑅𝐸 is defined to be the rate of the
erasure code. The value of 1/𝑅𝐸 need not be an integer,
but 𝑚/𝑅𝐸 will always be an integer in practice. We also
have 𝑅𝐸 ≤ 1. Each of the 𝑚/𝑅𝐸 erasure-coded packets is
then encoded for transmission over a wireless channel using a
physical-layer channel code with rate 𝑅𝐶 [nats/channel-use].
For an elapsed transmission time of 𝑇 channel uses, 𝑅𝐸 and
𝑅𝐶 must be chosen to satisfy 𝑇 = 𝑚𝑘/(𝑅𝐸𝑅𝐶). We can also
write the relationship between 𝑅𝐸 and 𝑅𝐶 as

𝑚𝑘/𝑇 = 𝑅𝐸𝑅𝐶 . (1)

Since the LHS of (1) is constant, there exists a tradeoff
between the amount of erasure coding, evident from 𝑅𝐸 ,
and the amount of channel coding, evident from 𝑅𝐶 , that
can be applied to a message for a fixed value of 𝑇 . Indeed,
𝑅𝐸 and 𝑅𝐶 are inversely proportional to one another. A
particular allocation of redundancy selects a point in this
tradeoff between 𝑅𝐸 and 𝑅𝐶 .

The model assumes 𝑁 -fold selection diversity, i.e., the
receiver receives each of the 𝑚/𝑅𝐸 packets through 𝑁
independent channels and chooses the best signal for decoding
on a packet-by-packet basis.

Each channel is a block-fading Rayleigh channel with
additive white Gaussian noise. That is, 𝑦 = 𝑎𝑥 + 𝑛 where
𝑦 is the received symbol, 𝑥 is the transmitted symbol, 𝑎 is the
Rayleigh fading coefficient, and 𝑛 is additive white Gaussian
noise (AWGN) with variance 𝜎2.

The SNR for given fading coefficient 𝑎 is 𝑎2
𝔼[𝑥2]
𝜎2 , where

𝔼[𝑥2] = 𝑃 is the transmit power. Without loss of generality,
we assume that 𝔼[𝑎2] = 1 and 𝜎2 = 1. Thus, the SNR at
the receiver for the Rayleigh fading cases treated in this paper
follows an exponential distribution with parameter 1/𝑃 (see
[13, Ch. 6] or similar for a derivation). Specifically, Pr(SNR <
𝑥) = 1− 𝑒−𝑥/𝑃 . Note that the average SNR is 𝑃 .

We characterize the block fading nature of the channel by
the number of fading blocks 𝐹 . 𝐹 is the number of inde-
pendent fades that each packet experiences in each channel.
For example, if 𝐹 = 1, a packet is received at a single
SNR through each channel. If 𝐹 = 2, one half of the
packet is received at one SNR and the other half at another
(independent) SNR through each channel.

Due to the 𝑁 -fold selection diversity, the receiver has 𝑁
independent attempts to decode each of the 𝑚/𝑅𝐸 channel-
coded packets and determines whether the decoding is suc-
cessful based on an indicator mechanism such as a cyclic
redundancy check. If a particular channel-coded packet is
successfully decoded (i.e. if the CRC passes for at least
one of the 𝑁 decoding attempts), we say that this packet is
successfully received.

The receiver successfully recovers the original message if it
successfully decodes a sufficiently large subset of the original
𝑚/𝑅𝐸 erasure-encoded packets. To be more precise, the orig-
inal message can be successfully recovered if 𝑚̂ = (1+𝛿)𝑚 of
the original 𝑚/𝑅𝐸 erasure-encoded packets are successfully

1For convenience, we use the natural logarithm throughout this paper, and
therefore all information quantities are in terms of nats rather than bits.
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received by the receiver, where 𝛿 is the overhead of the packet-
level erasure code. For Reed-Solomon codes this overhead is
zero. For Raptor codes 𝛿 ≈ 0.038 for 𝑚 = 65536 (see [4]).
It suffices to consider only 𝑚̂ in our analysis because, for
a known 𝑚 and 𝛿 (which are design parameters), 𝑚̂ can be
computed for a specific erasure code.

Furthermore, we characterize our channel code by the gap
parameter 𝜖 and say that a packet is successfully received
during the 𝑖𝑡ℎ decoding attempt if (1 + 𝜖)𝑅𝐶 < 𝒞𝑖, where
𝒞𝑖 is the capacity of the 𝑖𝑡ℎ channel from the transmitter to
the receiver. Here we make the implicit assumption that the
physical-layer codeword length, 𝑘/𝑅𝐶 , is sufficiently large so
that reliable communication is possible within the given gap
𝜖 from channel capacity.

Remark 1: This paper does not discuss the details of
physical-layer or packet-level code design since we are inter-
ested in the optimal allocation strategy, not the actual codes
that can be used to implement it. The existence of good packet-
level erasure codes and physical-layer channel codes is well
established.

III. OPTIMIZING THE TRADEOFF BETWEEN 𝑅𝐸 AND 𝑅𝐶

This section presents the optimization problem at the heart
of this paper. Define the optimal redundancy allocation as
follows:

Definition 1: An allocation strategy (selection of 𝑅𝐸 and
𝑅𝐶 ) is optimal if it minimizes the transmitter power 𝑃
required to ensure that the probability of the message not being
received correctly is below a specified threshold 𝜅1.

For given parameters 𝑇 , 𝑚, and 𝑘, (1) shows that 𝑅𝐶

implies 𝑅𝐸 and vice versa. Thus, optimization can focus
on finding the optimal 𝑅𝐶 . Note also that 𝑅𝐶 ≥ 𝑘𝑚̂/𝑇 .
This lower bound on 𝑅𝐶 follows from requirement that the
transmission of the encoded message must fit into the number
of channel uses in the transmission time 𝑇 .

The probability that the message is not recovered is the
probability that the receiver does not successfully decode
the required 𝑚̂ packets. The largest tolerable message error
probability, denoted 𝜅1, is a design parameter and will vary
depending on the reliability required for a particular applica-
tion. Noting that 𝑁 is the selection diversity order and that
the number of transmitted packets (assumed to be an integer)
is 𝑅𝐶𝑇𝑘

−1, we can express this constraint on message error
probability as

𝑚̂−1∑
𝑖=0

(
𝑅𝐶𝑇𝑘

−1

𝑖

)
(1− 𝑝𝑁𝑒 )𝑖(𝑝𝑁𝑒 )𝑅𝐶𝑇𝑘−1−𝑖 ≤ 𝜅1 . (2)

In (2), 𝑝𝑒 is the packet-erasure probability, or the probability
that a particular packet is not successfully decoded during
a particular one of the 𝑁 attempts. This is the probability
that the instantaneous channel capacity 𝐶 is not sufficient to
support reliable transmission of the packet, i.e. 𝐶 < 𝑅𝐶(1+𝜖).
The instantaneous capacity, which is a random variable, is
defined as follows:

𝒞 =
1

𝐹

𝐹∑
𝑗=1

1

2
log(1 + 𝛾𝑗) .

Note that 𝑝𝑒 is independent of packet index 𝑖 because in
our model the block fading channel is i.i.d. and memoryless
from packet to packet. However, 𝑝𝑒 does depend on 𝑅𝐶

(which we make explicit by introducing the notation 𝑝𝑒(𝑅𝐶)).
Specifically:

𝑝𝑒(𝑅𝐶) = Pr

⎛
⎝𝑐𝐹𝑅𝐶 >

𝐹∑
𝑗=1

log(1 + 𝛾𝑗)

⎞
⎠ (3)

where 𝑐 = 2(1 + 𝜖) is a constant introduced for notational
convenience, and 𝛾𝑗 is the SNR experienced at the receiver
during fade 𝑗 ∈ {1, . . . , 𝐹}. In (3), 𝑝𝑒(𝑅𝐶) is the outage
probability of a Rayleigh block-fading channel [12, p. 105].

Constraint (2) is difficult to manipulate directly, but fortu-
nately we can use a Gaussian approximation which is tight
if 𝑚̂ is relatively large. Define 𝑆𝑗 to be a random variable
indicating the success or failure of transmission of the 𝑗th

packet over a particular channel. Let 𝑆𝑗 = 1 if packet 𝑗 is
received and 𝑆𝑗 = 0 otherwise.

The number of packets successfully received over a partic-
ular channel is 𝑆 = 𝑆1+𝑆2+ ⋅ ⋅ ⋅+𝑆𝑅𝐶𝑇𝑘−1 . Thus Constraint
(2) may be rewritten as Pr (𝑆 ≤ (𝑚̂− 1)) ≤ 𝜅1.

The Central Limit Theorem allows approximation of 𝑆 by a
Gaussian random variable with Mean(𝑆) = 𝑅𝐶𝑇𝑘

−1(1−𝑝𝑁𝑒 )
and Var(𝑆) = 𝑅𝐶𝑇𝑘

−1𝑝𝑁𝑒 (1 − 𝑝𝑁𝑒 ). This Gaussian approxi-
mation yields the following optimization problem:

minimize 𝑃

subject to: 𝑝𝑒(𝑅𝐶) = Pr

(
𝑐𝐹𝑅𝐶 >

𝐹∑
𝑖=1

log(1 + 𝛾𝑖)

)

(4)

Φ

(
(𝑚̂− 1)−𝑅𝐶𝑇𝑘

−1(1− 𝑝𝑁𝑒 )√
𝑅𝐶𝑇𝑘−1𝑝𝑁𝑒 (1− 𝑝𝑁𝑒 )

)
≤ 𝜅1

(5)

𝑅𝐶 ≥ 𝑘𝑚̂

𝑇
, (6)

where Φ(𝑥) is the CDF of a standard normal random variable.

Note that the minimization takes place over the transmit
power 𝑃 , which parameterizes the distributions of the 𝛾𝑖’s.
This optimization minimizes the transmit power required for
the system to perform with the desired reliability 𝜅1. Equiv-
alently, for a system in which 𝑃 is fixed, this optimization
provides the rate allocation that minimizes the SNR at which
the desired reliability 𝜅1 is achieved.

In the above problem formulation, we can rewrite Constraint
(5) as

(𝑚̂− 1) −𝑅𝐶𝑇𝑘
−1(1− 𝑝𝑁𝑒 ) + 𝜅2

√
𝑅𝐶𝑇𝑘−1𝑝𝑁𝑒 (1− 𝑝𝑁𝑒 ) ≤ 0 ,

(7)

where 𝜅2 = −Φ−1(𝜅1) > 0. Introducing the change of vari-
ables 𝑋 =

√
𝑅𝐶𝑇𝑘−1(1− 𝑝𝑁𝑒 ) and 𝑌 =

√
𝑝𝑁𝑒 , Constraint

(7) reduces to

𝑌 ≤ 1

𝜅2

(
𝑋 − 𝑚̂− 1

𝑋

)
. (8)
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Y ≤ 1
κ2

(X − m̂−1
X )

Y

X

k
RcT X2 + Y 2 = 1

Optimum Point

√
m̂ − 1−

√
m̂ − 1

√
RcTk−1−

√
RcTk−1

1

−1

Fig. 1. Geometric interpretation of Constraint (2) using the change of
variables 𝑋 =

√
𝑅𝐶𝑇𝑘−1(1 − 𝑝𝑁𝑒 ) and 𝑌 =

√
𝑝𝑁𝑒 . The optimum point

is used to compute 𝑝∗𝑒(𝑅𝐶).

Since (1− 𝑝𝑁𝑒 ) + 𝑝𝑁𝑒 = 1 we also have

1 =
𝑘

𝑅𝐶𝑇
𝑋2 + 𝑌 2 . (9)

Because 𝑝𝑒 is a decreasing function of 𝑃 when 𝑅𝐶 is
constant and 𝑌 is a monotonically increasing function of 𝑝𝑒,
𝑌 is a monotonically decreasing function of 𝑃 for a fixed 𝑅𝐶 .
Therefore, maximizing 𝑌 for a fixed 𝑅𝐶 also minimizes 𝑃
and therefore ensures optimality.

Figure 1 shows graphically how 𝑌 is maximized. The non-
negativity of𝑋 and 𝑌 restricts our attention to the nonnegative
quadrant of Figure 1. Constraint (8) restricts our attention to
the shaded region in Figure 1, and Constraint (9) indicates
that our solution must lie on the ellipse in Figure 1. Thus
the maximum (and therefore optimal) 𝑌 is the star in the
nonnegative quadrant of Figure 1 at the intersection of the
ellipse described by (9) and the curve where (8) achieves
equality.

Another change of variables reduces the fourth-order equa-
tion obtained by combining (8) and (9) to produce a quadratic
equation that preserves the solution of interest as follows:
Let 𝑍 = (1 − 𝑌 2) to obtain the following equation, where
𝜅3 = 𝜅22:

𝑍2𝑅𝐶𝑇𝑘
−1(𝑅𝐶𝑇𝑘

−1 + 𝜅3)−
𝑍𝑅𝐶𝑇𝑘

−1(2(𝑚̂− 1) + 𝜅3) + (𝑚̂− 1)2 = 0 . (10)

Solving (10) for 𝑍 (we are interested in the larger root)
gives 𝑝𝑒 as a function of 𝑅𝐶 since 𝑍 = 1 − 𝑝𝑁𝑒 (𝑅𝐶). This
yields the following optimization problem:

minimize 𝑃

subject to: 𝑝𝑒(𝑅𝐶) = Pr

(
𝑐𝐹𝑅𝐶 >

𝐹∑
𝑖=1

log(1 + 𝛾𝑖)

)

(11)

𝑍2𝑅𝐶𝑇𝑘
−1(𝑅𝐶𝑇𝑘

−1 + 𝜅3)−
𝑍𝑅𝐶𝑇𝑘

−1(2(𝑚̂− 1) + 𝜅3)+

(𝑚̂− 1)2 = 0 (12)

𝑍 = 1− 𝑝𝑁𝑒 (𝑅𝐶) (13)

𝑅𝐶 ≥ 𝑘𝑚̂

𝑇
. (14)

Denote as 𝑝∗𝑒(𝑅𝐶) the value of 𝑝𝑒(𝑅𝐶) that solves (13)
with 𝑍 taken to be the larger root of (12). This effectively
combines Constraints (11)-(14) into a single constraint which
yields the following compact expression for our optimization
problem:

minimize 𝑃

subject to: 𝑝∗𝑒(𝑅𝐶) = Pr

(
𝑐𝐹𝑅𝐶 >

𝐹∑
𝑖=1

log(1 + 𝛾𝑖)

)

(15)

𝑅𝐶 ≥ 𝑘𝑚̂

𝑇
. (16)

In general, no closed form expression exists for the proba-
bility distribution that is required to evaluate (15) accurately.
We therefore resort to analyzing several special cases for
which we can either enforce Constraint (15) by computing
the distribution of

∑𝐹
𝑖=1 log(1 + 𝛾𝑖) exactly or by using an

approximation.
The analysis of this section may be summarized as follows:

The choice of channel-coding rate𝑅𝐶 affects two things. First,
it determines the packet erasure probability as a function of 𝑃
through (3). Second, it determines the message error probabil-
ity as a function of the packet erasure probability through (2).
The optimization seeks the value of 𝑅𝐶 that balances these
two effects so that reliable communication (acceptably low
message error probability) occurs at the minimum possible
𝑃 . That is, it balances the redundancy used to lower the
packet-erasure probability with the redundancy left available
for erasure correction.

IV. EXPLICIT SOLUTION OF THREE CASES

We now apply the results of the previous section to three
special cases.

A. Case 1: Single Fade per Packet

In this case, 𝐹 = 1, so Constraint (15) can be rewritten as:

𝑝∗𝑒(𝑅𝐶) = Pr
(
𝑒𝑐𝑅𝐶 − 1 > 𝛾

)
= 1− 𝑒−(𝑒

𝑐𝑅𝐶−1)/𝑃 . (17)

Solving for 𝑃 yields

𝑃 = − 𝑒𝑐𝑅𝐶 − 1

log (1− 𝑝∗𝑒(𝑅𝐶))
. (18)
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Where (17) and (18) follow because 𝛾 is an exponential
random variable with mean 𝑃 . In this case, the optimization
problem is now to minimize (18) subject to the inequality
constraint (16).

Differentiating 𝑃 with respect to 𝑅𝐶 allows us to solve this
case by standard optimization techniques which we mention
briefly at the beginning of Section V. Several more details are
given in the Appendix. See [10] for a comprehensive review
of standard optimization techniques.

B. Case 2: Many Fades per Packet

If there are many fades per packet (i.e. 𝐹 ≫ 1), we can
use a Gaussian approximation in place of Constraint (15).
Specifically, (15) becomes:

√
𝐹
𝑐𝑅𝐶 − 𝜇(𝑃 )√

Var(𝑃 )
= Φ−1 (𝑝∗𝑒(𝑅𝐶)) . (19)

Where 𝜇(𝑃 ) = Mean(log(1 + 𝛾)) and Var(𝑃 ) = Var(log(1 +
𝛾)) for 𝛾 an exponential random variable with mean 𝑃 . Φ(𝑥)
is, again, the CDF for a standard normal random variable.

If we introduce the auxiliary equations:

𝛼(𝑃 ) =

∫ ∞

𝑃−1

1

𝑡
𝑒−𝑡𝑑𝑡 and (20)

𝛽(𝑃 ) =

∫ ∞

𝑃−1

log(𝑡)

𝑡
𝑒−𝑡𝑑𝑡 , (21)

it can be shown, after some intermediate calculus, that:

𝜇(𝑃 ) = 𝑒1/𝑃𝛼(𝑃 )

Var(𝑃 ) = 2𝑒1/𝑃𝛽(𝑃 ) + 2𝑒1/𝑃 log(𝑃 )𝛼(𝑃 ) − 𝑒2/𝑃𝛼2(𝑃 ) .

The LHS of (19) must be monotonic in 𝑃 , because for
fixed 𝑅𝐶 , the probability of an erased packet decreases as 𝑃
increases. Therefore, for a fixed 𝑅𝐶 , we can solve (19) for 𝑃
numerically by bisection. The optimization problem can then
be solved by standard methods using the derivatives of 𝑃 with
respect to 𝑅𝐶 obtained by differentiating (19) implicitly.

Remark 2: It should be pointed out that high quality numer-
ical methods exist for computing the exponential integral (20).
However, the authors are unaware of any accurate methods for
computing the log-exponential integral (21) when 𝑃 is small.
Therefore, (19) can only be reliably solved for 𝑃 when 𝑃 is
relatively large (i.e. when the average SNR is high). The next
subsection provides a solution for low average SNR.

C. Case 3: Low Average SNR

When the average SNR is low, we can use the approxima-
tion log(1 + 𝛾) ≃ 𝛾 which is tight when 𝛾 is small. In this
case, (15) simplifies to:

𝑝∗𝑒(𝑅𝐶) = 𝑃Γ

(
𝑐𝐹𝑅𝐶 ∣𝐹, 𝑃−1

)
. (22)

In (22), 𝑃Γ(𝑥∣𝐹, 𝑃−1) is the CDF for a Gamma random
variable with parameters 𝐹 and 𝑃−1. Explicitly, this function
can be written as:

𝑃Γ(𝑥∣𝐹, 𝑃−1) =
𝑃−𝐹

(𝐹 − 1)!

∫ 𝑥

0

𝑡𝐹−1𝑒−𝑡/𝑃𝑑𝑡 . (23)

Using a change of variables, we can solve for 𝑃 as:

𝑃 =
𝑐𝐹𝑅𝐶

𝑃−1
Γ (𝑝∗𝑒(𝑅𝐶)∣𝐹, 1)

. (24)

Where 𝑃−1
Γ is the inverse of the Gamma CDF defined by:

𝑃−1
Γ (𝑦∣𝐹, 1) = {𝑥 : 𝑃Γ(𝑥∣𝐹, 1) = 𝑦} . (25)

We can now solve the optimization problem using the deriva-
tives obtained from (24).

V. NUMERICAL RESULTS

This section presents and discusses the results obtained by
solving instances of the three optimization problems presented
in the previous section. The barrier method of optimiza-
tion produced these results. Each of the three optimization
problems are solved via standard optimization techniques. A
complete description of these techniques is beyond the scope
of this paper but can be found in any standard optimization
text. The interested reader is directed to [10, Ch. 11] for a
description of the barrier method used here.

It should be noted that the results in this section are ana-
lytical results obtained by solving the optimization problems
described in the previous section and are not obtained via
Monte Carlo simulation.

Figure 2 plots typical curves of the minimum average
operating SNR, which is equal to 10 log10(𝑃 ), as a function
of 𝑅−1

𝐸 . Since these curves are calculated using 𝐹 = 1, they
do not involve the approximations introduced in Cases 2 and 3
of Section IV. The first characteristic to note is that the curves
are convex with a global optimum. This confirms our intuition
that there should be an optimal tradeoff between 𝑅𝐶 and 𝑅𝐸 .
The next characteristic to note is that the optimal minimum
average operating SNR is decreasing as 𝑁 increases. Again,
this confirms our intuition that selection diversity allows a
message to be successfully communicated over a channel
with a lower average SNR. The final interesting point is
that the optimizing 𝑅−1

𝐸 is decreasing and approaching 1
as 𝑁 increases. This suggests that the redundancy required
to tolerate packet erasures can be in the form of redundant
packets, created by an erasure code, or in the form of diversity
such as the selection diversity studied here.

Figure 2 also shows that the gain achievable by introducing
more diversity is most significant when 𝑁 is small. This is
essentially a standard diversity result. However, it is interesting
to note that using the optimal cross-layer coding scheme (i.e.
a combined packet-level and physical-layer coding scheme)
effectively gives the same performance as using a physical-
layer-coding-only scheme with more selection diversity. If
diversity is not present, cross-layer coding allows us to create
diversity through erasure coding which has the effect of adding
virtual independent channels to the system. In the case studied
in Figure 2, cross-layer coding with no diversity is almost
as good as pure physical-layer coding with 4-fold selection
diversity. Note that in this case cross-layer coding provided a
22 dB gain over pure physical-layer coding.

Figure 3 plots the gain achieved by using the optimal cross-
layer coding strategy instead of a pure physical-layer coding
strategy. For 𝑁 = 1 and 𝐹 = 1, we see that optimal cross-
layer coding provides a benefit of over 20 dB as compared
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Fig. 2. Typical curves of the minimum operating SNR (10 log10 𝑃 ) as
a function of 𝑅−1

𝐸 for selection diversity ranging from 𝑁 = 1 to 𝑁 =
64. These curves were generated for an overall code rate of 1/2 (𝑇𝑘−1 =
200, 𝑚 = 𝑚̂ = 100), 𝜖 = 0.05, 𝐹 = 1, and 𝜅1 = 10−3. Solid circles
represent the system performance with optimal cross-layer coding. Solid stars
show performance of pure physical-layer coding with no packet-level erasure
coding.
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Fig. 3. Achievable gain by using the optimal cross-layer coding strategy
versus a pure channel coding (𝑅𝐸 = 1) strategy as a function of 𝑁 . All
curves were generated using 𝑚 = 𝑚̂ = 100, 𝜖 = 0.05, and 𝜅1 = 10−3.
The corresponding optimization case (and solution method) defined in Section
IV used to generate each curve is indicated in the legend.

to pure physical-layer coding. However, Figure 3 also shows
that the achievable gain decreases dramatically as diversity is
introduced either by increasing the selection diversity order 𝑁
or the block fading diversity per packet 𝐹 . This is an important
result because it suggests that near-optimal performance does
not require any packet-level erasure coding when sufficient
diversity is present. We will comment more on the practical
implications of this observation at the end of this section.

For 𝐹 = 1, Figure 4 explores the evolution of the optimal
transmission strategy as a function of instantaneous rate 𝑘𝑚/𝑇
of the overall cross-layer code for a range of selection diversity
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Fig. 4. Evolution of the optimal packet-level erasure coding rate 𝑅∗
𝐸 and

the optimal physical-layer channel coding rate 𝑅∗
𝐶 as a function of the

instantaneous rate of the cross-layer code. Curves for different values of
selection diversity order 𝑁 are given for the case when 𝐹 = 1. All curves
were generated using 𝑚 = 𝑚̂ = 100, 𝜖 = 0.05, and 𝜅1 = 10−3. The dashed
lines in the figure extend the curves to their respective limits as 𝑘𝑚/𝑇 → 0
(i.e. as the elapsed transmission time 𝑇 → ∞).

orders from 𝑁 = 1 to 𝑁 = 64. Figure 4 shows that the
optimal erasure code rate 𝑅∗

𝐸 is an increasing function of
selection diversity order 𝑁 . This implies that the redundancy
created by the erasure code becomes less useful as we gain
diversity in terms of the independent observations possible
through independent channels.

Figure 4 also shows the limit points for 𝑅∗
𝐸 and 𝑅∗

𝐶

as the instantaneous overall code rate approaches zero. 𝑅∗
𝐸

converges to nonzero limit points, but 𝑅∗
𝐶 converges to zero.

This indicates that as 𝑇 grows very large (and instantaneous
overall code rate 𝑘𝑚/𝑇 becomes very small) the optimal
physical-layer code rate continues to decrease towards zero but
the optimal packet-level erasure code rate does not. Section VI
presents the derivation of the limit points and further discusses
their interpretation. We further note that 𝑅∗

𝐸 is insensitive to
changes in 𝑇 when 𝑁 is large.

Although not shown in Figure 4, similar computations
reveal that 𝑅∗

𝐸 is nearly one in all cases when 𝐹 is large.
This implies that the diversity provided by the multiple fades
is sufficient, and very little redundancy is required in the
form of erasure protection. Note that if there are sufficiently
many fades per packet ergodicity makes it unlikely that
the observed fading characteristics of one packet would be
markedly different from those of another packet. Therefore,
severely faded packets are no longer a key obstacle. Thus all
(or almost all) available coding resources should go into the
physical channel code which does not assist with recovery
from severely faded packets, but rather reliably makes the
number of erased packets negligible.

In summary, the gains achieved by having packet-level
erasure coding are marginal except when both 𝑁 and 𝐹 are
small. If either 𝑁 or 𝐹 is sufficiently large, a nearly optimal
strategy is pure physical-layer coding. This is important from
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a practical standpoint because a gain on the order of a fraction
of a dB may not merit the cost of implementing the packet-
level erasure coding mechanism. If 𝑁 and 𝐹 are both small,
we may be able to take advantage of the insensitivity of 𝑅∗

𝐸

with respect to 𝑇 to implement another simple, yet nearly
optimal, coding design. This is discussed in the next section.

Remark 3: Our analysis has treated 𝐹 as a parameter
independent of 𝑅𝐶 . In a practical application, 𝐹 is likely
to increase linearly with the transmission time of a packet
in a time-varying channel. In such a scenario, 𝐹 is inversely
proportional to 𝑅𝐶 . This would make 𝑅∗

𝐸 nearly one in most
situations based on the results given in this section.

VI. ASYMPTOTIC RESULTS AND RATELESS CODING

This section shows that the optimal erasure coding rate
𝑅∗

𝐸 changes very little after the elapsed transmission time,
𝑇 , becomes sufficiently large. In other words, the limit of 𝑅∗

𝐸

as 𝑘𝑚/𝑇 → 0 exists and is bounded away from zero. This is a
particularly interesting result because it indicates that rateless
packet-level erasure codes (e.g. Raptor codes) are not well-
suited for fading channel applications.

Note that as more transmission time elapses and 𝑇 becomes
large, the instantaneous coding rate, 𝑘𝑚/𝑇 , becomes very
small, allowing reliable communication at a low average SNR.
Therefore, we can use the low SNR approximation to show
that 𝑅∗

𝐸 is independent of 𝑇 when 𝑇 is large.
For fixed 𝑇 , 𝑃 ∝ 𝑃𝑇 so that minimizing 𝑃 is equivalent

to minimizing 𝑃𝑇 . Using the low SNR approximation (24),

𝑃𝑇 =
𝑐𝐹𝑅𝐶𝑇

𝑃−1
Γ (𝑝∗𝑒(𝑅𝐶)∣𝐹, 1)

. (26)

Introducing the auxiliary variable ℓ = 𝑅𝐶𝑇 , we can rewrite
(10), (16), and (26) all in terms of ℓ:

minimize
𝑐𝐹ℓ

𝑃−1
Γ (𝑝∗𝑒(ℓ)∣𝐹, 1)

subject to: ℓ ≥ 𝑘𝑚̂ .

Where 𝑝∗𝑒(ℓ) = (1 − 𝑍)1/𝑁 , and 𝑍 is the larger root of the
quadratic equation:

𝑍2ℓ𝑘−1(ℓ𝑘−1 + 𝜅3)−
𝑍ℓ𝑘−1(2(𝑚̂− 1) + 𝜅3) + (𝑚̂− 1)2 = 0 .

Because the optimization problem involves 𝑅𝐶 and 𝑇 only
through their product ℓ, changing 𝑇 does not change the
optimum ℓ. Rather, it changes the required value of 𝑅𝐶 to
maintain the optimal ℓ value. Thus, as 𝑇 → ∞, 𝑅𝐶 → 0.
Figure 4 shows this behavior in which 𝑅𝐶 always converges
to 0 as 𝑇 → ∞ (or 𝑚𝑘/𝑇 → 0).

Note from (1), 𝑅𝐸 = 𝑘𝑚/ℓ. In this large-𝑇 , high-SNR
region, increasing 𝑇 does not change ℓ so it does not change
𝑅𝐸 . Again, Figure 4 shows this behavior in which 𝑅𝐸

converges to a finite positive rate while 𝑅𝐶 converges to zero.
This implies that, after the elapsed transmission time be-

comes large, the ever-increasing redundancy of a rateless
coding architecture should be applied to the physical-layer
channel coding.

Remark 4: Separate from the above analysis, 𝑅𝐸 is insen-
sitive to 𝑇 when 𝐹 (or 𝑁 ) is large since, regardless of 𝑇 , little

or no erasure coding is needed producing 𝑅𝐸 ≈ 1.
A practical transmission strategy that would achieve near-

optimal performance across all scenarios would have the
transmitter select an erasure code rate 𝑅𝐸 based on some
estimate of the the average channel SNR (and therefore the
required transmission time 𝑇 ). The transmitter would then use
a rateless physical-layer channel code (See e.g. [11]) to encode
the erasure-coded packets and send additional physical-layer
coded symbols for each packet on a round-robin basis. This
method would guarantee that the transmission fills the entire
transmission window, that 𝑅𝐶 would be as low as possible
(which lowers 𝑝∗𝑒(𝑅𝐶)), and that each erasure coded packet
is transmitted at nearly the same rate.

VII. CONCLUSION

In this paper, we developed techniques to determine the
optimal tradeoff of redundancy allocation between packet-
level erasure coding and physical-layer channel coding for
wireless fading channels with a specified degree of selection
diversity and a specified number of fades per packet. We
provided results for 𝑁 -fold selection diversity schemes with
𝑁 ranging from 1 to 64. The optimal (𝑅𝐶 , 𝑅𝐸) point for each
situation permits reliable message reception while minimizing
transmit power.

Three formulations of the general optimization problem
provide the optimal (𝑅𝐶 , 𝑅𝐸) pairs for a wide range of
interesting cases. The results demonstrate the relationship
between the system parameters and the optimal solution. The
largest amount of packet-level erasure coding in the cases
studied corresponded approximately to a rate-1/3 erasure code.
Little erasure coding is needed when diversity is provided
by a high degree of selection diversity or a large number of
independent fades per packet. Conversely, when little or no
diversity is available, packet-level erasure coding combined
with physical-layer channel coding offers a significant gain
over pure physical-layer channel coding. In the cases we
studied, gains of up to 25 dB were achieved using the optimal
combination instead of pure physical-layer channel coding.

We show that the optimal amount of packet-level erasure
code redundancy is partially determined by the amount of
diversity available in the system. The more diversity available
through multiple independent fading instances or multiple
independent channels, the less erasure coding is needed.

We also found that the optimal packet-level erasure coding
rate approaches a non-zero limit as the elapsed transmission
time grows (or equivalently as the amount of available redun-
dancy grows). In contrast, the optimal physical-layer channel
coding rate approaches zero. This demonstrates that traditional
raptor-style rateless packet-level codes are not the best choice
in a wireless fading channel. Instead, it is the physical-layer
channel code that needs to be able to continuously lower its
rate with incremental redundancy. See [11] for a family of
capacity-approaching turbo-codes that can be used to gener-
ate incremental redundancy at the physical layer. Computer
programs performing the numerical optimization routines are
available online at http://www.ee.ucla.edu/~csl.
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∂𝑍

∂𝑅𝐶
= − 𝑍

𝑅𝐶

(𝑚̂− 1)− 𝑍ℓ+ (1− 𝑍)𝜅3

2

(𝑚̂− 1)− 𝑍ℓ+ (1− 2𝑍)𝜅3

2

(27)

∂𝑝∗𝑒(𝑅𝐶)

∂𝑅𝐶
= − ∂𝑍

∂𝑅𝐶

(1 − 𝑍)1/𝑁−1

𝑁
(28)

∂2𝑍

∂𝑅2
𝐶

=
1

𝑅𝐶

(
𝑍2ℓ𝑅−1

𝐶 + ( ∂𝑍
∂𝑅𝐶

)2𝑅𝐶(ℓ + 𝜅3)

(𝑚̂− 1)− 𝑍ℓ+ (1− 2𝑍)𝜅3

2

− 2
∂𝑍

∂𝑅𝐶

(𝑚̂− 1)− 2𝑍ℓ+ (1− 𝑍)𝜅3

2

(𝑚̂− 1)− 𝑍ℓ+ (1− 2𝑍)𝜅3

2

)
(29)

∂2𝑝∗𝑒(𝑅𝐶)

∂𝑅2
𝐶

=
(1 − 𝑍)1/𝑁−1

𝑁

(
1−𝑁

𝑁(1− 𝑍)

(
∂𝑍

∂𝑅𝐶

)2

− ∂2𝑍

∂𝑅2
𝐶

)
(30)

∂𝜆

∂𝑅𝐶
=

1

1− 𝑒𝑐𝑅𝐶

(
𝑐𝜆𝑒𝑐𝑅𝐶 − ∂𝑝∗𝑒(𝑅𝐶)

∂𝑅𝐶
𝑒𝜆(𝑒

𝑐𝑅𝐶−1)

)
(31)

∂2𝜆

∂𝑅2
𝐶

=
𝑐𝑒𝑐𝑅𝐶

1− 𝑒𝑐𝑅𝐶

(
∂𝜆

∂𝑅𝐶
+ 𝑐𝜆

(
1 +

𝑒𝑐𝑅𝐶

1− 𝑒𝑐𝑅𝐶

))
−

𝑒𝜆(𝑒
𝑐𝑅𝐶−1)

1− 𝑒𝑐𝑅𝐶

(
∂2𝑝∗𝑒(𝑅𝐶)

∂𝑅2
𝐶

+

(
∂𝑝∗𝑒(𝑅𝐶)

∂𝑅𝐶

)2

𝑒𝜆(𝑒
𝑐𝑅𝐶−1) +

∂𝑝∗𝑒(𝑅𝐶)

∂𝑅𝐶

𝑐𝑒𝑐𝑅𝐶

1− 𝑒𝑐𝑅𝐶

)
(32)

APPENDIX

IMPLEMENTATION OF THE

OPTIMIZATION ROUTINE WHEN 𝐹 = 1

All three cases of the optimization problem presented in
Section IV were solved using the Barrier Method. For details
on implementing the Barrier Method, readers are directed to
the excellent reference, [10], by Boyd and Vandenberghe.

The barrier method provides primal-dual feasible points at
each iteration of the optimization procedure. The dual problem
is always convex, and any dual feasible point provides a
lower bound on the primal optimal solution. In our standard
implementation of the barrier method, the algorithm terminates
when the duality gap is less than some specified tolerance.
This proves that our numerical results are indeed optimal
regardless of the convexity of the optimization problem.

In order to actually do the optimization, one has to derive
the first and second derivatives of 𝑍 , 𝑝∗𝑒(𝑅), and 𝑃 with
respect to the optimization variable, 𝑅𝐶 . This can be quite
tedious, so the results are provided in this appendix for
convenience. For brevity, we only provide the complete set of
derivatives for the case when 𝐹 = 1. The other cases require
a similar amount of effort to derive.

In order to evaluate the derivatives given by (27)-(32) at a
particular value of 𝑅, one needs the values of 𝑍 , 𝑝∗𝑒(𝑅𝐶), and
𝑃 . 𝑍 can be computed by solving (10) for the larger root, then
one can compute 𝑝∗𝑒(𝑅𝐶) = (1−𝑍)1/𝑁 , and consequently 𝑃
from (18). In (27)-(32), let 𝜆 = 1/𝑃 .

As a final note, the authors found that it was more con-
venient to minimize the objective function 𝑓0 = − log(𝜆) =
log(𝑃 ) rather than minimize 𝑃 directly. The reason for this is
that the optimization routine converged faster when optimizing
log(𝜆). The derivatives of this new objective function are eas-
ily obtained as a function of derivatives (27)-(32). Computer
programs performing the numerical optimization routines are
available online at http://www.ee.ucla.edu/∼csl.
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